-
Notifications
You must be signed in to change notification settings - Fork 0
/
parameters.py
51 lines (33 loc) · 1.22 KB
/
parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import numpy as np
def Richards2021(T):
T[T<-30] = -30
iotaD = 0.0259733*T + 1.95268104
iotaS = np.zeros_like(T)
lambtilde = (0.00251776*T + 0.41244777)/np.sqrt(2) #correction to agree with SpecCAF
betatilde = 5*(0.35182521*T + 12.17066493)/np.sqrt(2)
Ecc = np.ones_like(T)
Eca = np.ones_like(T)
power = np.ones_like(T)
x = np.array([iotaD,iotaS,lambtilde,betatilde,Ecc,Eca,power])
return x.T
def Richards2021Reduced(T,reduce=0.25):
T[T<-30] = -30
iotaD = 0.0259733*T + 1.95268104
iotaS = np.zeros_like(T)
lambtilde = reduce*(0.00251776*T + 0.41244777)/np.sqrt(2) #correction to agree with SpecCAF
betatilde = 5*(0.35182521*T + 12.17066493)/np.sqrt(2)
Ecc = np.ones_like(T)
Eca = np.ones_like(T)
power = np.ones_like(T)
x = np.array([iotaD,iotaS,lambtilde,betatilde,Ecc,Eca,power])
return x.T
def Elmer(T):
iotaD = 0.94*np.ones_like(T)
iotaS = 0.6*np.ones_like(T)
lambtilde = np.sqrt(2)*2e-3 * np.exp(np.log(10)*T/10)
betatilde = np.zeros_like(T)
Ecc = np.ones_like(T)
Eca = 25*np.ones_like(T)
power = np.ones_like(T)
x = np.array([iotaD,iotaS,lambtilde,betatilde,Ecc,Eca,power])
return x.T