forked from wuzhe71/CPD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_CPD_calib.py
253 lines (202 loc) · 8.62 KB
/
test_CPD_calib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import torch
import torch.nn.functional as F
import glob
import numpy as np
import pdb, os, argparse
from scipy import misc
import imageio
from model.CPD_ResNet_models import CPD_ResNet
from model.CPD_models import CPD_VGG
#from model.CPD_models import CPD_VGG
from model.CPD_MobileNet_models import CPD_MobileNet, CPD_MobileNet_Single
from data import test_dataset, get_loader
import time
from data_loader_bas import RescaleT, ToTensorLab, OtherTrans, SalObjDataset
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from torch.autograd import Variable
from skimage import io, transform
from utils import clip_gradient, adjust_lr
from datetime import datetime
import sys
import warnings
import cv2
warnings.filterwarnings("ignore")
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
parser = argparse.ArgumentParser()
parser.add_argument('--testsize', type=int, default=448, help='testing size')
parser.add_argument('--epoch', type=int, default=100, help='epoch number')
parser.add_argument('--lr', type=float, default=5e-6, help='learning rate')
parser.add_argument('--batchsize', type=int, default=8, help='training batch size')
parser.add_argument('--fake_rate', type=int, default=0.5, help='training batch size')
parser.add_argument('--trainsize', type=int, default=448, help='training dataset size')
parser.add_argument('--clip', type=float, default=0.5, help='gradient clipping margin')
parser.add_argument('--is_ResNet', type=str, default='mobile', help='VGG or ResNet backbone')
parser.add_argument('--decay_rate', type=float, default=0.05, help='decay rate of learning rate')
parser.add_argument('--decay_epoch', type=int, default=1, help='every n epochs decay learning rate')
opt = parser.parse_args()
dataset_path = '/home/hypevr/Desktop/demo/'#test_data/'
teach_path = dataset_path+'train/'
model_root = 'models/mobile_random_0.1/'#'models/CPD_ResNet50_scratch/'
model_dir = model_root + 'CPD_347.pth'
teach_model_dir = 'teacher.pt'
teach_model = torch.load(teach_model_dir)
teach_model.cuda()
teach_model.eval()
image_path = teach_path + 'image/'
mask_path = teach_path + 'mask/'
olay_path = teach_path + 'overlay/'
#fake_path = teach_path + 'overlay/'
back_path = '/home/hypevr/Desktop/data/projects/background/green/'
path, dirs, files = next(os.walk(image_path))
num_calib_images = len(files)
if not os.path.exists(mask_path):
os.makedirs(mask_path)
if not os.path.exists(olay_path):
os.makedirs(olay_path)
img_name_list = glob.glob(image_path + '*.jpg')
test_salobj_dataset = SalObjDataset(img_name_list=img_name_list, lbl_name_list=[],
transform=transforms.Compose([RescaleT(opt.testsize), ToTensorLab(flag=0)]))
test_salobj_dataloader = DataLoader(test_salobj_dataset, batch_size=1, shuffle=False, num_workers=1)
CE = torch.nn.BCEWithLogitsLoss()
def normPRED(d):
ma = torch.max(d)
mi = torch.min(d)
dn = (d-mi)/(ma-mi)
return dn
def overlay(image, mask):
mask_3 = np.tile(np.expand_dims(mask, axis=-1), (1, 1, 3))
olay = np.multiply(image, mask_3)
return olay
def save_output(image_name, pred, d_dir, o_dir):
pred = pred.squeeze()
pred = pred.cpu().data.numpy()
th = 0.2
pred[pred > th] = 1
pred[pred <= th] = 0
img_name = image_name.split("/")[-1]
image = io.imread(image_name)
mask = transform.resize(pred, (image.shape[0],image.shape[1]), anti_aliasing=False, mode = 'constant', order=0)
mask = np.tile(np.expand_dims(mask, axis=-1), (1, 1, 3))
# kernel = np.ones((3, 3), np.uint8)
# mask = cv2.erode(mask, kernel, iterations=1)
olay = image * mask
aaa = img_name.split(".")
bbb = aaa[0:-1]
imidx = bbb[0]
for i in range(1, len(bbb)):
imidx = imidx + "." + bbb[i]
olay = olay.astype('uint8')
#mask[mask<0.2] = 0
mask = (mask*255).astype('uint8')
io.imsave(o_dir + imidx + '.jpg', olay)
io.imsave(d_dir + imidx + '.jpg', mask)
def train(train_loader, model, optimizer, epoch):
model.train()
for i, pack in enumerate(train_loader, start=1):
optimizer.zero_grad()
images, gts = pack
images = Variable(images)
gts = Variable(gts)
images = images.cuda()
gts = gts.cuda()
atts, dets = model(images) #
loss1 = CE(atts, gts)
loss2 = CE(dets, gts)
loss = loss1 + loss2
loss.backward()
clip_gradient(optimizer, opt.clip)
optimizer.step()
