forked from antoniovilela/pps-dilepton-analysis-notebook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
create_table.py
404 lines (324 loc) · 18.6 KB
/
create_table.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import uproot4
import awkward1 as ak
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import mplhep
import numba as nb
import scipy.constants
import h5py
import argparse
from select_events import *
parser = argparse.ArgumentParser(description = 'Creates data table from ntuple.')
parser.add_argument('--files', help = 'File paths.' )
parser.add_argument('--label', help = 'Label suffix.' )
parser.add_argument('--apply_exclusive', dest = 'apply_exclusive', action = 'store_true', required = False, help = '' )
parser.add_argument('--apply_doublearm', dest = 'apply_doublearm', action = 'store_true', required = False, help = '' )
parser.add_argument('--min_pt_1', dest = 'min_pt_1', type=float, required = False, default = 50., help = '' )
parser.add_argument('--min_pt_2', dest = 'min_pt_2', type=float, required = False, default = 0., help = '' )
parser.add_argument('--random_protons', dest = 'random_protons', action = 'store_true', required = False, help = '' )
parser.add_argument('--resample_factor', dest = 'resample_factor', type = int, required = False, default = -1, help = '' )
parser.add_argument('-s', '--start', dest = 'start', type = int, required = False, default = -1, help = 'First event to process.' )
parser.add_argument('-n', '--events', dest = 'events', type = int, required = False, default = -1, help = 'Number of events to process.' )
parser.add_argument('--read_size', dest = 'read_size', required = False, default = "150MB" , help = 'Input buffer size.' )
parser.add_argument('--version', dest = 'version', required = False, default = "V1" , help = 'Version of data tables.' )
#parser.add_argument('-v', '--verbose', action = 'store_true', dest = 'verbose', required = False, help = 'Enable verbose' )
args = parser.parse_args()
fileNames_ = args.files.split(",")
print( "Reading files: " )
for item in fileNames_: print ( item )
label_ = args.label
print ( "Label: " + label_ )
apply_exclusive_ = False
if hasattr( args, 'apply_exclusive') and args.apply_exclusive: apply_exclusive_ = args.apply_exclusive
print ( "Apply exclusive selection: {}".format( apply_exclusive_ ) )
apply_doublearm_ = False
if hasattr( args, 'apply_doublearm') and args.apply_doublearm: apply_doublearm_ = args.apply_doublearm
print ( "Apply double arm selection: {}".format( apply_doublearm_ ) )
min_pt_1_ = 50.0
if hasattr( args, 'min_pt_1') and args.min_pt_1 > 0.: min_pt_1_ = args.min_pt_1
print ( "Min. p_T (1)={}".format( min_pt_1_ ) )
min_pt_2_ = min_pt_1_
if hasattr( args, 'min_pt_2') and args.min_pt_2 > 0.: min_pt_2_ = args.min_pt_2
print ( "Min. p_T (2)={}".format( min_pt_2_ ) )
random_protons_ = False
if hasattr( args, 'random_protons') and args.random_protons: random_protons_ = args.random_protons
print ( "Random protons: {}".format( random_protons_ ) )
resample_factor_ = -1
if hasattr( args, 'resample_factor'): resample_factor_ = args.resample_factor
print ( "Resample factor: {}".format( resample_factor_ ) )
firstEvent_ = None
