From 71e534c9cb10d8f4345228e81448ed6ceb286ede Mon Sep 17 00:00:00 2001 From: juneeybug Date: Tue, 31 Aug 2021 08:36:22 +0530 Subject: [PATCH 01/55] Added data files --- Module 3/Notebooks/aflsmall.Rdata | Bin 0 -> 1005 bytes Module 3/Notebooks/anscombesquartet.Rdata | Bin 0 -> 2934 bytes Module 3/Notebooks/clinicaltrial.Rdata | Bin 0 -> 326 bytes Module 3/Notebooks/effort.Rdata | Bin 0 -> 2785 bytes Module 3/Notebooks/parenthood.Rdata | Bin 0 -> 1147 bytes Module 3/Notebooks/parenthood2.Rdata | Bin 0 -> 1154 bytes 6 files changed, 0 insertions(+), 0 deletions(-) create mode 100644 Module 3/Notebooks/aflsmall.Rdata create mode 100644 Module 3/Notebooks/anscombesquartet.Rdata create mode 100644 Module 3/Notebooks/clinicaltrial.Rdata create mode 100644 Module 3/Notebooks/effort.Rdata create mode 100644 Module 3/Notebooks/parenthood.Rdata create mode 100644 Module 3/Notebooks/parenthood2.Rdata diff --git a/Module 3/Notebooks/aflsmall.Rdata b/Module 3/Notebooks/aflsmall.Rdata new file mode 100644 index 0000000000000000000000000000000000000000..e5dff235915a345ba5704c73b400704620022cc7 GIT binary patch literal 1005 zcmVx9Pp5v}vIQ z#Dm+osU_EzYy&D!{RBRRPv|G{1qg?nV~$~q<&6D}ie-ZI^XPEbM z;i7E6uIYKsCUEtloDXHC@gsloUV_Z}Jy&HOJm(IO{b4+wvwK;N%l@*D4^`=x&lBTg zp7XkFm-*y#%6aBovA$c7_rc=>^sHA;li3f>DS7d}k+iceFe>x9ep; z{+##Zt?^=B)Q_Ap59gwM?f}UCaNc%x;NOAH6gmU8U14tsxdmP}_7#CPkh(57^nud0A~+f198+*&PFHu8KZ1!LP51+2ub9`Zk0u?Z{2uIa~WD zb1m?`dqJX#sro-P3u7;E{jo=RG4_)qH>6x2x^a+3A)7mlg1`?aKcZ+%kL4us!f|d= zU-8qQadghMuEgG%8>T@XanWs`-|6}XVqUf5k_`X=8_5eV literal 0 HcmV?d00001 diff --git a/Module 3/Notebooks/anscombesquartet.Rdata b/Module 3/Notebooks/anscombesquartet.Rdata new file mode 100644 index 0000000000000000000000000000000000000000..7b3e4bc767608e821de780ec13d6f0934ff914b9 GIT binary patch literal 2934 zcmV-+3yJg}iwFP!000001HG1cG}LVy$H$PZA!6*y7!xD=AkxqfH6BZoWF}M-A-n9^ zr5=%xkcvpcAW1|T(n!Q$$YZCmWE*>iERC0%=k1)HbKY~_f1c}{`}*GZ@4kQ6=li>_ ze}0xmI0QG28vp=m$$rKjL<+52LX0+Xyvjt|hBt z?rj-^&M`@!9k^;MxY=~fX2C`|YR^A?-_yglhW33WMU_SOa&se(9J}7or%fNb>~T3E zZS)hIpLIO8en_OEGfH^t60YV}z5_V-`&(k&%A%8Yzj-C?0AwlnXrr#d2Z7mD3`=3N zuNh6{PVe@iy6KMWN7rM_Tq4i+J}eeETbO5LK<=7RN^Eb+ZP46=g$f3ycLw%Vnd|Xf z;b=eiem*UFuBnr?vjqedS5T~b6V&Qhm#00V`%aKtbUFuy1HKEQYohNnD%ZoI&sY_| zz7LoapFteYJyUr6>OvoOWHtOnC8R0r@)#bV7bWi?zSz|ROt_dyU+2`7zolWTQT=3Z zGx7EFsBKUF#52W*o7^#mM3OxkE2+G~b5ED6nDLP-peoq@=EIj`a_e-7DRcneKtQ1* z<3%G_WlUc`tgQLs1RJ<^=tSfGbjh;;`Y9610lFP-={L?K+`jOzz;Oc3o#Fku^yu9$ z$|CCZG;6Bn!L0BsZ6U53hP6isQxI;f!}hFh?TXhdU(3_Nd^bDI;5EdN_z%jR&g4m! z*kNAlvauyU=s`kmt*N=Q%H`!6STRDg(#hoksweeJ>y~;1f7e;|6H$gqiDIl8lKi+1 zm2k00JO}N3C_#s?I%;eCSn8vzrZf`7?KF7O^qBdcZS^@KR*ExOtd@3LN3x}nO^~mo znI^+YUy9gUz#cojt(j28HZSV5Z{CKbpWb!XOru~H$iazhUq9+|%F@ES3PFUGmA30_ zA0$5T*&tCMnG~W{Fe3#6^SmZy5n1O>$VZwS_DNXF1=(l|jaO$PC|-vi+78 z0+D4}a)P-y2An)vqpRmTN1@y6xa-i2H4TNElRZ9f3r;XNPWPd}NpI^V5E8HWQgCuYi!>?6p!# zQQ`v!bL>L!a8Sc*P=a3wQAST0QGNPiT}0Lc&Cw#SrqfiV>bOMpq|Mbkvm+XLR)Og9 z(PW2i7MMeK#|g{kfm1r5wu5El15%;m_Q+(YsAZ znhe2)(u-mRBeJ&*9ctSFTK2xg>Y!to5aR{t)!P;5Cg~Co_wbb6qgRWaC*-97vl$~+ z=lWZxo~qF{))$Zz+2}r{KABf5;XUV)Q3GoD0j&yqmi;Iks`&oLo{VxU2SWT$umyQzqcm=GUx8ezu+DaeswMf#%RhbIr{g@)hZqofzThcXg|3jhw$ z@xh006G@Lk5!WTAPd{ZZMUP`BsS3UiHF z={71RlOhUZ?onUg1Z&K=-L%5>k?obVbJmcmw++h6Lq0sUie;nV;1xqhuvr9P;I~AQ zOZT$ZqQirbO9y;SzLH)~ah6gRbNf>2?M)>vLWuKyLNhBh9MVyKm4x~8Ec&4M0;O)H zS79hLu8~(cwe*^SYFkc)=B6P=_8dRra$LLdtAYiWe*Uxfidbu`8Ej9gOAy@+7BPrn zV28+Pm$iRHhNj(tqsAN#dlC_}J)Ebcgyp;{);`q^z1E^WD^2dtQ^RMdKK*#)c<81P z8bRJ0i?vC{+Mg_SiV?NoTvF+F5kMAX>pa8C*Z- z{p$g7>N}ZtXY57606zi+Vd_DqLYXSZR3)a0FqMy~aHdKyRS>|8--w8Rov87z6E*)! z{G0Uus>c7`|DAaDS05pQ!6PS11X1GT-DpKgoub{4s}eYPe&7UXPMwI@tfy(Lad4`Y74+<0wj;`K<~}qQvg|dRI`= zKMLugWSHL~!n_0UE{K$ff|&gzi!%3xe%{4Dh`;(M#;hRB^eDx2@HYXn_>(LF|9QJ$ gX1^4eD#Uaoy_>yrQQ|+H>})aq120Hp;FApi03=4>PXGV_ literal 0 HcmV?d00001 diff --git a/Module 3/Notebooks/clinicaltrial.Rdata b/Module 3/Notebooks/clinicaltrial.Rdata new file mode 100644 index 0000000000000000000000000000000000000000..82e9762dc54eff9f67c9859da60f1b137c6bbcf6 GIT binary patch literal 326 zcmV-M0lEGkiwFP!000000}FDAFye~fVqjokVqoHDWME>;Ow3_mU={|70F^NF0%;+zDgko6CTUvOb2!Wd*d z(|@RqOt4VQ%hxN(NG(b%sDz3zJ3ECy6f^(F=R5{Jkn`*xFo1#mWn(a~-#HTmX4yZ6 z@^3=Q7=_Xn)(JXHTVsJR*F zp`4ePn~EM|EGb2$>9E*C^*m>8etwExdSYfCnn9dJ`Q>^r!$1+k)Bq&@|Ns9EM_6&C YB$g!Vr4<3SK*Q@F0KjN<7}Np)0G{=bp8x;= literal 0 HcmV?d00001 diff --git a/Module 3/Notebooks/effort.Rdata b/Module 3/Notebooks/effort.Rdata new file mode 100644 index 0000000000000000000000000000000000000000..daf0cfdda9850ce9acb2fe74b35d8b4d367ddb4f GIT binary patch literal 2785 zcmV<73Lf6AD9vh#_l@YiW{ZCZsX;UH0sv zD-xOzB9bsjvZo=9L=1*pJB=mV*u!LL{B#?C{O)<4_x-%@d(QWJp7YHy#BdlKhXDjz*m*g4dxHHO9UTt)--mn;x1Su=B}Tzh7t($;-0A$g z`6ZS=eq-Oq)ey!=V8el~j&HgM_xpIx?G7;J8o^{cbK4c7WrP9i6`c(w*Tvif?%YLg z=1nYE>a_cc8Z#Fe?~QIMb|miFE4a-bQ+iO}`+cT*EIU^D=SH9LTTc@+T2W=QayJ{R ztz5{kjC_t;nej>VGKw+Dl2yM;V6vwo(oaufbc(9xXK7L?j#QSsY<4B>;*633U&pM7 zpxQGvXtK$oK)MhLr`t0EV)_UiI87pdHT|8Zq(x<-4@iNWCw~Pzd z^hFEpJD?gL7TF6F{Q7`z-duB1A2F+=oRM4)xzwhq_nB{L8_rPD;b%$#KOQ=`(7e!_ z_dGVv)HTX>=vf)x&5}YxJ!1c&LUK=gL96N>D2zWSqc3Q<-b|b84qMNyPb=v$%k6zk zeVsrl(X;Z+?}NJ>n+w$^H9ztbORwjHP>dggw^U)7w7Q)Lsn<;MKRyL6i!MSg7u+bh ze0OyiIk_G2wobA=++`XK(2kb17hUTgWK6Ql+1g>(lzpgTth0hPa^21OfZI!H+1v5`Qa8#B!QDqZQ$;1I1 z+h?9~e$mx9|5H=Fmk&0f7!DF{p9>AeI8jbY+<02Nj;11}O5XHN!b@We%ehZTox>G0 znV30)T{ap)Wf0XmC)X_9!L;vP`{yHh`){&diPld^7GY8m<3;s?BSfOmY!urtoCa=t z%G&yc_!l=-2`G@$Y3!ue`DHv(oEBB=32pA;Trn$!$piT#6|BG5=1n(bF!dBVb+FRD^ahQ9zslOs+w zYHIr}leRD#9vT!QRehljtmn4_v|!_L(;4I-`F_%|{HhtPVxYl7;$tNbJpK-Y@95Qx zwa2$nhEcTdDE^QH&1Za9eGuzFC|bUXe{NQdFegJJ2MoxEg`FXg5`)I_Z9>szzSX>CPF!*#pn$lNT|sZ#Iu>tuz7gyi!nd)tqfCRGY8gJ9LzjMWxNvdU>V4Jlps3isOx0kaK!1-D^^+G{GweDg)`bMUe_9I-%TqrVZt2CZJGVeg& zzNrVGhVjEU1RKCZjaH@ZKB|GWOOyjSC+2OQ*RJ(lkrf9lWlvh(8tIyUrA*n~S%s3M zV}=!mPuFfn4Bo=(jw+)^)oOrZx^Co%TU?m-o&4ffpqnXWOf3vD?+W3G3G>-2D>cN9 zFbo|8ID{-(&MNCvOyP&Q`7Gabq4lj8IPxMu19%;yE|SkfMa+ax(fszuZ^T6uVc*=t zXk%kLEGm9@XjAq}$b-NZc}@K*>Tvmu29I|Q?WyvUA1!8{&yx335XAMqp}h4ELifB| z|DKobq%8$t^PoK@g}&u1{yx8wMnHLi#Tt_WJ|Zzzg(UIHY^YmWcB&T(?B4Of$Y$>Q z@z9f|PAPNSWGQt>FgxHvcA`gV|0xob6YEw+in`lTz+bU>SFWVrO4FpppCoj#-(%6$ zt9s-j?8Nv?99c(Dni!*}P0pBRlqw%xmKz^G16-m^K<_|E8_9XyYfs3lhMvL^s3_+I zO};Sj8slgRe&VAAKU=mX;XBwLO&rw@i+IdK$|(ILMN66}2H3|WhFpAvCp-^>#EQx4 zmW<6*Tihyw1>pW_upmY9WSq%f+9_kUq-uDd;C80wq3ijGe8E-d+m@dQ??DK;Ifj4A zSmjHhL)}#0^lw7SZZZQP|9S@v^Vfipn4Eu7UcPPEC!f8ZTD*ePf3zhI2u-*Q)xmYZ z0U`tWk24KmGQdjUEL>v@*RyMJZGb20Y?Fy)-H7A-Nt=k>bA_F7>u3*!(JvhSx2?9Z zSWGwiAy;9d*A5l^t2JxNoO!JnBaJ71kbSY=Yy6>-3iGmcpIiop7zdAsn+eRFMRW5| z)0n_MX>p^_zcLyrIP5vNL{ociCS{$K*l6EfUgMzb{}bD%XXgAlYw$epEHRM1C?FNL zI{AwK+U^@>+(Vb4jG)WXVdXy<6G=BD>=PkM5{rNo!Gr}zt~=J>8m!AGZO8^*zDe)t zk&>OXIO(L`ZF3vngZ-|Rv`^~R+)2%=qdU(l|CVxpgE+g~mYZP(Hl7ncJM9tu<9&$A zqWc3&)G!gFpq@{KDm~Jxt`7bD$}*mrgp#Wn*Fxsv7=wN$6I=&2yw~irLLJWd8UG-> zn`f^etrZNXwqQ(7*-7G8h6NWl8`&hH{p)ZmwhTJJ#A1a3h1zgk7^;n1F|FdBo>F&y zjq090T>2I-#3iA}sJ3|3b%gik(^95J1daJ+Lpfxi)jSR|!PqN2)sF~>%vQBIbIFL! zo+TMVVPU@}E+pe!L;cz`{!Wejx&k{=sEp25di6!?a@d|B3_?5>kF>%fF;^>`;!c{g zuY(6%`Jlyl8n2Nu)<~0P^SmhSHX5wbyt9)e+4cUb{chtPkA^14!lc<+-;+AU;A+6J z1p;pO+F%Sw=d{^#wb{IHz?m)iYJm-onM*zg?n4@1!ne1;G$x^YJ4Ui=b_KI{^;x1= zwzXe?OO_5YDWxXQy_yx~Y`F>+%Jx77R!o4d# zL>6~fZm|Ld!&G$cTBQ}nE^cg9f7N9b4aTJlE{m2u-CdeG=d=sINmc6Iqh2)aI%}Rz zL1t6Vt8qP*$qh2=3ym^$emilO?QAKb{(7vAPEOvw{r~_I-@iXX z0D${2ICTMkmhN>r4e1o7Q<+XEomzC7Mg8FwdVdXYwEp;>qt6k|bbmS(=yNqXEslKX zyrE0yk^ac`|6ar5W#{SWcUbVyAM@|f#XG>)@2GM1wR3R%kBr0DI|zIv<@zoCee1!& n!S;Xs?LF-Lj{J{?oDO#Wc3>ypL;Yb#`yKxS&&g`!WD5WQBsF(o literal 0 HcmV?d00001 diff --git a/Module 3/Notebooks/parenthood.Rdata b/Module 3/Notebooks/parenthood.Rdata new file mode 100644 index 0000000000000000000000000000000000000000..328e70defc6cd920f4f4e23826e83533e4c46553 GIT binary patch literal 1147 zcmV->1cdt^iwFP!0000016`Ima2!Pxh6l+8wB``nduMiz-IZ46Sit5mhoCV6ACf^U z*|Gp}j4T3XtYd^^2y+ca+V|GMViGF59e{jUk*6E{m=-Z7q?-u=Zi zzqQYIrjeK}nmX<3FoLD2{$`)wO@nrI#;MExX!4lwAN%4n<1w!9+rWVdo#Zjii^*f$ z?bI&dSmanu!hK~z#&fA#{#@xlpUwmNlg@~GigxJ#ZE8H9^cI;XkGg!W`-!`P32r8i zOqfh(O!H2fr+{(G^cOOYPrcIJ;yJ?~QvVI=ZYuxGU&MGd>S!ji4x45Y?xb--lu(&{(a`DOncR%&b)e@m$^USevkXZpVIlTPV}QX zl$h@#^Q^pk)a5JR^Qr$T{Z@GH2KTwtQ=$J7*UPL^K!0WKm;ZXIdw5Se)YGLt)w_Kx z)!!bZ^((O+oj=pK;n%De<9YJKvBtOo{Z^<~_0@f=({76KDy(ON^=+$yI?f zA?mHGUaG6^vF6GP=Uv8|;9UKudB}XW=x1F0%Km75ljgI=eUr>@m%lSz_Qe$Yp~7>z zx`)ie1mm=MKc?Hfe>{)&ms$Uiab5bKJf7-{dTAci?;iEaev0+0^ZpfhFO}bjb?$O( zQIGCJ#JaXw_x7jh`Z)8iK5Fs&9`~ufE!IEe*kNBp>?fTkR6VKB<=Eo+I@BNinx0dA z;PQMf^I4-m^+lxmQ)iVrbsksuOLl4ghWBKiI^N=VmU)`vxUiRwi+q22khRy?&)F>) z&U1biIPdE{$J6pR$i|uD`rCu7Kk1fU#XX~VIh~6CX6_tIoX>K8F1Jr{mrYjR{2&`o z_9t`xPdQnA^EvxI=O?6J>-jnLD^JS9ncO(c^Ilf(f|H$V9OhTLovgj;s4;);CF#n= zmw(kq=h1t`)jq{nzRq%7-pjt1F6odT<#$Q`aypeS)myqx<#f(v?eX9f&B1qA@^xmv z(vr_La1h)J?gRHb{Bi?_zysW8@7Tj&96SOhfc>5;fikFoDyRYb%g_M!m%#%~;DZ2! zAOiNQqYXM>5=?{ICui|z?0x9@H99Aj)G^vv*0=KJU9kk055`V^Rur+=7XE@<&9k?`T!Tl*5l3I?xl^5ZB=J2Ub~uE zNlZT8`TVjLM%Ux3Ip1SDTVM3#-xhUbfIs{D``_n9T(}hPO2qJ6em%Yt_b%>WKW6_~ N{s&9Z2~YtH004%tc{Kn4 literal 0 HcmV?d00001 diff --git a/Module 3/Notebooks/parenthood2.Rdata b/Module 3/Notebooks/parenthood2.Rdata new file mode 100644 index 0000000000000000000000000000000000000000..445b8eceda00bdc75296ab45aeffb6dc62558b2b GIT binary patch literal 1154 zcmV-|1bzD-iwFP!000003uTr$a2!PxhQ})#&^^y7;CRQjm+j-L2b`Scrx+Hs^}Cw)|KE`5}@ zY3w4lCAPKH-Ipph{=T}SSKa$Vwx1{Z&zOG1{X}PzdP=(K|E=mgpXev! zyPQs_I{ka}>zj2Fmwc-tu8-LUCN9~0$UFtyKV+OLw3mFijH}Onh53)T-sk%GC)4-L z`7%F}hce?`Vw@%Jeoj|BXZEj|eY5cf*Ll=arOvV$-#s_;U!gAUuUw;B?n!3fr9R1b z`-sU;duZ}kW+~CO-zxP=e&xQow40#6D(j%Z{I;czIPP-1 z^@s5@M!l}&i+Ks<9_Q{&l;Ss$%$?0g+$e7k(lbXgY@tcNPk z>B&809LDLV&HFLg=KbS&xPG@TY`?qp)iZIBdiSZ9_G*Ipb9w)Yyq6N+CiC27+oB%1 z4^8H^&AhiiNyjt)9nQDR`Ll7!Z;Sbl*>+eLP1chq?@P(2(Uw6K4r(P$vTawv&KBhc|5*X8e(VSm;FDPW4zvEdy;XQ9ojk z78LumU*P-#`+b>bdqQ*!Z9lUde`{#(C%Q%NVos0vk#mXvH*)7#Vts@f{zO-3d_g|w^LWHu5z6@oi$wn`WEO6 zoCK%9X>bNCgSWvu;9al+-UIK055R{Y0juDw$%pmHyl*|Zu(r)W@8#g=AX)EipI=+s zlEuajCB;%8@P=exX!v*(j-5g~)cL2@za Uo!i2C^#0ZS2cFcI0s;&G0Qj(Q>i_@% literal 0 HcmV?d00001 From dc055f54b26711e6b88f57cd2e736e0c690642f9 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Tue, 31 Aug 2021 09:08:10 +0530 Subject: [PATCH 02/55] Added dice rolling pic --- .../Notebooks/dice rolling probability.png | Bin 0 -> 338458 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 Module 3/Notebooks/dice rolling probability.png diff --git a/Module 3/Notebooks/dice rolling probability.png b/Module 3/Notebooks/dice rolling probability.png new file mode 100644 index 0000000000000000000000000000000000000000..25c5420aaef674b1aade0fc46d2582dbe55b4bab GIT binary patch literal 338458 zcmeFZg;&?UCw{({v0xAz8-QA(2fFOu;cXuNa(jYB}sFZ|+q_m*Yp_Fv@Z*k5Y zcZ~Zx-@o9FGX{=#_`E*weD+>@t~uwLn8T<#?MN3`^scMjR4gP{=EvYJrgjAD&d+`(<{*LXa@Yn?jiAVY75As{l*EjEA za+Ni3m3Dsi)YZnpo>9l<HIn|Krbi#57g$pWc9#lenq- zKR*$?qTX{<{y(1rUg5Cx(fv$SH0)qd`Ek?NZVlEG*#EW6m{K1<)?q$3C}H%!mCkmINQ zj%RE}i%ySQul{h3|=tf`BgE-&|{98bFt%2TmkKX@@wY5SwxW6sY*r5dqvcDNBiK-cKHmh6xw z6mRB!JQpC&<~>@Z_!ci-^!eWD{z?M9=-K&p>v?sya}?pD9f{XGkLi7PB;D?+HTa(H z)mU`P8swoBbKcDm zfS{xl=}Thih6i?V)4-zq<3mV`n0KvB*In$4s>$}*Zq{cY32nuGzMUax9ZxGZgtG!YO?!7fG##vs2|n{v zaFj4(K4tAhyp`8cO1qO?aZqL46h1JNEwW<76Hl~-Z7az^=F7NQYdu6S?oa#HP3|ay z-aFEJx#fII8xx%=N0P92<@{i+)?rTU**vYJ4J_TSQq97=EK>16!mq{%IxIyp0@gb? zM0gS9UfuC@<+fIyGR=Ldw}oE*epN1i7{!t}Fx%{tO&}O=W^1&XBu}3oxF>8#K*CAL zAQsEu{*WlxCminE>0^54)RF65FOv|)OCL+)z>!YC8=1VFL=89jhS5(I{ zi07OXW${Ewbw!g$;M2(I;Nm>l4Wa&VyZVd3({?m+ZQ=IPQVUE1T7{n22u&y1y}wM- z;dZlMgsb@EmAZ>E@7ZWo88zh5xJaRC81or7x(=lCr`<8e>7zl?Y(4$^=5ejnkIi~Z zSTci&*Sv;VYsv*OQBajXKH6yetqxj1*^U*f7Gk*IaCmG@r%NxihaEDBb3T7Otyw5% z-0c0Mq5kGL?Q{^bamA*KUthRvO*hm(E@5d`CFj;z{WNK!{F*02doS2gL|P+VJm6|) zp~G#8aM5QlOL)%z{H3j@-|FWDDA3EZLzZ~NCb9UhDr1r0NPA2HxAk$w6n0JVjU!c0 z$`rq=)0O?@UMT6R#Jz>hj1xGYL_<-lu&`08lzb+x--^F@?TelNt3BQOGZt}y@Z4eK z+SvQkA0pS^M8c||Q7DH$>xs$k$;13KO!lLA%T7OEt64rLZ!tBidnT*hcFTFy+EWzC z$QM^9ON3ezX{P=ei{sYw7yQo4J>G}w=rb-1BJTfUZwcNpZJ{mdWz}R;dd1lAJx8=j zj7;?Xha6EK_qEY34~|S0&+@M!n3TLvbT%8lp`X+lH@UlQOsLK03 zWSNt@|6%6+(+;6IUzg<`;*vS``Z`#5sW6R2-aj%Pfo(EZ_9_JnbA9Oh4j->m3Jfh-`ABxZ29svxX=_Cq)C z2GrtFkIa}>N!#w#E19|aWbuK%dGflz5eQ8JIO?WwqwcZkG}wq`2e zpnLc1H>~7TJo!{!anLhbqLLvc;~t&ec03?BRL{PCZCCo{4ir=Xo}@Xp`T5Z%E4NNs zqaSHe8p6qZnsPyxfduUOrRAGb{KC)UvOyWYrPn)b1;3^9W?DSB#NLVGxTWA z{t2(FjlMmUKyBElYHGRIQ=S=;%oX!fY3hO+FsLyP+wy3VA~OB>oY=|taQ#P7+1Yd7 z-CmB|BBfNN{@aNkp7oPVxV1`remP~;$nf>am;FHzk0-(1zP$yQg!C6P9&_1Zeoq+g zJN_NWpcnP7_y3Kg%lG8tDpZl1zGS576|@sT7oBn)#TUz}(PUhUnZ$0Jzke+IznH9Q ze%gUC!&iPcHjYN9SUFA2lncYI&hrXOz_Qmyl!KF=#NPR;Z0LUXJttCF3b zZvf5z4rUu3W1-c=(uwGKkfWiJrLQB8LEj9Eodk5{CqGH=$TphSR`B2LqAW&fg~x>2 z7&ms{s4{7O_cVT!cFcYPI*JPB%%S_Awjk7waC{m;tAXAW zsLYe#9hu;W&`)1b)@GWH8(dagCnccYS)T=ZhT)LE<}6w-?>pc+dfAeUEp_qgirs7Dxs3FE0IgP7!J+MZ@!Pl~3^}p5ZZwWxbbtS3%gte`FmHIz>S-_|g4!T0#8flidfgt#t0akqQpv%qEg2 zhGrhgb+t^_M^g@Pys7xjWuQX8#opTA9}?FdTAf_PZSu9ZUYlWmZ^@yalf`c#2Rnau zyxnR)(+JDIHpwhyd1qQ`cosfNrE!y9ox>A_N!&jT)T) z9Bxb=<_Dk+j09wwVAZuc$~yr)`TjXi*dRt2aoZCjLK&% zbq$=*4#WX}Tl~(G-@SYCX&p-bEbL^_fwy@obS~hU?)biCPa;52JdMy6Aog|KscLi2 z`|3!>>0S_4W=kLy86;i*{j8x8vLBDI*D92YgASgV!y3&1Cn7*}uZION3g0{4Ze=i= zMLzzEOIilx>8+8ESxAm(c z&q+cNQWu40A)(Gto=e>cglDYJq2cBD?kP?(I3!qa0pWmeS)!OCSLXm7NN02oFjckg zzg6x)&t}e429T6HCSOis_*zy+3cHIGQviUO-yjEwDD>Ca&pdQqR-ka2ZwoT~Y}ep_ z*?3GNYM$S|iSf`28Y3}_+`nJ7@(hiNz!%|gcpA>cej8SL&2ze1n1B&y3#|*jdyDVs z2YcLLq7L8$e}{6fe_7`q{`=(ut(ZeCE3uR1NP)BUyJWA&=I{GA`1tAS^1Rx#^$OPX zgKdBaG*&?<75~dKKR7x!&AUwO<2wHz3N$7o(9(CMh?*T2+9yo|{C4Ig{Z`olCHqo1 zhTdJSmIt5R)h<>^5Ist_p9{51Pht@D)=4(|FTF0sjJ~qj3mEgjej4F>vI96(Y8sFj zv2q1Z@4Vc!-LmncLLZI>1)s?URKY4G+JXb_tPMPop!MMR<{MU(^!Km}bw@(3Mv7U8 z-K7L^dYyLDR)4>P)sd+>hwIDZxkDz&`r5CY6TkpmS2aiyZkB7NNxzci$#hWf(cE)~ zz40>bu@d#`gE95qiND|9c_x@<@qsu zqxbMBp?WS3CruAW45R;8rA$XSqt^fxDE2wtf)x|?zwjJRTlAEn4M`{nim*c;neZ1VcQX$PrMeq_?*1yb+(yp={2MHk)k5 zis4|d76vnR@`E6uI)#r4wX*8l_{in&0GvGhvxYH4tWzbRZ~H4l)l)(Z?wiz034a_s zx|4zA3qc=O;IXJw%oV$2NqDq3A40gUja&0g%g4|p+S)$l>5WeEz^YS6)Ag6ne4+!l+x5F%qw7^-3-{PF>+MFfTHB(={FeN;Far z=##qFTv+}WSLfS0vCTfm?qb!Gd6FUD;%MgdrYb;WU9XLm03$9ZoLPpm8HP(an0bFg z^mw|EQ1%V9qNK13Xupk{n5fE0%(5F3?<#c4w7z)mCf7)3=bL>E1`uo#?LTa#1j!fx z8+`%5V+AkPp)MQ2LB0XDSto3E44#UX&kPA-XU~BN?E#N%n)RwQth3+z{i({7DIHo0 zbm^xvjho$Y#@qp@J$KDlC>6{_6q8wPet+b;UYC|izgQ8!W_pNd{V5S7`Qx48G1LQv z5Zgs_n=vqcFW6gnyRpYiD!XcCNv{9Hr|qFig*>wpRz-*X{BIO{eeyz_) zep_zF8M=Y_K^?3#MlN$e(W`-CZnkgqKIG=Y zNzJ49$WYH0%oDI$70h_T=tYjkF;2fZRX6!$5tDop%mn$Yu}gcx9%sFGPh>w17akN! zhG0YxG8BhwQR^Z$fo5m5UX(MA^}P|=9umJ+QD>#_iA-|3mn1^O>IGaR2DFr8h$}O$CK~F8OPnfoehgmA zNw6d4Yk6~K?3~11P0($}T;&mfpRjgg@U#9-{Zl1>esytb{XH`*eys{aLwFCFt^kE8 zk$BLxRfI5$!>v*A3w+p)PwQ26q`+(F?mbWBiu+oaY0ozwGaL%|yzz$+O||}Axz%FY zhCSOy`VCK~qc?VOM&^Swll8esLFN(s+q#^Z;xb1ycl3xCiv>4gZ@yNyK&q z$oGcX3{Ihat^;R-DDhgC_;MRXP0HsP`%h6jLw|v6WP`T`Hl5o!`|4AWq>EcGQVOJg zf3z_USY3hUZPeuc?kwGtEdQ@os-40C&A>1wcF4Meq>|ObM6h2H;VKb1R?xs6+s|vy z_uobO9%b-kCbBA$G+zYeVSBu~*DkB5j@uukz!y(+%!WnG7*;xu^6W=2I_}ZGUxict z&~e$l_Lgg~Ep9;i8VD+ox=m;SP<1P&S64tierT^WYM(qhnGgBXms*%P3N7pSj#2&2 z=v(DR-jkq#q({nat(7ri>-ZEKaBM6$1JUu1H*11koQBgWe~NnHtJSD0{U^FbHymNi zbN{g$Z@`#d!tuJ=F1nb~hnHca$P>Zjn*GGN6YC){+=dz*kt{Cr+|TQ^v6o!?l-iBb z`jG=VOKK{(y31_j=|T&`-?377oXvM|u(=7Ru;@d+WPu;gg$UpaGkv7I>IntamO;as=#o{q<7?fE%$DOmv3hYONLSwlZKEJ-E8DX z`jWL~LDi|!Co18)bbbdD3p7J>viQvN?vAF>Q}VylTX7ih*tclQ965FZt{1o&Dzgjy0Fq z6cXpZVlpfzKtUsd2{&KPegU!7H<&#RhAwEUO6b&@*N>3@hEzUuU7bHuG%bG3p-ykR zU4La25H6|G===v~5AO+eCShmZ6n}Pa>`<!F;t;%6PL15#yijhuOcJx0d_ z==v+6K=54R^46nxQ`#9H%F(mhs`Yq!rctAQ2jU4vZ8Sd%n;nN{fs9f+IA4d9#3fQi z7Zp?fj@azvUmc>Jn%X)ArLf#SWb3Hp2~nX!Ez!Mx$e^@CFuF8ggno#6HUDG)J!M7r z4yKamiGJCwYi|!m5KWJ-uP(vmtb}uL$M_6t9RzNp{rOiEU>foI*|UK^dZ8IjH@Nt< zt_2%VJ)l^A$bH80_Pr6Nci2GoH>|8UbbPIU^??<&v?`{lU;8cvx`8sLg=yR-vDhUP zq}tXioPPukyWgKweOHmhZhD`88`Z69ZyvnM6r*nc@guF5Q*;4KN&=sV=Wn3#@Ie)c z8X|vG^lh|JJh8xw0}UHSNAlub6XPH)E3Pwu`Y9>_5XLxvlOG@pw!ENLn_@c47 zq>YX26ETlV**XTCx)2$_%xZ=`$%}i*Q*~-2!%Jq#(b$Jd+ev~2NcDx@8Zl@S2&-Ck zB2qgw6xjGXdy3jP_{RmFh)agDHV_d=8f)HSpIqdQRKV`@;C%>Y!40?9R}Dzi1^0|Y zB|Y(u@k2k(L5ZBmFl0fyw?mwQx2ts0_)!DSRjgn&d7ped0q&(U#y~+$`5TDs3_<88 z2}UEex=XVbo>F;y&G5X={?G;@Ai8L!kHdg6UCxzcaBk)-b4&Iyb;DFwklaA}qFF1pw z&Y`E7MRm|Y;k*hSN1%xdN|(bwxQ!aPq^<5X3x||oBbY^gi@9) zRW7D>9r-}P(vRP{+$G5B2?Fl#U|CClHpt>LGWS@0PmN?QiELi*r{f+AqP0BGsB7?F zV!C~2o0*0Vh3L2Bt6*K}+|-56qQ6+?G% z1e~f8M~N1?DMO&yI@-bp*R0VjSKMD)OJ&d$$Dws>jF;8EoOz`1ubgXlM zv*$yMpdIYR4hik}f*`m4%e~I_*Z(2LI1NXya=i@W-#rh7fQq7s)mI1a$;cU*U(+9T z^$4S;<$w(j(;K6JpJJvhzR>^nuHU&9hxB4TW)?J8IB_gVF1^CjsuNu@I1X|wOC_sSX=?9alOr#$CXO4coQ6G57$WKC; z%3c|+A?1bI9tJ&rFUK?#D`a-25}i{yFF5q5*0PsGt-|!E&};uMkWBSlv1a>jl`Q3x z5?d@HegU-=x75MX&eRxzs}yj@gk3Ne9MNpLR~_2H0DF(dzkP!1J^J;26iTt8wSL#e zT&s8ua5)R8S)j_1?a*qqRqq6`>bAsjCi13fJH6h$NcCh>8wh(;l@y%9XyU64aNk=1PenQW@tL?CE7xz^`9N)w$4aP*c}Z)okA-a20`wB zw#H#A?EGAc^4BAi)c5&X_l&r&Vg$7jFb?BV&v^uXC!is(nqF=XDq0{3o08p3Bl%o8 zVOQXbEl|__uX%eD5Ar#KBBkuBZ`>OYJZBoy5_!LyJhs6*CgRx}m$xv-3+4r5e0QtO?Tqi|&ti<}|#t1q;N+NWU zt&$>=`V3NK;EfQUF#n5VIOL8tmk&@Y#jK@&>4=pie2YzCzeUKRFF#Dt_XaSk+Ngnq z_o2^GCG~?evt^^0+Z1<<(kocj^L~FrTaQ3PFd_dC&(P3^NAvCECfXN*kkhRbIlsh-7~L(!G0FU9Ms0VA=%kh+T^csu`wqlBt!1u9PuAD6 zd>!ugl|&a?QclW#d92EHZIu5~p23fdrhB%TN4s;X0%ov(bW^L(JDy;^tp4CwYxP~q zXz&92nS{Bz_@ygIf(zb$6qmUV&tlGOKjqaqK3ERaV{zwmNx)+b*qRnTAQgG0Rc~5^ zoQ`K(=Io@0cF59f1%_8o5Id{#>wzV-AZ5>K6WJ?7mMZ^zAr+NujF#QEKpmGqePKgi zowO4S!`O%S9?A4l?md}N{SnNy*--DY!FZJf|RhBe_3xxzG0A_#mBM>kppOWgcd z*TD6S$o_OsJBF7}|IsZDPpl~$$Pi?C`X`Mj(gWKo7R9hwf;t3)dWca6tNzD=Xzm6T(J*&4^1I++-j@*fijuX)qr$QZzRkEH;UjuRF(_RSxrUA%#P6cU-ZP5UOooPP z(Euzj&M}LF>D+cW4|#Dk!u-gANMts7(3MKe7hy3^c)6#V$mFF4zG6o96PdF-e_AF( z4L>Al2~r{vr43q+NpP+2kdC}0oX6KNqeYj(xRUVEt+#v@MR&rsXUMA39w;b}{9Z(_ z?|g=$SbARCCrVYazf(C~8o=M}{Q6Sdo7v3(owlmfyN-Pzhs#*6;wePHVrqO;FB<=MBPOl zO>8%e?MM3qf`I38-LB{C(61M#99q8%J4D6L>}~2!P+AlXvSBcJ#U`yH{jA(;Q^3d| zjqEKn+IYt2NIuxxdy6nX=&%dDro~hLj!Z%DJ`-R2N~sEoN09!(mahs?=B^LIdYbDO z@mB)z!VCJU)WkSue$~{w6#_wd;dA>`&jZVn=%LSuKL1F|k*94cNE!OgcXtJB2`g5- zkXV#o&P<)kN{WGnYEN0KluC51N69pTchk|iISPXw~|4s`rb*Ijb-Pn9aZ2P9)s{T>^>?3zJCARP2Em;SZfWl9p2y zk@3{g7aY%dhtaOyY2>5)qAboQ$TYL#K|?KWlrJ-&q(Bc_S(d=mLu)qQAq%n9#3J(K z)(OU&{=oTs1kA-GjM{lton50YVfj3=c5xQk`_5#9A@2-om|LXWknmgpVh!H5{vKnn zkSuzY8;j3tj&pMQRynP}s;>`0ZgyxCoW!E&hH=jq@RwCH3)y_|m~uVKD7&cVQ{K*p z<~~J)c*RhlVsqrbzLdLCtWn{lt~%>oXXWF{xy)psS~|Zjsz8-s#r;~iofsl!i4@i; zU66ILDefd8kX0lXM=i!wYZB=PQ_%w%Y9nf6H~hjr#pz%98WdFN+= zEbco7|9N}rd(Q&}M=u{q%qWbiP)JEIi-oCtChK%7*d9|C7X?3`nR!GicM!F@<*fY0 zf+UHGShuzBHzi5_8H!@g4VxV1#k4m8uqlb}Ul`3pIGmE=6RlmuKHG5ZAzady(o( z>7DTIEx>3*Z)TX8`y;sBDeRe56;?{QFh&(r<9pJ#0}i3ow_B|D+}!THwlnm=4}BE% zB{ybWXc{d^Y`2qCM~u}{M;nqxtTn&5ti83kZ-)Ctsq3MvX;2ECNL)qN8 zb&Au(uf(!5kWn!bt=5Dv+r3~AQ*w?jRq%~1v2|-5QyMZ6B9F7Ts0*jI!3#~K<{U;l zaDm)OxzRDo)&6GPT=9;C{^4W$_FoEe{P;8Xf9GW^SAy-eJzhpiE@JV%8h0sw+8kXo z5Qe3>A|CNPM!EesxW}g}xf`{JHU@Ka1@g(`ANr67BeLy)#gH-VRb5ZxNCmyWi3SU))!Vk}8X`(UwHdMne!<{VbGEcyE52 zI$6ZS-Va9{L6cS}_e`g;0+pGpOR!IZF0$}1uXi3nA{DNT?94}-v0t^;O9LIojOh1C zx~6CxzDRmmH9Y!ydJV)C_h(5!qO@j;6P(_3t(4VAC?U=$R=VU&5+1&qxQhKYv7f-D?~ z{B*SQ!}-!&YsMT>UZ&ufG7lc650T$w9k7P0Mk@fHj;b2bC4bF9fW>cABC@EI85f3n zx&!z_-^|jR{C^=w$ED5l&UPHbU}eahDKzh?OK2ydF7{ebhL{b_S?|5WHxBK@<2Eq< zykg1EV38-FP%s|(7)f-Gdr-~}2Pdt57;Jp5XJeP<8V)ix9es7`*$-vQ9*;gj zuQvCPactiJQmmFMwmEX2DUMFWozcCdlj^}8O*fYEWHNq{(f-iC5km-U>6`9qgZ+0~ z)Es9dEQ^Rx4&yE5Uv?f^|8JI8S44e}l`cO^aE?8&`9KSo_j$#J#mb*enX36Y6ou~8kZmoBpK7_&MJy8Q7+>J2AfBJs? zibs~y>(zDhU&gynb@_lij}~GcVUquDaN%fh1sxFqnox|J}jEHqB4MqwNa$ro~6+^jnw3#|s0pJC}tfegM7L~c>Xkq$S zo{89`bi-(VK-_rCqOt}}u_t_j)B|C3*A|LRdNYWJp{Brtu{JWJq%JnWWfDs)%NO*A zDfX6(;|MgC2|9*nt%-z)w;lsr5cx&d$Bhl!oToG+CN-l!Rqw51o#=N4zhdkc5 zj70bQ#%e6&M~!EL9Wn5!JNMSoE+w!bF|r)s^Od3effjX95m_5%$zoit?_N|u-#VJp z!tBim0i1X(=CJ8VT}La5umjZdXCGc0-g?zhFOpmEWEzDJ{jKdQP1c`hGW>ZJAUhV< z8@2KJigz}jQ?3WuJc0mNG0lAth7g28AJyaNT+1KG8onM4JU~b-SS6dZ`d=ba#T*z} z*E5d4TfGkmf~V6S1^~_4**P=fPuw8Mx$xmeB(tkh zztTJ2N4gzv*cQV77g8XPzZFY#I1#++SiJxbN5eRQK2{(oNO-$_WI41*@qh{KuJ)oC zC>5;5FGbbsNO5dW+m!RFX1f`u7a+|+ghY?&kqdFNP5q0u^F+Zl|NJ&&Vq8o-Dv9AP z+zste)T-RblLTN`h;{3i+s9oEi<6uk=Xk^ z73aKyNnLN}Ee^>vW}{X!^o7aF$0;ABXB3w=VVdH3c{r(EqV`?6G38c)RffPbtOCmd z+t4ba7m7WJ$^LH`IB8@l{S>^hQe>Pa?bSwMJ`cdAK@~CZ?-tG3zc0cl14%zy!PT9) zPqe-d5_P>QXuQh!9Ap9vt!3DF8u<2XW*YAcr##G8GCg<^RHTxToMqrv8%R%bsCfBC z$U&{;?cBdx-=tqF_N~5szVal}9+FZpAm=b0DZwJ$O9dzY=CpZK{FVWAVd}dpD^;gn zlcyj#Re@-RVVl9xN@BSmO&bGFI?ONEJTQV^*p8QK(rylyde?(oX><- zb9<&~vVZ2@2e1Ak?mw7ngb6{(K68gEX?N)8tzgfYcqt7&z-q+Z68!eDVi}#AO~C4d z`?e5K!=0#e;A5Kp%J;WI$@A$UMVKHe_NNwtG?SdM`d^te>a`q}hjL9B+*m-z*B64C zS$Aj5!X!+=yH3#G{!knc(?~DMH*13=L<7Zss2#r-YwH@B#l3it$bU+Nh<5|U+vJv_IQ18 zLGtH}33M6`!d=s02LBT#_?8RdtmqV!WQ!RrCgb;e7f2ujxGVa}DkAGOZ6IsPV?+DO z`r!5@AMi@l-jN9eAs2luX!8F_Aj@`KNO(#^-j|{-wl?vlEzxFD4ff=?Kmjg;PEjep=fkcI6Qm>n<`tqWl$GfJZTRl|{d@MiqX?Rn)mNac_srIdLw z$a;e9R4;bRESRfAJvT>(qRu8N74iZs6C1~&sN}nE99nK!3P8R>GQ%xFBE2aMg#nAm zk_=iaOM7ExIr^UAD7F9^8ohwD#AmXT<^6G|1vxo}o8-%lvFCg0JU5$uyUyK*oV*~G z`|*dOKPGYFtK!($ihNuf^It=ZS?-h6+Ep(y^t7n-%bQ#LGGQBQTU(eFrNC0tP^(hI zhzS_uzz^Ny02g<`HjNofr~d+F#!$!+ucuwMVf3fo?ly{qEi?$aTgKn2c8)i9=j|Fc= z{gVlgki)~(v3{F$p|7QNlt6ys)et}}BSX2xr86ViBIGL+j%y1R>Hfk%aTCj)X7Paf zfn8+BvDOmO3{`psVfVGgVG%OKr6u@{9BR|sE)?mRJ>!+?QKO0$$*;a9;=P=%-#yt~ zg1kqAER397S;!EpkfB6xZ!jvr?K~HK zUw74=Q6~7taBGCjR?5K>hEKseTzp(tTvCzK7yWZOzn6u+6p3UoxkBqIhv_fy-j&U> zQkvLbI!iN<2(VNZ^*+c;mSM^W^ZyFbeEFV9ap-AazE1JsQ{+E3`Oubr%N7{fc%9a2 zA%Rx0iel!f^2xtRoX4oO%$!F+yyif2aF=4e$~r7?W~rtYvZtjsr@UWw3edYcu&5=z zQTVidG!~NOJc)Rz6&r<`U3YW?67Sk*gGyGtgc((g^nO9m!70T2{I5=}VYp%W3fD`0 zvDpRON61q&AJ6*0r2fABSYgdcUf@?z_w8A_gt!_*ok?7y?98CAH<41msRT;S$E|1U zxA$g%iT&nH+pnbsQ(MrM>==2*6 ze%g{nwgOM46Y?+1fSSZWQemFqi9O!iR3Rz!9%YfP7WWnknSuq3-#fb@@g4u0tEfNj zA)XmHDh3Sw(eZ1AdXDGd>(GgM-?M6h+X#G4zoNRNnbF27jBuIM)9)fPL8lQg$Mgq2 zccXyjiSMZ{)x{2@Y-_E4CjSxlMPIc39YLd3z2gEb_ZiKrH4=Wx1j}Ve7-imnK{1#T z`EN#9+%6b=o>(@@_ zfA8UPUO;@f$H7Y^Bd0YEb*3J^m2-2NF9hd763Wxux4$G#g?8Q9gR&= z_8sE@EvOfAXlkfJvT9*tES41<$_Ka$A%e^6GK~=GG$f0)hwLY7-GN7r(ohn;x0uUc z6&$V0V9feeD0C`uDaIE9Uj7MAol$FXuWQl6l=X)b!8~s{`u&2{*m9)UvKMWQZ4K?$ z?{t0(&YevM`Jgg382=heY1JoEmYa`_E9q zc+oY{sM`&B`d5JorM1rG~&hiuucD@V-r_Pqy-OcJ6IeFm_6{T84lugWFP$ z&sLdfYm3AF8=)sv=3c!hSES;1fht3wreXHj9i4{hPKqaTL*8PSLvh;gnJ6m)wZWaU$)$sqrAvIwk8`R2F(U5I!ESxn(J zG*xlW9WxwMzaAyH?E@*Mzp-~tJPtQG8~wT^ge4i7+%)DQ@)Eo)Kr8SpLT0$PU$N)Q zc-+;$-=AU(>ZdllufIs#5xE!s9!J3}t8@;UU+-I%JA}+3{MvW4UjKY1+mH@n;P+ye zRtu1dg`kN2TubxucM|=h&8cJ19IDw5e|*3#z=?%%gf9eO&NO)1Sh-w(l%yTx8=}$Q zM30JBn0r^!tJ4JNg+94$=uLJ@)}vi%`yI!Nk+IctX54P@SLmvBfdKj7K1B3LQOvbT z7#_NoLWlK?egA+F8T;mz17spkAmho)o&VrO{PIBio;*V|nVf>-S1ZWwlW1W>%2xz( zsmadaC4^zvRd$f024Q&bWn08Do1Q&uz3%J$rn%TDutdl$%dn?qH{3! zM~DvR8^pXxC-)HMD%R3ho_5O)xdi@A5YSM(Xh9Wj>_D9+{tdCnV|a#D=^SCdvwNx6 zkTdRaX6dhAj4#FIen9lQlAl^4&#uSw@K8unz1)NMr6D4-8@ z`o5N}TOvM}UFvyj1Q9oY{Gw{&WlvakQswZU(t4Hk&-dDZJK9B^B2)X_qqXn6ct7}} zx>>Gh#}k7LJK^~68wV}kZ{LhH=#$@SvsXU(#J$)w04;;BTsFx*AcqSs=A~;5d)OP- zI|kj2IN;iV45=WPf*9^SC)#ay z7K{s2D4VL#=c{^4*cA+0l{}NAm!ajPBP4K{z}C3|K$5(tsS>8kj%0oT0kz>a$2ltg zNG#bu1@waWxT}QrI7@$Yc70t2F#qP!Q&NfhfBExNppi{2s~(hDBb^Y)+CV8Q7*j5M zdt4-6^n9|4j=P93Y{)c+nE>S%Zw(hI);dTRhz8%>Ic#2Gt;%bJ7;90R{@g%iLO6E2 zFfcc;kA>CICS-c(A9*^~*HMOw5W(f@tAHJmajPm1|7*zH!$%)He4`UG&kDvTtB3I4 zBk4skEbgo^kHWroKs|-9D9gr|e;{Y@z%S;ZB7I5p%B$diH&>-1nIF&sNdTI{ql%`P zA{9TL^=EkV4P(HVRkAp1(#zi;^XZq?&ouCCPyb~gXFMb)+s5}uLq`ZYuwKUTgkQor zTg8*j>sH^8!?h)G3(&5csXyOpilN}O{k@MxX{97A(-@nxDqRzJ?|Ek=F`N*W=FP}6 z%_m?EurJGFh-N+*0F45p%9_esMo&M^Zle1^PDc+g$XJ*9k7=z{TpGtC$DE?TssuOj zgJEe1dB$A&)iG)Wf{mHt>OAvPM2Ny1@~Sr!U(vGDx^VVqgNt<{4wC_G{EP)sf#G{I zt0;PnQ;%4UU~$%yxo&F4I+h9je6T3+~?14q+1G;2`PRIT%)m#9f+i!>gTYC zH1Bk+TD8@H>pT(_*@Q898Ckhntji`z#^#kL#j0;i0xk~|o7Q4Ut@psb49_AF}^T@4$SBlGg@2(9|{J>4!+Ko0@jbn*a16SXNzKL z4u=)V-XfO?e4{dE!gb&I!Rk|`nXcQP!jWJvgQI4qK9CT%=8l(MLivvIEp*C5xQg{i zOg+}2mwsP*8))#;Ki~*fVQ-2jgWIq1fMgy%mq{nVD{Sy5J_O8Ce$OYo#p6{eX4$rt zsH-;tR~8_kzaee4s`C33AY1;z&HPGZWa+rkeN!oj;ny!jN4?V$mOGvbgL6nU_C@Ow zu`X-3wyAI-;jQ<|gewVSkj$%l?BvHuJs(QmNcRFH%{kbZVor-P|Mo{iFbTC}O52CT-9+t#n^#l1$qK{0~-C9vhk4^VBtV1anGw ze=+aE*^~C;OoUnJ8`^U?TkP`aSB$Fnd5JO;HeI)8XLJN)G<}RUZ6Cb+eb48+)FW<4 zp+dUARm8rnvQ$0fNY8k32AlLNvOffX=$9%}5F~CFQ?IbuJ;9NHO@nJO;+z>#cy>n+ zbZPTU=(;dU1K9wXT3Rrgq@Ba*`D7_z{+?hfI(_N6pw^)sNVY}fpK$8uP|h`Tgj$j! z=I1?GEkGC?obu%q$X`_p;kE2PFhSkmwy*QbpsHpXTtUjjCS_k{o9RU!iD~T0iM)-~ zTRi6lYLV7O=tv798Pk2_UW<|L_5w8Fe#dMFAVQf$2 z4~Lf5rW5d{r^m0(PcsCQ-jfmh3Ai9;wJ89XiXdg#pRMgoxu}7b;K6UFWOSXNDWGtV z1F{WZvZ;_~IFF#rLjYeSx}|^^sJwPM5GCsxdxQc8~e;6g`{A&l9Q3m=Yc3@>`*43DWl8J z7DuUk;Cc_wTgp=WbKoeCxM?0dN7r0}`@fKRyG?*u5=8R5SyWH_HpZkO5~aC+TZdan z?h7ZYk5zE33?`(Ye^#8{T--!$Zmt!47g}Rl7xLIL(jGu@<9GoyxOk|J>-G{!z04n~ z$M$30V-0-(&@}=w?+CrZ>$1fBe%tfmVKA+He?!T{;$^Ed$)Hp;P%N{%x7kP5QK9$F z89zJnqf8XZPlEQz2y+R+vL{>?cWM1NiOz0rxPOaF(I<+<;#2?!{b53IZGH;elC2eS zQE@ogSy+8%Lnka86P&Q<%zY`LVGuea*~P_q3d1L^pFC_2kNO#Jl}GxT^Uojk3vw-dK?4qM*;)4w8)K89V0zSn6(Dy^wAaBJvWxz;r?WJI~0reCnLlZU`1Vt4x2ZNsj*@{kHy{ ze@RAcMf`A~F85>KvcK>t4A~x2j+IzEenCs{tFVuitC$L@qS}-ow96O{ej=0fzae+V z3V5zfVM#7!HA#>{xYFnRn}h48+75|3I(~1$stlKaXJxko(M&u_oB3(s!@AehHA-)bB8rP2Rki zv(+1sYGZz)LfTZX`wWHN0)mWH>YDGFUwOj)k1E*Y{lDK$qw^sR4EMXJI^;-=J`szw z+qIr=iRfcry#30bSv_T6Dt1*GvaTy)^vaxLndLn&Z&OGw@LSIu1$HB+?|2bTWFwS` zx=-J4QM{1yfy7s=e01Jx{m!JT?n*`1_2QorS33|eO`+fTOk?!w6}E9#3R1xE$JkK2 zP^5?8RQ0%j+I3!DhZ`i2`wG48^eUGv@&4oBlN5HU@jh4BMXnD0EB+f)@~wM4BfXD| zw#%17IC)(=`oMAnTVlieI_)1CrD^FWFsY{@0ReK_f9$0;!fTK9MF~xk)CJ3=&94uCpzOcN z$|umz)LN^{NlmV!LCZxi2NNIlIeaK7J1Kl%xr_tRtyt*0cW%HRId@tA}4T*TM7 z8F<@jFzd9eB*z=pnZFStj%a?z7H4-GUGj5&3)|~X0!sa9OCKBk0GV1(F-{1#ua+JV~CLja0h-d3^Hy` z)mkSgilv*BX}xt7QA%7m+?<-+YtVJ8{wxuM0_V_o2~s@JH1tip!fe1s5e1%J);O)Tz2&!Lk59=LSa67+=Pe_REOBkye1E23ct{w0 zdK0l*{x%94O##oSDPIAmU@N0=;}4P}&Q|8R8=J;tgr6$mRt&_S+10WlI~~dDi-Fsb zm>c~diCXyDb4TS5Cmn)Z&bIMK>BkyK_W{M1C--Ce2fxHXn!lZUsjvsaepFFwr&O;n z6GEGAe%nUb0x_98TF*K-f-0%pslA~~1O?pmQ#M@nh<5(scPRH*Iv1hEh38lV(snY# z)opVna=j{}-bIX=B8h4Q$0_z;$|u3*w53(?u$tg28PRw&>~0H$g!+4GJDgpTmKt_) z&R(H^x*lXtOF3EfVx0?q$Y@nY1?={6-u-Nmfm?;w6+b_Ly7DpWf%(op+^y;XXJ(^) zol$yB7k<-+g3!bhUgm9c?1Ja%P{k71NeR6h1$SeShoYRAPQeP!1B2os?z%JOjU9e> z=#V-$UYo-U#`wJUN2%rMlB;<5whSo;R};g846vr>F0ek zD780adY#dpL8w&^lWwuggE3S8)3?r7oESBE;DQ44uk~a-G$f?YeR^~Bb@rz(w(eLv(GQzQQUh9_**nq-0WVZT;u~8SWQ9plUc~7pRHGPihPo`*z?hm zJ`r8EI5p5xIMmDYsTXq=FV2NuPw~bdRib2P6OvYRU+FAvbNr=uXNs?9#x5C<3 zLptphOMxK8|6%E?0;=GecBQ+!I|b28pgl14yMy1S)CN&yK$kQXrMZZK$2*p#4z zq##J1+24OIyhYf1tywcq%>;};xk-ZVxI1SWhL6v0uO`Oi^r2=cOF$p$(5OF4E7N}f z`6p$g=-rtHvQ)fAiI4S9Qv?pWrytf;V>lUrij6$)=r1t7Yw78B-SdFS{{y%Gd)Jxd zmS)X7^l(5#I(0ZPJf5QCe^#p=59M?-XIMm)v44LpFs&Nm(5s-OK{E4H_&1?kq{$OO zm|&mr8c)7xCut}}*-7L75t7MRr!?>YJw?v<%7>GQZyYR?d_*UMB78J{*`rN3#$VKm z!&dy@{+2x#bTbL1^0Z~qCX}=E5}TLxcNk%s{)6&=4I_c>Z!m3aqyvR7ENCtKl->nK zt2s#_L*+lHTxzI~LSirpyk3qL9tt=k>6!_pshKElJ?`{#9j#R+3`PZFa(L=lj3*07 zuqWbdYA^D85CHn!fkJWa9=`JC=-1b;8i_ltO-$|HfLyHO*3qyKuM#p!SA|$Sc>gGq zry_8#P_Qhw0?lcW__hu&M@I9C$&*BM`1zRBE9&x1-iVLq*XvT;P38x-Hhbe-lkezO^X*?X}0-v!32(Q@gZo-FnQcahyr zb@xe#hoTJBRIMz*saJ9!1X@3C4Zv3~q-BFJkk$mIqF7^2A=Z@1j;ocYIj0VSoKvbM z_*q+<66lJJJHhw4!PNH*nUrC!$*{SdNR6q%wO!tJu5jWp;qb=f1VxPu>Nk?|s!`|B zSq}Z9^V=xkDQ2D$JQMs9M^y$uW~z4RxK}Qdp?R|Jgzda-8h*_`s}`mb)pNAf^zRVf zPh@~gYcWcHV!rkZDI|$@?k=%f1U)c#`f~?-4#lBqCln4Ufaj(hbLz$AiV@P)c!ggt zZ!~;u=#-(J)R^H=@ID-H($*R#OY+ZOp9>U+>oFHSeSW}hYS-D0V4Cg({3u5PlsHDc z>y!DM=5H=&N-mlC{5QvKf!MDlr|1Q1x+P%qaPNc}!(QE7r3*)9Eg07{!