-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathrnn_batch_attention.py
215 lines (180 loc) · 8.94 KB
/
rnn_batch_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import theano
import sys
from generate_data import generate_train_data, CharacterTable
import pdb
import numpy
import numpy as np
import os
from theano import tensor as T
from collections import OrderedDict
theano.config.mode = 'FAST_COMPILE'
class model(object):
def __init__(self, nh, nc, ne, natt, batch_size=64, attention_type='no_attention'):
'''
nh :: dimension of the hidden layer
nc :: number of classes
ne :: number of word embeddings in the vocabulary
natt :: dimension of hidden attention layer
'''
self.nh = nh
self.ne = ne
# parameters of the model
self.Wx_enc = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\
(ne, nh)).astype(theano.config.floatX))
self.Wx_dec = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\
(ne, nh)).astype(theano.config.floatX))
self.h0_enc = theano.shared(numpy.zeros((batch_size,nh), dtype=theano.config.floatX))
self.h0_dec = theano.shared(numpy.zeros((batch_size,nh), dtype=theano.config.floatX))
self.Wh_enc = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\
(nh, nh)).astype(theano.config.floatX))
self.Wh_dec = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\
(nh, nh)).astype(theano.config.floatX))
self.b = theano.shared(numpy.zeros(nc, dtype=theano.config.floatX))
self.W = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\
(nh, nc)).astype(theano.config.floatX))
# bundle
self.params = [self.Wx_enc, self.Wx_dec, self.Wh_enc, self.Wh_dec, self.W, self.b, self.h0_enc, self.h0_dec]
if attention_type == 'dnn':
self.natt = natt
self.W_att_enc = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\
(nh, natt)).astype(theano.config.floatX))
self.W_att_dec = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\
(nh, natt)).astype(theano.config.floatX))
self.W_att_out = theano.shared(0.2 * numpy.random.uniform(-1.0, 1.0,\
(natth)).astype(theano.config.floatX))
self.params += [self.W_att_enc, self.W_att_dec, self.W_att_out]
idxs_enc, idxs_dec = T.imatrix(), T.imatrix()
y = T.imatrix()
# shape (batch, seq, dim)
x_enc, x_dec = self.Wx_enc[idxs_enc], self.Wx_dec[idxs_dec]
# compute the encoder representation
def recurrence(x_t, h_tm1):
h_t = T.nnet.sigmoid(x_t + T.dot(h_tm1, self.Wh_enc))
return [h_t, h_t]
[h, s], _ = theano.scan(fn=recurrence, \
sequences=x_enc.dimshuffle(1,0,2), \
outputs_info=[self.h0_enc, None])
h_enc_last = h[-1, :]
# shape of h: (seq, batch, dim)
# No attention : return the last element of h_enc
def no_attention(h_enc, h_tm1):
return h_enc[-1, :]
# Simple MemNN style attention = similarity between h_enc and h_tm1
def attention_function_dot(h_enc, h_tm1):
attention_vector = T.nnet.softmax(T.dot(h_enc, h_tm1))
return (attention_vector.T * h_enc).sum(axis=0)
# TODO Attention computed with an NN (1 hidden layer for states mixing)
def attention_function_dnn(h_enc, h_tm1):
attn_hid = T.tanh(T.dot(h_enc, self.W_att_enc) + T.dot(h_tm1, self.W_att_dec))
attention_vector = T.nnet.softmax(T.dot(attn_hid, self.W_att_out.T))
return (attention_vector.T * h_enc).sum(axis=0)
if attention_type == 'dnn':
attention = attention_function_dnn
elif attention_type == 'dot':
attention = attention_function_dot
else:
attention = no_attention
# from the encoder representation, generate the sequence
def recurrence(x_t, h_tm1):
h_t = T.nnet.sigmoid(x_t + T.dot(h_tm1, self.Wh_dec) + attention(h, h_tm1))
s_t = T.nnet.softmax(T.dot(h_t, self.W) + self.b)
return [h_t, s_t]
[h_dec, s_dec], _ = theano.scan(fn=recurrence, \
sequences=x_dec.dimshuffle(1,0,2),
outputs_info=[self.h0_dec, None])
