-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompaction.rkt
104 lines (82 loc) · 2.6 KB
/
compaction.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
;; Compaction
; Nullability:
(define/fix (nullable? l)
#:bottom #f
(match l
[(∅) #f]
[(ε _) #t]
[(token _) #f]
[(★ _) #t]
[(δ p) (nullable? p)]
[(∪ l1 l2) (or (nullable? l1) (nullable? l2))]
[(∘ l1 l2) (and (nullable? l1) (nullable? l2))]
[(→ l1 _) (nullable? l1)]))
; Compute the size of a set:
(define (set-size s)
(define size 0)
(for ([_ s])
(set! size (+ size 1)))
size)
(define (singleton? s)
(eqv? (set-size s) 1))
(define (set-choose s)
(define el #f)
(for ([el* s])
(set! el el*))
el)
; Checks whether a language is the empty string:
(define/fix (is-null? l)
#:bottom #t
(match l
[(∅) #f]
[(ε _) #t]
[(token _) #f]
[(∪ l1 l2) (and (is-null? l1) (is-null? l2))]
[(∘ l1 l2) (and (is-null? l1) (is-null? l2))]
[(★ l1) (or (is-null? l1) (is-empty? l1))]
[(→ l1 _) (is-null? l1)]))
; Matches a language if it is *exactly* the empty string:
(define-match-expander nullp
(syntax-rules ()
[(_) (app is-null? #t)]
[(_ el) (and (app is-null? #t) (app parse-null (and (? singleton?) (app set-choose el))))]))
; Checks whether a language is the empty set:
(define/fix (is-empty? l)
#:bottom #t
(match l
[(∅) #t]
[(ε _) #f]
[(token _) #f]
[(★ l1) #f]
[(∪ l1 l2) (and (is-empty? l1) (is-empty? l2))]
[(∘ l1 l2) (or (is-empty? l1) (is-empty? l2))]
[(→ l1 _) (is-empty? l1)]))
(define-match-expander emptyp
(syntax-rules ()
[(_) (app is-empty? #t)]))
;;;; Optimizations for the grammar:
(define/memoize (compact [l #:eq])
(match l
[(∅) (∅)]
[(ε S) (ε S)]
[(emptyp) (∅)]
[(nullp) (ε (parse-null l))]
[(token _) l]
[(★ (emptyp)) (ε (set '()))]
[(★ l) (★ (compact l))]
[(∪ (emptyp) l2) (compact l2)]
[(∪ l1 (emptyp)) (compact l1)]
[(∘ (nullp t) l2) (→ (compact l2) (lambda (w2) (cons t w2)))]
[(∘ l1 (nullp t)) (→ (compact l1) (lambda (w1) (cons w1 t)))]
[(∪ l1 l2) (∪ (compact l1) (compact l2))]
[(∘ l1 l2) (∘ (compact l1) (compact l2))]
[(→ (and e (nullp)) f)
; =>
(ε (for/set ([t (parse-null e)]) (f t)))]
[(→ (∘ (nullp t) l2) f)
; =>
(→ (compact l2) (lambda (w2) (f (cons t w2))))]
[(→ (→ l f) g)
; =>
(→ (compact l) (compose g f))]
[(→ l f) (→ (compact l) f)]))