-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmasked_timeseries.py
532 lines (418 loc) · 21.4 KB
/
masked_timeseries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import os
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from nibabel import Nifti1Image
from nilearn.maskers import nifti_spheres_masker
from nilearn.signal import clean
from nilearn.masking import apply_mask, _unmask_3d, compute_brain_mask
from nilearn.image import load_img, new_img_like
from joblib import Parallel, delayed
def round_cust(x):
return np.floor(x + 0.49)
def trlocked_events(events_path: str, onsets_column: str, trial_name: str,
bold_tr: float, bold_vols: int, separator: str = '\t'):
"""
Loads behavior data, creates and merges into a TR (rounded -- bankers methods) dataframe to match length of BOLD.
Trial onsets are matched to nearby TR using rounding when acquisition is not locked to TR.
Parameters
----------
events_path : str
Path to the events data files for given subject/run.
onsets_column : str
Name of the column containing onset times for the event/condition.
trial_name : str
Name of the column containing condition/trial labels.
bold_tr : float
TR acquisition time (in seconds) of BOLD.
bold_vols : int
Number of time points for BOLD acquisition.
separator : str, optional
Separator used in the events data file. Default is '\t'.
Returns
-------
pandas.DataFrame
Merged dataframe with time index and events data for each event + TR delays.
Example
-------
tr_locked_events = trlocked_events(events_path='./sub-01_ses-01-task-fake_events.tsv', onsets_column='OnsetTime',
trial_name='TrialType', bold_tr=2.0, bold_vols=150)
"""
if not os.path.exists(events_path):
raise FileNotFoundError(f"File '{events_path}' not found.")
beh_df = pd.read_csv(events_path, sep=separator)
missing_cols = [col for col in [onsets_column, trial_name] if col not in beh_df.columns]
if missing_cols:
raise KeyError(f"Missing columns: {', '.join(missing_cols)}")
beh_df = beh_df[[onsets_column, trial_name]]
try:
beh_df["TimePoint"] = round_cust(
beh_df[onsets_column] / bold_tr).astype(int) # Per Elizabeth, avoids bakers roundings in .round()
except Exception as e:
print("An error occurred:", e, "Following file included NaN, dropped.", events_path)
beh_df.dropna(inplace=True) # cannot perform operations on missing information
beh_df["TimePoint"] = round_cust(beh_df[onsets_column] / bold_tr).astype(int)
time_index = pd.RangeIndex(start=0, stop=bold_vols, step=1)
time_index_df = pd.DataFrame(index=time_index)
# Merge behavior data with time index
merged_df = pd.merge(time_index_df, beh_df, how='left', left_index=True, right_on='TimePoint')
if len(merged_df) != bold_vols:
raise ValueError(f"Merged data length ({len(merged_df)}) doesn't match volumes ({bold_vols}).")
return merged_df
def extract_time_series_values(behave_df: pd.DataFrame, time_series_array: np.ndarray, delay: int):
"""
Extracts time series data from the provided time series BOLD data for associated behavioral data
acquired from `trlocked_events` with a specified delay.
Parameters
----------
behave_df : pandas.DataFrame
DataFrame containing behavioral data with a 'TimePoint' column indicating the starting point
for each time series extraction.
time_series_array : np.ndarray
Numpy array containing time series data.
delay : int
Number of data points to include in each extracted time series.
Returns
-------
np.ndarray
Array containing the extracted time series data for each time point in the behavioral DataFrame.
Each row corresponds to a time point, and each column contains the extracted time series data.
Example
-------
trlocked_cuetimeseries = extract_time_series_values(behave_df, time_series_array, delay=15)
"""
extracted_series_list = []
for row in behave_df['TimePoint']:
start = int(row)
end = start + delay
extracted_series = time_series_array[start:end]
if len(extracted_series) < delay: # Check if extracted series is shorter than delay
extracted_series = np.pad(extracted_series, ((0, delay - len(extracted_series)), (0, 0)), mode='constant')
extracted_series_list.append(extracted_series)
return np.array(extracted_series_list, dtype=object)
def process_bold_roi_mask(bold_path: str, roi_mask: str, high_pass_sec: int = None, detrend: bool = False,
fwhm_smooth: float = None):
"""
Processes BOLD data masked by a region of interest (ROI) mask file.