if hasattr( args, 'start' ) and args.start > 0: firstEvent_ = args.start
print ( "First event to process: {}".format( "from first" if firstEvent_ is None else firstEvent_ ) )
maxEvents_ = None
if hasattr( args, 'events' ) and args.events > 0: maxEvents_ = args.events
print ( "Number of events to process: {}".format( "to end" if maxEvents_ is None else maxEvents_ ) )
read_size_ = "150MB"
if hasattr( args, 'read_size' ): read_size_ = args.read_size
print ( "Input buffer size: {}".format( read_size_ ) )
version_ = "V1"
if hasattr( args, 'version' ): version_ = args.version
if not version_ in ("V1", "V2"):
print ( "Unsupported parameter value: --{}={}".format( "version", version_ ) )
exit()
print ( "Data tables version: {}".format( version_ ) )
resample_ = False
if resample_factor_ > 1: resample_ = True
#entrystop_ = maxEvents_ if firstEvent_ is None else ( firstEvent_ + maxEvents_ )
entrystop_ = None
if firstEvent_ is None:
entrystop_ = maxEvents_
else:
if not maxEvents_ is None:
entrystop_ = ( firstEvent_ + maxEvents_ )
np.random.seed( 42 )
dset_chunk_size = 50000
columns = ( "Run", "LumiSection", "BX", "EventNum", "Slice", "CrossingAngle",
"MultiRP", "Arm", "RPId1", "RPId2", "TrackX1", "TrackY1", "TrackX2", "TrackY2",
"Xi", "T", "ThX", "ThY", "Time",
"TrackThX_SingleRP", "TrackThY_SingleRP",
"Track1ThX_MultiRP", "Track1ThY_MultiRP", "Track2ThX_MultiRP", "Track2ThY_MultiRP",
"TrackPixShift_SingleRP", "Track1PixShift_MultiRP", "Track2PixShift_MultiRP",
"Muon0Pt", "Muon0Eta", "Muon0Phi", "Muon0VtxZ", "Muon1Pt", "Muon1Eta", "Muon1Phi", "Muon1VtxZ",
"nVertices", "PrimVertexZ", "InvMass", "ExtraPfCands", "Acopl", "XiMuMuPlus", "XiMuMuMinus" )
protons_keys = {}
for col_ in columns:
protons_keys[ col_ ] = col_
protons_keys[ "MultiRP" ] = "ismultirp"
protons_keys[ "Arm" ] = "arm"
protons_keys[ "RPId1" ] = "rpid1"
protons_keys[ "RPId2" ] = "rpid2"
protons_keys[ "TrackX1" ] = "trackx1"
protons_keys[ "TrackY1" ] = "tracky1"
protons_keys[ "TrackX2" ] = "trackx2"
protons_keys[ "TrackY2" ] = "tracky2"
protons_keys[ "Xi" ] = "xi"
protons_keys[ "T" ] = "t"
protons_keys[ "Time" ] = "time"
protons_keys[ "TrackThX_SingleRP" ] = "trackthx_single"
protons_keys[ "TrackThY_SingleRP" ] = "trackthy_single"
protons_keys[ "Track1ThX_MultiRP" ] = "trackthx_multi1"
protons_keys[ "Track1ThY_MultiRP" ] = "trackthy_multi1"
protons_keys[ "Track2ThX_MultiRP" ] = "trackthx_multi2"
protons_keys[ "Track2ThY_MultiRP" ] = "trackthy_multi2"
protons_keys[ "TrackPixShift_SingleRP" ] = "trackpixshift_single"
protons_keys[ "Track1PixShift_MultiRP" ] = "trackpixshift_multi1"
protons_keys[ "Track2PixShift_MultiRP" ] = "trackpixshift_multi2"
protons_keys[ "ExtraPfCands" ] = "nExtraPfCandPV3"
counts_label_protons_ = "Protons" if not random_protons_ else "ProtonsRnd"
with h5py.File( 'output-' + label_ + '.h5', 'w') as f:
dset = None
dset_protons_multiRP = None
dset_protons_singleRP = None
if version_ == "V1":
dset = f.create_dataset( 'protons', ( dset_chunk_size, len( columns ) ), compression="gzip", chunks=True, maxshape=( None , len( columns ) ) )
print ( "Initial dataset shape: {}".format( dset.shape ) )
elif version_ == "V2":
dset_protons_multiRP = f.create_dataset( 'protons_multiRP', ( dset_chunk_size, len( columns ) ), compression="gzip", chunks=True, maxshape=( None , len( columns ) ) )
