-
Notifications
You must be signed in to change notification settings - Fork 25
/
train_ssh.py
286 lines (250 loc) · 13.4 KB
/
train_ssh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
from __future__ import print_function
import sys
import argparse
import pprint
import re
import mxnet as mx
import numpy as np
from mxnet.module import Module
import mxnet.optimizer as optimizer
from rcnn.logger import logger
from rcnn.config import config, default, generate_config
from rcnn.symbol import *
from rcnn.core import callback, metric
from rcnn.core.loader import AnchorLoader, AnchorLoaderFPN, CropLoader
from rcnn.core.module import MutableModule
from rcnn.utils.load_data import load_gt_roidb, merge_roidb, filter_roidb
from rcnn.utils.load_model import load_param
def get_fixed_params(symbol, fixed_param):
fixed_param_names = []
for name in symbol.list_arguments():
for f in fixed_param:
if re.match(f, name):
fixed_param_names.append(name)
return fixed_param_names
def train_net(args, ctx, pretrained, epoch, prefix, begin_epoch, end_epoch,
lr=0.001, lr_step='5'):
# setup config
#init_config()
#print(config)
# setup multi-gpu
input_batch_size = config.TRAIN.BATCH_IMAGES * len(ctx)
# print config
logger.info(pprint.pformat(config))
# load dataset and prepare imdb for training
image_sets = [iset for iset in args.image_set.split('+')]
roidbs = [load_gt_roidb(args.dataset, image_set, args.root_path, args.dataset_path,
flip=not args.no_flip)
for image_set in image_sets]
roidb = merge_roidb(roidbs)
roidb = filter_roidb(roidb)
# load symbol
#sym = eval('get_' + args.network + '_train')(num_classes=config.NUM_CLASSES, num_anchors=config.NUM_ANCHORS)
#feat_sym = sym.get_internals()['rpn_cls_score_output']
#train_data = AnchorLoader(feat_sym, roidb, batch_size=input_batch_size, shuffle=not args.no_shuffle,
# ctx=ctx, work_load_list=args.work_load_list,
# feat_stride=config.RPN_FEAT_STRIDE, anchor_scales=config.ANCHOR_SCALES,
# anchor_ratios=config.ANCHOR_RATIOS, aspect_grouping=config.TRAIN.ASPECT_GROUPING)
sym = eval('get_' + args.network + '_train')()
#print(sym.get_internals())
feat_sym = []
for stride in config.RPN_FEAT_STRIDE:
feat_sym.append(sym.get_internals()['rpn_cls_score_stride%s_output' % stride])
#train_data = AnchorLoaderFPN(feat_sym, roidb, batch_size=input_batch_size, shuffle=not args.no_shuffle,
# ctx=ctx, work_load_list=args.work_load_list)
train_data = CropLoader(feat_sym, roidb, batch_size=input_batch_size, shuffle=not args.no_shuffle,
ctx=ctx, work_load_list=args.work_load_list)
# infer max shape
max_data_shape = [('data', (1, 3, max([v[1] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]
#max_data_shape = [('data', (1, 3, max([v[1] for v in config.SCALES]), max([v[1] for v in config.SCALES])))]
max_data_shape, max_label_shape = train_data.infer_shape(max_data_shape)
max_data_shape.append(('gt_boxes', (1, roidb[0]['max_num_boxes'], 5)))
logger.info('providing maximum shape %s %s' % (max_data_shape, max_label_shape))
# infer shape
data_shape_dict = dict(train_data.provide_data + train_data.provide_label)
arg_shape, out_shape, aux_shape = sym.infer_shape(**data_shape_dict)
arg_shape_dict = dict(zip(sym.list_arguments(), arg_shape))
out_shape_dict = dict(zip(sym.list_outputs(), out_shape))
aux_shape_dict = dict(zip(sym.list_auxiliary_states(), aux_shape))
logger.info('output shape %s' % pprint.pformat(out_shape_dict))
# load and initialize params
if args.resume:
arg_params, aux_params = load_param(prefix, begin_epoch, convert=True)
else:
arg_params, aux_params = load_param(pretrained, epoch, convert=True)
#for k in ['rpn_conv_3x3', 'rpn_cls_score', 'rpn_bbox_pred', 'cls_score', 'bbox_pred']:
# _k = k+"_weight"
# if _k in arg_shape_dict:
# v = 0.001 if _k.startswith('bbox_') else 0.01
# arg_params[_k] = mx.random.normal(0, v, shape=arg_shape_dict[_k])
# print('init %s with normal %.5f'%(_k,v))
# _k = k+"_bias"
# if _k in arg_shape_dict:
# arg_params[_k] = mx.nd.zeros(shape=arg_shape_dict[_k])
# print('init %s with zero'%(_k))
for k,v in arg_shape_dict.iteritems():
