-
Notifications
You must be signed in to change notification settings - Fork 3
/
fgain_LSD_training.m
218 lines (176 loc) · 6.28 KB
/
fgain_LSD_training.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
clc; clear all;
%% GENERALIZATION CAPABILITY: OPTIMIZATION LSD TRAINING SET (50% OF THE SUBJECTS)
%
% Whole-brain multimodal neuroimaging model using serotonin receptor maps explain non-linear functional effects of LSD
% Deco,G., Cruzat,J., Cabral, J., Knudsen,G.M., Carhart-Harris,R.L., Whybrow,P.C.,
% Logothetis,N.K. & Kringelbach,M.L. (2018) Current Biology
%
% July, 2018, Barcelona-Spain
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load all_SC_FC_TC_76_90_116.mat;
load mean5HT2A_bindingaal.mat
load LSDnew.mat;
global wgaine wgaini Receptor;
C = sc90; % Structural connectivity data
C = C/max(max(C))*0.2;
N = 90; % Number of brain regions
Receptor = mean5HT2A_aalsymm(:,1)/max(mean5HT2A_aalsymm(:,1));
%% Define Trainning and Test sets
numsub = 1:15;
SUBJ = randperm(15,7); % 7 is half of the subjects
testSUBJ = randsample(setdiff(numsub,SUBJ),7);
NSUB = size(SUBJ,2);
Isubdiag = find(tril(ones(N),-1));
%% DATA (There are different cases: 5=PLACEBO, 2=LSD)
CASE = 2;
TC1=LR_version_symm(tc_aal{1,CASE});
TC2=LR_version_symm(tc_aal{2,CASE});
TC3=LR_version_symm(tc_aal{3,CASE});
TC4=LR_version_symm(tc_aal{4,CASE});
TC5=LR_version_symm(tc_aal{5,CASE});
TC6=LR_version_symm(tc_aal{6,CASE});
TC7=LR_version_symm(tc_aal{7,CASE});
TC8=LR_version_symm(tc_aal{8,CASE});
TC9=LR_version_symm(tc_aal{9,CASE});
TC10=LR_version_symm(tc_aal{10,CASE});
TC11=LR_version_symm(tc_aal{11,CASE});
TC12=LR_version_symm(tc_aal{12,CASE});
TC13=LR_version_symm(tc_aal{13,CASE});
TC14=LR_version_symm(tc_aal{14,CASE});
TC15=LR_version_symm(tc_aal{15,CASE});
xs = eval(sprintf('TC%d',1));
Tmax = size(xs,2);
%%%%%%%%%%%%%%% FILTER SETTINGS
delt = 2; % sampling interval
k = 2; % 2nd order butterworth filter
fnq = 1/(2*delt); % Nyquist frequency
flp = .01; % lowpass frequency of filter
fhi = .1; % highpass
Wn = [flp/fnq fhi/fnq]; % butterworth bandpass non-dimensional frequency
[bfilt2,afilt2] = butter(k,Wn); % construct the filter
%%%%%%%%%%%%%%
kk = 1;
kk3 = 1;
for nsub = 1:NSUB
signaldata = eval(sprintf('TC%d', SUBJ(nsub)));
FCe(nsub,:,:) = corrcoef(signaldata');
%Get the BOLD phase using the Hilbert transform
for seed = 1:N
x = demean(detrend(signaldata(seed,:)));
x(find(x>3*std(x))) = 3*std(x);
x(find(x<-3*std(x))) = -3*std(x);
timeseriedata(seed,:)= filtfilt(bfilt2,afilt2,x); % zero phase filter the data