~vi|+Usj7 zVYUOTM}gbc=~>hpInY6Fhw#McPgtJf#io$HDe@pjR(+tWD2ttrv^G;U?8>o#kQAa3 z7v= zj;;uMc*9;l&r}XYdotJbzIXSG)mxl{*k(t>S0cOo8mF~2eU;Y@7u|iH-`^)qZA3Mx_SZ8_nggY|(|Jy51pP+51(bnFx zHt!lD8jO6JS69Ql2Os^yjNcD4Fa?%gU}V7{8XYHMfxQMTbh+pkE?#ngWpE5k@&5w+ zlDab`9(2q2H6tBeP#yQp)Oed_+6lkbFIzEiO4}?k$ zv`$4V+Y6q3LF1i;NG+m_^`9Yhd3FAWa``}On5LcI*i^jf@J>!}N`$uU3 z^U#zhp0Wn~TH$~nOnWxtsHsP38?#G8c~QVj=?+W6dZr7kDP*Z6QaK=$v82evHotbY zOFZI-x7D!4$MNc=Ja$;82A*TVws04t2G|fuW98(cAU`?W?<<(^h5u0P+AZ`(u0a z7Qda&NOWFic%P1$Vfptr#y#E{FEd5>$l(143al))Il`pAVO) zech;7-ar0k(A9Hm4H;-O?04u15L5xY=1BLx>3=UF|A%m!41xYSS@VGM>Zd$3BZjYk z8Ld!GR_eh27$sZ9yA*_nm#@!^Bvi3=PW|oS9#xhse{{Dv3PK2EKqo%xTR6dVS+9{L zspsnTTRq_EA>Agvu11SMGDh}kB|Z~ysfbGi)jwx_Qly{;^!J;m=)K?b_x6PGlO5M9 z+gcS6rf@_d5CJ_YjdQ>hfE(@ffm;RId4O=fhH~{ryT0&Eu#_#F=X06x`pwPK4R4gk zxIL{)2ju8+5dL)|S3Xy_M69MNqm)zu@7vq1v$d31_jaQ2;@eqP+*hnL2o-{g=Q-SsvwPh^_>?MRI>V7xidN6lz`5$@-!So{N?q0E$O>N z#u8QvAfLj9K8Ti!=tCy1=u2+cnWjlO-JJzNZ(8o67L{CZc){fkT#70RG2XyrpHSCs zRIklFV>K z9*i!uVy=0E>8lX>M$SLeVZYJ}?BI(X3$qee`fv@^qxHI#-utz^@6GYtz!4&z)sH=y_K@!4XUdP*v1@hC!?NO<3 zPgjFXW$!$Pf_Urzv$F6@Gc7Lf+=ShJr3@Elx;RW1v%dG4g}QAE-jfJc8B8o$58#PC zo*y@AdNKet)?$)ToB9cK_+{ZSbY=m*O{NXPb6l7QljSI!r&Zl_0Lo{7%J5STO2p11 z!aN(K^AsG0ara!Ui20z{ca{o|9eSsAxym*=T+G1=E4FANX*ux^KyqKbEUdNepj}RT zf^EcHc0{b(ijy*M?e2wHc>Uk(_tsbD-xSdG%K82(gVSSRo{Q%k< z)7wf&+x?@6NF1*`U?vi6LY~>0zBM-v@RK*uhfyNdepKmJm-48s4~b<5{0DVJo6Ju$ z7HT#bf0Fq=Tw-FS%H7*eK&h@XYfucJSfl1kd9?N>cDfxLe2_GNd-0do%?i*&>Gpx! zYuX^)wwcr*CE~^7Wk4+8hatWEb1%#lUn4|@NSa(jC>nm?yw)kKTwcLUS!+GVopj22 zf|w!F{0ME|N)hC6Rnfqe!pknYe|OSvE=70+ylQ#UzW|*dw$PrD89GcZ&#c_ZO4oTQ zO|$H1j;DC{LGsQE6h)kWrF+h|D8g3bsNg59GYP9dR)2tutU{?F0$VwN8cM-+Bc!Cm z;HHH)R%Z)~>k?9>bck5>NdWy_B!5TTR*gC!jf4BQ2#a;WdgDFNAEhI!@4P@C!8xBF zud}3EU^~jMQDH`VbNZ@?ek6w{`(3x1ha}dR4mGoHrFQau9~C;TSuM^ zDBgXUpq0T+sb3^Tr$qRQpd+66d0)qZlc`PJMLpz_sgw-^j9+~J_)nT;eX}LMTRT$6 zqRk>;z8rxRr$SK|yH?TqTFwtHb9FBqLuO9M1QcRFbkL$xI<(%%J3MUlbr~LJ{PveO zNz{ARm+aO7FZ_b7J5#Z^24VD_8`*N)L_dE^UBeN`6SSQ$uq10|jJWjHayo%Qx~ljc z3A*WGF&^=r{5WPbeM_^)MN|Nrbe^o#3Q_0FRN@3(-~P7yPAk3Y4}bs=p1ENxNsp#zOLI6H?>_O4gWsE#KR_?tq?029uf*Hrh zN_Hvl?h~h}g!g9606!o7=aHZR0Vx2cJG5l0-?;#833Pv-$zuS-sM%}Y@?TWCqh+oS zeQSvwwGuOnQ+K7X03Y`w9&_J5lnp~T1t455o z9l;cN(_k>r5yD~bhfd2_ZeQVV%mMhJ9tFvoKcg?V16W8jZrVh`g9q}s21r_P-IqJV za%v?tK!vjbPY4%ABv`kPd6@Ynd|8ojP>yw-Pniw3#YevQm&jvngbC^$q&0r4EZLzckDsEzVz z#lWCZ^0)k?FM$Zm1N#78OE`VX140`3ZN{6Q=J@(I8F6i+`Ns@*K`3h2#K7zzntU{0 zen0iwj6}hwSvAm&G$<&(xjD}|28}|oTO;?==d?ZuNKaxP#yMP0Tp?* z=7SFDbvR?IeXk5=ZzegKa>5%o z&6&$TSryaf<;U5LYv5`dsXkxM#mAH#3?nF*Fn>U^o#BJz)IgU378S;mw2fRFX(ZL9 zO{&uueo~re$^D?wVZA93GmJaUmb#fRbzoh_%&lMj^BNyP=*kNayzK^ie%s@aKF?@o z))hcD5)g|>+c&o>Pb|h^3}dl|w032VbkGsVdFn+gx$?QiN17T?5rkNj=bAO8 z@_Jc0tM|mVJ~B%pQ_*8;fPHs*>!p68Lhywh5unzYDB8u|G3|a%kD4x&j0iQXtvncW;m9 z{wwrnrB^Y+4Y8r;pdwzMZDqjT8TNTsncL=<0g+3tPQMF$z{6=&PMhZrLIG%RWI3_r`qhM$DGlF6X_H3|A6al4XP!|d#bfw<%IY>&4i@m3xTHqQ7Gxj+z)36MT z(DV^~hn!Vp3}H?`l%;qj8K>_9srW@OUrlLWXjo?YIVk8*zO_N{aMFpnI<)G1{Rc(J zzV+ebQiuZtQFwqyJ4V!dB)$L8@?T8V%xhD>dxOvNL+|Ng#yy@a$C+W?B#*db}K3dE`&zsl9_*st=a$f4hsw1<_@0=PJqI0k~Zts=UEcun0qQSNdN6? zf}jmw9T2MiXs4OL+yJlErs~Cuo}0I(--M=+y3IBWzqerxfF(Pe#H3|M-XAtWII%{z zn@+ppY^FB#cM{NtBGSHd@UXbIDhw(b))dM;TprWn#71VfpVy zqsWXBoAg|w@^}p0NMf5eZsZOgvHZNuhMbX1@D{xDFe^Rwm%;Hs?`wJTK4rrVf*9OV z|Mc)?U*w-dNZL1JOXwaYgO95`&=px!d$nKGEqH*tIyI`rsgS*OUFD1Kb2elr&og9G znS*mC6GEHxkTr~zLxf}djdtRSwFs)iEp{iCK8Y_+fF@%93y0KA!Netq8Ao0EB?O?D zx~;9_QSu2orZ?dl4ZMF630jah1EIU-1;7U$C-=uY7*L$8C%@^wf#g7lzxctVBl(Q? zfM;}b3Z6WqeM@TiW=mV)^#zT*#<=#}A+xomqpxS13MR@q+!jvLT(}AVGv}4D0`QuH z^Y^n8-l~&;<*?C9dlEiJBxE7mNErKj(V3&I&gAWP$jG{eTWtiP6Uju+4_jWY7fCo+IX=oDqhao%})+|J$0MO zx(z|>G;lIydiH!iwi~o%pf1Q-9LULBp&#i`5AM#1ofyiYxXTjab&>>6ID`!HQu%b4 z_}ZSA(0Q0ya{z-f{|?K#!e3Y?_D%Zx1)t@ANTJdI3ue5lib*RlTx<|@@%KAX9`m;@ zms4aWDP(0QH>q8aC<02Uqlcr6m(>D~V1f8sjcN@BOD2`mgx?<_Wy0YuXmJana3bRs zfrJS>Sb@0+Al4u4w89q(N9D2rBnu(X3~JIhgl$p~_w$!!^EH7N*V#*R{iFElbZGk{ z6WCdV5K{135*Q?VX!LEz>=4KT#Od1;jnQEgX@md@6iBlH$m^+ff;rbL!y}~9fA@QH zPDUDXc!MrU?7n)!)3Joy zcF<$hEunSwpZzak5mS&A*XQ!J2Ua5lp@KlwzEAwY!zl?F$sW0P{dIB{0~PrQ073ok zA>&Z>``Uu{;WK)o=xkQ{?mQP8L5QA|A3iXPRg-F7&>8t6dw-!xVAx9E@xe#a+eTG3 z=fC6R0EK}Z(&jKK@np-6;Ab-uIK1$8JLs(Iwz{v>we8u>E7K#=LJt0w&_$J~1FRYf z&^L^re|qr*@M%S{_e=N0)E-A#uY78dzWWlFPACi`H!0(qAJw2-JxYl%|Ie+Lub~60 zq^m_%b*eu*?^>^jSS=gM=m3s_Ke*cCUiS>t_RmN86in;g@CXRCaPkEMNEpb4AnX@? zJWKnWS~%@i)MQS+nI;#@c1A!x<2(Cj9dac~&M79usfx0h_>VAXnqBms(?;>BOVpN_ z*Tt;jqgP{#f4xp)j^%sMI4`kH?r_2>@U*{Z10M^XY{%gBxYRqKuWYrA)Xs{^Z@nK@ zwVyq=OPz>X+gYv49-7e`bQto;6f$Ad)#3ZSWE{W_YV^3UO&`O+B@djwObU%??gtr~ z&hk)(xV!n6GCIr*Yj`U!yJiQ9q2slm@HUE7%_tJgg12NR9&I|(l4HFW)aNIlcimm; zxG;SfhDZnMf8zg;kwR-jjY?F-iHR~t(VN*w1!>HkbD!bFMFrh1G& zwmSryTFQ4mrF<}o&R$99gw*X%(E3o##*VBOGJjJ&s}xN~Z2{5=pcDr8zFRt|XY)_&8?c#V)aBe(56g4GyhEt3ol^c21OqSSpGBzGkAmY z=|mr`a15g!La{Ngd_&*W0g`sFuGd_U2njGNUQh%+qWhDM?&SIux&ldSJk=iY0r{Eo z)E|Vk!9l%#5CvoMs5_i(z)M^qqpeWf9h5|sA?UB9c2v0!3hP*&uBZjskJhbWw?FyK z!hHCjY#CZ?*^N&Ov%>yyBrI+3?Yn3hfyb@U6le!h@L@yKSAMS{D7jZH z)$!(}8~r*qD+K5h=!#0R9wPI%SG(I>LevP9Bv2cEwLuJNpk3doJY>}Rf*aEQ~@1;WbNAR!>5adTg))vgig@1=6w%B|XcbByqq$XRc|O zF+N7-Xw$9U$Le8}^y+@!k^Ci(@g6oRkqp5m~&?nAX%W39j5 z?f$h7c7mZahSuE@K->}$Ww@nW=*)()wTw8E1fE`2Cek1Nwb_QU>l93r8$Z|#taICQ z2*0@s&{7~Vu@sNG;X?gBb_e4*Tbp3mU0fv<79kXbxDtFBw;E0ezgeqb8?{-dW|Dqg z56OHcQpT3z#8OAwslo#%m!&w@-ftXhE{tJ~XX&Mbag*l}7!#T+pUd;A`~H2oyHciY zjQ=IU>qooP{0rV^!f6r?rMTp%>gkQ9O=!0K^;8JKZe!v`7gJ;e5ud*A6e$xUTZ$YX zGE^F7_rHWJ#l@=mZZmIGXjP;1j=timHgr43I@CjuZXUQTkr?Z<+mIyfIu{!ArLqxk zM47oLvDAxs*I-%xBDAanI^1nkL3WzB_p}kaawPd(j&*!g3yH&hQiQ)e$u_OCr_$<>nAtbL z?JYY{{-(XRFptQYW4aXg%ipR*aiLb-ZD(^%$oe)WAer%?l#vr_;J2kr5;M2rYq4Gi z)F=fNJ5UwgtW|vagZk?RLe797>wqjg5avSznTy{B&md4#i_qI^c=7v{Jm<6Qd88wo znJT#Cp(Kd8{T`GX$Y}Br)lUFvfyGoGXaz&r&vDv+FpR@@;-i3VpF8=|#;Q{wiq4Mk ziiwJH#3$*_Xv~keFP5mr7!<~i~aec`cpxLhUz%7ewTaCs>!YqQ6OE+~OlcJ$){Yr+Jg{&}buuuh>ik(jQQDK%K1hjQ0c-f|nJh6*U3{`KihkwibgQj8eygHzQiE2Q~J zB?Nxs*9#K1k7Hft-a6v4PdVR4rVIX_7n)m09FF3SS$g9rrVuZ$H$`;|hT}f4Z-z)X z686UdDHJ@dTFcz}aLqj`$;Ps-k27>dNO8&2coA|BbDhaw=|Xqy{V4Zw50+c((QUNH zpjCIVhRTzJvSz@SZ{2M3vW{|_p)y7%u5e@U=#}mP7ua`k|7AKd!H6M<5OjQ8S$ylV zjjV2dE8WlsW&mgA%b>3PPqY)un zzin40Cxp^%Q_Ng~*D>BQkCxoDx?}DNZ>$!r`Y*IgZ2WDA{h;*Q`W4;UWW-&0nWDkK z^JAAOD$O#H17zT5XXt}p@*XP|)OkDtYcufhVp+`{J&;*rs3u&}Zc^&;I}E9`(iV*^ zH`w9ZmO)Vs#ZIs%%?Et=(f1ikbp17Pw+sG*2w0dU)7EvI3 zmIWFN2=;7Us!`;tyx>D-)Ptli7hPThhd6Ve=tP3_$1?E!CS5~4pz4Y7h;7iWw6M2z zVf&cD%h*Lf&(2NxJn^S@6VU?8X5QcZGQy+xp)Z;-LVp5Yid?V*vtB2B6%b_ts|{jr zoTofl;PN(|I`pYc$M9(-1@cSm#SG{0kiF39lmAGmmCClZx@XXA=d4aC2Z~51`ZA6% zg6Nl^wHA}nNk46a{ZKp(c?XZ$o8uOE4O{J5W}D3^3xa?{4I%m*vCB{WJ1+E-!62rB zp0Ak%>gpwWz|=d8YqQP>ZrPfj7I>tBh(Q9>hwh}$cM8_X%&-yI=zizWxB>*NZcUqw zdv#M)uHI7vz;dB%SZjD;j8Ym?JFM+#cUgtrESl`k-s!l|DEbuJLy{aEY+{a6$y=n- zhB#l*GnW9@ep{YUlCv4jTmzdh{z98@vOo{9-u*dBgL1WH15O=s0@NYu3rMLT?xn<1 zAlix2uzDj5eSrQ}RM}>568$8y9h)(ed?fs;x!ZuVBsm9%u|hLnew4wpp&1S@z^>xP zo1A$(E?<$bi~sIuuPrKkJAVO(JsE4F{Unzg@T?5A;{8yE9fDRygVcOY+;28$l&@)iHq%q2jen?cZjbq*amRfO#qbK>RB1yHd8YWrD zF-;#7*yJ@Z!odxIDY7j z`HxIx4u%Vr5px(vkjDnn%VCtf0UNGSGEJR}npIpcLyR1Zi+pDF%p>nTE*ju-13d72 z-`(&pyz3X`3;&s9_iX?m0PsO81BY4gQ~*87O!R4b9jXTV57Cae?Q^@chaJ&E=9fuw zzLfhhp^P zx^!h9N@|h#P59fL*QPo@Q2JFQ(^mc*@)(o@PF`7K@@_O$WOMEv2rW0I0<=E>G*_9f zbwoL5@wHp@YtdaLP2@$RX1R(Z%{=epx>Fx2RXobCE}ILcmlU25Ujg-*i=QTZ4UhkO zweC9K>W*>Y_^EPDlti(&{o|9%W(lz1jZ{o!EPEE+KE2LS|ES*sm!@u| zK$`P$mD=}bP)S3 z*L3$M!Z6CQ$eXS`Nxql43q0cNe-HJ(m-( zRQH`+KW(PuNP2Rg?;2NN8*ymfsCnn&E5CzK z8cLh0m$SxOaAHuOa z)7zWzH0O)Gq4zAQd3^-K8c}O-PBl#M$)1Q*C|TaFJha&2t!b^9g04P1d{6{oR{sZX%QxyjI0Q&Ium@LUN*&%G&pnl=?px;8 zSHTcaP)r(Q7wxrBUoBjs6YB4(_n^t<%EwHyvk+%1!>jhPOmKMCSu)bP%dG49;mHY- zDFQJAd<5XD9fdLgVR1U)WDPD#mea}H4*gR3tSY#gnsW;d+FoE#xz=;t2k$BjEOip~ zjm}@K!4Fck?+*-R()!H$5Vv{zdfN4(-<(xt(Nu0@0fu@b5oY6Bu@Vp1Q ztoPA}w+P2CM1IS%rU`IL+M0d&6NSYnuc6)7?6Z-)wbXjs^**2fFQt>|r}D4vWY72M z^XoM&GJWZj$3@K@S=4tCMoB^Q9r!^Yiy1_he5#AK!F8+Uj!+HR+g;-Pp>^h5GrphFq$TRIa`3D4OvzZNFE0$ zrCeg0_kP3&Pmu=B?&U@M`cc+sl+BY?J=AsiKm>Tz=cd|ALR?n`BlR zL=f7+A#~9NR_%ckSw3bTt8_B*^Q0N6aCazifAs`*^vh1;oFwXrP+e>E8^cjgGYbtf zqxb;~mf`_yfjWVKVtQXLNMp>a1UdC9TkhjjRBNJt+3#?DifbFUAjz6b!s?J}o0jYH z{h^qGxaT(oU%QrAo|bexeZl=?TAEMfF^%gMwj=y}>W-kiM?mp~(HdTvJiG>N7AmS$ zF32m(G8*{M-y4TAS8d1z8j3PN4gV^Wr|o5dm)Z$>%%+s z?OGTi_*9~{&^wh<+w@oSl+_bKKvMt{p#xhg01-O-C#XNz#gH4VfY$o}tHge>8br6& zJti;Z#nb9Fis6<=zmKoLq4%;K7SjO`A!7CMalYp&JWz`C0SsmUCLy7dH+p7Q&AEA3 zx{k!QPlt?`*O*LLEC*7$x7k#A3;-qtRe}`&K=Y5e1Px7|00;|=@^VK=fTdd+juZJw zhzv<&OZ8*G8f?2*Hn03k*96q|Ka)&+7FADoP9(6^!Tp_5gPP&dUqDTA9p@3!SN1hY zkB&-v6GNO&NR{dtcJ$5Z9+p1-n94+ifCSl=y+Qr((Ni^(^{R+`!h=?u+cO*cuqzk-=La-}=j!aXTx+aX6zC zLNSn0*FccP6EYM)&ktEBXTs-z)eV#A%<1HC-=B^--__$|Qy6XOCK>-UvtU zVf1B7OG?-^{_@qBZ`L))i%*<+6)541wHpvq@;&8PRbryHhD>enEr5ou5Q2N&!s8BL z+_@vxC+<5&+~VZCM%+-~>pG*?9H1I)kLjHSAWJP%nnu1b$J9{Qmj7{mL@`UJ)Z&F? zE^Um_{11V?ek6BYlnxi$7&fXfM1 zdYLk{;!LIQ*sTC?#^_jKBb~_6xbOn|t#-aJsGDF}%{a>MU{GhgX@RUIQ+~xGhT$0b!F8th zT#%km2rdW-mMmr$Y)t}x%e_UWi6qL@#Ury;oRn{>lwZsO$QLdQcuhTNRe@LOZB+hZ zpPxx|?lloOD-qF-KgmQncN8-^AJQx_o8QLMyLLs~=JwsDMfq~y3Wp>{s-cr}?&-4l zma19o239lcl^+{1JxN)`_^i8#Bw5|&n+ncn*J`BsJA^o>sR`}F51kVqmG5yblb#5( z!1g3tj$7F1(wcNnQrx&S7{d#H+g7cQzT&U7vc#ugQhc!lp9i4U389-)rYl`wJ^;B~ zX(aFcSFt0v3&>;ggN-8R%Y3A#)DIRo_kW@HH7wss!W+KGn8IT+xOvkz19LoqC1oD>h-7rOdHV^|yy2+8^Q!hXhD8+};|^i(o4v5TsH zY1dh~Pw=t(Sm)>8$bZk@TG~blR@5s#yKPOW+nk;BHXi4O`aqJCD~{=~(^d&w(yr40 z`sgeXHx)t)3b8G|JF}3$;|*j51QM@-OV^@8lVVbg)C2J~Dj?y}zn`DHJn!NpXK2J! zpb5lfGhj( z>A={{zp0i^4$%KskPi~7HI-rEcDv{(UTi#n*iMBXSySG%#XrmfCkQ55*oYU@W!&S( z|BQFF`?!ZKHWCMh+)B7a{h5#~(GF}9=o)okx6d94VeJ;=_H_AdXktQSM5Jcn8U`AG zjZ~)Z_1~I{T|JM2X~RGy!S9#)w{QoE!kjpu>kL2_Vg>{m(g}OL1g2`JJeE`ya63VK zD$0*r?@-y8|6JJl3%sNo8Fna!#c+Q_B1@#B4)Z>t7_;XDPOC<%n>`dIr#s-Ue2nGp zFhAEJGc`CpO_}L2L`BW~V`waMEb|C5J}A%}W+X|Yd_X=?3@HI??70sT3RMEJHgIZ` zP0a?$9&Fko4&@l<7+|xfU5iRubbjdb+vR#i{OiM8k@@{yo&T^+2{t{0=+TwRS`Rmw z$d4u7lGLS-KOXs9B-q~kg*uMAH`vysPKa=-`;PXOw^_zOP`Yy7+iHD_hlpTBgh@2BQo^Fo7 zb9{OIG|wDX8NbkSO5$WETJe6i{v3iQ*-Ow#?`THCP&W*UE&6|}UfC!PSz8vJYMhyhCZ3~3d| zrGe;<@*VuNjGpyrX4xLG(R>p}x46&uTRU7QLXSUd{nTjk3Ojil=VkNF`sBuiU!dxE za6P9vW5Yi-X`zP!=jL&F6`5!`L**3_{i`9(ec&PC58||G8^kZNfhHBi9Fnk647LOU znfEQ}J1YiKbPRqDYwbi?F@Z^D$F#@tYKwlFK zt0I9T0Xo;mAR>M=l0V?Z+N<-m*am55_^u2qG&i>Ia4Wz(7}Etk`tutqjEnBV`*ljw zzbfjbdBefwT+c|<@1GZ4J!s?DcV)8)SFd_e+T=|hf8L_3lbhZPl3wte7DLDH`UL=m zAE3kGYz9YhEnsHQ6%y5ivuz>i75(k>?ZzB{)`V&RNrOxqq%u>DX2tmGIf|-Q-0$~} zDc?&nh#Ra)+})Vj#AcgpiAPjt4%KuEx_ zQ8_K@IG%`U&nozu8wEC!*1@nuB5g;ZR_|J;psbKYb+SuI{{?QqbAF4T<|z#Z9Vy}JY@{{r0T&{(F7Y7N|z5@gph@wyi)XEfkIi0pfRmItGB7#)#lKRy|#FDU#QSQBLl zdZc3bI97oefVmO_RMO*Tw@qPLM7q(>)&)}{=!ycMWvZJIi{XJq!I0U3%zcHGWw3EL zc{*8BY&hSHRC&LWp}1V@c^%ZrI=xkfyFN%_nd*+^%EP%KIUrxN0M~=rW!wL~MuBMc zh$-YQC4Ns&wFLCNU~jo=*|#gt4^Z>h9)U46_NknDjOalkyw1E^WE`67j!&pklyD}b zM#o^Eg{a43Gqi8untK4?E?5I0ISV!?e0cx-$>t?|GW|A}&x&gbx6$p^;LiX^A{V?G zx{Net-s8HZy>{)sCY%0w^(9ael0g6<2}aHK*K26 zO)EC!P^XZt3uS@Ow)G-D8X&MQW#V=idFdYgLVU4Xh6;~X!2K&DYpnCFTHCtG6XOvZ zne7&U0Vycr@HoRb0vM7x7!9D^Ny38{-hNkcNw4QtI>Wu6VgKDW7Yxt7_f*eJv-ayr z8?hzme~834wr?XB`=K-XHX#Vbdv7UL64a(SqRnf~+D4xa{@mp>vlN~3Z7R@C!rqgy z%o@yizGe*a1HJ-k^4$5jE`~GQsTel1i~y@fdBXIxphabtIB-LkfZ(Zwoj&AW7}gPu zGpJ>VK9WuPsWG(OPQ+6qd95F{7H4^z;bi1)E>CU{$#ZN?ypbGjZ-UnWN9!8b=`-dv8jOkZn(Dpzx38dyPSPCZUc$u5vi*26EO%dx7A_lhhe!2Z$Nx1jFvUuq6 zO|4f9!9?p%n|s$EX4!)6Q3yEew6*RX$5(}k?=p7lY9sUozO z>H?O{B_93F!Rb(}VV~j5v9~ow7Az8a8~@~0(Nb5+$UP8qi6Gk8xnV7AdeGKKn)n3% zz=%q&+zb!Lk*tCDrk~XX2?QF59>!7~J@W8=DlA_apH|9CZ3C4ki4%Tlq#GL~70^F8 z9VSCFF;vMqZ>^%w;^?^5UH^m2Yr!^_o7YyQNeOIWgxR%T-{HXtNG_NW`kcd^ekV?w zZkn;)Lo)I48u7cx(hm&19q1k`R``Ha{DHg%S>2HzGjOR@n_=y_KQnYapTSbGgU$cz zG|**LJPP~Kn;aYo>O_wOR2dunk;$G9U?;DNVGB}erNTI$B#`n5W*#q zGMnu50oE)@*>!?PFSbaOEWz$eBjyD=7xtikW8w06IMl3f&#AR_zt&6$;a?An%8ou| zoVJh;7v*j6`a4cQWtwvTnupH1_>ve`r|V}5VMxRpuDb+}^bn2(i#^AR5R#?|uUm++ z`CYecwAybZRyL#jWQt&|`3I8|xx)m2&>~@*`OF^Q7muR8vOHyxfjLI_PU0f7!*p3V z%jYLL4;9Ml^o zLgPnAJh9%&M^eWg0I95%u%Oj#?fRTVs)Lzo+#cJIND6I-O>bjCkcrGw@0EP@pK!~(2qU|$A-fHB;7h?Q=HW(mMt z!aK;NOB+7$-W$kR*-}>d!dnhmbdQfPk5M8%DD<|+Wx|UF_| z0HH?w%y)L3t^Ecf?06ZFyMRz-H|gJ^ZSyEo+4syg%j6DNH)aI(%%&@O4j{3&wL81=&U8&XLIISeR}Fy8#IVDi3kgpf&w$rsvk-Q@*OLJ0f9%@(AqyR|nkgzuD9; z(f2Z#9oktlRhm9)7l`6WxQ!;mSHF9%o{u|Qm#q?Cm3^h5SwwLct)O~=Q1P52yXb+e zLBN!+-AEU#{zYoWj8blidacOEZf&1lJ^&{ebW+-1T|uoV3P+^!b*9~qhPZ`fke{aC z`t?SayPji$0Pl#VF$E<151J72_DG8oDURX1;vYEMRdgoMAkb64RjsfBTh2c5_r$PD ztDxCnI2``VT924f_GaHMKv4TX2)HLz-I@FE>oU}9MLoziQTs*UHfcI(Wtbo7N}{aj zv9p$c_zzqT2%5fhasy6se)DN-G^rk@;D97E`VWyjM6fYb;6cUJ15sA0Z&rYJXHo}2 zPbaqo^H$SRup2z|@EgfrtA7=Xt4|f-O-i_JDFi)uC23X)vbL_zO4g`q#(&@R{}dU9 zA-fZ&_~r+_G%WXv&|^wPzrty024`ORqDY+Q)L~%!8%Ui!t`xn+0Kr*Fh!D1*tX)Vz zSo-lZgDm?_OLSZ~06dU)!JBIh-yOhP5V3*6@N)%nE@IZqvi+@UvHHFz&+OlnaEjWeZUycfnaiD`cmvPGJ`a9c3AFtL>S|7`(k} z{kDqSxg?O__tQPmXdn+k4Gjt<}Q#EX1!o0-Bc`&T!w^9qcpovUhD_t^6H#>Ra zE~z|IKeQP&-&{Go%~yq@P3I$Nr}%;=KaqOQji=dUTHseKirFAB(fogmg$*R}7biQ; z|F*@C#^C#nSL_v2Q>ek|e&i=zs~Fnr%iY0E;q!%!N-qMzlc4A zv+Dv)Q0NRFSI@a+h))r^kb@&gbIr!?==CgWcT)myx*VQtDrWKPv}^M4&nb@S(l>>@aFk z{YnQn1GYvhZx`3T+XGqoa%`F*&b2D+yhD56;x{GumKUImCf67CVxQE z3-Xq3UkZ6=7^9Rsd)D><8U#QvMq(98_Vz#J$a@#?h*9@D_ z$7DzDu4NVOFXeI|{yAu76X?gC!Jv37 z^!A>=Ic$rcYug6&UM>ycD`y7{SuVqs+|4B!QEF$Lr6XS6n;j`(9?FR^wQ8_h{R#Ws zFk~tB5TnQoAg*<-zYHdPnO;dv5)}oK9bmg9et69CRaua2l`@*d@l)Q!jAxnL#JLTb z%O4~Vqf_YgeKs0m$+G{hBwHD)BmVeZ6(ln^Q<{1kUjuB!4jzn38JwPbQ1L(K@)y>e zvZ=6?M|-p>eAHOy5K!#F?swP+Jhtp?7m6(ya$u>K1O<&y9V_ znk82Kw3FhdC(H%E#-6AD9wUFje?XbO|B7w^`(Ks^mZG$xFMD9??yUx983U?D@8V;K z_0UR+JqCs1G7!|JTTvW`-LBnPqpJ9({hR77I?o3W9*}EwuW`J0goTrJeULtSx8~>V zgS$ARE5W?cvb@eWdyek|K#`J*D#zRA-Jn*1QYjpDY!4%0}YF?q;ESHPYwF2H*K`?5$dmX{xJ%yF6q#uaAYeePyYaI zJLf=JgjqoQ5Tw)adn4s()4wTQ0D}|#gqJ4NXz0+ZJnl(?m>9<12@O7V zCS0EUqvoLy_kXIa*&=xP!oW^NchosiB%er3*tzdWBnGZt}4!r>+NXr<(5i% zdO@3RII}um{h>>#g{L)_src+danhtrm0(JZW7vFn zx?560Iz&*A4kZQYZWL*d5)eTU>5!BX1f@gDpu4^?*SX&JoIm2@T6^uaw@aBk&mCj@ zYRm%|0o>r-{Y8+j7NoB_XAoG*1NQR|Ii|pSyYGV_?bKbK%0FL9J7iz3>xPo313)+4ZbDayC9DZ+ZQmVBYwCj%ad+e%c(7#~6q1DO2Y@-x zlExy&a7$15+{C^H&9Yn_l6CYT*nq06Gq*6kyo^=(-tBbm$53Q~Zd0^rDHg1OhPD2L z^Dw$e8lrf>7*Wf7wxKoQfwjS{J>c+X>02XUE-<4 zdpe6T&t8$K_)*p(N7z-(h&*z~c;^c&rYocNI~^z|!!{OaXp+BJHMxZcEGe09Gc#%W z&w=Hm>B$eFZ(bdHB#eTR366CAPhj}d>gS}e@sDEAI;F7Gu5*r zGW8lEz_bxmgcb#N!oSp;Z7-2Hivz7Df#-d1&xaMZ>#9-}gPNTPsHl-eDg5z`{~jbN z0r>L_O2_gj*U0=6woY0@fxy>jaj}D+G(n=y3DouPLKIn3u=_W{M))l4e*_6$Lpf5f zjZUZP{FJdYvJwFpoV&pq?WC}GPb>N+47~6k@6!0ZC7{Q=ZU+6U)0xJ-0AAsbLs{l3 z8kM)dzKBgV-keEWs#C>J!YUR`auoV?1k%;NTXw;$sD_*0-`)HbEBu&kj!x27U|irY z8KghFgTABHvW4lByn<%`K9KA%_AzhfMx#VAtw{*iuC14Ef9hV3Fi0nmr}S@rYC!;H zZXj*WfHS+#>&RF44IqQvV6$XiI8Rt-akeMX%PR-VMTh-E4w7o^iq0WQKzgiZLTdg^ zd}KdVRximw-q?1(Di&Q$REG@iFRU>d9=hHkFWC3 zEn%}To>_Hx^OfPUap_wiU|h}~O7k1fQp)9ykFPT)qPNB*DK@A5PIxA-pN7!b?z7RjfE(caPHj!ZdxUT$_WlA37yw-&;p6h6wJII)*Uq*Hid8yX1 zsd)%o!33~zQi#+K-#|A1V+@5{U{1r8;uZLe;Q3V-wOJ zIL~8*P`f`QOTfVFLE-M_eee;PaS^~o^5b>I>ic>Km)ZhW>R4(mYMPpUYu)r+l3k%V zK0BOQSETDunh#6ZbmLg!Zm9$AptZnP56Utm2O=%0@zWIO$Eg+%z82_p0J}d!pfK>b zK=espxK6o6r4?(qFSS7rHM@Y4D~(Ckb|ifa;YhdRn`C)D5#K zF2S&<{zBc>w+OO6YV4Ssz3UqafjW$DB2RyDtVOounLBylXmkifJ%$WYk+~H{GLZeT z!8xIAD5riR`l8U~JPGh?Ag_qgct(oD72{GcJD<+XRiiaPyqU1(mrd0-0s>*--8(bd z;)RkJTC89GOsJ4g4pR@RTm!FOs~l-?d?QSlMbQ7Hz6~dLQ;7OqxYTqtQ83$?U1K$~ zTuM>b1ON#G#FZJlDF6BAj$+8KwEeV1j+#vx(Vt13_M3aLb!Ukx>Fg0EOD`#NHr$^q zY<4fZHQ(P0$%B{!>$4@bSx7yrFx#ep_ww(3FMU_#ys*N~pudb)Nqg};XvObS0lzA=jQxP1yYXASn>2)1~i2N?<7Z7_T&)pLwe zp9%#5U6`kXB8u`%o*eqOw>PyIC2UeE@V+K8p(_uxLCk={ueeD0hPn2ongKDQL(FYW zqA0<;LKNTM)M3AM5_)hkjmO_CtLhc^w(bc=#u51m}YQowy{gG|8pJP97WN!<$+OGol4N$xt1fr zlO~aDq~1#dLIh_X>R4&Ei#%FR6^q*B_#U?Lg3nso;Pdc8_#)dxLP6KUd6sPdn5fZl zh3pRP*VWuL)``!^K3O8 zJu*Tft{N31k3t@V`i+**neNwsVnq7OGVGz>?M#F$^S3h(cjT!GD;QX=D#;J&l_G1#7oj5UL1DvPIK@(Bz^fxKPWX*c3&~buZIJJ!PN{z@i+>NS|MI)j*vjO!KShd{Bo03Q*{h8l`KW zzKGGz6bMoKhpY^ ze0fl_edNAAWRh`Jgg(f&*ev3!*L#~k@i;MV`R-;kgFT$1qIH;to>gxMF(Owwv!i&< zbQrUpE>3obpHMea#6Ux94tn;JSsNvw{i)lfo0)ubwW-0s^#n^COe; zm)0%DKD2i~j7D6@{us#M-!^@W(`lI}`y#I$lOGbEppi8dzi8h^j*5gRRU298HnkXf zQ1*mr-9UZ0n}fkS?$Ue;dp;4U{luP|^#dRcI7q7$z1sI+GX6c@Y^?iCzkkr5c(UDUA}C#>c2_KDJsg+Ub_&Ry4T} z!_7;Y<25C#!^B+iZ!6d)v`Eh95bG0OR7qeEBYrh-Els)T_})-APe?-a?$Ap_x^!$7 zPoiIv=1hudtS3OVt88aNf(d7}deGfYO3{|GR>R$8u+p6IB-!Z*OtpoTd+r`@p+zs3 z^yox1%@<*555M$mlQlko8TOrCEMb2Tj-|U!d;I>w?(2 znxOVnrhF8r4tQa91weR$9;<5R&Vsb#%it7$2bZ1Y7u4wg=1|Y)=asUTB)%+MB}=^M zKru6~BlN`04Sn!!>N76AE&NtZxnqw!JqIWE0&;`^pgvpg0TVgiUSOb8uomD<$xsl> zp0)fNu-FRJ(L-G4fxCjA!K?4JIsS6EyB<1|#z4J}UgWH3T*}oU^4M;>DJYmPV3?H+ zLto^Sfe`!39(KS9OymB`#EA3V1*oF*?Y|wbA~zdffeWw&@JrY$y3kWa75Q>d==!+J zQumuSs^drYK*h7uCPf_P9{z~(ReSv?sTs3%=RZR7B3a;t3+BI5#*j=*hB196Yy&CI zs8hJQxDlY!2MEz&#e>27qu$@OEr(FY1`Zy(LUjh(!s35Er1-havm`i)Bnmy_3x4Z# z_&ZRh8DdRC=L4FdxL@7@HfkZ5u8Y>3ha286YT{}Jjl!r z0c`RjP6AGfgS)nj_ZU|{&3{#y#N~r>Zo-@{&lLD+4l`4m+*i`k-Ni{H*Lw~7)^tIQ ze1lStzw>mawCXXchNiY3M55~*8vk^~o!Y`D`U!2gmkiUtj)ug4PMhZ;Ie7x~8Yu4P ziEEXNQ3dn)TTBnjSfgu)={I+}!mK1ewq~XwJ0bS1N77uEprr6@^9|!3NiARU67BXc zRKQrofFS{nX9fh`id^qLo1Q`(UG|JpGzinnRpQ=&i}n*>=IKRvPurhUI!y*VM*#u_o9jP5?rH(v#GLd2Cila&ZzkjX4ny zcAI3jS3{`$z4e|`8*Yp3As|!e^kUHN2;O}@VKNkNK#}pFNR{}02eTmqPPF2j=X2PI zc-h}r`ABXa;)ls>kkGfM3YF#Cd}xe;n2oS<>SLuJ8d|%^#-%S}RlQ9ZD{K_vwIS!*j3A|xf3s>{3?@NvTO$y@;ZT-uR)y#U z`1*O0STmEBbQ$h28AO7sAEF>D*oM)nf3EP<@4&IV_)J(`ZmfI9Rp0j=SpCw5L2bi~ zPUvVNn;g5}U={$VzOVZ?Ke2c`oA}^!8&&|8OM>Pwkhn&`6?!BWXVkxSlS!nUKg)d&d)`2{l8TEz_>1L)q=t?QC^#gN9^^JYI(^g)n~E~nmO^+2ptg>wx+v~6j|&WzkI~~ z#ipz^ljZ{zOpfS#OWKT_YlNU*&p80Gb<*1kdoJUEaXBXe&DWlmhOgP<5X-=YOH%9` zMrbq7TU^4qX8yFKP!h~!FtGd0nZRn7i!1}#A`m!dZ`?*eV44dGGmU@reA6t_{vZ-d zPkoc2Ia4v=o_buR{8jFN$*v=j$3)1iMU7#Hl}zL4b+Q@eT%o2-z6aD*Y#J1GuZrJ4 zVmbVeKX-{aIT;DM`T%4<956q8US=__cRb`G9F_X)z|zxOqUn<%?^505f*yg_BdPpu zs3xJk>3D8Di|3SrJlTrbUa+J<<@RBj2_3^h z|7Yop=n@Xz`ZMA9XZ(C0jY6E#3x2keR$E!%&xqgUZU@xvlX?QRlG}6g$V2dY?_JC0 zliKw-rlA&8Q89KE#x_tf-Wo4dA=G#k;tVpjZqJH7H7I>`O)u9nhg@O)R24C5L2C;% zi=SK@jCh+OT#3pu>NudgT{RfS*1tFf83b^XPu`0xMxRJ%lAJ58UE%dE&^pMO_jYL< z{hfqHs6^1e`x~xFHvp5DQum&GG+F|veRKBHhk$=e@&Kz1WgUvpG7_90IRPH#Wpt~y z<=J_=J0Z1@qJ|7nD(TIs%gW4;M&jtbZ~C$BM2@pG%O&ej$uzmt*ScXJk)PI^M#MucmjQTpGKx|7wGb$O3pxpfvfFp0jNWRK&z zP(oqx2lR1QoJ{46<_7$n(JXT?Gyw=8e}>PVFKPQZq@L5q)9F?$XY-=Q98|(Bcr>)Y zP)m0Bj#t{|LyJ1En$o7!UtBei-k=WNr7t>0bpUxL&{hY=#8ATJdeb`7|N zs^Rf2h$=vVV$>!c9@$_NLKJ*_%e<*BP~o;!3r=2Ci*e0%8sDq`(uDbG36C-$t21Rp&ujlMac$m~%>W=9qG(W1Rz& z!9&k}W!{x8=|$;ZpP;jzYyFy6#|PR{62gVpXn!y#0$6oi*NKpBkymG!*ic4; z9h`7SJKKZ-ky3g>O%Y=fVPJGWY<%wd%aV3mNr3vc&KC}tuq*rEO7FV`Pj^k=(lo#%l$YITi{L&QROCF0M35hOK?w#0f8&j4v?5tu!?P~+K^qau^eD&e?Px% zTmWtFGeVCI@;jwqt99^?S~N|)1Tkyx2l0kcv75{USw~inx?g~>>Zb_mgDR5`?0l*X zbBocUHi0`-4StYXdi~Ot$(U=;e@Z<3K%=`i@!7u>FxnR#$TmwR_e zo>N9^z)U;-A4ti+{1?l?8e16>rksxM8vQArmz2`Y)~QmU0IFs1_?O0(z)<2QZ#XY=(fS`ii{HPH zjVW!ySs%=H%Zj4BeWBJKPei)x%}+zUYG&Ets8lnyvepZI$eU7?j%OT$g)do;OCEi> zg*+x?osr3#{*^8f3XS_cU%<^2iw2}aaMJI>kQ&6JIk><2>vmUpzJd}@H&94)j)iEC zg7zGyx2Ox15Pk|VV*0VaaS`=wHF|3Kw~=EZ+6R^dugfnihE6|tDf@L2_0shaCh2Jz zrFl_nM`XHwyydKB=|A}ld&``3QMSlr zf#WL4Ip5zs`225M&nmGXNp#~Q>YmJ(&7p{$y;Vf|v$dyM7Y?P?#2q`ncwU&Nme5sp z5)`cFA*1%-w2Ow}qR;j=w&nXIgX^LOPKz@vwx-{+^cP6e5T{y@xli-=gnIOIW)GzE z&L9UwCQD+e8D0Qao55{3U`Wl0&p9J6E$N2G1%?`MsQumQzU>CjitY>DYBf|z>=KC( z>KZAm-Hr}A=A}12^SkaJrZKjnD>=nWvAX8+*!)4JyZ@5XqGkeJQve9RqA8Hl2|9O# zV@A(`f&v6>^yKxb_vUK-VIWvpD)Wr*{k&^V+>f#~F<)(zFxfk;YScj-^bDC3NIW~s zv{oCB;W-hNvQfAc%3ibl$QPJ*h51z&jX_Kw8?#4|g2-zBu(SZ<=QAg|j`u_H9n8}xrG`tg{in*nTq7H6`#~5zV zE|J&D&F#ousE(ka%RYyrI)>vO-PH&J3XT{4xHoY>xkU~`6z?Zw*jvK9sZ|&>IbD~_ z&skEatm}Z3q}Sj5EhtkL)b)4WokiJMm1r$;;{9&>YL;RccxFO(mfRRLPI`my$|spU zrO^unszq0n8EvvNcLf{g>r%P^cZ>orZtIy2C&YLi16Kd}-%`>82_KuV>ELsiKQ6F@ z3^;lJL%7RlsUz~WuX~*?gGdU9NuX-K1ZUiEGFyye?iW0=HNZ%}1R)OrKn%8Y$vrsr zif}~G#_>+g@-T%6n8$#58}$1#uCqi!xGlJQ0*7wsM7*z8{C?2zOj(v6qe5Q%oPo1*h8 z>cqE1(2>Mw>JSI#05wUD=_>6?iaI0;5{gDNJ*}ypJ-PT^FDZ+p9l7$O*JynA_D8j+&yP!wrdoR+V_$ zjv(*f-w7(BijQpE0B~$4>ic~4ufh9ekR;UK7{RxO==LYq0jG3l)cX?ZA~VdO2(Ag& zprv_E&2%2>eu-jv(6Zo>a~CC?$@M>j!VYrc4SGi5E!L)&lHv~lH8xU6@PE@L)u(OJ! z`B3asymq_Tja3w>F+J5X_L-bC?*j!{Dfn4Rs>fRWPlZapwgL8MgJ>u>|@@LihDC1PA(VmA!3#I=L7RsR6sdd|JEU zaL1tsabkHR7PY!IePda|hNyiJscQIel0Hs}BT#O6YM zx{6PxW!F=J&xFj;&Q%quT)!`VvlE7^6GG?q2}s1I?;?siv??PvO=((P{R#eKiB&nEwrY0zKjwqn?~9p+pB z7A^r>gd2VAZyP%Iu-<*0zD3ospi6m9U&=BTo1(qFS_)rn!v$cm2hJ&2@VX5-<0m2x zS+qaxrt>tYusINOy(uW2>01XBAP~ekku*d5U6BwqPMPaKipJ9eJuEF9|O3Vz$c%Rwo&(62#o_A9;Kbhk|BH@;=$SRKCw&iQx z@VjW~8DvbB^**jjEw>;F<7xA*G6220+@JZ9c0v5!2-F$OP@#w>t9`b*%AQ}A!6RQ7 zdNmm0NY1lE@$Ivi%b5*lkii@jq$5Yb^};C%#p{mm;LUv9Pmp4|3OlXcD(NE|?g}?R zZ;&0vW}*#?LP0%KAN1`BLx&(RtkQpbqyI5jYRsN~XWRm;h5z2{`JLZd&8uFl&0BMAcNx+{k>`H_~OYc(GNO^$3{&ynDw&orN!gW)%kYUT#8>Z2UT2 zwh~5el{H1R(`31DpmL$oiODoYUn`ao@hngBpLe)@)6fk$Envz-3AZ|~!oj9yHoVOs z)jj%X8J{}mA91ApP`b~LH>_BFddznAa-fc3PWo{2g|UW4F>d<#!Nx8GK-Y{~%*Vvp z?!hIIr`Ygxn28zk4*FF-){04d`%J{M5sq$@RUx?Z6riv)tEfSy292n4kdm-=7PNR9 z9%DO_{rLLh1>eUk`^q=D zW#gYG{5eU1+j=QA59%0BVWxIzDp|5hoB~Fc;)hIZIDQEv69cchJ1gkh8bXB|wP~4E z9m9;}OAG)JaTWeQLv;a7$g|qqIGtGQ3`ke$N7^2IUNCbi=nkeIvJsDvv_p^tV z_iSzKl;s+%$;j{S6qB0DZ&!!b1ep(Uo@jD_${{>H##$OCd3LSCls}=>FT!JqpuEREJLhG zK60DBdt$D*gWYdNzX_Qb>5#`rPZzHvF8wI0sQMR4QL1f@pKM49b@(NVg0=knIj?=C zniL+)w+Q$?tk=fqP!z|dYdqEl<}@A(51*C~?`{uByA6LS+pz-KNd1(_KmaChoJ7IR z5CQIlC6epd>OB9vYzKk9AB9-UTf~jy51eS5vy?ogsRVBQ-tw9(_}oesw&j@2ODYtEL)z5^vnRV1Vy_CTznVA zS9C_N!Da6+)k>2405Fs*!-N~e@}NJJgxt+DY$Y@-S?L3as0PiA5(6SE=FX#0E2v(y zr+z@zV68HLgM8+5R>(5kzg^9>M75w^m0-D(~7(>Zx-ZVk|w6BTtyi7B4_iR*)>IjbgK9eYG z_~%T_{xkT@2r|z01#mzpW^7!*VTjaGI9h!6j(eOmOB4X81cVQItH%Q(L;O)6lJk@f zqlR3=kpru?@TFBB1(zTJb8uB5V@j&P7zu*0kzsO``*7Ws8NX*P9FLH!f%%oG=|Lb% zcCQ7)QsHD19RkZ0emV#Z$R~_Ve6|LTepu`s2dTOO57q63yx1f8m>R%@E_Jq1I1xwx zw9qvQv@{;Lnm6@-ac3ek&%|YH?3Ad4ZzV&;p{@NBLTq&TisoZ1+ zp6nOPh9@PF``n)D1ocVB;rWkDp_mx$+JWJo9%fEPsX)X4_WF~t0?bgiz+Pg3$F*Mo z49pTTW@sX>L2MZj3Z?+1v$qZ6qxUXW7gRJQA?OZunYc09`H|a7;f*%i$75n6052f# z(Y&n}O1kdtGo`Fl&WdUR^B|A;v(T3NUJxIvzv7_C?pISOLwXGT&!En3a^)A{+tcsS zN7~yizWRq$oEXu?rkFqk5=K4tpI2MRXnf6FlZfZK?T+A-cK|hM=HJ$Ua~$t24KG3|`t94`OyJTt;AY`1_gK9668_EhLJZ@}cF&+6>I&WMM?`pJp7K>n zWoloeQf-2G_YnRslc@?6Y=+`PjZ?~RW^sKSp~)wo$UX5`i|kI!kx*zPvP24#pdv?g z=uskMkk+JKVl)jAO2jV$Xu*pM+96^@Q1Jl+dFRdjDnpgB?Prt zN1*OI$Y>8X9vwjuv{mb>`Fcotq1Y~Z{;jYWJYAF9N3T1Hy0@0O%zsUMy^$l>N8@OQ`>$7=08P$;93?*Hj1<_U1 z^IqlDxiU@ij2Hf+#>3T$2h+9*`7&E^oWgtHNfF>)uk)#kN29kanwdwAlwRsTEylx7 z)`y{EM0DRl1i=O~D&8Ct=m}`zJAN?U`oN<8d^bC659DHnEhnzCc>GL)wOq}j<6T}U z=^jk{BYt8XSb`T&Cg!`t;j46fKg<3M-VZxp;zBFSXRlKo5{8Wx8yPeFlvzu~J+98x~- zH~4yKslA_6@&=(y*Q@2FsGKboQbRvH?kYi5GaXpfhO?~o_x*^YiX{{<@@&gBWjj?v z|KJeDF5q#Kj`IDAh)PoMYmSD^AH$%Xd(}b6Z0le>RD6swjQCqsvhva^0t^mD+y}_ z{DR27-F)$mc;_QSr*1X@z6%luP-igbd~0z2Qd(Lhki|&6YoWdZ#XP_>eeU{WxE^43 z=0}vxgt&f$OwdM`_~hc0%02JvC}DhMq|F-6YHI9avx4Xkti?kHJthVQh8Di^mAIeT z>3CsKabrUQ8Rt!xX#WTHhv12|HK5`*a%kCMGQ(7>)!UeX$yL!QM&k;?;EIW2!+J+| z6sd(ABn^I9YFP(W10WkhSmgWN4zK>6)*oG%zAyF>9h1Z$A3?4 z?g(X%m74w6TAk|62eN4RSO&Q5iaQ3za!@%N#C0X2L{PZLON-6G0bQfxl*Je|wps@q zyP;P)rsRB$br+6xWxTW}sRg*sW&v-eyZ?@9R=4k{oCrT2{TdjZZ%_(uD2OsmGIB4z z2&GNOU6$&ga!_woss!?iyEUzwZo9t>XJ5>-fQ&6J=t@ge2ur?En0v({O0o zaaahc>XB}1#O9EO64R`^4ZqqanoIf!W7KHXZj9=^mGzCvjFT>0JxjzEOZ(|K>MSEh z_`|7@DZ5ONzbLGch^BUVm3u^%TJ`OOG^x8nU$!LL=k~<1$kGy3BGf~DQJO@mwSGsg zxQYJD3N8v_BUuNdG3%d=FY_`Q2jG5f%ywA_yJ{pZSu~AfL~TaZ6XE4!OT2DxZm)qP z&L7~ZX}lt%Eq(}nU4H{J(L=M~Yej71fC&^`logd&P82qR$6*@+)K|q{c8q<`WlzBW zX*CymkiC*A9v<4T8}%lpmZ%hwlhsjb&B&IW+4QSJKxfZ2ql=+_*2yyB@oq$u`0!St zJHFai)42khRxt!S{p(w3DN222#McR&ItG=oEL1f7Zc0T1FGrp5Q5)L54)00@e|6U` zAu4LgrXF*Xzdu?wofHz8iMHZ{Wj6FFCWuWw?D|8{I%&h^oz4 zzJ^T{5&c;0YOW(`@Uz*PaMWY0DZ(|y#ACdvo7!ck+dT94v%OjGI&gS)>z=y*SZrSU z`Q+vL^*yM^ z_r5P~VV;g!YtoVgCMU%pFby=GckY(hx@tgPGP9i6#FaolnTS>C1Q*# zhQSVwey+`c(Es2Xk&#d$$k(pUW zkxAbrXa`-Hy2}3#U4zxhdy4&Fgo!IJgl_+1xIV!SWH-v!$NP474P$*>smfbZsQ674 zW|OV)h5pNgA`jPQH|fB50f*(T$T5RCOk!Hd@jJZS8O7A+duV_kX@W*ceied#>O;U! zp|JF|$ACwMGXKv-L*bJe%XMcoKHhBXp{C3T`}wZG_xcUj*?u9Ry*$ykzMtyT26DGA zQhmZVs*KB)@|ReBt4=nXBelQ2Ba|yO)PBN+XT)wn#)t9;EhF(_G2}7UQ-Y%x!r?+k z6=#kAdS)$##7Jlfn@XFW?&$WMV~SCk3HuJ#;GO!Qp7+%0fJ%xM{~=bh-GxRpOKN;; zSK9}nrNvYm{^^%PgjDJ-JFi6^hx5kI`WJ7!w9EE46kV)eS)Fm&*~MDAZKERQJJT;m zS|!_zv5%e5mT)l>Jr%>Cx}(;8+Ksw6(2*e9s4m#C?7#f-HL1|B%#HceoPvzE4Dtd$ zY$(NKhApP)hB>^~S9l5IiLir%O0?hwoYb$d};Y$4}kL_juTcLcCGY&1$X3)ohw8zT@u?^w_n{{+shU z*=%O*4^?Qf=2`qDMm2g53A;{WS1N7JIxA#p=AW5uHLm?a4}9@~LYtBA&c$p@O4NQR z_q>SNolMc4J4@OaI}fvRd77O(I}{zB|1B+`j34+b{=OrAXWUg3b-G$SU%YCT1@>vIBMxdn|_L*|2>dxY_dfvaB}h@K+iv5k^w!PzNBzP5XUmJyvX zgAu#EA|thjRThnU9k^7geW9KwOqF5OPcWno*uLNT8y|zY9gvsIy7kf(pQ#W}QC*F7 z8pLPa7^S?%Shl>u`L}3u?&5SG?3@t{LI!icN?yCrfa?@sAq}tT1D`IorSrY=aEr$5 zQOxVkC3&<9yoksB84UcxcTO6Y-YT5VqB4t_i|N9D962>ivz7|utasxV|H`5o##Sy6 zr+JoS0zTh%byy7)?%gQ?SM}=8|C#_EUx1I6gGeLX!&;gn7IV)E6xop)PvR92# zr7Vswj%CI%oil4Y`dp5>n(jQ=eDUR=ebD$ddAr7kVV8atS;k1pNV#nI1b7 zwzr7J_D2?WJ(AijcK!_(MYI%}5wExCdmjnZO1=b4O4*w!x4UhVU=IU3_($Gqu_;kU z(jt|sfNu+@#?PpBwxpDl!rtCKs{4V6v@l^@3zqr&?G?)8)dp4BDemmo>}Q#~@5$Y@ z22`kegGd&*%$_vvy?dNb6p9yXsat}>U_IZC$#^}yoVKhv;Mkp(C!~!P%VR|Iu@wF{ z?VeAr=AVXaO-shNrW^Z=y&fbEPYU!C1}j#Ty}geBJD~Sn3^_URC3pV>g8%?5*U$_q zx5$x%2oxm1dG%GtOT*4?6~yxKUCMGVOa0s1cI{!fn#5skZ7s})7X)6byIYZ5NKsMI zYR?ZuzX7K=5XA6h_z2|0z9&l&z+I>qHZ0~~${+x7;|Ji4Z~d4bUt>FU%2N_xT{VF@1IZ-so zXJciBF;AQPvokUs_pIrF$3?~IL&0ZCd7eu8pRc;I8yUl$e_WKfTO zPmO$}ih4c{ve`cn*nMOfIG6^Gk`)~1pnGp&r}&CrY;hxBk#3o*U)pS!mMuW#fcSrD zZ!8F%1;B%{H?p& z&BEZE0!Hr>w4yZ0u|U3-zUDED?SzZVn~AQjSC!YY%z4E9 z18w9EidSF?7LAOe{`>BzsHlJtf=$uY*fIEpb*(j>UXyJ2E>6>gnn40f0Cm z2`YHquPx2lklT-&_X=NYezD{|ENh=RFC$>a4EmDO(hdRMwtM)n{A@ENBSRGSY*-iu zoGlcTqD}CI_>ez?bSDob2}uFB#p&s(wM{b+ez5#+Qd5@|{P&*jbeOM$;Q*MI@-04i z=K#$;_;iL>+0)YlYxFm4+pkKNu53PmH!(Du{U0LB8b;d7etQ)W?7A8@Zg)+_-Zm5HwG zQntsiTn(_mZ|#{#u@f^hkzU6t(|UCVl8?X+B10nK4{O}h9VVxspqKRB0bz`ChyRBi zX*8FU>Q8GlGuId#XXkcycFhnOoq114SoqtwZy!E>e}OsT1<)zs87jTuEmL^wD&n3?6j-v`mCDM+B;Tuu9LU)pi;@N_$G zLMFnY7AG^%ja_dX{Z2NCv4tU5EH#yEzv>e#6hK)z=~@(#pC+=j4%RGk&HwM$DrsO> z!hgT^KY#1vfZhJzV)~!I?crwpw|D>N--wL#@BC%>Kfn5a{yP`W{{Q>y@K68$AM?Kt zDEEY%lCpvsxv~HIGSmd|wP}r&oVt2+Zmy-St}e(*A%TK{m^lBHMp<4Sk_WT3?1 z?da&B8eO=q=6^y)NxA;(m%W``X_E$s9};6(biE4Pzxcgeaqm&ONkKtDM3g6gqj7Nz z>G*eZbHl~O&C1GZoB(IB1z^H(GUo>q8*qPGU0Z`-lHVY~ZGq}9GAum!+PL4Z4J6sZPJ_%VP z6x99%tQj_JE97AM8?Oej=DC8HZNYtz7g%EhwO(~Ctv66yA?HuQrBhdT+iYtb&$Ubx zf+Z~50#AZLxnSbOh{yL67$lj)34O?vLPRs%dsGi~n0PCmOA;(!la+m-FDg*t{)7$&@?b|^If|;SAp}M*{2=%;QZU6_X z+=V6P9k|NjNkg6a#VkZPJt--KbQ**)AR;QqXD&cQ20j1Z9axGs*x!E&s+HrvGaPNt zNzab{KB%^k3R-D6NsrF8?0?z}1ybMFuRV)s_KMlR>*0_6czcn5=x!7oj6qPKgDL@; zX#(eA&!!=PC)yJuF@&F=-x;Z0N_KW^14?c!)Fuz@?U!B|5ny3}IGK0hh@F(3AUg}x zpr%(2Si}DQ{ueMXuNfw(sWCE_NB%ztk3k4B5d$vT!GVEfCpaznT2GcsOF7GO%%rPc zr~iHM!A{@UxDjL>5Cm}s`f}v`vAnXfzrX*<^YXaE>vyxKTPGomb^||Cb`U?u!ooru z$iM8bWC$ESLOBgLHcVtxD{qX28HUH8KOq`W+@|IK;Xy zyZ-MHS`h67MnNz+3=IyZz!EnE)yN)f+0)t^rlvg42VPRpgddi#F#Kca3yv>FF1J>CN zNK=DgUIldV*G)d#Rj>NX4%&n=Z!Q*Sp12RxgstUTb%F0S8-C$#{T%DOTR0QCJhlhXnY)?9= zm56+^wz|5AlAN5pBQGQ*q&<)!;wBHR=(q840roFOV<}9cqLf`Wn(O>(-h-0KDSN&8 za2{)X{uBLX?boj*DrlKq@f}vTslPn#7Ku%X{rv+bA;1w#PF`GPl+o9xy53MF*yu3? zs}!jE3U#ifzwIIkJ{TF_qAW?+W7!!vV=Lv0Lo%QYkN+puxk69%kkH@C-cq_X8nzRh zUT_O2PF`wL`#>cd^27J>3@6W^uj=*9=GyN1)Bv zUa%D!fxTOG!vcJ>1=2goZ+uk8D7Y-vG|bk&&lhbAko<2VgD3-0Sl;fO3E$ zheVNH=uWxq-u2Q-`y&<0&%RbSHd6h9z70Cjk#E*T#l?_VY7gB4d^9dDF1Y%{ilBb` z!z?6J3;R+m98O74WH54asvhpb{nG&qBXm2g)wiUi=(_I1lpok`V0wUvzavmvM`mm~ z`jM!#0*r(&p?g4OBadV7oddAYWxcWps~1Eh-{3RC+J%*8*z_8f2V}!U zvp_6IFEmr5n6@@V%}sE@EfYupg0gF4c=R4#aXO!QbSK;#DzQ}75B!=yZ2=`>Y>O?W zm@Vw=4&o-Mk!cq1I9n(R9sK=4qPcpahgKX;Y-(cZIgMcAWn$B_)=H zBOIr5RdUM#9d}>ip+pqzE6B^cs``Fo!ybK=m>8Uqn32IzO}xVLH(7(PgZ!3Z_7aFa ztn1+X`19vUvq)oL%>snOFWNu*6zE#F5o6(w;=bDWag5Rdw>MO{4NC0USu-pAA>LSgH$A-XK5*HVT>k;l==+)q8ehf_yECpmMoS8|5Z~wpoDU|`4^$PUgrHS?0M*xi7 zV33|2F}CP=gj~!pq>baTRS9f=xTBCBLFCX%s3hPd`1+L>N_au5FxZ$-_Wj}H<}QaO z2O9QWI7a3`devZPbcNNo*W~&{EE5h}{74pDXxL!g!