-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.cpp
executable file
·332 lines (285 loc) · 10.5 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#include <opencv2/opencv.hpp>
#include "TrtNet.h"
#include "argsParser.h"
#include "configs.h"
#include <chrono>
#include "YoloLayer.h"
#include "dataReader.h"
#include "eval.h"
using namespace std;
using namespace argsParser;
using namespace Tn;
using namespace Yolo;
vector<float> prepareImage(cv::Mat& img)
{
using namespace cv;
int c = parser::getIntValue("C");
int h = parser::getIntValue("H"); //net h
int w = parser::getIntValue("W"); //net w
float scale = min(float(w)/img.cols,float(h)/img.rows);
auto scaleSize = cv::Size(img.cols * scale,img.rows * scale);
cv::Mat rgb ;
cv::cvtColor(img, rgb, cv::COLOR_RGB2BGR);
cv::Mat resized;
cv::resize(rgb, resized,scaleSize,0,0,INTER_CUBIC);
cv::Mat cropped(h, w,CV_8UC3, 127);
Rect rect((w- scaleSize.width)/2, (h-scaleSize.height)/2, scaleSize.width,scaleSize.height);
resized.copyTo(cropped(rect));
cv::Mat img_float;
if (c == 3)
cropped.convertTo(img_float, CV_32FC3, 1/255.0);
else
cropped.convertTo(img_float, CV_32FC1 ,1/255.0);
//HWC TO CHW
vector<Mat> input_channels(c);
cv::split(img_float, input_channels);
vector<float> result(h*w*c);
auto data = result.data();
int channelLength = h * w;
for (int i = 0; i < c; ++i) {
memcpy(data,input_channels[i].data,channelLength*sizeof(float));
data += channelLength;
}
return result;
}
void DoNms(vector<Detection>& detections,int classes ,float nmsThresh)
{
auto t_start = chrono::high_resolution_clock::now();
vector<vector<Detection>> resClass;
resClass.resize(classes);
for (const auto& item : detections)
resClass[item.classId].push_back(item);
auto iouCompute = [](float * lbox, float* rbox)
{
float interBox[] = {
max(lbox[0] - lbox[2]/2.f , rbox[0] - rbox[2]/2.f), //left
min(lbox[0] + lbox[2]/2.f , rbox[0] + rbox[2]/2.f), //right
max(lbox[1] - lbox[3]/2.f , rbox[1] - rbox[3]/2.f), //top
min(lbox[1] + lbox[3]/2.f , rbox[1] + rbox[3]/2.f), //bottom
};
if(interBox[2] > interBox[3] || interBox[0] > interBox[1])
return 0.0f;
float interBoxS =(interBox[1]-interBox[0])*(interBox[3]-interBox[2]);
return interBoxS/(lbox[2]*lbox[3] + rbox[2]*rbox[3] -interBoxS);
};
vector<Detection> result;
for (int i = 0;i<classes;++i)
{
auto& dets =resClass[i];
if(dets.size() == 0)
continue;
sort(dets.begin(),dets.end(),[=](const Detection& left,const Detection& right){
return left.prob > right.prob;
});
for (unsigned int m = 0;m < dets.size() ; ++m)
{
auto& item = dets[m];
result.push_back(item);
for(unsigned int n = m + 1;n < dets.size() ; ++n)
{
if (iouCompute(item.bbox,dets[n].bbox) > nmsThresh)
{
dets.erase(dets.begin()+n);
--n;
}
}
}
}
//swap(detections,result);
detections = move(result);
auto t_end = chrono::high_resolution_clock::now();
float total = chrono::duration<float, milli>(t_end - t_start).count();
cout << "Time taken for nms is " << total << " ms." << endl;
}
vector<Bbox> postProcessImg(cv::Mat& img,vector<Detection>& detections,int classes)
{
using namespace cv;
int h = parser::getIntValue("H"); //net h
int w = parser::getIntValue("W"); //net w
//scale bbox to img
int width = img.cols;
int height = img.rows;
float scale = min(float(w)/width,float(h)/height);
float scaleSize[] = {width * scale,height * scale};
//correct box
for (auto& item : detections)
{
auto& bbox = item.bbox;
bbox[0] = (bbox[0] * w - (w - scaleSize[0])/2.f) / scaleSize[0];
bbox[1] = (bbox[1] * h - (h - scaleSize[1])/2.f) / scaleSize[1];
bbox[2] /= scaleSize[0];
bbox[3] /= scaleSize[1];
}
//nms
float nmsThresh = parser::getFloatValue("nms");
if(nmsThresh > 0)
DoNms(detections,classes,nmsThresh);
vector<Bbox> boxes;
for(const auto& item : detections)
{
auto& b = item.bbox;
Bbox bbox =
{
item.classId, //classId
max(int((b[0]-b[2]/2.)*width),0), //left
min(int((b[0]+b[2]/2.)*width),width), //right
max(int((b[1]-b[3]/2.)*height),0), //top
min(int((b[1]+b[3]/2.)*height),height), //bot
item.prob //score
};
boxes.push_back(bbox);
}
return boxes;
}
vector<string> split(const string& str, char delim)
{
stringstream ss(str);
string token;
vector<string> container;
while (getline(ss, token, delim)) {
container.push_back(token);
}
return container;
}
int main( int argc, char* argv[] ){
parser::ADD_ARG_STRING("prototxt",Desc("input yolov3 deploy"),DefaultValue(INPUT_PROTOTXT),ValueDesc("file"));
parser::ADD_ARG_STRING("caffemodel",Desc("input yolov3 caffemodel"),DefaultValue(INPUT_CAFFEMODEL),ValueDesc("file"));
parser::ADD_ARG_INT("C",Desc("channel"),DefaultValue(to_string(INPUT_CHANNEL)));