print ( "Initial dataset shape: {}".format( dset_protons_multiRP.shape ) )
dset_protons_singleRP = f.create_dataset( 'protons_singleRP', ( dset_chunk_size, len( columns ) ), compression="gzip", chunks=True, maxshape=( None , len( columns ) ) )
print ( "Initial dataset shape: {}".format( dset_protons_singleRP.shape ) )
protons_list = None
protons_multiRP_list = None
protons_singleRP_list = None
if version_ == "V1":
protons_list = {}
for col_ in columns:
protons_list[ col_ ] = []
elif version_ == "V2":
protons_multiRP_list = {}
for col_ in columns:
protons_multiRP_list[ col_ ] = []
protons_singleRP_list = {}
for col_ in columns:
protons_singleRP_list[ col_ ] = []
selections = None
counts = None
dset_slice = 0
dset_idx = 0
dset_entries = 0
dset_multiRP_slice = 0
dset_multiRP_idx = 0
dset_multiRP_entries = 0
dset_singleRP_slice = 0
dset_singleRP_idx = 0
dset_singleRP_entries = 0
for file_ in fileNames_:
print ( file_ )
root_ = uproot4.open( file_ )
print ( "Number of events in tree: {}".format( np.array( root_["ggll_miniaod/ntp1/nMuonCand"] ).size ) )
tree_ = root_["ggll_miniaod/ntp1"]
keys = ["Run", "LumiSection", "BX", "EventNum", "CrossingAngle","nHLT", "HLT_Accept", "HLT_Prescl", "HLT_Name",
"nMuonCand", "MuonCand_pt", "MuonCand_eta", "MuonCand_phi", "MuonCand_e", "MuonCand_charge", "MuonCand_vtxz", "MuonCand_istight",
"nPrimVertexCand", "PrimVertexCand_z", "PrimVertexCand_chi2", "PrimVertexCand_ndof", "PrimVertexCand_tracks",
"Weight", "PUWeightTrue"]
keys.append( "nPfCand" )
keys.extend( tree_.keys( filter_name="PfCand*" ) )
keys.append( "nRecoProtCand" )
keys.extend( tree_.keys( filter_name="ProtCand*" ) )
print ( keys )
print ( "entry start={} entry stop={}".format( firstEvent_, entrystop_ ) )
for events_ in tree_.iterate( keys , library="ak", how="zip", step_size=read_size_, entry_start=firstEvent_, entry_stop=entrystop_ ):
print ( len(events_), events_ )
#events_sel_ = select_events( events_, apply_exclusive_ )
#events_sel_, selections_, counts_ = select_events( events_, apply_exclusive=apply_exclusive_ )
events_sel_, selections_, counts_ = select_events( events_, minPt1=min_pt_1_, minPt2=min_pt_2_, apply_exclusive=apply_exclusive_ )
# Repeat events by resample factor
if resample_:
counts_ = counts_ * resample_factor_
if selections is None:
selections = selections_
counts = counts_
else:
msk_selections = np.full_like( selections, False, dtype='bool' )
for key in selections_:
msk_selections |= ( selections == key )
counts[ msk_selections ] += counts_
# Repeat events by resample factor
slices_ = np.zeros( len( events_sel_ ), dtype=np.int32 )
if resample_:
events_size_ = len( events_sel_ )
events_sel_ = ak.concatenate( ( [events_sel_] * resample_factor_ ), axis=0 )
slices_ = np.zeros( resample_factor_ * events_size_, dtype=np.int32 )
for idx_ in range( resample_factor_ ):
slices_[ ( idx_ * events_size_ ) : ( ( idx_ + 1 ) * events_size_ ) ] = idx_
events_sel_[ "Slice" ] = slices_
# Randomize proton arrays
if random_protons_:
protons_sel_ = events_sel_.ProtCand
index_rnd_ = np.random.permutation( len( events_sel_ ) )
protons_rnd_ = protons_sel_[ index_rnd_ ]