Loads the BOLD and ROI mask images, applies the mask to the BOLD data, performs preprocessing (optional)
steps including smoothing, cleaning (detrending and standardization), and averaging across time series.
Standardizes BOLD signal using Nilearn's percent signal change ('psc')
Parameters
----------
bold_path : str
Path to the BOLD image file.
roi_mask : str
Path to the ROI mask image file.
high_pass_sec : float
High pass filter cutoff in seconds. If None, no high pass filtering is applied.
detrend : bool
If True, detrend the data during cleaning.
fwhm_smooth : float
Full-width at half-maximum (FWHM) value for Gaussian smoothing of the BOLD data.
Returns
-------
np.ndarray
2D array containing the averaged time series data after cleaning and preprocessing.
str
Subject information extracted from the BOLD file name, formatted as 'sub-{sub_id}_run-{run_id}'.
Example
-------
# Process BOLD data masked by ROI mask
time_series_avg, sub_info = process_bold_roi_mask(bold_path='./sub-01_ses-01_task-fake_bold.nii.gz',
roi_mask='./siq-region_mask.nii.gz',
high_pass_sec=100.0,
detrend=True,
fwhm_smooth=5.0)
"""
img = [load_img(i) for i in [bold_path, roi_mask]]
bold_name = os.path.basename(bold_path)
path_parts = bold_name.split('_')
sub_id, run_id = None, None
for val in path_parts:
if 'sub-' in val:
sub_id = val.split('-')[1]
elif 'run-' in val:
run_id = val.split('-')[1]
sub_info = 'sub-' + sub_id + '_' + 'run-' + run_id
assert img[0].shape[0:3] == img[1].shape, 'images of different shape, BOLD {} and ROI {}'.format(
img[0].shape, img[1].shape)
masked_data = apply_mask(bold_path, roi_mask, smoothing_fwhm=fwhm_smooth)
clean_timeseries = clean(masked_data, standardize='psc', detrend=detrend,
high_pass=1 / high_pass_sec if high_pass_sec is not None else None)
time_series_avg = np.mean(clean_timeseries, axis=1)[:, None]
return time_series_avg, sub_info
def process_bold_roi_coords(bold_path: str, roi_mask: Nifti1Image,
high_pass_sec: float, detrend: bool, fwhm_smooth: float):
"""
Processes BOLD data masked by a spherical region of interest (ROI) defined by coordinates.
Loads the BOLD and ROI mask images, applies the spherical ROI mask to the BOLD data, performs preprocessing steps
including smoothing, cleaning (detrending and standardization), and averaging across time series.
Standardizes BOLD signal using Nilearn's percent signal change ('psc')
Parameters
----------
bold_path : str
Path to the BOLD image file.
roi_mask : nibabel.Nifti1Image
ROI created to mask data
high_pass_sec : float
High pass filter cutoff in seconds. If None, no high pass filtering is applied.
detrend : bool
If True, detrend the data during cleaning.
fwhm_smooth : float
Full-width at half-maximum (FWHM) value for Gaussian smoothing of the BOLD data.
Returns
-------
np.ndarray
2D array containing the averaged time series data after cleaning and preprocessing.
str
Subject information extracted from the BOLD file name, formatted as 'sub-{sub_id}_run-{run_id}'.