~YBQ4tFz# ziGvW6AGA*Jsi->iaWQ*^nM^+muEH;s@T@>FNF>7>rN<4jY<)~x)=JuzX*Yeec8pXRoz zJId2#a7jUup1m2z8Cn-LB&>6Pgl!M3BsCCID~^tiP^r|e@=Ou(-OQ$LZinXfcWVh$ zR{>DiKo2#J9oz~jk$#II*dWgfA486HhJ?TF-dU>js&GGB&_w3iGC$ zhv33R?op(c9FASL-IbPfyjH+J7wJ*I1$md zDfc~lU;YG7G;+cj>{a)CdI?V)$~)|dkh^THB0(ICXm!C~Rq?{^(v&g`L&V854>ot|DIL<`3j z;GS3D4})WI;_pK2!TvrTfNP`qT~H<=Jq?!6HjB$UNGK>Ef4Hr&QA{M8O;q$4Uat`~ zAJsY>2ff7QtQio=oWLMs5g72^!|PiZ@y=mv;&?VmDXeO zS8%+;{XOfu5(lp(ne86w@CZwSq|N!a*Wh%4obEMrLP;ISf-`wF?ppN^789I9Wmn&~ zQ9*w_1DI*BM`S}+di7GhEkC7&FVnEHlT-QDALL}#l|W1#_@Onk#m2mI-0-154FE+Z z67r(We`||_kKcW33o1Y;b2E~Y3nVhghu2|!|9|Yg`8(C`9yQ*8G8PgQ$y_@_O4$f0 zWh(O~8B(DXvJH``(uAalWUNHkLQy+JQc1={LWX3>P{xu(^<8&;&UrrPy1swGb3J}I z=Uk`4e!uVgHLSH>>*Zk0O3HNPq8sZYa2qzm+EO@K|3O#YEbQ^k&q;0AKz!d6OVvYT ziKqSd@85yn+0P=wROVgh&l$s+z9g(dILpHY2Z$XUrrarQ!95iZ?m0I~-$#dhPTpBr@^x=Z4g5)>L0DOppC51+}lfNLXcE&ym8xG)>g zY}wsjRar^uO8ApigfBZCYvo>C`epgz#gG~DCf);5K8+hnr8L=R0!~rsPrM}24TGAcb52cdojWlq1Rmau1>2ibNH=+)!x8i@_wAhhtkgrVS`rHjLrjzQeu% z)a3k7Fv6Jg+O=yL%d50I-P#gHirHKu66Vwi7q9WXh?&boh|c6qjE;)ujG>X}@teW@ zphsq8SUwgu%EV0JDCWd|K)jBtay>E8C1{Upee~tacj5F|EK)!TD5SD>z6Y4tb7dn` zfnUFR33#(}b3c$1J3_sP^>L!gZtXA>Qw(lf#KTrG`5XGpAS5Gd+jmLAXn$up9Vl^T0qoGr`Pe+$rXq!J_!HNLC5cx=1B<_osV%ga+yXOx*V`K^4EaPwJ8?o z@AV%j@lfL8kY%P+U_%TH4K2iCkpR#k^}t>QMhNFI zQSla`g@$4l&9sb6#in1Omj&X{+$J2!LX-MvnAv6*G~Gv*p%Xy%81_^l$Yf7Hv=viS zq+`FOZwVNvD|b=k0b|GR_IEbP&zBL3rM>VAsu&-F@E}+d{&(1*#LCJFWsgLio|DsU zj>6OXpejwge0kOTVa~i?9*1}D7COeed^ys48#0QnwBcv6Im&y;-0DQbSVUKJCunU# zp3tLkklN6tsZE|JjCP-0zO9I(A$_Q|qm)=b#!+g#5`_N-GO zpB_N2D(JZtZUu7%^Id-mP2=*3sSHfBy8~o6IYABJHJ!?4yq_?3Fp$O&S}_ur;3GFwsHmGG^N+sQ2%Lld8?`h}Xo=o?KX8>bhoc&QA<-)#OU|H0@I;ptxIr?HR|s+|vG`U{3ihIyObV z)6CyXPg3NQ(P{43v4e4$wVCuvV`8S>pK2Zg=f^iKIODDdYz7lj+MU$TbUbm&E5JK3 zIBcwf>+B?oKv428xZyL7bVXKYetabBzOlRK7>G7ZIK~W|eU<~{YX5$5d8aRL($dpG zJRBH>`a`+YB&-HUo-n%%x5$Spazz%LoLb(zSw0`d^#Mu&NF2p^d+1Mr5ZgbxTF*t3mqJ6THrCkuH#(Y|2&?M9u!c)CqWv3sqSm8avT6-Pz?zR3Z|RNy}XWww#t2c zYKm-+B>~rzJ`Qmy2>X_r)NcN<7qt^0_AP%&P1+hI6dqp&>s_3qiTXA!AF+E|l;4cUWfLk)ul ze-_X)^taO}rx9$;RBxxI5~|sEJEhGO@f>Ic#+wzv2{g<}_e0gRX!F>~VcmK`g#`;v z3cJvCap95t9waFhAjpsHad+FWe*NX!3yk#jm#cWBy2|nAvdXyQ10XocS>u)={=4P0 z-E4mx=#wz2@ZdCm3`oT6E8~2=eSc81 zMOW2mYrae;tIC0Q;6%rZ5`RDILK|6s^ePi*dE0xb^6~e`6TT9Xb5HkMjYSa43rZ!a zd(qgkLg!|5a}k^9D^&3Hv%X=7Pkz`^3C2Q|zj=Pdve>r}KOMAg;o;^k_ujAe8Rc&m zw|7MND<`bUA>cHuJ?#Tr#>L_R*a2cmm2f(TE+fNb8(0ZA7oR^JtAq^#E^P{<0z&(c zu>+|_JG@Qpr5s&lw&{cIi-Y>4;$^9r-S$@>K+aj84Wt8i zQW-@Lgv@|1KHRI0ZXK~N|JUSA@pbEPaur}+y#-pUT1RGAR~J%TyZbY4+z+#xS8mpi z`>4}r(F#UyuloA+t9Y~J)a>jmQX#RMM}>17zZ5|R;4nf*kV(WD_>r49ukHzojY2$p z(AV2xT-A-}5_9ykGs4f|mzTvpeE5LKMur`CJQ`wTQ>7?;-cwMJ$hdPd2%^ORaO0g;|I>Sq;TSl*+mk~V}~snFUrdykl9ifRa&YU zu|ZOjCAXQ$!70Q&c1%ZGd)2N*LE!FD$Vf{|>(jbox;LUy-jhDJbARH#;_{D*_RaV1 z-NTe9x)!-j8o5#?R`7vv6L1lsG@t2s9IADbOY)>+CcQZ)ruFA9^19b3cX;v33)oolEh%`4uy)bN?bP_p zeRZHrJZxoMu<)$--qOucA#kCZ=2&pL`7Gy(>t4de&}r^h3_e~P0yvR`GqgZTMru5d zkS>|8OziCJcI-HpE}`R7ti$Z<1R8@@HH(ASWV`)u!TA4zm{s{8yV@GI8yk~2?#a6l z(CRU8L}-$Su7VUsGu*=DTC=mQ=xe5=_kB2kiSoPQ;vc+<9T88<7ss(W{GDNb>$#1Lg7_6I>=F+f-Lpx z)8609H3Ghq?i;6#sINegX|P!?TM51UQfJhXmfp<`@v`edF7~Vgs#@d2a#V+$$oHOE zAI^3ygia>)kDkF(eydtcz}}B7-fCzA{NWbd1!(ALz{=XYckc#D(e~g-`p{K~ z1J*0#R+*e){7xG4K(TeA)iE~n$32vqO9#InxjoTjN*k|gG#LAtCgzD6nz`3F{L{WC zC+DI#@%F!mIG1_i_pd`6f6t#w{E_i}nMOJMY!wx~VQX{NS?Wy=Tk9w5(d;L~z^E&$fp_nto zBi~PFQmz6w8yj=)-?|(?rlhp=N0FJ>C4kpjQnqt?nM@wozGDa38w*N>;a0Y?y7;?E zx}gY{5VRmeS3$1<@C`yZKriwQV?;Z!$s4*YtRz=M%(umWU_d}|>``GSC#RJd9cG4{ zjfEG%!8X+#_|soR6%_!r%ENY#Y68_k0*ZMDAQlU(k6zNga+`@sw|)V2%@?o9W6)JG5Or?*@0Z0-yL^zp{HPkamt^=uisE@nTE#1uZ&f& z<*`ec&tW9NkJmSPbH=J`RDajbDtdKSEr61AT~HhJj>|aci4VbL7EQJeAMXX;r!(m) z$5s1%7n}|bPQ0>6-T*W|W8uHKyGY<f>Q+1#l<+XSXg45x%9K@nl*!OW`ixP z7z=0$+%{X8XZP`Uwy&#DpnVI}ans~|?4#qPug}q`L-Q$K+ZfYspa$eqjGrLly!$D0*O^@9Ac+f=P z^py7!ULhf0&{Z}FG)z{>1QasS(b1?`YZ6tyK;a{@!KnsQmq27d?%B23jfEvv=TJYR z9i*w~xnBh{|FKVSVb8VvygZlpw`u{dph`Q#&Tj{XQdzh&;LEQ5+z;Cch!^X6T%h7) z{yuB%3KNXSwht>7qlG7cE_QmGGguD_<%-M88#Wod8t(g`2WjFW%Lvb%+Qr4y1#J2c z0^EA4#g3mE0jF_4&`h|OZz3q@a?k8m8I5AM-~OlAV>5ZvD8<;`y?S?uaid zoRfX`DmCCn&0@9YPmoZDUZqULUhE)~b(=lkEkl!Io!ldVmtB7j+2Mkgd>;eE`1 z9BxCI*r=xPUQL!lc^cVrb<_CBs%y!~$sdFBtRBc!Yz13H7i`#Err0&d<-$PSfpubT zYEIP119RFohBD;#KUMU1ZfgJNYc>3$DWv+zv0Zx>c+3VSEur44yOfY#dcg(Is;8Zk z?}DTY4>k=r&NQZLP@2xO^3T)YtkZi@aj8`As%4VDPf!Y~+ztQpVbg2{>GEN{*5>6m zTlU0x$}daqTHaLHpF9Jjl+7R<03!#Y=;lg{5mR9)FEJP#cwy*w?clQU0#P#k6UD~Fi2zseq-+=jxP&^PH(sz8F`a3(v`6}Ny-R!%l%uiY;O16ZL$nEAZ@PA zIURC{+@$wKGyn1J72xHWXejIqg9Qf!K7JoLfEo~w_V@Uu6TYpvt!HkPx6#Er2u?>am>iC+7l`g3-^$LZ8p9iT0D{z|I*WP^I+vDT*BpI)eUWYGT!)o&M4VMu zTMG~6ztU*Cy=z5NsgnCf4%D^7WA{(SU%x(DEvQ-+*VF!*t|w?bS;~EkS3tngUt*5s zo~>JhW7l#E9<;F$)`&vZJmhQb8he$$A!3HRxzuP`9i`LEW<}j^c6z&|zP5SJ{{&L{ zqvH6On7(h-!8AE$?j|gQ)|8fh(I~36)4*U`)^J-^%PnK?-1gfe0Cq zc&s~YEs-3&Ll-yxVg)RM_^OoK-RE~R1#Y3bK!P8d&%?=?g(hBZ!9jaGmE@(v^;kvJ z0zcPokj6qlG7(F$%6n$GVcL zs>|EJg7hTYJIlsT^X=|AmNvWx+Nl47EICM zDCX%r>*-vK6V6=^P7Zg`=OjNCyExx-rsL4w?|G|_oR)VSNQ+@8)NMogMJt!m&%)W{x*0rThBcBufzmE$H>p!cr2I_n6_`_&(I1|tTxjc~{r^PXy1u63;$rCf zAMRax2RsBiMi&D?R5qxuLN8n}^WL^^-v=ahC>Z+(v(Bf*T)C1DUmz$qa3W^FiNgD! z8;=$V`1)W;&jVaA_~hk5zy+Lsh2s9_P)p(Die-yK{I+I|o~S8mW&l)R$E#{;Y_QHP zUEwYon85Mwa`a0wcJC1Bet|Fp*E$O?mWMy1Ojigel$MsZos~kG6cQ2XxVvu~9=y~6 z9qL7f8~6zg$eO{C5%EhM3Orr8!rRxmrl3^5V^^~0Y}Ip{(8{W+9{@c>{XgHs8m?ZFJJ7%Y z=;`_WYpN74mOc~s7^OM7)|&`Whz49-TBT#yIosK|#L|M8G75o88zF7$a3T>MVA((~M0mXy=XUnrTK)?j$_IyP{8i6N>=mqdD5ZoyW zx1TsD@80H*@1H+!o(rcTHBPnGW*o0ud8$mH>aBkM= zBb0^Taj--*gJw~q2hHBSs^-QptC>6EN=Oib{v-w=_Hlx&_y) zh%)*F+MdO0P-jH|QQw5e0h!vJJF?+-k;%xKJ{V8el-?CQs@S=z&7Y3R4Wv0|+<4zc z`eh)FGf!2@tVeCWPQIq+J~Oq=*d)_n+4b`Or$R##KP^h)KtANklwMG6U-VyBE^l2d> zlzIPCjX^GfGDErfD0H#va=BX(TY>w7o5>!!iVlT%@GRT#5lQ$b6t&ovl0Y6g;j<7e z`jo3wEzR0<;;9mwsC9s2(-0az&J|p`6e})g0J$XsK*AUXQJ>;Z(AyIQ3-u(SOzOUu zmk*$!y#UrA{(Ubju-`(1+KQx#*tQ+Y_g)-@ASgR9Dx-1&a;>)YC6N8WnL0YsHCj1Rt$^%9S~`lp zxc>bHP&FMGhPnGd9L7|0s~cE93L5abqMpt7JSMSX)}|GUS8(c7q%-`AVBzFm`qL_Cfo*PLlqvB}=e zZ3IyV8sH0Xm@S=rYYmF77Ad9oLiutHKiD!X2kcHtnE_wJZY$L_V~mnSy+oGc!?b($ zd+r7np>fju_f=hoYL56d7w##<4MlQky*hFq>bwrTiC7yCJzw7fjzSE80oXyOF{s(G zTtMJ#4H8ts+JZcXd5n=5*OGMbCgcL+QQ+-5uH1l$Do9XWVf%=RW-nf`i_0C?2bt(x zVr`GLUR3TpG;`#RF@9NK^_?Kpm;x5u2cHdBnE`bt^f^qM%b31aPMB*1R0d7e0Q3q6 ztgpOK1a9?WcTK4>J2j3vf!U-*xpmBS?7o61Erl=1 zm^_0}Y&x6CzLTD77kzJ)`KLTO(@G-(MSz-g`CfBFm0KLdLx2+`e(+22L3{ z;|n}T3i}xY_b!j&cyo)W-p83`zOVh%3l_4OsDTb%4}^~9aa}ZoHd zS(;;-Rz+`4xjO}kg!i z_*1BU`O1|MSp&#){_t>*%w1lUierIjI|F^k9sq!`(ko$ld8^Q!}59%NL()OpKe8 z(~O(#(|~?P(S;4&oWiB)5pF&oq*_~hH!WOUAe zC3MA~F9EGXhXx1;nY|~?a*N3!Tx1X_{ev?RU{-M@Naukh1}zSgZwl%z6uRu}p;R=Ehg7kpQX$ooH^#O?!OGMuI9StUXS}A7VaQdGe?K_&63y; zwc=_pv%sJw<~j&0wie!JY`i#vWd<_F7l11K(XUrqZq1(Cz9knuq8CbTyt%=_K@e6# zELywRo@Zsir}>yV#>hbB*g<2)EH&YvCL@an;y6-QOi=2x;B$(i8F%lj!l$x<;KnvE z0RS4q!@0ib)`uMiwDy8)(V|Nc5wJO%*|zj+)QBPXa-}U3C_6ytP417;FhE01-9SzI z80$kHBFkQpK5Z5O8}i`F+rHLr`H!mB4192M0Wkaw0;REWqZx(J(c|`|nVFf)ED%2a z&$AE`m2+|cpvK;oCm?ml@TwfE=UE@OiFBaLWF ziEyU>L@}VZbLaEv$bj(hhq<^ELVFE^LoQy#cB?*!o}{?lC8@tqJP0XhOIf)uSB4T8 zM19P`vPlT!6#}}=qtvJ_He84wP48(jQ}c{pEM@m_Vp!%z2nIpiqye8&A%6OiIgik< z;&5YJ*IMKZt023ETMI+dXN*1rcGSc;@J?g!r5dzbiJ~lt#{yEovmXgsOa}a>cs86A zEk0D>6D;@M&xVC17`N7@na08}t= zkbJ$V;rKTAuAfl80?6{eJDICh;0aU8)>NjL_dCp(_5_)Nc#u|$-|AJHu znr}=L4jk{fPuMH|g`FayhkO;rw4U5diA@wP=567$Q>aTFK7De23u+&f>*tQhzWhOJ z3$fo>d@0t>FSEE%y7*X)3B-5NjSGF>r|*nIg?1tnQ)^59orZi-oiE@L8bj+gFnX#f zckgcqHnANwVQTyG$b^K1Lt0a)M-U8&T7Rjo;j+)Fa&mGTHwsu!XC;DR#rwMu7BLu7{pd`a96hbP8W@F!#>zG#ffg5Lv)co#!r;MfPG2!0 z8K6lrG7Ao_0iTCj)7QBo&}86RWTe=^`GKcTpQg__$@}Xqe{dG(=sf#${9WpvV$QnJ z^~tX8Wj%)lGrA8~NS(Uk8K&uz{u<>uY0WVZtt%k-0kIqbL8-=;PfVP#`rnj{SRlsb zP^=vC@W>-$FocD~F&@^Nw$0VnmN5Z<4ab7fqE9)1>+~dLWnr?ga)sKlJLV7%U2gcP ziQn~~FN%yjG&E@WukGCirJv)TJ@Lr&F)JW(fJ7JHCDt6H`)GIMOTLpYF*JzeR%7nDKdLRf9TxL^l4i505W|)vj1$uYy-{@V+5U3(Aulv8| zeL|;$*AtVREKdXCu}V|(1Y#5@q6G84tSr=X>i)k*WOT?{9I6%m<-kL5XH+3k@Txd=C!~ z{Gwid$ZzPWzN56g!obKT!Vyd|=Bgiorv>%jPv8lvAYV)x(Q@r<8EA(g?%Qc-c$EUY zHzq#52vSOrHM$Rg&%(mKhgHyK6+U5D$iKmZwq42{&}lxbuQ$#ly(8iNWM!lAEu6j3 z)M0eH%5n(s2m~r*rb&;V*MwDI9hR`tB>(dkQ#e*DDc#4#M0&~u2?x3oe}uGmX{)>Y z-KtgMsv`Jcq+Y@cBkv4qUG%S{WkAE46OUsdUE1Bf|6kuREHfh`u8co1T?%Q|s`gKu8i^pN{lnrzK1@!+(3jt4mOa2}2{!gva%m1%}oy<=0 zPM`VLL-_O8H2yVO_2;id8vW~S{rM~Z@7w%&F!+!EOP|dw!Z|JSpW32sVL_{chgQ?8 zR|>0EJpoa{ipf&)m6C^}5~+g#gT&n0+6tfnlherP#sYu;+)P|SK>-LGZX`mkoE*20 z5@vc(3gu7i>!JKC>=^~ z#)sWNXkq4Ch@$Ff(ID9lLI}8XSB4;{C+00WqJhzgi5LnbYYK^G_O10%n)lzQIiVdW zb15W|fVaS$X@BPgD7h086ZpKd_=^C-oKPGmzqJrU>;{iU@B#=y&+qgy=a!*?%yPR8 zx`~$b=fw_i5h`p7RN$rE=70aM3>yjtu<=yzYkURw^s3_M1q@Hf+7ygIre=e(<^8xp zHgI4}1^>SNfRGtD1&tRFLPnrltSB!ZKVeN=YD-F&I_@bP^ZwHU4%_s)RRPAMhEnBvr zVfOO!Lazi!Zt0RGsmpEh^7H#^;=Z6ty57D5JGfE#fiU^!d#L7<*Hwa<5e(0?engs14)pMp%pXlkXpSu1I`nq<7~NifBxwM}|cdr3@&-3_3Fn7xOLsu);3Lo6E<>Wu#*SzlgPmvQ2X9u{}p{qb6 z0!Xcv;YQj&RG|0}lP5-A$h>@&+v|BITYC;o^1fS#UwZ-lpXcJ0_u*|1`hM_#UvW6i zUk0~b0fNhegAGX&2RHY2Ni{WpzZ^nXxe? zMO+~7s(*r#bMT{7DEvdK)uWHEH@UbWvxsej_&>&mFe$Z^Qw3C%J-K2C864G%BwiBN;Q@N_T- zL;z{GF~+Rw4bA~2JH-J-^$gtB03s0LpTc=MN$Ch(4T{GeX%PjWKjVVtT(<+WZ|77?YF$O zxCtN@5YhT(i@8mtdj`_Z7{R!7DVz`5=Vtz3e`btdiP6m`AkdUyBH=ddS%Y}q?BeNrLWT^iA_|6Z|CSxj*Mj!w3B@6v5`UYAD>o^cU z9~d14Ey%SnHz#BcUOxF@wb3{(5W9oPVfwKA`rhYn(cpX z=D_{1ix)B5cb8Fc=KOh#*DF&f`c2&U`8ZZu!Hh@1)zIXd(F}KDgaObY;jKHshfs)M z?VoTQMo26-NeCO#NOVN2PDbf9H8l~XG3aa^%^NBF=ia55-6|;fj*wKR7K^u_qoV^h zM6Zb(@^Qq}aCjqm$D$a;h2qK>l3As${*x$vG)I>U3)>)W;d37#S>a>t5{8Up>7Tcu zoz8{wM%SD99a#)KdC0gOako! z(ulIMWs@zYIB@sRWiwX%l|6lMiF&^%5d&pIGF`|N1=pY2#xSfw>H~TO^-BiqAdTD% z$n{~zu{Ow{$KRM4?MmK!93c|ZP{nb7KXlmBOUmoCHvx9wm)=QM(;$s z9yWj>TZS71&lR`buMBIefyio_cR+9~6&_xKmadGs@^gQ`CC~}n`^{hL zx8W!tv6*rIeUg0wr6u|fv7jEYkgn|=MHu=5&@VnY*;@fF15d@wRwH0^uo!!`|Fz!u zwF%>y_+WLV=J)`M5j811=1 zOA$ibE>zbqAhlEV8QBb=99*Ye)1?RC7J&M`I$nx|MKl)JPGsIxEeSU>@I2T$WmNS| z(?U#Ak_@*X-qR7dX#>x@qz?gS#s5`{z#o~gX3G>XbiDi5)v>4lJnI3MCrGQ0uwRU* zHgLiic76qg&flgkHQzyU7oT(ihmk2}EhoawcM`+X&+gnyzj!S0p^&V3sbk$sjk6d*Q%9 ziQt~`D>O88u}6D&lah$gk~~4HJnbf1G8lriwHF-+jwSFcb?^-MTxQ;}V0=)gd;=A0 zF}c3X^$kSg>+n$cr^Q{+*}-$^E2s(#CT~A$_ykY`Y}K1kEG2#S@gx*A)YR=rzqvzy zPNl`ou~1+9aI(Xx|GLOT{;#YFAd_vdJa6w81+##X2vS%*BO}XY=P>MY0rpRL zLLR?5vm4+ZksOe~#Ng^#LoOaN%UlY52ra2jnNR4-2}1o5V+C}B#9a_ABWeaz zNrb6}M*^f7b){LsqI-cJdIfEkiswdVSvFDyR@!{5EQ@)^)Bv}b<^NZB^<8>=$;+ax2v9pK-Vx~(=f{k_LaOQ zaTql@iqh*lJy`RK|9R0YBw|m5u^yfE7?8ugIfhO1qe?`3I?zJ?i*V0pz)9Cs(*sDY624GfDj1$QY+B% z?)6b{K0)eH8!70)AQbEr?a*@TKNxAE$3DhDq|EhzhHor$=gmjaAp9M_==CmzJTex5 zU=Tqk$#UR1UIf`0iyV=_Xp9>GfVB+sR6ub++XizAHB(+5-Fx3PGCcTeLn@8dPUmra zk;Y}mcpQ6gyH&7LmUS|pmkkG^DwM~V_J300iRXxluP_zHa{Cc&0`X~@?^t21BLQli zp7RTg^5F*Bl5)q>%lN3PR+2Ppy-JbGdjBNq7v19U&n^v-kXa+TA%pk#_F_HfN4(=+ zKek9`i0)7hW8Sln@yPf0w;@EAm3{+aHJXeOzLhI~5i$Ian5P;~U0-9avH(TS>>Ys> zD^`e#Ub?P}(4~$XgVl+Mf5jU?_nh;hFaUuWG+#`K?<7L%dsq7%fLobD(ANdd(ya-jtL%rJ6q>3;U#poO$AO5MvSQ{uqEU?VA{C?IH&RgWN~tbKl9Y zv}sZmcifOtIbS-|z>1;jw$!DgHXt*8+Tucz=i*vd9Zx}3EjGo3)EhV1p|e+kGcArX z!iWb(2@D0T?1)4RBx-FRZKs*v)(u&!6X+cdSJk)Qjk)0_klbyjE2w^ZgdadPmSq7w_XE6Qx)h{)8 zk>o3wzr;XH)eKLg((EKe@a--Bg=sowAgBIVcq)^M`+ezNn&BKWa0};&zL)FCkGBh6 zexZ)1;3TcmFL7AXDAvo0Bfd4&I*sd4OmKvOmS3E|*KIu(71i3Sx%x}>=0~U9dcKi; zo<~h^Hao5L-6~ye^Pr5v%HTnRqa90?9`Y{Zwszj=nd&ma15UakPvlyCB{PD_xV$Q( zi1k@8PrTz6T8zz1UPI_hViP%>C#69x;5QLipw!pfn-Rtt*Q9^Z_$NM_7*U{8t(_o=tl~eG}bEfOE;#Ks9q?eq@(bpOXY;9qC z$YyLDW3g^3gOe{-+BRmrEaN3X%FobY)72_F+P>O3I zM&?>%$1@(;uY6fqsRwc2KcI=nY4kiYT9_+BNyHEWt_3|P?d-sk2BX%mJJG`s}&scri>KF65&G%H%9f_wFQsR_{HPal9{YzxD zGWV~|Ru!k+tdm+aFsG#V+;C#@ z3DTskrBJGBYiR<4kgyOs1b}suk(jWioh}-8^Ny2(QOU_U|8)O-Y-pJbc^;MqR=@gj zE1R*^tElqJ5hJ6FNi!Eo->Q4BotZLSHzfQn)d{bW$ni`)ymp}iEqbG;!>Jpc@rk@Z zX396wkBjFgGIp21s{e*d67TTQq^X)f6`wO9EVZZK7;m=;Hht@LJDZa?6ipjRPRA<< zT@x8;LTtp?STJ&*cp(=_4XUziNN^d~_e?}u3e4A-DZc*amZW$P6n*5wx5t0|6I;7y ze|Ox5=njlgM%BH<(%!IvuM=O-yqnhLjC0D1_Kt6*Xl3dP^Rn+hV&NSet);9d?C2a5 z9G#SU!P+S|>Za{^FfBIY--B4f7GiSdk*(duhzOoVi!3Mk zrQb)w{uB8KnBx}OMrs#xEqJInRC;=I6u5IuFxpMNs$l8L_Y*2$e}r73%|wraGOL7G zJEML$fhsf^3pvOHkfaYVI5bk`1Vg{n5iw{DM@ z+$C(1B=CPw&6pL4!aockltRgXKB#qr zayE)*=^BH@Uaee*iypZOuQ}~n+QP8`e0QSSNVL?31O}C{HJG`^B;I(bX;V!=XbZK+ z>G`G`N`s27*%_)5s>_VoY_HDaZN-?vUFbR)-BDMrcoL27@3}CNIP$mUhrnG&cJt<9 z;5H093vl8m!1xfS9VmKA&=ukrjR(Mk7GbG^9p=r%VtOwpC6!=M9rz6LISi&jQKK0D z-v@(E2{aw*Q7mc8!S{xfu@nRg7-R#AMzroeqZY?2^g)Z=wLj%~yy^Y>-{@VOJBte$ z{7GBuD(XW9ZcJ0H7kFzGK%(KwyKX_``JUDO?=DE{YBO*5?D%@O?%86$fHk`D(Nc3= zKw)_pNGtY7pDj?*vpUK;QKoOwnB*42kdN*y6pvDHtfyazyHQxnBKb+$NM+Od$H#R| zSBV?#L9-4@o<@fr^c_^GKq_2BQ-GwvI0h<|&ZV*MxdgqayM?ygkFp!o!x2NmZ5nvg0r7ti=cdSw>_B+-8ZzG?i|L4f)>gu8) z0P2)BB##mUrwU#!#5ahe5KS7!wvXUc*6l43fVm+S_x&2Csh0Fs#$Nv<_J}2LpTUcT z6D|hbPDd&W-p=>BJdYW2t4m!gK6O=%^r;X^OlY{18=2x!AG~RAc(QI;jY~{k=e!9m z@p!q2V3)Kxs(XW1(fB>iF#Lt)O74nJWIe@jNxPvJ5$Ak0^rbnv2B<*INg%c*3SWrY z+kTw~sXIYr%SSu!49O$G;Kpm5Go3uJFOeu+)yedh22fSJWDL$QBn{Au(KQ8@FNc*i zD(s&yLj&BCHFOSjI%*Z-_l*FPkcs*Csi7u=|HK$V$BEp+H-X}vlZ(sT+W_btI!5Au z4Z#iuY%I5D?>#UHfgza#!(%fSBbftCF$~tAOx$ud#89m5z#;RbMY&qyQJ)7ZAJowk zR%N&72QNw0V>D3c&QS#}+0RRLpVH$*49*=>j^OHJ(!Lich^Lt88SQ$jWYJx4MTk$5 z->cAJBwtlun_*gCl4`#-n6iwWSrheIjxi$ctQx^c)zcDh!Jpcvt(NK#mfXbwIy?bB zH0@8Rzs1?zXy8qtg}n~F)B;*S6~GC&ixb&O{|QV$aTBwK^hNLRr=U(d2(KX*OVD)y z&ro{blgot!P6)SUTa#XNIR$%w6@=!Y> zmLa2Odo}oW)}g3uE2{ka4M{o~5>k&ek2M!@L^*wmV90INc4K8>@d79aBZ-jkaFp^y zZjXCKuoATB#N=uT=7vPt-()z&UcP*p;1AVD*$j8?B*q?q@umuH1i(@XVuvsJTsVTj z-$5OheBrz!#4@!D`BfMl6y_?3`v#%4Nmq+u576i4QJikKG579|5zkxyIDBjO5j*J! z;thi^1cfmy74^>AAaemsK?^hUu+#4okgsLX@{?L08}<$YUFV8L%ZCvyqG<~d-qLq! z`pi4oBYZ5j7ah)VK=EVPXYuH@SDEH+$0D>LPWMEvu6 z56VGovmEg=`*Ll`lf+Mpqba&p3ry}lt+-PoQMd36sJbM<8@eLSx_w_#H4%;yw#liU1y%Nc)NUA2-xx=5gk1Qxn#tR8N08yYXS^ zr3Kf`zS0D?A#)Qy7Bt+9B2JC+%F4t4m4A)~!9FyaSF2_aGJ)9udXeT?S z!~W!dylPy|RL?9W8BWk;|AyuM3zt;pL%JJT%bwsgXcDhZ+!%uk0<*rRSE#C$y$w^a=Dskr# zXMOJ7s&adonD}1Iad_gh;`+J~i~VV^11TU}2u6m+%zVHBo{F6qFFb~=GB6%}5*xa8 zn+KRDz(NtQ4!Lmy2qF3ETZGHdj(b@Qj|}*;;qTtS}F zZ<3v#DJ8BWJa0*RR9vlp#O0m+I}c6J)0a1BS8{!7d$~0#EmvEq!@(l-r4I<CAj75JK_jZsal>kTw!DlYHB~KUorDQsK@TIRb?OO& z?7IZds1y#)8^{}3%WEC6rFE06u1-={l1hjdOIF$$PnHeucPQ&+Dfr8X^J}O9Xe`C0 zBgcg}B|1JVwNd^{-XYqNSql1ZOk)T(buAllTcxC=RKrT+8u@lKk3)DTWKdY1A>S^# zkEl?Aiah#hoxKoa+N|eK-N%6p0#Jbp%gpu9N7wFaQZ#xP`tmk3#v3;h+jMMos5l0( zBZi$Ye_dH!jqy%Q_?Uu0Btu}3rb5jOpDG#fYLl{LQ2|ii8Ni9#7{F41I-PJUnY74k zST^_<7Yr#a{S8@PC)V4<4NaaI_4(XzTgFY){d#nIr^d=T-;>!@twd8dh&w)!`2q83 z_Js?{6by)n2r8Oj!fOyR_%H5M)D_H$i#C>DLGM@Jx!=umbNMc&@Ie}f>T2H6XMXQ; zTbqZe%!sJ@MV!CHo*C^0ify!WCn3s4K=4mY=PxxW#72$>C_ISPv9oyDS-5Gm^Vqww zV{j5wBHlG@CVX(XVDwD1^NdTDWC#<1ajfi(Xao3@uO;v{fr@ItF;V~#glOqV~^+Y2NC7Nzsu!i3X1)fHdJTf8ecs+$DY~D|9F_rl$l_ujjd_O z6FC`Ve!eU8v-wn0kD3G@3&OC;aeHe!ZXOQ2Z@% zkIe)=z%m%OJLZQA2`EUu@;)dmke<-9x3|YU7qscnhQ7x<;YZ}0QS?*rk^-M(1I_A0 zF;kxfcH#FJKj_zD`}Z^Lx^{m1wY%0V%XK&RbTYQ@oc{FKNvkSvGUz@c4~z8Ln?uRz zyK1kFhHhL_bbXPx_GoqEN!2pB{MZK%OQQk@2iClAEL$8Y164`E33z>(L81F&YE%PAKUvV2?wtG~_CVqDGj1sGk0Z!H(o_K7)N4rW3|B zGtb;={mwc4{ubqw6}+LF^_)P_P}(E6hG~0Fzah6{V&W7{m;5WER|IaWeMtOSlc(2R zXN!%OyXus(d#UXrq3hI!EV6Xiqf5g71{t_2{22xwsF5+sNphhZIU6$1ce#nipH4sj z*}XmRxc=%dUwq#06@e7*>@M4fxS1%b>Pk$SY+aj^TQEd`)1D}|>uPm+m zkCu*do@mazKCWdxUUXO^dxv&LQMrZpF%zlN8&>m*DC?{%6ycV9?>ZHAYkYHj>yWVU zF1|M^MO(DZJALED${O3H==l;=U7K?B+0^f}hTVwZJjmj8*WpA3PfixIKqVxbU4I8% z(ELC9Hc}cd0>schxc=wDw&BLZGM~f>6XYL%^?qvXw^&_Pw>A8b?$v^?>#ZaTRk(Wn zhfI z&rhLK7JrTv5|&vg`DtGT`z1W~`uYvIMo2qWew|pgvg#ODQS6k?m}<6*KVHP5noO>B zqk|z^w57MT9xkGYq`CC0;c4JB@33#<^^g>=w2<*vkQ}fmX>tKx^7ku76qi6;^-7#k zR;^CcYJWeE;edG~Nv^x|?cL6D$@7*-n5VhyNbTw=yXIUc|8eeO-Xy)RUSacewZt1J zthPgl4}M3u_|GKP~> zqUCR$(T;1`R~u;UUL$4Rv3-;-no@ z zkitp2l7h2PMTOSRkDZPzp^)VoUAvXo7(G>J5)+Xm<85PfvgmW@NVn{qAMx9q`4-T8 zwBnaV3wKz?dp#F!-1PY4n*aD){Yl6n1E0GCuDa%}JQ=&6+jK&!ijO6qOQ`-W1E8VH z%%q*SN5YNM?8zS$FaDYO4RfwOU5mPB&d@M*IYsifM;eo{YOuT_+JO zZT%lF_yHvX{lB)-(JbFlHhk+Ci+6;NE`Jdx!8JXegzGL#b$O6ww~D3^PP>SE`#Du)PIt{i+K2SCwwYdc9#imDeihm@kmp6mB3Gs&uQ( zc&T!>sN=$MNx!vPo|i&yQFssP;8p+6rTX+;Wo5yq1+B~iz3!r>IBDK5(^RIP!wMz6 zh;)_}dQ25J<5-h*JzYIPc&u|3t_b*sU9sc1;SC@@0f?0*8!V-_!x$x8%Af-x+utwBqCXFrc~?FC zYVfl0iLvD>QRlMT9`iNxibSvHD7vHf*kvwz5m%8c>p>p{FTo}HO_6xI>kewljAlz4 z#ql*~7adLzyQJo-n&74VLMe+Woqr>)q(=T}c*}o%zy3Kum9w&p{femheV9r>){ROg zztBTDS)}G=?9Xbv^DT-c=~jZ5m991|{P9-HBzoIRzUb^FXvXJzzVI}-EvugH%&gp{ zYop^8?;oZ+&H@_CTK35;srD)sj3;#@pJN8#(_57f1v|Q2d9~ZTWF(BZs|4 z>Q(6y*5_$+7W$#h5qBtF`v9sgwJ5I(|%oo0C(WwwYOlvA&EZg~B+W7Fe8Gf$T2+K3GOwZW$K zUROGcY86j2gA2DWA7ETw_|H)`DI}uLlns}IHo5w*yGV)GUukdcWnAS{c6j=NQXB~E zd8a>(r>)X*Nps24kI;5l>tefE@zI=#$wOOrT&8jyiUP;81^w#aGQC$pswve)t7`I` z>O58_&{hwQGW4~Wx>xdg4UCyvtD>9^r2TGUoL~R2C{wa&&u}{YO}w zAxxy^ub1g2>z@uX&wjY7EUKa`|0a_KIvpMrNh#J))$9hL!A9W++5P zB%8=gMnpzR_DF@2@Vo9hpYP9K=W!m#@xJf(YdoLV^BVJ(CT=Hj3^BT$EVO)jak7+d z@lR%J-JwT454T?Km}3ZgB&i_NZ?!W#8R?Jsb9Arq3w3I8b|sX| zA`ik2tz^&drKGkIV&{B=Qqo^TQ|CzQc<<8$s>C78;RMJuc~f$`|n^DTYdhPs)@G zmVQ}=l4>i-C$t6R#XNtxOQXdyvcC4vUyd%8M55Wh+i&G%lH-iuc*srC%0&{24+pNY z^H}gU=_@~tsy+~_e!8VkEk~fWSHH)Gm0d-CQa`Fd34`-cKar_IN3e8dr8G6icW{Xp z_PBJoxCIH*-V!#C&>u2wiYrr9i6p&k*efpaB!{O@s6doGL8QO*&Ht)AiNk--7_RQ! zSq`VlZa;q9({!|3PN<-mo8NPNKCfT(FjhBOtX>k&Ky?Z z`rkIVN|3bDiu_j28_ACJ$`|R$wjNU@DY;2%D%TNnzjS!I@@70&Zi!#V#k50YIcs7Z zhDA$-#gr_{Tx@&>_L1pfDH^E?p954*XLph6kg0|h_H)SVUd~~Ruw3p*?-`sf&Ge68 z&!u_(;Xc#<*4Ps%1YmadtH>6n7saozqR{9bOC8necw2Q@Z>vaaNviwcNx)*4JM~^L zD>bJymVDUSS+PSw(S7gLghURRoKr+uqI>DY^j51p5j=f zLlWIMN9Ke?7G?Z5jwjpeVxAel*`H6A5!=i}J(+ebHKjY9)mYWpu~tLQuu+=|+M<6y zd}uMzKj<$MsmLp*Z!$YzX1uoELYmdW?i6K_^T1w@`JEoGon@6}>taXG$#MHw~i;=LN{@9jNnnnn!pa$-(xuPh@9xl-!h><5+%vX6*d` zRYFJqRzmbahb`q*`j_MOwQ&zw%EajbBzE8@d-JsASD#<#Op0#p-qASu8i$UPcZzr3 z&K+{@-nO;NNX_p*A%BgxcWWk;%Gt+Bh;Gd8uN+zDJMuX1(;c#kheG zbtYqBa*!jWrw_ZT?W()H$FV%lJu|FID1h>1pI;+$e88kgAy-kgrNThe?Q9Me6D!Ir zuW2?5`wU76a|RJB#cs_#iubeFb&gD3SCuKD2~Tn0*OX8$`QN)9`)j7wF8AHu=mh2r%DCv4q1iMf~k+g-VesYXC9W(xjMm@I${@rPl{`krNf9exFVO-zG1-czd*$;v zRr)nLI5ww;9PZ+vHC9aD(Um>5-xTABS!(;r|J%?1Ive^gwTsQyr5t2-3SOn0_p16@ zl9ldX%MgC)#nbS?7cEV!;x`NHIX6>@Y{wtaj|-Sw6t+6tK^t}0Q6W-}X+?)hr>8qH z^z1#Kdx5~SO_i#g$K%3S$zF(eG3pL&QSFHDo4)YBaKskwe@Dm{o6F6wTt^Fvqs9VD znqw@xT<8`bIp=%r?^g2bOS3z=Zx)%n zek^iI%ZZaslcp0#Cf6kr$|R%9wK1%y_4kuC3o>=OsBm5tpxLb2P0c&`mnw!A-D%VK z??#l$Eji#gknHF`S0L(|uXMWcvf=S&{gaWl%^i8Q88;8NwDYOx#ZmM6J4X2J;6Kff z?U>(?VIO+auLpI^uTZZM84!hPQdi5_?BB8d_YL@>9KJWFU7R<4X{Mm0@{usfB)`2y*0djHa?;63IZtJwL z*Y2_4RWYO-@!%m&E8%~*$=}^;e@Ujg_vyp{-~0rd-UY5c*6v;oy#aEa=v>jW&7+qO zT2L6h^eG?`p_wv0 zU#4E)RxtJ`C^y~4GW6d6f5z^=;#S?dl?vk|yMfOMp|MiDo-c0kQj~~gN7!H1p-^b# zJmYpU%##0?R+(5M2jC{}hrLo67hGxEuj+`NElRe3BcD!zYiL-!ye~V!u|aF;M#lNp z|CMfh8-FiYk8g{t#D|_2=|VduaUctLpw6&tb(V zcw?$X@5pN5mHXC4o?SEZ~Py((pCbWmRCVl=&#ZJch~x>(;Rg0ttU2HzpZ!=uy1!3j)K~^MC(yLbwLhZ{UZu;Qhzyt6z+gJX?Fyll@z7 zHZtqqAGs)#5*(I2Z@#=F5-K=~nT~*0sF0QTT&ZxJyNid&l>F(1q%7k%0yVm>$|KC%K!7R!Dn$8`8I&b&+(Tnb?KaTcy`!fH$x%5kB9!&?`f{U#J$j%3v zE=?ZO+?JT@MX4koTYHAlxM$X!Jzk=AZbXrrQ6Lvyvk0sCPtV3CarM8V`F`$Nh!gKs zubNz15n*$#RfXRYjqa^;Bf~$R7%zpUpI=t!f0`hL;cNRQAr@Pi_A6zvqN&+TdMblo zIIWLe*l(37UP|{g|9IE!CQsDUn6P+_-aAf=f}yH-_;7!Z+`ntjz3%TH9Pd7rH}=il zhDFDCcg-BCRz=2^KeGekVx>E6`(g)%rb-9&zg~nkojk6^JNXSq_gs|qsE39ibE2kM z#C6#nX_3fBu?E$F&^dxqOxVtKDziYJaUOFSkV5$U|DC>1p8l)doL5g9`*FUVQm>wW zvYMbLC^e_>xunzHTS_X?a{R%z@hp_MTIYWYSsi)9KgQNZoj%5?w;rAL{i} zCVmZ^S5nkH7}uSmE3N5Hqnx0XZ(;P~<2l-ts5b#T{k}`ruGb#(^K4I*yPvYnT{3f^ zs!p9YoO|4Y7V)AGuHv&?!GHzC5h9WY+}sjO{E)tzSM={B(Y7Hzo7$;UjcXfVp@7F( z3|$#=r-xT)!|%6k>(}WRlzHc|HBsDAyqm*(z^QriaKHY7f|qJ$@d?oYL$Uch(V^f;4!nYUfq`J|wqpkV4Fp=S z3zi8I_TWo5&$$oL;o+ZJFaL*clA4$ut_EKlSvRrZQGIIPAY9oXq;a08#>@h=?`V0& zFTRf-cLi+cRqs%pux?=BRZ(;c9SyN=pO@)kRu6r3g30()d9Mp^95edq-Cv6$b9-U} zvy*1hpXQt|k(f%gzvw4S(ztWF(Cx8xAsHu=F)w+MhP&&hX(F)-Gkpxz#KB8LFiVr* zPP6CM+V=MLNGWZBX*Tim{bp;~6B~s2I7TPLvV^5aB~0qzQHoD1 zbA^rVt9=n^wnC3|7-<{qJCi0m-7|}~EiIaCQ{P&cawu29NHkDv6z};+Asf6Sf*d1ZN-D4ga6lD%<5{B?3 zcX1L0LzTX)fC`>rVaGNzDD#OC|@lcqDCO#R()3B$K9eOR_uUnaG&%d5WTHd74d}|}rITc|4CPlz_iu1G{XL9ptotVuThwQ1NE>}fy=50@D?dr6rN&2kl zlMH?aCW38oN4NYmB=|SbL}Y5j7dn5c!%+uq91~z5&oxRZG?Q_LpyzjM(WZ^yc_cpLxp3K%-5J~CZ z&he)A{iW9TdZ&o1!y_*1QemBj#e=60sXK%p+}Y2h7?E*EQ>!kK=RMGTUwK>H!mEHIB2hX@oS zOz5vc`tB3Zl^FQ{1yzh))!+-HTjOL|fh+Je_~<3!1cYmc)p%PxSiO;wK6rd9{RO67r~+bC|JyllSua4gb7hoQ=@* zxMGM4@@bSTBkst0Sw=6yVASGo~CoF}dNna&Lv8^rQ zn7S&90lj9#==P#Vbnc!uGyy8|H0g(I6xgyqOQ@vL(t)H24Ipj=YR{8+{rh3=3i8ST zyhd?y;bpMH21VDv2t+(^t6<|+j@w>lx$hz9gK)pcQ9}fW5)P2a5CzNOfYcQ#&-L*~{A?2Yn)ZJl z^ztP=C2kq%AS2&1o6&07@mhTs8|T{(_lL;*+BFWkh;K!6JHQG%boFN4E3>5AX=)iP zOv7@UHH4=E9L^fkQ-!A#jRd}wY>o=Zjg>hTcrhoQJw3^%iUya~8@z5LW@y+;^i&#uWG zcUmp+r@#P-h5wo}q^K@7s?qH#P*ScS$!g)KEVx00I6B~lYi{zkDXV~XzdHe{O3ZCs zfTAArO$NvuJ4lUxRQ1F>l-~YSIj}*{t^IrU z1Z3i{)){jC#65>=c&s({E!2s`i`>PmKzd?IQY>1T-cUiI4qruu)!PG6M+GmGVKE%Z zW3u@R{-qUB#Tv90!#@kEZ8H#=aYatS@#i#5KMkp(m9kgWXn23UQtr*f9w>PMLsbq&JHsA;=j9{f>ge8Noyi%$0aG+pNg*OtkiF=DStZF z*cjTrmbL>ZdfIon7z1dM1`&+mc9q_qHkOacor>&~+tWyn2iI>8Ka*38mO4TUHBg_Q zgWT8jN3@@zkpuM{)~6WTCc2l_e7Q3Nx5E0J2818^`@DPm1YXM4iJD~Z%fl7rofZo- z15jd3o=@(9KO##7qNa7X>YXJJeBx){y6Xt#rk~5uc~12gP2kKG!#^UgaUop!z)M^f z2%v(rEEkf0jwiY-kiWr5MwJy%9aZt-3;``$!uV}S(jfaYCt?h&N zm0a4vtz-#p`jO%?B`V#Lt{&m~yejoyN}3%qJ2ZdqA^lv|+}3Gvfw&@!#}8RO_;zbo znM2QD`?W4I;Pz3RXG#L1z8G?Rz8$}#EL$>WheM|xuXUHw=kb`ycjT0mL2wbondTVo z>~?Ekp3nM^`I`UiD6o|UU;n|m402Br zNVo{6h(Nl$P_o*LRWDDIKBa`U#hQ|G`px|Zx}yVD$9y zHA1EgDmubjh;;#;B;n2s=^>Unyw%iY$=K6^+Py6glU=o+Tl*y1B|`7IL`IQdtm&HH zb2^$UXXcz_PcDsO|Da#|p>#cAtY(Q8eM+b#^LG-1iVF!koWTx$5!nuW-FmzOlxX%N zLUK7&iaFle_E?0G3bS#T?_7AFs&<_&&xV45eZxoAu`HtYs;w4l!u`(g!OJvhZ-k&%yt0w&wo-eT0Z zx~X$V+B5eT7Sl(mUvQ?_#uOCqe4@rMkbi#0PKdoM#M{(^;7J)sX`YE|0cg8FD?wg0 zk|afyt&nU;i8AGZTuYg%aJi&$ZLfCrcvDHJC9Mj-A6L)#{FQ)pedq~cAcKS!6Ih+4 zt40#}%A2=rCFuPSSXfl;h2txBIw4m4Jgj#6iJ$P}e?D;%k}g-5+NdGM!~KuyL8t1i z1ekdET|8kL-j_9B5A*qxCtt%{;%o6AxVl1y>s_LxTTr^zW_17Q-0tE6QU4OsNb$_{ z{t}%q5qnPad4=O36a-%TToP+ME@mkhwPa>5KD>>CO=50QBZFIn-+Kosr>2p^N*Ny+ zuliW_gxjn}rxqll=zFm>lYMUe^NE;js~PJNJ`L#%@%6#EL<{Q|Jbk$B%t84J z6}RoOA*_lC7bRq&Vwv;t@&>*w3E-ppQTtr~d&h?*^5K))q&fRoHA@s?wdFkBM2bfC z8*<+iVBcw>>fzDZ#`R+KW|W19bY`du1_009B-!JI_o(!2l~)b(3o83fl5i^b!gL3-DdrB!J*c>WMU@m28}4})yK!iIJvk4OiG<$XRz_BQI?3xgDoxL z!%4(8K3jxts2XPNXxYuZK_{lH^FEfFZ1`aJv)iHminmrmj9dDq|B)xoTc$lVyyqir zd%Tr9c2-?4^g0D(OngplFFT+5g<=BRH@%;3QE}o>oV~mom7E@ToXe+>o4LUPb^$6T zW$J$YN(Oj)(oyz-TKLdxgYWSzI^ipXap6l?Jh(ht#J5M7AmcjDC>wT;-bzY}Cxe6j z2+FuM*qT5r?vC~aRjwGgta%RHv)AF=B(~!}L@tdII3m3n^2Vfi!E`l*5*XGw&t8rv zfM^es zG&YAkV4oDD47eGpVt7KYOOD1}Ud1n$Rb0Y6g0%#VnOut{>52GwOIm#K851Ys6YaYn z9dT>RrsJ5rbnmA@WUPqkrismQ)W(HT;pbmxq@?Q6q&I7H$n#zd*2qd2+#2ZZ8@x?6 z&C1ep9_=k6yuc79f>;Q7KE6`8+mmYYy**y4hCU6!uSndBfJgWSsIPl|U{zF4Wj+8* zfmb6d^}UH50@rSXVu}|O@P2|kEc=Gq$k@f|z1b-rS~iPI%?PN4`|EUo+#~Sb- zndvPRS|$j7$;I#tXAjkgJdVnI3Fu`ao z#CfWvIezGFVN!QnX>$nsnTeV3%ix=2(>~DaNworhh68-7uT*Z7PLufY(If1TJ z5O&1yR6$m713QvgfeIxzol_4C4XuK|G2Htjkt}inI1P-?kc4gE(5O&>w(*qo5(L#z zlrKlZAnQD%qocd#MC1ejZbXX-$MQ+o9>0WFjLR#SBGtgjRecFHAkLxG7Mbh24oLli zhwr@}@Y4)lf<1li*#dKb3yh}jo#_4UU0X#ydwOPO z%%^o>e3?M6kO!~=zW`Y8NrB9d^avnfO|6knK|Y7y(>F7N`uh3`LPFpZRd zPgAzuO3k+V$u$)jypEkIwdhKj~#bLdsag2eAP zf4P%;cor1;fyX|&pB&jze=4Ng5I z-egF~EEL@^ewp04@SuJt4G#z4Oc?{fCgy;$@&2gGJDQSOp}Kgf(pT0B@|aT^pv+OmK%h zcj|vHlNK-Y4saP{5#2{33j9RMW(!*h=OBEJ(a`5Rs(UFsv(d}HUR%cJ#ETjXq~%^l z8vsNI2P{s`K{O?cHCuLHS>c)il%Q7LD6E6(!V|b0?y77FZE?3jE1lo|vu%rO!UFLC z;x#&Qadnqu@3OT_pp$Z0?s=tl&e-q3LMb~fXs6@1xPCma=X7Mq7u~LqJ^pS&V^jU* zP}PVGRi}(iNwAh-zRe-#uh2sC?jd!NVEBD_R<(GHk#5`OiKZ%$JBiS6pu9pa`T>D5 zq=^QZ+;BJt%wrIJkv``8v&xtjw94=gx;l6a&%yX?sJm5JN?e=>7$%g6*sW=4k9z^` z%3_J1SgU|r&*yBvhV!pTVBPvPd)G0w8o?kx8^O99T=5t$0 z(@9c)^68OnZ^$8;*2`x*_LPV6$@%i2AhT;qWUV=_&z6FMOoJ#%C>i9augS|PdO4+% zl5-sF`RTbF|3j>8UR;$m?8Nug^`pr^RV+PJweHM1y3$PPhzCI$LbQ)K*w!W=-6!G+ z@ug*>LBO&8y}Q;rGBR@Dxs87gX#e$mQ%-OR|F=O`U!ZWRXIv z11!qwX>NY$q@izhtgwg2S_ecFWD^~!D6S^H(EJ(}9RF$ghp*@T>Dy3;l{NCiyZ_%nem08fEeWDAae@`dw0q5K0%yg|5%?K?h?Dnc4~Jv=PqQb0{o+SP!l zyJ`D5Da%tj%s(Z6en?ZMbtm8nUB4ua`A|L8O-ltygHoL>9cP0$JMu!=3sT6_pBY;dfj^QgS>prB4_+di|rgwLw3>SdO^Dj8QOoy>HQxOSq=@ zus?_+E%aCAcVCT2cNfi~&A1#icR8xkPg=>^Y+Nm8_9aO{@0G~5Lpv+NtA%g!7WxU> z3MxH6KGHJDf^rs?fWvSMz{P*g?TsjI_FTLxbMv$x!H*kmw;nfX92*}`sM==N`$YSq zAWYS;A|>JVjQ=pcimWjgCNb-#z8g=TK7Hzh#3EEtB5Rd9&b=d6B6=Xiikyu6{)tiM z?@dpvx5NH;Gkx%7g+1Z|bg$O|l&<0sC4{XoL0x-GhH9HIy~R17>7=Tnazy)ORDApj z1Zsp^EaY!oW3*+=O_C(KA4tyKig^B2U%A?ix%8q+SA0NU^3l$`FvjK2lWIAt%_;m$ zZ-P};I?6r;t~*+{=PfBJ9<8gEY+fdl_%e6F(k*h&^PIyfF4kICbj@>P1+I*x<~=t` zIg=*0Q>CCXK(0%%TtL7#Ql7D+X9sJHP}-1Xb=rQIkk7y`AAa^h{F&Hs1WNG~f-E!> zFp|}5NNR3xM|xG|kI^`>WFVjO_Zo9hBPT-4jQ@DvyJsW-NFjkE6SDyV*TKa*-<1)} zwEa~SOaK|rdAk5^aKfkVsX422p3E?bG@!z!< zJMUT&>K`)3w-}s7c@_&PDfy2=5>3QWW;)gS75Ka?|JjEB9U^7|)=O%B{fe5{P2E7g z5q#vg^daV+Ko6RZ=!2@$VYDju7`E@|XQFUVljew~*;1y%l}p(sIdjv!Q!PZl%#4Cs zd$vxClWNA1;lum72TAp;roMU7>Ji6yk0c(s^w3;#ltr)ehqe5!yZXJG4~Oj_3FMSJ z`9nfY*YAtwO+qP2T!EO`NI@;0D)hQTKs-uM z4(z*cfZg^BNAxeBO?1lD(1SVR-j39g$bv1!+Uidhp-WAODzdus3SF3s?+@(%xOFok z%?1HUfRFlDD$SHS_puLQ9ZpC8w~+? zO5lo<)p^rs{_aj?UZnUF-Rlb1HF^T@hoxZJMl`E;ulYvkrsxxe`zDiaZu(MeTW!u> z>2*TT&Pj#KR)-`^N~lXM<-~djZUq(d=QINqM#4uat(fobu-Qqi9a8j@pR|lt!gnEC zfhm6Ml$yasPSKlv5BBa=vg79L2q9JACp#Ifdi!zT%$3pdhxA5aA=O>`-0v&t(*16I zRQeo2Q=>>8{T^e5niJ!v9GuWteIy?RJ>MczbqvmA2OxvSE0Y2sMj*z(hH5F?QLESA zM~c8v1jgYOjK6UfYx$J;SQI8PRPwH_LIU&I@aG3=0fpW#mT#687T3Wp$Sm^wGCtl? zPK7PmpZ@n11}qzUSCp~5QYx&VSis0`rA_!PYG3+Nqda^TysDpn(kfx0BP~7Teh45( z*Q&`FrOaMb{?{?!MR2eNAIYjdtF}#n(+NpIm5E)K(+%vS_Vs&xHRfiMqv7ZX3E^wL zHC=atrb%KidsxWxl%?BUqqgVYD$!`%4dAhy)Z)ArRWxNov)PC#TJGxYJBi^nHlkr< zqP=@3L}umgMCENFzvW)Lc)go*;p7fULEq=NR|A7`klsTCEd@}s!(reap-+Z)Dv{@d zA%nh-6Uly6grp)|%=vOJMnbSn!5y3euV1lv)DrPQ5k(ja6H$8z%v*c~9QGgH!XIcvPz2)IBoNv5Yh0_}W)lCtJ#!Y8XRn{vY*)WZ zJA!HbcUZvfMXLix)>F8{&_9jpyi8v|!k2diIIiQlG)zJ>($nANneH=~;?heR*&>8n z1RVmym>^C63z9&!;L2-#KQreTAJ=zDlxvQRv#XkJ_7#3l!FHJKs_C}bv#kC?4&mR% z=L(;0O(|fo8_77~%aJHWt*sF*-I94NmNcUCpk&zIxoI9TCemfU2p5ul5iRL;(Pe&x zcDF34Qp_^NXgd%8_ES`%W?}JZ;eG54EccYuw|ZRq&V3i|Hor}se_%it>PK7C(=Q`7 zh*t*#jn6(liLkIB!cN3DoAmZT=!||cljY7#;=6b6ux4H_s(-+krt#jspBPTV6fjQr z()#tAe_s(#@4~m~^>lR6@KM~49d7JYDSBmLq^MnDJ7XKFY?%58^v`&_Op(SRN}$6y zkBMoV4-g3qxZ{Ci5w6SErkJ0b_XA@j@Vl>7tL;?|;mG6IeFOK~)ZI^R+J(ux(rA32 z*>x~J_Kx2!d51@Eq~@U0CsW5@+`>CFJI|)%%=B&lz)v1;_x>hBQ&`A{qM9iZA&;(e za*A|z?!mOnuQ^XdbZ+91v*V^#XMN6Zp-`3(b@sc`m&3H?EC!Rl?uKDC{2~tnY518r z`PfW~_Pck;0|V6rWQ1H*TTwbl*L?vlal`w4$nWozF}~7l=th3Col}Ok~`L! z|Nq;xovq{aGBZ1nH;l6PzW8_?(e|K1Bfdu%Wn6uytt^VcJ6z?jO(8;BAP?`J0P-+N zxi<=WMDBYNH%-WdiA?Y!OU*O7j<5)w!weo7AoegYQ)PCR!=Hr_y(@^bh(p0ES~0((R0Fj)80p~1$y(?k7T*)#uV>XRHXCI*PPNC zbGUYJy`m(6&ghOdMaP|(zRM>({5qV)ws;&$my5T*Rn)cRw%V%(8udypc_A8Welm~O zy8?p98P5>DA>cQ70#zj<+Pa9DdTA2S%g8l}LuI%Y2}~O8U@6hMfw_TuWS+3X076I@ zVbxUU6z(2j@$(5?>(hZ9Hw>3LHg?dXQbCl{w%>ObsEx}#a;KsQC-v(KwcFr{nJ+sF zm{9_?rVHwn{>rzz{+2kMRrTB_3e<0m5H>ADiVDX6WBVLSKY=@RG83g0=Mq;5S=kNv031LRI~(G$L$Ig zkG_3rze)+5qf@ok+mb<_2^4ReRRt2=8pritH!m8pRlH7;O4BTvd@O2jHID6}u(ETZ6QLO_UTXb$R z6nx=~(I?4&EN30qq!F%MW^F-z@TgHamwVhoD(9oCft4=8)Q7cIYx()miWOO%IcsF} z0fXE>KAF!0h^rQU3(ql}1X$4a=1qeriM}x|pFb-L`(J6IRo4n8<>X!M5C zUrY#vPq}l$0325F%a7C3XPfCQCu8UZH$2qw$zb>*fx;e%Xp!I7&vv3M{)ogd(q&rE>RjvHoxRD)n z|NhSnbN;FWFYNpMh}S_ZL%?mHJ~spxl&W5J+U|{0?DAyC=5tdXGBKZY)fe9W{L4Mm zW~yn-DcBzC96nDD+b%(1c&NM41#;2Xf|)@WV!_UL3FqV~P0giqSI%(!VjcBg2Dzut zX?w_96&$%<1a73qANhfMA@H>g!tH#_zOCUhLvRrWebI)&E!$Sjq6gDUob)6MhIZ0r z$nD|?7CYYLuAeT|L}f(b-X!}zkDBJ1|3QyK?s=M#zK<}JP(OZrs5{^Aphw9eRkf#& zJT$GViv5Nto$B2=J9??(=!DX@kxZocn%1A+t!n?GE;P`5vsom->U9H5tHy!YsE>WK zE!lQX8MO$UKF1pQU9`_2hN+w46&pI;^`A_`4(Q7XlelWc@2;j5qrw3)DK_)8$eCnW zKmP^laEImy&T*0~G3TSVbMnDna`;#^^t9o>_QTn9q?