# print(str(i) + '/' + str(total_step))
# sys.stdout.write("\033[F")
# if i == total_step:
# print('{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], Loss1: {:.4f} Dice1: {:0.4f}'.
# format(datetime.now(), epoch, opt.epoch, i, total_step, loss1.data, loss.data, ))
if epoch == opt.epoch:
model.eval()
torch.save(model.state_dict(), 'calib_weights.pth')
def test(test_model, test_loader, save_path, tr=0.3, after=False):
inf_times = []
for i in range(test_loader.size):
image_orig, image, gt, name = test_loader.load_data()
image = image.cuda()
start_time = time.time()
if after:
res = test_model(image)
else:
_, res = test_model(image)
torch.cuda.synchronize()
inf_times.append(time.time() - start_time)
res = F.upsample(res, size=(image_orig.shape[0], image_orig.shape[1]), mode='bilinear', align_corners=False)
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
#print(res)
#input('wait')
res[res < tr] = 0
olay_mask = np.tile(np.expand_dims(res, axis=-1), (1, 1, 3))
olay = image_orig * olay_mask
#imageio.imwrite(save_path+name, res)
olay = olay.astype('uint8')
imageio.imwrite(save_path + name, olay)
if after:
print('average inference time: ' + str(sum(inf_times[3:])/(len(inf_times)-2)))
for i_test, data_test in enumerate(test_salobj_dataloader):
inputs_test = data_test['image']
inputs_test = inputs_test.type(torch.FloatTensor)
image_resized = inputs_test.numpy()[0, :, :, :].transpose((1, 2, 0))
# io.imsave('after_resize.png', inputs_test.numpy()[0, :, :, :].transpose((1, 2, 0)))
if torch.cuda.is_available():
inputs_test = Variable(inputs_test.cuda())
else:
inputs_test = Variable(inputs_test)
start = time.time()
d1, d2, d3, d4, d5, d6, d7, d8 = teach_model(inputs_test) # ,d2,d3,d4,d5,d6,d7,d8
# print(d1)
torch.cuda.synchronize()
# d1 = d1.cpu()
print('generating masks: ' + str(i_test) + '/' + str(num_calib_images))
sys.stdout.write("\033[F")
pred = normPRED(d1)
# pred = overlay(image_resized, pred.squeeze().cpu().data.numpy())
# save results to test_results folder
save_output(img_name_list[i_test], pred, mask_path, olay_path)
print('mask generation finished!')
#model_dir = 'CPD.pth'
if opt.is_ResNet == 'resnet':
model = CPD_ResNet()
model.load_state_dict(torch.load(model_dir))
elif opt.is_ResNet == 'vgg':
model = CPD_VGG()
model.load_state_dict(torch.load(model_dir))
#model.load_state_dict(torch.load('CPD.pth'))
elif opt.is_ResNet == 'mobile':
model = CPD_MobileNet()
model.load_state_dict(torch.load(model_dir))
# model = torch.load(model_dir)
model.cuda().eval()
test_img_dir = '/home/hypevr/Desktop/demo/test_fold/test_images/'
test_mask_dir = '/home/hypevr/Desktop/demo/test_fold/test_images/'
test_loader = test_dataset(test_img_dir, test_mask_dir, opt.testsize, True)
print('pre-testing with '+ str(test_loader.size) + ' images')
test(model, test_loader, '/home/hypevr/Desktop/demo/test_fold/before_calib/')
model.train()
train_loader = get_loader(image_path, mask_path, batchsize=opt.batchsize, trainsize=opt.trainsize, fake_back_rate=opt.fake_rate, back_dir=back_path)
params = model.parameters()
optimizer = torch.optim.Adam(params, opt.lr)
for epoch in range(1, opt.epoch+1):
print('calibrating epoch: '+ str(epoch) + '/' + str(opt.epoch))
sys.stdout.write("\033[F")
adjust_lr(optimizer, opt.lr, epoch, opt.decay_rate, opt.decay_epoch)
train(train_loader, model, optimizer, epoch)
print('calibration finished!')
model = CPD_MobileNet_Single()
model.load_state_dict(torch.load('calib_weights.pth'))
model.eval().cuda()
scriptedmodel = torch.jit.script(model)
torch.jit.save(scriptedmodel, dataset_path + 'calib_model.pt')
model = torch.load(dataset_path + 'calib_model.pt')
model.cuda().eval()
print('after testing with '+ str(test_loader.size) + ' images')
test_loader = test_dataset(test_img_dir, test_mask_dir, opt.testsize, True)
test(model, test_loader, '/home/hypevr/Desktop/demo/test_fold/after_calib/', after=True)
print('all done')