probas = s_dec.dimshuffle(1,0,2)
y_pred = T.argmax(probas, axis=2)
self.classify = theano.function(inputs=[idxs_enc, idxs_dec], outputs=y_pred)
self.debug = theano.function(inputs=[idxs_enc, idxs_dec, y], outputs=[idxs_enc.shape, y.shape, x_enc.shape, h.shape, h_enc_last.shape, h_dec.shape, s_dec.shape, probas.shape, y_pred.shape])
# cost and gradients and learning rate
lr = T.scalar('lr')
#nll = -T.mean(T.log(probas)[T.arange(y.shape[0]), y])
#nll = -T.mean(y * T.log(probas)+ (1.- y) * T.log(1. - probas))
gradients = T.grad(nll, self.params)
updates = OrderedDict((p, p - lr * g) for p, g in zip(self.params, gradients))
# theano functions
self.train = theano.function([idxs_enc, idxs_dec, y, lr], nll, updates=updates)
# generation part
h_tm1 = T.vector()
idxs_dec = T.iscalar()
h_t = T.nnet.sigmoid(self.Wx_dec[idxs_dec] + T.dot(h_tm1, self.Wh_dec) + attention(h, h_tm1))
s_t = T.nnet.softmax(T.dot(h_t, self.W) + self.b)
self.compute_h_enc = theano.function([idxs_enc], h)
self.generate_step = theano.function(inputs=[h_tm1, h, idxs_dec], outputs=[h_t, s_t])
def generate_text(self, idxs_enc, max_len = 10):
h_T = self.compute_h_enc(idxs_enc)
cur_dec_idx = -1
y_pred = []
for i in range(max_len):
if i == 0:
h_tm1 = self.h0_dec.get_value()
h_tm1, probas = self.generate_step(h_tm1, h_T, cur_dec_idx)
# sample given the multinomial
cur_dec_idx = np.argwhere(numpy.random.multinomial(1, probas[0]) == 1)[0][0]
y_pred += [cur_dec_idx]
if cur_dec_idx == len(probas[0]) - 1:
# we sampled <EOS>
break
return y_pred
def preprocess(x, y):
#x, y = filter(lambda z: z != 0, x), filter(lambda z: z != 0, y)
sentence_enc = np.array(x).astype('int32')
sentence_dec = np.array([0] + y).astype('int32') - 1 # trick with 1-based indexing
target = np.array(y + [0]).astype('int32') - 1 # same
return sentence_enc, sentence_dec, target
def main(nsamples=10000,
n_hidden=128,
lr=0.01,
nepochs=100,
batch_size=64,
val_freq=1):
INVERT = False
DIGITS = 3
MAXLEN = DIGITS + 1 + DIGITS
chars = '0123456789+ '
n_classes = len('0123456789') + 1 # add <eos>
voc_size = len('0123456789+') + 1 # add <bos> for the decoder
# generate the dataset
ctable = CharacterTable(chars, MAXLEN)
X_train, X_val, y_train, y_val = generate_train_data(nsamples)
# build the model
m = model(nh=n_hidden,
nc=n_classes,
ne=voc_size,
batch_size=batch_size,
natt=20)
b_sentence_enc = np.zeros((batch_size,MAXLEN)).astype('int32')
b_sentence_dec = np.zeros((batch_size,DIGITS + 2)).astype('int32')
b_target = np.zeros((batch_size,DIGITS + 2)).astype('int32')
print(m.debug(b_sentence_enc,b_sentence_dec,b_target))
# training
for epoch in range(nepochs):
nlls = []
for batch_num in range(len(X_train) / batch_size):
b_sentence_enc = np.zeros((batch_size,MAXLEN)).astype('int32')
b_sentence_dec = np.zeros((batch_size,DIGITS + 1)).astype('int32')
b_target = np.zeros((batch_size,DIGITS + 1)).astype('int32')
for i in range(batch_size):
x, y = X_train[batch_num*batch_size + i], y_train[batch_num*batch_size + i]
sentence_enc, sentence_dec, target = preprocess(x, y)
b_sentence_enc[i,] = sentence_enc
b_sentence_dec[i,] = sentence_dec
b_target[i,] = target
nlls += [m.train(b_sentence_enc, b_sentence_dec, b_target, lr)]
print "%.2f %% completedi - nll = %.2f\r" % ((i + 1) * 100. / len(X_train), np.mean(nlls)),
sys.stdout.flush()
print
# evaluation
if (epoch + 1) % val_freq == 0:
for i, (x, y) in enumerate(zip(X_val, y_val)):
sentence_enc, sentence_dec, target = preprocess(x, y)
y_pred = m.generate_text(sentence_enc)
try:
print "ground-truth\t", np.concatenate([[sentence_dec[1]], target[:-1]])
print "predicted \t", y_pred
except IndexError:
pass
if i > 5:
break
if __name__ == "__main__":
main()