diff --git a/.vscode/settings.json b/.vscode/settings.json index 88e9732..905383d 100644 --- a/.vscode/settings.json +++ b/.vscode/settings.json @@ -3,7 +3,7 @@ "diffEditor.codeLens": true, "python.formatting.provider": "black", "python.linting.flake8Enabled": true, - "python.linting.enabled": true, + "python.linting.enabled": false, "markdown-mermaid.languages": ["mermaid"], "map.preview.style.polygon.stroke.width": "" } diff --git a/docs/reference.md b/docs/reference.md index 78663ec..14b94fd 100644 --- a/docs/reference.md +++ b/docs/reference.md @@ -10,10 +10,24 @@ :members: ``` -### inductance +### Coils ```{eval-rst} -.. automodule:: inductance.inductance +.. automodule:: inductance.coils + :members: +``` + +### Self inductance + +```{eval-rst} +.. automodule:: inductance.self + :members: +``` + +### Mutual inductance + +```{eval-rst} +.. automodule:: inductance.mutual :members: ``` diff --git a/pyproject.toml b/pyproject.toml index a1ce66d..3a769fd 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,6 +1,6 @@ [tool.poetry] name = "inductance" -version = "0.1.1" +version = "0.1.2" description = "Code for 2D inductance calculations" authors = ["Darren Garnier "] license = "MIT" diff --git a/src/inductance/_numba.py b/src/inductance/_numba.py new file mode 100644 index 0000000..f0cc39c --- /dev/null +++ b/src/inductance/_numba.py @@ -0,0 +1,45 @@ +"""Try to import numba.""" + +import os + +# try to enable use without numba. Those with guvectorize will not work. +try: + from numba import guvectorize, jit, njit, prange + + # if numba is diabled, redfine the jit decorator to do nothing + # so that coverage testing will work + if os.getenv("NUMBA_DISABLE_JIT", "0") == "1": # pragma: no cover + raise ImportError + +except ImportError: # pragma: no cover + from inspect import currentframe, getframeinfo + from warnings import warn_explicit + + _WARNING = ( + "Numba disabled. Mutual inductance calculations " + + "will not be accelerated and some API will not be available." + ) + _finfo = getframeinfo(currentframe()) # type: ignore + warn_explicit(_WARNING, RuntimeWarning, _finfo.filename, _finfo.lineno) + + def _jit(*args, **kwargs): + if len(args) == 1 and len(kwargs) == 0 and callable(args[0]): + # called as @decorator + return args[0] + else: + # called as @decorator(*args, **kwargs) + return lambda f: f + + def _guvectorize(*args, **kwds): + def fake_decorator(f): + warning = f"{f.__name__} requires Numba JIT." + finfo = getframeinfo(currentframe().f_back) # type: ignore + warn_explicit(warning, RuntimeWarning, finfo.filename, finfo.lineno) + return lambda f: None + + return fake_decorator + + guvectorize = _guvectorize + njit = _jit + prange = range + jit = _jit diff --git a/src/inductance/coils.py b/src/inductance/coils.py new file mode 100644 index 0000000..16c9ef7 --- /dev/null +++ b/src/inductance/coils.py @@ -0,0 +1,163 @@ +"""Coil inductance calculations. + +Defines a coil class to keep track of coil parameters. + +Benchmarking against LDX values, which come from +old Mathematica routines and other tests. + +Filaments are defined as an numpy 3 element vector + - r, z, and n. +""" +from __future__ import annotations + +import numpy as np + +from .filaments import ( + filament_coil, + mutual_inductance_of_filaments, + radial_force_of_filaments, + self_inductance_by_filaments, + vertical_force_of_filaments, +) +from .self import ( + L_long_solenoid_butterworth, + L_lorentz, + L_lyle4, + L_lyle6, + L_lyle6_appendix, + L_maxwell, + dLdR_lyle6, +) + + +class Coil: + """Rectangular coil object to keep track of coil parameters.""" + + def __init__(self, r, z, dr, dz, nt=1, at=1, nr=0, nz=0): + """Create a rectangular coil object. + + Args: + r (float): radial center of coil + z (float): vertical center of coil + dr (float): radial width of coil + dz (float): axial height of coil + nt (int): number of turns in coil + nr (int, optional): Number of radial sections to filament coil. Defaults to 0. + nz (int, optional): Number of axial sections to filament coil. Defaults to 0. + at (float, optional): Amperage of coil. Defaults to 0. + """ + self.r = r + self.z = z + self.dr = dr + self.dz = dz + self.nt = nt + self.at = at + self.fils = None + + if (nr > 0) and (nz > 0): + self.nr = nr + self.nz = nz + self.filamentize(nr, nz) + + @classmethod + def from_dict(cls, d): + """Create a coil from a dictionary.""" + if "r1" in d: + return cls.from_bounds(**d) + else: + return cls(**d) + + @classmethod + def from_bounds(cls, r1, r2, z1, z2, nt=1, at=1, nr=0, nz=0): + """Create a coil from bounds instead of center and width.""" + return cls( + (r1 + r2) / 2, (z1 + z2) / 2, r2 - r1, z2 - z1, nt=nt, at=at, nr=nr, nz=nz + ) + + @property + def r1(self): # noqa: D102 + return self.r - self.dr / 2 + + @property + def r2(self): # noqa: D102 + return self.r + self.dr / 2 + + @property + def z1(self): # noqa: D102 + return self.z - self.dz / 2 + + @property + def z2(self): # noqa: D102 + return self.z + self.dz / 2 + + def filamentize(self, nr, nz): + """Create an array of filaments to represent the coil.""" + self.nr = nr + self.nz = nz + self.fils = filament_coil(self.r, self.z, self.dr, self.dz, self.nt, nr, nz) + + def L_Maxwell(self): + """Inductance by Maxwell's formula.""" + return L_maxwell(self.r, self.dr, self.dz, self.nt) + + def L_Lyle4(self): + """Inductance by Lyle's formula, 4th order.""" + return L_lyle4(self.r, self.dr, self.dz, self.nt) + + def L_Lyle6(self): + """Inductance by Lyle's formula, 6th order.""" + return L_lyle6(self.r, self.dr, self.dz, self.nt) + + def L_Lyle6A(self): + """Inductance by Lyle's formula, 6th order, appendix.""" + return L_lyle6_appendix(self.r, self.dr, self.dz, self.nt) + + def L_filament(self): + """Inductance by filamentation.""" + return self_inductance_by_filaments( + self.fils, conductor="rect", dr=self.dr / self.nr, dz=self.dz / self.nz + ) + + def L_long_solenoid_butterworth(self): + """Inductance by Butterworth's formula.""" + return L_long_solenoid_butterworth(self.r, self.dr, self.dz, self.nt) + + def L_lorentz(self): + """Inductance by Lorentz's formula.""" + return L_lorentz(self.r, self.dr, self.dz, self.nt) + + def dLdR_Lyle6(self): + """Derivative of inductance by Lyle's formula, 6th order.""" + return dLdR_lyle6(self.r, self.dr, self.dz, self.nt) + + def M_filament(self, C2: Coil) -> float: + """Mutual inductance of two coils by filamentation.""" + return mutual_inductance_of_filaments(self.fils, C2.fils) + + def Fz_filament(self, C2: Coil) -> float: + """Vertical force of two coils by filamentation.""" + F_a2 = vertical_force_of_filaments(self.fils, C2.fils) + return self.at / self.nt * C2.at / C2.nt * F_a2 + + def Fr_self(self) -> float: + """Radial force of coil on itself.""" + dLdR = dLdR_lyle6(self.r, self.dr, self.dz, self.nt) + return (self.at / self.nt) ** 2 / 2 * dLdR + + def Fr_filament(self, C2: Coil) -> float: + """Radial force of two coils by filamentation.""" + F_r2 = radial_force_of_filaments(self.fils, C2.fils) + return self.at / self.nt * C2.at / C2.nt * F_r2 + + +class CompositeCoil(Coil): + """A coil made of multiple rectangular coils.""" + + def __init__(self, coils: list[Coil]): + """Create a composite coil from a list of _filamented_ coils.""" + self.coils = coils + self.nt = sum(coil.nt for coil in coils) + self.at = sum(coil.at for coil in coils) + self.r = sum(coil.r * coil.nt for coil in coils) / self.nt + self.z = sum(coil.z * coil.nt for coil in coils) / self.nt + self.fils = np.concatenate([coil.fils for coil in coils]) diff --git a/src/inductance/elliptics.py b/src/inductance/elliptics.py index 5d5184f..02f8500 100644 --- a/src/inductance/elliptics.py +++ b/src/inductance/elliptics.py @@ -14,15 +14,8 @@ from math import log from typing import Tuple -# use numba if its installed -try: - from numba import njit +from ._numba import njit -except ImportError: # pragma: no cover - from warnings import warn - - WARNING = "Couldn't import Numba. Elliptic integrals will run slower than expected." - warn(WARNING, RuntimeWarning) # fmt: off @njit("UniTuple(float64, 2)(float64)") diff --git a/src/inductance/filaments.py b/src/inductance/filaments.py index c9739e6..afea17c 100644 --- a/src/inductance/filaments.py +++ b/src/inductance/filaments.py @@ -1,173 +1,491 @@ -"""Filament coil calculations. - -This is a dictionary based API, making it easier to define coils. -probably it should be made into a proper object class -but really I only use it for benchmarking against LDX values -and I wanted to copy from old Mathematica routines and other tests. - -Filaments are defined as an numpy 3 element vector - - r, z, and n. - -A coil is defined as an dictionary with -r1, r2, z1, and z2 and nt turns -""" - -from .inductance import ( - L_long_solenoid_butterworth, - L_lyle4, - L_lyle6, - L_lyle6_appendix, - L_maxwell, - L_thin_wall_babic_akyel, - L_thin_wall_lorentz, - dLdR_lyle6, - filament_coil, - mutual_inductance_of_filaments, - radial_force_of_filaments, - self_inductance_by_filaments, - vertical_force_of_filaments, +"""Filamentary inductance calculations.""" + +import numpy as np + +from ._numba import guvectorize, njit, prange +from .elliptics import ellipke +from .self import L_hollow_round, L_lyle6, L_round, _lyle_terms + + +@njit +def mutual_inductance_fil(rzn1, rzn2): + """Mutual inductance of two filaments. + + Args: + rzn1 (array): (r, z, n) of first filament + rzn2 (array): (r, z, n) of second filament + + Returns: + float: mutual inductance in Henrys + """ + r1 = rzn1[0] + r2 = rzn2[0] + z1 = rzn1[1] + z2 = rzn2[1] + n1 = rzn1[2] + n2 = rzn2[2] + + k2 = 4 * r1 * r2 / ((r1 + r2) ** 2 + (z1 - z2) ** 2) + elk, ele = ellipke(k2) + amp = 2 * np.pi * r1 * 4e-7 * r2 / np.sqrt((r1 + r2) ** 2 + (z1 - z2) ** 2) + M0 = n1 * n2 * amp * ((2 - k2) * elk - 2 * ele) / k2 + return M0 + + +@njit +def vertical_force_fil(rzn1, rzn2): + """Vertical force between two filaments per conductor amp. + + Args: + rzn1 (array): (r, z, n) of first filament + rzn2 (array): (r, z, n) of second filament + + Returns: + float: force in Newtons/Amp^2 + """ + r1 = rzn1[0] + r2 = rzn2[0] + z1 = rzn1[1] + z2 = rzn2[1] + n1 = rzn1[2] + n2 = rzn2[2] + + BrAt1 = BrGreen(r1, z1, r2, z2) + F = n1 * n2 * 2 * np.pi * r1 * BrAt1 + return F + + +@njit +def radial_force_fil(rzn1, rzn2): + """Radial force between two filaments per conductor amp. + + Args: + rzn1 (array): (r, z, n) of first filament + rzn2 (array): (r, z, n) of second filament + + Returns: + float: force in Newtons/Amp^2 + """ + r1 = rzn1[0] + r2 = rzn2[0] + z1 = rzn1[1] + z2 = rzn2[1] + n1 = rzn1[2] + n2 = rzn2[2] + + BzAt1 = BzGreen(r1, z1, r2, z2) + F = n1 * n2 * 2 * np.pi * r1 * BzAt1 + return F + + +# +# Green's functions for filaments +# + + +@njit +def AGreen(r, z, a, b): + """Psi at position r, z, due to a filament with radius a, and z postion b. + + Args: + r (float): radial position of a point + z (float): vertical position of a point + a (float): radius of a filament + b (float): vertical position of a filament + + Returns: + float: Psi at r, z in Weber / Amp + """ + k2 = 4 * a * r / ((r + a) ** 2 + (z - b) ** 2) + elk, ele = ellipke(k2) + amp = 4e-7 * a / np.sqrt((r + a) ** 2 + (z - b) ** 2) + return amp * ((2 - k2) * elk - 2 * ele) / k2 + + +@njit +def BrGreen(r, z, a, b): + """Br at position r, z, due to a filament with radius a, and z postion b. + + Args: + r (float): radial position of a point + z (float): vertical position of a point + a (float): radius of a filament + b (float): vertical position of a filament + + Returns: + float: Br at r, z in Tesla / Amp + """ + k2 = 4 * a * r / ((r + a) ** 2 + (z - b) ** 2) + elk, ele = ellipke(k2) + amp = -2e-7 / np.sqrt((r + a) ** 2 + (z - b) ** 2) + Gr = (a**2 + r**2 + (z - b) ** 2) / ((r - a) ** 2 + (z - b) ** 2) + return amp * (z - b) / r * (Gr * ele - elk) + + +@njit +def BzGreen(r, z, a, b): + """Bz at position r, z, due to a filament with radius a, and z postion b. + + Args: + r (float): radial position of a point + z (float): vertical position of a point + a (float): radius of a filament + b (float): vertical position of a filament + + Returns: + float: Bz at r, z in Tesla / Amp + """ + k2 = 4 * a * r / ((r + a) ** 2 + (z - b) ** 2) + elk, ele = ellipke(k2) + amp = -2e-7 / np.sqrt((r + a) ** 2 + (z - b) ** 2) + Gz = (a**2 - r**2 - (z - b) ** 2) / ((r - a) ** 2 + (z - b) ** 2) + return amp * (Gz * ele + elk) + + +@njit(parallel=True) +def green_sum_over_filaments(gfunc, fil, r, z): + """Calculate a greens function at position r, z, to an array of filaments. + + Args: + gfunc (function): Green's function to use + fil (array): filament array N x (r, z, n) + r (float): radial position of a point + z (float): vertical position of a point + + Returns: + float: sum of the greens function at r, z, due to all filaments + """ + tmp = np.zeros_like(r) + tshp = tmp.shape + tmp = tmp.reshape((tmp.size,)) + rf = r.reshape((tmp.size,)) + zf = z.reshape((tmp.size,)) + for j in prange(len(tmp)): + for i in range(fil.shape[0]): + tmp.flat[j] += fil[i, 2] * gfunc(rf[j], zf[j], fil[i, 0], fil[i, 1]) + tmp = tmp.reshape(tshp) + return tmp + + +def segment_path(pts, ds=0, close=False): + """Segment a path into equal length segments. + + Args: + pts (array): N x 3 array of points + ds (float, optional): length between points. Defaults to minimun in pts. + close (bool, optional): Should the path close the points. Defaults to False. + + Returns: + array: M x 3 array of points along the path + array: M array of length along the path + """ + # this will make random points have equal spaces along path + # from scipy.interpolate import interp1d + # assume path is x,y,z and the 0 axis is the segment + # so pts[*,0] is x, pts[*,1] is y, pts[*,2] is z + + if close: + pts = np.vstack([pts, pts[0]]) + dx = pts[1:] - pts[:-1] + dsv = np.linalg.norm(dx, axis=1) + if ds == 0: + ds = dsv.min() + s = np.insert(np.cumsum(dsv), 0, 0) + slen = s[-1] # length + snew = np.linspace(0, slen, int(slen / ds)) + + # use np.interp instead of scipy.interpolation.interp1d + segs = np.column_stack([np.interp(snew, s, pts[:, i]) for i in range(3)]) + return segs, snew + + +@njit +def _loop_segmented_mutual(r, z, pts): + # segments is array of n x 3 (x,y,z) + # segments should contain first point at start AND end. + # r, z is r & z of loop + M = float(0) + for i in range(pts.shape[0] - 1): + midp = (pts[i, :] + pts[i + 1, :]) / 2 + delta = pts[i, :] - pts[i + 1, :] + rs = np.sqrt(midp[0] ** 2 + midp[1] ** 2) + zs = midp[2] + rdphi = (delta[0] * midp[1] - delta[1] * midp[0]) / rs + M += AGreen(r, z, rs, zs) * rdphi + + return M + + +@njit(parallel=True) +def mutual_filaments_segmented(fils, pts): + """Mutual inductance between a set of axisymmetric filaments and a segmented path.""" + M = float(0) + for i in prange(fils.shape[0]): + M += fils[i, 2] * _loop_segmented_mutual(fils[i, 0], fils[i, 1], pts) + return M + + +def M_filsol_path(fil, pts, nt, ds=0): + """Mutual inductance between a set of axisymmetric filaments and a path from pts.""" + segs, _ = segment_path(pts, ds) + return nt * mutual_filaments_segmented(fil, segs) + + +@njit(parallel=True) +def segmented_self_inductance(pts, s, a): + """Self inductance of a segmented path by double integral. + + Args: + pts (N x 3 array): points along the path + s (array): length along the path + a (float): radius of wire + + Returns: + float: self inductance of the path + + Neumann's formula.. double curve integral of + mu_0/(4*pi) * int * int ( dx1 . dx2 / norm(x1-x2))) + do all points except where x1-x2 blows up. + instead follow Dengler https://doi.org/10.7716/aem.v5i1.331 + which makes a approximation for that is good O(mu_0*a) + lets just assume the thing is broken into small pieces and neglect end points + + this code doesn't work very well.. comparison test sorta fails + phi = np.linspace(0,2*np.pi,100) + test_xyz = np.array([[np.cos(p), np.sin(p), 0] for p in phi]) + L_seg = L_approx_path_rect(test_xyz, .01, .01, 1, .1) + L_maxwell(1, .01, .01, 1), L_lyle6(1, .01, .01, 1), L_seg + (6.898558527897293e-06, 6.8985981243869525e-06, 6.907313505254537e-06) # Y=1/4 hmmm... + (6.898558527897293e-06, 6.8985981243869525e-06, 7.064366776069971e-06) # Y=1/2 + """ + ds = s[1] - s[0] # the real ds and thus the real b + dx = pts[1:] - pts[:-1] + x = (pts[1:] + pts[:-1]) / 2 + npts = x.shape[0] + slen = s[-1] + b = ds / 2 # does not depend on ds, because of this correction. + LS = 2 * slen * (np.log(2 * b / a) + 0.25) # dengler equation 6 correction. + # seems to work much better when its +.125 + L = 0 # numba REQUIRES prange parallel variable to start at 0 (bug!) + for i in prange(npts): + for j in range(npts): + if i != j: + L += np.dot(dx[i], dx[j]) / np.linalg.norm(x[i] - x[j]) + return 1e-7 * (L + LS) + + +def L_approx_path_rect(pts, b, c, n, ds=1): + """Approximate self inductance of a path of points with a rectangular cross section. + + take a path of points n x 3, with a cross section b x c + and approximate self inductance using Dengler + """ + _, _, _, _, _, _, a = _lyle_terms( + b, c + ) # get Maxwell mean radius to approximate "wire" radius + ds *= a + segs, s = segment_path(pts, ds) + L = n**2 * segmented_self_inductance(segs, s, a) + return L + + +# for some reason, these are slightly slower than the above. +# but they work for any shape r & z as long as they are the same +@guvectorize( + ["void(float64[:,:], float64[:], float64[:], float64[:])"], + "(p, q),(n),(n)->(n)", + target="parallel", +) +def BrGreenFil(fil, r, z, gr): + """Radial magnetic field greens functions from a set of filaments over a set of points. + + Args: + fil (_type_): filament array (r,z,n) + r (_type_): radial positions of points + z (_type_): vertical positions of points + gr (_type_): greens function values at points + """ + for j in range(r.shape[0]): + tmp = 0.0 + for i in range(len(fil)): + tmp += fil[i, 2] * BrGreen(r[j], z[j], fil[i, 0], fil[i, 1]) + gr[j] = tmp + + +@guvectorize( + ["void(float64[:,:], float64[:], float64[:], float64[:])"], + "(p, q),(n),(n)->(n)", + target="parallel", ) +def BzGreenFil(fil, r, z, gr): + """Vertical magnetic field greens functions from a set of filaments over a set of points. + Args: + fil (_type_): filament array (r,z,n) + r (_type_): radial positions of points + z (_type_): vertical positions of points + gr (_type_): greens function values at points + """ + for j in range(r.shape[0]): + tmp = 0.0 + for i in range(len(fil)): + tmp += fil[i, 2] * BzGreen(r[j], z[j], fil[i, 0], fil[i, 1]) + gr[j] = tmp -def FilamentCoil(C: dict, nr: int, nz: int): - """Break a coil into filaments, as nr by nz array. Adds the filaments to the coil. + +@guvectorize( + ["void(float64[:,:], float64[:], float64[:], float64[:])"], + "(p, q),(n),(n)->(n)", + target="parallel", +) +def AGreenFil(fil, r, z, gr): + """Psi greens functions from a set of filaments over a set of points. Args: - C (dict): Coil dictionary (class?) - nr (int): number of columns to break the coil into - nz (int): number of rows to break the coil into + fil (_type_): filament array (r,z,n) + r (_type_): radial positions of points + z (_type_): vertical positions of points + gr (_type_): greens function values at points + """ + for j in range(r.shape[0]): + tmp = 0.0 + for i in range(len(fil)): + tmp += fil[i, 2] * AGreen(r[j], z[j], fil[i, 0], fil[i, 1]) + gr[j] = tmp + + +# cant jit this... meshgrid not allowed +def filament_coil(r, z, dr, dz, nt, nr, nz, rot=0): + """Create an array of filaments, each with its own radius, height, and amperage. + + r : Major radius of coil center. + z : Vertical center of coil. + dr : Radial width of coil. + dz : Height of coil. + nt : number of turns in coil + nr : Number of radial slices + nz : Number of vertical slices + rot : Rotation of coil about phi axis + + Returns: Array of shape (nr*nz) x 3 of R, Z, N for each filament + + """ + rd = np.linspace(-dr * (nr - 1) / nr / 2, dr * (nr - 1) / nr / 2, nr) + zd = np.linspace(-dz * (nz - 1) / nz / 2, dz * (nz - 1) / nz / 2, nz) + Rg, Zg = np.meshgrid(rd, zd) + + R = r + Rg * np.cos(rot) - Zg * np.sin(rot) + Z = z + Rg * np.sin(rot) + Zg * np.cos(rot) + + N = np.full_like(R, float(nt) / (nr * nz)) + return np.dstack([R, Z, N]).reshape(nr * nz, 3) + + +@njit(parallel=True) +def sum_over_filaments(func, f1, f2): + """Apply a function and sum over all combinations of two sets of filaments. + + Args: + func (function): function to apply to each pair of filaments + f1 (array): first filament array + f2 (array): second filament array Returns: - dict: Coil dictionary with filaments added - """ - C["fil"] = filament_coil( - float((C["r1"] + C["r2"]) / 2), - float((C["z2"] + C["z1"]) / 2), - float(C["r2"] - C["r1"]), - float(C["z2"] - C["z1"]), - C["nt"], - nr, - nz, - ) - C["dr"] = (C["r2"] - C["r1"]) / nr - C["dz"] = (C["z2"] - C["z1"]) / nz - return C - - -def TotalM0(C1, C2): - """Mutual inductance of two coils by filamentation.""" - return mutual_inductance_of_filaments(C1["fil"], C2["fil"]) - - -def TotalFz(C1, C2): - """Vertical force of two coils by