parser::ADD_ARG_INT("H",Desc("height"),DefaultValue(to_string(INPUT_HEIGHT)));
parser::ADD_ARG_INT("W",Desc("width"),DefaultValue(to_string(INPUT_WIDTH)));
parser::ADD_ARG_STRING("calib",Desc("calibration image List"),DefaultValue(CALIBRATION_LIST),ValueDesc("file"));
parser::ADD_ARG_STRING("mode",Desc("runtime mode"),DefaultValue(MODE), ValueDesc("fp32/fp16/int8"));
parser::ADD_ARG_STRING("outputs",Desc("output nodes name"),DefaultValue(OUTPUTS));
parser::ADD_ARG_INT("class",Desc("num of classes"),DefaultValue(to_string(DETECT_CLASSES)));
parser::ADD_ARG_FLOAT("nms",Desc("non-maximum suppression value"),DefaultValue(to_string(NMS_THRESH)));
//input
parser::ADD_ARG_STRING("input",Desc("input image file"),DefaultValue(INPUT_IMAGE),ValueDesc("file"));
parser::ADD_ARG_STRING("evallist",Desc("eval gt list"),DefaultValue(EVAL_LIST),ValueDesc("file"));
if(argc < 2){
parser::printDesc();
exit(-1);
}
parser::parseArgs(argc,argv);
string deployFile = parser::getStringValue("prototxt");
string caffemodelFile = parser::getStringValue("caffemodel");
vector<vector<float>> calibData;
string calibFileList = parser::getStringValue("calib");
string mode = parser::getStringValue("mode");
if(calibFileList.length() > 0 && mode == "int8")
{
cout << "find calibration file,loading ..." << endl;
ifstream file(calibFileList);
if(!file.is_open())
{
cout << "read file list error,please check file :" << calibFileList << endl;
exit(-1);
}
string strLine;
while( getline(file,strLine) )
{
cv::Mat img = cv::imread(strLine);
auto data = prepareImage(img);
calibData.emplace_back(data);
}
file.close();
}
RUN_MODE run_mode = RUN_MODE::FLOAT32;
if(mode == "int8")
{
if(calibFileList.length() == 0)
cout << "run int8 please input calibration file, will run in fp32" << endl;
else
run_mode = RUN_MODE::INT8;
}
else if(mode == "fp16")
{
run_mode = RUN_MODE::FLOAT16;
}
cout << "2" << endl;
string outputNodes = parser::getStringValue("outputs");
auto outputNames = split(outputNodes,',');
//can load from file
string saveName = "yolov3_" + mode + ".engine";
#define LOAD_FROM_ENGINE
#ifdef LOAD_FROM_ENGINE
trtNet net(saveName);
#else
trtNet net(deployFile,caffemodelFile,outputNames,calibData,run_mode);
cout << "save Engine..." << saveName <<endl;
net.saveEngine(saveName);
#endif
int outputCount = net.getOutputSize()/sizeof(float);
unique_ptr<float[]> outputData(new float[outputCount]);
string listFile = parser::getStringValue("evallist");
list<string> fileNames;
list<vector<Bbox>> groundTruth;
if(listFile.length() > 0)
{
std::cout << "loading from eval list " << listFile << std::endl;
tie(fileNames,groundTruth) = readObjectLabelFileList(listFile);
}
else
{
string inputFileName = parser::getStringValue("input");
fileNames.push_back(inputFileName);
}
int classNum = parser::getIntValue("class");
// host memory for outputs
int N=1;
int nmsMaxOut=300;
static const int OUTPUT_CLS_SIZE = 5+1;
const int OUTPUT_BBOX_SIZE = OUTPUT_CLS_SIZE * 4;
float* rois = new float[N * nmsMaxOut * 4];
float* bboxPreds = new float[N * nmsMaxOut * OUTPUT_BBOX_SIZE];
float* clsProbs = new float[N * nmsMaxOut * OUTPUT_CLS_SIZE];
// predicted bounding boxes
float* predBBoxes = new float[N * nmsMaxOut * OUTPUT_BBOX_SIZE];
cv::VideoCapture cap("/home/lee/workspace/TensorRT-Yolov3/test.ts");
// Check if camera opened successfully
if(!cap.isOpened()){
cout << "Error opening video stream or file" << endl;
return -1;
}
while(1){
list<vector<Bbox>> outputs;
cv::Mat img;
cv::Mat img2;
cap >> img;
img2=img.clone();
//if (img.empty())
// break;
vector<float> inputData = prepareImage(img);
if (!inputData.data())
continue;
net.doInference(inputData.data(), outputData.get());
//Get Output
auto output = outputData.get();
//first detect count
int count = output[0];
//later detect result
vector<Detection> result;
result.resize(count);
memcpy(result.data(), &output[1], count*sizeof(Detection));
auto boxes = postProcessImg(img,result,classNum);
outputs.emplace_back(boxes);
//cv::Mat img = cv::imread(*fileNames.begin());
auto bbox = *outputs.begin();
for(const auto& item : bbox)
{
cout << "item:" << "[" << item.bot - item.top << ", " << item.right - item.left << " ]" << endl;
cv::rectangle(img2,cv::Point(item.left,item.top),cv::Point(item.right,item.bot),cv::Scalar(0,0,255),3,8,0);
//cout << "class=" << item.classId << " prob=" << item.score*100 << endl;
//cout << "left=" << item.left << " right=" << item.right << " top=" << item.top << " bot=" << item.bot << endl;
}
cv::imshow("result",img2);
char c=(char)cv::waitKey(1);
if(c==27)
break;
img.release();
img2.release();
}
net.printTime();
cap.release();
cv::destroyAllWindows();
return 0;
}