end
ii2 = 1;
for t = 1:3:190
jj2 = 1;
cc = corrcoef((timeseriedata(:,t:t+30))');
for t2 = 1:3:190
cc2 = corrcoef((timeseriedata(:,t2:t2+30))');
ca = corrcoef(cc(Isubdiag),cc2(Isubdiag));
if jj2 >ii2
cotsampling(kk) = ca(2);
kk = kk+1;
end
jj2 = jj2+1;
end
ii2 = ii2+1;
end
end
FCemp = squeeze(mean(FCe,1));
%%%%%%%%% Set General Model Parameters
dtt = 1e-3; % Sampling rate of simulated neuronal activity (seconds)
dt = 0.1;
taon = 100;
taog = 10;
gamma = 0.641;
sigma = 0.01;
JN = 0.15;
I0 = 0.382;
Jexte = 1.;
Jexti = 0.7;
w = 1.4;
% Define optimal parameters
we = 2.1000;
wgaine = 0;
wgaini = 0;
J = Balance_J9(we,C);
Tmaxneuronal = (Tmax+10)*2000;
WG = 0:0.002:0.4;
% Model Simulations
for wge = WG
for ii = 1:20
[status,cmdout] = system('od -vAn -N4 -tu4 < /dev/urandom');
rng(str2num(cmdout));
wgaine = wge;
wgaini = 0;
kk = 1;
kk3 = 1;
for nsub = 1:NSUB
neuro_act = zeros(Tmaxneuronal,N);
sn = 0.001*ones(N,1);
sg = 0.001*ones(N,1);
nn = 1;
for t = 0:dt:Tmaxneuronal
xn = I0*Jexte+w*JN*sn+we*JN*C*sn-J.*sg;
xg = I0*Jexti+JN*sn-sg;
rn = phie9(xn);
rg = phii9(xg);
sn = sn+dt*(-sn/taon+(1-sn)*gamma.*rn./1000.)+sqrt(dt)*sigma*randn(N,1);
sn(sn>1) = 1;
sn(sn<0) = 0;
sg = sg+dt*(-sg/taog+rg./1000.)+sqrt(dt)*sigma*randn(N,1);
sg(sg>1) = 1;
sg(sg<0) = 0;
if abs(mod(t,1)) < 0.01
neuro_act(nn,:) = rn';
nn = nn+1;
end
end
nn = nn-1;
%%% BOLD empirical
% Friston BALLOON MODEL
T = nn*dtt; % Total time in seconds
B = BOLD(T,neuro_act(1:nn,1)'); % B=BOLD activity, bf=Foutrier transform, f=frequency range)
BOLD_act = zeros(length(B),N);
BOLD_act(:,1) = B;
for nnew = 2:N
B = BOLD(T,neuro_act(1:nn,nnew));
BOLD_act(:,nnew) = B;
end
bds = BOLD_act(2000:2000:end,:);
FCs(nsub,:,:) = corrcoef(bds);
%%%%%%%%%%%%
for seed = 1:N
ts = detrend(demean(bds(1:Tmax,seed)'));
ts(find(ts>3*std(ts))) = 3*std(ts);
ts(find(ts<-3*std(ts))) = -3*std(ts);
tss(seed,:) = filtfilt(bfilt2,afilt2,ts);
end
ii2 = 1;
for t = 1:3:190
jj2 = 1;
cc = corrcoef((tss(:,t:t+30))');
for t2 = 1:3:190
cc2 = corrcoef((tss(:,t2:t2+30))');
ca = corrcoef(cc(Isubdiag),cc2(Isubdiag));
if jj2 > ii2
cotsamplingsim(kk) = ca(2);
kk = kk+1;
end
jj2 = jj2+1;
end
ii2 = ii2+1;
end
end
[hh pp FCDfitt(ii)] = kstest2(cotsampling,cotsamplingsim);
FCsimul = squeeze(mean(FCs,1));
cc = corrcoef(FCemp(Isubdiag),FCsimul(Isubdiag));
fitting(ii) = cc(2);
end
end
FCDfitt_train = FCDfitt;
fitting_train = fitting;
save('LSD_training.mat','WG','FCDfitt_train','fitting_train');
save('testSUBJ.mat','SUBJ','testSUBJ')