filamentation.""" - F_a2 = vertical_force_of_filaments(C1["fil"], C2["fil"]) - return C1["at"] / C1["nt"] * C2["at"] / C2["nt"] * F_a2 - - -def TotalFrOn1(C1, C2): - """Radial force of on coil 1 by filamentation from second coil and self force.""" - Fr_11 = ( - 0.5 - * C1["at"] - / C1["nt"] - * dLdR_lyle6( - (C1["r2"] + C1["r1"]) / 2.0, - C1["r2"] - C1["r1"], - C1["z2"] - C1["z1"], - C1["nt"], - ) - ) - - Fr_12 = ( - C1["at"] - / C1["nt"] - * C2["at"] - / C2["nt"] - * radial_force_of_filaments(C1["fil"], C2["fil"]) - ) - return Fr_11 + Fr_12 - - -def LMaxwell(C): - """Inductance by Maxwell's formula.""" - return L_maxwell( - float((C["r1"] + C["r2"]) / 2), - float(C["r2"] - C["r1"]), - float(C["z2"] - C["z1"]), - C["nt"], - ) - - -def LLyle4(C): - """Inductance by Lyle's formula, 4th order.""" - return L_lyle4( - float((C["r1"] + C["r2"]) / 2), - float(C["r2"] - C["r1"]), - float(C["z2"] - C["z1"]), - C["nt"], - ) - - -def LLyle6(C): - """Inductance by Lyle's formula, 6th order.""" - return L_lyle6( - float((C["r1"] + C["r2"]) / 2), - float(C["r2"] - C["r1"]), - float(C["z2"] - C["z1"]), - C["nt"], - ) - - -def LLyle6A(C): - """Inductance by Lyle's formula, 6th order, appendix.""" - return L_lyle6_appendix( - float((C["r1"] + C["r2"]) / 2), - float(C["r2"] - C["r1"]), - float(C["z2"] - C["z1"]), - C["nt"], - ) - - -def Lfil(Coil): - """Inductance by filamentation. - - Args: - Coil (dict): coil dictionary, must have run FilamentCoil first. + float: result of summing over all combinations of func(f1[i], f2[j]) + """ + result = float(0) + for i in prange(f1.shape[0]): + for j in range(f2.shape[0]): + result += func(f1[i], f2[j]) + return result + + +@njit(parallel=True) +def mutual_inductance_of_filaments(f1, f2): + """Mutual inductance of two sets of filaments. + + These should not be the same filament array, + not setup to handle self inductance of filament. + + Args: + f1 (array): first filament array + f2 (array): second filament array + + Returns: + float: Mutual inductance of filament sets in Henries + """ + M = float(0) + for i in prange(f1.shape[0]): + for j in range(f2.shape[0]): + M += mutual_inductance_fil(f1[i, :], f2[j, :]) + return M + + +@njit(parallel=True) +def self_inductance_by_filaments(f, conductor="round", a=0.01, dr=0.01, dz=0.01): + """Self inductance of filament set. + + Args: + f (array): first filament array + conductor (str, optional): conductor shape. Defaults to "round". + a (float, optional): conductor radius. Defaults to 0.01. + dr (float, optional): conductor radial width. Defaults to 0.01 + dz (float, optional): conductor vertical height. Defaults to 0.01 Returns: - float: inductance of coil in Henries - """ - return self_inductance_by_filaments( - Coil["fil"], conductor="rect", dr=Coil["dr"], dz=Coil["dz"] - ) - - -def LLS(C): - """Inductance by Butterworth's formula for a long solenoid.""" - return L_long_solenoid_butterworth( - float((C["r1"] + C["r2"]) / 2), - float(C["r2"] - C["r1"]), - float(C["z2"] - C["z1"]), - C["nt"], - ) - - -def LBA(C): - """Inductance by Babic and Akyel's formula for a thin wall solenoid.""" - return L_thin_wall_babic_akyel( - float((C["r1"] + C["r2"]) / 2), - float(C["r2"] - C["r1"]), - float(C["z2"] - C["z1"]), - C["nt"], - ) - - -def LL(C): - """Inductance by Lorentz's formula for a thin wall solenoid.""" - return L_thin_wall_lorentz( - float((C["r1"] + C["r2"]) / 2), - float(C["r2"] - C["r1"]), - float(C["z2"] - C["z1"]), - C["nt"], - ) + float: self inductance of filament set in Henries + """ + L = float(0) + for i in prange(f.shape[0]): + for j in range(f.shape[0]): + if i != j: + L += mutual_inductance_fil(f[i, :], f[j, :]) + if conductor == "round": + L += L_round(f[i, 0], a, f[i, 2]) + elif conductor == "hollow_round": + L += L_hollow_round(f[i, 0], a, f[i, 2]) + elif conductor == "rect": + L += L_lyle6(f[i, 0], dr, dz, f[i, 2]) + return L + + +@njit(parallel=True) +def vertical_force_of_filaments(f1, f2): + """Vertical force between two sets of filaments. + + These should not be the same filament array, + not setup to handle self inductance of filament. + + Args: + f1 (array): first filament array + f2 (array): second filament array + + Returns: + float: Vertical force in Newtons/Amp^2 + """ + F = float(0) + for i in prange(f1.shape[0]): + for j in range(f2.shape[0]): + F += vertical_force_fil(f1[i, :], f2[j, :]) + return F + + +@njit(parallel=True) +def radial_force_of_filaments(f1, f2): + """Radial force between two sets of filaments. + + These should not be the same filament array, + not setup to handle self inductance of filament. + + Args: + f1 (array): first filament array + f2 (array): second filament array + + Returns: + float: Radial force in Newtons/Amp^2 + """ + F = float(0) + for i in prange(f1.shape[0]): + for j in range(f2.shape[0]): + F += radial_force_fil(f1[i, :], f2[j, :]) + return F diff --git a/src/inductance/inductance.py b/src/inductance/inductance.py deleted file mode 100644 index a6f8889..0000000 --- a/src/inductance/inductance.py +++ /dev/null @@ -1,1198 +0,0 @@ -"""Inductance calculations for coils. - -author: Darren Garnier - -basic equations come from analytic approximations of old. -tested in real life with the LDX Fcoil / Ccoil / Lcoil system. - -One from Maxwell himself, and better ones from: - -Lyle, T. R. "On the Self-inductance of Circular Coils of - Rectangular Section". Roy. Soc. London. A. V213 (1914) pp 421-435. - https://doi.org/10.1098/rsta.1914.0009 - -Unfortunately, Lyle doesn't work that well with large dz/R coils. Other -approximations are also included. - -This code now uses numba to do just-in-time compiliation and parallel execution -to greatly increase speed. Also requires numba-scipy for elliptical functions. -numba-scipy can be fragile and sometimes needs to be "updated" before installation -to the newest version of numba. -""" -import math -import os - -import numpy as np - -# try to enable use without numba. Those with guvectorize will not work. -try: - from numba import guvectorize, jit, njit, prange - - if os.getenv("NUMBA_DISABLE_JIT", "0") == "1": # pragma: no cover - raise ImportError - -except ImportError: # pragma: no cover - from inspect import currentframe, getframeinfo - from warnings import warn_explicit - - WARNING = ( - "Numba disabled. Mutual inductance calculations " - + "will not be accelerated and some API will not be available." - ) - warn_explicit( - WARNING, - RuntimeWarning, - "inductance.py", - getframeinfo(currentframe().f_back).lineno, # type: ignore - ) - - def _jit(*args, **kwargs): - if len(args) == 1 and len(kwargs) == 0 and callable(args[0]): - # called as @decorator - return args[0] - else: - # called as @decorator(*args, **kwargs) - return lambda f: f - - def _guvectorize(*args, **kwds): - def fake_decorator(f): - warning = f"{f.__name__} requires Numba JIT." - warn_explicit( - warning, - RuntimeWarning, - "inductance.py", - getframeinfo(currentframe().f_back.f_back).lineno, # type: ignore - ) - return lambda f: None - - return fake_decorator - - guvectorize = _guvectorize - njit = _jit - prange = range - jit = _jit - - -from .elliptics import ellipke - -try: - from mpmath import mp # type: ignore - - USE_MPMATH = True -except ImportError: # pragma: no cove - USE_MPMATH = False - -MU0 = 4e-7 * math.pi # permeability of free space - - -@njit -def _lyle_terms(b, c): - # helper functions for most self inductance equations. - # b : cylindrical height of coil - # c : radial width of coil - - # FIXME: when b/c or c/b is very large or small, this diverges - # and gives inaccurate results when b/c ~ 1e6 or 1e-6 - # phi should approach 1.5 and GMD should approach (b+c)*exp(-1.5) - - d = np.sqrt(b**2 + c**2) # diagnonal length - u = ((b / c) ** 2) * 2 * np.log(d / b) - v = ((c / b) ** 2) * 2 * np.log(d / c) - w = (b / c) * np.arctan(c / b) - wp = (c / b) * np.arctan(b / c) - phi = (u + v + 25) / 12 - 2 * (w + wp) / 3 - GMD = d * np.exp(-phi) # geometric mean radius of section GMD - - return d, u, v, w, wp, phi, GMD - - -if USE_MPMATH: # pragma: no cover - - def _lyle_terms_mp(b, c): - # b : cylindrical height of coil - # c : radial width of coil - - # this does NOT fix problem with b/c ~ 1e6 or 1e-6 - - d = mp.sqrt(b**2 + c**2) # diagnonal length - u = ((b / c) ** 2) * 2 * mp.log(d / b) - v = ((c / b) ** 2) * 2 * mp.log(d / c) - w = (b / c) * mp.atan(c / b) - wp = (c / b) * mp.atan(b / c) - phi = (u + v + 25) / 12 - 2 * (w + wp) / 3 - GMD = d * mp.exp(-phi) # geometric mean radius of section GMD - return d, u, v, w, wp, phi, GMD - - -@njit -def L_maxwell(r, dr, dz, n): - """Self inductance of a rectangular coil with constant current density by Maxwell. - - Args: - r (float): coil centerline radius - dr (float): coil radial width - dz (float): coil height - n (int): number of turns - - Returns: - float: coil self inductance in Henrys - """ - a = float(r) - b = float(dz) - c = float(dr) - d, u, v, w, wp, phi, GMD = _lyle_terms(b, c) - L = MU0 * (n**2) * a * (math.log(8 * a / GMD) - 2) - return L - - -@njit -def L_round(r, a, n): - """Self inductance of a round conductor coil with constant current density. - - Args: - r (float): coil centerline radius - a (float): coil conductor radius - n (int): number of turns - - Returns: - float: coil self inductance in Henrys - """ - L = MU0 * (n**2) * r * (math.log(8 * r / a) - 1.75) - return L - - -@njit -def L_hollow_round(r, a, n): - """Self inductance of a round conductor coil with skin current. - - Args: - r (float): coil centerline radius - a (float): coil conductor radius - n (int): number of turns - - Returns: - float: coil self inductance in Henrys - """ - L = MU0 * (n**2) * r * (math.log(8 * r / a) - 2) - return L - - -@njit -def L_lyle4_eq3(r, dr, dz, n): - """Self inductance of a rectangular coil via Lyle to 4th order, Eq3. - - Args: - r (float): coil centerline radius - dr (float): coil radial width - dz (float): coil height - n (int): number of turns - - Returns: - float: coil self inductance in Henrys - """ - a = float(r) - b = float(dz) - c = float(dr) - d, u, v, w, wp, phi, GMD = _lyle_terms(b, c) - p2 = 1 / (2**5 * 3 * d**2) * (3 * b**2 + c**2) - q2 = ( - 1 - / (2**5 * 3 * d**2) - * ( - 1 / 2 * b**2 * u - - 1 / 10 * c**2 * v - - 16 / 5 * b**2 * w - - (3 * b**2 + c**2) * phi - + 69 / 20 * b**2 - + 221 / 60 * c**2 - ) - ) - p4 = ( - 1 - / (2**11 * 3**2 * 5 * d**4) - * (-90 * b**4 + 105 * (b * c) ** 2 + 22 * c**4) - ) - q4 = ( - 1 - / (2**11 * 3**2 * 5 * d**4) - * ( - -(-90 * b**4 + 105 * (b * c) ** 2 + 22 * c**4) * phi - - 69 / 28 * c**4 * v - - u / 4 * (115 * b**4 - 480 * (b * c) ** 2) - + 2**8 * w / 7 * (6 * b**4 - 7 * (b * c) ** 2) - - 1 - / (2**3 * 5 * 7) - * (36590 * b**4 - 2035 * (b * c) ** 2 - 11442 * c**4) - ) - ) - - ML = np.log(8 * a / GMD) - - # equation #3 - - eq3 = ( - MU0 - * (n**2) - * a - * (ML - 2 + (d / a) ** 2 * (p2 * ML + q2) + (d / a) ** 4 * (p4 * ML + q4)) - ) - return eq3 - - -# equation 4.. slightly different result... not sure which is better. -# equation 3 above matches what I did for the 6th order. -# and it also seems to match the 4th order in the paper. - - -@njit -def L_lyle4_eq4(r, dr, dz, n): - """Self inductance of a rectangular coil via Lyle to 4th order, Eq4. - - Args: - r (float): coil centerline radius - dr (float): coil radial width - dz (float): coil height - n (int): number of turns - - Returns: - float: coil self inductance in Henrys - """ - a = float(r) - b = float(dz) - c = float(dr) - d, u, v, w, wp, phi, GMD = _lyle_terms(b, c) - p2 = 1 / (2**5 * 3 * d**2) * (3 * b**2 + c**2) - q2 = ( - 1 - / (2**5 * 3 * d**2) - * ( - 1 / 2 * b**2 * u - - 1 / 10 * c**2 * v - - 16 / 5 * b**2 * w - - (3 * b**2 + c**2) * phi - + 69 / 20 * b**2 - + 221 / 60 * c**2 - ) - ) - p4 = ( - 1 - / (2**11 * 3**2 * 5 * d**4) - * (-90 * b**4 + 105 * (b * c) ** 2 + 22 * c**4) - ) - q4 = ( - 1 - / (2**11 * 3**2 * 5 * d**4) - * ( - -(-90 * b**4 + 105 * (b * c) ** 2 + 22 * c**4) * phi - - 69 / 28 * c**4 * v - - u / 4 * (115 * b**4 - 480 * (b * c) ** 2) - + 2**8 * w / 7 * (6 * b**4 - 7 * (b * c) ** 2) - - 1 - / (2**3 * 5 * 7) - * (36590 * b**4 - 2035 * (b * c) ** 2 - 11442 * c**4) - ) - ) - - m1 = p2 - n1 = -(p2 + q2) - m2 = p4 - n2 = -(p4 + q4) + 1 / 2 * (m1 - n1) ** 2 - n3 = (m1 - n1) * (m2 - n2 - 1 / 6 * (m1 - n1) * (m1 + 2 * n1)) - - A = a * (1 + m1 * (d / a) ** 2 + m2 * (d / a) ** 4) - R = GMD * (1 + n1 * (d / a) ** 2 + n2 * (d / a) ** 4 + n3 * (d / a) ** 6) - - eq4 = MU0 * (n**2) * A * (np.log(8 * A / R) - 2) - return eq4 - - -L_lyle4 = L_lyle4_eq3 - - -@njit -def L_lyle6(r, dr, dz, n): - """Self inductance of a rectangular coil via Lyle to 6th order. - - Args: - r (float): coil centerline radius - dr (float): coil radial width - dz (float): coil height - n (int): number of turns - - Returns: - float: coil self inductance in Henrys - """ - a = float(r) - b = float(dz) - c = float(dr) - d, u, v, w, ww, phi, GMD = _lyle_terms(b, c) - bd2 = (b / d) ** 2 - cd2 = (c / d) ** 2 - da2 = (d / a) ** 2 - ML = np.log(8 * a / d) - - # after further reduction in mathematica... all the terms. - f = ( - ML - + (1 + u + v - 8 * (w + ww)) / 12.0 # 0th order in d/a - + ( - da2 - * ( - cd2 * (221 + 60 * ML - 6 * v) - + 3 * bd2 * (69 + 60 * ML + 10 * u - 64 * w) - ) - ) - / 5760.0 # 2nd order - + ( - da2**2 - * ( - 2 * cd2**2 * (5721 + 3080 * ML - 345 * v) - + 5 * bd2 * cd2 * (407 + 5880 * ML + 6720 * u - 14336 * w) - - 10 * bd2**2 * (3659 + 2520 * ML + 805 * u - 6144 * w) - ) - ) - / 2.58048e7 # 4th order - + ( - da2**3 - * ( - 3 * cd2**3 * (4308631 + 86520 * ML - 10052 * v) - - 14 - * bd2**2 - * cd2 - * (617423 + 289800 * ML + 579600 * u - 1474560 * w) - + 21 * bd2**3 * (308779 + 63000 * ML + 43596 * u - 409600 * w) - + 42 * bd2 * cd2**2 * (-8329 + 46200 * ML + 134400 * u - 172032 * w) - ) - ) - / 1.73408256e10 # 6th order - ) - L = MU0 * (n**2) * a * f - # print("Lyle6 r: %.4g, dr: %.4g, dz: %4g, n: %d, L: %.8g"%(a,c,b,n,L)) - return L - - -@njit -def dLdR_lyle6(r, dr, dz, n): - """Radial derivative of self inductance of a rectangular coil via Lyle to 6th order. - - Args: - r (float): coil centerline radius - dr (float): coil radial width - dz (float): coil height - n (int): number of turns - - Returns: - float: radial derivative of inductance in Henrys/meter - """ - a = float(r) - b = float(dz) - c = float(dr) - d, u, v, w, ww, phi, GMD = _lyle_terms(b, c) - bd2 = (b / d) ** 2 - cd2 = (c / d) ** 2 - da2 = (d / a) ** 2 - - ML = np.log(8 * a / d) - - f = ( - ML - + (13 + u + v - 8 * w - 8 * ww) / 12.0 # zero - + ( - da2 - * ( - cd2 * (-161 - 60 * ML + 6 * v) - - 3 * bd2 * (9 + 60 * ML + 10 * u - 64 * w) - ) - ) - / 5760.0 # 2nd order - + ( - da2**2 - * ( - -2 * cd2**2 * (14083 + 9240 * ML - 1035 * v) - - 15 * bd2 * cd2 * (-1553 + 5880 * ML + 6720 * u - 14336 * w) - + 30 * bd2**2 * (2819 + 2520 * ML + 805 * u - 6144 * w) - ) - ) - / 2.58048e7 # 4th order - + ( - da2**3 - * ( - -3 * cd2**3 * (4291327 + 86520 * ML - 10052 * v) - + 14 - * bd2**2 - * cd2 - * (559463 + 289800 * ML + 579600 * u - 1474560 * w) - - 21 * bd2**3 * (296179 + 63000 * ML + 43596 * u - 409600 * w) - - 42 * bd2 * cd2**2 * (-17569 + 46200 * ML + 134400 * u - 172032 * w) - ) - ) - / 3.46816512e9 # 6th order - ) - - dLdR = 4e-7 * np.pi * (n**2) * f - return dLdR - - -@njit -def L_lyle6_appendix(r, dr, dz, n): - """Self inductance of a rectangular coil via Lyle to 6th order, appendix. - - Args: - r (float): coil centerline radius - dr (float): coil radial width - dz (float): coil height - n (int): number of turns - - Returns: - float: coil self inductance in Henrys - """ - a = float(r) - b = float(dz) - c = float(dr) - d, u, v, w, wp, phi, GMD = _lyle_terms(b, c) - - p6 = ( - 1 - / (2**16 * 3 * 5 * 7 * d**6) - * (525 * b**6 - 1610 * b**4 * c**2 + 770 * b**2 * c**4 + 103 * c**6) - ) - q6 = ( - 1 - / (2**16 * 3 * 5 * 7 * d**6) - * ( - 0 - + (3633 / 10 * b**6 - 3220 * b**4 * c**2 + 2240 * b**2 * c**4) * u - - (359 / 30) * c**6 * v - - 2**11 - * (5 / 3 * b**6 - 4 * b**4 * c**2 + 7 / 5 * b**2 * c**4) - * w - + 2161453 / (2**3 * 3 * 5 * 7) * b**6 - - 617423 / (2**2 * 3**2 * 5) * b**4 * c**2 - - 8329 / (2**2 * 3 * 5) * b**2 * c**4 - + 4308631 / (2**3 * 3 * 5 * 7) * c**6 - ) - ) - - # just add the correction to the 4th order solution - L6 = L_lyle4_eq3(r, dr, dz, n) + 4e-7 * np.pi * (n**2) * a * (d / a) ** 6 * ( - p6 * np.log(8 * a / d) + q6 - ) - # print("Lyle6A r: %.4g, dr: %.4g, dz: %4g, n: %d, L: %.8g"%(a,c,b,n,L6)) - return L6 - - -if USE_MPMATH: - - def L_lyle6_mp(r, dr, dz, n): - """Self inductance of a rectangular coil via Lyle to 6th order. - - This function uses the mpmath arbitrary precision library to - calculate to arbitrary precision. The default precision is 30. - - Args: - r (float): coil centerline radius - dr (float): coil radial width - dz (float): coil height - n (int): number of turns - - Returns: - float: coil self inductance in Henrys - """ - mp.dps = 30 - a = mp.mpf(r) - b = mp.mpf(dz) - c = mp.mpf(dr) - d, u, v, w, wp, phi, GMD = _lyle_terms_mp(b, c) - ML = mp.log(8 * a / d) - - f = ( - ML - + (u + v + 1) / 12 - - mp.mpf(2) / 3 * (w + wp) - + 1 - / (2**5 * 3 * a**2) - * ( - (3 * b**2 + c**2) * ML - + mp.mpf(1) / 2 * b**2 * u - - 1.0 / 10 * c**2 * v - - 16.0 / 5 * b**2 * w - + 69.0 / 20 * b**2 - + 221.0 / 60 * c**2 - ) - + mp.mpf(1) - / (2**11 * 3 * 5 * a**4) - * ( - (-30 * b**4 + 35 * b**2 * c**2 + mp.mpf(22) / 3 * c**4) * ML - - (115 * b**4 - 480 * b**2 * c**2) / 12 * u - - mp.mpf(23) / 28 * c**4 * v - + (6 * b**4 - 7 * b**2 * c**2) / 21 * 2**8 * w - - (36590 * b**4 - 2035 * b**2 * c**2 - 11442 * c**4) - / (2**3 * 3 * 5 * 7) - ) - + (mp.mpf(1) / (2**16 * 3 * 5 * 7 * a**6)) - * ( - ( - 525 * b**6 - - 1610 * b**4 * c**2 - + 770 * b**2 * c**4 - + 103 * c**6 - ) - * ML - + ( - mp.mpf(3633) / 10 * b**6 - - 3220 * b**4 * c**2 - + 2240 * b**2 * c**4 - ) - * u - - mp.mpf(359) / 30 * c**6 * v - - 2**11 - * ((25 * b**6 - 60 * b**4 * c**2 + 21 * b**2 * c**4) / 15) - * w - + mp.mpf(2161453) / (2**3 * 3 * 5 * 7) * b**6 - - mp.mpf(617423) / ((2**2) * (3**2) * 5) * b**4 * c**2 - - mp.mpf(8329) / ((2**2) * 3 * 5) * b**2 * c**4 - + mp.mpf(4308631) / (2**3 * 3 * 5 * 7) * c**6 - ) - ) - L = 4e-7 * mp.pi * (n**2) * a * f - # print("Lyle6mp r: %.4g, dr: %.4g, dz: %4g, n: %d, L: %.8g"%(a,c,b,n,L)) - return L - - -@njit -def L_long_solenoid(r, _dr, dz, n): - """Self inductance of a long solenoid. - - Args: - r (float): coil centerline radius - _dr (float): coil radial width (ignored) - dz (float): coil height - n (int): number of turns - - Returns: - float: coil self inductance in Henrys - """ - a = float(r) - b = float(dz) - # c = float(dr) - L1 = MU0 * np.pi * (n**2) * a**2 / b - return L1 - - -@njit -def L_long_solenoid_butterworth(r, dr, dz, n): - """Self inductance of a long solenoid by Butterworth's formula. - - As written in Grover, Bulletin of the Bureau of Standards, Vol. 14 pg. 558 - https://nvlpubs.nist.gov/nistpubs/bulletin/14/nbsbulletinv14n4p537_A2b.pdf - - Args: - r (float): coil centerline radius - dr (float): coil radial width - dz (float): coil height - n (int): number of turns - - Returns: - float: coil self inductance in Henrys - """ - a = float(r) - b = float(dz) - c = float(dr) - L = 4e-7 * np.pi * (n**2) * a / b - - k2 = 4 * a**2 / (4 * a**2 + b**2) - kp2 = b**2 / (4 * a**2 + b**2) - k = np.sqrt(k2) - kp = np.sqrt(kp2) - - # assume dz > 2*r - ell = k2 / ((1 + kp) * (1 + np.sqrt(kp)) ** 2) - q = ell / 2 + 2 * (ell / 2) ** 5 + 15 * (ell / 2) ** 9 # + .... - - delta = 2 * q - 2 * q**4 + 2 * q**9 - gamma = q - 4 * q**4 + 9 * q**9 - beta = q**2 + 3 * q**6 + 6 * q**12 - alpha = q**2 + q**6 + q**12 - - K = ( - 2.0 - / (3 * (1 - delta) ** 2) - * (1 + 8 * beta / (1 + alpha) + kp2 / k2 * 8 * gamma / (1 - delta)) - - 4 / (3 * np.pi) * k / kp - ) - - D = ( - -1 - / 3 - * (c / a) - * ( - 1 - - c / (4 * a) - - 1 / (2 * np.pi) * (c / b) * (np.log(8 * a / c) - 23.0 / 12) - + 1 - / (160 * np.pi) - * (c / a) ** 3 - * (a / b) - * (np.log(8 * a / c) - 1.0 / 20) - - 1.0 - / 4 - * (c / a) - * (a / b) ** 2 - * (1 - 7 / 4 * (a / b) ** 2 + 17 / 4 * (a / b) ** 4) - - 1.0 / 96 * (c / a) ** 3 * (a / b) ** 2 * (1 - 39.0 / 10 * (a / b) ** 2) - ) - ) - D - # hmm.. not using D, wonder why I bothered to calculate it.. lets look back at this function - L = 4e-7 * np.pi * (n**2) * (a / b) * (K) - return L - - -@njit -def L_thin_wall_babic_akyel(r, _dr, dz, n): - """Self inductance thin wall solenoid by Babic and Akyel's formula. - - Follow formulae from: - S. Babic and C. Akyel, "Improvement in calculation of the self- and mutual inductance - of thin-wall solenoids and disk coils," in IEEE Transactions on Magnetics, - vol. 36, no. 4, pp. 1970-1975, July 2000, doi: 10.1109/TMAG.2000.875240. - - Args: - r (float): coil centerline radius - _dr (float): coil radial width (ignored) - dz (float): coil height - n (int): number of turns - - Returns: - float: coil self inductance in Henrys - """ - a = float(dz) / 2 - # R1 = float(r) - float(dr) / 2 - # R2 = float(r) + float(dr) / 2 - # alpha = R2 / R1 - # lets double check why I'm not using alpha... - beta = a / r - - k2 = 1 / (1 + beta**2) - elk, ele = ellipke(k2) - k = np.sqrt(k2) - tk = ( - 4.0 - / (3 * np.pi * beta * k**3) - * ((2 * k2 - 1) * ele + (1 - k2) * elk - k**3) - ) - eq8 = MU0 * np.pi * (n**2) * r / (2 * beta) * tk # eq 8 - return eq8 - - -@njit -def L_thin_wall_lorentz(r, _dr, dz, n): - """Self inductance of a thin wall solenoid by Lorentz's formula. - - Args: - r (float): coil centerline radius - _dr (float): coil radial width (ignored) - dz (float): coil height - n (int): number of turns - - Returns: - float: coil self inductance in Henrys - """ - k2 = 4 * r**2 / (4 * r**2 + dz**2) - elk, ele = ellipke(k2) - k = math.sqrt(k2) - f = dz / (k * r) * elk - (dz**2 - 4 * r**2) / (k * r * dz) * ele - 4 * r / dz - - L = MU0 * 2 * (n**2) * r**2 / (3 * dz) * f - return L - - -# MUTUAL INDUCTANCE -# just filament the coils and use elliptical functions. -# the more you filament, the better your accuracy -# the filamentation should match your current density -# and watch out for putting two filaments on top of eachother! - - -@njit -def mutual_inductance_fil(rzn1, rzn2): - """Mutual inductance of two filaments. - - Args: - rzn1 (array): (r, z, n) of first filament - rzn2 (array): (r, z, n) of second filament - - Returns: - float: mutual inductance in Henrys - """ - r1 = rzn1[0] - r2 = rzn2[0] - z1 = rzn1[1] - z2 = rzn2[1] - n1 = rzn1[2] - n2 = rzn2[2] - - k2 = 4 * r1 * r2 / ((r1 + r2) ** 2 + (z1 - z2) ** 2) - elk, ele = ellipke(k2) - amp = 2 * np.pi * r1 * 4e-7 * r2 / np.sqrt((r1 + r2) ** 2 + (z1 - z2) ** 2) - M0 = n1 * n2 * amp * ((2 - k2) * elk - 2 * ele) / k2 - return M0 - - -@njit -def vertical_force_fil(rzn1, rzn2): - """Vertical force between two filaments per conductor amp. - - Args: - rzn1 (array): (r, z, n) of first filament - rzn2 (array): (r, z, n) of second filament - - Returns: - float: force in Newtons/Amp^2 - """ - r1 = rzn1[0] - r2 = rzn2[0] - z1 = rzn1[1] - z2 = rzn2[1] - n1 = rzn1[2] - n2 = rzn2[2] - - BrAt1 = BrGreen(r1, z1, r2, z2) - F = n1 * n2 * 2 * np.pi * r1 * BrAt1 - return F - - -@njit -def radial_force_fil(rzn1, rzn2): - """Radial force between two filaments per conductor amp. - - Args: - rzn1 (array): (r, z, n) of first filament - rzn2 (array): (r, z, n) of second filament - - Returns: - float: force in Newtons/Amp^2 - """ - r1 = rzn1[0] - r2 = rzn2[0] - z1 = rzn1[1] - z2 = rzn2[1] - n1 = rzn1[2] - n2 = rzn2[2] - - BzAt1 = BzGreen(r1, z1, r2, z2) - F = n1 * n2 * 2 * np.pi * r1 * BzAt1 - return F - - -# -# Green's functions for filaments -# - - -@njit -def AGreen(r, z, a, b): - """Psi at position r, z, due to a filament with radius a, and z postion b. - - Args: - r (float): radial position of a point - z (float): vertical position of a point - a (float): radius of a filament - b (float): vertical position of a filament - - Returns: - float: Psi at r, z in Weber / Amp - """ - k2 = 4 * a * r / ((r + a) ** 2 + (z - b) ** 2) - elk, ele = ellipke(k2) - amp = 4e-7 * a / np.sqrt((r + a) ** 2 + (z - b) ** 2) - return amp * ((2 - k2) * elk - 2 * ele) / k2 - - -@njit -def BrGreen(r, z, a, b): - """Br at position r, z, due to a filament with radius a, and z postion b. - - Args: - r (float): radial position of a point - z (float): vertical position of a point - a (float): radius of a filament - b (float): vertical position of a filament - - Returns: - float: Br at r, z in Tesla / Amp - """ - k2 = 4 * a * r / ((r + a) ** 2 + (z - b) ** 2) - elk, ele = ellipke(k2) - amp = -2e-7 / np.sqrt((r + a) ** 2 + (z - b) ** 2) - Gr = (a**2 + r**2 + (z - b) ** 2) / ((r - a) ** 2 + (z - b) ** 2) - return amp * (z - b) / r * (Gr * ele - elk) - - -@njit -def BzGreen(r, z, a, b): - """Bz at position r, z, due to a filament with radius a, and z postion b. - - Args: - r (float): radial position of a point - z (float): vertical position of a point - a (float): radius of a filament - b (float): vertical position of a filament - - Returns: - float: Bz at r, z in Tesla / Amp - """ - k2 = 4 * a * r / ((r + a) ** 2 + (z - b) ** 2) - elk, ele = ellipke(k2) - amp = -2e-7 / np.sqrt((r + a) ** 2 + (z - b) ** 2) - Gz = (a**2 - r**2 - (z - b) ** 2) / ((r - a) ** 2 + (z - b) ** 2) - return amp * (Gz * ele + elk) - - -@njit(parallel=True) -def green_sum_over_filaments(gfunc, fil, r, z): - """Calculate a greens function at position r, z, to an array of filaments. - - Args: - gfunc (function): Green's function to use - fil (array): filament array N x (r, z, n) - r (float): radial position of a point - z (float): vertical position of a point - - Returns: - float: sum of the greens function at r, z, due to all filaments - """ - tmp = np.zeros_like(r) - tshp = tmp.shape - tmp = tmp.reshape((tmp.size,)) - rf = r.reshape((tmp.size,)) - zf = z.reshape((tmp.size,)) - for j in prange(len(tmp)): - for i in range(fil.shape[0]): - tmp.flat[j] += fil[i, 2] * gfunc(rf[j], zf[j], fil[i, 0], fil[i, 1]) - tmp = tmp.reshape(tshp) - return tmp - - -def segment_path(pts, ds=0, close=False): - """Segment a path into equal length segments. - - Args: - pts (array): N x 3 array of points - ds (float, optional): length between points. Defaults to minimun in pts. - close (bool, optional): Should the path close the points. Defaults to False. - - Returns: - array: M x 3 array of points along the path - array: M array of length along the path - """ - # this will make random points have equal spaces along path - # from scipy.interpolate import interp1d - # assume path is x,y,z and the 0 axis is the segment - # so pts[*,0] is x, pts[*,1] is y, pts[*,2] is z - - if close: - pts = np.vstack([pts, pts[0]]) - dx = pts[1:] - pts[:-1] - dsv = np.linalg.norm(dx, axis=1) - if ds == 0: - ds = dsv.min() - s = np.insert(np.cumsum(dsv), 0, 0) - slen = s[-1] # length - snew = np.linspace(0, slen, int(slen / ds)) - - # use np.interp instead of scipy.interpolation.interp1d - segs = np.column_stack([np.interp(snew, s, pts[:, i]) for i in range(3)]) - return segs, snew - - -@njit -def _loop_segmented_mutual(r, z, pts): - # segments is array of n x 3 (x,y,z) - # segments should contain first point at start AND end. - # r, z is r & z of loop - M = float(0) - for i in range(pts.shape[0] - 1): - midp = (pts[i, :] + pts[i + 1, :]) / 2 - delta = pts[i, :] - pts[i + 1, :] - rs = np.sqrt(midp[0] ** 2 + midp[1] ** 2) - zs = midp[2] - rdphi = (delta[0] * midp[1] - delta[1] * midp[0]) / rs - M += AGreen(r, z, rs, zs) * rdphi - - return M - - -@njit(parallel=True) -def mutual_filaments_segmented(fils, pts): - """Mutual inductance between a set of axisymmetric filaments and a segmented path.""" - M = float(0) - for i in prange(fils.shape[0]): - M += fils[i, 2] * _loop_segmented_mutual(fils[i, 0], fils[i, 1], pts) - return M - - -def M_filsol_path(fil, pts, n, ds=0): - """Mutual inductance between a set of axisymmetric filaments and a path from pts.""" - segs, s = segment_path(pts, ds) - return n * mutual_filaments_segmented(fil, segs) - - -@njit(parallel=True) -def segmented_self_inductance(pts, s, a): - """Self inductance of a segmented path by double integral. - - Args: - pts (N x 3 array): points along the path - s (array): length along the path - a (float): radius of wire - - Returns: - float: self inductance of the path - - Neumann's formula.. double curve integral of - mu_0/(4*pi) * int * int ( dx1 . dx2 / norm(x1-x2))) - do all points except where x1-x2 blows up. - instead follow Dengler https://doi.org/10.7716/aem.v5i1.331 - which makes a approximation for that is good O(mu_0*a) - lets just assume the thing is broken into small pieces and neglect end points - - this code doesn't work very well.. comparison test sorta fails - phi = np.linspace(0,2*np.pi,100) - test_xyz = np.array([[np.cos(p), np.sin(p), 0] for p in phi]) - L_seg = L_approx_path_rect(test_xyz, .01, .01, 1, .1) - L_maxwell(1, .01, .01, 1), L_lyle6(1, .01, .01, 1), L_seg - (6.898558527897293e-06, 6.8985981243869525e-06, 6.907313505254537e-06) # Y=1/4 hmmm... - (6.898558527897293e-06, 6.8985981243869525e-06, 7.064366776069971e-06) # Y=1/2 - """ - ds = s[1] - s[0] # the real ds and thus the real b - dx = pts[1:] - pts[:-1] - x = (pts[1:] + pts[:-1]) / 2 - npts = x.shape[0] - slen = s[-1] - b = ds / 2 # does not depend on ds, because of this correction. - LS = 2 * slen * (np.log(2 * b / a) + 0.25) # dengler equation 6 correction. - # seems to work much better when its +.125 - L = 0 # numba REQUIRES prange parallel variable to start at 0 (bug!) - for i in prange(npts): - for j in range(npts): - if i != j: - L += np.dot(dx[i], dx[j]) / np.linalg.norm(x[i] - x[j]) - return 1e-7 * (L + LS) - - -def L_approx_path_rect(pts, b, c, n, ds=1): - """Approximate self inductance of a path of points with a rectangular cross section. - - take a path of points n x 3, with a cross section b x c - and approximate self inductance using Dengler - """ - _, _, _, _, _, _, a = _lyle_terms( - b, c - ) # get Maxwell mean radius to approximate "wire" radius - ds *= a - segs, s = segment_path(pts, ds) - L = n**2 * segmented_self_inductance(segs, s, a) - return L - - -# for some reason, these are slightly slower than the above. -# but they work for any shape r & z as long as they are the same -@guvectorize( - ["void(float64[:,:], float64[:], float64[:], float64[:])"], - "(p, q),(n),(n)->(n)", - target="parallel", -) -def BrGreenFil(fil, r, z, gr): - """Radial magnetic field greens functions from a set of filaments over a set of points. - - Args: - fil (_type_): filament array (r,z,n) - r (_type_): radial positions of points - z (_type_): vertical positions of points - gr (_type_): greens function values at points - """ - for j in range(r.shape[0]): - tmp = 0.0 - for i in range(len(fil)): - tmp += fil[i, 2] * BrGreen(r[j], z[j], fil[i, 0], fil[i, 1]) - gr[j] = tmp - - -@guvectorize( - ["void(float64[:,:], float64[:], float64[:], float64[:])"], - "(p, q),(n),(n)->(n)", - target="parallel", -) -def BzGreenFil(fil, r, z, gr): - """Vertical magnetic field greens functions from a set of filaments over a set of points. - - Args: - fil (_type_): filament array (r,z,n) - r (_type_): radial positions of points - z (_type_): vertical positions of points - gr (_type_): greens function values at points - """ - for j in range(r.shape[0]): - tmp = 0.0 - for i in range(len(fil)): - tmp += fil[i, 2] * BzGreen(r[j], z[j], fil[i, 0], fil[i, 1]) - gr[j] = tmp - - -@guvectorize( - ["void(float64[:,:], float64[:], float64[:], float64[:])"], - "(p, q),(n),(n)->(n)", - target="parallel", -) -def AGreenFil(fil, r, z, gr): - """Psi greens functions from a set of filaments over a set of points. - - Args: - fil (_type_): filament array (r,z,n) - r (_type_): radial positions of points - z (_type_): vertical positions of points - gr (_type_): greens function values at points - """ - for j in range(r.shape[0]): - tmp = 0.0 - for i in range(len(fil)): - tmp += fil[i, 2] * AGreen(r[j], z[j], fil[i, 0], fil[i, 1]) - gr[j] = tmp - - -# cant jit this... meshgrid not allowed -def filament_coil(r, z, dr, dz, nt, nr, nz, rot=0): - """Create an array of filaments, each with its own radius, height, and amperage. - - r : Major radius of coil center. - z : Vertical center of coil. - dr : Radial width of coil. - dz : Height of coil. - nt : number of turns in coil - nr : Number of radial slices - nz : Number of vertical slices - rot : Rotation of coil about phi axis - - Returns: Array of shape (nr*nz) x 3 of R, Z, N for each filament - - """ - rd = np.linspace(-dr * (nr - 1) / nr / 2, dr * (nr - 1) / nr / 2, nr) - zd = np.linspace(-dz * (nz - 1) / nz / 2, dz * (nz - 1) / nz / 2, nz) - Rg, Zg = np.meshgrid(rd, zd) - - R = r + Rg * np.cos(rot) - Zg * np.sin(rot) - Z = z + Rg * np.sin(rot) + Zg * np.cos(rot) - - N = np.full_like(R, float(nt) / (nr * nz)) - return np.dstack([R, Z, N]).reshape(nr * nz, 3) - - -@njit(parallel=True) -def sum_over_filaments(func, f1, f2): - """Apply a function and sum over all combinations of two sets of filaments. - - Args: - func (function): function to apply to each pair of filaments - f1 (array): first filament array - f2 (array): second filament array - - Returns: - float: result of summing over all combinations of func(f1[i], f2[j]) - """ - result = float(0) - for i in prange(f1.shape[0]): - for j in range(f2.shape[0]): - result += func(f1[i], f2[j]) - return result - - -@njit(parallel=True) -def mutual_inductance_of_filaments(f1, f2): - """Mutual inductance of two sets of filaments. - - These should not be the same filament array, - not setup to handle self inductance of filament. - - Args: - f1 (array): first filament array - f2 (array): second filament array - - Returns: - float: Mutual inductance of filament sets in Henries - """ - M = float(0) - for i in prange(f1.shape[0]): - for j in range(f2.shape[0]): - M += mutual_inductance_fil(f1[i, :], f2[j, :]) - return M - - -@njit(parallel=True) -def self_inductance_by_filaments(f, conductor="round", a=0.01, dr=0.01, dz=0.01): - """Self inductance of filament set. - - Args: - f (array): first filament array - conductor (str, optional): conductor shape. Defaults to "round". - a (float, optional): conductor radius. Defaults to 0.01. - dr (float, optional): conductor radial width. Defaults to 0.01 - dz (float, optional): conductor vertical height. Defaults to 0.01 - - Returns: - float: self inductance of filament set in Henries - """ - L = float(0) - for i in prange(f.shape[0]): - for j in range(f.shape[0]): - if i != j: - L += mutual_inductance_fil(f[i, :], f[j, :]) - if conductor == "round": - L += L_round(f[i, 0], a, f[i, 2]) - elif conductor == "hollow_round": - L += L_hollow_round(f[i, 0], a, f[i, 2]) - elif conductor == "rect": - L += L_lyle6(f[i, 0], dr, dz, f[i, 2]) - return L - - -@njit(parallel=True) -def vertical_force_of_filaments(f1, f2): - """Vertical force between two sets of filaments. - - These should not be the same filament array, - not setup to handle self inductance of filament. - - Args: - f1 (array): first filament array - f2 (array): second filament array - - Returns: - float: Vertical force in Newtons/Amp^2 - """ - F = float(0) - for i in prange(f1.shape[0]): - for j in range(f2.shape[0]): - F += vertical_force_fil(f1[i, :], f2[j, :]) - return F - - -@njit(parallel=True) -def radial_force_of_filaments(f1, f2): - """Radial force between two sets of filaments. - - These should not be the same filament array, - not setup to handle self inductance of filament. - - Args: - f1 (array): first filament array - f2 (array): second filament array - - Returns: - float: Radial force in Newtons/Amp^2 - """ - F = float(0) - for i in prange(f1.shape[0]): - for j in range(f2.shape[0]): - F += radial_force_fil(f1[i, :], f2[j, :]) - return F diff --git a/src/inductance/mutual.py b/src/inductance/mutual.py new file mode 100644 index 0000000..8fb20c1 --- /dev/null +++ b/src/inductance/mutual.py @@ -0,0 +1,175 @@ +"""Mutual inductance calculations for coils. + +author: Darren Garnier + + +""" +import math + +import numpy as np + +from ._numba import njit + +# from .elliptics import ellipke +from .filaments import mutual_inductance_fil, mutual_inductance_of_filaments + +MU0 = 4e-7 * math.pi # permeability of free space + + +@njit +def mutual_rayleigh(r1, z1, dr1, dz1, n1, r2, z2, dr2, dz2, n2): + """Mutual inductance of two coils by Rayleigh's Quadrature Method. + + Args: + r1 (float): inner radius of coil 1 + z1 (float): inner height of coil 1 + dr1 (float): radial width of coil 1 + dz1 (float): height of coil 1 + n1 (int): number of turns in coil 1 + r2 (float): inner radius of coil 2 + z2 (float): inner height of coil 2 + dr2 (float): radial width of coil 2 + dz2 (float): height of coil 2 + n2 (int): number of turns in coil 2 + + Returns: + float: mutual inductance of the two coils + """ + m_ray = 0 + # define the quadrature points + rzn1 = np.array( + [ + [r1, z1, 1], + [r1 - dr1 / 2, z1, 1], + [r1, z1 - dz1 / 2, 1], + [r1 + dr1 / 2, z1, 1], + [r1, z1 + dz1 / 2, 1], + ] + ) + rzn2 = np.array( + [ + [r2, z2, 1], + [r2 - dr2 / 2, z2, 1], + [r2, z2 - dz2 / 2, 1], + [r2 + dr2 / 2, z2, 1], + [r2, z2 + dz2 / 2, 1], + ] + ) + # apply Rayleigh's Quadrature Method + m_ray = -mutual_inductance_fil(rzn1[0, :], rzn2[0, :]) * 2 + m_ray += mutual_inductance_fil(rzn1[1, :], rzn2[0, :]) + m_ray += mutual_inductance_fil(rzn1[2, :], rzn2[0, :]) + m_ray += mutual_inductance_fil(rzn1[3, :], rzn2[0, :]) + m_ray += mutual_inductance_fil(rzn1[4, :], rzn2[0, :]) + m_ray += mutual_inductance_fil(rzn1[0, :], rzn2[1, :]) + m_ray += mutual_inductance_fil(rzn1[0, :], rzn2[2, :]) + m_ray += mutual_inductance_fil(rzn1[0, :], rzn2[3, :]) + m_ray += mutual_inductance_fil(rzn1[0, :], rzn2[4, :]) + return n1 * n2 * m_ray / 6 + + +@njit +def mutual_lyle(r1, z1, dr1, dz1, n1, r2, z2, dr2, dz2, n2): + """Mutual inductance of two coils by Lyle's Method of Equivalent Filaments. + + Args: + r1 (float): inner radius of coil 1 + z1 (float): inner height of coil 1 + dr1 (float): radial width of coil 1 + dz1 (float): height of coil 1 + n1 (int): number of turns in coil 1 + r2 (float): inner radius of coil 2 + z2 (float): inner height of coil 2 + dr2 (float): radial width of coil 2 + dz2 (float): height of coil 2 + n2 (int): number of turns in coil 2 + + Returns: + float: mutual inductance of the two coils + """ + fils1 = _lyle_equivalent_filaments(r1, z1, dr1, dz1) + fils2 = _lyle_equivalent_filaments(r2, z2, dr2, dz2) + return n1 * n2 * mutual_inductance_of_filaments(fils1, fils2) + + +@njit +def _lyle_equivalent_filaments(r, z, dr, dz): + """Compute the equivalent filament locations for Lyle's method. + + Args: + r (float): inner radius of coil + z (float): inner height of coil + dr (float): radial width of coil + dz (float): height of coil + + Returns: + numpy.ndarray: equivalent filament locations + """ + if dr < dz: + req = r * (1 + dr**2 / (24 * r**2)) + beta = math.sqrt((dz**2 - dr**2) / 12) + fils = [[req, z - beta, 0.5], [req, z + beta, 0.5]] + elif dr > dz: + req = r * (1 + dz**2 / (24 * r**2)) + delta = math.sqrt((dz**2 - dr**2) / 12) + fils = [[req - delta, z, 0.5], [req + delta, z, 0.5]] + else: + req = r * (1 + dz**2 / (24 * r**2)) + fils = [[req, z, 1]] + + return np.array(fils) + + +def section_coil(r, z, dr, dz, nt, nr, nz): + """Create an array of filaments, each with its own radius, height, and amperage. + + r : Major radius of coil center. + z : Vertical center of coil. + dr : Radial width of coil. + dz : Height of coil. + nt : number of turns in coil + nr : Number of radial slices + nz : Number of vertical slices + + Returns: Array of shape (nr*nz) x 5 of r, z, dr, dz, n for each section + + """ + rd = np.linspace(-dr * (nr - 1) / nr / 2, dr * (nr - 1) / nr / 2, nr) + zd = np.linspace(-dz * (nz - 1) / nz / 2, dz * (nz - 1) / nz / 2, nz) + Rg, Zg = np.meshgrid(rd, zd) + + R = r + Rg + Z = z + Zg + + DR = np.full_like(R, dr / nr) + DZ = np.full_like(R, dz / nz) + NT = np.full_like(R, float(nt) / (nr * nz)) + + return np.dstack([R, Z, DR, DZ, NT]).reshape(nr * nz, 5) + + +def mutual_sectioning_lyle(r1, z1, dr1, dz1, n1, r2, z2, dr2, dz2, n2): + """Mutual inductance by sectioning of two coils by Lyle's Method of Equivalent Filaments. + + Args: + r1 (float): inner radius of coil 1 + z1 (float): inner height of coil 1 + dr1 (float): radial width of coil 1 + dz1 (float): height of coil 1 + n1 (int): number of turns in coil 1 + r2 (float): inner radius of coil 2 + z2 (float): inner height of coil 2 + dr2 (float): radial width of coil 2 + dz2 (float): height of coil 2 + n2 (int): number of turns in coil 2 + + Returns: + float: mutual inductance of the two coils + """ + # FIXME + # use section_coil + # need to be clever to keep it numba compatible + + fils1 = _lyle_equivalent_filaments(r1, z1, dr1, dz1) + fils2 = _lyle_equivalent_filaments(r2, z2, dr2, dz2) + return n1 * n2 * mutual_inductance_of_filaments(fils1, fils2) diff --git a/src/inductance/self.py b/src/inductance/self.py new file mode 100644 index 0000000..047458b --- /dev/null +++ b/src/inductance/self.py @@ -0,0 +1,673 @@ +"""Self nductance calculations for coils. + +author: Darren Garnier + +basic equations come from analytic approximations of old. +tested in real life with the LDX Fcoil / Ccoil / Lcoil system. + +One from Maxwell himself, and better ones from: + +Lyle, T. R. "On the Self-inductance of Circular Coils of + Rectangular Section". Roy. Soc. London. A. V213 (1914) pp 421-435. + https://doi.org/10.1098/rsta.1914.0009 + +Unfortunately, Lyle doesn't work that well with large dz/R coils. Other +approximations are also included. + +This code now uses numba to do just-in-time compiliation and parallel execution +to greatly increase speed. Also requires numba-scipy for elliptical functions. +numba-scipy can be fragile and sometimes needs to be "updated" before installation +to the newest version of numba. +""" +import math + +import numpy as np + +from ._numba import njit +from .elliptics import ellipke + +try: + from mpmath import mp # type: ignore + + USE_MPMATH = True +except ImportError: # pragma: no cove + USE_MPMATH = False + +MU0 = 4e-7 * math.pi # permeability of free space + + +@njit +def _lyle_terms(b, c): + # helper functions for most self inductance equations. + # b : cylindrical height of coil + # c : radial width of coil + + # FIXME: when b/c or c/b is very large or small, this diverges + # and gives inaccurate results when b/c ~ 1e6 or 1e-6 + # phi should approach 1.5 and GMD should approach (b+c)*exp(-1.5) + + # for small b/c, u and wp need to be calculated with more precision + # for small c/b, v and w need more precision + # will try to use limit functions + + boc2 = (b / c) ** 2 + if b == 0: + u, v, w, p = 0, 1, 0, 1 + elif c == 0: + u, v, w, p = 1, 0, 1, 0 + elif boc2 < 1e-8: + u = -boc2 * math.log(boc2) + boc2**2 - boc2**3 / 2 + v = 1 - boc2 / 2 + boc2**2 / 3 + w = math.pi / 2 * (b / c) - boc2 + boc2**2 / 3 + p = 1 - boc2 / 3 + boc2**2 / 5 + elif boc2 > 1e8: + cob2 = (c / b) ** 2 + u = 1 - cob2 / 2 + cob2**2 / 3 + v = -cob2 * math.log(cob2) + cob2**2 - cob2**3 / 2 + w = 1 - cob2 / 3 + cob2**2 / 5 # taylor series + p = math.pi / 2 * (c / b) - cob2 + cob2**2 / 3 # laurent series + else: + u = ((b / c) ** 2) * math.log(1 + (c / b) ** 2) + v = ((c / b) ** 2) * math.log(1 + (b / c) ** 2) + w = (b / c) * math.atan2(c, b) + p = (c / b) * math.atan2(b, c) + + d = np.sqrt(b**2 + c**2) # diagnonal length + phi = (u + v + 25) / 12 - 2 * (w + p) / 3 + GMD = d * np.exp(-phi) # geometric mean radius of section GMD + + return d, u, v, w, p, phi, GMD + + +if USE_MPMATH: # pragma: no cover + + def _lyle_terms_mp(b, c): + # b : cylindrical height of coil + # c : radial width of coil + + # this does NOT fix problem with b/c ~ 1e6 or 1e-6 + + d = mp.sqrt(b**2 + c**2) # diagnonal length + u = ((b / c) ** 2) * 2 * mp.log(d / b) + v = ((c / b) ** 2) * 2 * mp.log(d / c) + w = (b / c) * mp.atan(c / b) + wp = (c / b) * mp.atan(b / c) + phi = (u + v + 25) / 12 - 2 * (w + wp) / 3 + GMD = d * mp.exp(-phi) # geometric mean radius of section GMD + return d, u, v, w, wp, phi, GMD + + +@njit +def L_maxwell(r, dr, dz, n): + """Self inductance of a rectangular coil with constant current density by Maxwell. + + Args: + r (float): coil centerline radius + dr (float): coil radial width + dz (float): coil height + n (int): number of turns + + Returns: + float: coil self inductance in Henrys + """ + a = float(r) + b = float(dz) + c = float(dr) + d, u, v, w, wp, phi, GMD = _lyle_terms(b, c) + L = MU0 * (n**2) * a * (math.log(8 * a / GMD) - 2) + return L + + +@njit +def L_round(r, a, n): + """Self inductance of a round conductor coil with constant current density. + + Args: + r (float): coil centerline radius + a (float): coil conductor radius + n (int): number of turns + + Returns: + float: coil self inductance in Henrys + """ + L = MU0 * (n**2) * r * (math.log(8 * r / a) - 1.75) + return L + + +@njit +def L_hollow_round(r, a, n): + """Self inductance of a round conductor coil with skin current. + + Args: + r (float): coil centerline radius + a (float): coil conductor radius + n (int): number of turns + + Returns: + float: coil self inductance in Henrys + """ + L = MU0 * (n**2) * r * (math.log(8 * r / a) - 2) + return L + + +@njit +def L_lyle4_eq3(r, dr, dz, n): + """Self inductance of a rectangular coil via Lyle to 4th order, Eq3. + + Args: + r (float): coil centerline radius + dr (float): coil radial width + dz (float): coil height + n (int): number of turns + + Returns: + float: coil self inductance in Henrys + """ + a = float(r) + b = float(dz) + c = float(dr) + d, u, v, w, wp, phi, GMD = _lyle_terms(b, c) + p2 = 1 / (2**5 * 3 * d**2) * (3 * b**2 + c**2) + q2 = ( + 1 + / (2**5 * 3 * d**2) + * ( + 1 / 2 * b**2 * u + - 1 / 10 * c**2 * v + - 16 / 5 * b**2 * w + - (3 * b**2 + c**2) * phi + + 69 / 20 * b**2 + + 221 / 60 * c**2 + ) + ) + p4 = ( + 1 + / (2**11 * 3**2 * 5 * d**4) + * (-90 * b**4 + 105 * (b * c) ** 2 + 22 * c**4) + ) + q4 = ( + 1 + / (2**11 * 3**2 * 5 * d**4) + * ( + -(-90 * b**4 + 105 * (b * c) ** 2 + 22 * c**4) * phi + - 69 / 28 * c**4 * v + - u / 4 * (115 * b**4 - 480 * (b * c) ** 2) + + 2**8 * w / 7 * (6 * b**4 - 7 * (b * c) ** 2) + - 1 + / (2**3 * 5 * 7) + * (36590 * b**4 - 2035 * (b * c) ** 2 - 11442 * c**4) + ) + ) + + ML = np.log(8 * a / GMD) + + # equation #3 + + eq3 = ( + MU0 + * (n**2) + * a + * (ML - 2 + (d / a) ** 2 * (p2 * ML + q2) + (d / a) ** 4 * (p4 * ML + q4)) + ) + return eq3 + + +# equation 4.. slightly different result... not sure which is better. +# equation 3 above matches what I did for the 6th order. +# and it also seems to match the 4th order in the paper. + + +@njit +def L_lyle4_eq4(r, dr, dz, n): + """Self inductance of a rectangular coil via Lyle to 4th order, Eq4. + + Args: + r (float): coil centerline radius + dr (float): coil radial width + dz (float): coil height + n (int): number of turns + + Returns: + float: coil self inductance in Henrys + """ + a = float(r) + b = float(dz) + c = float(dr) + d, u, v, w, wp, phi, GMD = _lyle_terms(b, c) + p2 = 1 / (2**5 * 3 * d**2) * (3 * b**2 + c**2) + q2 = ( + 1 + / (2**5 * 3 * d**2) + * ( + 1 / 2 * b**2 * u + - 1 / 10 * c**2 * v + - 16 / 5 * b**2 * w + - (3 * b**2 + c**2) * phi + + 69 / 20 * b**2 + + 221 / 60 * c**2 + ) + ) + p4 = ( + 1 + / (2**11 * 3**2 * 5 * d**4) + * (-90 * b**4 + 105 * (b * c) ** 2 + 22 * c**4) + ) + q4 = ( + 1 + / (2**11 * 3**2 * 5 * d**4) + * ( + -(-90 * b**4 + 105 * (b * c) ** 2 + 22 * c**4) * phi + - 69 / 28 * c**4 * v + - u / 4 * (115 * b**4 - 480 * (b * c) ** 2) + + 2**8 * w / 7 * (6 * b**4 - 7 * (b * c) ** 2) + - 1 + / (2**3 * 5 * 7) + * (36590 * b**4 - 2035 * (b * c) ** 2 - 11442 * c**4) + ) + ) + + m1 = p2 + n1 = -(p2 + q2) + m2 = p4 + n2 = -(p4 + q4) + 1 / 2 * (m1 - n1) ** 2 + n3 = (m1 - n1) * (m2 - n2 - 1 / 6 * (m1 - n1) * (m1 + 2 * n1)) + + A = a * (1 + m1 * (d / a) ** 2 + m2 * (d / a) ** 4) + R = GMD * (1 + n1 * (d / a) ** 2 + n2 * (d / a) ** 4 + n3 * (d / a) ** 6) + + eq4 = MU0 * (n**2) * A * (np.log(8 * A / R) - 2) + return eq4 + + +L_lyle4 = L_lyle4_eq3 + + +@njit +def L_lyle6(r, dr, dz, n): + """Self inductance of a rectangular coil via Lyle to 6th order. + + Args: + r (float): coil centerline radius + dr (float): coil radial width + dz (float): coil height + n (int): number of turns + + Returns: + float: coil self inductance in Henrys + """ + a = float(r) + b = float(dz) + c = float(dr) + d, u, v, w, ww, phi, GMD = _lyle_terms(b, c) + bd2 = (b / d) ** 2 + cd2 = (c / d) ** 2 + da2 = (d / a) ** 2 + ML = np.log(8 * a / d) + + # after further reduction in mathematica... all the terms. + f = ( + ML + + (1 + u + v - 8 * (w + ww)) / 12.0 # 0th order in d/a + + ( + da2 + * ( + cd2 * (221 + 60 * ML - 6 * v) + + 3 * bd2 * (69 + 60 * ML + 10 * u - 64 * w) + ) + ) + / 5760.0 # 2nd order + + ( + da2**2 + * ( + 2 * cd2**2 * (5721 + 3080 * ML - 345 * v) + + 5 * bd2 * cd2 * (407 + 5880 * ML + 6720 * u - 14336 * w) + - 10 * bd2**2 * (3659 + 2520 * ML + 805 * u - 6144 * w) + ) + ) + / 2.58048e7 # 4th order + + ( + da2**3 + * ( + 3 * cd2**3 * (4308631 + 86520 * ML - 10052 * v) + - 14 + * bd2**2 + * cd2 + * (617423 + 289800 * ML + 579600 * u - 1474560 * w) + + 21 * bd2**3 * (308779 + 63000 * ML + 43596 * u - 409600 * w) + + 42 * bd2 * cd2**2 * (-8329 + 46200 * ML + 134400 * u - 172032 * w) + ) + ) + / 1.73408256e10 # 6th order + ) + L = MU0 * (n**2) * a * f + # print("Lyle6 r: %.4g, dr: %.4g, dz: %4g, n: %d, L: %.8g"%(a,c,b,n,L)) + return L + + +@njit +def dLdR_lyle6(r, dr, dz, n): + """Radial derivative of self inductance of a rectangular coil via Lyle to 6th order. + + Args: + r (float): coil centerline radius + dr (float): coil radial width + dz (float): coil height + n (int): number of turns + + Returns: + float: radial derivative of inductance in Henrys/meter + """ + a = float(r) + b = float(dz) + c = float(dr) + d, u, v, w, ww, phi, GMD = _lyle_terms(b, c) + bd2 = (b / d) ** 2 + cd2 = (c / d) ** 2 + da2 = (d / a) ** 2 + + ML = np.log(8 * a / d) + + f = ( + ML + + (13 + u + v - 8 * w - 8 * ww) / 12.0 # zero + + ( + da2 + * ( + cd2 * (-161 - 60 * ML + 6 * v) + - 3 * bd2 * (9 + 60 * ML + 10 * u - 64 * w) + ) + ) + / 5760.0 # 2nd order + + ( + da2**2 + * ( + -2 * cd2**2 * (14083 + 9240 * ML - 1035 * v) + - 15 * bd2 * cd2 * (-1553 + 5880 * ML + 6720 * u - 14336 * w) + + 30 * bd2**2 * (2819 + 2520 * ML + 805 * u - 6144 * w) + ) + ) + / 2.58048e7 # 4th order + + ( + da2**3 + * ( + -3 * cd2**3 * (4291327 + 86520 * ML - 10052 * v) + + 14 + * bd2**2 + * cd2 + * (559463 + 289800 * ML + 579600 * u - 1474560 * w) + - 21 * bd2**3 * (296179 + 63000 * ML + 43596 * u - 409600 * w) + - 42 * bd2 * cd2**2 * (-17569 + 46200 * ML + 134400 * u - 172032 * w) + ) + ) + / 3.46816512e9 # 6th order + ) + + dLdR = 4e-7 * np.pi * (n**2) * f + return dLdR + + +@njit +def L_lyle6_appendix(r, dr, dz, n): + """Self inductance of a rectangular coil via Lyle to 6th order, appendix. + + Args: + r (float): coil centerline radius + dr (float): coil radial width + dz (float): coil height + n (int): number of turns + + Returns: + float: coil self inductance in Henrys + """ + a = float(r) + b = float(dz) + c = float(dr) + d, u, v, w, wp, phi, GMD = _lyle_terms(b, c) + + p6 = ( + 1 + / (2**16 * 3 * 5 * 7 * d**6) + * (525 * b**6 - 1610 * b**4 * c**2 + 770 * b**2 * c**4 + 103 * c**6) + ) + q6 = ( + 1 + / (2**16 * 3 * 5 * 7 * d**6) + * ( + 0 + + (3633 / 10 * b**6 - 3220 * b**4 * c**2 + 2240 * b**2 * c**4) * u + - (359 / 30) * c**6 * v + - 2**11 + * (5 / 3 * b**6 - 4 * b**4 * c**2 + 7 / 5 * b**2 * c**4) + * w + + 2161453 / (2**3 * 3 * 5 * 7) * b**6 + - 617423 / (2**2 * 3**2 * 5) * b**4 * c**2 + - 8329 / (2**2 * 3 * 5) * b**2 * c**4 + + 4308631 / (2**3 * 3 * 5 * 7) * c**6 + ) + ) + + # just add the correction to the 4th order solution + L6 = L_lyle4_eq3(r, dr, dz, n) + 4e-7 * np.pi * (n**2) * a * (d / a) ** 6 * ( + p6 * np.log(8 * a / d) + q6 + ) + # print("Lyle6A r: %.4g, dr: %.4g, dz: %4g, n: %d, L: %.8g"%(a,c,b,n,L6)) + return L6 + + +if USE_MPMATH: + + def L_lyle6_mp(r, dr, dz, n): + """Self inductance of a rectangular coil via Lyle to 6th order. + + This function uses the mpmath arbitrary precision library to + calculate to arbitrary precision. The default precision is 30. + + Args: + r (float): coil centerline radius + dr (float): coil radial width + dz (float): coil height + n (int): number of turns + + Returns: + float: coil self inductance in Henrys + """ + mp.dps = 30 + a = mp.mpf(r) + b = mp.mpf(dz) + c = mp.mpf(dr) + d, u, v, w, wp, phi, GMD = _lyle_terms_mp(b, c) + ML = mp.log(8 * a / d) + + f = ( + ML + + (u + v + 1) / 12 + - mp.mpf(2) / 3 * (w + wp) + + 1 + / (2**5 * 3 * a**2) + * ( + (3 * b**2 + c**2) * ML + + mp.mpf(1) / 2 * b**2 * u + - 1.0 / 10 * c**2 * v + - 16.0 / 5 * b**2 * w + + 69.0 / 20 * b**2 + + 221.0 / 60 * c**2 + ) + + mp.mpf(1) + / (2**11 * 3 * 5 * a**4) + * ( + (-30 * b**4 + 35 * b**2 * c**2 + mp.mpf(22) / 3 * c**4) * ML + - (115 * b**4 - 480 * b**2 * c**2) / 12 * u + - mp.mpf(23) / 28 * c**4 * v + + (6 * b**4 - 7 * b**2 * c**2) / 21 * 2**8 * w + - (36590 * b**4 - 2035 * b**2 * c**2 - 11442 * c**4) + / (2**3 * 3 * 5 * 7) + ) + + (mp.mpf(1) / (2**16 * 3 * 5 * 7 * a**6)) + * ( + ( + 525 * b**6 + - 1610 * b**4 * c**2 + + 770 * b**2 * c**4 + + 103 * c**6 + ) + * ML + + ( + mp.mpf(3633) / 10 * b**6 + - 3220 * b**4 * c**2 + + 2240 * b**2 * c**4 + ) + * u + - mp.mpf(359) / 30 * c**6 * v + - 2**11 + * ((25 * b**6 - 60 * b**4 * c**2 + 21 * b**2 * c**4) / 15) + * w + + mp.mpf(2161453) / (2**3 * 3 * 5 * 7) * b**6 + - mp.mpf(617423) / ((2**2) * (3**2) * 5) * b**4 * c**2 + - mp.mpf(8329) / ((2**2) * 3 * 5) * b**2 * c**4 + + mp.mpf(4308631) / (2**3 * 3 * 5 * 7) * c**6 + ) + ) + L = 4e-7 * mp.pi * (n**2) * a * f + # print("Lyle6mp r: %.4g, dr: %.4g, dz: %4g, n: %d, L: %.8g"%(a,c,b,n,L)) + return L + + +@njit +def L_long_solenoid_butterworth(r, dr, dz, n): + """Self inductance of a long solenoid by Butterworth's formula. + + As written in Grover, Bulletin of the Bureau of Standards, Vol. 14 pg. 558 + https://nvlpubs.nist.gov/nistpubs/bulletin/14/nbsbulletinv14n4p537_A2b.pdf + + Original S Butterworth 1914 Proc. Phys. Soc. London 27 371 + + Applies when dz > 2*r. + + Args: + r (float): coil centerline radius + dr (float): coil radial width + dz (float): coil height + n (int): number of turns + + Returns: + float: coil self inductance in Henrys + """ + a = float(r) + b = float(dz) + c = float(dr) + # L = 4e-7 * np.pi * (n**2) * a / b + + k2 = 4 * a**2 / (4 * a**2 + b**2) + kp2 = b**2 / (4 * a**2 + b**2) + k = np.sqrt(k2) + kp = np.sqrt(kp2) + + # assume dz > 2*r + ell = k2 / ((1 + kp) * (1 + np.sqrt(kp)) ** 2) + q = ell / 2 + 2 * (ell / 2) ** 5 + 15 * (ell / 2) ** 9 # + .... + + delta = 2 * q - 2 * q**4 + 2 * q**9 + gamma = q - 4 * q**4 + 9 * q**9 + beta = q**2 + 3 * q**6 + 6 * q**12 + alpha = q**2 + q**6 + q**12 + + K = ( # K + 2.0 + / (3 * (1 - delta) ** 2) + * (1 + 8 * beta / (1 + alpha) + kp2 / k2 * 8 * gamma / (1 - delta)) + - 4 / (3 * np.pi) * k / kp + ) + + DL_L1 = ( # delta L/L_1, eq 29A + -1 + / 3 + * (c / a) + * ( + 1 + - c / (4 * a) + - 1 / (2 * np.pi) * (c / b) * (np.log(8 * a / c) - 23 / 12) + + 1 + / (160 * np.pi) + * (c / a) ** 3 + * (a / b) + * (np.log(8 * a / c) - 1.0 / 20) + - 1 + / 4 + * (c * a / b**2) + * (1 - 7 / 4 * (a / b) ** 2 + 17 / 4 * (a / b) ** 4) + - 1 / 96 * (c / a) ** 3 * (a / b) ** 2 * (1 - 39 / 10 * (a / b) ** 2) + ) + ) + L1 = L_lorentz(r, dr, dz, n) + + return L1 * (K + DL_L1) + + +@njit +def _L_thin_wall_babic_akyel(r, _dr, dz, n): + """Self inductance thin wall solenoid by Babic and Akyel's formula. + + Follow formulae from: + S. Babic and C. Akyel, "Improvement in calculation of the self- and mutual inductance + of thin-wall solenoids and disk coils," in IEEE Transactions on Magnetics, + vol. 36, no. 4, pp. 1970-1975, July 2000, doi: 10.1109/TMAG.2000.875240. + + this _is_ be the same as Lorentz formula.. + + Args: + r (float): coil centerline radius + _dr (float): coil radial width (ignored) + dz (float): coil height + n (int): number of turns + + Returns: + float: coil self inductance in Henrys + """ + a = float(dz) / 2 + # R1 = float(r) - float(dr) / 2 + # R2 = float(r) + float(dr) / 2 + # alpha = R2 / R1 + # lets double check why I'm not using alpha... + beta = a / r + + k2 = 1 / (1 + beta**2) + elk, ele = ellipke(k2) + k = np.sqrt(k2) + tk1 = ( + 4.0 + / (3 * np.pi * beta * k**3) + * ((2 * k2 - 1) * ele + (1 - k2) * elk - k**3) + ) + eq8 = MU0 * (n**2) * r * np.pi / (2 * beta) * tk1 # eq 8 + return eq8 + + +@njit +def L_lorentz(r, _dr, dz, n): + """Self inductance of a thin wall solenoid by Lorentz's formula. + + Given in: + Rosa and Grover, Formulas and Tables for the Calculation of Mutual and Self-Inductance + https://nvlpubs.nist.gov/nistpubs/bulletin/08/nbsbulletinv8n1p1_A2b.pdf + or + https://www.jstor.org/stable/pdf/24521000.pdf + (Formula 72 on page 118) + + Args: + r (float): coil centerline radius + _dr (float): coil radial width (ignored) + dz (float): coil height + n (int): number of turns + + Returns: + float: coil self inductance in Henrys + """ + beta = dz / (2 * r) + k2 = 1 / (1 + beta**2) + k3 = k2**1.5 + beta2 = beta**2 + elK, elE = ellipke(k2) + + f = 2 / 3 / beta2 * (((2 * k2 - 1) * elE + (1 - k2) * elK) / k3 - 1) + Ls = MU0 * (n**2) * r * f + return Ls diff --git a/tests/test_ldx.py b/tests/test_ldx.py index aad0d72..63757cc 100644 --- a/tests/test_ldx.py +++ b/tests/test_ldx.py @@ -3,18 +3,8 @@ import unittest import coverage_env # noqa: F401 -import numpy as np -from inductance.filaments import ( - FilamentCoil, - Lfil, - LLyle4, - LLyle6, - LLyle6A, - LMaxwell, - TotalFz, - TotalM0, -) +from inductance.coils import Coil, CompositeCoil class TestLDXInductance(unittest.TestCase): @@ -38,39 +28,39 @@ def setUp(self) -> None: def test_self_inductances(self): """Test the self-inductances routines.""" - self.assertAlmostEqual(LMaxwell(self.LC), 0.005397519485316731) - self.assertAlmostEqual(LLyle4(self.LC), 0.005623887363536865) - self.assertAlmostEqual(LLyle6(self.LC), 0.005626208118367906) - self.assertAlmostEqual(LLyle6A(self.LC), 0.005626208118367906) - self.assertAlmostEqual(Lfil(self.LC), 0.005625117051066614) - - self.assertAlmostEqual(LMaxwell(self.CC), 85.91637858501646) - self.assertAlmostEqual(LLyle4(self.CC), 90.90254315310752) - self.assertAlmostEqual(LLyle6(self.CC), 90.90927053789774) - self.assertAlmostEqual(LLyle6A(self.CC), 90.90927053789773) - self.assertAlmostEqual(Lfil(self.CC), 90.89118772211005) + self.assertAlmostEqual(self.LC.L_Maxwell(), 0.005397519485316731) + self.assertAlmostEqual(self.LC.L_Lyle4(), 0.005623887363536865) + self.assertAlmostEqual(self.LC.L_Lyle6(), 0.005626208118367906) + self.assertAlmostEqual(self.LC.L_Lyle6A(), 0.005626208118367906) + self.assertAlmostEqual(self.LC.L_filament(), 0.005625117051066614) + + self.assertAlmostEqual(self.CC.L_Maxwell(), 85.91637858501646) + self.assertAlmostEqual(self.CC.L_Lyle4(), 90.90254315310752) + self.assertAlmostEqual(self.CC.L_Lyle6(), 90.90927053789774) + self.assertAlmostEqual(self.CC.L_Lyle6A(), 90.90927053789773) + self.assertAlmostEqual(self.CC.L_filament(), 90.89118772211005) def test_mutual_inductances(self): """Test the mutual inductances routines.""" - MFL = TotalM0(self.FC, self.LC) - MFC = TotalM0(self.FC, self.CC) + MFL = self.FC.M_filament(self.LC) + MFC = self.FC.M_filament(self.CC) self.assertAlmostEqual(MFL, 0.611729e-3) self.assertAlmostEqual(MFC, 1.686291576361124) def test_fcoil_selfinductance(self): """Test the self-inductance of the F coils.""" - LF1 = LLyle6(self.F1) - LF2 = LLyle6(self.F2) - LF3 = LLyle6(self.F3) - MF12 = TotalM0(self.F1, self.F2) - MF13 = TotalM0(self.F1, self.F3) - MF23 = TotalM0(self.F2, self.F3) + LF1 = self.F1.L_Lyle6() + LF2 = self.F2.L_Lyle6() + LF3 = self.F3.L_Lyle6() + MF12 = self.F1.M_filament(self.F2) + MF13 = self.F1.M_filament(self.F3) + MF23 = self.F2.M_filament(self.F3) LFC = LF1 + LF2 + LF3 + 2 * MF12 + 2 * MF13 + 2 * MF23 self.assertAlmostEqual(LFC, 0.38692937382836284) def test_levitation_force(self): """Test the levitation force.""" - FZ = TotalFz(self.FC, self.LC) / 9.81 + FZ = self.FC.Fz_filament(self.LC) / 9.81 self.assertAlmostEqual(FZ, 589.263842397435) @@ -83,7 +73,8 @@ def define_ldx_coils(): HTS_LC["z2"] = 1.610 + 0.018 / 2 HTS_LC["nt"] = 2796 HTS_LC["at"] = 2796 * 105 - HTS_LC["fil"] = FilamentCoil(HTS_LC, 30, 2) + HTS_LC = Coil.from_dict(HTS_LC) + HTS_LC.filamentize(30, 2) LC = {} LC["r1"] = 0.246 @@ -92,7 +83,8 @@ def define_ldx_coils(): LC["z2"] = LC["z1"] + 0.1 LC["nt"] = 80 LC["at"] = 3500 * 80 - LC = FilamentCoil(LC, 20, 4) + LC = Coil.from_dict(LC) + LC.filamentize(20, 4) CC = {} CC["r1"] = 0.645 @@ -101,7 +93,8 @@ def define_ldx_coils(): CC["z2"] = -0.002 + 0.750 / 2 CC["nt"] = 8388 CC["at"] = 8388 * 420 - CC = FilamentCoil(CC, 3, 7) + CC = Coil.from_dict(CC) + CC.filamentize(3, 7) F1 = {} F1["r1"] = 0.2717 - 0.01152 / 2 @@ -110,7 +103,8 @@ def define_ldx_coils(): F1["z2"] = +0.0694 / 2 F1["nt"] = 26.6 F1["at"] = 26.6 * 1629 - F1 = FilamentCoil(F1, 2, 4) + F1 = Coil.from_dict(F1) + F1.filamentize(2, 4) F2 = {} F2["r1"] = 0.28504 - 0.01508 / 2 @@ -119,7 +113,8 @@ def define_ldx_coils(): F2["z2"] = +0.125 / 2 F2["nt"] = 81.7 F2["at"] = 81.7 * 1629 - F2 = FilamentCoil(F2, 3, 7) + F2 = Coil.from_dict(F2) + F2.filamentize(3, 7) F3 = {} F3["r1"] = 0.33734 - 0.08936 / 2 @@ -128,12 +123,10 @@ def define_ldx_coils(): F3["z2"] = +0.1615 / 2 F3["nt"] = 607.7 F3["at"] = 607.7 * 1629 - F3 = FilamentCoil(F3, 10, 15) + F3 = Coil.from_dict(F3) + F3.filamentize(10, 15) - FC = {} - FC["fil"] = np.concatenate((F1["fil"], F2["fil"], F3["fil"])) - FC["nt"] = F1["nt"] + F2["nt"] + F3["nt"] - FC["at"] = F1["at"] + F2["at"] + F3["at"] + FC = CompositeCoil([F1, F2, F3]) return HTS_LC, LC, CC, F1, F2, F3, FC diff --git a/tests/test_lyle.py b/tests/test_lyle.py index 8578892..9caad56 100644 --- a/tests/test_lyle.py +++ b/tests/test_lyle.py @@ -5,7 +5,7 @@ import coverage_env # noqa: F401 import numpy as np -from inductance.inductance import L_lyle4, L_maxwell, L_thin_wall_lorentz, _lyle_terms +from inductance.self import L_lorentz, L_lyle4, L_maxwell, _lyle_terms class TestSelfInductances(unittest.TestCase): @@ -15,16 +15,12 @@ def test_L_maxwell(self): """Test Maxwell's formula.""" self.assertAlmostEqual(L_maxwell(1, 1e-4, 1, 1), 20.7463e-7, places=6) - def test_L_thin_wall_lorentz(self): + def test_L_lorentz(self): """Test thin-wall Lorentz formula. See Lyle pg. 429.""" mu0 = 4e-7 * np.pi - self.assertAlmostEqual( - L_thin_wall_lorentz(1, 0.0, 2, 1) / mu0, 1.08137, places=5 - ) - self.assertAlmostEqual(L_thin_wall_lorentz(1, 0.0, 1, 1), 20.7463e-7, places=6) - self.assertAlmostEqual( - L_thin_wall_lorentz(1, 0.0, 0.5, 1), 28.85335e-7, places=7 - ) + self.assertAlmostEqual(L_lorentz(1, 0.0, 2, 1) / mu0, 1.08137, places=5) + self.assertAlmostEqual(L_lorentz(1, 0.0, 1, 1), 20.7463e-7, places=6) + self.assertAlmostEqual(L_lorentz(1, 0.0, 0.5, 1), 28.85335e-7, places=7) def test_L_lyle4(self): """Test Lyle's formula against Lorentz thin-wall. See Lyle pg. 429.""" @@ -37,7 +33,7 @@ def test_lyle_terms(self): """Test Lyle's formula against his table. See Lyle pg. 429.""" table1 = np.array( [ # Lyle's Table 1 - # [0.00, 1.5, 0.223130], FIXME: This is the correct value + [0.00, 1.5, 0.223130], [0.025, 1.474734, 0.223328], [0.05, 1.451005, 0.223455], [0.10, 1.407566, 0.223599],