-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathrun.py
136 lines (108 loc) · 4.75 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os, argparse, time, subprocess, io, shlex
import pandas as pd
import tqdm
parser = argparse.ArgumentParser(description='ImageNet Validation')
parser.add_argument('--in_path', required=True,
help='path to ImageNet folder that contains val folder')
parser.add_argument('--batch_size', default=128, type=int,
help='size of batch for validation')
parser.add_argument('--workers', default=20,
help='number of data loading workers')
parser.add_argument('--ngpus', default=1, type=int,
help='number of GPUs to use; 0 if you want to run on CPU')
parser.add_argument('--model_arch', choices=['alexnet', 'resnet50', 'resnet50_at', 'cornets'], default='resnet50',
help='back-end model architecture to load')
FLAGS, FIRE_FLAGS = parser.parse_known_args()
def set_gpus(n=2):
"""
Finds all GPUs on the system and restricts to n of them that have the most
free memory.
"""
if n > 0:
gpus = subprocess.run(shlex.split(
'nvidia-smi --query-gpu=index,memory.free,memory.total --format=csv,nounits'), check=True,
stdout=subprocess.PIPE).stdout
gpus = pd.read_csv(io.BytesIO(gpus), sep=', ', engine='python')
gpus = gpus[gpus['memory.total [MiB]'] > 10000] # only above 10 GB
if os.environ.get('CUDA_VISIBLE_DEVICES') is not None:
visible = [int(i)
for i in os.environ['CUDA_VISIBLE_DEVICES'].split(',')]
gpus = gpus[gpus['index'].isin(visible)]
gpus = gpus.sort_values(by='memory.free [MiB]', ascending=False)
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' # making sure GPUs are numbered the same way as in nvidia_smi
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(
[str(i) for i in gpus['index'].iloc[:n]])
else:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
set_gpus(FLAGS.ngpus)
import torch
import torch.nn as nn
import torchvision
from vonenet import get_model
device = torch.device("cuda" if FLAGS.ngpus > 0 else "cpu")
def val():
model = get_model(model_arch=FLAGS.model_arch, pretrained=True)
if FLAGS.ngpus == 0:
print('Running on CPU')
if FLAGS.ngpus > 0 and torch.cuda.device_count() > 1:
print('Running on multiple GPUs')
model = model.to(device)
elif FLAGS.ngpus > 0 and torch.cuda.device_count() is 1:
print('Running on single GPU')
model = model.to(device)
else:
print('No GPU detected!')
model = model.module
validator = ImageNetVal(model)
record = validator()
print(record['top1'])
print(record['top5'])
return
class ImageNetVal(object):
def __init__(self, model):
self.name = 'val'
self.model = model
self.data_loader = self.data()
self.loss = nn.CrossEntropyLoss(size_average=False)
self.loss = self.loss.to(device)
def data(self):
dataset = torchvision.datasets.ImageFolder(
os.path.join(FLAGS.in_path, 'val'),
torchvision.transforms.Compose([
torchvision.transforms.Resize(256),
torchvision.transforms.CenterCrop(224),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5]),
]))
data_loader = torch.utils.data.DataLoader(dataset,
batch_size=FLAGS.batch_size,
shuffle=False,
num_workers=FLAGS.workers,
pin_memory=True)
return data_loader
def __call__(self):
self.model.eval()
start = time.time()
record = {'loss': 0, 'top1': 0, 'top5': 0}
with torch.no_grad():
for (inp, target) in tqdm.tqdm(self.data_loader, desc=self.name):
target = target.to(device)
output = self.model(inp)
record['loss'] += self.loss(output, target).item()
p1, p5 = accuracy(output, target, topk=(1, 5))
record['top1'] += p1
record['top5'] += p5
for key in record:
record[key] /= len(self.data_loader.dataset.samples)
record['dur'] = (time.time() - start) / len(self.data_loader)
return record
def accuracy(output, target, topk=(1,)):
with torch.no_grad():
_, pred = output.topk(max(topk), dim=1, largest=True, sorted=True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = [correct[:k].sum().item() for k in topk]
return res
if __name__ == '__main__':
val()