-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathenv.py
executable file
·145 lines (121 loc) · 4.85 KB
/
env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import random
import numpy as np
from PIL import Image, ImageEnhance
from skimage.color import rgb2lab
import tensorflow as tf
backbone = tf.keras.applications.ResNet50(include_top=False, pooling='avg')
preprocess = tf.keras.applications.resnet50.preprocess_input
class Env(object):
"""Training env wrapper of image processing RL problem"""
def __init__(self, src, max_episode_length=20, reward_scale=0.1):
"""
Args:
src (list[str, str]): list of raw and retouched path, initial
state will sample from it uniformly
max_episode_length (int): max number of actions can be taken
"""
self._src = src
self._backbone = backbone
self._preprocess = preprocess
self._rgb_state = None
self._lab_state = None
self._target_lab = None
self._current_diff = None
self._count = 0
self._max_episode_length = max_episode_length
self._reward_scale = reward_scale
self._info = dict()
def _state_feature(self):
s = self._preprocess(self._rgb_state)
s = tf.expand_dims(s, axis=0)
context = self._backbone(s).numpy().astype('float32')
hist_rgb = get_rgb_hist(self._rgb_state).astype('float32')
hist_lab = get_lab_hist(self._lab_state).astype('float32')
return np.concatenate([context, hist_rgb, hist_lab], 1)
def step(self, action):
"""One step"""
self._count += 1
self._rgb_state = self._transit(action)
self._lab_state = rgb2lab(self._rgb_state)
reward = self._reward()
done = self._count >= self._max_episode_length or action == 0
return self._state_feature(), reward, done, self._info
def reset(self):
"""Reset"""
self._count = 0
raw, retouched = map(Image.open, random.choice(self._src))
self._rgb_state = np.asarray(raw)
self._lab_state = rgb2lab(self._rgb_state)
self._target_lab = rgb2lab(np.asarray(retouched))
self._current_diff = self._diff(self._lab_state)
self._info['max_reward'] = self._current_diff
return self._state_feature()
def _diff(self, lab):
reward = np.sqrt(((self._target_lab - lab) ** 2).sum(2)).mean()
return reward * self._reward_scale
def _reward(self):
diff = self._current_diff
self._current_diff = self._diff(self._lab_state)
return min(max(diff - self._current_diff, -1), 1) # reward clip
def _transit(self, a):
s = self._rgb_state.copy()
if a == 0:
return s
elif a == 1:
return np.asarray(adjust_contrast(Image.fromarray(s), 0.95))
elif a == 2:
return np.asarray(adjust_contrast(Image.fromarray(s), 1.05))
elif a == 3:
return np.asarray(adjust_saturation(Image.fromarray(s), 0.95))
elif a == 4:
return np.asarray(adjust_saturation(Image.fromarray(s), 1.05))
elif a == 5:
return np.asarray(adjust_brightness(Image.fromarray(s), 0.95))
elif a == 6:
return np.asarray(adjust_brightness(Image.fromarray(s), 1.05))
elif a == 7:
return adjust_channels(s, 0.95, [0, 1])
elif a == 8:
return adjust_channels(s, 1.05, [0, 1])
elif a == 9:
return adjust_channels(s, 0.95, [2, 1])
elif a == 10:
return adjust_channels(s, 1.05, [2, 1])
elif a == 11:
return adjust_channels(s, 0.95, [0, 2])
elif a == 12:
return adjust_channels(s, 1.05, [0, 2])
else:
raise NotImplementedError
def get_lab_hist(lab):
"""Get hist of lab image"""
lab = lab.reshape(-1, 3)
hist, _ = np.histogramdd(lab, bins=(10, 10, 10),
range=((0, 100), (-60, 60), (-60, 60)))
return hist.reshape(1, 1000) / 1000.0
def get_rgb_hist(lab):
"""Get hist of lab image"""
lab = lab.reshape(-1, 3)
hist, _ = np.histogramdd(lab, bins=(10, 10, 10),
range=((0, 255), (0, 255), (0, 255)))
return hist.reshape(1, 1000) / 1000.0
def adjust_contrast(image_rgb, contrast_factor):
"""Adjust contrast"""
enhancer = ImageEnhance.Contrast(image_rgb)
img = enhancer.enhance(contrast_factor)
return img
def adjust_saturation(image_rgb, saturation_factor):
"""Adjust saturation"""
enhancer = ImageEnhance.Color(image_rgb)
img = enhancer.enhance(saturation_factor)
return img
def adjust_brightness(image_rgb, brightness_factor):
"""Adjust brightness"""
enhancer = ImageEnhance.Brightness(image_rgb)
img = enhancer.enhance(brightness_factor)
return img
def adjust_channels(array, factor, channels):
"""Adjust channel pixel value"""
for c in channels:
array[:, :, c] = (array[:, :, c] * factor).clip(0, 255).astype('uint8')
return array