events_sel_[ "ProtCandRnd" ] = protons_rnd_
print ( "Num protons: {}".format( ak.num( events_sel_.ProtCand ) ) )
print ( "Num protons randomized: {}".format( ak.num( events_sel_.ProtCandRnd ) ) )
#protons_ = select_protons( events_sel_ )
protons_ = None
protons_multiRP_ = None
protons_singleRP_ = None
if version_ == "V1":
if not random_protons_: protons_ = select_protons( events_sel_, "ProtCand", version=version_ )
else: protons_ = select_protons( events_sel_, "ProtCandRnd", version=version_ )
print ( "Num protons: {}".format( ak.num( protons_ ) ) )
elif version_ == "V2":
if not random_protons_: protons_multiRP_, protons_singleRP_ = select_protons( events_sel_, branchName="ProtCand", apply_doublearm=apply_doublearm_, version=version_ )
else: protons_multiRP_, protons_singleRP_ = select_protons( events_sel_, branchName="ProtCandRnd", apply_doublearm=apply_doublearm_, version=version_ )
print ( "Num protons: {}".format( ak.num( protons_multiRP_ ) ) )
print ( "Num protons: {}".format( ak.num( protons_singleRP_ ) ) )
counts_protons_= -1
if version_ == "V1":
counts_protons_ = len( protons_ )
elif version_ == "V2":
counts_protons_ = len( protons_multiRP_ )
if not counts_label_protons_ in selections:
selections = np.concatenate( ( selections, np.array( [ counts_label_protons_ ] ) ) )
counts = np.concatenate( ( counts, np.array( [counts_protons_] ) ) )
else:
counts[ selections == counts_label_protons_ ] += counts_protons_
print ( selections )
print ( counts )
if version_ == "V1":
for col_ in columns:
protons_list[ col_ ] = np.array( ak.flatten( protons_[ protons_keys[ col_ ] ] ) )
arr_size_ = len( protons_list[ "Xi" ] )
print ( "Flattened array size: {}".format( arr_size_ ) )
dset_entries += arr_size_
if dset_entries > dset_chunk_size:
resize_factor_ = ( dset_entries // dset_chunk_size )
chunk_resize_ = resize_factor_ * dset_chunk_size
print ( "Resizing output dataset by {} entries.".format( chunk_resize_ ) )
dset.resize( ( dset.shape[0] + chunk_resize_ ), axis=0 )
print ( "Dataset shape: {}".format( dset.shape ) )
dset_slice += resize_factor_
# Count the rest to the chunk size
dset_entries = ( dset_entries % dset_chunk_size )
print ( "Stacking data." )
data_ = np.stack( list( protons_list.values() ), axis=1 )
print ( data_.shape )
print ( data_ )
dset_idx_next_ = dset_idx + arr_size_
print ( "Slice: {}".format( dset_slice ) )
print ( "Writing in positions ({},{})".format( dset_idx, dset_idx_next_ ) )
dset[ dset_idx : dset_idx_next_ ] = data_
dset_idx = dset_idx_next_
elif version_ == "V2":
for col_ in columns:
protons_multiRP_list[ col_ ] = np.array( ak.flatten( protons_multiRP_[ protons_keys[ col_ ] ] ) )
arr_size_multiRP_ = len( protons_multiRP_list[ "Xi" ] )
print ( "Flattened array size multi-RP: {}".format( arr_size_multiRP_ ) )
for col_ in columns:
protons_singleRP_list[ col_ ] = np.array( ak.flatten( protons_singleRP_[ protons_keys[ col_ ] ] ) )
arr_size_singleRP_ = len( protons_singleRP_list[ "Xi" ] )
print ( "Flattened array size single-RP: {}".format( arr_size_singleRP_ ) )
dset_multiRP_entries += arr_size_multiRP_
dset_singleRP_entries += arr_size_singleRP_
if dset_multiRP_entries > dset_chunk_size:
resize_factor_ = ( dset_multiRP_entries // dset_chunk_size )
