Skip to content

C Interface

Devin Matthews edited this page Nov 13, 2016 · 27 revisions

C API

The TBLIS C interface packages the tensor (or matrix, vector, or scalar) specification into an object:

typedef struct
{
    type_t type;
    /* implementation-defined */ scalar;
} tblis_scalar;

typedef struct
{
    type_t type;
    int conj;
    /* implementation-defined */ scalar;
    void* data;
    len_type n;
    stride_type inc;
} tblis_vector;

typedef struct
{
    type_t type;
    int conj;
    /* implementation-defined */ scalar;
    void* data;
    len_type m, n;
    stride_type rs, cs;
} tblis_matrix;

typedef struct
{
    type_t type;
    int conj;
    /* implementation-defined */ scalar;
    void* data;
    int ndim;
    len_type* len;
    stride_type* stride;
} tblis_tensor;

The scalar field holds a scalar value of any real or complex single- or double-precision number, and denotes the scalar parameter or , or the actual contents of a scalar object. The type parameter may have one of the following values, specifying the actual type of *(void*)scalar and data[i]: TYPE_SINGLE = TYPE_FLOAT, TYPE_DOUBLE, TYPE_SCOMPLEX, or TYPE_DCOMPLEX. The conj field is non-zero if the operand is to be conjugated during the operation or zero otherwise.

The tensor data and structure are specified by the data, ndim, len, and stride fields. data is a pointer to the origin element of the tensor (i.e. the element with all index values zero). The ndim parameter gives the number of dimensions (i.e. the number of indices), which is also the length of the len and stride arrays. The len array gives the length for each index in order. Finally, the stride array gives the layout of the tensor in memory. In general, stride[k] is the number of positions (in units of the data type) in memory between entries with consecutive values in index k. Usually, either the first (or the last) index has a stride of 1, and successive (preceding) indices have strides which are the product of the lengths of all preceding (successive) indices. For example a tensor with len = {10,2,6,32} would usually have either stride = {1,10,20,120} or stride = {384,192,32,1}. The first method is called generalized column-major order and the second is generalized row-major order. However, the strides may also be any arbitrary values such that each element of the tensor has a distinct location.

For matrices and vectors the parameters are essentially the same with the specializations ndim = 1, n = len[0], and inc = stride[0] for a vector and ndim = 2, m = len[0], n = len[1], rs = stride[0], and cs = stride[1] for a matrix.

The six basic [tensor operations](Tensor Operations) (and their matrix and vector counterparts) are accessible via:

Operation Interface
add
void tblis_vector_add(const tblis_comm* comm, const tblis_config* cfg,
                      const tblis_vector* A, tblis_vector* B);
void tblis_matrix_add(const tblis_comm* comm, const tblis_config* cfg,
const tblis_matrix* A, tblis_matrix* B);
void tblis_tensor_add(const tblis_comm* comm, const tblis_config* cfg,
const tblis_tensor* A, const label_type* idx_A,
tblis_tensor* B, const label_type* idx_B);
dot
void tblis_vector_dot(const tblis_comm* comm, const tblis_config* cfg,
                      const tblis_vector* A, const tblis_vector* B,
                      tblis_scalar* result);
void tblis_matrix_dot(const tblis_comm* comm, const tblis_config* cfg,
const tblis_matrix* A, const tblis_matrix* B,
tblis_scalar* result);
void tblis_tensor_dot(const tblis_comm* comm, const tblis_config* cfg,
const tblis_tensor* A, const label_type* idx_A,
const tblis_tensor* B, const label_type* idx_B,
tblis_scalar* result);
reduce
void tblis_vector_reduce(const tblis_comm* comm, const tblis_config* cfg,
                         reduce_t op, const tblis_vector* A,
                         tblis_scalar* result, len_type* idx);
void tblis_matrix_reduce(const tblis_comm* comm, const tblis_config* cfg,
reduce_t op, const tblis_matrix* A,
tblis_scalar* result, len_type* idx);
void tblis_tensor_reduce(const tblis_comm* comm, const tblis_config* cfg,
reduce_t op,
const tblis_tensor* A, const label_type* idx_A,
tblis_scalar* result, len_type* idx);
scale
void tblis_vector_scale(const tblis_comm* comm, const tblis_config* cfg,
                        tblis_vector* A);
void tblis_matrix_scale(const tblis_comm* comm, const tblis_config* cfg,
tblis_matrix* A);
void tblis_tensor_scale(const tblis_comm* comm, const tblis_config* cfg,
tblis_tensor* A, const label_type* idx_A);
set
void tblis_vector_set(const tblis_comm* comm, const tblis_config* cfg,
                      const tblis_scalar* alpha, tblis_vector* A);
void tblis_matrix_set(const tblis_comm* comm, const tblis_config* cfg,
const tblis_scalar* alpha, tblis_matrix* A);
void tblis_tensor_set(const tblis_comm* comm, const tblis_config* cfg,
const tblis_scalar* alpha,
tblis_tensor* B, const label_type* idx_B);
mult
void tblis_matrix_mult(const tblis_comm* comm, const tblis_config* cfg,
                       const tblis_matrix* A,
                       const tblis_matrix* B,
                             tblis_matrix* C);
void tblis_tensor_mult(const tblis_comm* comm, const tblis_config* cfg,
const tblis_tensor* A, const label_type* idx_A,
const tblis_tensor* B, const label_type* idx_B,
tblis_tensor* C, const label_type* idx_C);