Example
-------
roi_timeseries_avg, sub_info = process_bold_roi_coords(bold_path='/path/to/bold.nii.gz',
roi_coords=(30, -15, 0),
radius_mm=5.0,
high_pass_sec=100.0,
detrend=True,
fwhm_smooth=5.0,
wb_mask='/path/to/whole_brain_mask.nii.gz')
"""
coord_mask = roi_mask
img = [load_img(i) for i in [bold_path, coord_mask]]
bold_name = os.path.basename(bold_path)
path_parts = bold_name.split('_')
sub_id, run_id = None, None
for val in path_parts:
if 'sub-' in val:
sub_id = val.split('-')[1]
elif 'run-' in val:
run_id = val.split('-')[1]
sub_info = 'sub-' + sub_id + '_' + 'run-' + run_id
assert img[0].shape[0:3] == img[1].shape, 'images of different shape, BOLD {} and ROI {}'.format(
img[0].shape[0:3], img[1].shape)
masked_data = apply_mask(bold_path, coord_mask, smoothing_fwhm=fwhm_smooth)
clean_timeseries = clean(masked_data, standardize='psc', detrend=detrend,
high_pass=1 / high_pass_sec if high_pass_sec is not None else None)
time_series_avg = np.mean(clean_timeseries, axis=1)[:, None]
return time_series_avg, coord_mask, sub_info
def extract_time_series(bold_paths: list, roi_type: str, high_pass_sec: int = None, roi_mask: str = None,
roi_coords: tuple = None, radius_mm: int = None,
detrend: bool = False, fwhm_smooth: float = None, n_jobs=1):
"""
Extracts time series data from BOLD images for specified regions of interest (ROI) or coordinates.
For each BOLD path, extracts time series either using a mask or ROI coordinates, leveraging
Nilearn's NiftiLabelsMasker (for mask) or nifti_spheres_masker (for coordinates).
BOLD signal using Nilearn's percent signal change ('psc')
Parameters
----------
bold_paths : list
List of paths to BOLD image files for subjects/runs/tasks. The order should match the order of events or
conditions for each subject.
roi_type : str
Type of ROI ('mask' or 'coords').
high_pass_sec : int, optional
High-pass filter cutoff in seconds. If provided, converted to frequency (1/high_pass_sec). Default is None.
roi_mask : str or None, optional
Path to the ROI mask image. Required if roi_type is 'mask'. Default is None.
roi_coords : tuple or None, optional
Coordinates (x, y, z) for the center of the sphere ROI. *Required if* roi_type is 'coords'. Default is None.
radius_mm : int or None, optional
Radius of the sphere in millimeters. Required if roi_type is 'coords'. Default is None.
detrend : bool, optional
Whether to detrend the BOLD signal using Nilearn's detrend function. Default is False.
fwhm_smooth : float or None, optional
Full-width at half-maximum (FWHM) value for Gaussian smoothing of the BOLD data. Default is None.
n_jobs : int, optional
Number of CPUs to use for parallel processing. Default is 1.
Returns
-------
list or tuple
- If roi_type is 'mask':
- List of numpy arrays containing the time series (% mean signal change) data for each subject/run.
- List of subject information strings formatted as 'sub-{sub_id}_run-{run_id}'.
- If roi_type is 'coords':
- List of numpy arrays containing the averaged time series (% mean signal change) data for each subject/run.
- Nifti1Image object representing the coordinate mask used.
- List of subject information strings formatted as 'sub-{sub_id}_run-{run_id}'.
Example
-------
# Extract percent mean signal change time series for BOLD data using a mask ROI
roi_type = 'mask'
bold_paths = ['./sub-01_ses-01_task-lit_bold.nii.gz', './sub-02_ses-01_task-lit_bold.nii.gz']
roi_mask = './siq-roi_mask.nii.gz'
time_series_list, sub_info_list = extract_time_series(bold_paths, roi_type, roi_mask=roi_mask, high_pass_sec=100, detrend=True, fwhm_smooth=5.0)
# Extract percent mean signal change time series for BOLD data using coordinates ROI
roi_type = 'coords'
bold_paths = ['./sub-01_ses-01_task-lit_bold.nii.gz', './sub-02_ses_1_task-lit_bold.nii.gz']
roi_coords = (30, -15, 0)
time_series_list, coord_mask, sub_info_list = extract_time_series(bold_paths, roi_type, roi_coords=roi_coords, radius_mm=5, high_pass_sec=100, detrend=True, fwhm_smooth=5.0)
"""
roi_options = ['mask', 'coords']
if roi_type not in roi_options:
raise ValueError("Invalid ROI type. Choose 'mask' or 'coords'.")