+c@**n1#;8GItLO7)!1p!a<7I>x?mN7N==+E_3orpeDI!^0c3F3&HzRmg7zig4 zKA#%DKvkARu!`mc(?HfBun)MI;%YjYB^?tTy+pW<>^r{8U3u|a<0=Q0c z2Y`BKH_I@5rKWV^Mg9#F>l+#_#9CwWZYKU)p+Q~6(NgKd#@Y$(py&#r%NEyyUi;4c znyF1W;8wA6DKL5Cq+ZGeN9!<_~X0Z)=u z3eBio4U*=Wu=*07Gn5%c>D$*s0-isOd_NVj`=JFl^{8wi&byKF6ts2l>sbU~`O&|b zN8A17%a@qxZ#b4sK`r|?Cx3G*iG%{j2b-O{|cRf(YL0Wno!pD zF;qBSK!IEe&i}qZByAJ79hP?ddftL5m4GcGcO8FU(971XjUC{9{LuXOwN0@{oGO=k z3Hkx@T_zbtWn>7NC3>CUxm`opQ^*f+=-XtWi=?QZclJ46!KtoU&2h-Eko4oe4a`Gu zG!;_QZ_hl>wtn#YT^snP;CdHAGPL(_#=pvR))l6sE= z`RYHu@vXoMQNXN%2m#c-Ay4~^r@|Gz7H9Wvq-MzErS3iMX#ZQgd3zxmA!Jfu@DqD6 z+50<%(S)=wEal)3&t@X?>!XXO6A`KC^71G0GvjXbX)7~d1|pn@?j*B12ge=?n#-sV zgx8Lka1j_hw(5~J=>_Zq8MLlAq4YdFN>F~)VBjKyeg(HI+J%veL$=C}SXm5i z23{R^i+I1q>@sT4I{s9gP7!}oY2bM3w5!6W2_fzn91`R-0)K$lH-NKxi)mEO2>rOg z$JRGOxXy+pC9PwvhO)@6V-Vquol2#?QyjO`g8b`kEmw_4PVAOmj8GS_87eCV;0Sy8 zUnavYXqc1tbbQ^rxm0B<2epN}ftu4U_zK?DWH9aray-@^xW z_XfK}h5Ot`$&azlV>G|+Nmn_i{qb^)>QvbHt)Y#ra0wMT3{xMi+3O86lwx78{)(0P zmPNSw0o+;ejks?4qS=r9OJKSCUu@=y_vg``wM_yp7*MU?m7W3t06n_b!MkDz{rG)3 zQO1nEln!pKap-J_?ho!)gu$Za%|mci2a9eNUxMRDP8;y_2tXDFZ^AM%!|BV>XkLj5 z9Y{pxIhwRT>9Wz=hTlw&l=pZ|GzoS^u|-5@9Cpu2+plixZb%_Q%RJ67MuqD{sYIwh z>ryL;6G#30@8i-;UG!8}#(cP=yQBBYnW>%>Gre1FW=%7*jiGPWEv%%2S9cfA5Q>in z&~>iS^`pGYcO6p`u8l}cltx>7MwgWETEa;$8cA85IuGwX#1eRbL`F8CPjzapl^p>M(e(!W0&`cK1&tXMBX^CsGBc?j9t_ZUp;> z;7H-d*Nl+@%JFKOH%hDJWD|l0fI-I<9Fx&4tDVKxofr$}l@i`tFu21E=Cer9488#A z=_ilcT!)!`VXfVr>Uz@gIsG?%(V${8m8!{0WY_XMs8upg8%-tC*ieh#nxdkfOLk}Z z;bh(ULX4?lmyJ_|itX_(_e37k4zcIGc{%Y->?dwB{EAFzuGyO=hhh0$W{*DD?$faQ z%yV#ZW?+M^u0KAqdD}hrL7sD(dx94CT;456oBthPAn@iZ6a5~jE!y#(F_&#N_+532 zoiOJmj3zB&P45I}4V5O<#V31BXW=Rm<@ehCm|Z&guO2MTHEn_A;Nvb)AUueWUdOqz z&Jy*Seuy|jUhO=NTd^tKqZs!&z#$?-VhA<5s-bftK}R*ie{(h!)Eh42DhohAxN8Ws z4p-ii`WBW66bYYBTz}1E)hC-?@pgTgZ$!BC#+sM6g6C*s^S8kE_V#sDUO>{!n$bTY zJ-z}4vt1cNyuUx1kyRXdsKNS@j3KMbOmTFQpHU*{n3^x2R|d;?9nb%| z{yIFg80-W-L#a$%PX`vN#`MiC=(z8GRo_^8<^!|D`t*wHtX&_?2wUK9@uF)HH!nI2 zSBN77ZlO#ptdjAd8SH0ah_-?*IhDUUkif;S{}E{XTWr&v`9&Lh)B)*iL@Ex@Ym$$* zvQtvduY4cVUjH*quuyZ28K;K)U0#;ri^jBY9d|C5-uxQyA_BbdBilZ^>V=q#^YE@G zhCjbQZsJ?mN*Uq1BCTCu-ayzk!jhAv!4vk)L=Yo-Q_I7AR&14f=NPZj@oc%Ow_SK7 zuqxoptn9%7RDL(yVhTw#uJhXwJfUEaX^_nokvvi_KHjZktf{M2;GBF`N4Ppt`7{9_EpyT;>Rcz4G@EJjJu z|5o4Spj#aU_e0!Y>&X2+hy zQ3uTQVN~ooOxsri5Q68v0mujyHr-sSo~-+Eae&J)fr1R2H;wH5#7L^tWfW-1h3b#4 zYHDg23ZQ%5%feFK1IzKG`1q-fZxd(*x3etF9mpCiaWKyMNL5dv__9)gRH@>gMRi;v zuLRu`*?q47vpbj04~sLX#6RWrjosy49TQkUW=E-2T$;Q{UA!+{f}NRJ?WE*Y5u_fW zB5Sd|RAk{?(@4&a9N#HM+A3EUPSFc>w~#Cx7xfrd{NsnNY6R@Kne)9er9t7ko!(Rb z)}tYxh16Pt*7+Y_(;MmiZ>G-x=up69w+}dIIOu{G&mTg=!plqXC_HZw)018lRu@CX zGXdU&=S8~o{Kmo*|JtN0^U0qmYQYq$U6iKh(>;r~1y$C8B_dfJzN#O^SiIc{DF%po z32As9q`R7b3EdQactPfJ`h)jZE^P1q**8=ZxbF4Fx>EXRS7&gYc+4vq5o+y2Kb-WH zK33%i&ktu#&xNNxnk*1u52}jtq&)Z`I%Segv*7Jrm60ADU`IG`51=#SDt?P#ve9&4 z_z+Myk6Gxf>MPyf*v^fxjD?+Hqyh&KCZXA=(|l2);W^GKnBkfunXvuh(8Grh0pfwO zc42&)#~vn$#6E}ba@O`%T&ObF%ia+T9&6k-=CA(&)#h9A!tzi6AR*@PLbezJk>W0f zzQic{S?T8>?7;_5Phsk}x;W)V$YX$Wp}d0aW)f5WNS7Bb?)B>4GrJt{7g0oI(#Bv8 zg$Wnovq`8`elWO$Q??GhP(oQgmK*=!!*hg_D-l5QaGM((NZXEd$}mpda6f-TaHzt= zab@oH(6XFsiSIrKA*9&psN+lm+!c*S=aq?) zmz#SV<4V6w)2giG0+eVMR46%)Y*EZO*tI^wv$(6&hxsf2YmVS+TZVilm^YIiXi&T` zeBlJujC)6V$3aO|MY>Usi>+OA?ZY&+QUDy$Dce3o$h?pNN`{H3yFCJ3{?3W zJh=gccz~O+_Eqgct z0Mo-%x)F2AA)c?U|7-(wjWCe&K&}^gY*gmOsjiIe0;6y7?ogX>a&xafJI~Am?!7Gz zsb_eTC^uf9ma$~r5!;JH)?@wTF609YOBakB=3Kbpnf_pe&sl!sQ0}+gs;}GG88TTc zxz~UTjQP&rSRS64tM_p#8o9)gAK5t-CCzxHo-Ju>cmR%QD540f*!OvaJ1nLeJ#>cX zfn7j@e~?DRCJiXcAITn_f20ZbAN8g2v)!1_`saQM?CiDq6&g$#;;$rDc zsKQ6*CT_ZKwjhBOq)h#@+0nj4fJl%TeBH>&!2wo*Whw#p=K^!3NWMZmF|O6M{8zh# z*YXDk2Z3Py+L+x*9lbf+(Qn&ug}`FyOX(aQ&oA2SRLa?#c~5IIgcJs78t|A)V=m^r zd_uPWW6ff4&A^?Z>t}@%qJ+x1PN$PNWtiTX4UxXo=(?9G?p6m)xq$i?B2bPN;57)j z<^8UxZP3Q`=$<9cKp;dYei9_!!f^Hy8_SN=Uj)z#_?J-ZVYEeDO^y5AH1JsJKWnq$ z=Kcg>5F0<;@rzY>f|}zzEkNY)L`WQ%x(j|iQ3|-5Qykw+>=d>jdEym7>Nr=f4mr{; z3Gg8h2w?uZ!Pm}71OE@{yoZ`C{*Pt{Um_D{Xt6biZ=*K( z(1Y1ks4%oLf%%cpLh{HV1>Hm8>tV|0Z*24sQUU-kTEw@9z8G%pcE4jF5JulGR$Un+ zSc8Ab;!;nYdCuGQXoKL{zt6$PO)OhPovuF9Lf)7@jt>L^bPHx;tuh1l22BPKQgZTF zpKDLPXQD9tHG)9T-zoXPWX^86M^=XNx~{QXqXb3mr|$GK`6)l79$25_`>mPBrvLkE z$TqEaLZo~B83yFf-(%=Ip_L(*!7y-|_iFrDRR2+G?WeVQ7HOtRAIsetS}GEqVwFfH zBvgIwS^nA1Ky7(}I&7*ir5@8L#&S>O{+KD1PG`~Faau|(d>nG!EtEeLIO=a7KM!zr zVEgZJ#vG-?OHR;He7prrR z3S4%n4c3k)(&7O;$Ne+-NsH5N66Dk7MJ4zi;IzwT``<~x93T~?V@%6DrvbFq8?Zh> z;hwlapbfxc!jZT4Zm~53KI0phLSYWW+p;s3lAbU9@#9nRLKfe@G%qt!j}vtLa~r=6 zu<|(Xx1obKD|2Fw2@m&uPh%$4rKzgQB;$Pr@OOr~MHde4)t_Gl1!cW`M|++K>b|tf z9ZIXAyXJL%hp(wacxN7iica}n{>NKMT1lEsoTtO@5(qd}IZi+*>}2Pjcem}K?yS1~ zm2>Ov15$|Y1$=)QNWHkY;f*zQkNldsT_e(8c755TXocm=Hso8xT?rm` zTRoVCvKAy*Ri{3Xwa8Ml#ABZ>eB+~zmYDcviy+Dy=PrCT)h-cBZJ<%940DWnd86Gn zV$flkx4+evt3~@S`ZQMp5e;6)WX`U`<`qv6;lX=~v~{cfUa%gJB0UL7nZ3>hTuP-V zb_8F3p}G1nB)Ar#%D9+>QLE%+k%PE(ERR;ObcCe)V-FYwY_h*{&gDYWfv?yL6(+>{ zzlK)jb)NpfI~WF7h#FOh_Y{^9AumT`QnPq*3kys$@e}U<)o^b)#47Bbo9zKFetR0@Y$SkafY8SV?9oIohW5o_EvZ*QaLI1C+VM^YN2CPE*$?6dLHhd@U` zQThSG1lzK#F>u!Dj?`E9I-P#YU<=pY{(|9KZ=Pu|1F-C{goHAjDbg#y8wP8pt`+`s zU+b)@McI^tm9T#8EHJY_U~L@l0JDy zHoWeCz0Ih&P#CccpnEY&}?L`SPgA(8XVn=`Eq){<4zDFkjaJlTp+HWwce#z~nt#$Wc ztbYC%&$55C;XUr>p3h^db-rPA!7-K&PU&;*EtuPfF1)xEJ0?D zX_!4F&itdrt6Qk`cX$jK*%0#P)&`8kKl=dGifz`#n7*@08;| z3r5BS@MMZfo*mJmMj^&cF>In&#MFAtHPa_*#w|rDGH{E$IdhydEp2PWe za>{dgq!F8~D5?9MIk=m^=*zoqW{G})#N}4@;z-XVE<({UCY2o#?+RiS<%9?vcZFi%;)5%(uTE9 z?`htH(1$%>3Vk}tuS1_>cej8E=8B%&1QggmIj{ebSelE@p&B^MiaF-P>w>MP$)EU*h|O?r}J6XF2{ z4#1U~|IKQipN2EH%yBR%kpBSCq#RF&yc&dOA-I=(@b{%v9W7t2aH0Bkwyqwf=Y4t9 zzN%p_eNUW!Cg`iXwcYike0jUcY!_I{|BtZu0Oz{z--k;iE0Gap@2o2&qB62q5gDNp znbAN=;#;xL_i^1vcfQ}x=ly<- z^L3u*tEP0<|71KaF0u{~RWR?KN2mAx(<0We937u!FNj3j4yQKX9BV&SV2_&=^BN`A%3_*sCeS~-nC;%(6UcG$zvZVzk zEGMAiBQQVouwW*L$;%JuJihl7O%h?_f?20-VBi^?K4Q*CP*;Dg7YMkA2uWlE9={#D z@g|t4emWA>_+V4I8h1{74Oxoh1qLsMI`@WmT%9^2Virfr!(+swsy3S)gvQu}JJcAf z?z`Yh<5lU;A|#oer@4lQ#6v|!W4)*It?;b>9F=V21&5E{zXJFn zbPCX&;V+2;N(5R!sEf0%0&RZG+~feE>*=hg=pgI`FaRI>W`rJb2Hf1+vhO!_NgClI z5fy|wavXRIKnAetX}6^0;k_(ZP2Z*6Y*jPg|DLf31cWlh8ks<;U4aDS5G3KbM4@-B z#kg3+n(y;U? zwHaga)r(a;Zi2A|&Tw1f0~N#aq+v^4J-vos%yVjf%hb6O77^dV_L38%lLn^3Cgo028`n$jDY>-fCNIUTgIs(jrpO@c?v`X=e*eU*ZsIF zmDH#qPy^gW(Ip`SnE<{yi#g|enw`6LG4uozOwXRYK?0Zu%+z9}lY)8E4SF$mq2CD< zJIGE1V+6J9=_?%#jWFxNk*nvNQPE&5NO$m3L>*579U)c%Z7*6Uc;v&Hi}nST%08uC z?+I-t#2y4hSgrEzLOJXvAjZ+a{urIW7G4mK{fH3?-VvTu?UOXRIo-1bG)X*u!3$aH z@u?GOQQQa0x7r1TzQC%i-vf9;U#XWTjouBv;a3}fb%U1Vbfy1m7|X!c$zBGVO=PS+ zmrG+Qa0IJ~fe49`Q@G_rH*q#(23;fZ7)(4X@1J8XKtDCMXxpXxAwb(`%_q_A+hF zE&xqA1;I!iMb8F~b1$UG5m#!>Qj~o`+~mN1K)jT$6hBUfA{E2TW;(|wM&j$6!gM3% zj+~75N<98v_-GOtdDFZtiIyjf%+qj&%)?W|en?_t7L6I8C>mFF>PfG6;;lm!NhUJ8 znjI&|JNuU?7&XKmh;UrE_ag6gfV%+?o19u)vl=&rRK00&`x6zFMcPYi{&H&r!6D?w zTOes?APOKLdtMd?zt|YHD&bXtdhGK6+16-LZx8-9ui&+j$^~vOy3KVGx>JJj{e5{J7wr`-CxKh&j zv*E^AHpeFU9QF15lg>D|jrseIwPRufbPx8CGjDmTk%?_L~~+G$}Q zE$CKG-qdu2sYr0t+{V_GgQ}7(MbR-G3{uf99m5wuXlA_v(*p?kXyUVk3{G z>xoDjf>s84T%6IDXoOz9YP9`lL8wsKm%6MU`(&^WehwPs0c-~YN>qqjcqXoe1VjWH zT^wZNa_D29`_VUwDwP`wo{AmCrsk(}L|y|yuUU;Ws8~u9GHHFj+1yrSwPjPg8hgV4mc0rq4r3S3H7%-k%*;{P*D>Zjli3e@x9s7zt zVXz>$OCk!p;ey}^Hd6oC_^ubk$&bzsKH}ge*A7!{D8lJchl{%ybMxP{2qJ8 zy!+N`i?3QzQiuBQ#TB8}2TFj8(Fl}dw>)N^$J16!^kD=lj_NR zK!!iHqe*~}i)a^+_5i+E*{++Q>P%Iv@Rt^j(I`&M{~WB*2!kV$0fkvc zKXenh4yc2Oi00m1_JyV%M&2&{omvKV4V)1HdIB1jz4h)kBiHpc;s>=DbBk}kX*zN; zq|Pqm!Jh%p-z;C_$R{b8kA=Cj;+MboR@Ve-^BX3#S>E^&&UGd_Rw7#SD*Ta&pUqEw zJFew`G)AyVFn2yr`UQIgVkkfa03%}yVmA%|*k9OVSB65D&@~gIV^Ekn zcU?O*E6MnG3e9f3JCwUIU@|yjVYHMYxkF=|JM>r(G)Z)t2Lu8#URd_s$@bu%tW@s2 zGae>F+KT%aTXpI8hZ_CCmwRrk(>xVRYG|U|Of{COxIuEV({x2K^WJv3U>7;5widmR z+YX#;np)cAmv`|C3MQ0(8jSw&xh8z*P?@#SLlcI^Pugp*EZh7Y7zM}i5sA_aL})?; zdUY%#mgrV6=pj~oqM_{v7k3f+>#-kg75{~1B`{u5^*oW*TAF5^PaIqfeILD(I*3EzV%QHOxf?s; z*9UrEqJEp7>SWbB?#e`R@|xSYNsrM+s(zT-(4nx1rp8itpk`gk#^NOp+ch@{j4$G9 zznoL~#Ncu)hAU;@-8;`wZkeKt2a+3_Wl0US&33H0562#6QqFKughi2Y7|pqggazOI zTvcn~Q1U=M{8&V7yfQv`fl{AmRGqtlRYApEn}`P~kDvl+=FC!VmY)ipj27U_C3jad z<0+m9p0@py1o00mawPF+^-3GlYfGQP*NGqe>27Rhb198>eR)LTfTF&o6RCKD-|E0A zg_nHOJx%9r%B%eEgnCmG43}KZn|q}lLnC_iv}oOp$(n^9PE2@4tat5ju-w2F5&XPu z+%<%`JVGf*|D|0<33pnAx@Z`ck>3}s^#tUCAN>iU21>o~F@JjS+@kZNx3v;cFMb{_ zJ^jvliQ=TtPtI~zU;YiR=%V!s+tb@RRjoIXthvuo@TPV$_YaB*R*c8kG^(a7a`q0~ zi=bHcE7(oix?WmYT_B9sOg_znyoHn5eZ5tMHd0`jnEN`{_Kb$|nzP zT#TNu=p>toV2aq2Jbg&_9h0`e&6v3vMjw6~ripD6Pd2+e-glUeKR;LDG^KKdu)D@k z4k);)<^3zdd%A;4c2kLDo8~srdw@GbJ6n zwSnPh>~9N3pNtVgXT2?i@b9pNEC%5XT6=6~_ck~GV}b+5X&)Ear2y(T&o#oFPj+(M zusAU)_L5uCk@beRoSD#RNnT!Y-!~`3!pNP{(H>(uMCcgpvy#tXDms@dax{|`CR12x ziqMRv6v*az+gS z{s~4^B2)A}0$oL|;s62E+y|pR;g8Obwhm|}Domju9^)>2Y{s2N(j?KEd8UR{&d~20 z@3j`ORU+~K<#v9-o!MzI_n{kTFlHBHAB;RHyG+PRBK(vcQP!n(=bg*!{fU$$VG?C( z_Ru2Pj-KaDqNzmYO?l$vZZ*&X2~AFe+Pi7`f*(=Lk511?uz*NIC7lt z8zrIGMTJGoQ4ygJRia-eSYBv4F<+CBkpVT(n|^e+*~Nc&cV3)G3|;ssaj8%srjmTG z$n@c!;D(5v;JVs766p=DwG?s|yNhnqX?}X;BO!WGfTcXs^_fDle|AaJZR=9TUeDMP zGd@zy77aBrdkQO&qY>wCxdyrm_-GWiyIDincuUdhrQ+y6Z+>e#*{=I(Y2>fT;QNko zBdbzM>8FtO3#aoxe_RV{**iu)beo{{D2Ehy8S`#pnf;XxHFI*?qVqN~YWvVyO;V3(ZNID)eloC{lTEjua>f_{CVStTcIwEV8kSa` zh8tGjunL5APlV|EaT_>sk)?~~T5L44=TZjRYalH zwyFw~?`llR1drV={@kNC_~Z2A-pJP1>h%}q-B{-_)=vt%e#GK(d37|5E~rh9#Hw?7Er#hIH7G+CRf*{4cu)S+L^ie)CwFix*Wza-&x z4JSo2O|!=qtqrAJ?J>N(%mD_VXJu7~eTjcQu zU(+G>GYs<64Xc(c>oqLNcsz2HjLAg8j!C6-PMbIPDr>7WB??z&j$J0pg10-1Z78FL zT%wVk%yD>GNL2dBF3BQrS?mhoUxVD_n6-fk_Ug)q(U*`|t#Y9{AN zv#+!A^kTapxR9dgKz1tiA1_BGl7tx>nP$Rf27THv-R6O>?tSA)dCHchQWa{E?&Ge9 z8ik$IrIUHvtt^fnTem3O8C_|ebTLdnfZ?7fMFKzLOfC0L)vF9^Cc?x603|yQ>LmZ_ zaxfuSxw!7a|I9=u&L~BhqT~z=uF_@&rOB#{I4--`$v9gNj5qO2^qL;2Sg8?l7u@O1 zxm7it=i{U9bfzr~_5K=(mi#MTIx;f0T}Sm~!j7K48@)=q?6=N(NmC%LJc_)tMJ&sw ziPUqea{oCBCYq1d>1$nR>IL4BTbt_rA*5IU6dE!+@Bp{{ED$poWjX>|1*Zad>3DIc zmBj!n6O-XXlkX_iCf?*GB5XuLnTh4K7&U6iV9)x0MSs8+|D06(PxP-cnk>oePxGj2 zJEA{&eMM2$qPpe~tK0+s3AZgD_=;h~iS~qJ;PYPsI~z1Kjc|ySf`AS@>JRdTxXTDW zU%q@vEabiTSeA>UF!8@-UK&2|}r%f(3|_t?ZA+cswp^5!JbmiJ~DKQtk^obK%G zyhY1KY+gm=jXSk7|Kovc(?(nQ6nFy1bI=jo!Cak=ea}DtE7rToJRWb36#8&qOYP5@ z&E9dr#o@@rHfSqh>lYUpd3xa#zz$h>ND#O)k_Iu50L_)^&fsE){gYB7(Df{L#GLvQ z^f?cdqa{Vq=g+8*t-Sh9o{hXh>C3_m#W`WCk`8)~GPCqUvcGG73Iw==*+=vR8EvbV zAAyjv&|p{m>wsrhWM%UCQ58>LtAL`i0-BG)b4qSanI3f0;u2i>5$H1{4;(lkD%v`G zTG7CO(J~%ME%UI=?H`vPt);B@%zOS+ULFlHl(#K_Ce9AKU574_n5le2djSg;EUO*> ztr2V+%#8}rYW>{r7If&VhmD5e&`D3Kx2Je>wwzgb7d&QishPoUDChj;tSvj=uzT;K z)+rJ77U-=Po{o_bO8e77_Dr z_+**>Z9Z`y%&H+X1A=`4+mW3{_pKLHRFsxVQwr~H>Y@+2@VsBb{hRYZaT0U7=tTy{ zE$jnEBS%hV6ufG@tz^qH71c+hW}4(L{H9kvk-Satv(x#`Xsfds>qvE-%>IwK1BEGy zu8)}{*({673f-tNRrfO-`FGEYzZL}%CO`^rUtP=rB$p3!LYIFS^v^fvI;@I2h0)$h zSCbul?<^nppjE4(`uZjEqsK-U41#M+-=x^+kz99`wr^lSCYv}}eyRE3#)#PTFe!1h zkvhw6iF8E=#SMNRH?Vf-jPQ~QlgYv}f zzxie+kdK)u*_&ctc>}xML**~5d9Q0e-~9`ZsH{}aJ?V8)Dr|KRGFeD* zR-b%IRRGT$p5|Ux4YHR$N4abm6c2WW>9&^i?#uhUepiJ1t-lA#PN5cqNl_5`k}kH{ z1N&HJd4{p}IEc;R(a|jG6DA{Rcu!Paj+~&RT>CU!S2Kj~tG${WPG&zD%=Zsl0B6P#lQ-UNKK!!H!e6$O zZHl%fE>gLxh(yqt1*pD;nLP62F?viORZ-c(2bs+B-deL1ExJ_rJq`qq@5H#7poAg1 z>4Ie}0b5U~PJiJg5e63`soB%Y>}w9X8Ho`QgbCJAm8W)WOFC>heoYN4NJxCcSk9&U zKJ()%wxvB4-7B7Nm47fYjem2GdSCNg^FXh9RPfRKXx`~9wcgzELHuNYp?*&I@B^mm z(v#OkXFpf?e--~wyelcKpXtqh{N&c)N z>r>0X?JZz10*&47|1(42%uIkYXK7J(KSF(}K>wN|RlviH=f z<$ov`Uvh5*kYRee?>{oHpJQEFKm~ih@=QxSj*MCiT`4;7@x-yv?U#>*PrMszcBKNF z8E)2_h{;o@K&Y|pt2=|h>DE%A`ft%i&mu||uVV2l8R9KZny*)sin)(Ly#>#k+o8sq z1cp!8dXL36DDVb)DlL+EdOiLlqKc&?-1x2GKCvL@D8Lr!gnbtNh}_cFsQdE zS*IasGKaN4?rGG(ITgdUu_~u0-zSaVCJveibsE$cZI|g&Efkc?Dj%Q};095%NoO+4br|m-0F4+NRk_GiDLAeiB zcIHYkGO?C(&-ZkghG(kpbJf4C@o}W})?9@0FU__4^n(b|pT2y_@<1Mn`ihP5yH6uP zQVboY)#)$w!&|WnUT0$<(v0q@WK{I>4W0-FgLUo`9FtQvlf9p#NX3~2k?bmFkuYg$ zzDAKbMfEnnL`}^t=Ccyy9P6l+e;gRq8qcC=yB_{^d16ei^$zFd`zjTFl7B>I|KA1}d9h{=Gf@w$ZSQ7Neo1ucL@mC3Ir z^ygwSCaSapmu>Xu%)A@k>9CTbYYiu^*u9iZUw1Z2i%r?UaVeEn|My349@Y1i-Fx*l z-#uMBT!hcd+GRB1{>;$$9iNuM3 ze^arsUWR}C_@V1Cl?|Z;0d&AsDDGhNK1eX(nn9@D|ChcMw(2khgh-1B ze7FN>`!3KNpSw!OTj=6W$s(^g=3tQJIP_q_Qz<0+Ko2Li*hY)3|LiO#`$FC9xbYcA zoCIwF0$Yp$?z;EeLk{@gO#-HPxnMhCP}Si*+}1Z5<-Osx7d@%VjjV**LP6x*8RnKe z*UdbK^ka(rAZ9%Fe>VtCTcVF|-|K|dP!iLZjKh0=N_Sy&4<@dD#JmA968~Pk-|DJ5 zzvl6D<9mlr)MyE{9I>>tgm#*cK7nwdeW&FP=FD{PjfDQhAM(>e3&`o%jE$t$(Ed+H z>K54zzs_Hd)}rRhk2ypHvwu$d?6*V`5_r6D;O%7ETT0dypxAe}*)Sclqp?ux`^k9O z{<$UjE`n}XfBijXn94G8RJ?8*RJp{JWW&f;j&|lHH%e4N^oC5a{izzjv6-0}o#E@O zI*3C$Uwk%z*;QOztZVC1dmdgI8@S#Z^kJg>HyALVoLFc*EvKSVQC}T0ntS&6$KUtcy5CWuZ>TqLd9I?%+n!fy{mzjQ`sZ@#-!gk@vXd{BYstu+6=>h)YBfS# zp}UzU_s%U>zGvBnsgIhoXZ{Bi*V3NWWecQ$J1!Uk&+slM2MlI@cP<{$qKUFN*&~0E zK}bM=1H4(Gq;uB^$P5wHZ}uhW?*#6hD96%qN^(J?bp7Tu)rX|^E4dxVW_*i++-z1| z*{IEr8E>LZwuL+ zBCgjkC)Kc29duQGN|x$%$nx4r)WCm!7>L8JZ+d39KW4zUbK}sA`#r&e7f&XIrR@&= z;>$gxK{Ll|8Q{Ul%@#5#mH1jaSW$DMvgoZokM_LHJndlS&G|llJRRe!SSoG1J?hQS z?1W;4a2R`uduKpKgPzt%I}C$-M7SwBqdOGMxPP|X`9#Yw`2=MM*kUNL@<3|<_yI!5 ziOS300Utw`c$jIUlleQWFdUv z88=S)oASE*q#i&S2>z@w0RI&xfat zNbK0V*idqtH>~pZg3$E?G7EIhp5;|#A2U>qXW&1QrDA)SRj+gNgno&f7BO~`Z{GXK z$&NIkmGX1WwT`=xg}dN1Rg}&pG9C-cV>Mw_x9bdC=*Ot#(k))w#p^oyYaMZSp94Rg z=y#y_B3wub-y7&Z=Fo%P-nPpMs%60Igk2edLY#kJM+^$_uSEF=zo{z_?+|Q2g5e7W zr*W=XbbNeskI>)L1OcuMrNj&kH8sRVKW1hS@fhOP^X~LcI^NyOwe)L!M#EjoDa&8O zqIPr<{*yd5Leen-ZA`Ao!E}f0Yz%ik3Oe>9!7ze}eL&hjJeJms3eDY3XY);aSjx|9 z8mmq6OU>O8w2)78wF!o;9N8*U#W)v*g;E9khOZf-TQeS<&#wKTOZ}-MA&Qdi)Pjnq z6S5JugmA$mhmet>v?2_3*W5bJ$dY;RE}{b=>Mp{87izZsC?&yt97$+3Jo5W_?!O1i zO<@ke7`6(*P=XKB7-?xY$OmS=Tt|W;B(nhP`VO1uH!HAXTd1r|j*{~Rk4yIt@!LnH zm!upYR1($b@I{Sc;!)ckOJz+zW)r)nC=C z79av5-`96{IaijP6M%Lp6Z~mHmIe|AlSBnPl3#B7+gt7i;brwV*j#u!aJ>bWY#Acc zr)b2$dTPS^y@(kxaY~@W-GtFS$eK6dfE#ac1NDh>Qpfe6{bY%tzEga zi*a?NfqTLI(sS90jC^D&EexNu3?sA{@s- z426hF8SLu0B?CLe26TAuQ34TV5bHu~{#w{F6#V}E>oq|cnM;6AiIEFInuLasz!@PP z;Cl~)zmb`1uo6P0Vu8?t+z8|?^Veo1Y#e*{ZX;t&8n_QyO3{*K6`<6;MlV( zm#MBK9(O*TCdy`?7Iwvc{m&uxZ&fahjzR(cR$)#@ zi$eQ6lR45hS~Sm>N_)N*jCQZ`cIMY-A!nlq_(X2KY0qY(%UfE_vm7ZSg!<1ygGYo5 zYz90pU}NAZhNU{tfS~XCh%480iE3?q=T1LxaJ(bnYJ&4iyk*;Dw>R)m*n`7}nos@r zZ^tTeLavSGEo~kg(`s<72(~5iB;$i-VTR}f3!n05=k}0&x%22EPxJ_#>L%x zmX8zo;D;CEzFnUS~cC|Tn60&0$5`hkM6l2ALRVS^0rk5{4 zW&67O)&AXpM4ld5yJ{`l4_Xc?j0Ae&-V)|)Fc{khxBx9M(>VJz#9I9Ckz5alfOQj{ zC*+db$EPou1hnj5e7aYoXGn32{9?dv0RvKGj|tgp#gil*N>8SCw@jw+OTxSLv-sA1 zWY896!-VA^9d26I@yH90B_&yT3kS(sl9<~mKH5-(nY8R#mwzs{TQNd7GLPJyG;N!1 z@FrHjWK?U2C5~M4tLrD%fIu?IM8cf}el(tAE@>lHUvZnR!B&OvyfFBC2oDlYbf=Ia z5IU9-{)xpk+Z8;jP?^4dZCI7-a}os7zlIW8OJB+YgwGgFf4k%jq*J=++{#M{(_eb$!Q`?h0L(pNHD;@?qs| zR{S(x@34eRH(u%!;Pp*cHUH}NOo^E}3F{d!i98KHtM3rIKY8pj0PH=<1@Hr}M5PYh z(3dKo3;uU!XAUX!TzF+B<&$UK-jYpjz)jMPFx%iinJ!_|=w2lOvpbrxuh)G{vY5hk zqD(%gb_buMMvzxZPp0Orr`8<&p8mk5yu+SE+b4apapc7XHNNvKQKwV7YdDJ>`C}A= zq|-=wiiRraT8JEm6r`)*zuzcVKdk{SCfEAyvtU)Oise{OVAw#oEJ5Q%>~laogb`NY zN)ofN5r!-|s}4bHaA3Ydxsdc z??rdgz1S45XXpx(Q+#0i5!EmaJw4*YotNGNo;o4|;V=RbN*iifOOH>{h-{}nHiegw zKW_(V`y8B5;rj7f=SLqd3mgGrBu_a1t?LXoVi8$2=Lb^1i!HLpQw}FZ8aH^Cnl@A1U&P^E%v8h_8r#S9Rgp zBvL%4S~k#zXC79u30mo}nP4o^ALVeMYM0yY@4o9J7lmfON1cWiNFbH>w|H*KRSf1K zH#k|!O~K8U8*5U|F6&_%=sL-7w%mkCtXyBhk}GA`wux=lOk2iTge(FC@-0f(xkWqz zl4 z0)0E*FegHjIg{Yf!_Wi@WDBq+B8!N{MfeX+1wQ(p9~%yg2}(duBn-76_<(p3Onr0r zJ{y962`<|dw7V!&;z<@zq#EU!KOvl8stFbhT0)(~y)S12vUS=QUtdw^e{%8c@W^97 zIH^tBDoW{bKA@^I8+k2T^1|MR0TEEGH_hFrvf-YEg%VlwWdUzW*u=E;C0JKS)C8Q3 zP#J$g7UK4)o&3Q%vQUanX1yMgzSw(R>S+6MOrA&D*$*5pcx6hK`o1>E7BV}M!pVNj z>rjS1cIe*8!}BaXaGhi;((l~VFtI6B(54TwS&Ro!O6uPI`(EV;+i`qJ6m_rK+V*;B zqXr-Z`6zY>@%(n#bKDX$^m3!zU;Ofawi%+ahjN*d=@)eEfYBmKh?y$FE{T#iwW#jt z;Sh1Mu<#n|Ahk@D@^OyKOkMQ0H85z8-WI*JOXBhe@5au4(Sbt6kUVa-=~xVLZfkfN z+D#R^D^o2UPpV5XaGdH^RFhWZtn9bg>mV;-IBR8Uep=*Bu(D-OxKx-_fQ^6l=yZ|h zuehffhwmPQn92kqy)jlc%Sb|3vF}ULjWI#yn8?UtuSIvD25ZfL0)e^ZqW1y2edSl2 zmZs+4g?jyX$pj<|ekecx{L}$^8Q5(CJ|a9>!gvlro|Q+qxLFd^9GHcK56K7lxA;(V zhII5NZY1OQ`GbB;g+yk`Q(`r*R}~igdL7wVYIN|X-1p(VIUUUWIqhy5Atf!QN_G+G z-1Z%h@m^GJ7<%6xolxWT%2L-#aU_iFovV^V)R_tWfKMi)U-kKO3fuFJPSG(kZ@1k4 zofDR1Ze6Cf$-d(vU6O)23ZwUKz@GH%!YNs7`jL{T(7D?p*O&9>O=j=^0KfyHPD{8j ztmbbZ-Z_AEOo69|CH>RE#)ZfP*R*mpHAn(B4qrkFfTuuGS8?VgJ0jEa-HX}_lA#TZ zJ~4foe!KaP^4m93Tlh*i)O^!g7ePLDy#d+VdJk8?n}OUeRT{Hq&wJ>XTtgXqbF7OQ z!__h#{gNSE7Sq%8?on8_8TN-ov7c%@8CWTGRzNYML90B$)nV3}KTKbquaI0tm1L|3 zgM(#np-14hpr(>su!%Z>sY1cSr&6kD1(1k}g<3mT>OI!~S;(couP(8*&=G^=l@k_| z&<4WArxVkS!Lrn#pdjo<8q*X?ehqh#$eAV72k2yBHIg{CRsRV|(p%V70TU$ssZZ`C z9&gL>4O!%ZC^jF8v{Fx6y>3oydcUKvOh{3sL~`E%yT-;X8o?|cQ&q=xJ%eC zoI)kJZ{ZxXj{0OL=mo$aa7XcK+KNvBku7!Dn8Z> zSzG(27jls32|E75Dd;Slv6(uO)hMRXwU$_V@YKuGqhpQOq3;1;tuOZqxj6`Nqs=5qZ}`qp*R;t}$n9dRFzM4K zNu+w5^=;4-=(q!u09hn$;C;Ho#pn}3>H9s*o9#c{Vh$sMnNO|I4Yxi3xGp;dFWa?% zzMYu+q6S&b&7kJ&>JvwzhSI!v>?Yzj?tc7chRIbj7acy4?VHHt=Qai@Wjc{jE?9DMxL}54*tyK$A2?=tT zw4k->nmvHg%Rz9|*!Mcw{davaaUVqDw-!afah&PBU%Eo11eq&JMnK0{)7{0BTBPBu zGfN?|WsxBSSxpXFjw>@=$hQu@7H0V>)uWYHMpd&CQ9ZkO8DDaD(*?EB5a z&PMdm#PBCY^$cb+d!c9F9420Gf^BsJcl{hwu$;wNrCZ9{CPA_m{?|6EsNU?+0o@PA z@9tlw?(4+;a|&$36`6T)rc7c%AT|I3X%zfqQA9{RFvgNwo!+?yWjrB<#DCz9tNmzv9NsP_$+<2YAkFJS>HEY+S5 zJM^j76+RRxY?qzhFCCz$QB~S79JHzVo?1E1|MR|t)Ct4#XdXpT5N!D$i5BWHBrwR; z>&dxpB30|ex^avAJZW&ObM`=gw7#kMIo(vNfS@4x55c>!DoSdR7`0`>ACl=8)j0B` z8jRyGofEgL?7dd+KHB~c|8ll7J-~V`cV;JnoY&iplv^hIYb#+fj>1Bia3tru`0cn7 z79ycox{jJ@Oz;z|oASTz@}j;TI)uNN7=WU&B#aA?l8A;H^<>x{W|cyfOY1yE!#sl` zI(jA6RjrPGeRR_J6taVcuqyRnFzzo{%vL9xEaJ~tXxb+RY86al;?hdIm3;|KOIKU+F)h zrA57Y7M~ZsEw9p>;52m*kDoA`#iy?MsZc(jK0+gewc(gU%)9QmGMWPU#n|hd$e~98 z((}QD1or=*+FNPmRvKH;-Tz3Hjchf0h`Oh@ZPQD>+fuB#-sN3CMN1U-`Q7;I^e|t< zvBv8aJOp^SH%jE_|Kaq&Hf#abHPiX=AC%!5>&@yI$=|4-Xyok9NFU#1F4XDTJf7{I zv94kkunFpoQZ%$E;^qjGQm<3~Eyb{J!H^n*&8BgFIS=M{a-(=K&r4_L7b5mQRd;B= zxBh8}0*v$E(HVxLg&vM_m>;k{#*9;_T+rg9S|b#tuxR+sj0nuT10EfRGlls1cU*k2 ztE~SkC=Or`@UzKJAFheVG^z)S9R|Q1nf??R9qmg`;T{J;`TKpS>dc=5-|4r0R+r6oTh?zEm=w^QC46cgqt4{S#S~u=yY+I zp-ac}*?M>L?_kWa-|-!T(ahBnxT0R@)D$9A+XRjHMTp3Mahxwl&#loL%DY)Fz3SQi zwv+k7)PU=LceN?Eem3uk6Xax(s$X_!kR3>>W4!kX^yWZ{whu;EPh^F9FImTS(dkBv ze9Um9*L=7ns-iziZN{xM5_UIcOl*~@Za!3pGyi=>9|91@1kb=vR1eH}S?{_-SP4r#Z<%AVaU5InAmm^lkqCfj^|EKXQ;DqVxVz2t`xUfkgQGX7_TQy!Q zLL(spOQm>>MvEA%qFBm2%y~6T0Tw@mMvhovLLAVP*0#17&-DgA>n!+zy?z&|@w99~2Tl1Rz7SiV2BRPo)1=fx-v$9?Su8Ur)MU;oP zzb8h*LJl|yYV17_ei3u6@89Rhw`SNreaC>AVNwPm0?>J#4rGvpt;kz0Wf!W5o$| z5}uxd`S$lqSpETYb~cEKWL`Zo>`Tulv1R&j!zCrp54yqU#FC!lh^%7A)XSuOyD=Q% za!3kZex^c~cQmY#atoJx61^Vnm($f7jt19I5`e0#W?gSK#HUyKY+{?~<^Dij`oHU{ ztJo_(vTe(A`*78p#LSwC^Ypxa32@jv=(ca&dMrS_;*>CbIlZ0|MEoBFvIJ_(E@F3P zC{_&N#J72p1!4IevdiiRuGN3MW}MJ*LhT1K`UG~Sofn_1&Ug>${4lx!#9i=WrB2n7 zM+yY4zi>!*%2eKhDoMUy&p1=q)whkp6(DR%`9DG;7N3}I9A(Sk-g0KWgLQdHZ5t%7 zOoIspx+DyJiqBJgJFP+ODR+51KA6KU!`qODFFiNEZEX_^ zJBxulK&XAO&YwY6G%2N7&ByyQ^_21R^N;+!uQ$ge5rPdU&uiR9!C*ai-l2$L&S9ikQyVb5^ zoyd>t50%{;EV9v7x=DExOI7w^X9CRRPA<6CtcSnEp9Kjnl_b%n)L~&_pixv*bPcx$ z+GFb6X2$wp>UTmxj5oiTEZ&jky>TpJF6`(=Iacu|6&?>}xnP<5>ow@g8AquT3dh8# zmMHeV_BqP8RX`FBQ%<#e1?1zLj`epdYRW9!5nQ~Z=So)5T~mFJWj@6u?kVNZIi{={ z)0gp%T`j`WDzIrEKIk#?5vx`5%pSG;Rt_S!LDjpAgb!ejSx2TXqQJVD(Okz1vPt+1 zOT2GZ#6}Ih6=la;G zzsViC$L5vH*S>8+q$$mjwb!CfOD#G%y!XWEVs$q!`?Dm<83N@fOLa2u9iGsoKRS`O z`{O?wDvGjvy1GpnPa0};9&SyiX}TBmhOMZA(J|IP&XTI($`eQ7K?tv& zHv?sAM<=n zgy)=8$L~kI4|QHEpKD0=GoEoevgC@2i4`)h^1%{}IA z`m1X>(2ZuGx+uWiSBg#f0ZGPyU+;WWBr7S1Pb5o!)D?r3cf%Fd)fe1zH4@{T&KLPV zHV`A#ZO$p#@Q!I9O)sNUWGKZw{&rr{2CI1I(v`|{EIg^BEZEhB5T2EhfwdLr6(JM5 zgnlX8u}02sYxKdoFAj?&JVZ^Z%m`pz zP9u@K!P~Md={VX19GtPGW@0%Z*QK}T36m8NkPy5NT~&i~7SdWPbVe1Z&JieO+)g1X z5gzOp50kQ8`$|c(nU9mBB;u}F8=M}d{B?+q+EtpWotiE1sWNx`^}Q|T51n}LjuPtM zBY=Snts=UZM6?e4D&$M=esSN3JEz9vpvj zO^X|_jOvkt8*<>gc2qPPD5}pL@O`k;Jd)Tyir`>i zNG1|6SMFFk|CA)SiQF7c2W=ksoB2PHup;|yyTk9u- z=MJa=2u0av!U>6Ra!!zIg&DBz)zzrg^18O*>idHnxcWs#oF ze^th+;cCI96uP(Ky9{S7O8o2fTU?vCWW&^tM?I&gm8gR8)YUZKsh0l|0PWhD54>v@ zBaL_RXDj#X+&6sZ_!tM0sLJiVzJxkr1=qF9VD1q+zn(U7dQPAfkXkN4UP)a+EwS5+ z{;44tlgkKNa2fAPcW*^$0W-fJU;%uvav%nI`_XS<7(ir!Deo`o0MoAaTtRkl?klQK z-#@QajYxdw@_VW-$+MU$KUYvX*aW>!Z=TTMJHZcj{_F9Vt?}!aaOMcvPXb&(XM@-2 z>-YiqZ&qgJ`|>?9GCjYY1mR&>4tq-i7ABU3L5MmGI0D~rI`$afGs<%a))ypkhv-;; zZ$ez}L3so&!d|=fn%BN5*HHW;04<* zn-pk3CH#g=o+Y6}IxYWmm}$9k$CuP?1aZiU^y4!2&pg3Z?YwoXismdssk{h_erB&@ z|53x)=clw7US*9=NN@d@Zi)X7(^Iu`@6r^`?3CPA@#qI5O|Fs?y{6i};+pEH4a4W( z1sPupaU1r8fz++d9OV!ubp3+ntPoU@`TJNfP^jtq?!g!$awV$YoYz+RovQpA+Yj3>K0h^`G%`kJNqX0Ez zU7jAX5;W(i(81#&WX3B1w9i8OAQ9&Y%MW;ZU@!J(aI^LS!$KHx3>3p44NO|xHykkR zyT@xYyl>b%8=!SKs)DqQ?2BO9MrsNJzDiB+$aDyn5{3P5UlH}yV4YCiky89U?rGzl z?M*KND#f6vzxY^7!85i?i;7G}QL{f;Z;kKxUP zhZ($U6&5FUuimB5!Z7+%)KS95{jTt1=H<_BQJ$J|h6bgzK^KPamo*lRdz=XNx7zYp zWH5(%F!RXB>n3yEuLk<$Z*J=GzDN&zzE3nubg5aRvA^mf_f8>ryW!DeTPx-XWwQ^k z@NtBKTfzXa{sg}HMl z{(M(U|Xlsh4NLL3MvjRnevE^(&Vc7^12B(o(0~ zRC7q9$L|L7PI1kM&YJ98Q1az8D`%9|RCKx&&{PPR7OM;2zBTWn*M@Oc^hsifavX*^ zSUrSIadr!*W-hzIrz5jk1|Zmnl4?|D#26SQu1sG6>XamGCPWVU$7}6P_7X~Q)t|Ay z-W*4%L=5u5j{XjBE2x9CVR5?q`5mC_xOog{rqzX#BObB9G1s@xP_ z&?V(Hw{y6T`;+SL{npq@q4vnf-_Dz<>`5Q*E&qkB5Vu`gIyKJGu-ztR7yEAAD zFT>OI;Of%FFSfXmx!6FFMUe3_xpq&`pGl_|`_mOhb3t`!XowpLi0&%3NTAHSRzh5Q z$ayB^eJ~M3fl`jhP4K)UmVao=Y8^Xv3=7CUzkg2fMbB7U$34of><_8vj!V_KFUvc4 zIWUTTe^~W4wgS;f6L2h~rjAtn2!*VG()Gs7lwoTq3P(bj%t&(zX;8};W|dqf!R zNTqQV2@r9eGN=fYQeol)cMkN3&#TKFUZ=CN2s4@I=T0$xl8hcP5SaG5alUzEiS2d7 zBP0hjfbXro0wTUV*JoP|l?;%Y#9c1q+1Npc%KIRU_sosrov5A(ZMrLXkz}Y-b_eEp zzZ9OYE#a7Pij{w@!c>owj?EV5Tg6M~s~vX2Q3>5m+HJY}sCI$aU<7uHO_&N!Y3Le$ zTe0gS4(op2@s{MNvE0mnh_D)}yH0bfV)wcEIUpN~2#ZLa%r&VTJ))jC z_jpYawry4SKb-#sm>Y%8JsA95V$~!Ormy=o%wmI{%#rjbyatT9k-v=9O!u9ms3EEX zVqy=r5gnUUIwsu$ixw;$&d*~V;8%xSzKW6t5Yth;eHr*;XPmee;LTU)_lK+S9H!xy zQDdtvaJ0ky)*KX8Y!QRgx_QS{?C?ZA6)_fDLa4t0`x2%+y2IB80hgTtVN6OQ^N%T- zI1i?W=u1xk8jB4N=cx$My~Md1rg#md!+evNMLE;pe=L8EjSLk3^je>e)GRXua^QTn z=?Yi<;%7T65OAzdQ{+ddcNZCXjZCQcYp^j-Tz=<^JqWL7#c^H%YY|Jy2!s-GKhcTG z6gds8mJ~>BAb~BrveKME<@hx;^#d&y0$f8St_i4b(6e&qG`r}PT}_URNB2y3djF8j zj(^YD$})CtucucItH1Ww?+#${0xbuttYO&RpX{zLI)8xJh43({SZ-aO-;|Fc8)bX% z%ZXQl`ywJEzZ-euPQ^|v3b$MGt{Es2Ky|WQU#KxhQA%^r3HQCtmv2-AUytmmIl*1> zf+bEYic{mu!f9KZEK&ZP|MFGJIB=7dc}3=#OvC)t_SHmg;8~5V9F{Jdksp^-{iK+% z=%@cLbeb#T7mYe9xqPI*c>ZWv_ztVN2+~%1+o-};8wf~}^uafTpb0w^F{GN+C#zD5H`_?jb!KAU}h`{07zlKMGBLy()! zS^UWNUZz2tIacfY?|Mv%~+=Kq77*;SwZW_N_PR&|kJjKbv8ygTu=B^Hkn zp|cgk(%bUi{t*d0iTiMak{by*DL$eC$Yx?2$do%HE?QBt(3K?Ccd;A0m5|jFM4Sc2*H0I}#G% zcV6B1{r!HA|G(otj^}xf& zzA!?+A6VL|I6!hsL)Hq3Zba@WsEA0z0qQL;+O(TcD8Tsz);MspcMQ~h8vFz8lQjgr zZFB(f3W9Co0|j~_PDf#2cnVhTr%?z$87k5f>}cCzwkoyIi8sNxFX=CdZWwgB;Ls1Y1AV*q!YSLyFMXa1PPT%8IQX>_XAS)*Hz6b(hO7=oak&%T zrR1cf5y0%=^UHykg_tx<$v)Jf|MDEs1T?yaeiM2 z_&R|f=@ei$&9!`UZVyT&g;duSC`v7L+KzFygjt-QpTe`aOrQ0?{ zxs6cCay;9Kd3N&fulmC%g6taMqn|kn?J7t7%j3vSHb3sLk9bspC}}mIfqKeuKhDFF zdxS*#eD%BB*w;3gK<<)s1*cUXnUEw%)X717hI8bC0^rO%mRg8}8gG|#EAtWKJi`9g z&55qKIS7uV(0svW+y&km3=MDjrYHgx5F@%zqhP88#k>+ANvBx5j4M_-63)7a)$zUW zv0I$cJ8`);U0kSTZe-I6<`h&gSJUx4HVsu@$74{oX?4oxSS{!hX$}1C1um$Y#DQo2 zz|FmIng_$)9Z^fuRKPr;urZxV9Dccd>CmGJ@&OOP@qYp=O>GZtVf01l#b62LddTAj zlgq*QI&v7)9<3(=Y5=-Zn0ui_6}Q8OG1TJk9mp2rVRuH-&7tGeE(VD!iy8`2j=4j}3L z1M3Glc}-O`&92dH;cpe_7eY;vfW!v!JWE1&19( z5o~uJ+`qn0b=t>1;@*E+o2Xgwl5dU5?tXN~Q<`pwfHd036=9a~sG8$$P$j^&nhf-| znWpulN3!lg8M6++%wCuAf+mO$5WE>~u3$Kg#caM1kqz^1kO92;6TYrs=D$H=OVHfE z0k>c%fB;Y;&9a^fH1h~{oSy#3;~hloX#Jr@Si8YTVXS%Z=mCFx4<{3h=v9+va2q2I z;b?g}wgPp~$MMmfl>x5o@6dnznAwB9IrUd_%1?WXJ;{iG4E~f{IXa3b=wbo-WDtC> z28sMDBBcbZWU_U<;DsU`P4(o5%k@J9P+&1)_|B+e{qWgdC!{qF1*Z4=_mKgU$cj zQ!|9`WTpoUJNc6zlz-j;EOZql^?)}uuNFT+>P^PKLVu!zcL6HRRdC)KH{JjT;6{U+ zqalJNb6t%Gu1fxD`g7m_xO>QBo*hS??iV-+_|@OwZzii5Xkb(XPuat%(M^^f<=xeG z=8qqJsGWbbVz2jc>?$NtOJN_KB5Ic^F@xcjaP;eO*OWuhR z&)GK`Sf29`78>t0AJ;_n{y6mj)vi)?49AX9N;Iq&+U51)H;ba76%D z78@s7;MRVb`aOZa)k@$cfLJb%5l{+99w3B%{AsTWi-C@=9CFo0_2eak3Je!MA4hpf z@E_(}y>BgaSo3!MxTpApDpdvM3UL)bMu2w3C8P?ah7&z4mP{690^ozXrD2iCC9%Fx?W zXEZFHkOh#m%8@Z<2G@U?Alqj+R6;9>#)Yv(F}Z$wcvX=Tn$nU0&!Yu4OM%SWwQ3QQ+l#v0k(;#GhJBE5}pKN0RBzxW(f| zv}`*2itx`TgRhH@X^VI9D-yB%S))6x7=Y4MnSK!`d5)D^rFlfNXk3Q&cwNdzQQ%BL z;JYR7&EV2W|IU$AW1RcZmri~q;5C0RGqWR%Kzg8}=4CzwZXhCpx%~@ZZH^os!w?Q0GhwP))1(=O)@@rz!} z-=oRvqKnE=Fz*S$OL|MCZl$s%V5S1(?tv_G-ku>2*(4v8URqTU^dV^sYKO*GI5@CP z6yPyc0caE$*wPaq7KZVz2*bSg!A}A%+ADwutseYdLZDit3B)}zM$}utw#mo<^a^@h z*isy@XS~MOh&}vrmWeS6SeMVO-@IPkQa-Q&$a2U>2zmfe@?K*7`>+d45q_oCgVv*p5>~|IRJMGZ1Fk%N|VOsjx*4ng{p@cA@Zft8N1;sUtSk129U)%6TC4 z0opk_G6H`;*rl^rjDSJ<`Cgq?z`hWa^_L@-5rB&Ia6yjp3EVmqPgD5rs6|lF(tW%u z*SPvfL+!?t|HkqArv?7xIM0ZJ2{t|!v{_ULEu_ezm8GuMoEl7PX6B@j;c(QDX<(U$ zC`4ecL#TRtWnou=H;*SpoUz2*7?$`+EsbqeDf+Ay&Mn1c-Mk_CVh>{N(8U@$bv5=X z=3pCTL&mFlHL&><@MNVAO0mm*uvQo-0Jcv>c9j0^cqW=w&(v++OtzF#>tSu!QJYq2 zjP=pg`-=N8xfhr?4rr=xkkf4P2ATjR!f>=^uIPH5la9p+z}a76`g~uc4=-Y4;s!i# zBy|t09jrkLYB&4wS2q!E+FW(M;2m0A-%_`x=Kt zUBILc4NsNHOrv&J*H0u56UHbzhBaWz++-G5hPM17oNcITaR4L2O?>j^^awGd*#f2y z@_+p!|D^)B+@4cxruvZ26J~fQqpbp%wJ>v$^7J%X>0R>{E2rfLcPysVSRbAQl(d0* zxqm$kQ78OwliTqH%&Q~_v?1J`HEXk-()v~|A^VCs$DNh__GR7*6ZZi#`_lAS)^&Xw zLnv{NaNz9CKIOM0u5Z8{Vu@<_xM<~=tFh8@PqyUr^MwSCxM68;T-P|f+DHei8Xw6h zEXmr}zC39P%{GJNA8G_P!JRR$tS~A6IQ{|H)BERo{*rJ{x23ZzO*B>8)GoO_Va8IZ zpg!?5X7W2p)x|v1pDu|LOcgm}#yDqsxjiQC*C}sgl<4~%BN`wCE%t!5OE0~N#d*8V zNRVmE!cqgQq7Z|$jrYk1-&PwxS| z4b5LO?l9=Vp$iXAS$zZ(Ag&3&3*csbX@J)L&b_xla(>%HJ%)m9f2l7WR)|4>GeM7Z zh*)gGXgTZECyZ>!z@kRmfGS%XBpq1o1| z7Cf3lEN%rg^AGp0=VP>MlEGg%!OWKit$poeHEUSYqiD!5DG?{we+$Vip@3G~z6oqh8L6uyGP|)4DcYBN+=>^`mu6&fyB+!{+M)(rl$wcixMoLTo+Ytrm8VdR4t)_W(-0swOZ0H1fN^Dt^3&HobPSfX?g|0-ROz&W~(qABUe zCQ*#aZzE=1JAqUpA4O*(v>{Jc~*j*C4r1?K2!tC1;wcbt^QL4CEC0OJEom=Ii8yB)#X&6hm3 z%x7Bu4YZq#2TaCg7O!fLhyPKfN3#O;*a|ojz-iC`6j!*i74fV?UKE(T4d%#9?Dn;S z?duEJ$iX)WEvw6L0qlrG%xW>PR>52e_VC&56$ zP%YeHDC_keWumc~B(Ah&5+sN*JX~ZA5L%t~KHlr@OQ_dO&M2tk9=fgZBi_b%oGX-q z_{d>#mm7uVE)rz!Ok(ss3r_ZUzJlm?515j0^YMdC#A)tJ^oO#~D2R9YxSV2g6_@K! zxdHVj+%6;MQYUYN%Z-vK>T##E0CTgUUjv7)kmKwaRTPgXT6XON5xE9v8_a!LcfVj8 zPy^TbcX0Ft(D6ZkGhi*y_3IS+&N^#*XqEJ|w7jjdLp-(~%Y2s#d{iZ01MDXW_i-T$ z3cM5cZ?A{J5e3?{-(OT1Cjwvx;yKI4G?R&_@ZPKd2M!?Oiq$PQ=wKV2{s1##SQ86$ z3Sbl4{L?`C&vplb4oTZetstBxfCG+Bvq|J`n|dM=;^*R}Vt--)5}kzb#Q)PCo5#a) zyc9`yfnoPV&hhr`?+Ei5UhYpuQ~b)=JLFq$xDqlmFT*=Tti55+3SdM3PawqJ1Qs`P zU4TgQ$oQi%0%9UlRlzN(Mw)a-9lh$8 zU8y~Wk=LJ9Bx6=3%}QjzoZD!0=&8}>(-zOV%3gCXG&tC%AyvV?G_jKRt#t@i#WzVR zT}E!&tT}vfR^gSBgjji^)BucBeZtGo>*uUU@@5uK1Eos}=>xB~5VqT`#s07sucm z90+cLXeZ??(V{7hlqG~6xZLF9s2{3aC-vADNu~SxCs*`?U#|Ag+QiuEpCP76kwsYC z;~dTO=7k9RlPSM_yggHvmb%K_j+UjCs+Yjrn5IrmlDVo;y z2t^AzQ{Zi#KgOj1)NKa9^f?|w=(V8xoyKU;j{bTe=?!Wd1VcCus)TujRoVxROZe&| zc(LT^Vj#JH-w+F2XeB2ou+X1Zp5F7mQ;IBFv*HIqpK=e$eFlyI;zVb@GF7(>%Lq^5 z)xeaKACH6Ufd+nhA`40xpoyAz%E1b`jV_zaJbMzbzxY2ueTTefxvTIk$^awkce?Rk z4H5rExX6EpmVE~X!n8b23se_){|t=pimksRrcCf74za150HHz@Hqp>-z!rT4*`~uf z2V8pf&cQ7No;V_=)opZU;2(MTYsvOYwRIbg4{!sv{nk#?0ZbaIT`qoV!Zd{9CyZ z=c0nm;e2om!K_W>>CMDMOe|+1eo}fP|At+TU|&H)^W61tbt`f6LTvN=^8%Zup-SP# z^~Qyh%Yj}?5+xh4omSVySR1Ub*bJ%)qMa1hj-5jpG(LO+8}c1PA@KP_vua(s*1CR& zr>byTHC7=>r7JX@{51#RC?&``d`~7Hxxkk3AG5ciCsQKUuRoujTqpo$$-tmK(p&*d zu~Q&S59_4^kVyk$*&T|t{64(;Mi^@D93x;3;>mRKg%=bYb4xd1H1S!qFBXsHmg#DNw>)z(*80isP|n+pA@;P=|!K&2{5{M(qq3wU>0^ zD1%DbUiv94eFxwhLX=nA}kobHDoak#fw(rFa%&V?+#;cZ$ z35-_Cn%6owD%@l