chunk_resize_ = resize_factor_ * dset_chunk_size
print ( "Resizing output dataset by {} entries.".format( chunk_resize_ ) )
dset_protons_multiRP.resize( ( dset_protons_multiRP.shape[0] + chunk_resize_ ), axis=0 )
print ( "Dataset shape: {}".format( dset_protons_multiRP.shape ) )
dset_multiRP_slice += resize_factor_
# Count the rest to the chunk size
dset_multiRP_entries = ( dset_multiRP_entries % dset_chunk_size )
if dset_singleRP_entries > dset_chunk_size:
resize_factor_ = ( dset_singleRP_entries // dset_chunk_size )
chunk_resize_ = resize_factor_ * dset_chunk_size
print ( "Resizing output dataset by {} entries.".format( chunk_resize_ ) )
dset_protons_singleRP.resize( ( dset_protons_singleRP.shape[0] + chunk_resize_ ), axis=0 )
print ( "Dataset shape: {}".format( dset_protons_singleRP.shape ) )
dset_singleRP_slice += resize_factor_
# Count the rest to the chunk size
dset_singleRP_entries = ( dset_singleRP_entries % dset_chunk_size )
print ( "Stacking data." )
data_protons_multiRP_ = np.stack( list( protons_multiRP_list.values() ), axis=1 )
print ( data_protons_multiRP_.shape )
print ( data_protons_multiRP_ )
data_protons_singleRP_ = np.stack( list( protons_singleRP_list.values() ), axis=1 )
print ( data_protons_singleRP_.shape )
print ( data_protons_singleRP_ )
dset_idx_next_ = dset_multiRP_idx + arr_size_multiRP_
print ( "Slice: {}".format( dset_multiRP_slice ) )
print ( "Writing in positions ({},{})".format( dset_multiRP_idx, dset_idx_next_ ) )
dset_protons_multiRP[ dset_multiRP_idx : dset_idx_next_ ] = data_protons_multiRP_
dset_multiRP_idx = dset_idx_next_
dset_idx_next_ = dset_singleRP_idx + arr_size_singleRP_
print ( "Slice: {}".format( dset_singleRP_slice ) )
print ( "Writing in positions ({},{})".format( dset_singleRP_idx, dset_idx_next_ ) )
dset_protons_singleRP[ dset_singleRP_idx : dset_idx_next_ ] = data_protons_singleRP_
dset_singleRP_idx = dset_idx_next_
# Iteration on input files
root_.close()
if version_ == "V1":
# Reduce dataset to its final size
print ( "Reduce dataset." )
dset.resize( ( dset_idx ), axis=0 )
print ( "Dataset shape: {}".format( dset.shape ) )
print ( dset )
print ( dset[-1] )
elif version_ == "V2":
# Reduce dataset to its final size
print ( "Reduce dataset." )
dset_protons_multiRP.resize( ( dset_multiRP_idx ), axis=0 )
print ( "Dataset shape: {}".format( dset_protons_multiRP.shape ) )
dset_protons_singleRP.resize( ( dset_singleRP_idx ), axis=0 )
print ( "Dataset shape: {}".format( dset_protons_singleRP.shape ) )
print ( dset_protons_multiRP )
print ( dset_protons_multiRP[-1] )
print ( dset_protons_singleRP )
print ( dset_protons_singleRP[-1] )
print ( "Writing column names and event counts.")
columns_ = np.array( columns, dtype='S' )
print ( columns_ )
event_counts_ = counts
print ( event_counts_ )
selections_ = np.array( selections, dtype='S' )
print ( selections_ )
dset_columns = f.create_dataset( 'columns', data=columns_ )
dset_counts = f.create_dataset( 'event_counts', data=event_counts_ )
dset_selections = f.create_dataset( 'selections', data=selections_ )
print ( dset_columns )
print ( list( dset_columns ) )
print ( dset_counts )
print ( list( dset_counts ) )
print ( dset_selections )
print ( list( dset_selections ) )