if roi_type == 'mask':
results = Parallel(n_jobs=n_jobs)(delayed(process_bold_roi_mask)(
bold_path, roi_mask, high_pass_sec, detrend, fwhm_smooth) for bold_path in bold_paths)
roi_series_list, id_list = zip(*results)
return list(roi_series_list), list(id_list)
elif roi_type == 'coords':
# get a wb_mask
wb_mask = compute_brain_mask(bold_paths[0])
# create ROI
_, roi = nifti_spheres_masker._apply_mask_and_get_affinity(
seeds=[roi_coords], niimg=None, radius=radius_mm,
allow_overlap=False, mask_img=wb_mask)
coord_mask = _unmask_3d(X=roi.toarray().flatten(), mask=wb_mask.get_fdata().astype(bool))
coord_mask = new_img_like(wb_mask, coord_mask, wb_mask.affine)
results = Parallel(n_jobs=n_jobs)(delayed(process_bold_roi_coords)(
bold_path, coord_mask, high_pass_sec, detrend, fwhm_smooth, wb_mask) for bold_path in bold_paths)
coord_series_list, id_list = zip(*results)
return list(coord_series_list), coord_mask, list(id_list)
else:
print(f'roi_type: {roi_type}, is not in [{roi_options}]')
def extract_postcue_trs_for_conditions(events_data: list, onset: str, trial_name: str,
bold_tr: float, bold_vols: int, time_series: np.ndarray,
conditions: list, tr_delay: int, list_trpaths: list):
"""
Extracts time points coinciding with condition onsets plus specified delay TRs for each subjects' behavioral/timeseries data.
Saves this information to a pandas DataFrame with associated mean signal values for each subject,
trial and cue across the range of TRs (1 to TR-delay).
Parameters
----------
events_data : list
List of paths to behavioral data files. Should match the order of subjects/runs/tasks as the BOLD file list.
onset : str
Name of the column containing onset values in the behavioral data.
trial_name : str
Name of the column containing condition values in the behavioral data.
bold_tr : float
TR (Repetition Time) for acquisition of BOLD data in seconds.
bold_vols : int
Number of volumes for BOLD acquisition.
time_series : numpy.ndarray
series_list from extract_time_series()
conditions : list
List of condition cues to iterate over. Must have at least one cue.
tr_delay : int
Number of TRs after onset of stimulus to extract and plot.
list_trpaths : list
id_list from extract_time_series()
Returns
-------
pd.DataFrame
DataFrame containing percent mean signal change values, subject labels, trial labels, TR values,
and cue labels for all specified conditions.
Example
-------
# Extract time points and mean signal values for conditions 'A' and 'B'
events_dfs = ['./sub-01_ses-01_task-siq-events.csv', './sub-02_ses-01_task-siq-events.csv']
onset = 'OnsetTime'
trial_name = 'TrialType'
timeseries_2subs = series list from extract_time_series()
conditions = ['Up', 'Down']
tr_delay = 5
timeseries_order = id_list from extract_time_series()
result_df = extract_postcue_trs_for_conditions(events_data=events_dfs, onset='OnsetTime', trial_name='TrialType',
bold_tr=2.0, bold_vols=150, time_series=timeseries_2subs, conditons=['Up','Down'], tr_delay=12,
list_trpaths=timeseries_order)
"""
dfs = []
# check array names first
beh_id_list = []
for beh_path in events_data:
# create sub ID array to text again bold array
beh_name = os.path.basename(beh_path)
path_parts = beh_name.split('_')
sub_id, run_id = None, None
for val in path_parts:
if 'sub-' in val:
sub_id = val.split('-')[1]
elif 'run-' in val:
run_id = val.split('-')[1]
sub_info = 'sub-' + sub_id + '_' + 'run-' + run_id
beh_id_list.append(sub_info)