if k.find('upsampling')>=0:
print('initializing upsampling_weight', k)
arg_params[k] = mx.nd.zeros(shape=v)
init = mx.init.Initializer()
init._init_bilinear(k, arg_params[k])
#print(args[k])
# check parameter shapes
#for k in sym.list_arguments():
# if k in data_shape_dict:
# continue
# assert k in arg_params, k + ' not initialized'
# assert arg_params[k].shape == arg_shape_dict[k], \
# 'shape inconsistent for ' + k + ' inferred ' + str(arg_shape_dict[k]) + ' provided ' + str(arg_params[k].shape)
#for k in sym.list_auxiliary_states():
# assert k in aux_params, k + ' not initialized'
# assert aux_params[k].shape == aux_shape_dict[k], \
# 'shape inconsistent for ' + k + ' inferred ' + str(aux_shape_dict[k]) + ' provided ' + str(aux_params[k].shape)
# create solver
fixed_param_prefix = config.FIXED_PARAMS
data_names = [k[0] for k in train_data.provide_data]
label_names = [k[0] for k in train_data.provide_label]
#mod = MutableModule(sym, data_names=data_names, label_names=label_names,
# logger=logger, context=ctx, work_load_list=args.work_load_list,
# max_data_shapes=max_data_shape, max_label_shapes=max_label_shape,
# fixed_param_prefix=fixed_param_prefix)
fixed_param_names = get_fixed_params(sym, fixed_param_prefix)
print('fixed', fixed_param_names, file=sys.stderr)
mod = Module(sym, data_names=data_names, label_names=label_names,
logger=logger, context=ctx, work_load_list=args.work_load_list,
fixed_param_names=fixed_param_names)
# decide training params
# metric
eval_metrics = mx.metric.CompositeEvalMetric()
#if len(sym.list_outputs())>4:
# metric_names = ['RPNAccMetric', 'RPNLogLossMetric', 'RPNL1LossMetric', 'RCNNAccMetric', 'RCNNLogLossMetric', 'RCNNL1LossMetric']
#else:#train rpn only
#print('sym', sym.list_outputs())
#metric_names = ['RPNAccMetric', 'RPNLogLossMetric', 'RPNL1LossMetric']
mids = [0,4,8]
for mid in mids:
_metric = metric.RPNAccMetric(pred_idx=mid, label_idx=mid+1)
eval_metrics.add(_metric)
#_metric = metric.RPNLogLossMetric(pred_idx=mid, label_idx=mid+1)
#eval_metrics.add(_metric)
_metric = metric.RPNL1LossMetric(loss_idx=mid+2, weight_idx=mid+3)
eval_metrics.add(_metric)
#rpn_eval_metric = metric.RPNAccMetric()
#rpn_cls_metric = metric.RPNLogLossMetric()
#rpn_bbox_metric = metric.RPNL1LossMetric()
#eval_metric = metric.RCNNAccMetric()
#cls_metric = metric.RCNNLogLossMetric()
#bbox_metric = metric.RCNNL1LossMetric()
#for child_metric in [rpn_eval_metric, rpn_cls_metric, rpn_bbox_metric, eval_metric, cls_metric, bbox_metric]:
# eval_metrics.add(child_metric)
# callback
means = np.tile(np.array(config.TRAIN.BBOX_MEANS), config.NUM_CLASSES)
stds = np.tile(np.array(config.TRAIN.BBOX_STDS), config.NUM_CLASSES)
#epoch_end_callback = callback.do_checkpoint(prefix, means, stds)
epoch_end_callback = None
# decide learning rate
base_lr = lr
lr_factor = 0.1
lr_epoch = [int(epoch) for epoch in lr_step.split(',')]
lr_epoch_diff = [epoch - begin_epoch for epoch in lr_epoch if epoch > begin_epoch]
lr = base_lr * (lr_factor ** (len(lr_epoch) - len(lr_epoch_diff)))
lr_iters = [int(epoch * len(roidb) / input_batch_size) for epoch in lr_epoch_diff]
#lr_iters = [36000,42000] #TODO
#lr_iters = [40000,50000,60000] #TODO
#lr_iters = [40,50,60] #TODO
end_epoch = 10000
#lr_iters = [4,8] #TODO
logger.info('lr %f lr_epoch_diff %s lr_iters %s' % (lr, lr_epoch_diff, lr_iters))
#lr_scheduler = mx.lr_scheduler.MultiFactorScheduler(lr_iters, lr_factor)
# optimizer
opt = optimizer.SGD(learning_rate=lr, momentum=0.9, wd=0.0005, rescale_grad=1.0/len(ctx), clip_gradient=None)
initializer=mx.init.Xavier()
#initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="out", magnitude=2) #resnet style
if len(ctx)>1:
train_data = mx.io.PrefetchingIter(train_data)
_cb = mx.callback.Speedometer(train_data.batch_size, frequent=args.frequent, auto_reset=False)
global_step = [0]
def save_model(epoch):
arg, aux = mod.get_params()
all_layers = mod.symbol.get_internals()
outs = []
for stride in config.RPN_FEAT_STRIDE:
num_anchors = config.RPN_ANCHOR_CFG[str(stride)]['NUM_ANCHORS']
_name = 'rpn_cls_score_stride%d_output' % stride
rpn_cls_score = all_layers[_name]
# prepare rpn data
rpn_cls_score_reshape = mx.symbol.Reshape(data=rpn_cls_score,
shape=(0, 2, -1, 0),
name="rpn_cls_score_reshape_stride%d" % stride)
rpn_cls_prob = mx.symbol.SoftmaxActivation(data=rpn_cls_score_reshape,
mode="channel",
name="rpn_cls_prob_stride%d" % stride)
rpn_cls_prob_reshape = mx.symbol.Reshape(data=rpn_cls_prob,
shape=(0, 2 * num_anchors, -1, 0),
name='rpn_cls_prob_reshape_stride%d' % stride)
_name = 'rpn_bbox_pred_stride%d_output' % stride
rpn_bbox_pred = all_layers[_name]
outs.append(rpn_cls_prob_reshape)
outs.append(rpn_bbox_pred)
_sym = mx.sym.Group(outs)
mx.model.save_checkpoint(prefix, epoch, _sym, arg, aux)
def _batch_callback(param):
#global global_step
_cb(param)
global_step[0]+=1
mbatch = global_step[0]
for _iter in lr_iters:
if mbatch==_iter:
opt.lr *= 0.1
print('lr change to', opt.lr,' in batch', mbatch, file=sys.stderr)
break
if mbatch==lr_iters[-1]:
print('saving final checkpoint', mbatch, file=sys.stderr)
save_model(0)
#arg, aux = mod.get_params()
#mx.model.save_checkpoint(prefix, 99, mod.symbol, arg, aux)
sys.exit(0)
# train
mod.fit(train_data, eval_metric=eval_metrics, epoch_end_callback=epoch_end_callback,
batch_end_callback=_batch_callback, kvstore=args.kvstore,
optimizer=opt,
initializer = initializer,
allow_missing=True,
arg_params=arg_params, aux_params=aux_params, begin_epoch=begin_epoch, num_epoch=end_epoch)
def parse_args():
parser = argparse.ArgumentParser(description='Train Faster R-CNN network')
# general
parser.add_argument('--network', help='network name', default=default.network, type=str)
parser.add_argument('--dataset', help='dataset name', default=default.dataset, type=str)
args, rest = parser.parse_known_args()
generate_config(args.network, args.dataset)
parser.add_argument('--image_set', help='image_set name', default=default.image_set, type=str)
parser.add_argument('--root_path', help='output data folder', default=default.root_path, type=str)
parser.add_argument('--dataset_path', help='dataset path', default=default.dataset_path, type=str)
# training
parser.add_argument('--frequent', help='frequency of logging', default=default.frequent, type=int)
parser.add_argument('--kvstore', help='the kv-store type', default=default.kvstore, type=str)
parser.add_argument('--work_load_list', help='work load for different devices', default=None, type=list)
parser.add_argument('--no_flip', help='disable flip images', action='store_true')
parser.add_argument('--no_shuffle', help='disable random shuffle', action='store_true')
parser.add_argument('--resume', help='continue training', action='store_true')
# e2e
parser.add_argument('--gpus', help='GPU device to train with', default='0,1,2,3', type=str)
parser.add_argument('--pretrained', help='pretrained model prefix', default=default.pretrained, type=str)
parser.add_argument('--pretrained_epoch', help='pretrained model epoch', default=default.pretrained_epoch, type=int)
parser.add_argument('--prefix', help='new model prefix', default=default.e2e_prefix, type=str)
parser.add_argument('--begin_epoch', help='begin epoch of training, use with resume', default=0, type=int)
parser.add_argument('--end_epoch', help='end epoch of training', default=default.e2e_epoch, type=int)
parser.add_argument('--lr', help='base learning rate', default=default.e2e_lr, type=float)
parser.add_argument('--lr_step', help='learning rate steps (in epoch)', default=default.e2e_lr_step, type=str)
parser.add_argument('--no_ohem', help='disable online hard mining', action='store_true')
args = parser.parse_args()
return args
def main():
args = parse_args()
logger.info('Called with argument: %s' % args)
ctx = [mx.gpu(int(i)) for i in args.gpus.split(',')]
train_net(args, ctx, args.pretrained, args.pretrained_epoch, args.prefix, args.begin_epoch, args.end_epoch,
lr=args.lr, lr_step=args.lr_step)
if __name__ == '__main__':
main()