|d(T#L1GW;EHp zD?|;=5ngk3nZ#b)8aJPV8Tf=dq?OeTh+y%Au>{Ji#HO2^Vn4rQ$R>(g)sGd*!=j17 zQ|9K*Q(d}KIqVcxY-|4j_YhU!9*0L0ZK4|=RAmz)s!pFY2BTAR*e+iB{Uy|fRFE{% zWKLQ+ls%6I$u54CG2}fpBv%Y^n6k3u}v$jvEYz+zbHISnHYec1KIE&}l zt0aqEFBtFUH(Nqwuero##4(cMxSY%lyV)$a2RDu5+gNJT(&S6_2#>7T`?QSok!v}$ z^v4Q*xUb@jK3{*M(V=J`r7GULr734eix2jbh4p=rxQzIBo?%8fJ-F7#3nj*sV`g<< zJZMJs(Ycyk(*#n9h(PMMq&#Sq08`FAMjbjS$L{*$dFS8T6(vAL2nw=y8|UE6U*5*_ zT!R|bRuDfxCJes8esfR8_-a*f3N3)n6%DTpu}ao7s6=gcoDiP-DMpgRNiQ)q*5VU; zz7};`><(9%l(rfVYO0LCx$~qion_7H>JFx-&LFdju69(TZFJPaoQAjyVD7)hQWaz zH&`-q#*Pjob!e3I^}jjZl!Wupz)$-wltsZ#!!D`m1@Drvnmg51|I#Qa3AY&c9TcoI z>QVSTPE$`e4%d5}#Vqsj&kZ6RwThADwgnxLBd5yUcdEbk$Ye1A9%XrG((qO(tDKNF z{iVZlnsSe)zMN!D5!D9D5sJIRAGFKcS-uS5+e?0VqsE<9RQA6kIE$-zv;6=6teiH@ z?Cud#8miUCJ3P2Q)#mlK&w+X9^A%9oJG`hVaBh!D5bLe5E}T*LK~e4&0}}ooZ!cQ&n2I)D0+zz+^Ub zQVqm)JZ^^(LiF-!Pau0r*JHd9pnXI|MH`708m(9BLyTEKWdbjQ#1~Dugb;lzE~JZ8 zC1F7!Zgo~%v)7fPgd0V_9~73SfXY64UeMcMYP2GUaXHo~*28fRTkibdjmeM5E0`b2 zo8T9Ts}M?oBAL;~>}WN`XjYguAmkvPBDczIlf=ghS*F(XsDW#x5BE**;Q7Nia+vqu zn|CTYxTxR*=^+`RWGs8u>}W(FFkI^ou-5GtL6t0m<4RG2q^}u1gd}iZd6a($ROfP{ zLiR6XDL^Z+!YSyXQ;^MP6Ak88ok9&bVL4!hHX5H6%>USV)6Ol~UI}fLGFGBWzQQ(e z`mqwhO3I|90YM8BQ0EJf=WBU@jz5mY?Y^7R!^$wc#W znJme=l-eh@`ihovEq`~ydE0t~1(r~Yrl>-!#>uy* zpi?6eLK07;6`@P9Iy*&-Ghx>5ff{{Iq&f`c6p*hY+0f81_wy%U%KzJ-0PhaQuj^}| zK>&G}|0Z;y=cAZpo!fe_dy0+4r1a`rbAb8Z(+)N)aaI3~z8E{!Fa!nwoF}zLC~$p* z^I(pJ|Ibgi;1pAXraH;CKR*2N%pc)aI- zHWafAIceFZ=h>#;BYfGN0<$yuS)3=8U7jQn35)Gar2%#P->;M1^u7k4e{!xfpCJ2W zoAs3lSrk3;594`9U5!NGOrymN1L1I;#eA8%uAA}m(?ellAthxlC~p62mkQpka)KPt z%S*ex2%#u*fmVrD@qm)YP+=G7GZdkx-vjvcMv+d*e{~T&2c;hZ1vIH!zwwRmUnLM4 zCfhu1Hggsnu!P(6pRLqqRO=NrvmhRdnJTlOOMR62K~uIU1}*wFGJ=~VWsURX(JBgw zc!tgNPM3*vf{B0@ZygS1DipQ~2k{QJoLer1B2{?Wy6(wr%x)5cR!i!Su1sqUsRo5d z?GZ+Xtea)Q@3eOvDDXL0NZRz6=SXUn8EhgPe&8lI6HgR%aL>5Q3Sllvv_wy)0Yv*= z3{I@^h0CSr$m8v4kBiv{DH3g+%#JU3$?&xK&Uwz($XMC#r?xC#f*q*W(`-A7$oa^k z?kkR{7&KVU8ymQ|xxe8iGim)t_o-cH1lDfS3U&%HS%M&U*zInuJDbZ~$;!&gu7=C2 zW}#_h&Yhp7R zDT4NFaC{DYpR141c6~&>M4gd@#WW+58zpv#tn9XkaQ>JKf?fP0oaLM-EwZBayP)n6 z^_xR((eGF$P$YMRr=sEu&UP5!ot}?voaik%i$mRv!@EhtVEeSxGHmyOY6(Efe9qtc zrpWl7z*59FE@ZALi)epO>*7LDS?*FbaO<~5vRG(M%dzpB=VA%y&5PHi7LI-)V0&*~ zrZdeljf%y{crFdURC4tKt>oO>YvEtel4o(nAvlxlGBr+fR9lo9!8tv zC}WV>5I1HI4!m=Pi;L^|)?>jiMz9Isu-e+%rlzK#{v!NKllI#5Lx2a_oaAh|!dG6h zNfExEm2=!C#yEvjMjUAC%Q|06pjp^hO#Jwf#_MzL^Zb|%%nG2#YGGkf$7w_`0^NrM z9mkE|Iy~xX1XsFmZc$cMWn*TQ1H()YtZumYEV>={-7gOpK<3TK$(f#hB}1THidDpl zd_%#FA;koRaOc}3&Y@jiUB1%hbTW)e!fRDgS#51@uGXN1H)2;9))iaW*3_h?Y;H`0 zvKUDgpgEy^ps(_Yrui%^m`(J;cRz`agCVfTp3A7xfvxO!*idh2UEU{}PZV`SRClgK zF%>yKaZ^rSnUrmj@x|w=N!D$Xc_bzl$@p0>*aiVP7(pfObIvP&?_05EI+88p0DtF3ID!Mz^wR>m>=&Y5F2{#4{i4qFgHwCDIojz@B6t!VY^{$!%KSslt zj8Ig2%>3=OQCo>_hXs`*;Q2(U?M2Af0#X!(y5g8}kg+MocDc*3aWOpYFd$*dcv*}L zKV>A0@mY7`kiW1jQnPYkoaQ2FKt&I5jb63MaHoN%Z%7ffl!O&Sjgny}+gW35DF1TDj5JBU1{>K5SI~$(ztWbMX+I@Bo!J7~hpjxY{&W|$1^*rzj7>M-gE-x^Ra98r zo$Kg%zqJIr;^oVX8g9)VT*ex#5~*8P0X*Y9zzcW)*%1p>nh|B2SQHh6@etK~8z*_Z zh2BzRdAvkRy8N#~j{M+ZL~Us^#jv9hHF+CGtG{SuluC<|{hfPBW=|jeJCo)jUA#Pa z5|>Dp!^OiyE8PO}8zzLSW9LJ|eM>F;M+6o1H%DTs&TS-#wc1b&#A?zaa?TSx(vaJ~ zV%6u!1f`7egdOuXQWV|y=_^zS5S?qQH;AbE3!T6Hkw&EA!doGV#lIfMv>Bo)-e3*H zi$-%;&R_hldhjH0&Z8Q8zxCYok>9;C9!D)}Cux%Opm_}Iaot4DN4gvGzSORX|cvh=WPg$*Pat>SHvHPj$8`@Kb`o?>g?8W))+ORDu4Bv z8C39epogKg9W7hu<*;D37L5qMLBQh4M^(jy!~Sd_y;!ETtEg6Lh~N{fT?%B z+WQ*_6elMBa>!ULP;HmU&H2Pu7MhlAh6-}2-l^*8Z7eQIxnPdv9^!ddi~!f<+oh#! z&+97yA^vkUOiqxTc)5S+`$5@3Sx1M|YoVa+pVl2$=-n}5e{g%_Lc{#bwz*YBRaI$K zRUf3T>z>~oeiOo^qOQ)W({}R@W_!DI;C!+C+STOF(>V!NYnJmQ?KB3@bSWtbxM@{4 zs@(q^6=!*zx56M`xC?Mi`=7uM?j!wRd15;`*45uEALnTxC2U@+EYU6_y;~uw^igVp z7hx9pA()PXa0LHKoI(k;AFcbR6GhDq-2+wC*(Cw}!}rGapXlV%WQ^7#9yHkkn+|?x z1TQOGtkx>YxfhLTgOCCmC`b9etC}TrTeDup?uG_OptYC;x+dU8R#H&F#Kw-FEBvSD zcL#2aET;ucdwZZvn_VbDqUZ?xsGwkHXO~>1Q!JDE72sBZ_Rbh3ZY_lm7V**97|R*iKU=QH`>$E(pkr|Mo^*O;t5Z zr4|=)3KMX6nDv^TR&2YOfg!DF(>MW9XOEK}h+K0b=NlxU#AL4V`qu>0DIbQl|$ra&e6N3%?1LWyfI&=EiUz1(- z+Su2|+j$tjN?ly0puMOpx5fDQK7_yfB}x|BMXJSKcBoKSN~bzzQiW>B`NE2}Fi z3ho*haC^?EU~kh>ZW7>yL+kp^7Ml~mMtV(5LVT%GR#|CjbA9DSWK`)CkwvP#s(kdm zRl=;%!7OKJ$?Zq9?R!e7WBtd%~IT};f;m)#XrDQ+d+iS)o9N+yU(Jta?!t@K@gL*FO# zln-#1*o+m2Bq?RQaM&|z34ir3dE>cT8q2u0BRt+EBKx%u3)7Z+z|*w7j+F&Hf|;(5 zac^W4sTAVOY?wKp%&1d2jjDc1Ia{f!;`*E95z*YtMi~XLPOng>rhh}EQ#H*Hi?gad z@A9hG!@%^JSmDL{&5wc&JD8@!25ny$C-QBS#5wUyi;HglD1tliUD3v%U}Who*|r|f zmzLofuRnBbq~RG~GDLH~;}tQ0If83G2W^?UwKZrxxz=v0uQ=PyWH0<1Fem34Y=LbI zKx+Mdx$}A9HJi!_4Mn6Z^Q|~K*OX~?mc1ofZ}|TH3l}3}8F1$v$~B*_0c1_%N{}7K zwB)A0Hrc!h+Q64s;%j?ZI?5l9ntt4Unss%U@F>>YwfG~iDGSoK#Z6-830vYJwvag< z2@c*Ls3-x9f$;58+PVX6;^ELWMvWA$At=Eih;!IsA2gEa@AyKNcKZ9R;x)e@i=c?1 zyi3WEn?ps86_FUq_Mkx#{~CxKStQEpaCeyQuW?YKIb$q9kmAJ?K!Rz)v_PX?A{LNO z%yo~wHY`PVzn|r+Z4j<@*FhX8oKB?)oq{Z0#U>u6ujCXA3Pb1TTdcbPkGa#hgVa!f z9t5FBP7?QL4dGa#p;A3EUslr6N={8x)m1EVOxWD@<ndntMpU4eos9?T-IUPa!k1{t?UzjFT8 zT2|1C%z#_k7xfWVd}>u1k8w1XJ0!d?#zNMwR6GLa?!`G4qoShV9^g(fGl3&v+!Wan^*qk6_8YY1LPKCg2g{L*x2t}&MO8=ggt0r7)O^n)xthxw@HIXg@!33%9}S457;qMSH6$ z8AN%_%QHim(G`1Pejbm2AUQcX9}}M#AFx=3rtFQn-Q3)OMDsV=@2#z^L%spP?}#Q7 z1Of6oN=p85B9o~CBF*Mdtq1|%@V>FN_`LXWTmA$a6N&D=60`kd7kfRsW`S%D5DiC1bLor7b*!%aH!`N%VpZ5kQFn`lxq|9GR?TZbnI6 zPftZ7B`&VkV(%j=$B^eh=oYY_4U6@JfOq%&?HvNOGKg6Qd5aRxvjAnnR`3lEZ(LRu z)8V|7Rz(AiN6@GqTj!Jfs1$z^d;sC)F|h?PS)B_RQb7FswnhJ=^0JceK}PTpQ1O4>)zK zaD1Pl9sMbiHS)STFqqga4T{Tdm*fL9E8N!@4SY9bRR)XLTq!S)%~{x6Q-Sf4XNGJ zYX1iUA|iIT>s`PB>EV5Qs*~$#bdaUTk{$$Od3mn|18vDxvjEvZOQSvG@@j@>=<_yT z-Wq8C>24{kk4EP6?_c-@;>~uE`hv_N&}tB0WR>O5aJ~C%i-uUyyJL$+@%59#C(x(J zT5JFGG2E;9BKeK3fd&flamJz>Fay@IvyU?~FaEi^Skco`Kd^Ns)wt7tL&H}fpA9nU zF`W50+xt(WGd;XpD-aPDh%q$+tee%;H)7+mu14r@K4tLz@W;i&bNcbRc-3)M7WB5n zi{)M>*Igiss!8UYUUaFBGai04H*ydZ#Lz`G#h)xqs?OpHcH-iLb>(%3ZOBz^&U1h9 z2D;S5#8H(BgJ=?O*6BuMiY7Z>9=r5By4@#R9ZWfp?xfG(+In>zWc*t5m=FZ&bJuqa z2(r4bd4!QZxW06Qs#Z3@*Vzs7TQ74hmJCJ^^tVrCW&K-M-VF#s{(`<){z^gApd~BlqL4qCX-5w9ufF&?2U#k{Qa%B*`$B!T z*S0jh*WG@4_n-OdK6qXCqeAk(hmr=(Q~W-wMvI?-w88_VN|3o;f+QVxWL+inS9}mE zlJvCb4A0#@IFyOc&bQ{p**u2(GG?z)Q7blTwg7F~ZFei=0)*oLw<<3;ccxt*(l9{X z0JqbG+X6@r?L`4L!mC?l`Mdonl8fh+HGuv*1YxuQ7ljtTN&4$>IzJ{u;9=1)+E2&v zxU@KuTu6k0lBO8S-e$FCixp%OOl`cNBbWiG;^k0rW24i4h2}7mj{C%0Q*xiau+4=u zby1qYwDa?Gutt7%diWaK30x0ek9R-k=jGDaK+GB(ppFeKnPv()EXddw=-Yy5mc0`I ze>k2m2b~rK19=`Ut}MryFyN52CY^QPf+NTR&B*cbaXUw<&k5=Jy_Kj=CZ;eNgK-n5 zfi}h^octs`j8#k|Idy@(69)H=63(rV@|0JSO|_Y@T{BKj*2^tex?x6A0Uw!NvRL4#gKy5hR)ry`|S@HVu+xUHRed>Q3N5<=-vnRp=O`=iK=J5I(o7z$ciIN*Gx zTbRdwN^%fXs>(#~W3e?QAd2j%zAhK~ehm+ge93aP6+-rB`Dd5&D6`ONhZ{-<*jQg? z9K63<1F!v75P@6@8&=hiuVlF8DH$AlSSnc`MXh{sLtIBYzYHR~COjPQzjQQPvv#xt z+$wqp+WFa8Ctxmg-xRV6c5PohcXd%)Sae^1tA5&V?sjt@2hPE>u{A;HdIFYo5T&1-~#InzgyM*d<~GThU2sH{qx+BDDqVxVyF`Qx?eQ9>j}T% z5UOjx&oKGKH%?r{xP%7hfdLG9FTW~ny-;p^te@uE?25z7-@6Uh9fFsQ zmq#cogFjBu$?QJ4_0j(BsLu6s$GkDVv^&mJ?o@o`Ll`MmU;!agR%Of=3mSa zlIRs8J{kdt2pp;|G7Qz1Lc(-diEwc~>k>U4_G)&sDIFEIsfGFs_D{|k21Y-SYm<5s zpYzW(KIn;3zKNA3_&K*Qk-Lpyl_x1M0GKU~H_r9|P>2nBTNSaDIRY7WnMIe8)0*=` zd4MQPun~QtB4xujOt^eUYa}4%-_zh;6Kg3=qXfb6W$Jl@*t3I`h1_n5qN@Oh{*bCY zpvSZH+IvYXiyW^Y;MM638iq4s{e9ix7vhh!L$3`irx#uq9+U4+ zD!@=*);zF?j3FGl81zj-($yw;Cz*o#t+gTo%Px%Y+kP7VOS)f2-17a8KCYYs-hKB6 znRfy$@W6C^a&qQ%e}VD$n78}<`1JVvxb4O7@n@ALr_+zQe=iXT3bG~TgkL}JOFskR zi++#k!B0tJnf&T&+HA1_)4oA|&>h(ut(NMBhW)^i;@;*l1fq5Ou7+7PYV1a43jfVI zyVUd`U+xUUWfkh;cnfZ8q&Vvz8AMt6*VS+~Bw!+wv%R^RTw)dYDwdrrPb@6{!EqNB z)Cz+AkOxWmoBG?Ys=fEhr{<@o>`vK-1zsKq-d{ZZiV-?*`ST|jq)Al(=)&(~dH`F( z_%qzl)W?(NMQPx1lNtopA2$(t_kFe?xCithM1HalzjD~u9K|Q^BsBS6B%2PFI<-+G zynU8%GQkOQ?^C^(jBp$JhTi|)Ret&VjdjEMB!$Cy>wJ zt8FeuKm-Io_zRAqNRsxO6vLcam~}_1WyA|Ubl-WmoZMXd-lvCQGM80=tB`wpWK`m( z{wXB^1R0yY*gc+ktSC&z(|*!F$nczz25gL1f)*++E_VP30gUX>k`BPp{way6vb^4Q z)m6R$%ufJc?Da6J_k1Pq-BE3QaYMuj5ZWDpuYU;giT#_&a$tEdFXs~ECsN*8PAj4q zZ1hz@HMlgq{88`z^W@|8e1Y-QSzPQfttgr4^ZYBzXDf(4({l#o{Q;6-x7)9xVRAjB zVb78HK|4DUxK|5c$-ltMKSPLhcr0Zyec9*6hFjVSVk))Fxmh@(5H4cYYaKpl|Lr(_d+7z9`_tZ}`<3 z?fFCgdE6$~vh(f($w`GKHN$3rLh$c=fp3F3rLf5(JKQF;idEo&GW+$>jU)6;<^X%$ zNWwSxE&*sha8?VYpJhi{kvM$ceBAUOnYD-3%;+o0O|>F@75>rJ@L}^SvFI1u3PD0> z(%%sMG#Rb|l{nIdFBWqu(@@%ohf#Y9PKeh0*H2MS3l)kZ2{|&tWY7Uc*sCo9pI>7u zn#XEpajPOG1xObpiD)0uMECBNa=*cY(lOs0Rkri|lvT953QN?3M{C!+d&K9*Bxf)u zfMZ%W308jj@$@38z5=lDva~JsZVgH_c{4pi_!FOtr>B?@M|)|MMk%Tshp>$JCxxE&ds#08q6AQ7jqsuODI!oSM-B*j?EJm)x2qY z8)oQt<&ZwuN*ENub0KWAJKBbL`o*;KfjV|x2fz*neSFI*dx9}1F&qZyLqnK9C znjsczFyQjPTL#*~^Ou%qc-IZYWdE9je`Vm2H!Q8d$uB3c6<8$kz-a;f@4_36)L;-3 z6N@+RWwHu(q0s*Cb&F^OeJ}uZO&>52fi$~5j|pHlC12NC__@%>e;`TbwRgy!^so^;#kV10*n|Kwid;fCp9<9GHqyWw~Y4d#Uva-DVuO0uecM*){wsxZHg0(fs>U~vOoH4Vq zat8){Cuf)b;B43JuzHj6S3=%TV8h@Aw3n6M+hN7o-tK+(SGFE2EARgv$@j0nzirt$ zCLspH)%BUJ&m+hU^8y1H5`Bi$))#30vl|fd1-#qf z<_G>~HmDc0wib2(yQIEHYO}Mmqt1)x$A2rS4WA3Igkl*mRp|b%1#tnY)$a3}rkQ9h zAeezAg#Q(+y+qtIxBAAvuSe7}MoSo3GdI=-7o)xB) z*7fvhkm?UP`DBm<#K`@^PbSdUn1o#4HvNY^{jCbVQDJ?9&owlds1`+J`5+3fDR(k~ zv6$?t{=xn7op8}`FqA8wy+Bi+Z%7@j>+4fF^ImT}Cv+U>53V;>`k7@xP6esz?4cIy zZB$8?y4E8JmbFTjX4w2ga2OW+8mSQ5h7b{iAs#p;OFZ`~U)1GRePif0GE_Y>gpmXh z`hz6wC#A01x0EJzj$C2GbTCZOoKzYY^53RvH%VV#z7wVTso6`iH}nIuisMH@A&+Y& zW!y={W|Syzf|E!M2h_SN--MA^$2zjA=~v>8tD3Bl(_Kl#q<2w%zP^0;r=geSLM`Fg z0dPyZ--t%HR0$LfBJHX8g4*FAtiG{U86Wj}AUTq*ON*$k?h2esFc`$xtrN)WeAlL5 zuR^o3)&XGQpHKhkrue-Rhz2=7I=30fret;9A=z*R>4H5gn}GSf{O<9ZpReRUmxhn% zwv3MwBMYC=;@s(u)-0w&j}l45xnKBliE-gM%nxY3|Huo#YAT;4@BqRA02Ab(xheV_ z6bR~_$APlY$jPpS820p?Ycqzg%RXj#bv1&=*dlwrL=1Ggx1=aK3QMHZ5dt2{0;tnpIF4t0bbKCAW+N()I@4}@`oYbj;%^t zkCP6!U%qPkKjunV-KQfqZkw9r0o6->B}-`aIpkYRH3P1)UO0m2&D~wK_m_FS^S1iV ze6QoV*S21xTI-j=KLORc-3is|CIxU2yPut^eZY&$Z$1;3Cu+-LW?^Zm)#>h}Zb}~- za(DYLj>7=CF`5Xb9X$=~-&}`MO}nmSZ2`f<#6TZ1(7)ePG&ld#ZyBtv{=mXMyW*{H z^?P`m1?nJRrKHLWKH#2?6U~}-{M%TDBzHRgi9Aw}Z>X$sn&f|Rt9Cmp-*N@zPav&t zjp~Ai3A*Yx@20!Ey{!VR0-(WX`vW$4PGDT@qr`tiNri#|e%qny{4(!fscqg=(8-Byd02UK0$q63pJO53m zf7 z%L;EI1=>I%NyZ~=nS7y^a$~0n>YX;sWOyUDOOY>d!lj5^$5)k#e5gU=nviZK`u&ZQ z9cRBG3gs_EKGlJDvMEGlT2db++_)0BjnTy(LiROE#0lR@5GD$A&(%ah+};Z`VRFRS zxlZizag2U4kON|o*F1zf97dm1K2&y~|-(&Q%Xh z>GAO~Tch(2z*{ikM}TQ)rW}+Gq;crO_@VP^tC~z^;u2T@P?a+|6Nwwhx!q4|hc`F< znJr)=p;w^>LE&otjk*wsd90ZSzq~!l+A8K5LTcl4hSekFus@dEdAdg-4f|GI$9fGk za3156JHVXlb@WE}3VG2_q53`!(qs%?MZjG{Xs<8F@m=W?4y=Pwt4Y^?+vaq0WSa2| zMwY`tRyTGCx*y@^#NKG)*>@&a(-8nvhy2H{zP(t>CZBj^xTikq4?wmrb@T4^VE`AVDA<5OF&PqrA6!-Uz-c`7c? z+{br#jlB$cMnt%Bh7Y?EGF77Ug-^YVTSs77wI~c(_%VX?!j~vLu(yP3i~~=}i?4>a z%^eu(DLD`_&Z7a5O`K9qlXe^2yBgeNH@b%R(0~gTBdcJP3oV)0ebp{pS30;EC$8(v z<~E<2LBgX27n{mf@TyHL-y+#c+Gq{#Z4)*!ce%G|&;@;9rD%hioOxo&m~f&OQ($6p z^=ssjBK&|5W?PzZBUknL`T4*1Kkzo5hIpSJyI)Aw2l_k~*bRp=ycU)&JT~Sp(TUdM zekcjk?P=~BZ@|UNGQ(q}k3PlX(@JaNTAG!FG!I`^sjjL`L0q;2kwAq}zdwD;@7a%I z_vq|E=d#N6=5S#!BF2VjzHjGp!RzMVpu5?e)T3o%F9eOQE$=cpYq?;x-a$0L^tqv? zu+SJR{T`W4ZEY`ns|=ILU`B6mZvoO!WUe)!2dd-p_7MPOjt>ug&FyBS>18wc6uWf@ z+)qf3{{ehJf?9t|EcV+)DnjVn#W#8nKQKUyo4TIYZz9u8b=N)(*PWc^=KA{j%1Qv< zsU+dqOtzUKCF&%<--o_A_mjagBVg9Pxoz(L+Yh32_r9qE8ZH4HK|_R&ea=n~VEusi z1bS?3?U)6g8ZqA$HZ+^phs;XHRu80Fu0005{CNVyT|G!pwp!^z+l88JFrWRGzsuWk zg+?Iwl6Q2;#ITL<4s1c60131A6@&PMF(by87w;3Uf_&R+jNbiH*{ zRBiY!Om}y8cPNcCsC0vbba#({G>Ej6q#yzk(hbrzbVzr1he&=8@9#Tjowd$7|2a!$ zX74@Ee)fG|_Z5}qg^RC#75`{aqM4A{l5?&Qda=1>NglpH%DDY5O*5euH8Ex1sREI? zSM2_QK!yR2S3FYuAfINnm*E#BQyi*fqPE^SjT2i;{%UNWiG0Tao2`ut+c$xCXp(}9 zM+61k$X8qlzAG2lPp1>~abkD@O=UY-`HQ6Oa(w=$?-S)-i;^I|PqVR*G1ArnL zC@6^93WU6~s%&sxdF0Fx>{=vwX?GbMhW^jn?z1$`B%j?M@L=y**%)(%Z+Eh@3l-)E z=_UHrR#J1oa7@5)@pAJSvK*5MXxWGbZcxqN{(;z{>&m!Sm#1CragLA6?kjj}FnRJZ z>Cd-sqr2(cA&~`f0XM;=y(n^{mS@56Rg&(*xX1 z6ak$-Q&IqK^LPm!5Wt{_yY2q`>9+job_smnrlx9bZ7uK?s;#MMmnteRk4Rb0&Ia{8 z*aW>zOiWf<{htYX&S8{XUNybg&Oz{JfH@xWCFt=H)cGe%3-alQ!&NvlN_VfnhDutt z2%}Exe5N)2%!N(5z&eCEO-v28{f!VU158Crr+No zI}QlFKaq&Hv6x`E_-F0elX;Ej2$9M+qs@Bge9&Q6R}^3fcp_}o;mF&!a_u)e4n8v= zqYT~%{4$}(hkY}y$nD@X@l{NTMu(_+GF-WH*3F!duazNOO(Pp&-fQ0DZPyP+$UWi0 z_fxF}c$!i?iC?BM%rj`E%3lSrx$F6sXT|K@lcc#Ia04k@HC1mpRfa;FmO3Xidxpsi z_LX8sEU-UL&sWIur&?dZ=wbI4=sO%HeLk)yN!2Kn-7LYyA}`&%8ainZ4T%>v6xntj1T1zzs{LiM@(?UQ(P zUF@(*#V-q|{5Y&ExWw?tre@82IKt&hGiN0{+3UtJ_1`t8!O>XNIvz1`q(w4zN`9C5 zb#1BFOK7qWE?zxbF$%rpMYWiH`#0b8+{wFP>ESpg=ELH6YWh1bMVbc+H1m!9r`2^#u^(=`@ZrFOiT{w6n$P2UAiv zYrZfRz7_kn@8LdLk(LRoFWT6WnI|`(FstO1V9sPfQkOPF59R%}x%MJ)jUjSozN*J# zK7`%_iwkkrC>p*^CS;~bSJ}ffw~R}R))~huwgmkLFRxs3d|!uxJPJgm-he>ClPQmK z#h2&r?b%MR=*PR}mF3g9(Z}tXwjgiA(_<%47M6d!Dv@v*ep#69MfOpK_U=Ql1B-%j zIPBsy%z&?QIMt3LCY%-Zu($ugVdM=XRq z8qZY;sEwb8 zuiPJ@QN$d2lJD8=kNnTxBEYt)%KdC^_MIx$Ub)>CEN|RS9|dXj)rCcs zw%3_+6+xqIyZ?ya`|&<#YjMs_I>C3>zYzT9emzGG_@2*015jh&%_;(G9UIaqfczkL zJv`rYamIfuRsGHr+iu(5j}O0El$_t`0g`#BCKI*$Aun^bNAT=$gO>MQR}Fv8Ye}PkEgX15&N_Pb-I~^)14el3O@oo}raly`#MhopW-X{Zq4oS# zN_7)z2Jw-~glUmjN5_wEcpCFzW#2kzoS~IXeXVJJ87o%f$b_CyDJ;$CaNi-7pc@{O z%f>A@8&r09tz&3x$%_|qLu{}Liw=&00*}sgjYkG>)*2eg()yiKW89F z8HY?DiB`+@XU+I`PJFzvR*S?6abl_rw)$DS@#N2J(K0s0NpTIpKpm86zN_MEJFo5< zC7$-;C@CpHstQ2l{U$S(JwQp<+01);hd$1Jl+f^ZRu(GNuZRh+&kEVzh8Ihi>v!#^ zyI@6-w~v7d`#${`t~?B5qND5x2*6_6^0l!a$3cr5sp_|``R(>k;mffkuC#BrU=M)o zWvqySA>ZFreF8=-eK4GyA}1&B;2=Qr_xDe71#^1B{72 ziHD-!dFCUB!o-Fy9r>xox7mLUAt0AANUVKI_x*35vo9ac~|+b4j8#QC=C-U!wm% zp;H@v8CYV1Eyq`&TFD!=ClGX81gRH~>rsLqUH_eL!NbE>l$_P8>~b4$i@MJtOPos0 zR+|ZSX&l?b&#pa%2N2po&FYfz#tq0zS#&h0*t&Y_bHD#AZ5cQgX$RBD&IQuj*V?il zZW~HySLGB5ieZ{dU|{%JnbHWxy07t3K3^MJ{Co<;5C}5XM`F+z<>ItU@twlx_?@MPhY8E`)cC{8h<9W z&~!RLHigGRLsohEy)F1Lgfq_+-t%?x zSj?d>ZPgwK9KzeWB&CyOFsWqf>FVlo5Ul?5T?d46kX~c$6SxW>*#?ij3G+B%FF?at zS5yiK$8eVU*NhEw`uFNe z{Qi`_?RM)4L~B@Y50L`(obcGk%e)yQ*B(MpRFZRj?C7Zoa<>}&1tyVuN2n)%aZar; zKT7Qd#l~V)fUU6gu(aCvVt?lT;BE!`{^{Sp(Wgn#M^rD}N;ShqyDiXI?|>#NgN)pC z6yQVB;)g$hsG{FUNl3HIH3D$+p%qE5GHQibhQ}Aw;H4$4Pv4|hzPQJUYcZe9(SbH)FETjm7kJpD0mUF1?|=XI3F2; zi2_9~WY7?VlB#J8{f=@~ebwLnfg!gf%qSxaiRYfHNSyepMjnGu3`hJYw9HQM+{GWk ziXaz04L*vhN?x8JqhI}3^cY&yoGZ-F-+h1SDA9E+j!faAe4q}0rx5+DP&4wrX!ew+ zp!9PYDH6&EC1QR(Im`@nK{Oj;!4BxrN+;9#qqMW&~pFxZu6m!JE!G>T42E-hNNBJaQY`NMH zZ=uS(T6{++2vL`csUqFTwC)K02ds3_jtxOarzq3OY>LabCQj1wWC&=FGi}#bqaTmm z<0M+E3JU>_^siwJ|5K19Xg#xtXJki0Cm+#X5; zh=REI4e^U6k>=A7LS=+TJ39v(79upToLfMx`FNiyI#XsK$}^^lKw;(JBLT8)8|JF5 z;I;dLVy8-U{$5`Rd%tKu+TVZI_EG#XhHx5v=-FTV_lK+Y_I5D;T=DN|{&rPr&1u-+ za(lUl&#V$kOcW1q=?iFqEw+l4pECXUZ7)pPqLhM}lU}t9*4SLqm|&dmWhP6%5626=(4n=4tX!#yy|jGG zU2__GjtG07uNhI-3H20}TcGjF1EdIBM@oJt0H~h^aKIe7R`f>bX<#YiYOor{kjtPe z#lhk~p^}}-V*BX5GQO7N)&BA(ta7(sBNw#tIQSYa{|~vQ$2gg3VP#wI^`}e~_@PP~xNNh&E;Rbt z7#ULrJK-uN!Ym~Em)c70{$G;l7|3nLp_=suv?FRbn1usLGU*^v(YPBqt}fm%$$%TH3)q)SvF#kh(y1klwu!ac%D-ikmHh*Xa4l)byFWe{a7m@D=I{xM&owW;FO9T=DDA$@Tr2f*X1iya4?XOOPZ(NbV6v0v)}CSW7t76DFL(znY(}Pb zr1;Pqo0HwWBg?zd`GlGPaD-E74ihGN{G>=>_1e!YOH4pAh!I?xt+U2%VGTncy%-Tc zN&I%-J;((SHvACD-frD(Uj^sHfpnGgp%{jCSqnz!d{&(}RG{e6q-W!GP{3D$^fxF$ zXq!v8_;R~a1jzo%SwB->aiphbfbdR{fDS*OkxtPIiIsna%h^;Qo=f$hHRv%WLtx2g zBWA|XeYhFm0DbijH|?I`_XZfd>9;u<1xPHxs>}WM z_Xh)!;6_j#p2`rhAhF!tp`T(=7w8-LKL9|iKqUk1glV=}hvGS0^Y4=H$u?&OGScbb z%O3k!8X}@YlwB4osrR~X#f^-XeCOwze0|dm-ffR$%*@Xhf7C}xTjNz@IRu%ifMs^( z{D}blgYJYC8j4I0Ypwath_l}X`N@ZwW|PtT8)k{U-Ceb<8~&;A+uO5^K29+^Q}hSk zcQ#=u;o;$P)jL$64(1V@E?;q(dH)ER8qP%sof1-UrqXp(T8IXxR1tvrSI6`s(Fp1=aey_2q@D7Zq*>_-^Z z&KGMK-l?CWa5%!*R_F2U`wa5$d_pUW;7;veaqtoKW5ZO;Q(b@79h+0%ku=JnQ0Szi zm5tI5bk=^rsllb|h7sfJ0|PMgZH!yP!rL6i((!I&x#Xbf7D!Ej#^=aTn5R-EACWNh zs@=p=wU==}d00Mg4`uLKy18rei^WJyG@NZ%jie*0A0{XLVTQ4{L=&*ZVTR_#n-HPG z))FD**9>kYh*}?SLKW6`)?F0#Y^7bi8Ig$;6HR8mr*5r&o}sXvce%gUloPel!=e?? z7MdmPRD{;brty;o)m_&n$YmD?CMTco4P9!0peQD$FwSQv#zQ9|GW2F4Pfo!K^Mt&DS^h z$q!ouQ(mwuA#fb!@%nD>pORa*h3D(v#-D6aS>a4Uj&9dSLNX@dF;1OOSI zpQloT9?&IWG?p(|wB3+{0EB`d+bm2XiQ0ic*L5di7cXybkn?q2XAp3?u=3~yu=*=Z zOu#%kcmH;`n36*D(+`LmPrzVA-1l1Y0Tit~mgfX#j2spJKw)}%{|FdQ=SwI4-bd-R zYGPiCv+jU^4p?09FWbTJ32ULjZi+45duYO3Md&P)Za1(`a_u=ncjve{7jZcw^W!b) z&5U~`q6GHD(iGwyX7~MR3U%ioD#BV!Kd^xVjEom&;=~Bf=Js}y6TLARRDP!?E);7y z+#n?=7R7=7@KU;RY%(Sw@hTOdvmw~8W@l$_O5L-s?xVQu94RsH0>GB!LIXCYrMh~@ z`%qM~oOkoWpocr1M~XPVTX|aHG!RgI<#s;!{<;bz0N{IJQQ*v`c|Tm0ftFqRY@Jat zR^m~J?C4Vyna@7dJZ6HTG2f~xG?Hb|h`b?mbrbTPH%AcRe7$-SaTBk0*D|5+Isp1E z@P92qQ{gUmQ5oz#I4=yE^jNxC+HB!r&f!x$rdKO4?buv4=8HnFBT?=PQKpN@s&U4C z<86MTxf(!jNb0~=SuGUpFT5aaJ#HUFm=%gWB4O^BxwTa^$ANoMYngp*|{A~K## zjL4JjgX@^%n=C+!P%*ZmC_WFwR7*~kWvUyhDeBBkOeKvd7Bhj@+G0$Im}Tm2RBB9v9fUmQ5VntdmdIgQi!BiY_ytPV##(T>7v`^YrvI)j4|&_by$>*50<0__JKxOGH%1};{)Y+Gv}xlAqY0Z26p1_HClG+2v$JAn>o0g82G-vK zd@n@sH!{}h-%GEnD)sz0dGfXG=YSu% zSOwv42|z-c4F!`mG$Nf z7#G|F(7oG6K@3d;0174$?!REgpLOpuJKc@Pee@Z`e(vzdwcoF}47~9XHUINdJ;x)! z_l_Q0qRMG${yG-kcj3CT>(3E_w5u39j0NnHNeRk)Y^roeECvDV*tD(x|5+D7{Wz2QG!OqZ31u_>w z2*TDAz?7$Ti_tmkA1yU}PJ5!lllda-p`{}Z|YVxNJMP+jtc$ART zttr)4fSLUW2GMuV(~UKk`wfZ54M3kV*44$n3s5?+@!10`CFVNk71+V~^yiS4sp)A? zPcNtWnlmt;Tl(Aj*GLU9;tH}OaWb50EaEutAtcYU8#FQkv>vNq(>OXrsIFGy=-h5M zpqQoj#~eieiOGg3HPiQ%Mrg7ne6$5bB=ws>;Qje2)z=ph=)$tWb)|)fKKq1gZ(4z< zrcT^Z2*!UuX8N;?6YEFSLWVFhOMC6v2=(LyTG_?MUa!C`POkN7U?9g{y z{}Jg~>*>N;ZFjW~eqk#X-Y+?f0-xUsh?+U1(aXH%b%0^Qc6<|R@Aqfb`4q&25g32% zMh^-vEqwu3laMe0=hokKG^&?TcxloRc(PlAy9x%eaNKo4$COmq@ayv(x8utmdmxaJectOxB2b=K>T3uFBu-rSRg z$|2R9EoZwYClTJVr(7t@D*YZ9un=J{j}(nDci=7CwSc!nMuYG6iPR0DMs_n_duNtO z%_@ciS}uiAVD&48w6VRqJKRg$^o>1h>N0;PE?3=rP(xgY*E zxSCs%=jP>YJm1_3ug-CO9x z_}B^Z*~&pk5h#nDdp6i#c^uVxbGP~S4w1gU?<5`p5vO18tEznvS~@`V@=nC7%iQOu zCCG_LZ96b}{^!B|!5U_T&uG9MAoc+z7rRa=j5i2V0e~t_z*qCZ6lFjP2ou~YBREmi!-cN?Ti< zMlu`OsSL&?#sWahYv=OU7q)nZQ=q+j9w|KT>$bu{o1#QkdSiDm?i!}iCa&@0B^WGYG@M-K|rZ*yAJA*Wllg3TB-Y0U5&pS z(vH-6^~*VoV5nTW5~c%Kag%4ORfIDCxpCbnkaD`c1XeMWqFxU3HK+mzSkF$a-cwV$ zSsv?eFfn5;G1!5%_|EppB1V@K=3xY&y@PT7*~@asu*B1agz8rwW4}fDPl}_PyPBP< z7{mCS=DAT-M13V7h}16=jqpdh~5`VrR7o-baF9yStkW zc0s4v3gj{;97jjrHPZQM&_Izm(lI=ul9V`}P`&#c;70p>w_T%R4X@wA5Ro^W^{njz zEX?C*O8&aK0xzKIh%5K;TbSn5D-0BrBP5qsrxM}&$u_QCv87%ceJm#stxlHWYjPm> z>vaua)0a0llN-~lCc~+)nFWN!BGR_xJ&2I6>%sht*B!K??9@kL-@AB=4h!if7?aKw z(+sm-T9+C?4_t?AMiO=g&~5{6(>PHs4Ec2Tq$k?H&7#1;?=-V8UWI4MVi96@dN`f= zAG0udnF7%uwGPv{Awr3;Un}&M)~%;QP&# zU%JnsCVqqZqT?&4KA1Iq-m5gCDvM+-@yNO7u-O8aRofs>CcIy9EVr*&Y zrTuj&Nb2(*$rJ|oK7cntrcyT$?qEBIgM7zxP|)E~Yme<794$0i9>8P2f@$^!{QWT$ z;?b|K2SSz>7Z))`Z-Kn8%gw|jr@FeNs0eIrs>W45P|yRM00m>iah8bZei#V8`Gy}P zSRWjfVq|3We8YmLHG*mcAhB)$rhd5KXwolRCp#eBc~t}R=I-$to)Q@pIjsO?y*dy) zTxhP(%{3ia6kZqS|FgQpUVSmwI>QUsQcn$b7oa2nbI&@E*Bl!Q|19}xaP8`iAz#D1 zPh!?Vz-@D3~C;-cOmmpxIbhPMTZ&-04ESJ!36zsbDD#}z330na8x zpivygnW;+v@FIeK0D)*o3$VEb;X{r~O^!?Ro)!6&M@KO+m{Gt@McMh|1ajYY&SE`Soic{m5J1}Zvh?uZuUx>J_sFk99S7F7~8>k35i)@AS$Y>W$&8z zb74PD0h#A9hy+X%^v-_r{t?L-YV+MtD}`rx+X{awiL6B+!t^v04;50x`!;%Xf{~5% zd-9sBml<~DG=rrIBt%mG{QGO~#yJi1q{5&sQxdUU1l%z2szJEV+UYYReJ4Q(O>8X_ zYaUbz1vQTYqW+_K(V>W!&%RyN8mzPPv*f$$lhK#bX)r1#u`pZ*g~}Oq7SM?TroWS< zq+1MogGi5@3wg1xK6pXCjlgvOVXkLOA8O#Pdj6-bQ)lAeoglxFe6cVn%+>ggC|8}zP7JI|xmltPdnr$bo8eWJ0-PbHs z5(jQ2Kq*Y?4rdCvaXkc0!gC47?fqy8>fVP3c(ANnZ`O&QyFYM-&A$JZT)qM>-nWa) zouTZP8SnoRq4$&>18(W#LZWI}S&1{~9r0B}kF@ShTW3i<_Apdu0jFj8sr>=Sba`56 zPsChc%Dyuzr+ZwEM?Ew8%wzRM>T zh?|xa;4nRQT&~&U_FkF-s%SuWYZ!?r@&6D@EGpWZ4aOQPz`tBm_0`<+@++sshDmVj z;3!+KaASryH9<8CxqweGV4g|XjjP8f$81CCno#cko&xvk<8XQ^<@p}Brw$I-szoXH#6c*NRNGhm$V{3KZL43LvXHi10w!|Y% z%%ylSmOv@Bw1g>BA4@tpvG`|f3}pc>@VBn+d*t*tTNczViM8 zV-U<71g>3sI}@24-9yP)-0d*NFAf{RAOCl4QT2I%BTdy3Q#UE-WGt$$GoiqRYXe^QN`)&ab z=k;NK63cd5M2R~_Jdsc61)Z<{5-jnnBaSHXyn0Ms#=Xh^?%;>Kd?Ob4i;UIM^&=8Z z`;%20D#Hi62*ajUYEJ~z$`GW2>^I!PO6?~TDf`Ba$gd_re@kjS1h4SVN?10(& zfcHQY1UP=&{*xJ?qp=6u*b7(gJi7BQ6tosjuLrBug(0MB9YtT%jlqZI#_J{&(Z#=jQ%Q+m?kZ!p^Qf;{6K8hktUw}rJ;(2Z0f&u$d+apYo)V@cAiTjl_Ol8sfMw(zE?Eik3 zQ5KYEOrg7-H;Yynn zSG*J5OKQsGg{V*(zP`S`dM@$+&1)}U(WUDdO`MyXn;rA{^IZ-g$O~mn`};uSu|{n{ z=sQKKS;lzyL(|UgC^Qh-lmUx7E%|()oN=&xme339su;a#Tp|jYKvlxv=ksg=GUw2r zE$x*iwO$jfS3b5><(dQbPh-(&;=fN~cDjQfN^xaJw=M(@y5Mp6QZ}^pvl8Q=i&(w@_VvXQ7 z0Dd5JUg_uGsZl;YtAOvc$P8t~LY}L-!c8~|k+1{*`#mHSW$z*{I8R4Y*mX!xm-yxB z`%D+qI)rHqxooj4qH~nD*+~5GtNM0fh`o|uYDmnqW^abFp#Y;L7j(Q|{@eDK`pNad zJnq%}!U8}Vd^#hUTX%k+_#YT7i$KmT&W_-vERw=Ws+iw7%)t7wA#x|G8(+QD=Vn-3 zuW3;tsVe#cegipACTnuEe9qAZSb+Ca9yY@ksD-o6bhpkGk110aEPgI z*ijm!MWZpg0PQC8&c7hEr3I!KtqK(sm-yt%Q*3qh^%A$cdGG(7>$aXqEDL4#@5r-f z1AT$^_>~b7rm@C%_dfLgf_dLj-rM`Ai>lE=MpP5=aKc=qWazC=+{3WZ+4whU^sqVw z3|#soWatNF zx8KPFeIq6*DD1`q(f>8Qu_0V!@1+-_TAqYbI_Bt5njs63h^Q#_hnw7I3kuPdeU1x$%Y+;bI>jVQBRch?xEEvc8*_2^pEXq{ltz`iAhytXuXMzVAH;_p1?;)v*u6 zC~Tu$FT3gJZ)mmrX5%FUa`U<6_^!z*pKk$3B#FHY5SC{Tr}%WETEV@E{qt=muPGdUdcu^Q%eUpoYl)Bu`p#`y(%?BqlS3tK+Ysgc;Ta^ z4h05^aQ;RxYy~L|K%9Obcks0FOd2;ZFaV?3B&a69tG@s;+y*F&t7~huQ|2#6Og6*K z8r;^gG>|`eHf?eh9ob{YB>YV;6|WzXAwAEzQTql}5kWHUb>N#zX>j=ePjsuBlA@D8 z%~KcwjJ^Z2Mawg>_ON!8sP-2~D>z3Q?jr;Dze)=kw&+>tA;5d_OObnIdIVu~F{}pA zAe?ZYvWI=YN;a5w@jz{dx%+%4)conwK)ZAVnhULTMQ4Wv`Lv>@g=^S(C@RZXxdN2n z>J5a=;;k!tl7fK+RzA*;PnYj>2VVxOI_ej893bc+D0U>{Hmk=fFa;L`dQ4Tub6H`q z>-WknRJh1{7o$|5q>!a1!cYh@s0Q<5tteTEk@59znu?lZK>1x*Le5d>qG78X-j0~@ z4~QsGg(MWRHQ4w6smv)A*TxCgCWvPR+%&a_Fg~3uC<;crrKTHEhWfO&50m0o4)nyH zlI%wQxo+umhEm=kE!>yan^HydzdX0rQe7lvzf95;1U_X~MZa6(D=Fs+Rh9USV}C9e zXN#aHJZ8BL^LHOkY+a3PyaTS)9|mPGu(s08$K8`wFr{l*7iDk2mGDpHY7f(3r^Q*Z zj0F=haLH+H1=Z8jv3FbZS~&S5AcNJ{*MoLqG>d;n8SuG$!EB;Of!oQ}Nnj;4$T9pi zR)J($WZ32#6Zy%TzD}%)kz9XeCgcTDbB|&iih&#ZDj1}nfkYxlQ?{=K>i!Bzth!`F z&B92#-ln*Y3vgtPixa_d1m~{~pfJP6+ndos@V<_hK2}!1m%1~6r+`5g^uPc8w8UbF zzi}S!%7p#z2t%k`@r|9u$E?*(XaYUmyL#4BL6zm7@r-WjH(^3!UVYR zmF>9gMx4m7Ui$gr?U}0V)pcU7Lmu?qneyL|gS>T=QY-rd!y1^sUvssUpS$&@2m5eJq{#>SN+}1AkB>Z4UyrZedYGzqf#G&R;@Z zAfo!2n=9q78$K-mGg|Bkd=~|w-*d+#&OZUQVP%Bp(}BgO;~$dsgx}>|S#g=y`Wcw{zk__0z+uHKeQ`C2gNl9z7Y4UHu2|Foe!9U`XETj0bEPon*Vu) z`1$AH&&>9+#p;(RCUkVHKg@n4n`-zf{30}zpl0jxQnPZ)Rogv22CS~BnYObS@WgQ4 z8b}6=R`b4S;j2HBWi96ef~{+qz^n*N8;Wk>-ofQkxHR)u%2~^>LK+Lz0rtYe$SoMI zV+?UXwq)Ar>yOvXg5t@rmxH5BV0FH6vTisnq?c_O9uTrUgU9uumin8x_R_qaif-V9 z8EB>Hj@CCw>=^zsMOC$Iqhtj7=WnNmr)x*oeovz)locSaf)0Lma1fU7mlVkxN*6d`ZQZ zRK+T9?ZHUnnfd~3V>|!^VsC$tHkbk`sT1ER_V>cTFU^xXuLYN&rQc+(bSp5$-QnH8;PvwXBz}wf>)g3$i9s9{v2b4o7Td{9YsG61Kii8XQ|hby1i)?u8(N&EAH zceOE~O_9eJCU`T6x`L0D2&PU@`>m9%9W^pGViEfMqM%tMF`v;y9t-8F=O^updpy*i zmE}jWtldMznoz4=^;N7tYvmTw2qTTMRw!pYRT^n{xIC^X9u}x2KNNA1j)G{*a6K3< zrsSlloSY8#zwa6uHBg1vRrc{n_K7!;(fctCYP6(|PhItQ#ThYB8;7$0 zcj{E7VqslQOynd2&cLi4PMR<`i1-Irys| zVh0=|vK0iR3h$;_SJjoS^-xNO5*h?jS25@>0L^ zDh$3-oz>FvQ$znRRz3I$UUgW*g*P{S@Ej!{MRkJ)OI+Jll3)s6@3w?)D4T|4VNLDnnhQ$rQQ5JHkw8@Zj31 zqNd4tXqrs+8NDWABVD-^tSmkPCwJ(L7A?k#5>{Tf(sebT8C0~zny-fvtL+8iq~93u zN}%^=idt?tXIZnhWQb^?&48-WaUTsa#^!XCcQODrw)`lchn+0-gh`{WT%z5^ksENxZwey#^`< zFfB8FN;?QRyLf-N(AHL0=e3_y^mJO4YUDYk4O}kvch&Rk5B9&GhdY3u16o zq!yn~i)VOZfHv-*4pQ?fE!Rh+zv&L?*kNfD>;pWBj{UE(Ao^B(0hV|;`HY*a;GMz+ zZ#|hZw!0uqzD8BABE;57fVJ3kLoe;%_+|r^hJJt1ic9oy6OGc#iE4BVH)S2;ToS#q ztULj%PVBaxOev8XK6K2>PT^)Q(Hzyfa8kn~qy&Vp;b4>B`#vlQ ziF;bwC_2Ag``sEQ{uFU+T8Ip*!xiWcS(vh0x&sG%$jUtIzO^1Q4KY~9GZK`ESMP@1$7E1?y5W0Z2>GZ0s)bQ-c z%4WXHDquVmkZhTRCHQPbMz)DUd7JySM~io3buZ&BAqQ&8M#E==_Vo%$<+GX?aO%Wp zVOh;y58FUY`d8H-5WpU_fm+Q`dH8Uyn)~HYnugjQYocNo9d-khm1gKAFb(sm;HeIWg>Kw$29xm0OKt|k&W(!W!L{=eQ=!Y{05E!hZ2xxB%qN7OstJEZJ%k>abxqCXFod@BB5z}XPb?gf43 zkG<@$7U3Xt$a2~4l-$QpcWkz}5u%@a%v4nYlx-hy8ba;&c=0U&_}8I@Nh>N20+!58 znfLF5XQ>E~pxU8S_FzgR&M2;*x)blkF;=u}C zdoRioUEniQOg8r#_{1O>SaFPTv(goU9TC+DyA_f}PO(F^AvDU($sIJCq)A0X_7@O7 z-qdxd>^i+%Mg(6^NPkzpIuK|e(T?UQSsG`ICPp?As50SEv(Aepu~NxWamDN_d95Xe zk9v{h&r8k=%e^(=7o|+GZ(GoY@24p}?Mj#kVUUR6$LE{xqT+uMq)kVWdS^qHI*C^! zmfNM$Ygz&;1k3#m5peCzhnb8yh9A9KrLv&;Ykvxs2260y z*{}lwm1I81spKdv<=a%7z22lW=7*p-TYsvwfriT^maNvni?gw|)u5_3lxYGVkqOIMnvNcB`;(M2(kT~f6Dwdp*o>%*AF!2{7>1-a~zK(rei{O_}7hg+8>qAB&Y)QCmz*3WTR z9lAhQ9QF25%geHNS2r<&%QyMlOEpdpx6-*nc3OjAKwS1P7GZo{l?vDdm31SnB-gz- z6@rng3UsSs7Kvgny1#6VTX4K4q3QoC%EXRy)P5I~B{8H2| z12x=1IFQ+SkS63MHAy5dsKa)~`O4egiH@la?`l)Ayx)Aj_>kvA%A%#I8DB5wl1pNv zoQJZD_6~h8m08l&9UfjY8ihLk&o8{<^dM;(>{N^O&UQnoUO$TgOp za~n5Eq)zb2U6@&)J;P?Dbz+x-qI?XK`)~6#>E~}}mFqy89gOF(fudxl4LO`J{t2%x z$G9(A*GY$CQVlE|nrOet--OmGfP0Y$YawlDb1NHKRV$Ln85)6(mn;0mnooNEDmc%^3?nk~Wb@x(MqR`v zH?`sD4YLs{#NjtdW3AI$-qIAdEL!Ua?zpZ2kZ_v$rXE6W zu)r8FqR^j%XA($W0sI`NJE&^wX%9D0N@t0Siw_SgD{ve80U_mmnYR(3K8<_UMq*oP z*_hLxBgG6UZ?Yy@&Bu);;U8tqP>yP%;d%1K@RPS{2m}XDX)iS3ONd@f$eN6pnZJSR zphB3;t069CKFT`#)*|7<^fmCE?5-}DF}mA@ud{2+UET>vSH6Yf$Du(Ji72BOXc;V* z+4*5>LUmt}w|Dms@M^Qa*$*hG+cG z0S2F5Q6*U|KYX&&6ggBEfCOE3Ouosv(@K4C625^cwbqBPF8{~`XSodTkq2<%g zr&KE6+Cs|@B{ggkj4Ir2H`8$>{PF!DW|mShG^y><^@AC&UVE`E1hKI{V#eV2pc-lL1_FwqYqnMtaZf`f-`sLT> zwVWY~H0;XCB%jTMosRAr#&1&Uk{a8;`S2wbeYUD$m7+O>wWX8ERL~>-=Ul@*n2=3v zTKFWiv!GZstQW>NlDS%cxA2FZ(&JYQ=Q(!E+uIs3+t97Z zW(=<*BRIJcrlsSNDW!OMjmD(|gS;fENEtV62me39-a0JmCT{y)mZiHJ>F$nIy1N_c zkd>~rSQ_bWknUVUN~F6RR0ISBM8&lb>m9D^j_0|b`#9eJVE0!uEITvbInU2o6+jZ8 zHif10*Lv*GU5@t7Uq~{y2|tpNTJjMtQXp+$M1mYkNbNuGW$B3);}5Nyck8Sls-b2# z;Ix$!;5LeOnFvdZHSk_$Yi%P|hs-XSdfTh%2X1HQGdC18_2J5A#X5J9Z=KRG!63H;ov3bgQNUUOur7+YaX2ydD6vOJwj`#5zSDNbcm@gEKI1+qv^*sU) z`)`6y(5iQBDdrDQ2+#W=KX;z4UL+}%TaysFB#h|i6JyL-EgNQctpm*oBfHrH`AA6o z*!hqg+^qaaXjAMS3sG<|EpaDFhJlT0X}9@K?prLt3m{Z*n@-UvB1Gs?tVmVFa&j4U zY}*s2GqX$Dgv)UAJVZj-;#_PgHM0#gWb!ny1=rpEgyaQcm0ys{XKTBDV*IZgXmH3_ zkUN!K{|z&F^T(YZIy5VH$bGNd%nRd*bXz};G8P)2*0%BV#1xK5;LeeIsntQl! z%$xy`b8J2E&$rl(pQLgz$zO0_C!K0Z^#rMwNbsB`&)*S0J7*Iy3ZY<2<P7N9hN&B-Ih>-JI(ud~s9y@1h(lvZn;S{SwU4*4WA5Of<}*AYpTaA%bf#B% z7(!jy#=w3prEaM;MW;dBE3f;kTy|~$Uh);F`-zF)M;SLm+Cbd|#t>Th9+{39mPnZP zXL}dZsW{>(QGAc47OqrS8Lf%7!5VwagnQv{_!?J&$MT*&L82}$=`D*U@aZrUns?HQ zRNF-mOs(?J(|htee@2nGCAqWkFd0tVuXs$Oa^0Rt^7xLY^Z2wOW55kXIWfT z=06l-D3NXYlQ7jC7IsPbHI%j?4YTlu*JzQzpGQ*aGVTu`dvf%W^5ldgxt@MvV{cMI zkNr!gQO-Rj!>CEMLdsOOH#Of z@r$A;Gif2jxJ!FuamlgQUM-Z~y%Y2tt3h+FgBo zd@|lUO;z?0$2`hW^Lj~)K=Bog78Rt>LF3h2#k7&6q&4tSaeXGD>u0ke5ENXzAqRUd zz%SY*39CRD`rzJ$XtDZp9pz}6mqrs#b@T>JNv1^SO;WgHyRpS&HpQ59?>{TSx?+Bu zDt6sjDyS4yU)k^Fe5$1T+L}?*K{4?vVG>c_tq^jR6GzpE*%cnBo*1rN#k7$RONvEb;x#cv(TaJrPN~thXN;*w7?J4vrpM)#A+svX(8Ye0GlH z#uD_%4?I?&^vARK%0k7BNv3~bZc2szReB-|(G3ROaxRCQ+_%0K8lDo~(G;fD?jLSi zJ(XP+>b9ohxQVDf>>X0zqx@TmYCw!0XVS4Oa|O0>8w=6m;o^pVc!>nk?T9PMCqKRd zp5pTIGH^rt95=}h{P}tfO1jo~f%TmY3Br5i0VZ(%khq$=QK0*K@tdriyRZSC$;aga z9q?Ym=!S|nIpet`|2~Y-uH+*gMJcrqe`JXy7q)pd!7RA1U!4rCQywmjvQD8`^Z@9^ z{pjZ}BMB6uixT~*LV2;amr{S3NKi<*<}VuHquzeQ!NoFmPVucJ*2AVIQ$H1$RXvne z!*hR#izG&nHw5aA=MO)!Duu0SO5CE1m7rqd6+U(X;aNicnZH6F;LdK?sJ&%nSDw$jXr@3!X&x<5a zWli=Am~p}VpTJ3!G-lYD-HAqD{KtbIrn-gMrr&CMNj#L59(7Z@Dkl-jNsyepdAI_z zB+37AsPVnwFv0AIULE`TO3q=nbzA!1L?5Y^afEU8uSR`wKJtJpKV$``vLYGPZf0>G z&=iQiu_4K4I3!topBzKj?Kj?@p{1>ktPF}A`e^NC#;85B!dk>SDlqz5#oZO@7!>C#s$`^Y-O;y0xDZ~~hFs~7RR*Y(x zk1IG*zkqPcT0OK?jd%&!{e#0}`pu0f9eo-)33q|AoRGZS+Wpze>SWA>kfe=rwUhgn z^-}|CY>RPR3hK-R3CkVU=xVXKBOAD77D+sda+eT7A6zYa**k(*GfKx2>?Otn^3Fr7 z#0gvqVRQyK;W*fAB|fLqT-*=6Zw#r+jZGn7NJ@}Uc%L?`EjCR^npJR4?5t9wkJE|% zkPg4PX+{@ry7AB$(k-Mm;*#=Q(-tB-$FMSBpd&5R(=?fn27kIdg1Ds^osE|c@fzYkI_JGm2 zBEP{OSMQXroiT%hyT`|XqnqdWaQ)|Q&`}Q9l4b1?C{RAcWi&k zgun5joOSl;Uh0BiiHK1hK^+}dtNMt%Qwtp1icc>}$A&PH2Do2!9N7>w&J2#!>H`o7 zf(ovH9&2Hn4Uym%nWzIk6M_bRQ}yOzhy1-SX5`Mp>Vj%$T`nr_4C*-K%<*F>9E#Rh z{U|BF-G~lFS74}f)T)t649=?u z`2x&2d-KhCA*8g>dY_3FVr~KNOW{!*+ zwu7#8XPu`a|Mu>Brh5#sEn>TB1eF!K{6l`WP35CqPw*b)jM-@F+MaXObjZJwR10QW za^CI2y?7~fWQeWjxqYo4^Nq#dyGCqyDJnC9g+|HDmM8B&0-wyQ>*>?e!LRQ@xgOox z+S(N|7gYMWSg@t%AP4Zvsvc9lJ3GUb6#NerB$wDBFwF-SeacSK&dIGBej)9Dru$^z zJgDd=JO7Ogc)ybhr14WTtv_P_6w5+pbOK|+sI3`hU2GJNpUo@)SvE7QC0Rgy+hZU& zdcBNh!ebY;u;oWGyPF+*3rD0=2pWAMR&|6-S+Y-@=`UbE4dKJBFB^~}O&oxvH>)P& zx$=1aF{uhtFk(ZF#Lg1*1(Z!);-zCJI5t+bh^!<~tZY7(=dzKoW4%qXBG*zg)<+aodNP7t=T0J{(o) zcTLm>l8zWZ@=V=`<`9LrHIloA@Z_mBNE_w^k;h>agF0EMkyvbYvGn8S3_C9v#9*aH z9JSV1_k$>JBoY^=NxLx%t|^Aztdmx-Jb_Rjygo-061#0Vb3$-BPy7G0N!$nu*)HqO z4eUYT{Y-HnwE22+0-@Dg#WOkUa;WW2Z>4;`>GDmUai?9MP8oX}QgE)@X)C{g3Qae` zVzLQ(Ks->D?9Shk`6%O6-I20b7Cib;pEYKHtxSxcgn~IE%2043YWzWEafS9XnA;nS zX>&G{Epmu-y9|D&+ld=QuhxBui`|wWJvk{?>>1cb5vAjuU|qRcDCZ6|H4Kn{j_ZmG z{6CJHf?GVumd@fw{QgFePfLcs0{cYtmJumr9x3V5FwYs{8OhMPc+Kl&bNkm zc13qC=d9^KLWSn_O}A8YAHH~Twrj6p_MW!-88;hKUf!MR zVnL%@P&v4#gp-$_Cs(zuob+7C!hX6*9to?t{hS!ayyJK9FcChXQ;JYGAvG06!owIR zhaOeDg$6X0;MdYlK`f15q(=VYP_o`P1oSz~(A%JC<>m7=;hi$gi}X$te(>MmcUWgXD4ikbw%xZGmHd@0@{5P%cw$6Q8JYdha3< z7uBth2;P3lpSVuM)sfx_t2!)y+)iJfs`SPq5Pz7NDC#s9qFDU#yev6 zcA3+WdW$E66fVto#_KnV{i`E6sWeiqRE@ASRAKfhW$b2c8Z9DR^l1Zq%0mL7A?31` zqiZ-Q{S_|%ct#t@zYk>kj|%Hm|MyLh^r;1K_J9u^78U}&JcR*VKncXc0!yO2&+**V zy>CQ3x{f-@$py?fGp>8WmQcy;_p#92 zspHKg;^_5(Wn7wONO|8Q<3*opk{T(0+X(094&SJsyQNuLQpx}TfM4bKj7p{LkH#*S zFo7V0hCqgPYPe9u!0oqrQ;$Lx7C1o8+#^uLEjLfiyH6_Pt6BTOXb{hRUgJqwk&?k) z*4HG_l)kiEb4wfR2^R7RjYP*4(;b%F@|{Edti4V-_n!