diff --git a/docs/source/api_doc/generic/classify.rst b/docs/source/api_doc/generic/classify.rst index b3aeafd8114..d99ecd81087 100644 --- a/docs/source/api_doc/generic/classify.rst +++ b/docs/source/api_doc/generic/classify.rst @@ -11,7 +11,7 @@ ClassifyModel ----------------------------------------- .. autoclass:: ClassifyModel - :members: __init__, predict_score, predict, clear + :members: __init__, predict_score, predict, clear, make_ui, launch_demo diff --git a/docs/source/api_doc/generic/yolo.rst b/docs/source/api_doc/generic/yolo.rst index cd8882ab120..0097cfa7066 100644 --- a/docs/source/api_doc/generic/yolo.rst +++ b/docs/source/api_doc/generic/yolo.rst @@ -11,7 +11,7 @@ YOLOModel ----------------------------------------- .. autoclass:: YOLOModel - :members: __init__, predict, clear + :members: __init__, predict, clear, make_ui, launch_demo diff --git a/imgutils/generic/classify.py b/imgutils/generic/classify.py index 57f73784341..3b3a04485d4 100644 --- a/imgutils/generic/classify.py +++ b/imgutils/generic/classify.py @@ -23,12 +23,19 @@ import numpy as np from PIL import Image +from hfutils.operate import get_hf_client +from hfutils.repository import hf_hub_repo_url from hfutils.utils import hf_fs_path, hf_normpath from huggingface_hub import hf_hub_download, HfFileSystem from ..data import rgb_encode, ImageTyping, load_image from ..utils import open_onnx_model +try: + import gradio as gr +except (ImportError, ModuleNotFoundError): + gr = None + __all__ = [ 'ClassifyModel', 'classify_predict_score', @@ -36,6 +43,17 @@ ] +def _check_gradio_env(): + """ + Check if the Gradio library is installed and available. + + :raises EnvironmentError: If Gradio is not installed. + """ + if gr is None: + raise EnvironmentError(f'Gradio required for launching webui-based demo.\n' + f'Please install it with `pip install dghs-imgutils[demo]`.') + + def _img_encode(image: Image.Image, size: Tuple[int, int] = (384, 384), normalize: Optional[Tuple[float, float]] = (0.5, 0.5)): """ @@ -287,6 +305,100 @@ def clear(self): self._models.clear() self._labels.clear() + def make_ui(self, default_model_name: Optional[str] = None): + """ + Create the user interface components for the classifier model demo. + + This method sets up the Gradio UI components including an image input, model selection dropdown, + submit button, and output label. It also configures the interaction between these components. + + :param default_model_name: The name of the default model to be selected in the dropdown. + If None, the most recently updated model will be selected. + :type default_model_name: Optional[str] + + :raises ImportError: If Gradio is not installed or properly configured. + + :Example: + >>> model = ClassifyModel("username/repo_name") + >>> model.make_ui(default_model_name="model_v1") + """ + + # demo for classifier model + _check_gradio_env() + model_list = self.model_names + if not default_model_name: + hf_client = get_hf_client(hf_token=self._get_hf_token()) + selected_model_name, selected_time = None, None + for fileitem in hf_client.get_paths_info( + repo_id=self.repo_id, + repo_type='model', + paths=[f'{model_name}/model.onnx' for model_name in model_list], + expand=True, + ): + if not selected_time or fileitem.last_commit.date > selected_time: + selected_model_name = os.path.dirname(fileitem.path) + selected_time = fileitem.last_commit.date + default_model_name = selected_model_name + + with gr.Row(): + with gr.Column(): + gr_input_image = gr.Image(type='pil', label='Original Image') + gr_model = gr.Dropdown(model_list, value=default_model_name, label='Model') + gr_submit = gr.Button(value='Submit', variant='primary') + + with gr.Column(): + gr_output = gr.Label(label='Prediction') + + gr_submit.click( + self.predict_score, + inputs=[ + gr_input_image, + gr_model, + ], + outputs=[gr_output], + ) + + def launch_demo(self, default_model_name: Optional[str] = None, + server_name: Optional[str] = None, server_port: Optional[int] = None, **kwargs): + """ + Launch the Gradio demo for the classifier model. + + This method creates a Gradio Blocks interface, sets up the UI components using make_ui(), + and launches the demo server. + + :param default_model_name: The name of the default model to be selected in the dropdown. + :type default_model_name: Optional[str] + :param server_name: The name of the server to run the demo on. Defaults to None. + :type server_name: Optional[str] + :param server_port: The port number to run the demo on. Defaults to None. + :type server_port: Optional[int] + :param kwargs: Additional keyword arguments to pass to the Gradio launch method. + + :raises ImportError: If Gradio is not installed or properly configured. + + :Example: + >>> model = ClassifyModel("username/repo_name") + >>> model.launch_demo(default_model_name="model_v1", server_name="0.0.0.0", server_port=7860) + """ + + _check_gradio_env() + with gr.Blocks() as demo: + with gr.Row(): + with gr.Column(): + repo_url = hf_hub_repo_url(repo_id=self.repo_id, repo_type='model') + gr.HTML(f'

Classifier Demo For {self.repo_id}

') + gr.Markdown(f'This is the quick demo for classifier model [{self.repo_id}]({repo_url}). ' + f'Powered by `dghs-imgutils`\'s quick demo module.') + + with gr.Row(): + self.make_ui(default_model_name=default_model_name) + + demo.launch( + server_name=server_name, + server_port=server_port, + **kwargs, + ) + @lru_cache() def _open_models_for_repo_id(repo_id: str, hf_token: Optional[str] = None) -> ClassifyModel: diff --git a/imgutils/generic/yolo.py b/imgutils/generic/yolo.py index 3d51f5eca6f..af0c5a34479 100644 --- a/imgutils/generic/yolo.py +++ b/imgutils/generic/yolo.py @@ -20,18 +20,61 @@ import numpy as np from PIL import Image +from hbutils.color import rnd_colors +from hfutils.operate import get_hf_client +from hfutils.repository import hf_hub_repo_url from hfutils.utils import hf_fs_path, hf_normpath from huggingface_hub import HfFileSystem, hf_hub_download from ..data import load_image, rgb_encode, ImageTyping from ..utils import open_onnx_model +try: + import gradio as gr +except (ImportError, ModuleNotFoundError): + gr = None + __all__ = [ 'YOLOModel', 'yolo_predict', ] +def _check_gradio_env(): + """ + Check if the Gradio library is installed and available. + + :raises EnvironmentError: If Gradio is not installed. + """ + if gr is None: + raise EnvironmentError(f'Gradio required for launching webui-based demo.\n' + f'Please install it with `pip install dghs-imgutils[demo]`.') + + +def _v_fix(v): + """ + Round and convert a float value to an integer. + + :param v: The float value to be rounded and converted. + :type v: float + :return: The rounded integer value. + :rtype: int + """ + return int(round(v)) + + +def _bbox_fix(bbox): + """ + Fix the bounding box coordinates by rounding them to integers. + + :param bbox: The bounding box coordinates. + :type bbox: tuple + :return: A tuple of fixed (rounded to integer) bounding box coordinates. + :rtype: tuple + """ + return tuple(map(_v_fix, bbox)) + + def _yolo_xywh2xyxy(x: np.ndarray) -> np.ndarray: """ Convert bounding box coordinates from (x, y, width, height) format to (x1, y1, x2, y2) format. @@ -403,9 +446,146 @@ def predict(self, image: ImageTyping, model_name: str, def clear(self): """ Clear cached model and metadata. + + This method removes all cached models and their associated metadata from memory. + It's useful for freeing up memory or ensuring that the latest versions of models are loaded. """ self._models.clear() + def make_ui(self, default_model_name: Optional[str] = None, + default_conf_threshold: float = 0.25, default_iou_threshold: float = 0.7): + """ + Create a Gradio-based user interface for object detection. + + This method sets up an interactive UI that allows users to upload images, + select models, and adjust detection parameters. It uses the Gradio library + to create the interface. + + :param default_model_name: The name of the default model to use. + If None, the most recently updated model is selected. + :type default_model_name: Optional[str] + :param default_conf_threshold: Default confidence threshold for the UI. Default is 0.25. + :type default_conf_threshold: float + :param default_iou_threshold: Default IoU threshold for the UI. Default is 0.7. + :type default_iou_threshold: float + + :raises ImportError: If Gradio is not installed in the environment. + + :Example: + + >>> model = YOLOModel("username/repo_name") + >>> model.make_ui(default_model_name="yolov5s") + """ + _check_gradio_env() + model_list = self.model_names + if not default_model_name: + hf_client = get_hf_client(hf_token=self._get_hf_token()) + selected_model_name, selected_time = None, None + for fileitem in hf_client.get_paths_info( + repo_id=self.repo_id, + repo_type='model', + paths=[f'{model_name}/model.onnx' for model_name in model_list], + expand=True, + ): + if not selected_time or fileitem.last_commit.date > selected_time: + selected_model_name = os.path.dirname(fileitem.path) + selected_time = fileitem.last_commit.date + default_model_name = selected_model_name + + def _gr_detect(image: ImageTyping, model_name: str, + iou_threshold: float = 0.7, score_threshold: float = 0.25) \ + -> gr.AnnotatedImage: + _, _, labels = self._open_model(model_name=model_name) + _colors = list(map(str, rnd_colors(len(labels)))) + _color_map = dict(zip(labels, _colors)) + return gr.AnnotatedImage( + value=(image, [ + (_bbox_fix(bbox), label) + for bbox, label, _ in self.predict( + image=image, + model_name=model_name, + iou_threshold=iou_threshold, + conf_threshold=score_threshold, + ) + ]), + color_map=_color_map, + label='Labeled', + ) + + with gr.Row(): + with gr.Column(): + gr_input_image = gr.Image(type='pil', label='Original Image') + gr_model = gr.Dropdown(model_list, value=default_model_name, label='Model') + with gr.Row(): + gr_iou_threshold = gr.Slider(0.0, 1.0, default_iou_threshold, label='IOU Threshold') + gr_score_threshold = gr.Slider(0.0, 1.0, default_conf_threshold, label='Score Threshold') + + gr_submit = gr.Button(value='Submit', variant='primary') + + with gr.Column(): + gr_output_image = gr.AnnotatedImage(label="Labeled") + + gr_submit.click( + _gr_detect, + inputs=[ + gr_input_image, + gr_model, + gr_iou_threshold, + gr_score_threshold, + ], + outputs=[gr_output_image], + ) + + def launch_demo(self, default_model_name: Optional[str] = None, + default_conf_threshold: float = 0.25, default_iou_threshold: float = 0.7, + server_name: Optional[str] = None, server_port: Optional[int] = None, **kwargs): + """ + Launch a Gradio demo for object detection. + + This method creates and launches a Gradio demo that allows users to interactively + perform object detection on uploaded images using the YOLO model. + + :param default_model_name: The name of the default model to use. + If None, the most recently updated model is selected. + :type default_model_name: Optional[str] + :param default_conf_threshold: Default confidence threshold for the demo. Default is 0.25. + :type default_conf_threshold: float + :param default_iou_threshold: Default IoU threshold for the demo. Default is 0.7. + :type default_iou_threshold: float + :param server_name: The name of the server to run the demo on. Default is None. + :type server_name: Optional[str] + :param server_port: The port to run the demo on. Default is None. + :type server_port: Optional[int] + :param kwargs: Additional keyword arguments to pass to gr.Blocks.launch(). + + :raises EnvironmentError: If Gradio is not installed in the environment. + + Example: + >>> model = YOLOModel("username/repo_name") + >>> model.launch_demo(default_model_name="yolov5s", server_name="0.0.0.0", server_port=7860) + """ + _check_gradio_env() + with gr.Blocks() as demo: + with gr.Row(): + with gr.Column(): + repo_url = hf_hub_repo_url(repo_id=self.repo_id, repo_type='model') + gr.HTML(f'

YOLO Demo For {self.repo_id}

') + gr.Markdown(f'This is the quick demo for YOLO model [{self.repo_id}]({repo_url}). ' + f'Powered by `dghs-imgutils`\'s quick demo module.') + + with gr.Row(): + self.make_ui( + default_model_name=default_model_name, + default_conf_threshold=default_conf_threshold, + default_iou_threshold=default_iou_threshold, + ) + + demo.launch( + server_name=server_name, + server_port=server_port, + **kwargs, + ) + @lru_cache() def _open_models_for_repo_id(repo_id: str, hf_token: Optional[str] = None) -> YOLOModel: diff --git a/requirements-demo.txt b/requirements-demo.txt new file mode 100644 index 00000000000..f85fcdfb026 --- /dev/null +++ b/requirements-demo.txt @@ -0,0 +1 @@ +gradio>=4.44.0 \ No newline at end of file