-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathlstm.py
204 lines (147 loc) · 6.72 KB
/
lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import numpy as np
from keras.layers import Input, LSTM, Dense, TimeDistributed, Masking, Dropout, Bidirectional
from keras.models import Model
from keras import backend as K
import theano.tensor as T
import theano
import pickle
import sys
import argparse
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import accuracy_score
from keras.optimizers import RMSprop
from keras.callbacks import EarlyStopping
np.random.seed(1337) # for reproducibility
unimodal_activations={}
def str2bool(v):
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def createOneHot(train_label, test_label):
maxlen = int(max(train_label.max(), test_label.max()))
train = np.zeros((train_label.shape[0], train_label.shape[1], maxlen+1))
test = np.zeros((test_label.shape[0], test_label.shape[1], maxlen+1))
for i in xrange(train_label.shape[0]):
for j in xrange(train_label.shape[1]):
train[i,j,train_label[i,j]]=1
for i in xrange(test_label.shape[0]):
for j in xrange(test_label.shape[1]):
test[i,j,test_label[i,j]]=1
return train, test
def createVal(train_data, train_mask, train_label, valid_portion=None):
n_samples = train_data.shape[0]
sidx = np.arange(n_samples)
n_train = int(np.round(n_samples * (1. - valid_portion)))
val_data = np.asarray([train_data[s] for s in sidx[n_train:]])
val_mask = np.asarray([train_mask[s] for s in sidx[n_train:]])
val_label = np.asarray([train_label[s] for s in sidx[n_train:]])
train_data = np.asarray([train_data[s] for s in sidx[:n_train]])
train_mask = np.asarray([train_mask[s] for s in sidx[:n_train]])
train_label = np.asarray([train_label[s] for s in sidx[:n_train]])
return train_data, train_mask, train_label, val_data, val_mask, val_label
def calc_test_result(result, test_label, test_mask):
true_label=[]
predicted_label=[]
for i in xrange(result.shape[0]):
for j in xrange(result.shape[1]):
if test_mask[i,j]==1:
true_label.append(np.argmax(test_label[i,j] ))
predicted_label.append(np.argmax(result[i,j] ))
print "Confusion Matrix :"
print confusion_matrix(true_label, predicted_label)
print "Classification Report :"
print classification_report(true_label, predicted_label)
print "Accuracy ", accuracy_score(true_label, predicted_label)
def unimodal(mode):
print 'starting unimodal ', mode
with open('./input/'+mode+'.pickle', 'rb') as handle:
(train_data, train_label, test_data, test_label, maxlen, train_length, test_length) = pickle.load(handle)
train_label = train_label.astype('int')
test_label = test_label.astype('int')
train_mask = np.zeros((train_data.shape[0], train_data.shape[1]), dtype='float')
for i in xrange(len(train_length)):
train_mask[i,:train_length[i]]=1.0
test_mask = np.zeros((test_data.shape[0], test_data.shape[1]), dtype='float')
for i in xrange(len(test_length)):
test_mask[i,:test_length[i]]=1.0
train_label, test_label = createOneHot(train_label, test_label)
input_data = Input(shape=(train_data.shape[1],train_data.shape[2]))
masked = Masking(mask_value =0)(input_data)
lstm = Bidirectional(LSTM(300, activation='tanh', return_sequences = True, dropout=0.6))(masked)
inter = Dropout(0.9)(lstm)
inter1 = TimeDistributed(Dense(100,activation='tanh'))(inter)
inter = Dropout(0.9)(inter1)
output = TimeDistributed(Dense(2,activation='softmax'))(inter)
model = Model(input_data, output)
aux = Model(input_data, inter1)
model.compile(optimizer='adadelta', loss='categorical_crossentropy', sample_weight_mode='temporal')
early_stopping = EarlyStopping(monitor='val_loss', patience=10)
model.fit(train_data, train_label,
epochs=200,
batch_size=10,
sample_weight=train_mask,
shuffle=True,
callbacks=[early_stopping],
validation_split=0.2)
model.save('./models/'+mode+'.h5')
train_activations = aux.predict(train_data)
test_activations = aux.predict(test_data)
unimodal_activations[mode+'_train']=train_activations
unimodal_activations[mode+'_test']=test_activations
unimodal_activations['train_mask']=train_mask
unimodal_activations['test_mask']= test_mask
unimodal_activations['train_label']=train_label
unimodal_activations['test_label']=test_label
def multimodal(unimodal_activations):
print "starting multimodal"
#Fusion (appending) of features
train_data = np.concatenate((unimodal_activations['text_train'], unimodal_activations['audio_train'], unimodal_activations['video_train']), axis=2)
test_data = np.concatenate((unimodal_activations['text_test'], unimodal_activations['audio_test'], unimodal_activations['video_test']), axis=2)
train_mask=unimodal_activations['train_mask']
test_mask=unimodal_activations['test_mask']
train_label=unimodal_activations['train_label']
test_label=unimodal_activations['test_label']
#Multimodal model
input_data = Input(shape=(train_data.shape[1],train_data.shape[2]))
masked = Masking(mask_value =0)(input_data)
lstm = Bidirectional(LSTM(300, activation='tanh', return_sequences = True, dropout=0.4))(masked)
inter = Dropout(0.9)(lstm)
inter1 = TimeDistributed(Dense(500,activation='relu'))(inter)
inter = Dropout(0.9)(inter1)
output = TimeDistributed(Dense(2,activation='softmax'))(inter)
model = Model(input_data, output)
aux = Model(input_data, inter1)
model.compile(optimizer='adadelta', loss='categorical_crossentropy', sample_weight_mode='temporal')
early_stopping = EarlyStopping(monitor='val_loss', patience=10)
model.fit(train_data, train_label,
epochs=200,
batch_size=10,
sample_weight=train_mask,
shuffle=True,
callbacks=[early_stopping],
validation_split=0.2)
model.save('./models/multimodal.h5')
result = model.predict(test_data)
calc_test_result(result, test_label, test_mask)
if __name__=="__main__":
argv = sys.argv[1:]
parser = argparse.ArgumentParser()
parser.add_argument("--unimodal", type=str2bool, nargs='?',
const=True, default=False)
args, _ = parser.parse_known_args(argv)
if args.unimodal:
print "Training unimodals first"
modality = ['text', 'audio', 'video']
for mode in modality:
unimodal(mode)
print "Saving unimodal activations"
with open('unimodal.pickle', 'wb') as handle:
pickle.dump(unimodal_activations, handle, protocol=pickle.HIGHEST_PROTOCOL)
with open('unimodal.pickle', 'rb') as handle:
unimodal_activations = pickle.load(handle)
multimodal(unimodal_activations)