%+N6R`CP8FJiEwkKaJHOte z4Z!n_xOp*zy$3u_B><56_luEV1i;tJxgIA2f=D4_sEr)~GJDUaR^li9#`5&zPIziG zhfzg#{%{!_nTyIEVAfr&mQOes-<_~jW&Mv9h47H!a(eRAW+d@h!XHQ?>3uy96#^{- z>LjOmxJBm#ASrgVVvsVNn9@m?)vU9B2 zu-fUfj?HkYtK)a5(OK!1g56^aNDimEd1|vl7Wf1-p6ll(kbA^iFgwp0)(Mh*EojP; zzYNOGMP<}J%B@ghhLm<XmkXl`ocBrsoaD%DJRxgi15Bw?=fGRusDNe;()d%GA6;;6NwN< zk_)DhQ?Spa3L&-$LaK`eC`QiP5(OuL{tbH64k{YTApFgO`J5RPXub`ES;!571U9~< z8$wGsyJ?PW@vp;Z@Mrai?JsSZLU&y{o?;I{b%|q6l%&rb#RfdEAx=3Bp^8?s04eVN=uX<$ZP=C9UZJ zLEC!dQ?pB;x=KyKxeARLzw0V0zbS*DRO>~ntWzp&rK^3ZT19yxzfr1E@%8Iz?F~J- z&~oKDHcdC0tWkkwDI6?9*{Vc~;`Vo@K4YeBiPIGD&aqhjCG4^C#QL?3@_tTdg2|`g zWt{bbIjb1@#;9Cqbwlnrv5Ptg#53d`b2C7Vknne-s2yfps-0=FIK#aj6PcCaC8*Ju z)i?tkwPj0SyCA2V;-X z*+W~>&C(UBHkc(T9C1Qi3ueA`cDqu$(@Sw=u+T+0(U)bNq0GrG$WFTS%G)Zhpc`dc zT4Iw=1pY_=khPsHQ_L}>0&UZOwh0%@H_Aevv{8MPdW?_WJfO@x9)a|&elvM!;VE&O z0@`#h7#0M*=H0S!Tq6FfLu6oHAc)XX=UD8a0yb-)+cz~Rx<}o{8C7df9^db(luA0@2&g9Cx|Z#dst9DK$N8!8H11E!w#UAwpJ;BK(hP>_Dkw%6C>x;W?z0vtn5EdJh zpas$Xo_^{`_MIdJfA$*^!$;11@PtnNq2`XGoI-(`?A3(M2U9VEX=>G~lTn+h8zSKQ z3r!@Lk}67u^$rEM#RZGIz!cQQaPjm@)4i_rE~1&jX-M)^{Ak*2{=k~Kin1k5714Vs z1%x(8KvQNF#-0+(;vVzmywkRq@Gc--?M8%sQc!)ulC0rS#2FT~IUU6G{7dt_*c8_1 zedG)WG(Klp^9!d;f3q~E9)(~f%uz7Jnwdve)%O{bq@CbBv+5;&&@vMJ9 zSlRd9Yqvb`=ZMlKz2Vir&SANZRw)JWv=pEq8XRQp_m4J1H3^XWgegi3u?DMi#}2y* zEgZjdhwvlwBjbhkCZTj6*my{kwP^Qr*HyP3EqC-kphphqbWX=JPKYg=6OeHTQ~AF` zAggN<`H!SHgl|ZQn}UHmKecXPG=PWdrAm{O0vcka%PQ0$+51IbCK3fdWg}fJxDKK! zdsr{k(DicIzPw2)L0{Kj=!Si-M%%~>0)Jr?7GYrY2eO3kzY7@)xR|6fPNW9@GXO5?NDIEucWoWD4@K z{rh_7d&G5+)#@46Q0J-tJ@LKzPf&dS;@z1!x102gNAqs-b(r-XmVD#Dh8~~CU~B!$ z;W(EtyGu=?uSBh1BC^)+2vTQ7?lMrrb{Ez&-AL5I;?n%Qn5vb$xRL0L%OBY$Yn;ky zw1au(waZQ_CLeMA%ULOBlBdja z?d7qsu0I8am3KW|-w*%4eM=h1Gb^E=r4ur+Ns!!GppWIup{|STU+oh>?4RAb(PXY- z$*6ufJR*P%{$Ooobz#^&#$*KUy4)>r_vsuea>yiR_z1+2$!xF^M|y*%0|?18djB;L zSL$pAatI+}20ZJZ9C^z;(Hw_eCw#Y?ElOfD&D`?`3D-=^*`h-i8i~7chqm_EzdNSS z6Yb!C@Q-D4rXQk$^EB~J(Yk*rCA)67Zu+LTqNv^UFoyCD>>chX7;PQh+oVxz66oVYh-x?+a=bY`Vi**x8l;@5BHYi{WIQ_aAaSSThW?^ArW@f9uetdon=%@A|s7lnK zud2PhowlY$I%Y9jy$v2cAXe6LRcJ56-nts<*qs@D#JvV$UKW7BG$3Z)E!YKN_)<^} zruS^d$p=!;P7KQPZuPHB{+Gi|<_{@j7>D~ZD~VU%CySjtm|OfB4W)eiF8Sm&Cyl>W zG7Xs~>oa0s}0{CIR;NoN8+T z0oh?i4z$;#?9%17-$%eB0EMz+CJ+JR_x|{NYs?5QL6y2XlgMAR=p`jkJO3mJ*?OGRzr_h;B}39`yF@su zf@=CdO)&j^+j#pSW}3Gg@#~V{ZE4sCJf+Lw&B5a?kc$+_VmDz3JEUJ2*C2N?N+U# z-m_#<8Z+aOvmmhLZFca^4=&~{RjKNzUJ-ATah^b~Fq8tx1dgkKv~m?S%D3nL$ae5= zOu2EuPgUFiYtGtek<#yj8Budz%~ZMH9ZCLNB?)J0og5L}gfQo&JIP0pmUC~?Q@O&9_=zO>kr!lNnB|ceFl+Ab z?+0;v_wLG`o2}=2NzvL8n1YCC` z=LMoqf{fmbeTxY0!UK#aQbj=6bXFD$xH(GB$jfm(c79XRxpl0GqdxW835@DJe;`!i=)M%*91vAGe=5|HhTOIcpD7QPm=IXsJW3DsQ@oBfF%f z4TR@EA1^Q|IYa-1du(BuHNA8$d1$ObgGUveKW#xQ+tA9g$UNjuJRqyJRBu#F@`+_o zyRkqyjAyL>(SS&Y0OX*zxh3HQk(5eWX~YlN5h*%vj-*ohO$md2sU;ihRb)5f+KbYM zO&wv@rjHe(MIX zmEM+?(p$OgwvF^$UsULMh`)z(LKcS%M3|zttkw(Qhx9*+;0J!5Zo9Du70zYPBg#;> z)j#;=ua}0${Pc{Xw0|>{1{4JA`?@o`uealeOuR&Rg__}>Q? z!*~Gf4Zh!ZKaqQ{%vQ~ipmKJa1Cvfr2hhK4@ZUMs0|aUe)0(kpme~sxk@W_b@Ffza z9>+T@t5*X-AQ$KPV8l%J^wZaW;;)fXVWPKpH#Y%w;HlH_NZ#+!+3Uzn5#S-J?|u9s zlbJZ-E<-y&ynC(zmnblZs)X>QF*D!6#9f4H);MG!BXUHlh!_>Vdhj$e7qfr*gLTz& zKi-$@tuo2)9U*8$^m+!205iUh|AIQle@H;;0#BrmR@8LtYZ7*{iR^n;VF7jPTTvKv zDg<+wDlxTI{4gfbSBOp3`dBXf1TACvz)ZIitwy@p&PT=GJ;w<$0)|Vcy|Hpw0((+5 z3h>)W?!b15Ydaz%BR_m7RV}|Aa|+|igax-pyPz$^_X<1sV_fhPsn}WU;duvk!IrO< zmX<*F@5dFQSXEC?ULl&IhQOZL3_9%f!UEo-NSp@X83ta{i6Y-VZ-C3o?*v<0jY4lo zXl?S(&dxx-@VCXkn8h~}slP!))aR4RG*Bdwm6a8>?K}bI{Ldf>)eQiv!Dxk6;KiIj zTfuMNZZCdA@@znb{klmWF05QtILw8U75Xt-=hh3K;v9F&$k~O0vKqnIP0xWG{dAg) zsfrd0U|fK{j03Ejr%wT{tN&?U$=@T5o2>VRTo@8ZDCsyF0^8zn3f5rMUKJYr993y) znR?AG9?R5?jm?0E_Q1@Q(`_GG0iZ_4LJ0wNF-d&viwSI2hiyy531pp9mDz%=-Q57V zA`VDG{>x&8{fXkjOl%N{YM?4p1`p5ba7ZKQ=))07Gp^)WJXP6iH!*J#X5r>9ceb>`g zn~s`}&kzL6GGSG~eOc42SYI546dH0hY;l&R&Brj$M!Pl21ja_^vNbi=7f5-pfY~M! zBO~~JwrsLqezhJuo}7|cK%z&<4z>1~mP924y`ufvDGehL0 z;_j!YB#}b7096O!M``s<#}Hpp`}zWV^saJFpKt)7QkJV++?fwL$$Vj4@=&_h?OCKi zh}{A8Bc4frVld6-$O#gU0!8Cd$*lM{p>ZTZIjFMF-JKLVU6w1&U_JsUxC0;sHT1(4 z0l`3Mxp2qASd6jykCBRM;ilU(qKyqjd<}bO-fQ(nrc=rP)P?3Z&Do0&ar|ijN0rvbOcSeSH z-nAzqD;RoQ?pCRU<(hf!MO7rm)By`A5-juiq=1N^X~$=7)I4_p>^2d*bb2>RZbKWt zF@6@y;r4TzJB%C|+U84W!F zzR(WsrsL{r2Eda5^7VRonLQ{fGj~La0;N%D>LI*8Q~86J%e0iT#%iXqxw$~vN2d60 z>+?TX*B}PGlTh4q{$Fh1e20f6TQUJ+zn|5H@k5~WHQ4|I-fVpbAIS!FlBzH{|9Io% z{psnuk8~M3j6d#jc7=q1SlQBmiBpgrtSCCL7X^YLz_gs`7%^pEB=99j$c0;yj5nkG z(cvHui1GWk`Pm&r6&T&r7D8QGTWyQC&NKE!e#+Oh{;GU?x2EQWLzt-pI0jcK>ofa$ zPP}-~-9aoHfL{mXjYx{)qy<=bC5YAh_WV!CkM3r>v2|QwbxMM9Jk@~v+&5u-QQpo8 zR3gG+q8k;qrZdzF{3Zzw<{ZoqT#^~3&!RprJ`oSHEEjA0)jDg{Vk^J&I;|Nps!Tl* zgOj?rW!#u-YGBUF=#1om(h1JymUIQ5W&(=V)z6<+P1XS)pM4JvYZQ%~B;||KB^8$n ztcy*plVZTyW9`m7Uno8kqy-Vk;UGXbg-K~pF?9C{>%OLulw z%F+Gk2oOXu68lT(c!EPyS-d8;jy0bI1Vzd0#*c>UBVO-5Oly7c0I-84sBteKMbLXf zlrn1CH9mKI05`Ea{L@NJO=R&=J>1Efn&_Q&uX3Y{1o7;4+@oxH=+9f>vA zPvHD^z8f@oGsr~ObTy;uqzq%;KuymGwQWK8 zNA%y2ln;fO3Jt?|NF)N=c;6z;5@T%&QoND-^Le{HaA$PxTeD@n;oOc=0x z)z>GPCv4Xjd|GEB{O~t+no{>c>HUx5PbCq=c>@Q47`J%q=Xs#7=QSD$@R4w^41eGM z{=uO)(7pZz1C8?4FZ^vz(2skylDRTcGDA8t7pKW=0>Qf}%WG>Ja|P0#=RNJeRvCna z=dWp8-yI&}*f;K3AjL&5H4j!RL=*)NiUWrVqb2zw_Px$DfdQo2y|-%qCz> zzqKU?HVZ*oCwJ@pSMLC%d8}q)g7Hd_=O0v)g?Yw=%0pg)w=!?DJ^Ocmw81V$@t3mT zSZ7bDVus_!ZYYWMJbjoj#T$)J7WMwizJ?lowtwLp?Wxs=BYOxze6) z2MR0GDJMw9^VufOIliH53_T(LbcIHtTR&P zs@(s7M_5)z&ClGDOeb0MrB$gT6 z&5VkW^xVh(yBLQvwlqPl>{f0{J^B|6O=_XIL}#H1X6?ZS^s`_jm4CR?>FsJ~_wMY@ z5wGZ-J3}#7n}grFKqQRfwf4;8N@V?HW9UQTjhJ&WW}WVrYVL>g_bOmxJP_@#IGPZXMWb|EW#rbwWj{MNSZ?Ah)iSjr1ufAZNA#VL+}jMO`djw= zku6`RX$wYW&qiXn|C}YX(OajH==viER`%-%rp+K`T*JoB{kDssV=%+C zQO}`3sYOV6?t(YtGsa*LmBOb_1xb43lckaDjV%)`=ZfT9Tz+g8D_zdi*Qea`a<4-* z-YPN`Cs7jVJ#1XpSEd~Cqe%=UxKEo#&hto-0VfznWI?mt6N7tHCaS-#T;LMn_Zno( z{0)BV(Eq(tg;{-VV=bBS)m0STz=Z=y4gkD1FxOl2tGzNdi+#&!$3mc|yx~8l$w?f_ zgV+C~9e>y@GI};Tra5%%8INMq_Mr*Ye>Hayj>jcBkGtK38Jnm%rEZ(arSsAMtg-== znA7!{HCgxuIZi<4fVVf5RH=}~z~&=|nPu7q;)d=&y#uf;S8l!qL+@?`w4Hy-j=_zy zGdAF5APxR6ff`-s9EMCfXPisTf&8YG%4Ck^IMM`hX=`R>0tVHhY1fHvEOBq3ES>H_k!14^p&l=Dj$+iIcH>^riwWC6C(~MEsTs&AcsJ_fkIYH?Tz!gVO*E!3;t&8_XgWU@IM~ zA<;va+|ElM`@X*8oe`)_O`^bK$0g+=inQcq@mK<0eVf}c;y)Nj^xr#U_zvNqTI$^wT6_uj=HSD zYXjOIJ0aCJc~~vcr1qd;%tHdzaNfi)WN7@dP=GbTfSt?86*iUSqugU&o(+#wHc&6c zkDrucnk^iy&J>msi`)wKE1QY2b|^M7*XW>45Ke+WUNT=U2MTTdrDpdW4XhEnVm0auSaU@!5XY1qVS6cm#Ud=47O5^a zyk-41OcLAQmF!WMjw{mvf&XyJdBB?;%0Ax^wlRcQ(5y zj9~+D?ffIgl8GWcR-i@EmqXfgMuJOJn{@Glrl}B*M|7uG`P3ZoC7QND7K=b6ReA<_ z)J(1mHomF^i{Wl^eHr{Vo~4Z}^g%*X#KU*(L^39RK|9silr?VPKAM&4% zA`}7pomlYB8sZYeNR!E%p;zjpM-46F(!V}%hRrYB&oet_*}L;CWP$0<+)jzJXuNTv z;~nyI_teO`7`RmsZ5|10kN}i+^!S)@1Li}HMwgl z^@$515Zx2uXB@N71O?hZ+AmG&X%{#@mC60hTnmFL`IwtyWB&#?cp#)F(EF)){3*{^ zVduq-p1;GQyI*pi{5j9-5BtbZOZaOewwgz@Z2ODnZYE4q;=k|n&prLb=%;~Xed~w> z1g82ResblJdvr>wH)=q8KCwp0X)#8zb3TsfEBVhlf*DTp>vb* zjh#C_zOnvv2m6DWz43&i+_n*OO@zXnsQ*i{pIfE%S;koGi?Ip&D_3>C+xQNe6o-4E zG71$%%1p<#^*X>ko)uibEqH$A-0@G!78=Cc)kUuNp9p>pZ_GAa#;D@kAtuOen@+LwGsAl;B)JH78aaeS=`FD%=CPn zPjB@2{J8n#_oC>ZE348A^POUVbDDEl~1>5#H!o2A}nqc|Y zVjML622t;~Js$h#50DgxinI(z*KJbcGHR)OK!9Y}?<9>Lm~&}Qr}JC~+b{_fJlAhz z3TLMXwC!h;M8m(t{R)i>y1D--d+GJu6fOChhjEJh(p3<7I1SW@PX9#cnZstaxtlTP zb3rxuBx>^N$a0xm;?A&>k1QRHnAD%i@=g%~DLE1WyxVbNjd#4=4{6FM8^bMw_g8*0 z`LOcwe=}=GJwZyZYjjL^k?N?VXmM7&pW)P+;xt1cRATiqYn{o4CD6kQMS*{7bg~JY zkj1Oq!`MTv3m3S7AL|E{vK)^2sFXJdWjGgeqso2^lXHjIx*Bz6^O5bg`)f0}Ronk? zw=LZZKH_(S(?SQ~-j`5Q%+jj9NNq|oMtvlUcN3KWC%9dT`!-mo)LBxV4vyUYwK~|8 zAs8VgY}7XX#0%bnM>>j6#TUfGDU~(r?dlKI0OT3G&Yr?)L4905Jkd^{Z(F>Sv<)`i zdc#vjfE7;Ky^eB4_v}?w7(2!u2vxe6?B90iStP(UDvgnQSTyL;{KpwC-5WQ9_@LN5r zts{3*-hmPhfz#&j&Pe6_Z8(t7Du7rvXL#zV^n7lOfv0RGIf~#r>zAs{c)6$8|ETmv zMhWv6k!iHuB-6}SKCS1l^36>-4BVNLvw&e{udkSwndi#0YI=0kzH|iiBbK)$W;%XW zBA_3fS=RJ(#q(A*C$7Pcr7F0!YBRRGi{P z-3tdNZZY@5Y2e}>`Fg0+_K`(n3xi0Tch3-ur`dn*%h2ZSm-1osI5_Ejm6@$>sj4!h zF&PXHajP78ZLZ~ns#4CJt_7%$*QWFNQO(JgCo!`GPWLAbHMe2tSu-;Ys~$XcUS`AE z1w){9*WNM*;Re~0Ls?I;tshT8Z6=$u#F@4$BSEk5tQ0P$VJ)f)K>6m88{xC$PM%V}< zbdws|&lZQN(-!i29OC6f@OvqyqKEqLkH}6r7NauU=WjYHpZ#7?{EPP4Y{AAO1@yD0 zZym0|8MIa2NtZ*eE75U7zM{wED#E* z*Zie#+0yR=X_82H7b~XijbS0OAg>@$wN)lowYDvV)i|YlX;kDSbDMfpaz*GaC zY;I8nZ2}~6{3!2jiW3ec;zu>RY7BqP7rvYfD;FL;<&0VHhUH9~c3tuu+&9ha%CMG? z4-IJvrX=|uhEPOX;s2(uY~)aQnDmVIT`?0r?wuQ+YM&A!BS((s?QYn$qx);|LWd5g zvugDLKag4$u@(L~?C*D<+kcM}CoR7Qf0vSdTKoX>7(g#xIDX%;GAfj6@9s8ySrUnp z@W!f9+!+bbX< zz8sjVDy!Fyv%hPcQH^oUV%|+Q?mStk7!|SOtZPKD=rm1jjwMrjm z6VP}z&ImGb-UgYtBeLCKPLcconKO?6+FFC2ZNa~$qGisrQ$Jm)dd!Z|o45mhRbX{O zniNMZBp66S)cop|1Bi;-+PM2-=&rBtt*aA_thC}^C!A@IK25ZOcnT%3K-Dw2I}ad` zrJv6|pMhwbK@cjO?0c8y8T3zG^|#x;=DBSL2n(dU>)~vpkmlut~FokhelGw6>SbKoaFJdpWj}G{rwF>bT-!3 z^z+3Y{TV<4A5-tAn$}-mc$Hpv-&G{O6>v}m>Ny{8zm7NpBD)Q+S9s^sC_TD_JPdZe z1VjTJ?2bh)0YRxxXv@%{7Qd`x%4eSqp7}^<{nM1d=DmO0OERgSJ0+9pU@=|5T$xBl zF|}2mA@+~|lP2Cm@**P&MMa9lp2M!U;HZ}`etMvsY z#!h);FbdQ_xyd$^*;`D_c`3dUFcOEm zoDDr5st-#Ohx-#A>7I1{b?kQwFi7XUK9O=vNiz*5Te$3S*>*s`4%GHxr zs>maSS41Ko14HXKhWQU?e5j(#?us~Qy$R=3!-%xt=bD`vKz$o2^ z%Qqz~c%;`w#zN`e>#dKrf4+|Rs>54q3;+w+{I_iPM=su_(D>uxeZMG~HfeK|DDaP$ zVM{|z;D;M*94%}dwEL^Bz6y2t2G5+k~(NS3(s^QCbGtVN^f}r>7H+f<5)~ zZ2kxKwu!}Izi}@oUNi)M%L%(Ar_Kxzi9_M(Y9+%dIA7Db_AvJ-DYfgC%|7AIOg0jv ze~}$~#P2jQRVkx(XdXR#^ohc|R>jc62G{96<~%JTQg z9X+0Ih2YZ;o4!$S&G2#QOsj6J(Y0p-9! z)?AZD$G0VoL?I?@pTE(cG~fr@OjBCX*_N_Q1h|dqPVGm=5@22&Ng9--8m#nRX2dY= z&6cXR_t(CC%=^Ugsqg5}kaD^8%cp*?LCX4z`yZb@1>5@V^#Pv_DsTVo+x)fq;7}QAH8}HEpYS1@qxGXzSKO<%u)tKhM`_lM-HxOg_q=X0_(c z2W(OxFNq6fa7&(dyPZt+3C9anG?j>2{J7~orEkyLgQW_gQ5kHamkOK?Vsl+DXfjqUeRV+B0g$7}fBVL{czQHIQB9W+|NGv{H4ZKH z;IK>s_1}~e4HY8JxG|GlPKgQr<)x=rw=^y=#pB5_=PrRN)0|gpL>ZBS1%>LhE?K_b z)>JkD3DOQyr|oVf42sfGIh(rl7zo1{GMXoIi{1pAmnN*!`cTmVl* zWkoNwd2eBg^*-oiuqYOx#wCos9`{Sb52jmM zTH@la#^*~RAmx;Wazd6^ukPYY4sn2^uQht)*842Er zT#`6#yC{f#GAb)=Ndt*V7J|rgjBJZ#8kLRcCa zXTdh)5j!wJ-6mHFFOp4z6ZIalgGB%Z3wPQ;k9lr8{*a2&cbPkf8MXU3;Mn6hM34T5 z{#;W`6rWw`Wfigna*2{E~ zywjzUX>=Y3gW)fBC%UY?tgVbOwjos|5o1;KZjCOq7f6>>N`E-q%$$GesjX^0Y`RKJ zOfBQPb-6SOw!+C07K4e2Q6>m4FY6xvVZqxW(;%gS75Swd#EHD$u=BfrxvvFKTo*NQ z8IhI;9kFbD&C_?`my+8)saQldvR^IiOJnC&sC6lDDOjo{FxEL5kOh_Wx7V%8&3!8Y z)Z%Ku1OdZWYeQC6X1mPtq*>U&_S6rz>zd%AbxJBqj!CR)YiBZ z-U~`6Zc~`>uru2WWVF2+85a|=csdRhgIj7|BdSn9#>EwF@{8xO^64HhP@&<3Pgc{kVY=8Dj`zM>nY9szbl%5px?3layIcCC zLnKLWpGD2s4vTU8@`V=k4D5*(Glc61Dw7Ie&0bTh9?5vA3 zj+BkjLK{th7s0OvgQ*vs;wG6M7exA8l~57Z*P(XW0$W8=>;aYA?f%f4NMl|> zCMG6c!{W>D@vMXUaf=ZrJMUWhKfJ#6!*BEN+qZr@-47MTlS=9!q+e{D^_r|5u+~IW&!8#k|FWuo=)fKKRqNrU&*heP@IG^tGVtyg} zvig}2<;vWYnK#yibf9!CqF&~DxKBS)K@)N(#VP9U|3}qX2SgQp`<|h@8w7^#1_9~r zmad^oQeps=7`hvzyE~MS?gmjQ>7fLK0SQHT$KSp0zWe@}Kh8P(%vyV&Gqd;FYkj`m zkfLc)@KlUsLbEhh@bkUC zmKE{dX3U8i`J}DmRu}OZMw{HNb0xtH_83@(3O`M}EE^}EL^?;~`;qsVYwnmb02EX! zzy(Upq+r$l9Z!RPHFSPX84h6_Y9g-KSK4O5%S$`FrLPsrHAUr)h~C%NvYl0bCHi0J z&p#K1lNYk0+ih)n&>XK=Va3vnUQ9+c-g&-Q9Wo4)gAc)}&RE3j`xyhiY3D>lf}kT) zYk#cIDE(B}jFjzI-ZHuR&Fn0UVz7E)7Gfna8TItfAO;J>$N*?)CEiETSPuDOC&$oICc+Z3SPM(i_)!!Li7dV+^WfkYqYN=>aRI#6Z*S+{-MqW~ zeml_ZN8|s~WBrrUKOLM-kJY&0I1NTAbPG!pCYvE_ub2_cqRHM7rfU`5RMnacm5b-1 zyz@kH4wZ(c|I5RkcFDxl$M>{A?RJj~J6wrS%?J8c4d5VmV0>}wt^>9P@E9LB_0+9U zQ<<|5vtgBSfAE7S!Ou6OrhPtA?FCCsu!iBeV z?p>=nL%m0Qhne|0e)<5*xu)$)&=M1nTK5v$?j)KMneqpvd9^gnS9Yat{QzAsg0Dp-Yk#_hi$I_iUOc2fOpC1rt zdrfAB@ws8_^z`HV{ITMFXiBMmhzF}wYlblxSH19?T~cTZ>J(``e3WQD624ezq;J(_ zz{2Z^I&Yt*;(_Ub{x>4eeNwdgUeW^F@8Dvk3d0y?x*J|jB3H*QBa#aKX{ff~SraVkRDC+aBi(V%2ysHKD6 zlS1Z7+FR1CZVG57iN>+J{jg%OK*VwbnMT;}E{#H-Wz>bG@1Ngny&>?}YANH_9q2dJ zH!uM3V2tP1nuU^1bEkGm;s+bPMQV%zH`iv0@2lKGzcBC-{vl3)VCLvT}KH!H7MXE32r}iRJ$kPGyAvu$B zv@`2e`uU5h|a@l?w{0ldnBPw*cym*gGr9#J%N;%?byojJTfZ;vxrfPGuR=u zh9$nsqVSU%hpviZVK1dqs+fIhjbAtS^EyC9F=ZIJvsbukG{Osc?H4vlj5b;LY(@rK zRUDF3@~PvVgg3?wgMv`{YF(jDDr;sz>%?-}s0Hu*W;tnfL^h2wKgS@W_XMNCkJqLi zM*rxTC6;XG19as}Lb)jctiEbXSxW7tgr>D*b5a+bW&|}+2GVSbpFir#u?ge34{BA^ z;nW&h8-TMIHTm~qMLUM*$Yg=qdQ@Dt+$ol-&FVvxuOQcej@uFG# zWXVU8UN)LPjwmcc7R@&iV{V&In?Gc(Cg(RVY5-Pkcim?2{SWJ>_c(kZn;cd7?Or=W zKw?;85&v654GqgTZyGjo7%eSRBGR<5R>3oDLAp%^vewn4dCg`}yy z>!huRHk5dI@D`~|tlTR7^F>^KsJ~E)+DH}lkfXW>0xX=~CHb$H;ggI88sxsdQ|ZO{ zeHh%>>h_G8N|j%a5iUZ-66q}MKSrLdMC_+xP!0hwZ*DUQ>~b!G@P%@T6zFu6*8pvkmg;S6t+y=L->fASdwovGG6NAKrK zzz;hwmYYzVW(;*aU`iH_lq>kiU_H&$iQFA-Bpk~k>zvw{!A9$)M|~-)s+h^fZK*~M zCuB`XF^@MjrW;k19X$85@D8gkS^J_tR3aN#B1|G5^c5Y9WPz6&%TIit19hc0<=X*jdp!CN{}}fVOG2v(S-ISg z@sTsKL?*il3gGsm1m#c?LJMZu1ni@0tt=R`9KSXa>EKSPv`3GhpB$}-i7c;`CFOls z9gZ&ZiEw1H!fU7soIUWZm1&Y?`C*Q+?azUT#9}8>8?iHc5vvP{%J(z@$Z(* z+g~q@dl8x0`OpIwKupi&)vJak&jI;0f@%!9>u(1sSx4LA`MurEJCW5X!&uG~cwf&5 zSI<*q7V($dTIs=*$g#smBCDC>JAenu7KH^I!L@-GYyWz}28RFP3_#oo6WZIwVs_Kc zuoVu!Wj#!-B4iW#pDS*Q3!Q&oTR~$WE|a7m!#@@%X36&|6ZyHK>}Ybna}N(?w{lZ0 z23Mt{7EM7eT(PisGGSDvfKWU3xbZ8G7nA9tfwHCW`zFd*s#?Oj;=hbH5p9wB9igAk zyLD^jPe{tJCx~e_WR1ltG$Xil8rx*Qpa%(lM#WJ|$>L6C>WvX$n zH-aN%U{hm|U-mo})@^|}6&c=!wR%Le6ExN0UE5b;k+&AxArL^>(R@tqDcRwP7DEZ| zIAN{uf}mJQ{W^GRxXu+tD%T}El6yi+ti=RA7t87uS4w#5eVdRKUVGihJ0niLa^Z?> zk@cY*oDY6RAqP%VX~dxOUq7qEVgDswZq<9ie>|ZJf@&ous%Yo0NH`iQD7>-6EADJG zLY6|xjIH>r-IyTv%+j)$hEj@^od$TmGNO(D+bPop0VouxDQ?1`!l5oE zj7VZ5BB&H^=PY50aawukn1+ur-}aDOeU;sO5+W%Y>g@AV^k}ctgBeDY7LAE#SSSf9 zkV{IFLDfY<821T|AWXOYPq;nB4+x;V9fHkT-C#C@Mn;o*SqM?F_#Sn9Y(UPQ-%f{V{0boiwKf|^r*Ilqvw56$N z`q79WoWmOlOJe;q0m_A#*#`o9O=P!YndmulnUa=w?@QdFU&qx+d>F9H=0 zRZ)wzv!{N5t%h7om|&Sz`>7}c_-!wTn%_FwMWiwUgm$EBHEixoZj;^XRhu#_d1#eN z+v>kvDm3lTDEJ7#FT6UoXyO}X+BVLKY4vKLLp9h%B7QVX1;7` z9N!3rn)rzvcFd$KRs=3W02P#U*1;dRgE$0FnyiWvpDyIyPp-A?Jd5uYGA(#le?=&6 zgxd3~D|#;c!V43e%wkkzIb_hfhJ>}VTrG1t*vMG_+2g27_(S;)9N8FotBQZ8U4X5OSv0}zQn*cnO+`=^xQ!K?UR z=Rdm$b2|lkI8kB+dA;Ga7l7(RvR5M*lbjxJJ<^Ab1j9uZ0v=78rF(V(V~1#btKY z4dZ-VcCqR83lH?Ykwzw$8vXo0+iVtK-Kny{1{#us6J!GC?GyPqEU?AEnD|x4yk-j9G=^9M3@s(ITH%L4GuRlb=FI%0c1{@W1ItiO#oVLK1&aat-YOy=BliRkL*Roui>0sxj$&g{I&b@2~Mh$MU&a*o|)lY=^aL-c*#GWat10S_SwQ-M~8awG3qQ zp4aRKi0j7^Pw|e=t_-c$5K%oTV!tJsW@lkaV{ZX%O5{3HSJ$IFeKdx_^Dez-L4pMC z?iL`j;*3-b%N2J2I54wpYP|uR`mOr86imU+#>_A~3e%=ads1*XOT~)CNlb3PAFST%_0Lmq zd{qKls{P&HX18|=)wFoPQ}N>&v0E791|`fw)`E7ZXg`-Df6y@6GwB7_MM zS$%f`w6;oi><0VZN*X59>ohUcy_03Zlf#0Xk*NLMx(R9MMsd2sfOm9_;sDikO5$ZB zL?0Va>6teBUW#OE5+{R1wa;<%m(TX-h?~-RdqwQ0jFq%QpEotar0t8X|39sZaEq9eyr=1J3^*dNR%2w z+W))F6Jg#Y-4CygIn}UdF9>2YaG(;EDzE1wA<1dZ{vIOC+xoRH{7~P>A{Y<-)dp<3 z^){`v5|S&p&u9xWvT+GOSDO*2hA6A^Ysc7Y0Fk7HmY$ddTs0&Ol(63 zQfJYlpR?%v2QYgGq&O?OQG(>nt$6LzvjKtS`F%yv@05TZrE|t?7X6&=8X#9A`X4at zgy>5j23hCn=}33P6tM(*bJHJ1X4Dwcb^IRDj<8I*>k~!+VLvfw_Nc{!EUO?aw4nWl z)`y)Q)(XBHe(!JRgR9dRN!$QI#T3zbJLHb=xiGR$XF;@O%H}UjIzMOlzZR_XF> z$t`2Nc1IhOKp1br+6*k0za61|w&!dGZtK+ymAI6_>Mt)fV3{=X9?}O=+XmPY7!?ZU zjZC3>qO$1n(RloUP+E>ofQ$OYW*=@>CkEj#%);9yQBEzHa{@r@>@*B0CBx{Hy^=|! z=IHYMuKWl@OQzD%z=e|y%0z87H=0oM0p5e*sG$-+3{e~tb$jlAk$U$RjV^nFBYCAX z^OQ}}&=}#Qlybx+7;PSnDX6CJC9w(E9 z6{$lDo}(Q|8bV5S64E&}MFTQ$0FnuFk`e4;LkZLK4cO;jr_$T7Pd0)DRw*UIUQ0MN zkVSSyf(eOL8>ryl>hA9eyZ+2AH*mCYv%w0`{3$Uvz~cbZj)PP?wT78CsB1vSsbT?RB_ba#-nY?aTt)N=f%*T?j?*bSC=>@&Az>b}6Ld&EG z$nTY1ZQ?}McIHQfQ|`wX8q|-y9zu=F zMWq)pEebfd@b=1)oVxZ0zLKw}6uQAEG9fmLu8RVD;L>%!wUaEkc({q;S`OTHd)QBx7qKa3RRieJ_vzg_X>)oign~XZ&Nj;Oz;g?q$A2B$hdaCL~m-ce%$#e znLLm=9AX@udgzEmClHZ0{i~D$>|fY}WQrZXlR**22iQ)GxI;2={v)kE5x-kJXFqZ= zXHTJQB@1cC***Yj{300-P;5%h{;-4juvwF9h}=O?>=7zS0RpyOo-B~HSRHdhr&Yj8xz6PImJp#K_s~d3 z&47u8{Ld5lKaD&7t@;s+j}3uwb>(kb4g<(^T_3Btm%&)Jk@#A5w19cUe|*fy%C^bo zCmT4J){s3U7}M0gS+n`qX@g_pmQy2yf@oaBj+4{4qA?B_*i?`-tN|srpWu<;Ep;KU>+1i_QQy42mkI1^KEGeN_ z)R_Dc9Z#Cmb7f-C@y?ue(FI|n+t|UF^sF4bFW{rW3_`*P&S43A1Sg8Q71~Fjv<1!U zVl_?bAE2XtK%ZCdW0PPjfR>N_xpL_2(gJQ#(&AnkP?t=OM-JB`JZkh%6Hjxqv!R%D`27;XG zC4l4~QC|z3IOR!{$KBt9^;p{0xJEjJ zH4XN&?w**5fnB3PBmlrb&tW4WjorI>X|+UUtn2kfWD;sd4*~vAAI&3};0Cp3K~s7q zPe77AfQw*glj`3wQp{OZ zxr1XSCj0nLRVU7gL;+R$nmHAaL{~onw#kFDT8P{M-b@5-c}cDXdX&A8GVRp&sfgwP z<*y(PbFHMYVFy-%_)s4Vam?VuVtPUxmM^$~#HJyk@lL@&V9h%DyQvA(!fQAAthHhnfa4?E6{)h z{qMLQTo@Da{1q76^8^$%+MZjhDGl#Ixa}wjVT6OpZNuu5CQjI`<5olq{!|12zt~>o zQ8S4_N*2vYkT1IvKP*g?FBKEUXcL|JzBPb)f-YD|cHIF+^gTtMJBhL}cP2T^?`=H? z;wSQ`sHQ$hmwahTn4pTnCb1arkx3lY8=}MP7!MJr;S=esZ*z7xp#t7J!A0!o^k5y) zOY2d`ltZWn9sNYA(_ksA-9L7Ad7Wu^KlI(n1RXHXbT1|7san?54$YQUuueCy^FmEh zsU-`+MWaM1!CZkcsOGpdX3P`nzOBy8xLE$sA&k zs*uvQxOMaB2^tAo%v3srWuA_dy>`nALi}6xzL)Yel0XbJw>zX$QuJ^O#~)b1g!?y}(<4yF!~r z=DB$Dt+;PFl}iR~YztoG?ZQ1G&t z@Rd_Okm&e1YbOH?R1ZaEWTUj^E2nhYvfHs@WVlLxb`)e_)M0}DCO>rWHi~e_kDekW zdLhGDJT1(aejP&-Iqs4w#-U?+dNPEP-v>qv@m#tu zLUp$T6z{%7+Uw3936=uYWsr0qsP?)LT*Ne3-wJ=ihk7ubO&+97GNjBpZ(IumE~MR; z)MxDJMbmGJOUfl_dY4@Q)zPHDx($uiOrhduHo{Itb7s^;fWb6jAx?;mhap#s zMWO3jm)K+k`?J)fJ7;dC)_@DQ4&A6h!=ObFcNn(_Dt7{zfdz}NfDx`LIaB+t0w3RU zPAqP`38b41X#KezODqvSSr%9;qNQ=K&mz5y#r~SEb!9@2$ceVjwD8%E;7D&`az309 zg04|0RO<~pM1TzAbu zpo;H59#p!Jcv0_3=EVL(<$7ad|B~VYoT0<8QM#!O{QK^df?S>1QMR7OgbIvJKIQYUPtS)w=`TX^EUJ?JHycKz8dQwk2Yf6)QdFl5rRuL!HJ0# z|87?hTS?2EnA3yuz*eBJLkPTdQM_}!d?1FFxWqjm*7!!W>fhzVfF#F>p^(a4 zZoOTXV{70$0-RZTPya#YmRww?Ai;}2Le8=mCJy*-xhu3y%A4rZ#M4o6R1UELv8EDT z+9Ud-A3uKn{F#0f{ccL|sYIFlxYt5Yb`^Q1EThK$2~c3Tb5ia-gNaelDD~ye#5X8o z7|s1aEq^c04Xpr@c0ypw+}Z4=10`{*n&|x4zB#1&51S;jDz)Ducsut6fN2sEaovho zQfB6oldr_!?1NQR7e04e(vjCU!@S%22ot{TN-R?q=RWLm~SD8Rl&6 z=NMpYS(d-Gbu|?+tzeMT_}O|Vk9A+j^w$PK?l5{E!^HRUR7(cD^vJIcK38Dhkw!DT zua%1}Sz9bqw)T3w2a0^TaY-M$ADXy~8)?}|n_(KFF%uDN4eltrIJY~wiZf~1RT6Q;s&yP>eE6eK_NA10wIgz-Kgt(Jki)%A_ z(QwG~-`tq)jVCuXL>j#u1NVqv+2JUV7E?;MCa9W&mC0jzz{gkoYhl_nr3^exq_LB3 z)2~vc3Chm0lytqJ9_iPCgs*y383?Zk9O$6v^-CUUbOd82DBjj|gDi;xt})@)ExIwO zXuBS&zaL_o zUu8G4RlL;f5~xcV-f)xJ+J}84Q&HN9JJ>N{zRB0CI8x(WN zO~x?|h(gOrhax928$OZ-FsV{09}!1!r`k)Y&L}u zIC{g##qb(z;Y&GF&J3<+qZ;CP+Vvi{%}ozTW@lC_vZHd`uFczYOH8r zXM0>8vb_hSO_pi<5{u*F>c~v)D&>!l?`7T%wzg$0p5d|^cGS+?c{hVU+C_qrepYHI z1QZXhUGeAsbK)vRV!-IDhi0;nKujhw#()M%0f$Xq&_qfYg>aZ6HWK~-+x5=nite$E zY3Vl&Q;-)@ixvI{o~1qe-AI9vvB_b3*YCXJ^9mDH^#E^;>qQ~tNDk2%dLbL@}aNz`C! zj){)en?Z(zLHGmiwazGYsYz+|#ywwhr1I;T&x2$+esg9ATTW}`0O(>#(FuE{l8*cO zY4uN=^K|163BrV1Mr0yqWFn*(?NaKrN~9@N=1y03`N}g+Cuq*^W|`Kg&zW??Y0;DA zPp#6e`Ny?We8%|GzwGLi*G%ahs@^?V-g{1_sb_%n0gA}c3KD}7GJ|TUGi6wyRzug< zwcw@>f8V*T+dlMxg3I&OU_amaw)wY*`N5lS_-u6qxD**8wn^5i110r8=89G~$j`~4 zml(SdP0MQ`mQw|4A2!7_Vl+JJv2Td=>>7M~aZ;o8gkiYh zI?iRgm#RCCYsH<|;uusgs|F?RI@hG1pQ(s=L^|4XzYOf;MnwFj?|q2idv`x?6?Cc8 z?S=3-KEt-woE8y%GH!gR%-gt&4ztlq+&EB;`RjEOX@)|aZbSlV+~@)Teece`y*oSa z`6(?Xc8AFBe@OIvyJz#WI7PoRwaOhPZ?a;8kU5c~aCb;!zPq0!{m#ftP#SeMbH3Wv z|1jPE5JnKPy*nEJ`tY{F^UV*pQ?cxH#VC>f3%#@pZ5Qrs(TRI z8$WrE@=j@*fdJ2Njk*AHe}^fv=XN7_9suIZCkr*cJx=BObb0V2#GCy7*&KDj#{RiM z2jh#L9+@klpPzm$H9UQO+I#o=>B0O>K1hZmOVqm0CElkZCGfFc8SE${>hkUG2KCsP zupEEBsf&KX{X{LGsK+Vb=f^#%r|hTm{?9s238@$p)l#plaR4Ksg6^q^O zmFQ&I=+a`y(F&eFtz2zjKI)5=2hF^)U-{n-&S*#}A;*Xb3(=gpq>dWV19P@w3LVw zldYonGFPj(rz!>aSnnkk(uxi`rg+AFtkz;Y1@DH>G!HY!cRj5Vff<*fn(TnM(N}a; zAptray=UsuS}TqFYP7Vp3raTt#1G$c%_f~8jivdG?CCz)@zL%s%wgWcST2T{induV zWbf3X%Lo1mV61id9&QHx`2D=^QuC3a-0|x=^3RH_P~Kq22_Z}QmLtYLg}1%Y%zw{i zp1wc9pZ@mu-mJOp%CHo#hxYvJ26U9@AOF0&PJUdx-b*M0&1THpx{Tc9_l~-|8zW8t zi$23DRQAN^oW!(7x2+avWxNQr^6%(xLfaE;PxSo-(=D@bG(<@`2u=xljzLVYvBLt?Q zN>jjrdgamJ;NY(x-w199T1i(;$1~v~QA&KSB?Duck?8^Fr(IWv^Pm0BwlB8V z%sn%UXkp0HO6&-;7jCYWRKT}ljEa(T&K1149i#Dl`19`R=hMB+)8W=$KcDiRSHjiD zm(`}didrZ7ML`^fG?m-|*wnmh-=4j1w7!e9zH@pyE&7|-fBC#px*;|w_Y+>dy~(Jh z?T@B?GB}F~$4r*!=(kaJbphldyCiDfe#)~<$>g=e!BPspU3IGj{rdms@MehavrnB| zra?SF=P)ry9sudc@hz5xdip$(OosjaFr*9ThcP z!PHJV3(wTzFryMvFmriU2X?@g$$S>Qfx~#ubq@hqZ)U7_vKGUyhK3x?;(zEbA4Sl`4f>>j&0&O~b17UfUxmHCDUtxhB;4D^lUlSexQAW6F;*riE5Q zd*vqeJ3St;TZuJY?4d8FUP$_SvA>)3k^Y+Eq}#SYrYIYPN^KIAx&JF(b$)Ym^Rtf3 z-=?Qu{g25{mofn3R_CIuh&P8FM<;(0+^}Kk6+j)ekdd;tvD)^t>q_d~q32V<*5lb$ zpAQ`SczH#W-}{S$VlejihYCe>nv8Fw>WccWr{GlXvYTT!&axe2lz`dX4pMMLw@IvO zoOYLF1m1*Ow!5;`kh(jv0kvsXD{pGR6ur~6-r4jH)kC(O_1~)|>0kQ>uUADc9kXw# zlhd}-#0SnW8s~D-LbNjD^f4&wUi%Wz&)$t%Ka2tjDnEheC} z>#l4~w&Ycx(%0$*XNBUv|8(mBmEU*s!J84p4~+{Q^!+z$z?09xb|(3XY@4W26Kv@M`Jxxe{U`po6Y5__$6{!4e=H;Y4NRboT}CSh z`}JMmK@8eem_3!;HD?!3zaoFVuTf$2^Q&lST~T3t?c45#ScrZ6_01}HFY);q3krk2 zzpC4ZNz+C~R{7>fRFYffu87(Dt3$r;LB~;7&t<>-Xu6C*!8UY<8M>=sa*&+UzK>Fy zl{{G&_w~3v<;nK={{1`jyz8(Jk=gWc6fF~U_KV*7QxH#u8n13pf(<%6md-*S7N3Lb^5I49*c3i3`vJMOxgdqMwucB}XB zJlI*nIjiu^%_`s9OC77X_tB1ofUHc8xL<5U-kQN6b9bfs)++dA|NVjj!0095*x1^7 z0t8l*`%#|O(qs-<2SNp_mCkY_&G{^U?>9ZfJyf=IcdppR^K^^4@Q{NjMiKd_@C_aOPm|jeg(cPiKn#WcP9vMo zn*8O~pUvC5&$);*P75)-~k5T zC*~azRLj4>!2jTTd!#_YYc-%qPY1lUdDhVDMYns;qch0&ugJ*{KoADOl_j~kz?xOF# z(PN=^snJ^@pMKZq;k?fFZr0r7PATj;@BZ<*XevyEjrd>s z+4Cf4M+E_!zZMjV9AEZeVEmbvdU~M$yYnsxo@p#nhMZ_q#hR0FS{I)4jq@3M?ov+( z9N{E=l^guC?{?!pQF@NSmAbh72SkV)&mCSMxyg#qzHeEXdI6=)?*04eFI!PiTBDmV zb7HKwi#;{<46) zZ*Fdipa(UFg~4>mLMgbeJId3~=%UPTNTGto+1b*b6RcA(a=tlq4FkHrJ%KyBDE-&l z&pvD^8=J=gZ_2Mr03~oaN+FwpAtJS9jkl1^zUICUyj5MVkH02AB2;)cU#Gr4|4AS6 zGkEI{{nPl2L+tGslu0mUa)xAiR+RK{@=)tUz@f z+kbe^hKH1YBQwowlZubdo2w5QEBcHsgatH5S{GG*%N07Jq}`s+=4Vfg=n``%gbbmq zH8V7|qWu&l*K?UKCH%Tb_cAlq($3w&YEaB|ab6f9q1r(2k`;;0R$j*wX6F)NSg<7&?P=M618CR3y8;x< zzkYC5NbD;Y$ijF*v*;PdhC#IilIpX8>w;?gel=uUzl9R?_s;AxG)3KZ2$HVM#%TX` z*On8n^>axeG6+6`ARf3t%@+C+B9|`g*H?O;+TEo zvsSPg^k>mga6W`cQ;xmUVuf zd8@&hTR!pc@3PUX>EyvIbGa^w=EF7<2&)wk%%$e86Vm~dm@Gy<&-YpEp~xg4XZbkE zl%9{7(be~#KF_EQ4ovF8XH@?(hPFmXs%P=T#cQwam_SaBM(zocf67CHG;1TmOHs+R z3;oeJWQ#)=mMU!-j4u~^mk~%O3)%KlvlKm8U1GtMZ)xosdeYM2S#ePztV})XjSfVV zZe6{|d21<7gqj#5OYC2qh2V*IRFDo~_{#{A4ec)68wzL$HzzcXKOcoHk(l^&8%v4K zERTrNiI;33*{&Y0Q4v_*8?dNu#p^jTztU)bmZQo-kd&Vjd$oK#mxaW;Wvj>bMWiJ{ z16^X}V+HX!FSA)&#Sg9Co^3W-N*lL{bZqJF<9lrs(xP_(VbPCR z8S$^rKX+0OOu21Y>c+2QmBNb&({cbbb1!O5^t{i746>*==qZ!-`L$oA;@r?z*GqnN z3fQE)Iios?7WyK(Xipm2+x)N9;Z$r=GS00V`im*^_V&h;9o)!vXdt0|vX$jr1ogJz zF=y7a8^XNGeDY;qjumX+%&;Nx|0!=FzT+V; z?E_Mcpx`ytkBPL!4_sZzdfc`>X-xVK_D4criEfUlw^_^gbxqk&yG5g8r?V4WF|%X( zS`-8=OQ&D!J{Y z#s4xLe&KKw`tb_oKJu9Ay(lBx~y0@wLZT8k4Jl283SeMMUG@kAkfF?Y&qYk8@$`e&m#Iq@ZbiOgF`r?z++L`7QKC`A zf_Q$lMSF&r1eDl0V{>jSO<^-i&&J)9$S&*{_I{|k$R$NWd`F&{0CK{o9hgyZ`W{R* zb(M2Gb#b6FX0@hq@^?31l?gx0kC-z)0Eeb;si1iE4art9>xfttf#^!&#kuL^_@!7G zPMW=T8sU-R+?x;bEVEy4li;?FYdDQGbHF(yRqf601@V@LX7Vaxl(*~P)Zf~p#LwD%E`#DFgHr5 zbAsf8vv)f9#r;j)a;zY|mJM_bW8s589^X95A1dWMq!o2u%F8J_%`sYCGqXwe;d+hW z(%-hR!wbbfOeiJ{oRgL7HU0<&G2km02>I_sb4G?CJ8HuVenpbR)yQHkIvcmxIN?NB z*?gWhhw1BPlS6$YiO2m}xPJeqO@znn8jQY{HcT0s^vbvux$5oZ?|@Se7Ltm@UA}il z*$Mbl>IXmeM!qZkdd!ZeVhvx-4F~`?zloQh#QoHRb1JcVU~KZyP9HNe9!}K;{IK&A zVX09Rd&CNsh%@k}hTCVwR$OlTHsdo9Bo_HdSqynHIVxTs*LjJd=WyhD1aoqvv!nUB z=s|uZY{N_9jT;NOl9x7(4(;VF0X_tF4B)1Do9IsTT48zz4?BW2(p5kt3f;1oe7dY% z#K?z!1j0x4dkP57fU5y#1J7giO{b(% zlVW)u|6q$Eos)e=QTeV(-R;s@&GoK&WBEN%g@$?eTQ-_!m)V7iLOCrDi4Bzam;vbi zHwz9f45SoQD=ZA~i5Z8bHQHAo3G0;H0LliuV8X7{=-?t-j%W{RTGmX~;e`wdn{Qvv zX?Ne<%*$@A(S_J|=tv0_hdUCGtYkRpmL{e26u$Q5TD4KP0(nzX_ZXrA3rGAECEBR5 z#-;n>(nfaAsBKCsy7z^>Ehmgk%`Abw2Q4;Ut{eot_~{5zE4uDNzn(Oef8#x!hhi+u z{cT$kI#G(;Aa^xqKKYu*SI;hN(L#`YmyhbxB!eyoh7xJFTw#W-8{d|AEWLo@g-CTm ztjEWmqsc4#ko$w;yTvcK26Hgfr$om;paTS+&E39S_NrzV)gq~nUTcMjNF|QE+b%?& zExkB^LY?-Um(oHu&qOtrHS-+xOC!g=KSnV}`ctMOt5`=fnpL!bOKcGIDClc0;-hnC z@0s}O02$u2h?ovtYqhM~Le5X$XaVa~;}zmws6Llze2suGaP65oU6>f|tSeV8zY3{b z#MM4H9=jcVwwo(gHwf2LGJwK?opie9DSN*THS=ZDfLV0H@G>cXFAtvxhqXE7E|HSpi|&; z$5^uJGEn7t% zPh3a9jvOAolK*Q+PZ|#`1kHF1>iLu@NxISqc?Nw?nUSd>TbziK%x z)>56vOM(ds$<0ICG>VXSpF?F9;j;=U<7FR=;{Fg#teL!|E8($k?1iGtXG9AJ zX*nbts0O4;D=FpBdJ)k;Gy|#k@tQNA5ByKOT~pPajn^}@p%;|ZqD8oih;s9&p|XvV z9O|v7KAZk~t<7HflNVKkcPn?%)fdjjK>*9hzoO~i6!6p>3V~k9LJextIUGD4n~AcB zv>|QoFadDOD>xqiq<=UftL0U`7d8;jPr!Z$%<1>Nm%(!edD3slH$65G%x!M^U%V^aW?7&YG=ZFC79_PIt=@MqEq4XV``T!kM-c7d<<$c7JVl=8KV_7mFahQb{587Zbx`vWa2|CIV>_ z>Qrs{{O4~?7&?{*Dbg!`qdtPuYLqk)VS=6Ew5N8^JG{9<$(i&t{vkr=Vhpr=K56ua zNk=HlM3HVLpFjl}VP*(8Nj0f7{g*0p9x_)l71FV6sH&<46H7`%5b1G1nx$w2vVBcN zf_?<2J23(A?0onHhqa57L*2y7P$}|I5}Oi5(J6%BDP>s3xI4?Z@WB0pz8wE*$#PO5 z#CHwxaqkwzd5UEE-W7_~*Ur;~!9?KKY4rP~#>nUYu=UnaZADGPFBC8C?!{e-ySuwn z+^tA(hvEc+yF)1sEf6RU!6{xSMS_%~fl{2CKF_`Pd)K$#zmj#5eX?gx=A7AkW`46J zraUdDwfJ3wgp9g~}|tox69zQ%n#q?WMy1)JU?qmwLi$V9qJl-1D%!FS9dt{Q&3r62vPjRlt5mmRDy8h9>x=JQ1c7~6JadOnWij{a#V}dC6gFtNwJm0Xo^o z&;}lwFhNp7Dmc~^9cYg^7UMIy*IoyHV!Wt+ADQ<gy8o{so~H2~74T9;;Q;BY}U3%ZM) z#?;hB{-@UE!joQU<|I=|lI?^|gy$qXlM^3cm!SmNl9clwb~V(nk$TNv|G!fW$7yjzww%7|)y zcFyKH5dD~G-#gSoT_vMkw2m!RC)#%W57rO@1^&NSpMGPeuvqpJBLUD(R9oz>X65kz zupud$()`_L+8`H}MoqY1HCqgwB=HCfEQf9GkXEtB|6n1diyXRlZNM@XdrCdnshs79 zZ6c!Dn3vX!2_hHG@emU&F@?SNt(}8>oKmk-@AaO_Fu?+2zo`X~{-&rVE8#SfFJ?=k3PJ&@rEL-354_E~v(QyJqL z>hHZ5PWnZi&k2|+5k2$SZiN0GT;%diGGYK(Grn_-d(YB0Dnum6=CBYM0d)p&eU zQe_6Iwvk&3U;Fz7bWG^Xfk#QHK&W^0dyRc>0+<$sB|y3S;no<&;BM?Ypa=NCRnpPB z3XF`)P2ryYf$|5c=SY(vy10aw`vuCp3 zH)8~&fTi8|pjzUN88=qveRF;Y;1kcZ%`SJ_!uEm!tW!r}3M&O`E#RW%P=ZdX zA>kM|&h)dvA>GBh4Js`GO51;1h>n1ffXRIi5_7=sZ9#bTy$ZVd+{T_j=-`R^7-u#b zM_fBZ(zwLN10Y6qIUSsf`-3cTl zM4yf%)N@ze77vdB)7W)^mn`>8(A}?pfPrzTRBGy){<^I~yWhW;R9x^f=#u)bXXp{B z+H&(q2%K>zxgcTf$*hi9dJ4g2p_C}E4eLkoxg%!Lk2Z~1Ev8S2=*dMsuHk>+0|qZn zVb;^QEMRB7p%C@^fX%D5EP5vb#ooDfG3^U9RwE>NK)()}uO97dV8l*z^;zn>n; zulRh2jVK)ZeZS+~mrHaD6Qv5e5F(-pK3}(=E0ph7+}rD_xUC?lgK4(uM1M>J$O)tK zzGr^?ICu~1nAvf~!_@wk%K{kNA^2@)yAMF*>r{BsqhG5YDrDekQTXNpK(Pc+u`ZCq zzTldK%kd(?gRLPLwj)$csI3=oFrnRR0ZdmlOJ@H*s?u6>XSR%)PCWY7=!pBtUYHsi z@Lh*^6k?An6hH*4t49HTwAtN!8<*h3e9rCe%XcD$?|l~l(`f4MRoQXn@oVe7%bW^S zP5pVp?U+WXDqDsFO!)fE0&$;IS7z?*ah+jLVd?!D!!S&J0MKYar^(NBndo5hNNk$M zhbD#skM=SGS8-kSYWLYrOcn7?4sOZWj@y~FgFzCCZ%wRAxT$MEdYd-JdM8&1$3;v5I-1%wnK3^VL^Q|vg4+b58EZcpz_bBBYyhR6 z+rw&REALTiGugv>$Y&%j?w@-5wdzWDLZ7IDvsKq58T#1*H3zrFiNKz~Y>GP%a$}>K_XQ^O%zg9In$JMYB=v z`RA$ybmnikR$YYVsubvO!&oZF!nu!(bj7jSenBj2w8!ynXKS%E&4@h-?WHzuT0p1$J~+u_X56 zgCZp@V@Ll&)#&5eSIWXw{DNIavK@rR>D~jil{EQ%2Z}wc4%rgfmnx?MPk-*4Hy!|# z9hsbC6J_{>#i^M*?_mTIkR?&kNp)u~(6*lV6jHFb`L<K>b#h^(K4qcluj=60=7qiby_R*Kqdbg|3X&qmsp1LAtc4D5;L; z*%{2;lBbGRJe5%wjZI1zbN19VT%gq%|K|+k#hy)ht*dy6b5kP`euS;|C zE`Eq4{obDGGXXjw3@dSfNx+u1bWTYn=}XJ1?)i)f}Q|IinDL;6AM^n{P0Cy>;#BVqDN zHZ*i<+cUTqMzU!cgggdZp;p`BIrFuXRBwoJ)J$|z7`pj^^1x8MN>Ty$cmg#7Nm~xv z@r%F{H72H8Y|<=VX9o#`O03plP8b6Frq|U*FdI?P)H^2Rb&b)y}#4-Nu0FQ4e*=Z=N zjPVb>D&NWmZ*F8u3@$*BggCsgg)$G<(5KcWXC2-5XOuE?LkfW`B4U66$Nf)(%rGiS zTXOUD^%O>6pu|`Aq1@UrEyQqm(zaTf3AM-U;*^#mupD17e&B~E^1G?!FAYp+4Jqm> z{2-zl3wT(8iX0@L5hS(~d!T6CGrbMJdu-_$%t8?|F*C48q+hXrtf zWc(yjKchqV*wXKrwt8OZ!)_%w{{C`svt1&_;+Zgyg(fa9C|ON@QsEbju3>7{J+d^E z^PSGj&3LfvO3VT0WQJX;mSrwVkO=i?&o{%@~4vhqBTCB7$Ao;vq1yR0bvFzCTmav{-M*xQNwD%6^s9m?(_@L`X7e z3Yb+M*9BM|Ov$X`(fklLLxt&i{zt=HfK<8j1_B`5f?_w%+wiFdt0aEvu!xwslXPe3 zsC3LYx8W}Z#5I|u0&OaeD25=_dhmlPX@>g_MQtDpKEz{%Mc``PWfMES=)r{g#1l8= zAil=r6}EqL<)~vOCPtjXMhY{f>_3$)vtlqOHPKUX5i8Lz2r-JP{mGP`Mc>6VNdCdM z)gG(%i2f@+s_-%9kDP7LWme!Rfk_Ey*Y!u|9q$tjt4(+iu1L5zZxl~LhpK3|^_n~Y zk&vyhHyJjJBnj}YLFmj;n14?|AVoA`8 zmYCav-r+qX;u)$YaAkQc!bB4L{l&#EM+x<9Q5yKvo0!D0Q7sA(0!(7CuSmFl(Or#@p zQ;W|^#%(?G9Y(%Ovhctg2~=+A9#*$#!p{6x!N_+qP(2QDI8D?70&^s#>W(*$fDE)w zbdiuv_uEq$C>l(?Z&tf3TiCs>xc>?sqstLRR=u97*H4i z{w_T<1XWziON$wE+u2Zplzq_-C{x+eiw76sUq-W7bXOq9%)0}h6L|nrrbU-pKo>Xh z66{Cf*|dBPMuqvbD;CajrC30jmad9T3`f4zBq*t2x8Tza>zkGe@KL-bkHc@G&R2x> z`Y^F0a(d}nRvZo!rjZ@lu22_o8DYg&`r_ht$OtaidQAof#H;R|%Jfmh`-;Nu z!EbZb$jb(eLWl^~G9(oBOJu3@REmMCvMlIAyL-<6Ig6mGKdghAj=0*R-^y3ty1!i> zOVe>Jv)f#w3S@BXQx_ztPgTts@h!vaPf{tJ=WhxwVraevKm$k@qT5hkyJHYf`XePf zJN82%?HRk0`Y02FGxaAQ6j4kJdTi|!XO&CU&4FW*H-PHMK|>Ij`8^Zq#8bEDD`nb= zTzn%lNa_-5;S_!)yBpH~GJUqf^c+Nr|Hxwp&!$6T)~kj3&tpWV-imxzBljht(}d#% zJv%xn7~U9B zOtuA|R@t1b^V}qS-9GYuvIEtgeJXZVP9rebh#)sjCSJN_s>R#u-g)+#VhGs{;znX# zoAtSCr5j$u0NCYpf6wF!`Y-RWtC=j_f7%JX7i%=U{?{2lFgwmv-%w)D7 zq10jO(!R|@@$0N9sJOx|BR64tioArtB+lw|tkvdamoUao+P4xU@gSKq>iCsUXr{}S zYIwFuV8BI+Bz9(Mqi$fYsIQvQrNe>nkB1FY=$N(z7PypEz12giHhx zZ{U~^%I=Y?QfpqhA&;ElO+?buTtzkw`F(oQ)0125XLi_b#|R<`gwifbLiNY?nw`6Q znVtUTa3~@R*V~kc6JM=Ionp_T+v{mk?