where op is one of REDUCE_SUM, REDUCE_MAX, REDUCE_MAX_ABS, REDUCE_MIN, REDUCE_MIN_ABS, REDUCE_NORM_1 = REDUCE_SUM_ABS, REDUCE_NORM_2, or REDUCE_NORM_INF = REDUCE_MAX_ABS. For dot and reduce the floating-point result is stored in result while for reduce with a max or min reduction the position of the extremal value is also returned in idx.

In all of the tensor interfaces, the idx_[ABC] arrays give the index strings of each tensor, from which the exact operation to be performed can be inferred via generalized Einstein summation. When label_type is char (the default), then these parameters may be string literals. The scalar and conj parameters are reset on output objects to one and zero respectively.

Lastly, there are additional parameters comm and cfg in each function. The cfg parameter should almost always be NULL unless you really know what you are doing. The comm parameter may also be NULL to signal that TBLIS should perform the operation in parallel (if a thread model is enabled), but it may also be the global value tblis_single to request single-threaded execution, or a valid tci_comm_t (aliased as tblis_comm) object created with the TCI library which is packaged with TBLIS.

Examples

len_type    len_A    = {10, 9, 2,  5};
stride_type stride_A = { 1,10,90,180};
float data_A[10*9*2*5];
tblis_tensor A;
A.type = TYPE_FLOAT;
*(float*)A.scalar = 2.0;
A.data = data_A;
A.ndim = 4;
A.len = len_A;
A.stride = stride_A;

// initialize data_A...

len_type    len_B    = {5,9, 2};
stride_type stride_B = {1,5,45};
float data_B[5*9*2];
tblis_tensor B;
B.type = TYPE_FLOAT;
*(float*)B.scalar = 0.0;
B.data = data_B;
B.ndim = 3;
B.len = len_B;
B.stride = stride_B;

// this overwrites B with a scaled permuted trace of A
tblis_tensor_add(NULL, NULL, A, "ijkl", B, "ljk");

len_type    len_A    = {10, 9, 2,  5};
stride_type stride_A = { 1,10,90,180};
double data_A[10*9*2*5];
tblis_tensor A;
A.type = TYPE_DOUBLE;
*(double*)A.scalar = 1.0;
A.data = data_A;
A.ndim = 4;
A.len = len_A;
A.stride = stride_A;

len_type    len_B    = {7,5, 9,  8};
stride_type stride_B = {1,7,35,315};
double data_B[7*5*9*8];
tblis_tensor B;
B.type = TYPE_DOUBLE;
*(double*)B.scalar = 1.0;
B.data = data_B;
B.ndim = 4;
B.len = len_B;
B.stride = stride_B;

len_type    len_C    = {7,2,10,  8};
stride_type stride_C = {1,7,14,140};
double data_B[7*2*10*8];
tblis_tensor C;
C.type = TYPE_DOUBLE;
*(double*)B.scalar = 1.0;
C.data = data_C;
C.ndim = 4;
C.len = len_C;
C.stride = stride_C;

// initialize data_A and data_B...

// this computes C[abcd] += A[cebf] B[afed]
tblis_tensor_mult(NULL, NULL, A, "cebf", B, "afed", C, "abcd");
Clone this wiki locally