assert len(beh_id_list) == len(list_trpaths), f"Length of behavioral files {len(beh_id_list)} " \
f"does not match TR list {len(list_trpaths)}"
assert (np.array(beh_id_list) == np.array(list_trpaths)).all(), "Provided list_trpaths does not match" \
f"Beh path order {beh_id_list}"
for cue in conditions:
cue_dfs = [] # creating separate cue dfs to accomodate different number of trials for cue types
sub_n = 0
for index, beh_path in enumerate(events_data):
subset_df = trlocked_events(events_path=beh_path, onsets_column=onset,
trial_name=trial_name, bold_tr=bold_tr, bold_vols=bold_vols, separator='\t')
trial_type = subset_df[subset_df[trial_name] == cue]
out_trs_array = extract_time_series_values(behave_df=trial_type, time_series_array=time_series[index],
delay=tr_delay)
sub_n = sub_n + 1 # subject is equated to every event file N, subj n = 1 to len(events_data)
# nth trial, list of TRs
for n_trial, trs in enumerate(out_trs_array):
num_delay = len(trs) # Number of TRs for the current trial
if num_delay != tr_delay:
raise ValueError(f"Mismatch between tr_delay ({tr_delay}) and number of delay TRs ({num_delay})")
reshaped_array = np.array(trs).reshape(-1, 1)
df = pd.DataFrame(reshaped_array, columns=['Mean_Signal'])
df['Subject'] = sub_n
df['Trial'] = n_trial + 1
tr_values = np.arange(1, tr_delay + 1)
df['TR'] = tr_values
cue_values = [cue] * num_delay
df['Cue'] = cue_values
cue_dfs.append(df)
dfs.append(pd.concat(cue_dfs, ignore_index=True))
return pd.concat(dfs, ignore_index=True)
def plot_responses(df, tr: int, delay: int, style: str = 'white', save_path: str = None,
show_plot: bool = False, ylim: tuple = (-1, 1)):
"""
Plots the BOLD response (Mean_Signal ~ TR) across the specified delay for cues.
The plot uses an alpha of 0.1 with n = 1000 bootstraps for standard errors.
Parameters
----------
df : pandas.DataFrame
DataFrame containing the data to plot from extract_postcue_trs_for_conditions().
Should include columns 'TR', 'Mean_Signal', and 'Cue'.
tr : int
TR value in seconds.
delay : int
Delay value indicating the number of TRs to plot.
style : str, optional
Style of the plot. Options are 'white' or 'whitegrid'. Default is 'white'.
save_path : str, optional
Path and filename to save the plot. If None, the plot is not saved. Default is None.
show_plot : bool, optional
Whether to display the plot. Default is False.
ylim : tuple, optional
Y-axis limits for the plot. Default is (-1, 1).
Returns
-------
If show_plot = True, open backend graphics to view figure
"""
plt.figure(figsize=(10, 8), dpi=300)
if style not in ['white', 'whitegrid']:
raise ValueError("Style should be white or whitegrid, provided:", style)
sns.set(style=style, font='DejaVu Serif')
sns.lineplot(x="TR", y="Mean_Signal", hue="Cue", style="Cue", palette="Set1",
errorbar='se', err_style="band", err_kws={'alpha': 0.1}, n_boot=1000,
legend="brief", data=df)
# Set labels and title
plt.xlabel(f'Seconds (TR: {tr} sec)')
plt.ylabel('Avg. Signal Change')
plt.ylim(ylim[0], ylim[1])
plt.xlim(0, delay)
plt.xticks(np.arange(1, delay + 1, 1),
[f'{round(i * tr, 1)}' for i in range(1, delay + 1)],
rotation=45)
# Show legend
plt.legend(loc='upper right')
# Check if save_path is provided
if save_path:
# Get the directory path from save_path
directory = os.path.dirname(save_path)
# Check if directory exists, if not, create it
if not os.path.exists(directory):
os.makedirs(directory)
# Save plot
plt.savefig(save_path)
# Show plot if show_plot is True
if not show_plot:
plt.close()