>Bm+8SzVYrQLS4EpgY}VT0)l=_tzY16z?D zWsbjpq?=~-YNrbjctkEj;Mb{NwgcYDqxalV7DQJEZ!wD${4g5`9=hu3`DRDjUyrCA zH1^ZVBrJ?d*yvxvTBvdkjyFTPfD(g8<0@LuDvhdpjoqGTAWq;UmQG?RDu_s2Ln-RQ=aO1<#mk)xb-hac-KYho{cBL0zEPYCyE4!6#W)(wM2T1=-_lZNhPj9pkf z;pW8w?Nend{Y#-mP?w#4Tx##@$+6rQqN!~Y^hSvij@AyxObJZx;pvb-!b&3H_%4}7 zAAS^W$%&~t5w{90hqxqHDZxGxUT8-?_u9sKN_eP&i``LzSH~Frg!hLm*u6K%Rt7#S z@;bq;=UP;~Iz~5%Qr_H#{xpC|{CdxiHoWqyB?OtETx?Udw*<=%QZ`MXZRj7zV8I`a z!#zC4v{1g&i%Fg+7sFw8!~;4k|8;XF*PPBNXLF8*&MYU%YoC>-hyicy`5F~Q(S#h* z&4Q|7eD)jJ?bTZsbR~bz6V}boIG98Qd3M-8Tf^&#RDK$Z#hy<%aID*A?~curn5cw& zJA`gU={W~;*^K8$H3?RfIBA;HMN?X2_;HjAzvSaEVl$kOS4@Q7R&>mW|$LvvFor;O^B0*0LV zs5cIaS8a~+(&q4(0E(4YMcbDEoa`*6cEGp4AVlu4OEvBbkkqOM;*`3hlOU$%P7*v) zmmkJX+lr|*u9J{r)BaF|{26Et(hakW1kdEUa*H4>;ZOD<1 z9Q+3{Js;Na)skjAUSwL^zuv-=K28%+&zM(cg>W#6sCa5+TL9;@BL5B5CBm$QE)CWm zIwO|uK5Bx%A^h=XY@%Fh6XC$UpR(%j@$Q5j5_+EN=>bvTVJLH7`z)_ekE}CkzJn=s7{cib|JyKZ04ikKUHMj|^0V+qTPez>T)@j? zhoKkU7as{K`Y zOR-0;RS58ewDk-0p%4iNC->wiiPJRR3^bPyal(I81fbOTus!;*B1ublSxo;1)PrQh zt`(;XriHszJiZH0%X`1gqyDVd3awb4v=@??FMs;2y~fHat>O}&5E~2T5R{PCV?)9I z#6$*IZgNeE5fF2DWn6?o$FjT9Gi^)35p>m$LvPx^S$3h6t zxud~CZ-D!8BLS9|2QvPDb|FQXXa~tkt>4}%Ncuk6AQfJ}gW?3vj3#iJ#@+0Kq{~$Q;z|82 z({U->yT@#St?TZ#dfw5vV^&oi&3tA+iKO^2-xaDC zY2C4`kfR)P&?A3mPO<55?#VAp4;yNZWImyKC#Dxr6B~0sk|V#gj#5ZQW+`9Sx|9bH zILr?8)(KkRi1;MO7RjkCPL^N87luPN3zXwI{>|EmzkV&3OV}rIip0PZvtQkhcgzn1 zkgt!Mjsh!A=mqd?vaC|Tv?m;>jX_eQgP@$RufeBsDP3TgE|f~X&?;qf=PVYSotk%z zyngTrv%Bwa9dv)#+R9;f3MU@AY2jmWb zhdMGADkh|)Ktvpxk-=}qP=$VtilA_qLiy%vNErjah|}{pFfvOw61&LtaKp&fT2=`(_JslD-P^ne8b{=*^khg(LHM8TC zT_5NqRE*Q^Qq+|5dyU*HQ%gXikMfQO={sJJfY1B?t57=Bm@bPPLk|-T`)qiN++x2r z6#Ld+-8uCb$+v43ohCSbp1oYuSO`F`TaqR3mQM*i;#_t*=xsNR%VB>eujP z=-1&v!%}sYWk(6s&E`%~$g+JtAdQ1vmOay(+o+|IOa?CQd`-t%0(kq_YlqHsQcM#pZE%%50plsg~W;n)zyWSd2w^! z!89}8tc;RPE@n(p{;SL6& z)C`v9U;;SV*q&q(xpIEf!1MnV}1{k0ZQ0*)Pw?^{tLc)!V?IoMk8Z zWKV3LghKT$o8q0_zx#>3SIj4l^z}Al-%fRz&&XW#!%O%hYVH&NE;@XhscmtVna;Qu z`MvrFCVMip?vdk3!hfQ|ZBFB#eEMpf^ur<=#X(t&Xvjn-T*PuW7$g(zpjtO30nQB@ zrbXkMhTxR9+wdo%?3ET4>2gqe7__SBtF()=6TiOinT+P^%W@=fsnU(yJ zGLke3VYwhqPJCo`5y{Bl07q+g86D^z4{WhnC&P=crmsUKWKfNAy`~};lOg6`BU|}q zFac;-jp7W}YKQSVw&6Eu(5e}M9A#xwS6x67dHw~;wwU=dcCzR$G;uXr=K59xHT%Q~ z*oH2Ml3iUA$4mLBsX*j^LrBUl#XgCV3}^_+fquzD8oqI|)?JEu%v2Nb3-=kUfJj@? zBs?sdPD$;X;s2MY+%fY}$YC?~!S2wX0>!5wMNI$i{Js-GqvIRjxZH^w@YN_Duaj0~ zBc!)uJY%W&tu9fNQhVPik|DAcF!MVX?mGVhNf8gFF4E+v;Se`7G|nrSFfq(Ix$1NI z#AGw34vN7G^=LeZ<%Q(ZKXIl1U$UAzIbj&q;4*zwYcDGs``w{NGc7h#IU;{hlRIe! z8*>*Dds9_5_OWBn1QJVc+Z(&{PoP(VR<)nn+hf@m|EbJWM`zFfyO??$-aq+_G6Jd6 z1=4VX4J#>=cC={UI(y%}gT4$r+S?L&@WoGO^@WH96v5>GGyy+f7Q>6%gpxmj{k~u^^hT|Tqcb%xbJfPKL*J=P znQURgZRyY2_j-N2F7gk4R|jqQEANue^t%iicC8we89y4oWo#ZCa|UC39vB|sD+$6V z{3W{rj)`JDly*14-R`lSYZW20dOJit%wMi@l^;|9Nz^KSO!b-c(&{`xNUv$^GXO1z*SHUpT~OSuH})qxbiCli{GT{;3*{f zFMNtxHzj_3v2B}8v>%Sn##>e>Sw7K~lhmG*fZac=-|uWQ71o@2q>&#WWQ?NamIf{V z*zFt;&@S;^4W+99IN%QD*`qp>vl`2mNG`U_84ugau{BM0tYlM<>pEF2OV}_~YEcKB zxue1=IA}4`!9YI*fef^yUnm??g!EA&spR8R_3@hKbTuro)kEmruJ3F}7XUCBlJ6o` zT3m?c#o%&{v^Y&pbfyWvyaL$E?2FLpb=~kE7@aUMRnZK z2wjK0(Z*jS958|`8kI9MbwW|-Fg>VvYI7n#X>I8+i@OnG%3;7P{L2Wcin#_ejHXxW z=tZfMDS|oq4;t+qlmDi^zoW6@ry9!J2S#B!u@A0TSuP|8l75(U(oO2?MKJ2`rOQa( zU*Il8x8{$Ls6PNiy0lSyd;4hwv$E*`F3+Ol{{pZkWH$PGZRlNy@R;@0J=jr+n&pDQ z{$}X=XVEg`0RfQ)YU3EX)LFsy>M5B>EBW}Mh586buO|`Awf1$&2wEf(Y;qgEyi6o> zgN$*jVZLQKt0R-J?;PEXxM+!C|J7IICt&R-IZZWJ2@Er z4M-rmR*;Pfhojq4Mp2p~wj>ETrm-)^tOffJjb(B5&|VoNDsV{66W(U*|7Z$V>jv~6 zRgH;L?z72Zpa%TY`R@m)afvJj05g7Y2_Gs%w zO>4g1RR{08m28S>2pw*`IfTTso>c@S98pI zqRv~DxsH!>3q5N^6j`d-)u|Qi(SA@XVZl|BGIDk-0PVz!QyFcw#2aZ*M>8Gyq z4{zS>E@@)S^d?8U`;JrNg>Xu|N&vLHY77mOCI19LfQR~1Vv~l%&BmEyojG8jLpa>Fi^_mfPS+Y|V$+EVWk$yhl25LkYIJ9M9`~fCZ~7&Wo}5A$lCEFsBu@ zRB8{N?ZZYaqv=zpAmdLWmC>0eOSrMPWkk+Y z=D5qO`d1EkdVYD2U%Vj6jyV}Zk9e3J_-b9qcfO}gny;zU=G>FkVeapepjg9VbVOLt z@~)*lllN-_J3(*K&&rq+aCteghlq7gcg@_BFaXPWC{GzmX+~QzGh_!|s>u<0CO zNd@aI_dMCnppUI=?E4(;Gr7j8-3V@{jTJmzYNpannOUIKad*I?d^XlQO2Tj01S}(* z(uwI^WVHh5WNuYb(w!NCepf;{hj@DC`P2aFqnBc*51V19k*Th`w@kg13tH-TSQm{m zIZk*4y~DWZDAhnc<@Lo7k-`RCfkaBLw?c~5p$=Vlum(POvUIWG^}Z(C@A0?3ZLs@1 zF0bH3psf4H(`NFK)Xys?hLgsQg*?p^euyjIO-GO0SB;x8D?y*{M>HYgm*eD;jr~(e znpBw}g#CR8V)`a>nRc)vfeD8aZE%&pjd-|xD2s3~MCQ@k;F=kxhu*x>+ zMLO@$dLkVRTqz>_ee$eOs?)dew&wAAZ1j&ZV4Ip7MJ2aikV=61v z!2ilY2qRG9AUAo_jN#ZK=*O1%`T1fXG0v{Q<{?XFYkE_Y8^mWg$m_MB$F=}J=NKpA zlYJ6cz!-M_YK+l$nt7TU4h_Zi)U0CP_lKTX35`h{WT;4f4@8DGN;`UJy0{&40b zd18RC;AG;>dCaY4!3gjAxqc^5QmtdQy@XF)MmnE?10p_pXm1muHB0%kbc7df;>PjS zrgC@O=8(4{H5gr`KG1XlUK^?x zc-a_qLL(LyZbzM2%Ws5yGce6z@Nz|2{?v7jU*DDq{5Lrka*mtl@9(|i_BnrB-JNBIiN%{)?2BiE^hG) z%HYh_bI_tw%gl|!LYi1C5k$36`O6Q~dw%}Fp6#jh!ARpyg}|Lw1+6yzL>>2X%vH@Q zx==Jq(_`W{?;ljWa1I`vwOpe^)DgY5og~k9zpxn?k9fPZGwc>VDp*1O%oi+a@DTeO zhI&4Cd)0km1u_{Jp!PfV0wsfy&|i)@x`9sk>X3Mjo)4A6i5DBPYA=?3z|jOgK{f2O z_?>F?_?yHS>4hk6mU(6ieg*<<3tOW3UQC4VZ=#w9?pMUVzUBVli%kJpgnwZSi$5Av zTdgrFu8tEpn3}!LY&qcz!-|%;l2o!Zmdo`LK>xtIuvCrwW!-@GsP|{Lgg-Ek^)>IF z8oD|x51q2W##j$}dSSgf$(YlN$&g*?Oczp`g(TM&)0}^qT2m)-s&LQ7(p#H?R#(SA z{VZ@W>BdP2uj?euC!+qGX1_m**b9nf1AJ%Bz&3tQsQlic4jlch)QY`pR?baNAdGX# z@DlR)apMNVYXgL3U_f3Q$Rx0<7GUSRG33f28ZFWj!~2!G>N-7w$vDpnqWmm^gp?!8 zVykbLpPzv6z*^jP#57RaJr=*QR3ti;y3Og}))6zLq!R0Wes*#|BSYdp!eS#z6mM=B z+a&>h!%#oO_=NACD%c_Wn{swI1xB@t+s|_HjjChNKi|O={WMz)8IvcEFHhcD+AZoOBVlUcr9d z+ws=jm30`Sc3AMO3`-NtNP&}yvI%vMJ!XEkiB;PzbXex=;F>pIa5y|~^0iy}*GRq` zvqUh7kp%?#dJm4d)Qf?8mS~?Yv5}ro?R@SkH&tdtc0rtS6FQ2UUmi3cy0RbKeZ4{< z2>j{v25WK;!nrLs$L=U-LM%LtSb5Hz=1RGG{@7xpN9 z+M>Sz;5{M2mhScvoY zE`q*y-E8mv!}ReK>w9KjU*9-Q$jJwmk}u&;J;B6hG6u@kzP#TgW0ihU92Vg8D{z?XJUVgB?8?g-B zQZ)#9c=-7=8~AcE*Z(-l(QL4^Wy^VH^h;*ZRKNkiBeyy9K%lf6Ue!NaD&3siwV7x4_+pK_WjF+3+RcW)gfsl}>2_E7>C33Bs<*$Cs{ zT0LF5d4Zqrqk2PBNR2x-c_<0FbkZf#DEc~;KId%?I|e!(=BR((3Z0rcoGl4^>RgR@ zyibQycX;Qdr0D^^a9(MLj3lQvQ=2v2f<~*na-Nm&rZ>_*3e6W8@;7mw4&jf->CM&= z>imBc@epw!Sp@69z$dJDq)`9$px$=B;kzs2CJTCx_w9-aDW29eVb=?*))AI|94Zck zd{B><#@Yv}B$@oro1wq#Xdfo11Hn$I8@a7T{w?@5GW-P@aVDBpOIg#YC+;KPt0*&s z>r&{w5}cEj!}<;jG5K=ZafF75RJ7o=@A3H#9Brib(aZU$AU^0Rp2wxVHHWi|Z7}ZR zQkJ&V!%4gSc4=f1#cEls&yq~m_q&zhr(%K6Ry~j9xIZE`KyY-!-%F9b?!#%z9EcYo z^ED&+mma4iA#>Qt$!5^yZVawe5S-PrxNJn@6ng5G{`L0VOQx)RzOgep!Te-yxGAFrbSt~T4xx2T~2OwHim%7n=+C;2+& zeClh@w}EfOI0(F7N*B2GJ(zWT{tm@|$2EH5cJ|uNE8Ua+ratEHw_nZnYYZ@$mkw|g zF^J37yrc-|26&vx)til#$bS!z3OU>4evulJ`X##UL{4K$6GmT0;M`s)Hu0``Y$+?4 zWF+1^TTP4{4PMtD$351;MEikW_95hNoQ=sLEO?{_%6 z6||_?@ne0*u3T}NByAMF(a6nSxJ}8ZDRNlNK!cb%h}DFWH>&iI2v)P|v~#(6Ef>u| zjY&$3w6S|oGSe28e%8ubx8Jz~Wx{c3)hx+C@QbU~lVL8`_rf!3`xIGSveIf|Y*o8f z*$u4zrqjsNyexo(l?hYRt#gOC=}xsePY!nx`ONvQg~uivf@00AD9`Iap+WK7ZF3S= zOILH!+Hr61$1B{I5`41^<#5QDoB%i!$FOR3TJU+yHEJGr+t1qr;jdT4=T(%EHz$Ag zJA+qFsFKZS`navYJHxc$+b|HvduzGiCd=OYKh4sYF}dN9RHYQW83`WTYJfP8H$0<9 zIlCukGoLqMQ@B#zmt%z!gQbh1XPDNvL%3GK9|*|#vrmx+(g#)LG^%}6FnV28G-Gr0 zE;hTbB7S>4eVPk9^INVJfYA|VnCj|e)<;&;7>Rh@pntN{WhWmziQcca*S2Q`f}^Wp zW|9H}cx=r?wssBXFta6JPNU4#1HvyRhN^HCX67XAWsqz@F)(;nE!ktW`rvd4(vtcA zstaGJriZCnG0fG-x6pGLR0K40K6Rg#IvyuS5%VR&JH^>FbEqO05Lx^AlKk~HnbayY zvndgLRhBEry>D5~mKie?7F0JwGmG3}GB7}@>Qgo-ewBnB&V5LK$^BFte!L}q4*nfa z=^3;WN810l?`zQSPkqAzX#B4Q7IProWy~G!7m9#TlS2rjU0~qhL7~^(dgk@1_vh1@_EuBe{n|mX>;y*lM8;MaYRd3Lk|fF zd4v>9E6?{6v47)45k|VZc#W7UzqG5mpp+S`a`{0<33Ld@5m*?5$l z4;jdge%(3JC_{PVY+4*e%nhMe2NnStpjWQQ+G6&h1{$#sWNXtU_G$zk7s%Shx0tNG z?*-JTXS*^gPz7!Fer!_o0r00;fEru(6{w2o{;~~p%HuA`s@tEYsL%VA?J|z^diP3R zCHr(M^WZ)yIbhlW1XR&~Xkf41hOT_*He*l!++QcVU}u@ZKC$3KAxjYS+mD3OGjHgj(z%2SuptFS)@k`zM{!04g>i25%;S=x&7xhVdj$6F!)CWvSfXk4(ii?Kq**9}= zdN`Dk_W1%y_-E*%@yp}f*T-r&iE*q@bi%*7(LmKn5fGngyT7n8BYxg@FS| zY;Z~sETv*IbWB%Y98q~2h$+6wpIX%6chI%r`SL5|yf0`kb)pcF;~kU8D}MCf_+suB zTd1A*Lh83#xuh6c?GpUxwWj|)!rGpIE4Ley-{O6vH?fY(Z9!)*ZzYxQBQqO*vMnRC*gT(F;KmqE2wr)l>| z@vD%qm5q_RuGfcF3kdb)c_&Dh19D!fgaJq2a!NihB9gPVxg&S8+nl6H%tEP--vzzj z8Jw*sF{Egol&_zxj6i-wkLrjz-2Sur^LCNv`ImM$jQLykR`l;q+QASm_AL33L>m=t z)^F}nGVWs8(hmaCem{9O1D}VmZ!whPOuA@w9ZN;ho=K!{A zR`RTB*%k)=Zn0k=u`o?g(dET3uJp}O*sy zaSxl~=>SJRocach;Uc9&2UhiY0r$etub6)b6`@BE`YEl-@@P zSEQyR@nxzV>D{MsaayjR={r(74wHWA|NA^0;*%SCFugT6nA?912YyKfV5f%@6|lzz z@SakV`eU%^pIxAL%h{?DOr9*v9G#s#Y`r{NKY^^fpSm{W9Y1!&h;@pdY5f2AP*Nge z5e$G^E4~qPm4uv%Wj>sT+Ld%jAauok2-jTkclHwXwds#VesHYnarEwM7J9D%rQC;A z>yT6I(5;L%5l~ilHBIUIr-T8E&;w(mZaW#ALl=IB7B1DI@<2^URvYRj*8mu(|<=X?1<7`{r4ZXm1EfME&t2w)e&11Kgp8n_>T` z-8TEg+bkFsN39#K6~6(^!@AwK?q#CiyKp688E-y7(d94gi2IU|^K!`6@Lr13 z*V|E^9Jq&o^cL&)b~uO+jkV(A56i$GcfYg?$H^b13m=a_#)2P}s2V9kzw=@D9PYiW zL$~0M-fwdEd(zK)wWZ+&P{=1@-Q95$=TYAcBEmJYW&u}UV~+xKecAcEYLQ zxDpq(cadYyThENv!O(?qn!fw2k5r`YK}`DcM?M+OJ<{PnAAbII`+DyNUwQR@>2O48 z)Hg?R0xbacWBGDOYu~l&3m|=*6lX5a_&g~i3BZ043u#+7HSu>!$EbB=TD-g4_<4U5 z`1P;lW3}5KKIegcYgO*54_CdiCFtMqHBeSbF(fVt9g>j z364adBp8>(<>6Q9^Dj8W80q~!@p;L!)Coq+0kET3a(vE|_hW+e;|?yIQI`+LK4Sl6 zf6q$RA^yGHIeg>5V70t56A~#J`@R=e0_WsC!=DY`KIM)q$`^k6bzVJ-2>oP5-D=vE zS_$y(HE}XC9x}1Y)<3Z$=s6xdg}B|Wu4mbqK*j|Z1X@CwXvg=kN=gM)9on3200ACh z!<7zK?j)Qi<9~jKq)WgqD$^yqoM@ev%Dxedbe4JNf6nJjUvg#-zVM-C0rY9&MFKgS zB$KtBLLY~5LvM2mJpm^l(=|Goq%ZB>?Z&dnwZe zXnG#DdfC3famdfmWa}z(@|Nf&fo9!=cDwJ+k3(X zw1>tRc7o2#1a3c&ZMy_cl6Itz2hE@DU7qL@v7hqx0Qh?PVU0!VSshm@@n>jF$lsV4 zWf}k!&Xw#7PW8Oa7{CKyFrvp4A>ZSBnQM-qT) zw1EmzL@iqNyo_9(6ozKHLQNt4-;*{A$zp55lve7#)-8(1v?q?~8@@+Caq8 zeL0+bIP}sE(bty#Q+!xDEI{&_09%{XO%+DQfLm$cUe^|{G7;{pgBY~#IytQVT)Beg z^|kVGju{Ttz9fZ4;Of5Pne#3)hU)TK@_*535Wobsmr`*7kQKhj8^5UMa)-fvtL_gk zl`C*3|Lg6U_2c5pZ|N}d2yvv&x*DU`gQyHDF$zI}7o?NhD19W}s zdwjBp>QJBN2|I?f9n>UGT{!x+A8vU0H_j0eFK*T$k3XM!BOX3^h5LDVl>&99#FM2A z`Er*i0sOBP{Up+@%V@Sxm}BLkQMq8iO&z=+lkn!nrFQ7<%dPcuuJqq_>EFz1I`J1V z7(8N)>m#97l-$bLEv*vPrJ5yXXNulQJpWk8K>+ZE2TAmyP932;L-P!;eo4m~Nnq08 zSCf+Hch}#mBy0uvZjCd?-8bdG6u+hCDJN63k`*d+uUP^8qY$@v2_0O0_ZD@H^k|hp zt-a+pxvrQc0Lb1{j)Hq8D5bMOx0!GUxALew2bgOoD24Lf*gMjb^sMKhDIt81{+WY# zPus~|t>kkHR;7rZ@1bSY>r(Q;JuJBGbiZ6DMBKtxC(xyZ|A(!&j%uTe9<_0IcMtAX zBv9N5?owQXYg$TiifeFpcZX6Of_s5d3N&beLZGxzN^joZz291Qt?&NHS~EF&c81KH zbM}57LF}0jLuPi!RMoNML*UehUq!NSu8@TFzbnlDR><{$iU(XWT z;kVLIeJ0oaJ?AuLSD;#NRl(sXhd_u5AXw_0K7gW&(<~`G2>N0QVJ}t&PYS=l=KrRABKloR$KQRf9_HB!5bgfk zVZR)0B!qN_{6hlOgFkx(*1vr`t34YCj_9qRuo!{coqOP&lrwEpp1L3oC+V3(uSaFQ z2aES`*S^eblv=-i`kwajI_lZAj(m2?p1eCDg{=ejUD52HmG_6E%8yS5kRrug%jZ(v z=NoOI4;lvjeh$3g-?4?(!y#1RL#`)Gh7t*X;mbIjEUFT5f$vH=xpii@IWJ$zA}La`%it(~q*&yTJD z9{-(vd~W^m;iLpPk^6Oj|MBVQ<)05<|Crs`w1vFYo8__Mt&j4A9ES#0MxGkO>L(0lWK(Ty9SM+3WyzW_F_r%- z!PD(?DI%x3*X~nVMp0}#8${LT5JwV4Cx_Wpd^ z0aq4?o&?gdCc|$vRxiM+osrXPQc{RIvM z>_I#zK0Y2B?fKo&O>g7%B;g-7^g`t#ETO{87z&92My_AjhTT+CzY5DJNT%L$NDCsj4ds#6&$?0Skm8N2pP*S?QCovvR_EHj{<&fH z>({+GO%0`?d*Qv(uf$(jzc3?rmj>0FzgQ^v!=?q$)t<@HhV*%xUqf+kyE$dFkGl4` z;f&LQts-&Ao0;Bdn6`pFtCtKEe5c6}JM?YqXo{xx$#05x-{@@qtVrt8GDp?*^ywDu zE*EMEHr|`(v53I@BOw&T;n)8Jtu4l0yE)D@hjHTClr*?;c;RQ?{mcbEbX|yKbPd<6nUHrA$epa5H`He;-x=fH+B#1CydixdF56=ocG2r4R%s;OtpS$2d56cQv}f*1{Qh+mJd=-72*=WE+?JIN~{4 zIv{bkb93Suit{1!iCE@7+UdN2pHT2Vcf%hJ?C>pn()hG{Yw<<&#PF&qmLL;*G$Y3M zIoCD2Y75{3mkKF}=i%v2;AbD!NqRAPlL7-WY9VO9BLUTfHQrb-K)nJm#M5gaR#=nI z4cg1m)sR~a=!kd?AqaJkpn#`OR1%CHFToNsi{6~-H+m}cGfNpngLM--y# zoDpq2LbfCDWA#d4(vT0XBgA!a-^Z_$XlWJ#12j{SEO(x*>mh=pfIc1T7f7YkwvNA; zy>xb}$viyMF+)sOPXThlwi<~n8AM=YXNQwhU@suOufItEw7vm2+LOX;t?)<3QSC`m z3;hN%v}{w+cC=YU**j4p#UnrFHqJ*5yCW!A;ff-o=h3)6>%>lH5hljcd;oj1p%!xP zvGKMfduImc$wV!KIz)bCwtQX+mGC?{)9MKM{1N6Fz^Qrhdc^%``@o7r+Lk$~Whn1# z5w^3&!5&L0T?=KIu89Jw0 zs4}RNL!#PZvCa^G?21@w2O*ja^rc(lU%GFfxp_1XJer(mTjHnmYj?j>SwtqJdnnsy z3)AGd2|7Phso|N|!?&I7u}CVvIO7PBHvQ1q!2W$Xkt&U7l<0X54NO+2{K`FXD`j{~ zT6-jcGm9wNf_zZa?4oR;{9$RJE)EVe$U?hQgl-uojlnUth!7p4E?754^{jV@!0@fe zlsbD~6ncM3AH|2%gH$5a-)P(TxJC`NY?+7qI@B)^$!<~ydf3!xRjwI`_Hn^0HT@*9 zHWcgSU1o!6SSMsXmv+iay+G01-;{QbQGx+Ki=6{ZGOtSz#BFKFx7=W;q+sSxm!Jiq zEn{lc;oGLgv4CWIy1YHsq7q|KT}B*mNAMA9Y2-^d)f(1x#c8^>M*FQh%5*{x-kPY9 z+67Cp4?bPJkfuLEZ7%jQ>~3oT+C8*$GrdV)!N;%YHkOHo^tMMuTnBo+z9-vj=iAn5 z6-|t|H#DgI`nI&*v=V6dXigyI((EMV&nAl`A2}GrSA<`ZkeQtn5$MMc7Xd{=jaKda zD_s01inBr_{XlBvDV@!Ueez8K=)+;IkaffGf0?Xcv=*NF4HRh(2~LpYpqm>(>2Y_b zF?ZdwKb%Yl_uu}Q3gkC~#D|y};}OyV^3F~Sr{4uYAB@E774Jxg4Y5w)5|Qr42SEk3 z3K8Y;eRPJnwn=vY{?kL`V=CeM;HXzH!8CX^OMy{1sD!mO<+;~Tk*^Z4REATRidoLS zB)j3^BBR5cgsN^;GR9micoNz(jkw^iIEiPNyS?^C;*h6@Gyj6LJoAt!N064iIt#yqqlJ}j?2X1vEDI+cbeaaAQk?%t;~KhNWFVF$0)$dfz2`3nUm z_tUgx5^K|D0CiI6JP{8?C0{6sG?Q-co(TSS^UTDs2sZ&8z1ES8n(E;Em{Xhc7v=Fsl2ShXT^wOK1fop%Ct=*!zaVZvqt z43(EmB6c)^26S#k40gvF-`!l%?G^6UX_@5YK0v{{T5o5UVE>_$8_kBjdTpa(n__^lSktEBH$wd&4n!e(=fgY>>{;X;A*9jZlB$5IZddhlzH)<`YgQ zd|@v>rE_7iIF>xU*9m*i3sG|e%1}@6c?0R(PCf9O`uz}UXqnk@e+5!edb&`^JW^+0 zaGjpYUHo^!8y!9WS zO(LszotyDp`ZageS)d8Q-B}Vm@3Y5i2C!;5Ip^}Rc0TftkwLKB$@&y6%b=?jfH=xg zucM6^7STkV7YgACw8Gl4bqjvwpq&quwy-_o)QNEl$qP>~NB>xz*8~UePix$4w_mvL z6E+v$Uj5c-H-*+-XFEdb&9?lLWry{fEN!L0!pF1Y?RB{1hTeL%_&;ZCnOflh#G^)k z5s*vy*+9ZdS+>d~ZH*YhD`mGj2Jd`*JoR&NdS_%&kHg?zx z4sO3YjF)lgF1q4KOycc3&i)#I8gdG4TYB|!5-N9!q%HUOh1f?C!GzidHR`_%;?K<# zf%BY1S2g@pI+BvKv^MPjvd>ZQziGMdRMv-Vgk`c1IwUhtifm7+VphATLRJkrN&J=f z%7MRLOrBRO5q(R-{(wP`5dE!OCAF+-Pw(wT!m>MHZp(3yDnwys3{S_S>yR@;18gFI zO~rq9Z}J@oj{tW^klA+N+4j#O$K9J)hYiG2yIm!#9w|4g-XDqo$%7H%!Vt!dTM}|+ z2-_%`+AnU)e8DbMF0^E{nDsx&6S+mYjqXB9*YjYJl0zL_S1!a8k?&R=u|hU5xOrcN zC4y@Gk@0z(PD{lvPn3r55nX_FNJU&}T-h$4=E%S{k3&ss!JN3I+x8 z6W~^8!)dRZ){?dxs+C6UNv=i?=Jj2XR+r0P`-_6`dQ=Qce8xQ5SwmDu!Lh{#Xbp6G zj^x?{V}z)+C-VdKyKBBVbUW>(Dt|7kT<*ab$J?-7v1=jNJrDAUg1BXThP znmCt?h>j?GhG1@e{O{Rk_*mY3Tvo?Z&*UOx|E2dDKt8{S23o#pb}ITk;kh&rvrwF+ zI8JbnC|0OOOeQ}R6-n+M&>3N?g@A%r9*e9WH?%N+*cFQHkP6s`4COo<@<%p+~27RXgsm-;9@DYZG-w zR%hHu&#~tW*A&_YEu%r6&C?I6QL6))0G$%4s`q!fiP+UYbG6j|ubh!h%h~}>bk)Y4 zQ6W2kJi*9@t~P@oHZ~C9fTs3L+#~ToG!_Xpk^$RS)jfouZ#F`h<;I*?Rw0SU!$IbD zmJ4WDjs?v+>x~-i_-qY$(iI91whhWfs;Y`grKEFQ{)r zAdFai`5=A4f%bq7_Y7*dCQr{i&E)4_*R;_AqWZ;IUSBJMK&EK|qk!oBRyR42lCmuw z_TD0(@_v4BaG$RLHMw9e0(tp%1DF!1Ku)L*`%-Q08-TUP2cRHn{FzL)!F;F!tlE}4 zhISPb4xTe2;?bhZ5csgGM)7WjyYe?WT6PBT(6GG4?6VQ+GMPkYAkNI1AnF&WIkGoD zOymV+UcuxMZndy}Xn@GO+zFLz+npht4$NKAH{5TRFHoO zc++jrg)Oo>fu?Z5aF&<{K=HJZv5OZzG4b1Nc1 zOl!fEY~Inatb4&KrJ}zo6?FS%orRW5z&@#$uiW1RzAPrJg?RGkaF-YVz^o!|D39(G9XCXj@GqwJ04J z=S1u&`3E#CW=vbL%LYbdFBwO+c3UkJSIa>5mD^2M5>JhqrDptKR*ap}wd5~Ymh{2i zuF!;n1wW910P~so5#e$@Pykt}y&zrOr^3Y4v|8_WtoO@>t%#ajMi~wcyRJ+r`C19x zpbKCsEPF3z(zrlLemA{H`oU?QF$Ur9@$HlBBRbZ+u64SZ;U{264CeS^Y)uYslcy|r zgMVpCfhohVOZ!8ZPJ_9PTkJ-?4766&mid2T;qwUq&#Ej86xD=Bc|2&)r@OYvnA9Tr z;9l0DQ#Zgxw??~GNU1Ss&c4xCt&QP431m0t2RST5ZpNb`?)Rh+R!I4Eo~7SxEi27K zf83a9wbORa`w_~=CA{BhbkgChTGo#SpTeS91bng@QA!Sj5bs%z2MwZuUYLs&5Y~!` zYJoZB0$M-_21RUb=!cj6tl$O{7>*@do1Vc0R}_heJp;aNF8)k)FffN$w=~O09B|CKt!1EwOKF1#o7;Zf zqRRC8d|G;scjbS!CqB~9CAvZ`n0EkK&q+VjzgrE$yFwaAScY9Q6X!&#(Ez@GL| zD`wyT&*eLcD+D!?TcsNis#G;(0c4Z=f)W`I{zy zA!cZ;aFq$SY*DyxUfquY=se!<$m}puo!|gKZ-$aeood$+sK<9&c;_=#c17v9~=2x4~y`qKA0xkb03 zq37S6bZLK6Y8q(_D?b&_TYG9&y#gN77-0W(urfsZM=PK>fa2~gLCHq!mlz7k=9|v( zbP~dwx7Ym|D9#i1lra^CXEpVynk8-I^HheGhl;IaWE1x1^O5c&_oSCDn`qCcw5nRm zb9_sDq2Qe=#r)P8a&6KayvQ*f4&KnpbWIRqzFmPTCy|;7?#ImXk(TnEyUySkI-jb0 zy<6^3c6@VK_1Eb|V25$K5-N@K*q$oic1$4xe)4)%B2XVVUc!^Mn)u;&5xAoB=;y~3 zjP|ar?jfS82~z2Ci^%oa0N{o(Nm10L*8TrEWktbn^uKeYc7UL)6F7y=i4&#hk0Smu zb4?dFnizBX2}~JzuH4y5DK2#6>m>vJ`nHostZpmi4?&#jL$|__%qDc2Tq{!bUb9oAC?2 zm4_kjO_4Q!VGWpZ-I0c>&ufM=9tuP)UCyOW@HpIn$CBc6=v%kB&Q^*WQK#|_uXGi% z1n(4_Rw4U!aP&LaMNem=KVb??e0Pvvu|&FF{?BRUv#;_~F-!@IPm44aebQDIHWX3^ zRb)FQq)b|v!gz%D`7C*uZ@2m<*~GU)Kh@eOnV)m65S2Xc-ov2+nEcI`uKKB)zl>lW zn`pt;ELA4#^590juQh>v0o*}{4??In!76sszH_`3(pkiQNgEx2HX#^3ettAN1WTN; zf9p~pXzd##)+9HnZFe>6`iYOO*0e)3pLFzqMF~8818C{(8+$u>tDv~_61zHh{;)Dh zZ8v79K5I`0B7*Wpr|4ic^}eX6Jz~9j6CoMt@i)lL%KHQfTR?T0O+wvrJS3=E;nC1j zN~vCzk&|exD9u8pM^CIL;AH)QYwctnWXWxXm(BaN^?>3xtRexY zdonP(lM)VjzhE_=LO5-l#?o3Ar0JYy7FT(0)6yh)QI39Yz;A5(G!=D(FCu$^oUmdv zvVIyM!)S_*^N;R>;}!5~jzi}oBsiN$hu6XJ9ekCH$F8~fT z)7Vp^eW7xE;vDPlQ4!?WL2;=rPCtr=_`QGBz-~0PHF4q9J~_K3_)&l=vZedXfAD-q zIx33^C%@}~`7IJ!1gGSoXLAA{4tyy0e24$tAl^gtg>;bT$P71Kn#LX*sL7NYPpo&6 ziYv_su`oDkuVgwuDOFJiJEm~p7n4KMqmId6i%|*IcjaXSDxz{lJvSt z-6&GIH+Pad1W(Np^^YOSAAOj%6c8nA_S;}ZTcp3H>;FCvpVMX$qXSui9`Fs?#o=CegQyBn*jn9C{680_-Z)2QsUB(yOv;C2@P$ zin7K}r@$pyS<~3BPn`Cs$gfYFXy>=I7h!5l(gK?O>;6f)_xdGz8@VHMp4Ot-WM=Gx z%%q~^t6X#Z&c*=ruRZa zyBwLj3ZT1oqJkP9ImO|m&a{&BN?S8RN5f%#giFCCkedTq{E8aSG zn@xkb)+1C?+qmLYy6Tu^M{VB{UIsX7Wd>3#x8O=7s}bT#OA*NA>09ns)xrhdKV5{e zUW~N!cqx^MQx-Dde=q4Yrn37l9rpe%GoM?W$|X|Qf5s5SEh42_pp%TOmpMg|N-bUXVjb7S1 zZanD)Sk$-w1t;7+?Wr4y<<_WbtpWO{#}Av+zomrqft-~cJbZ_9dmXRT+_>%M+P>oU zWB6j(5sP9Qsmb*9qanJIZf06*81QAKaiB7=`EIA2_1z`=HBVR33&RXN>Sm<%f;FGQ z07C0~P`1zfKw7PqhROfhk2E>PP6l#o=I@=AV9&w(%3;+EISD2kxyLX8?=6y33vGF^#z7~`zzF~sGH#2t% zYs5NZXT%q%=Uvdc=W%aiIB{;NbBmBh91BrK`u)zUWi?lS0Y#TQ7lRe?=^>KG0WCe5 z0R4)}>WY~XVLORoK4@oVAGoIIP8>>4ZS$+B=(RtVpn@O}=y|7QAR+byK)0cm_(n<| z+k~Pd>iokVkxM;}C0V3fc+TR~6da-`U#NleWCQ8a+eVRlwX#l1#T%u{)Y*^W=@gC< zEenz4eY<^Jok@OONh;aq7d`ro6Wh;oc8{C8Oho+tRG-u$Sjmuc{Js+?*`}BsQn-e| zQhG0uCMe8FT>mygM{v_0N#oJ0=x4{NnKkm&I|ljBYi*WLD$LX@O0mOn{QGDrw;WMp zx{XaX5fmkHc8p()iMHyNI09OLFfpQBH!3^y@a5s5>JumOmZ^|xxuDFd`WCcwM}ysQ zXp@&x+Z!~DOE)@@I<6xZBso}1@;h`li<*WX36O;#n; zj2_Ls4jVg~l>LW>qJ~nJjoaxsCwYGLGr(?bZ_L$c*77|f>UM?PMR0xKI~?@396l&> zFokw9V-ck}^@mH=0MW4pEo{9GIWA&2674IhY+f-$gB+0w z`e2)my8H@pL@>nDeZTeAD*3bYPBK17GvMvcWY>sf+guDK`~g=FNo zzlBL^*_f3~yjLgQ7yoJqxi{yJBg&DobX;1i)PV5{{WMi!*xCC3jf4piD58Q0^r-so z;H+R-4hyF0+Sb@;GCA`5#9d9~7^W%i-Gs@Yw~G543#0ivGdq~HO=d5t;GNsl5?U_6 zK51w3(u3f;NBT5T%9i8#_iWgbj#^%XOArR&lw_cKQ;L6(p=~xn(|e&`0Tm>0||8eM*hsMp^X*TOm z{7Y-QO&fqRJkJ~FtUdTOW-pC0;{C9Kf>4IK5GQtDF}9cw_DAp=NbYm2sRx`zQ#whb;*ZgnzC zKxgUYTXKl%y3o8j!V5fwUW^&PPMkH^S8|G3R|G7lPb*lw=F#dsWQbw--yiqXF5LWy zFfd-K2MV_2TQb?mvxX&TTlJny^{xc?qtbUNHokjhTvtyIZ~yA#372inb18P$q1Vk`UhI#Fz~D+D2}d#tY_BFx>CM6q6=I9ISUWjnthAIq|(^r(G3 zhTL^@1!Q;Qn`!3HP{XR{FZt~?G?u}-m1n|7y8;+aF5{q3rFtE<)sw*h!At&0Ee93V zhWc|MXjt+J&-$Z7-_Nq+mOT^@)RjxKo9lkH1|fe(nJo}JyW}G(5wvQ-@KFdxKE@hMg%^XUzCq!4;-Clb zsI$jdqy`!aCJ3j(Rj1uIi9`UBG5txYcj5^Q{CZ7dvZhS7Kql%c1}~i87t48NBkGK$Aj#;>V6YX>9kX3oRhoNs1CvSLsd?@Gi3_II%mFR~p{Fe+9 zqe@ajMqEOu^`5OxG-J8u?oMwSl^}?eTzs;1`}ea+C@(`+NY$(|e!UOL8BMq|M2k3? z*h)6Wfy=vER%!UhZ&IwzZF+EgI&tSH^Ym9o^uekXOSa#5k*_b>2a4kF6L91ai06|y zrXzt71?y-&e(vWGjL)!dn=+#7k(}g62Aq(bw!u0aP|Q%BSO&)G@TdHb<*hKwf2JBy zI(UjiV(K;KYPki_6wjkcq2qF*>oQFXP%@U1X?a{N$Z>HYfGXdLlC|S_Skfm!xAetZ zBx2Q_{dYyX8K0!Mlx@)x(v<{fOeS$fiqZ(@$l1R>oo*E9H&~S1fBAwbt95vg+8>54 zNi4@1A59Dm3}q%cQ1PG3MRu#kk7$o!oNJgo2XjJp*!6p@+eK=TB$l$X^*$y0n%MaM zB~@gvl&yf?Ifeg&T70jsu3H%Uioy?oB9=|&WiGsReWsloxd$!HftzPjnt*- z<1jDn`N-VdoOZ0TMTrXs=x!Bk$9)AoQrOfD-hf;XQ=JZmg!&nD1 zc3rD8cRT@QUs^dNhyOq@Y9h#X35v zu0V2dVA{=^0@qYWobmRK7@v`~sog|ne8i6FsGlFIU3n4<$ZcUG!GJ$qo9*1L)$A%1 zbNaOj83QiI1gF+otos4OO{dFm`=~ zA(xInDkv|Ur93s4dRP+&*%HQ@lZ&^X_ZPfT)r~%~$foah^J}F8SU|{b67kvb%mmwQ z97zDwEVOq;F{~c{OqUgYeoEAUpCZSx0OkLWd%jh)OB|ck790L-znljcRk3k!##@K! zg4|q)?C=W_qUI$oeG{`3>-E8|)M%?6K=1bYt#$jSt!VI0*cXYy^PI#9uSuNj+>_b2 z-@1g)unTF)(k_Sp`X32Pt@h3<}leW4NNYV|w>dasIUd$l%b%qL|CC_?IE($`Eu4qD^z#uHI8BZ39Um+3OE(W{})<0c1~d5>(twSul%u_m(%Y2~kfbo@*-}2Y zLnUjp&07fhAQS!{6k$jOznNz_Er4@b``@NU+d-(Y)`GV7KC~(p!GtRX*72cZyHkh_T+HNpKHa zD~`1d#DsT$xMpcRVoms(XCd#W>)1P3e-lDt}^|mRDC%^F73^M2&92ZAs0WB zBX9U6VZ~l$h8cOrG_meZs!fUGXAa}NxX}NaW@fEuXLBUKfBVAiqYRD-X#(kMnuPTwho%1Y*-!ZSOn=8D(xWEBX7AoO2Qvk(1{%3j4?I*&2cW!I6+Q=(k z&1me{zwJ?Z8`zG4|py-g5BbJO3NJuMx=5_=PUy#(c<;{9^tvYR# zU%H7R0KpRctVx()V~(|6Wrp^%cst!pAGVewi?q;chzql8Wb$+ptfm2Z#$7;_hGGXJ zEz3@S6jQ+fS1Jzy`}5Culju2HO|{Kd1U>6pJgNq0FJIL@)N~cSl|?xa9I;D z0yc}E2wG+;OW+M7NE15`C^RA+`%s)Pt84Kc?!HEP!T`QF`|ImE{qz%nF?L%uZ6Qd-VEF=S6m()y@% zHj+~76=mO?O(tGUpL;Gv+P=~A0}B`jC790%p)(a7{fG(VH0C8ZT&$9#*$DMj)tTnF zX-(W&lTD2*{e8~SQbtFQB)~qGgx&xQ%>?bJ)8<*kJZA`aiK#CqI99mzSl@XgZ7Jar z<*#g_@PAPFy9|%eLoma2u>X82;})59l$4!qIECd0c2;M zxkyzLN9q6*bx3^t6=!oS68cX&$)8axV8@IuI9Vr}s42$we2~}D#g+Eu8@deLM2e!2 zkk5PboslL-5l8MRf(9mJCdAB;R{8_Jza5DVk1KdBfj3$%rEh+?Aw(_YR}M1mLk*+& zdT~zRV>1eEej$;fXZTpT$->uT+HvS`clFyK*DQeUN=Ev&yK8-^t_)Sbp2E!1trDcb zn~B+u^knWutf$waV=AUS;%bbA`r{#+22SH#YcZwm$U0wJJR>?PweLY zt!|BM0-(PZVNNp-VEA#HF@x@|I+Hrf_l-Kl^t)K&0O>%k&)GxBC%EQI;w49Fu&J$s z_L);I>hD8TKO&Wx6B9I%)wM(v^d;li{O|n_1DA1 zQA)c7#D!OK@Z*1Req)!2G`MjGQeg$)PTv~AWXGmyJsIoq93^FCui~O)I9=8(^AgDo z6LkSzza0|JYdLxLM!B%pS$YLH#%;r`xuNuZq4eVv6%0lbb-kCL_cp)vZX5wb3zDh) z#$te8bM59>4b!VDvy?Pb2#n>P_q*xY^osN3^v$d^DGGtkqF#}z2$r$3#_Fl4_4f~A zFR+o;X7G{o-R5T$&slut_~Iq1DgpBnd_(rsTl1!f-Xx$L8u$}eOK4cKS3v#8S?PS4 zxb#6Op*J;QFAm?mjIeK@UBN2zDj6zh4pUzKg(dQv>r+XGMDU10iKT>ARZi|_#>@iq zP@}YUxiq$Et#WGp$RNkMnC-8`}K-B{ya|>H? zWMD%!a4-02^3f!#3jsvSh^1h+U^Q!?4z*?q!`^(!{vLT&Ts#5n*>v1QuSnWKQ;}T@K0d`Wwu?GB` zI>P^>jNxlZ-Ls@6*y@XLtaeU4$ z@F4rk3eQ)EU^W+?hDiKKjk< znwKTaT6(eW=-{@NbdWYA7Pxd-f2;7FXlW~nn9S|33n(&s#q_I)KjuJOdh1W8*`Vqt zci~wRdqA$<;eHf;^aH9rNBqAm;=viH_rMSdft-&%>&N* zQ1T?(k_o7~R}LWr=ZoPL+tISUjt z4n5XzxpSUY4nEpw;vcE+Rn=ZGG1I*+SItf5M6u-IU++=5ey}+^-}JeO8jijx4>LDuK z*GBlOqLXzVu%(4;n{ZBHmG}E(EwbdMzeQ#h+OW=!WW$5>n39ckt}e{@vvWn%na~A3 zL=6$Rt|Q0@B?KwF&|Qjn^m4Rb<0i5pDA6~qA+;U=a&DLL&rq<&%36S^0s?`i>J|uE ze5Xlg%aKr6_zW2TYJ+lA1P(5?HSQXd&bPd**-Z%OfOEz753*1<=rlA|APLArgDghy zn+3gDXhpK`VC-B7Emt*X+AKO|f3O&JcgaScs%?}l^9nh{f#mdR%=yqtc&<`JCWIR0 zXRH|!8CDtfeH_{NS5UjhUqjRjEwz%|S{pSE0Y2JaS#fHHs-a0bc+0?%xSIwz5w+x=SME!`08pOgWrzW$H=PJVP(;*9!eGU*M z@0*?2VhQ6a&LVV~8;`S9w2c$9)K&#{K~s-i2eDk|Go}>^ZKJa1h8;#cX68}|KYTG0 z_2C^eF%#u-@x0NJJlU*NX6h)ruu;0HV%kBH=s`&&iim*sFQh-;y`G7A{L60jQs;4V zm0WyYJQd_Idm{C=8V%2rTG&QS%aLY$$Yg<0Ajj)wmE<*F6b*4{v~Oc%kztiwZHkU7 zsSLucRMg~vLL>7AG0u3|@yfA}NQ)R*mRfaVP}9Auzy9J6y1Uqsv|0^MQ04-CsI=Yf zLNCv5Cmi6eTB6$}5s?vZ>!83_pU0uHI>*|1X4kP`tF~%?l+cVla{R||cG=vqO{=(v7RD;W{o=o>lO4~IM=M;F0E5*bJG^r*7j8ssCgM)h8p@$~iX7*dVt%GRPH8nvRJwI8YetARLEvX^y)vLF0^gq(7xM;{P%Y}_hKsgirRu$4b zffNri?F{I5nPudDzC&!az$3^lVaVkWcH(UXNAH>y_Nv>ynEAr(Seo^p$|4oP9$|fY zV(8I_Jhu5+qCv%)*4le0UbZKI*ve{upa$NUf#-gmOG8=mNUuKawP({ydvwU(ssk|ClnGGc53yk=9@?g9FZPGfR`R4uEg-mWyjX;emRhVx#qPH> z^&wG;elNS+Qs2P(#460gYQGEhMQ1#gD;lJLI;_9keUT2)6#AtbxyJN9%AJHA7Ay-o z6-n=6(`E@Vy!dW{`A(=gm19swe}{K{{f`YZ2cNW(iQ3Z31Y?@CSP{Q(9KC#giR=S@ z+Vb@5JvveV*x_%u^L&naLantewK|uNq#D?V8uDLY^2pw?BZEV%BSz%z6bhIB(C4)u zJYrHt+rP=W{6YmbP^J`Z9?1H7E2dMb=-5(q)kFE)!MhvAi?4VB0{lK1I=9Hg;=?73 zngilrvdkV*g+t(QWI0OGnQ1S!*#iMJ$+EJ*(i?!25#ESK%=Y4ho9p z?vN)`oZOksh)u_543*h@<(Tfw2Fr~Z@#lPW;jxtR($olws@|*P7os?R7rtT9L#Xq} z2I;ro8I-Ck*RyTRV5#%=o)s2uSRB_`sUAzm4n0E;?4giG?YTU5AEq*AaB$6|by@G-$S<9ji!r ziAb^$TO6)C8I2=1UzMsctcXZv+*990CBtmCIoI=xc(0KzYBKE<8@y=NaxM=>11JpMx$b!TAPa8-eO70hbtgmPSy-1@X7?36kI?Uv?27 z$mlGRH{hCDCiMdL0SI34TVRX;V5j)~B=Xty2^L@~T6^to5V@F9l11y5Ih5^`NqNEA zgDmd`voB%n7s+td%0y{8Yq3@uFNoCF2=RO=WM)!~KUhb*wzMK#B$L_Z?EqGD_%=xU zI@AK=`pj(`4BhDU^h!vT%L`AG!z~aqJUEM5O;IsBEhrb9pP7 zMG7bNPjog6VbfW*{>B5|E&sy3mTZ|-u-(*(?nKKpVr-xiCD4O4IM;zVcgUifT1wAu zFtk$QVK@PZchGbX1((FPRjUk=w}-+m9$@=T!41l30@%lM-x&$*J!d>4{vroKWk%fo99sVJq~>HWl~N{ z6tTr>dxZ%Rw-ZSFmAk#=y2ZiuhiBSmNGi4gW-^uGXfUTNnLf13=S%>NZ}}b2MZgA7 zD}mK3II||f4ZJ`CXiY>`@LI*5z&wIYY0)rrkPC@yR!4-LBk3jJ2OlM}Wvi1S{#=4PnG+|h z0uDXvYO~qC7k@Gp*|QB7?;r$BS!=wI9d!!U94_gtf(tZz{LW8r{aSl4RNc-(H`NlL8J)Y7Wu2j>?29v zc$N!~m8~(#RdfoUj+B|WuK1Z(ZJ>=w24RInug26YgmXJ+o4+|%)GU(oD@NKl=KAC} z6OsDSZ?yVDM-<+d7Z31^`2_*PJSBZtmUXS98ft1PQO84i4TU*zLQF?ebaUEiNcJ*( z-iRMB1woS4BK)kX0Ukg;EHiL85zX@YiQ;EsqgqCE@wR)qTF?cL^dsk^AU1*Nng&{D zAVZDBj~uxX8+7|z0*y{q0rX!bR9?X;aT1fKh1o0UF%hzyY3bWsvX(DfbzgA*?L)LN zz%2|u{TY@|WIFj#-LAjjn-9;(5aI|)y=N2G%2EjdR=gRYmF)T<6nDP(_fQ4lxjrkr zyZgn__fPhW@Y{3$hLLNnUeUB{<97b%!wVnbaKX;bzi$tB-2h#w+v#%0bw*e=sm9P- zF<4S*e2{ixLUSwDUWe>#t{T7%ZTj9Bw!4H*1_!^8KW`xbG}2fA+Z5~3k`U*?C1?5- z4J2so(Czl;*@2nry&4zw8j21A4=>%arpY$PYp1hmd)b< z@?h+a9IaD>9F?S1d}OAUdz$<%y2d-kAMgtkoj-WScKjI?jr-2er=K?NdW-?=QTJKP z+A#HpRpD6R84SW-CeS~JUY!2M>+1$U@x3{1oH+sgEfWXIV5|=z`}%)--(Hzp4OceT zydRIP^Gb=6ApU{*s7FG6+dHusA{Tw6t(*0Y(UpTgD|N{IpTDwqUHq^@1)%r$ruKal0#i%|dP9hA-d=BPN0jfbm4(WjLezt^k$UY`fZ#>R%Gs_;!` z?-P5^V8{FRuuvPcv@an zjg8@GzSj{)pA&$m;vsV1-`gYxUL)g)F9rQ?lR%dtAck6VwcziF?0@1`ReqBAD_U#Z z>!)rUjg(c!1|>VNe)K(jIys_-5&ctFWT_@dmojllxs2WS)?Cdqph(5%qU(4@q1w#3Hrc^m%PhuX*{x{tD55EsZ?-u_0 z{%vox{x6b;{cYp#%f>(O(Z>&}x9o`xoMD8U)(d2&y$YVNLeuyE7(C>!(+HyX;_l6L zTScWuR+Bg_h$wqgWPa52!hnOq1BYPZ>S$aLc^xG#bf*c3)iZqhI53BJ*p0zUVi5U@ z0Q$snS9(hU1qy#&V)cyQv(GcqvFYItB+5yfU~|=Fa|9!#8zdC-OLGTXC@6;a&yedZ z5cv4q_iP7XCs5fs4az7A+hc$2u%dBlqmK8FQwfvdmYgmUVL_(loTr>cJ)*g2nM_&v z+_cKTTwy(?s4dh58zTPFMN7fwiJ$? zm!lH(2R%L<=85h_XN92^HDHou3VB`b#sD0&Gv1G17ea$Y zb1wn@dryFEdWA-n39=-EoyC=e)3a*tU1@nQfcxBM_eF~5&hv8l>*bdN6{f@F9s9HZmXO>&Ja|9P-Axsccf%SFzJn5^1*79K? zRtGAlcBbVI%Y_dA{#|WP^)Lh>pD!`mUtd*>DS*&`= zMIwsaMK#ehC%g}%FCh}_yid<;VB*~xqLa4nD;a5cJsno+sHH079D=shq+pVWw!abQ zWr%;*g2q|Xp2S_%thT|BY8LVn_O?z;Pl`ntAjm#KK9O4lLl8~YFn1GcEC62pHGtB) zdv^8F7^)1_tuTZ~UfJ$)-O3#6nCx8zJ&faO+{6Ms>Q!(i-PIjhTWSdv#A?sUO@(U& z3}Ed3_k*qLeoqdMZX-+io;$_(YrS?74_b$&2=jj5SkrZ$iw@_jTVLman{_PTh8&&p zDllR`g|hnu`eTL7b1~#A6Gfb#YEnDcY5ayZpB=_}%^8IP=JyZ$Kb}41(6y$2WG8Pv zvfdrX_+PU7-PMoweC#-(HAG8TTKqgAOF|J=bcUw^$r1KI@3k9<=bp|LlwIw)-Umjx z-bWo(k%u97p=lGY(qNA?;*HPaTiTgF2iP-Fd7Dd?d1bkJv=iUGd%KpG64w&m*TwX7 z-5mxfWU-s~;k{QFqW37|7WkHUh=H!vvHT;@lj*IG6u>OcB-qZ)2>}HJ%RT_8#S{1y z)&cby+&q;T<4TD3$|^q|s1l|o2$XX)Wb?{1^7Fe2bkeEap|pBOiu62%-(=E?s0hl?jl`49y8|cI zqPDrQDKlYIjkkREd>Vb7DuSt?WbkhFtEk_f>OaNP6zXmiIPxzv@OFpO`JFfO)o$d$ z`gqR|>W?0Modi+KN4AUG4Po{&M-V~(?&JHO`<>{2Ebr5YIuI}SbpJ|CNZZm>mC94!a5Vnk zo~LtS$Bsxg687%vqzdTp-Qy&t6VF>Y1pV{WNhc^4$hU9P`GR+vqV9hIAIGHQFvhX+ z-@D#7-`_BZT$!edWx^p~o{Uqb*Ak(5*X^C*e9&L-eFWksz{c?~?eV(ycIE#RoNjb5 zFj;VXbUaa~^;@I(j?yAA@gRs9MHZb1ISxSXdY?bPZTH@@zxF%6-R|qN&&2?{V*b9K z190t1AqILEt7Rv8@qODLFeBX5zaBN?jXDlbRs_6NUcZI?Lv{AQZWP9g0KmI!|Ep{6 znbWf~TF~_l)h`O+RmAwX^gYW=xXXnd;{ejTv-p9&b$lcrPrvKa1COhuG zSgnyl(EPJ5rvYrApu|#kIQi=g@SR6Dtu+%ybH~fP{8T=Vv}1#wxlo|xY0_y*zK4~d ze%nwPq96mP5Sg;jv&r!Dw^@482YIi;*Q3Jtq$0iz&-WiFQhZdf>9}DrrtB6M5RQ)2 zLo7l4RKuXt>@FG==3WZ!MLVlWEv3whq8>Hx4mb|5vY72~Pk7rvVn-a4aF zYktl83U%$JIx@Y@%4htzEGz0Y>b>E5d%7|hJh)`!e|EEE%)UwYV;##%p0|`INUboS zRZ1gX51Jgd-s8ggH$cG@@VDE`w9b2YTd)1|x{&3%n zn5sUyb%^-C`uNeI+k5kvp7rLt3qiQPee-Zk$S1!@E(iGP;cwfb&*9{6_oLW*)$dx- zT>AH7Pf0qmLWr?Gv2W4v_;e<*?PM`)yHpO2S-$HMwEi}e=X()|Ao_Bwx(NWwfnd6= zyrjQDj747WcfAH}+6cVxrFNII^G`8w-9hD=6tufKL8 z?|xtTUm*Acq;&TApkSeOeWt{LrpBEuoiNCkLH!`BsFLYZQwn*O5WtQyh_LY%X#BQV zyXn4Uc(Q61&Dz3mwwJsZ85pKYFSh_!k=z+?t@zOg)bpB8KJs=?;ZMa`IyO9{lkFuF z1ARf*`z^VYIi44o(!J4(Tt==rbjA(|Jzoqu_FTflDMt+=Lzag|?whlPq{-I%XWjP; zR7Krpx;-?V93B6zSm(bav%i8dj9)1s$iZjnHP?1TTW6S-jr)?pxze4D-b=Y2BG{H{RQ6iS^f)<8^apq2DW(nVuw?wbA{2mn8}_VuK8yws0C?(*mR ztv$6w+FDp#`xpY82x%l{U!ab<1y}TNK0B*J44e! zC6YHwv?J@gsj}OO@5{~7Rbd)OuX9HrU}HJ#*UCCa_jAtp-pT;z3!?oY!|8y~f{S4! z-4=l<+3Zo}&>=QMf;fl(8%1s!yC~4(+c*E$L;qJmW3ybWn0~P&JDmgiQ{7r))D4(V zJUkQR2)ULqvl^yp2e%RqP5=i3n?aY;>u(U3d@S`DV%8$ai;WNl4RF`+^G>E=#F9i~ zo(&vi`mvC&Q4%FX-BdSfq1ux;b!nNk@DZNqYj1dloGJWbql`lX&TV62DhZaP9r?{J z>MB0bNSvUaE#(Mu@Tm#jY#cE90pR4p>(}Hr*Z22F(!skkQS?+hs(AE$g3-SmEWH6^7MNLw4WNJPkQcP(I(Df~abNcB?$4d?)-uuM)d;bw@DHhu z&qZYx{_fv2X#0~VNd9HkCh?sVSYMf5%xzvnGTiB^M?JWo-bJUSNK z>9UqO14x)4~@S|*E28<9oq7m&fn!m)RA>8nW5 z6C(it*>k_0_xbn5#$Fd;SNIp3r?~=GKLN)6-nOif|88u`njsVGV&jql*d>Q1bo(wf zj_6Icy7wDk`mr@)L{4?xFBbSlLi^!5%2x7&K~)7!g8b1h>o(dg0TWz|yQ;`ys+R~% zlvGqMq+G9H5JYd(%n+2j1BHym8)oJUs?H-ciAd3jlCV@Xie9bW3o#4Hn{vU0V*8|x z{RL#t161MHMbXo+2;&teiT~5p)Y;KCf^O(VL4O|gwZ_Q4uoRI^&o2ml!=yG~2t!gU zwV6>wfYi>E z^tveH8)R{I^sV@u&sH+C*F*i@o=p+DwU9&4QHbb;_qr{~W}8ow+!GSwUvBkZ{4mFv z(?3>NP(8SCv}jUtQTOhR;$~~>qWaI${Vs2cig;ipy4J%vw4isN{;g(KJ>nub1eO;j z9ond(=qdT?&@q6k2dSWw{P`10IZtIJl?^wS*nD&>mi(m?(-cwo>|(cB+<)9Vd;78w z6p5gqZ}HYX5443-^iK5^08aU<&g3GJqtvPkab7&S)k>qs{L05ecBdNkm&WauG!eGI4;?i}FdIxJ>xg zr)wzV+4_N-Exic0%Z#wwSt0W!hTlc-=3DS4@VKt|*Ioyt#-M*U#`|ykA zv+)BmnKg^J|DHSujeVWa|9KbajtKt8VJP?Udf;Hy7l4MIUE51ZPawYrO9uecI=nWY zHUNORgU%8v&mP-yFkHDL;*6IbQN+*x>`t1J=_n#1Y43uAsVXfN^Zd0iFIKg|LTnlw zVlmsf`B&&I7vH$A(1{D{#u2h#R6+^QRWvGQ0L;$Dl{tg$^b9oOdp7h-o>B1GpC`Tj z!)jg;!vB++8T(vHcl^LTUu1rEfJLJB3ebxyl@MpdM}lLK@lAr8`Ny&D!RUJXrP!+Q zsK2!7b-T9tI>%g#7;U;+y}#=Pp#d+a`P`N%vV_s~5$=5^UphP8a9fB4RxXV@oVKYl z_ck`y-d=%JF}YF{Z1**QK`Jw*WIglyQ?Wk#rUHK3HNlb7+g9J}G&4C5Y@4!qCMRi> z=$(!KgR^W!GNwp9W3mdAokkecF;<=0d+&2F-)52ggyuwI^DF`WQ5#%mr<<5# z2jG-ACKfkDUT2P`T%a*?54P`rx4T%Zu=GDewGC|RmYz@61*34(7>%!wZB}(D*OPAU z#uUPzjk$YWeHO`emUs$nUvGbVeG++yR5jQ(<}J7zyk~p_PjMR>?xicA_Z&KO+@Dpy z@|!19&^|ba`F-34mS|o!-(K*K(ypbJiiD=y0Aburu3)E!@83lBY6!o1<9BaHAU*9z zaBOoDcQC$p9-%&V9s$1t(AsZL{%1P=?sK~_|FO%V1x*J48MCVB1J2tF9Y6UveEqdU zyy0^RrX$7;hV>jgn~M{6v6Es?3S#v0-hl`q=Hm$pLkIh^_f>)6T zkp2$=dCXRT3rNl{6(uK;KA0FZ5Jn)&QF1~$w);*aTIdvw(-4?C2L4<7ih7FIGxoYH z*2-MYNc7!;rmk9n@c)Qp5F>LLvYFi2KA&a-2=4Jddn3{K<#A0f_kg^l_3d`k?~nfG zP6ZJ`)TrG%h$klJJpam~Lny)f?3%8B^Y*uc&FAdv*PL&6tIc15gtpZfv@g316QI$A z;E94r#@nbW2tEj|T%pv0LO6&MJog0VU5ep=Oz+|Xn1F4(-M+nS=J_2QcXtbGsk7?1 zR+@0%KZ=>De7pLh?wTj+|N760@HX=H>iGLf^RD76kaI2XM3~l8jiP!$TP)_a)Iyy~ zK3FEp)*5dP`e_eejaVoZNBv~(eUrTNhrG`(;v0czUh^6GC%eLxmoc5!b2|AaFcOtl zn_V97#)Jb_f%9kn-8JLqoqRxMF%`&c&CMK0g`--g$&A5RKrHgq%H0vq9R_2)%;Ig` zr%RzqZhgU?eX$$E?z=zpdirSe<~)+XTDU&}7+Ro;w96sWk-Qc-4M!8_5Ro zRsIP1xFu}nJ^>XeyR|?F2x9Au6k)WnxU6`%&))acA=-##st zBN@|{8_~Lm=3ir2Yt=P0YnhB9Sp%odf3DS_Z+AKKvN-xVhvMGca!MNIpE>!zZGq|Y zea=@7(Jv~q81s!_Lt?@m4b!v@XR(FlPvEB%o21r{%Ru^uk!WcJJ*1K=! zi;Z7_<@JtBnT`%{ZlCA_{o5XMydSOcuy#JL{i67-$@_BzV7IUu)%EmqWB$wOp~zkP zL^^wNOSrPLtSNpTt_e6#0bisU$a?|n!_K0H!W zc=Gr(u%P;HQu}h&d)0bO7v+F~j*iiLImz97SL+vlj=a%vo3{R0;^5{S8Xrrt6!ox{ zSD&2E2w2PNy)55+J==WULJ%EO8sNil|FZu%-ridUsQH;{z_P-ovWMSR;x&OMHf;>~ zQ{Vma31Tn+0=cI>R|h5sAogb_X>p#A%B2T}q}Y0+DhDr}niCBOXpr|ATU{_y5ib_7 z3&vzK)wnF;gDu2^(T=o~E_~B8o6d>sL!G1P4;B~slQGp$)R_JFVM;%C+&qH{)_zZvA@kue zwdJ}cQWP0p7yAnwVs&#h{G3G_RbJE>Q;qEJ>kBD4AXw(iKNj0rJ1L`^EyvT!Ik8oQ za?QmZ+P^84HgyO?t2L5Ioo{5(!_^dzzySTSsKPM&Qe zV!T3D3xN-=mJaBB^zLXZms>69V$-NjTq--q{KWkEI|MtZ>rBCFmOp9O5reRucgbed zi668m&H7kZWyYeH7L-T)Ywd>Ns6Fl zv~{XE8Cuht$DEu~VN7`7XC|C$TUZvD9&Lt*EkIir_Yx-th|-Jq!DF<~(vzE=$`GvEw};wdA@|om>uUf_ciX>Ssf;c-lcf#2rJzM3yJL* z$$=A0W`*EhCB#Q`rloe+2YE-cB2g{xP4x#?1$~w$ZB6?=NC+lMj4kvS1&a@P&sJ1y zUaIpJG-0sFx}XZ+QCq)(LclK2x`cMf3-~=S$|foALSIK0}Q6f!6?)qbc_m3xU}l;?C~%n$cn-$WaOPeJzWY6 zKW)p+DdbLoG88i#_A%grMf`JMp$eMQ!>|o&su*czfd*zYPN*gBJ?m$`wAWp zGAtA3yw63Oqt(qL>!CqW_wh>1vrzFab8N$%DDt%VOK^47(6kkVZ9am@aXGh&YL9qh zg|%*f1C=($qx(GYlR{(B(OO(s#y&1@4*Dbc_+qrNq3K^Mp#5H2;o1#KdmiDQOGC1y4kM~R#?7YbUe*W}ZbO|%|5Es3QZR)DeIRkbFMX=f&r2?v z$8U$4^G>4Wvr(8!A!V;Qg;WxyLOnn@_*xfUB4pAp04mBp2}6DqN55xax#5`x3xlli znG3W^c|xbmB#b0Do0byN>kY^rNMQ;T{zYy~ad;8oWGv_GOo5CkLzn4az!h~M09x2- z7cbabT$2MvMtx|nK2T6(fnh}{(Vh+^`53m%v_YKldbmWsZZmDbFoJ519v;_%Iqn2Q64ucupNz7_WgJ)GpAf(|fqZJMVKv2`AH!lNFg58-+o4cacuEVIKAnK7p-fvkRhuQ)6lI%ZEm-;#6%W-E;p%$Zc+r^x+{ z!(qrc>{X1GF+VT;QZfS$xS-=lM__9(bs;Dbd+%wrZpfg(_#CLC-{)Pa$QAY8`RZK4 zaIp=E@VA$fcH~FUaCON?H|sM*I)VCv0-Y~gY^8WNOeK4Ba>Zf>;7MYlfG46R$h-=p z$;UGsZqp@l>Wycbh%O;`gq<@543X%_3tE!pswfQutJ*-GXwrKdIws=KnQY)90ojN3 z2%+DXVYZ_c`p?7AnGrcyD~~BMz~7CBIlDm~|Bq(3FbkNPmH+3h<|7&cali^V+G&Ph z=-u{#wE=gQLj0KI;p4+FdUnd_KJ&?uNirnv9m<||pKx+hh}Q{T!-skcg&j}nPXo{( zMR+o3DV{|-I`e<|m6`A?l5KbL+=xmn9@TNiG??^=6){qdx;~HV6g*ytB^U6sFUT5A z@KcY-JzGa!S-WO~)`o#maOz)nzPLh>{|bwRyI_D+iLv=(Z?dE>ua>a%ZHpq>;fdO3 zEKAu4%;-Cs?!-Wjj*qZp^fQeGe}vJ01s*xdLi$OH* zKqnhn@)=6^{#@KXrNnY(Q_Pr5#Tv0SN1PMwSH&`2DI&}x8&hn(tCrjC(Mx@m#H3xM1@1-B$^TSTrsj+u5Cxgslo!Brqt$FG%(&%)uyApf^}&Z^bKts zH=NwO>X1K7$X-`@!-}qkNsuZ}d3Jy!jy8oET~vmGG+XwOUvgxpnh?*ha^O~9?sCL& zb1wm)SFLB_rOWq_%tfn0;6(|7c$eR&Fbl;CVwg-?RD7QAZ4HnSxC3V3^UZ=qj~pkiiX)Yqd|)mFGH zbkC7bk6^7=_baLg$|oQ=fn2zUNo-%qr-que=4AqEQgwQ&ar>3Z{n81VOJTCdd}An8 zHnR9TM%-TTG<+x=qXuX)im6C9h@jnKj~@#`rxVeMeG+j=PCLv3DcX9p0_jq}`hH4q zOG~B1zB6S0yI5smZmpD)Oq(ej>+14j=hvkR7j=H}@i0C`0XR7bolRe3gP%T|a?a3C z<=cB^d61hKvj;x3l!n&2t>lV;@{faTG3Mq)ER7|Vi11Dex!H+ik+*IXL84$?cPV5L z2;Nfe%#x|0yNfgr6{fJJr*jJpTLZf+VwQ{tN+?xR{aF`zF+kex)MzJc1}wQWv5*&} z>=9zofIgnjhIOBM%6!_R3tAK`@_@G*x7|lSXX_G5OdC{*H^hkALrSb8CXf`ALj&8T z#iDV?D`N}^gIYo`LpvK3DrpXr#=f*wXoSi$+Du3;jZbWvBIRW1ztJGpv#&)(*2RgCTH#L2dMVZCRaupi<&FC8vhNEO;cf`arGD6>n;i7q# z_;0_k5^aA`;_rK2D#kJvnfK3WsjV{;fZF;#;uygzgvJc%uE1st59VaH-ADGHnt&5> zi&tDBv&!rP;_kIY)li+^#x)`lPh*m7(~-M8BMZ}7fn`&Z^eDF%n7BQ-$x|e|GCPzg z!`y9QD)q2b`lBlvQ2S8bV+EEh$|)-`RL9NfP2#Tmjt}VeNnIZ~o=kN8~B_1CeRE zM~G-}#G;%bqN}I#du#_#FGRUi7#o>M)rv=(*~UeTB+vZ0|2p%#5!g~oM9b!?!$X&X z-6}2QR-oOkLS3O_t&*siBM$Ra<>$F3y=2uET>U`^^08|&ERN6yJLF(V^ST(s;F z1eLqkl3X&Eu6nISZXh0+|Go0kN_~S8`Mk?%iZmqYBQj}CJCp25)`6l2ZjBv40diz> zdCu5R_|w@jP}6CBB3Y62+K`pdj1OHrO9>tPd96^LI^>ZwWp^K<=sWS{*@-{`zvdG& zNjVOss|2HoG2-5(9vt2Pzam+&7cZY?SFZ@0i7~@oI$=}vmvDV*3lLdcZ-IoE2+KPp z+aPR6np%Vg`~H4P$hi0xl{f2Azs2lnSp-)bmF0)~Uq)cFZvm*C1AGyeX1ZK^Um!j| zCE|XDofZu9>gRQ{(YVc9yLwGNwVZvYtqrc}Dlcw0!6XK>Kh{mlRukFHN!w$QUeJOa zt}gICDky~0@JWNY$>1tPeQJ*F->wbO$%U9vbJa$F&wreP#mEkM_U2~y-0}GeCW`W! zdrt?>_9&i@)j2e1=|f@f;7LtNF5`M9lie|<(?s=SE;m6BU0n) z()#Tr$43Z)jpt%#HWq}JeTO#kwYpj5(M~1)SAB-DkYFSGUpJOihcn;^En293a_X7r z*vZ}l=1S{mctrD*Yw6%pE`2GH2c|wx6wg14Kpl&X`b}fxPmZKkq^hyB@lRO=@Ax)( zzMkEkMa!IwWj8nKY5MLJxl83r_MoUZsw+N0P^w|H&7UghJ-(0o@5gT0 z5_I_E07>VrvrJ}zf|B!h`cF@iU+{=(=f~z4&+?W%?h#Nz>(V3Cg4c>Bb~!8?k8fRr zF21%x-AO5T8s&u_Ru4F^?9hE3l6e>V4JsYlxmjq>DXUsD#YI+Y3-LXiA9M076H<@K z?H(sQ2gK{7 zWE?52`{QLr%?b`>@nfi|?N&E!4Z@UD5*O5IXI9SxDO-UhgsI7=a^i~e*g?+dd`^Q9 zn^ytbN3Kel1SRM;!oD*J1zDMyHAKaN_G?@TTBESc;T|@V+#;oxWyy_X?849QlQv_# z$F4KrLM$p&;sU1I0y9gwkB*8uS479oAxQ(W7~UC%W84U%Vb}@|xDAL!Uz!wxFzC9k z)iYD6bc_bAeh>=qq@{~D(PDM$9@vwq&-_@NfgWSygP+iG!B;o3uFXKdV@y7TnwIZI z9xfF&%TCZs#ko(=B~BXM%FU&(y}08E_QHl@=*42U*gjd0cgLXZ}?N&yeDYIBt?<-IaSEE zDWsP3*%i~BhUuUW#h1TXl_TA3V(({=`wLh8qH}Vk(03lcf<;dCfm~E<4AnUf zNuvV>hy^wx7Z#{2E!eS`u8G}lyot( z#c-JpYETf^9Ev(w4dG>=q#QiX6UtH0tR+SEz#R(%hd+@VxAxA=GD{-kB2FKyL|tQ` z!DUg!61gf5V$56FS`xbK=TJY#{~;zXJ|_8If@Dm{MP*T#@&YG4xlFE)x!6Y1>M$oq z-0Jc|8<`GJkv^>*?wzJ6hDj*Q(M0s4UzSJ!w`Kk*cghFXf>eqcuAW#->&yWQ!p+PEB|fyJI->Q0UL0>EeQi~3mBY4coHgZ<3Tq% z#*KinJu2qVgD|F-O4X&MQ<$ep@<hdgiur5*B zfTm1SqbwG4e8&j%>)YweL#w@xJ6Y5h{L&P+IApCnYUH03T0yW$b>>bKGwAZ(Etjrj z@^;t}!O=~(4igyQ*tY;hJ;mtUrKH~pJfgu@(DKixzyBc5+tu`AmqBal%9Tl!i4Cj! zp1AzIyD^KI^CmZ+{IIn8^{*?(quZ~X?&lG{Lz1u4?FUBQ%*m#OVaol`TRy=J^PD!GhK8MbK$%{Pp%z4A@?lBUj zRKuHbj|Oqb=TX5{nwxIegif&|Zd7jV)5=7etTX%%jU ze*ra^S!APaE+cXZ=~o5;ljU1M3mv{+z=4EKN!6O<2uTNXg`fUJArPV;G+q!`5%;be zz*U|n`4JjZj*8bT1Q%9Bc3!zvNEOfexYXJCofIa%RkBY&vyvSSH|_Q$ssAoErG#`x zJqyuor5<9pI#!sj0u8su`&}$T2DK0mG&Uh>1X{r822?P z9o~(nP5~{}Cn|A&uN|xlzS4xFS}dmHvghU%uhx#)E0@b%}kgJPSnH_D?ekKkL?;wxns~gbGA(}pci4q zhl@KD?BV?7nkfxFAQiK@NnI}t+3a7o`_W|I(t>d5W*L06JvXI6--^pNAg3pjR?HNs zd@D?%ZMgdI#uuwjNbVmYQGi^*&e1#olj$rk9i925QIJ_bZcyO+Wly@!Ct;h9&2S(~ z@qj@8il*>{@hLMrkBZEkRg3kbOtC^lZ4+j%DkLRwT_WMo{whdE27;+`xq}T)zb;NnVat<`6-G7MVlmXWf_40_CBqaChfy-oPBNLpJ4rH^%Du%5ar;(F=|ai7JEZ- zgP*wC9B}$jfT8;0cWKza7}za#ck;7BgWMP&4s}HKrS(1zJLhb zl~dM6KVW}b;RS@Bv%LDbgYHOEOdTQUe=|fLp7&O)ACpf;!P&ruYO>J>dMJ_e{J9%W zXOodOrm!>>0#98dq#128;qnv>J@gN$g3WkVDSXc6xYz_~d?D>)k{sVuhk4;Pqfr&hT0}~%;hhTAr7HaukqykrNYIH)HYMP zIDu}V8e-~rDdjR^K05O%p%Dv^mb#xGQsK>RMm=QYmoftjbldc+CoX?GBw=0{_AANu zvgzRj{4?elil!x1Ndg}_z3hffi>ASbF7O($GYim68L2rrI=8F(HFKQkGF@P40GtpvI7L&<@8#pK>EWgIG2 zHmgP$_zbd|lbJmwvn#mSA*2vVE7l`TXDgE;q+D~3cBfl$mkpeOA-0^wOis13a=&4g z;69Qh{P#Tz;=Wa8R(kj15S*K>AAyNx3cgkFSu*|Ccjf%t9P=U5oEZlEPZR=<$fkK+ znN`;J_pV?53V?QJz*twEogAqndlfxhB%i3!mqyMDzcS~Ciq?5meivjfj9#zul-8J-FVt@ZGl__K9&r>=2`)nl?h0a1g%VM)Ag5C&*bLI} z1yOua!40C1;cl;^8h_)Drg(jjxbWZxw003-jYpWZXK*WlPy`o*VLv+#utVqSzZ zn4rc#Wl`0Hq{wTxK;u+x%4TJzxTU0`IF3hvjhwBOII5V;N!PFTuVqI3`&zywnkC5i za&}c+E+=DSa9K>aWBgQ`e8<#PwPZi`iB!0DO7o!6eazC{l*3k_va)7iu!XcbyssT>%}#d zSsSGar$()NiNoV>$5ERcR+{Et!KU$jzpB=RNi6dl*swE++$>Py zW%*6g7rEYT)Cizvuy1!_& zw{?ZIrNG99EW;S!50=Kj#yP2t3;R_1=`b4H-g5kKmdV2uxKi8Zk&c$AxW#D7RiHxc$MHHd?V__T;J%Flukpw!$?H>m z)60rsjoN_y-loVCSYc?Fj%<7+#0Muy35E4OrrKS&fK*#<4GvK zc4g-N=RjFudQGTl@PVB?zyDckHl!(irHx=w9vMmPLupbUP&h$ zk?53X%{C1eg+3A#pvOh=+rj)^z)X1ONs*Y?65mY zHW9!OYkBL^?Jy7xglSLPQmi`MUn!5V`H*aS=)Z%H)52I^Z!u^^S74mIyqW-9 zG2T%Fyq3`jDqd*UC<%lVL{tZ06OkEB38?&I7t-aaOcMCEE2k$Y{~ zt%yyaLJUwy-p0~NqpT_eHm7*GoC^(~-ofvE;7Gf{88|vtH%F@$wea+%cYLSvnD?<6 zJ@svDG~-F$5!IB=oZ6jdvAVNsr{t?#WRdDAOxY3rVDscGMiFUqKjfpGIGkYtR#q8W zhWN%iCf>xp(Vu1Yd0)#PEBkEPYRwr?v+1l4MQPO?A&gPv1O=``RcpVqz<}pm=Nnz^ z({2o-s;%UHa(RiUQgZE4u8$8{hHq6HZLjjtTdbvg7{a7s$GHSb_zD+=Dgiy@)-;?* zky||P?E)S3DsEG^na(sKfqw*oh`NS(c@4QgjBjDKT zY17Tf7(Qm%xv@ETa(&#`VWtLTiT5tlIEuYx1y93g_wtnCtLn2H{UBnZR(RXgt5 z`&@-^NK#J;u_CwVfgJSI|9RqvaiP!SexXA%co?Mr7*0Y@jUxbeO?^fpR`9S1lC}8^ z>;-arpPHvT%d}b5f5~bq7PVvPXPz!OPDw$JP^LRYWQ+Rw>Emk@y2+>U)Eb3y;yUA% z0;XgtZrb|##nU?@a`_;fR4hbB1PkuOhw*o(=Gm>#_qu9HMi078eeL3)t`xLXbAx*y z%P@2EKAsI-(3lGw?wHngCk*m2M}Y1!G8&~KcRLP$$`9o4N7H-A1Z;<69HHxE@C~H4 zeQIBsW$TSpR>^kg{siIQ+OLHxyjpW)ZB0PcoONaSb`k+Q3Q%!f&f{D~w?8bO6c zJ+y3jj(#`0=hfnPfaE47TMQ8%3E2TC0LP^tJy}g!RlJz0qW@83I)ed!?9k$KW||Y4ES(`e4sHI9!B+J1 zTBu4B$?U)hjiEux%AZf?KX3)woESbBZw=&GI6$WnV6)w5EGB4Z3BamsnEfG23J_V4 z-+ad?r=oY6K*3B+jMjqtK^W9ke|^X+Aod|)DSTlt+gQz|SPmItU=zGojzmyEgMrc^ z;tCZPN-JUNyw5gJQYd8f7|dKxQR_x&_tPmAg(I`av%)D7I`qT^&*4kz2URk!Vme{O z1_jN$5(Op`IqpE4XnO4v?!%$Xsx8s{BqEU5^vQT3buko;VZD3X9PF4Kdg<6DjjH<3 zHSy?IZr$lKK_ zG#xoJT0D!Ht4{?86B7?D+Gyb>47lDIkZY5xogllQ`j(?R#Tfw_8fKyf=@AnUvQlcC z(8}Tf($Ts!l5R-%`EQC)(RKQ^a%BGay>fYUm#tLfnRwl{RODS*&=-!VV5$vj4guZX zF0@J>IpG^9p9BU8?$3fy)bXBW)U=kly4^?Db-~eXYT@z>fV7VeicL!{Al<4K zo5580$KN*478+Hu8M`+H5Q2n5jT|?uKT@kSj#Th_oV}z&Gb+hD z_p?r%qt%jVNH zA5?Y(6?3iLXfyPt#&<>4OU03b5+1ny0{0(jkR& z?VipqRa2B-4D%Q@#s_{QyrzSc{M*q!#7^f@v%!Y@lX5mP8M!$5kH&>D@y69<_Tu~+ zDB&eyJdwrch}&?H-S{ihnt~0yF%qvfmJRb;tyGlmo+Dd$#3Y&_@k;V<#)T4I#{YfO zG{&8hte}yFYa&zABJTJTJ=6Kkfh9bh`BILg*~+gfVt*Ccex42mPNyZU1}T&`q`sUu z{@%Nej><8((|@5g+ir($0d9v*L=gnkXmwt^S_Ur}qCw;mZMJ6EoLVu$Zj00@(jl=A z%+34qw(hJL_;TA*(;ti`ooF32;=*JPc&#~QsP#=atz}8A85ML4J+l7S)4{F^?okfA z`ev{TmrDKb7S)qN0$k2nmwqhUK;+#O1PoqKmP($qCE$ zHz(kzD~2Lg9wdl~W+{jt+yc=On`J&{HRaA)Gr5PfM? zuc8)BOG|0(K^c~Bijehlf)-Kp&4&OX zD55(5I;S73{6}-LC_WxJ^la*3`suV~aF8?O;tZJe<49stB6+OH((CZX%jrt?(IOUJ zO&SiA$=i+b>*6WjoETXXWUbg1ZM9O2Wm@OU;eoPs`b8w(FKTgwMf5N$AB?`+DTlH~ z5ECW%k*8=HzfRy1374=u{p$KlmsW zMgIW&U30P|VoK718|%7nrU*NR%Wv#^@rR0x>(f62z~@p%KxUD559W0TY+bkvIfR;p zW#aqEam&;PM44+5btdD~B&-=SwDXp+zDG2QhcmvpMYMO0%AXa^G^+TI z(G%DM)5aw}_gP~;G{`LM%PJE4-#N89#5k7wHc@_~OFT~|L+_xWpyHKIzEMpN!Z|YX z8otT?@X&$W4@p#coGmz)^M6W*r@upwN0>{^g}q8D5y})kGYu&n$pWgoq7D0nxWh9g z^$}Q6AAzSVY{22B_kpOd*Bz+y?NGOwdrl@;riGN31Z%F-lQ6Kk-+`}^@Y;J-Qb}`! z2duYce?fp=879md6Dc-lwJIZ3ao{$)b`274>VIhGUSg+I3t_UR(@YCNkWn@ML3C$$ zESm!dG@dYN3hl`g!C0`NJ*&Zr#@-5AKp*qC9~PqAu$aE%Gu^=F2PSru})Szg%9^R+9;-Y z^w)RgmacM}+in&tS2Pm`+of|Vgn4FIR^+TKj6_Oi7z%JK7&+*Yf_Osgn1X zxT+L6grOm+18Q)C4MveI8>fUYgM@O&C?!OllGZthAc&>k{zl0&7HUExTbw#dPP*H z>gl9!j-f=92vbDBQcoz%rq~;&$MTs^8gMM()%)i9fd*xkHTDoFd;}>}k7Dy1{h)^4 z;ucPlsUlXX!b#+e1h%R4+;>KqAuk)@+d;UcKh9k@9pEah1ntIUGsb8p3u3IX=o~mM zpgC8-==#O@17ra&QcmaG*m2A9hASISZegS6sjguNdcvHX7&2iIZ1>J?9}m`-X$UGquRv9#n5g_ z5=oKa`HbCFvWe;0AJu&9g7e3|-e|&h4mD0_)fXB&iD1}=Imc_mkM*O>jitBWZ{3oR0d z4=jRBDR+3BIYQs>d=n$#5C^GX`94UK3(<^xaDPr9n$WBWQzuu(jnmSg5eOQ$An&eA zk~5|3PAqO?|4BCU*x$=R0ndNtS=n`sO?8CvL!rdoa!6?5F zV)_f2#7vrps&)hLLE2e6VsWE!h@jVuDA8G z93x|IL$T;{jiE{u+nKhzKPH& zHh%J(2A_Oy|EY#Ok<3z*rIwC*ik5^8u27C$pFrVG66Od#-+=#Cm+QqO-pXv_xFCW`enG939dd>6D42%&V#PxlQsd0t z>cv98MC+(>NkVRMw*6^1@7UC`QV{RYb{tI1qAX-CElv~CpS_xZeFIJGaK}+J`?Kyva$?Lo8PG7oxu_r0O7Itb~<`jC&(c@1-n|I_VS zKS@xlnGZ(?`cwOwxe00MZ$A}iQ7W)8(4WM0SspRM!TtZeFXZ@(D2A&^o-Js;q(~RJ zX#X~Iak^Z7;#+17a%Ix^C)b-w9Hn|BL38r|}^Lp&>*v$iw zGn|@+KSRxtr&B9_ZrK;p(uYz5AO9m;8AnUzGb!)t7xK|>`oileeuzUgs+4zPXCDB$ zlrS{{PsJ;@FDY(5sixYwd<6d%O(q#HgM1z@h5bJ4YNy3&EfA}X9$Q2lJSOcUaTk7W zbBj*Is4D$O{kSTRQaLq@2RV0i-*Og%F9Jb{OAp$&+y}1hw@cGHdA+3rxy|jpVx&BC z+cZ{ETKxuAxRZ7S)E=W_t^f~u5m=d{A7enE-E`A2p)BQFU)Nsy&|kGNUw_(@jxB1@ zX;Y33#Wd5GX^Kz&2%0?Y;>5MoGGE4{M@q?geKH)ikfyh-Lv;zjR^GK&;=(`m5+ytG z2GuN@y5M}7M_U5I{|ujOE4$xgN||Q$Y8skjvHcc{CTYGaQ$S;Ku4`bJd4=#&yrztW z%T1u%K+_uVwTEINx(w|*>N~Td z6Xewn57&uIid(m@?D?tU@syQ3m{Sy2l^iTHWsOaU*h_>q$kYILEo}0 z67iI|zw>Un4#Pc$+6CS=v%4Bddagr5(#1cxgHJ(%#+$+CRvugB*cM~f2)|ar9MlA? zA5T+P3WNt6otPzFgO>}~OS4{3x^-7YpN0CNd;#STI1nMbV#ywL1{rMohse63@BWug zCh8*E6#=t=*JpRVs_1e#YjPjN`JKtx<3PU|A{v{G%p zaMrdiIh5mb-jHcWKsIegTLum0A^}J}#orArv2ht;00*%geDn!vH<_ptzOZg52X283 z5%|fIQ(6(}N9$v=#&jc1W@t4a z`TRl;bE4Y`@=7%C;H9zO`5r<&F);21GkmKNPRMD-tL|T5H<}!Htk&+mo}o86qi8lN zhO#RNdaHG8Tcb0E`y_(=G1bBjJ+ly*ojWb@bmb2N{Alb($QOPdr9fg+5%BH(!j~U& zqy^+7r$SMQMm!3FIG@nAm9W7>qP-EHjzXd!NalB-CrJ6o9S{FglQ=aiyOV3s|KnpS zD;g-`xoAhpAH0$nU?4O^oquj+ysR3teme61X8Nzr5nDk92iP2i& zPd)awHGaJkhSg&evBBr9NT|QyEu%l*FSC437zxB+Y8`{09&Zd41Vt};T9e6EC?@=} zlHcMWWM>2+*SId5NN&pNNB%yDLWUsiaajD|kN7mYXRUX@kzjvY`hD!XUOG%BT3w5| zk#&OsY>T>MAoj6BuIc!n4LCV=*!2wf;Ituk1-j91zDzR_pD$rC*KbhmnBq?prfWXY zh_EMnYz(`2(r+ZBo9&oCNir>_b~qKpoLv(yke`3zvzBmx(h*cQj<)&K#(@IE5`C0H zsra?icPZ1*;#7$?%-wU5{)lJFlDW7?kPIz9c_R%oN!6h`^$Rm|0hUr)hg(@r@*a4` zDh@&Au9>E9DN_?UyQvy=S?*4gbXC7nCZICx#6nLcjF8JCLq+i;_-d~cTsX4-**HnQ zw1OFLV7?z!Po*QnBj@bj$H(^%A=xE4L5ce@!|c15E|3?`EQ%Xl>Mwe%R-t%>*lL8@)xaiUuufc5rKj!3#QS>8Vj%_1v_b3OWB&#VZ))V99z^@ojqMT5!juu z5iU#OB00~_@n*PPEby9ag-U#I);78?si(lnPZPAs67~xL6)9d=t(g?u--og5|6NU2 z7)Gm%hb6C8o{kn(nSUPoiA;j#q-0r@_|Kv1$3HBj3u%>+&r@%5(?QK^6pI zya3%a(JOiHkB`=dnUtZ)-gjpPe!gXpYhwEpY5{prsH>WmF-NWmAcGH*v$88Br{W& z;w5jDmIU6o`Jcr_d0U=ypV8cPfwJ4-r>{6@3#+GX!6RBUAc>OaKx?g4iii0`N_`jU z{r!=DQ~b5zeK1tDtSE`w!N}N)Q*EoRNQK+B^6k(&mTm=SwO@yET)S2;bq;b)U4G;z zFMrO1UsR@;`N=gHWbHPH@mI-sWQ6cKQ{E0`xUqc=r%81k5nifOeU5=J zDblc`I?4bWocNm+@-e~^re5d)d(_vC%QoFCguPE5RMdv7F7WqCHD0r{^n~**yfEuK zPi`L1XmreLvKbYrRPNFhT zTSd$k@|S9`XjvdjV_b31G&(E=*>SN}0&h~s`1tGiuCry*N9_6LUSDN*fF}|!iQ68? z{H25s!Ch=Cg7k%240pdTIX`_>q}`f*EJn$;NM(M(G$WDQbYs8YZ*MAcYRdzpF`$(C z`1N9aZwkL`r=DGx4s`OsPeoR-S{#|*gi7XRppbvn5FZ^s)<^6|y#Mw|I_T}YXuX7S zO}NCnq3C0i@n{!8F0z|if?R(yXD!OP|`T@urj|p83h4#d$rNxgMezcE#00-i9vK{(TcbgcGnAj121sN`2VWU8w zBjdDLqObL0&Z;Z1Bod3s+lc7;BKZ9_ZMpXg>&|T^abo!{<}1ZF+Hs3Os+qB{=?xi6 zg@fhbZw-`>jk(EsK@`mpOUSCCcQ3aWz9%h}*)wC@$KGiMC-J06o{!Wli?TE>XK~sj zBoD?y)RW@GFnQ@B@~%>?n4e!0LXjYxjJYIXB0TPj;#(B%#QGkxh<~{R%z&Ieo?jQl zxAvdhe^2$VUbAN43#&OJ2yeh=(5Z1sYEwFnBNTNa8kLG*WWvGxcbS5eF+IuP373F5 zDR5FDhLF0^X^<`Z!9N%!T_3I|QM>E)868>YgqX#Ox8X`*BRas(F!wO5Di1bGi@40r z41C4Lg_BOEUe1!BKM4LivsfY;T>ICM+68h*OIxp9oibq&rcBOJN^!1*U{X*#QMxe` z2jQi;;}pXj>%=d8x2HeL{nL*tL+bo%6P@9QFahs&?>)aPX-9*ya%Px#QFe9BUIlc5 zo?$9o%deEx%WSi6bWu`W4@RKN(+Baik?sBvT!*WgX>Mk9L-=$Gm;~KtB?ND2jSp*@ zPo-N33IJ8O9#@u>sr{XJXPg>7<&%W=~u^ys5WW=0Zc1iO9!Xi zOyx~xfKI(SjKPd+7j>vfNK?zBwNHKlWaBxOGjqy|CL zk|Y@H=sC$l_}ID=0_`mEKLN2Cg6Vam(Vu@JJ5jR6N|<|x);DA}_bQ~pN72YUg_3Se zo`&|@Nkga5rSWEWj1}ArW$?Xu6BO?4`h!+fQW!-$4A4K>`4-*1VH|;ITCHDMPmsG* zUA{{=PG0$ks~|pRoA_R$9atGagX5gAYe8&q_3bqDD`-Op2VCMYY9n5;HY^gWFlbc%V-Ec$a(blJY z)uf@2ix@wsY$y?}XVXw!{EMNcG|uDfw;mi9gc9Eh^eLDrjZ6flUNb@HulRJSkTb$? zZ^C0Y%U;BuRgA!qUPzuWP>bM+q#*sPP(Somn9d+YJoPw;P;Q*52>9G#HVx+?E01ES3eALSA zME*V!Vor~W;t2GFB<$%i(FXlD;}*|M{pI19t}S-9@q}1?*~x?xm|KCMgb;nDPWT8B z7wa(>DIaaY!zHig06#7m=&yHYniQB(r}m{qIs0m(&M?vBs!9?bPXtLeTbs5wW(ACU z&(H+wBUsaWMyQOq@C;+qd|nm{#T9$bf;d1iSXALLl{E(c ze34y1GOQmzBiH=)(= z#5IIwHp|U!$kiBgumFxuky2p2S61P3it!D%fn)fe(Uq_1Wt8f}4!1OgAmdb2--fih z7madUobn>Jxa*K5=D~G9{4};8B4(f&(A_ZZ_=(B_U!hlilP{e#gs_KyWx_g#U;V?v zOj8B=@2++28Z0}Or}%!oC4ZWe1T5!CiWOW8q1l~mOOvqIoH5a-eD(x%hBk?rpe{H@ zio8kqfh)nX$c}Pp^BS2$i|QY6U_+mB-Xg{w61MN{V__aLQN3)iq!jpI0)D)hCZA` z?7_2UoZGs*4Rnpr79U2;KD8XJ68?=yr6L&8#!r=>RHk**w#8&hziXbF)@}oONy>~p zc&bF|?6Xe}MepNuKIEs62(R;|+Y=!a+cf{K5@>HR6NfIIB4U3?-9^da>f(lLNGMkk z>{04+Bp$?Da1+DT@^z!5P5RmMx^${6zlO)=BU*Jf6cC)1o zwaA@q$XBl)GNm2J7qQ}YmzKpro|@eza|~m7zSkK-SxG6F_uoG&2GE3>o}m(9cCK?j ztReo41h+N5h}MzD=COQvbi9!jN5nAsl8d{N$J28a+|Pm067tvpUDhC62QPV{BBF1X z(a{X;G8tNGdhQtEVtqaj6zpCPRZzsMNFGUZyGvF+*zo&u$mx`0Mz|ANnZg=W(5|uj zK9|?+Qj?AGZ=nE7vj& z8dx<8|DYE8>S%hYs==)%St00dmEv97e}!KRfd+AFS>m-Y$o3}Hk^m)VWwLgLs-SPZ z4AXc>zlCmXOU#a!5PCTmjZd0u{(EKpmt zBi<+C`&8um;!9v8xE=c^U5D-sd5p+cX&9HcQZRPFk3q;>b9DtPT)e1qfq#XVxJ>ASiE$`3%hiPXpx;9&q0(b=nJ2`4{k{rDFtodpwX@ z{12=T)=-_RH9)uM61L!!CuNHax><5stLeN0NWLQJH33yskr-recd!_zpf^x8dx3~! zL;>`678d=_QgXyLuD!Mo6(1mY`1muzyD4iy>0Rm9e6e69FUAb z`wEF$3{Hxc70;-I(M^P<>mFLCAgg{qLR|#hxaI<(j<`nkKW-*UrHEi}T<2-9>Wowlo71Cz~&( zM+gq6WMG~lHS?2}>I=|}ujo^Kyb)*!mpF4rc-A5|!{rhOtz(W#x40B*s-b>YmXOUk z!+G5{#x8DXW&ZQXPo`Rx7u+PiyNv&~dWK_%ZAqeI{c|X!1kglYIX253>T+8e+|2g| z8DA?R#@528qj;Q9z2;}C@$p;|jSY1T`(h`@kv$=w?ymm`O2H1AMxBu1e1`j}l2G&c zUbl$7NZ1F3t&Z`HLhNp)-eSbq|8}uRF0Rx+9LAS!P#Mj(tBOjlT_{CnesOV6IeS|4 z`IN<=rFY=?tONQsa88^cP3iR`+v z9)QLBYZyzV()?xz0gYG2k@OpL5YMQ?AD$Hg!DKWQSI~xBZogjvgFA_bRn52k|~66Wqyc4Tj}sPX$Dj*004h~#Qs1ehS+5xgtEI8I_w`V;|O0(^p!arAh+= zN+|mI`U)y$4deu$^urg^7CyIWiOvG%6eir7nW2z?U@Kxs1@OF z7pS_-5DjP!NB?d4uj8|V7imxxW6wWKD&jO7AuB6L&{03W%(pBZs7EXfK->ct>%a~p zeyc&td)4s&EwjK{+coD%r$QWfxE%@5%%c{x*98uXO@RgK&2=~#c1G9UwCJGw1ONTu zZp^pop+!8p<6vhSREu*60N2apgY2RnI*Lsbpp7~R8)xEX^Ey2l1fDp*&$Iapi%ff; z17y%az)Zr8dht^$IMRPdP7t571H8F=iIp0o&h+&3x*`DU#!H-G*V=O+LN@VlT9>M> zXWxS#{+cF7h{%O;;(1#DulEG96oQuS^+RNuKEqY@bhYsy7?IQ)SnCd*eRdbZBR;(N ztF7uAqT4Eq#fZcEBahAbCH{mH4Lm$Iix!QuO>4s@@sFTPw$E@k+m2b7Y1@toc{%^x6N7~4x3YNk_+gMB|p{Ouh(xu8tzT! zH-DlIU7GV@xkcQQ?nFl`+T?*`yU{j!0{<0CMXLVF*;1%1@}JlnWU7DCZL5$R&<9Zy zP)r^F8B7XkDu6++6h5Us6nMQ^;5gVO6?C_Ke|sH?Cn=IV{z;J$C;ZoiIdX3d5V4H) zPAThL8e0h1Y#(K2W4TywhwVi1kw)!doUDvTrz*cqdPgu-fJhJVlh*_9?ETGa*<(i|+fhoY^z7SQ3JbHyGg1j~c| zH`ySXZHwO5-A%u$2JbUVM)PRvj|S9dO{jV?k+gJr`Gin@r(H|CjT zD|~j|Ob>exSF@u@lH1)FljnWDo;;OtI=1@ATKTh%Y0B?~AyPIq$ql#}U;qnw+Yc0{Jkt_qL46$xG(6wy!`$JJEKN8{*%2ODjKl>3q(~n~ z1)VCf*w+Zg0Z({#KhL%$sPO&tG-$s`-|OsuetW4pU;lNJTn)&f_uTz;Sd1IjpxLm6 zK<~H{=&$>UDabeTP)J6h39v})H?bJ-UaUw2#>(s;C<4TKz<0S$)iEy2`Dx8`p0m{g z^ODWyTaoz>$}ez`(>U7Wj~5UB6vOvn<2WNDWGS^q*%-sY zEHgetB8J2qO`SJDEUu=c{|F4|g1oeH&D$~N+W1O6mwQvlUNrSb@nN1xsUvMJe`@R2uUn5*N6`8V=k#qx1eJnRrG=(a` z+D*K4T5H)1cs~12PRP|^1eZ$f>^DOJ%o4Umq;6=+qvH^J^o$D6jxbnxWUe|ciow>% z&Zme*iLN%9XLj;)ALcN+>wK$u#*od}ZuZe_7^=Wfl)X0!LBBS?@&q8l#+pjMlIUrw~{Y&y#gMi=(-w681+^ zd2Pz|fneqt2eaz_0t)5|!?da@d_$K$mezH*O^~y$p`j$)y_VNHXavRAxOa+d`QTML zPkOMx)7Y&pcHP48Z?az{zWQb=gbd$2Y8{9pHgC_pOg#2dCln_};>dnqbk~XkEcZw- zMha(WLuN%1RT5qcj^;j;!k(ZN9bpHZ~K8xrQ4GG65Gs{fV7~$|z z+6g8{mWQ|CE2KpG0z-|BA2}J(!k?AcoH_TIFfM-K-<^W=NH4VaXlAXmBt zEVN%f^-!ArR_G}VTDT>&$qP=tj%Mq6fJ_wsSmk#bho=$OPE`>P(ecy%thKu*u{hM} z>2%;M-YepH`T&Gloq_qH2a6MYYi53DI#u4#Nwdkum7l0E?iCFHFYCAOed$#8n2C}9 z)e!#M^84*__ig$=b4mNTik}wpML+AHllLn0kl-sm!zjp`I2iqhAEl4yB1cW%ct69= zZ+m7kDJ;_{zdQiD;hIHEvV6xnC{sj`yZT6utW)VI@Q00s<@bgEW4iL8v(1*mz4QB7 z&npo0`rOdJuDUS}N8`r+^|jWLGN@;CCx%ywgmd8r)Q0YW^&;Nbb9Il{7S_=;iRSrt z-?vJGMC|Zt_HjN z!I!$ax|$tKHv&UN=h1Z-8^RA;9udx`p9kMS;+nz^ae3^ko>b<093k9WBSiOH;g*c^ zh-@+vZ&fMWGvIZ8OC)kKqYvgg&2R z>wcho@?eyyAS3nV7y2XxiD2i}+W)TC>Zamr10@_nVttyR$=Bf7Ur%6OkrGSn=1wx3 z=!Hr)d*tBn-T{>@emt6rcT5xMsQ;N`Gfp$J0<}LT2jp$yT7)*hWm7!LBhZ%*6#kQsx}-iIEFDn-7Z7(I0~oibmq*(q(1T zBGC%uEu~P?{>Xvm=cqK(JDOql`}=p&rn2k8FwEM-9$yZ`W)41A|E!t+q3#_e-*ufoRqaq-!)cK&ox1cHLunK~>CuXV7)Y7{Q$F zCzkV>2(h7=)b~G%T{2k~8P?7|*V%i47$d>$Q0oL{K9hg>NdI^Lk%6R`Qyc1~R4A%B zl39=!*bi{1RKh<%ke3vL27ZP9>ftBtL+A38ugs3`qDWKFW8N%qwwXl1Ud{7{M0H+t z_{RI@YzM!&8VI-4RT}6T0{?wk@db?ezv=!W69@y@y+GyQ=L{m}uA>N|;}OD#7`~(k z4jmBWEQYDJ4TdaY&h_SSPUxa*cUz8BRGZXBDe6k7BvPyV@5_JcL#5eY1+OQ$bhNee z{C1+)0K3i|A^cH4FwF=6r`H44!trN!QKj?z?^cD*+d{j;xpx9p8&&>G_Ov*T#dD>( z{5kKu?*=>g8O^588qZ~o_+3IwZZiEcQehM0y1qACvEXeC_VZ8GoSSXo z3Cd?`*sQ~B^PPkOt*7^zDBtYA?U7s%jmOF> z7=p%!-4B()cm3_N?2l^vWRPhhQQ3cyLX-rxCTiGdQLuMd3NEP+oYfB|m%o3& zteoQC-|JMuP!yxnPrJc@=OeZo!v)URLBF2e9-xaODH1Z-FQmizdXX9nNkGuQb_uws zN1R=nwQm1imgY&%J`91BRvWaA|5k|Q-dtxl=_g|Z)sjUw1N+(zed~MGz-dUdVKA_Z z4;Lq6ffJD9dgmLc6u4^HF+z9(wN7){%GLi5V7&|d107OV!hnI!1P!H5WFHbC%Ec2K z4D80-)n`C|xz&F199Di12I$#&FFWboZGrFIsXSBVJY&ftgsuMq*5J8BrU`=ez$~oH zUspT!01eL0r{k)JHA1^>(maYJzB(G}MNqdR2Nj&I_9wNhW? zjkx_vMK#s3)k>!X4bV^UqfS8S6{<7EP@Ls0-kdu9c+q{pvACg27h z!Z#UA5|d*rw3};|C3MVI&1)}8f!di@Kh^;7d-DlfTf|GH3uBH{N+I^x^4lm<)(h^6#<97C`_IecVgQ=N(a@rHzZn6p|XlQZ1! zko?9l%aqPHx41|D+Av0fAqJrrCHPh%lVmfOUS>h>7@>S0-QS(|?iumuIeZMrNSXz# zQsdaje?g)fXw-z2!2RMP2~9YkWNi!F7MQsn)|B^HCP zzt5I{#G?<$j*t%os0UoYVifn}a^Pu9f`iE8V-~~rrm|}~AeBIxoerJM`pqI<#0MWp zp`-?`N^|(YrLb;!IzHHMnl1dJM6BB%A-otl@4TL7yWT~Ozs(qXO(va2csYxSUVb}6 z6)TpTgbyrlM$8J-;KQoy1DC3j3^V&kE(q`44l2=n6NQu>Wh;CCcMYzdAVYOcH!u#K zB7F~)a!*!qV3-#an8is@7+tN_(>HAek|)%uZ7$7@cB0t=7P2?P_&$Aw>b{om@`~VWjhp7JYoe#%0?Kd^gGK9Z`1C z9gV*oQ*bTGO%|TI{(*l(6r!_0raELpNA1D@dMJ$iPwMn3-?ET$Oao5@?-EoJmZOAK z4YravPFJc-Y__42ni&)FI_-LUIyv$Zd_egGc}#akP~m(?rj-zNGT#?_IxGV6!n5@j zFAL-w%p1N|7G_7hkitK3wcfr~d{B0|;xr8h?J<&P7Qug(s@H0NpPxB{t_{dBxQn2;b_katwp z!O=ZjRKe}>R<1+UVAhj-nBTzfPYQb2rW%R+Oc$Fe8^(nX67(#W7k5Vyo0k7KJv%}O zn9wd6PWxQ6@UJUI$f%W6ALI`LWJ{Oav5F>18#y4y>>U_#-)2MuM@RzSUh+h$_FN+_ zD5x9sY}`!4VzZThT-Nu>9aSFz9y;FR;at)Erq@L%hOqbLtc2(wv_gc=Xl(viX@n^( zftod>6qwqLJr;%jWdcKr)F#D*ciTcu|9TktbOmaigDbONm%fA&5$rnrEOrTf+AP%L zchCrI;k>)m3^YLmxd_!>dq|j&OWqpBhVYFBd%(EjDb^|c1*Fla`7?P0g_(sMcut6) zJ{+?f1)BSnY6!*o%FWABS&XI0*JHMwPUoK>UC?Cjmh)3BAGj@396+x zG09)|bd2BbUhjA3({yc}2)Kx#EtJKQrJ~b{DyNTm>%%KnvObZsy|sPt&|MV_rSMqlrCG-FNsazQ2MP z+jOBr4LAK?8fGm&6KD_<$tVBd3R3*&qTK$tpIzIw15wUyCBL7aV0-Pmc<%#r2QNqk zT@qLi=Ve69F2?F`ETkHmwzm1TJ>h-5OM>KoQdTS?H1NyQqVEXU z`CwSYp3AbpCqP9S(4rIhRdsqZDT`O~39>T#F*Y_)$B9`xIvT|$$Mq>v^rlhl{+k%0 z8IaTLImqjL-{^V&mmhd8us$_Q|7S`h1{%~JMs+05;FhLvHc0o0CoDGI&vJ%;7xlCz z|2;haeJ9`ls^=yBy}|iiv?ka4x(M7g&O4{hDZ?3}+7UZre5W(BUVr_5)kyY~4QTQJ zlRi%xlHZ=?ifb$hcod!E5*VFWS%jakLDeB;QS>|w>O+8%^cI#c zx`QeAyDQ)p^QNSV23b&W*Vze!uL#y~EGKh+c9>$BE#l>Na(Ax8`v_uA;Fn2uW!f+N$IAhXlX(1~da7PMU9d*a z6Wki{iHH*K>sicFK8!M%A+C`tvDXlNvrrtz?0L{paN+AN>XSx+*ShP-^$kn$3qKVm z`X$wQ^Gbp~>=`n#Cg9wyY3Z0WJHC0!0@q#Vk3~dOSs@$Y%LLY@Iz&fI~k)Ghsb#TLeYMY5~nr+7`X>RJ{OdvdS(5_=pQ?!LJZ zl~kA)^?C=SJEfwxdi5$>sX^frsICzH4l@XK-#*sQbqO9bsY(gBDOVeB*#gLr1STfcFpmuN3g&nZu2dzwfBdlb%pZ;l;m{h!zV zZFYLGslbH3M6efz{rO~zF^dqBS)-2<9bJ|i*cT4$yq%SnSV?PZt8`uVNB?^m=BpG+ zt}mCa$K|$H6OUna{_B3mw`O{09JSAy-4I zw6t{BiakCs@O$OR!zTo?_G#EF{BSdTDXQrRoJZT znGU9vmwWc$Om z^tln39epB3qfNZ9`R1mfsO?TtK$88PY8xu>D+4{` zREabqO&lo!->u2)LkV-UyLEXNXX1DUp8Nqa^q;UQspCI?dDSGRO7Tpy)VXa)CXr)&bS5qqg5@i6Vc%u5VSdL2Vrev*|N?6){xqgC_Lh+@-0}S^# z_Euj_E)W9m8MQ8NH6g9LGqM9pi136qK7Jdq&_}yEw25z*R1F6o>?E-CpUq)$+K6)o zlYE}1a2ueOi`7m=>ia8fzW>9dEuQ5*unce6`I#ZOxRY+#*-A@QXralqNOVPCKA0b_Vay7OSB2j^_Aa*vd`;G#{{kM()88t>K8}KZ90}Za zs(eXbh6iN2%bjsJIeK`35T5k&wblzD1v@(kaj{Dx+ZwxzsLt-H7uGs%AiN`u1Dk)9 zB8i%Z2$R7gtl<37OE~d`Ak5l+F1%?0CswP_DLyUL>Rah^o!dlv(`(xIl<^{$U znuA1ykP1i7)G2q}PUVaHw2|n3)>$ids1|mj$hP=EBFu2~G!MXpD^1C!t4-D!E`Ztm zpH5=fAiCt2;wa`S>P$B0^TQvHbu-QsUZEE#l5o_6F$p`E=#l-kJ6wb7)+SBvc*@@) zSSxdx1Af%#U2pM1gYoG+#Ny-!GjccC=lEo z0+b@bEf6fYI~1o#Tbu;9QmmBXRv{GX?U(2M_UzgJGMUMp3_!0qTUh};Y>^;7w)Ah3Sf28B|?kGM#@|{*=21K1=(*L`-Y~NRs53Zp) zs7ZOFislkM$NM)0ZW zJOvu)asBR@VJcP|)4tgbqQn*4)^a@Nh~L14U0}(40f2Ktob~avc>*&uFY$q0{#C3U zet$vqFuZsnFJ|CfVnA0XplE#TQOnS`icZ%20sIozRqt6Tl5|^V}%xfV-3V7bcM~Fp>iWdyh zD<1Rq6YB?g+mM$byptsO1GHf{1%MfUikL+*HCwph_f$UaMinGKA|VKPf2aQ({>`Al zD_dquA%x+x!qQ_oLcbdnCSCbp?4{i6jQ^}F_=#JxT;I#xYr*@dx@L1qDtTVk=9$@i zNs+aBU6jefCG=c-pw5VD;V4enx4(5qmdTq&B7n}qEm6#~g5a+;Ad_8YVj;+AeOOWl zZFi%jq%I;%hQ2yG%SL!l* z1}DWq!29f8HiNFEh{sXBCseFKeEdSJiPK$yJC!|*>(u@yLQcOI@&v5CI~O53YOF- zzuegbN3=w)m%TG#tAAGiSsc=~whkWXHR?SIlN62Xu`Y(LObk6*Jo82ny{ufD{;n^q z^mo=%LFEchctU@G_4AWOeHr4u-Jaanp4#;_SEHjgM!#784*W&iV2)*ztw$gPMBPkf zYGu>;qUBmQsC+uwWaOy_X^l{IAhuWJTS@)s=0=@|MAFR1zf6TzEJA7jg1KiYJKLnP z$o`ng|8uPzJ+{x4W|IQ(K8{ybme-Z3enljke7=^i8O+pF;Gn^>ZNvl)ucJwNcwp() zf+w1D_h1y=*mAT9*UI|*V%$EFzfg-6*Lz}o}vu) zAO6ecfyv6JkK1U~CcFtN$0UsSfapdaMU}e2dIMGF7hLPyOE79|V1kCMf5y#&FlB6R&A!ZK!WsZ;%N^HbLyFJBJs=xO<$M3Nr9<+@dU5;J8sieg)BEEIR8 zEyw35jd#uy!~*AZM4JV@Td$LYiNI#`MCbS#>ljP{5qc=q>`iOO9g1WYJ+}C)-^&%2 zq7tv~^^BqYh=L*9Hr9ug26c>hS7n`8!7^dzI^%KPJE)Nlv%c^O^##IE;ze=#v1EpSzg!F+I^4#v~Ea zb;bHh75{H5_y01)I>2Hj^rReT3rk#I#$ty)nsDLQM~TLmS#j|z{}z(cb0jUVD=5;( z;Tl)$hCmCSn%~upzmX~nm4fUoD5R%b1Z#f*!C zePAwt;<0zc#K0fcD5vo_SB=UP(}O7JM|1rBP1&vKh;e#>2O@o_lrlNh58ofgOp&)g;7N&1s8sU7=c@+E_JxWxwc=B2K9 zmg)pw(Z_O9^L4r>PaNM6%JXNkt1!7rFc7be_Jk^l2lCSWuWTfHo>@F(uz?pwzu>%7 zW;y$so^qCFp{%25=pNO>^Lo776F`Wu<}O80M){5p1NfN{&{K8Eb*J>OPA1P($b9mP z>m<#v?=kl6Kg^akX-Jb9bj5pS4DBaYj)GlDe=95dWM2KPfBwkc z>65sD`G-HnOmM*-i`V=rMqF|bH*v{=_Tdbg;PI?s62T8K60E5+VrOd##w9%?4_!LG zTioxtZs^c+93z80eIf2Li~SjKpMHYRW1RWGpn|OZLEe2G-hcmTsg=~t@)fzx>fA?i zJx&nQy}#Uxz-Ur+FNz(u}sTwmG9=lW$lFg{YR zs&`wd2PfQ*WpXgs2A#yLZwPzLpW4mrHaNE@^-qY1PwxG{F#IT^;ws@<#3B=D@JC-i zzQMOl&EqWQu@8vSAUeGAZIDU|;o5xK9K(V>*Y!NwVqoD(MaL# z0JWi%9pl5{OI!L~OfkffGP`QQQnGcVYGycc%I@B^=lQ`aGC|GEeIpVwc2yvNk9R+; zmvlQ4MlRd^%TkNd4_5C5j;4OB`%$!-%|n|A=0k)lj$wX1s$DL~hG?%38jDSJeR^~& zc`GLIwrI+_Y!VmQCsRgk1T0Kf1kpZ9e&1KE1d`W#$>^%$p;J!zLOBypHpR2no9m4V zWVht_LsWpikNnrwN2(Fq4k{2QLv*S}rlxmm1tnXi2cfrHrja7pBY32LEMz#$!5vFh zRi=zh-L?EC|G#H6Yw}dSnWGa$eB-*7v@$&7CBy<3kARW1-zvBjL&+RmBR|`G-HZ${ z_%muRX?GuI2`S@TJEKA@8H@A){f3)`z6LWd-I`!8B8Y46Wv6NcmR|NTZE-o#Htz$I z@e_Cg?arCxl^>vdAiIDZ?|tD;k|RpQju!_K{l&={7;88f_#|(N5?Y>@G zXORR#_rC#*{UogTtXe=l^Tm_Qv$%W)!2M6G(%mG{!wISl_a6;OL}d9DK73KZY!Wf9 zIc|@juDR$nbfw(?x#?O@bFTy|H*5j5VbAde z94<8R1#W_p(?!^}C_eQf9zTm=f>hx>8A+lmtZ=~Wdk2wCYXYO!CqNWG=Z{{Qqhfgs zQv&PrAqMj^*sTXRoqsmUqSZV_RR}8g_`qYqB1DX<<2u_wE1O`#|CCEHAwJqT|TANkbB- z=9pWQ0z^pfG=}SQp{BHm|9oEN-~Y7j8o|rc5*Jp2iR0mw87yn8o#q<;EqvTD1Sg)> zvAc6JD8|&Av>jyVDLj^xNwMzzhTcyc=8|D0+pz|5EeQ-_%tT zM`N?t(VQ%@J_=4DTEW7g=JprRG0yPG5*J1<3r2!PzW`@yg%9uvqH(gsCT|Vy;kDc$ z?_h&b8R~%U_T#~W(hT+k{8&UXDA5_1W8}x_&ul6=vVzn3p~Fn-x3a4h*icjT_<=^^ zRfS))kp=Nlcd9xdZ%9tB%vqVez3WURGHs)rq)F=-gOX~la=X-vi~C<|mfn@M(ZMdh zuwe6`)ufuF(kfN)c}F4L)cMe{3~3H0C5MDDl?Hfo@e@U!ko?6z&1$|R1n~o&I?xvr z^4KPmO+4vzfmfsoLDt(hO}m8+J+GY!_8Y*``phdh$K6(QWUeQk$|FN-`9gw|`}`F3 zn_RN#Qu5iv-g2vKHb7#<_D^LZ?HS6AAz!Ige;#4KUBhjb7<`+z?F)TU@1Vw#3oR)-tA`3=EDZWkFZ9`O$nNc z3HMdc4IYM5j`ih23I5h8WVQ$rY3FLbkQojvj%(!DJM#WchxWHn#FNNr>>xKcz{yx~ zfHgPcstzu6H*%B0AN&H#U^?l(tl_7m=@Id_(&>=@zF`ZxQR0W6rI~~Hnt1NzZH$hu ziwVo#EF`!YcxntJ)kH04o9{7)ukpwI(-SzwK$57;mxOb)4dU^Jp%xWUjn{tc1N6l0 zJ@?NA*V(Jq*?w?`~ zP-Vw*4HQg5DiQ9lA0b(H$DE`tAkll#yn?6aED-!?jILT3|6|0Z4jS38D*P+G)Qx{X zPCE(l7SmHtMDas6*Uamx;&f&tNaA!XY0^v>k%d8}bFTTiLfEkk_Q?@e_(~NzZ`0A?z%I*FwlIbAF5)ev@i|R(3Pyc=Y zC}OH>}IGONi6(WRp}fC<7gl*jM{kVsso-7a3<_KItHQM*#55 z3MBdFw?2>*Yt}I3UipO!&&;GB1OBW0G@I4b?bmoN9@6bWu0z-Z^A#=!OvT(hrYaRS zTOIeDIG-(FN95?o1B}cYZJKcn?0StMk}6l1PX8gT1 z&pwsXPZ4HZH;=!{a~>jG3B?i(CcTGW60#N+X{$53epFvi5;~CCtBvr4J#y*!;i#cH z`9n0}IaFr@*DqPoXb5U0++fMkD5fV& zsZFrNwuI&u)MImVIUDgeE!k>iWfJuF>HNIjh;)9?R-v$FnEhSR=KWS48GQlSEikro zg2KEX%UDpbF|n<7wGQJ6Nc1Y$(^TWUU4+DCY|4oY(?u1vX>IyJ{oy9}7uQStq$0hr z{rPl%#D6B$3N^_xE{O`%>}*E=>q8vL*=qO5QW{DgwU6jQ>tbsCO?|X`jB!Jl(stAr9%0^>+15SP4#*6clIF_F;tl(;>64@Fa zUSBD8qkRZfueeA;<?dhXiog06{rZ2IvEK5Pq41+l zhp8uE!nSjo+CE@J{4?VuP8MnMS{*WZg66t)pZ%1Qjbc4fNNMpT#1pOc|0oS=cxG z>WWt0LXX<%*mNbJrb95-bw&AQa(udNMMAK*G_VIBr}qVjbcn^YS>(o*>E~Rujk51;WUF#3)?ceR(=T%t9H)XeWwImHZ}k6=wPvo%uaFaip%! zZ&78dJhhdcnUdYFa%)Z#ugkGQhXQS-gY@`^PW_!o#J}V_IEX&9-ZrBWc&x~X73est zH@J?-A@?GxwQrp=V4s7gYXid6tSeTp!s4t+j=JT*3zgXVkQdE9O8`V;SZ8dsqyl1OkzXox^(Zll4iV`O#eXa)%i+`IC0aiMk}jJN6laJp}#J!swjZfEU z9Chv)4h*3gDOuIN6NWWpjk4wO>oPs$mzdKILy56B@bi3xvP0t*Fd7ag^xUlEW?Fjm zlLo%#NJo--{)n2I!WrfO-~9W=o5421(of?eEpaB1#mP`6_I>ifJfL&D2j646VyoPA z13aGV-D!dfV^75mmz#F`ty}@^AIn|-Ro7wWjd0`jmDyKuonpidTDgyHVj%l}5IvG- zVtT}aH+6xn!?A>wkYB<&YfU4JGs~wpacP%Ayu*^XSGy}(w$vpw@;O7HEDvS#kym+} zCu{V=-!2bj2J?%vC01`#QyR8&bp)+XCqo?B2BKV>CfI!*l-M)H&hqy zMPg>&P1XW1i4~-Q^{(D;Z*nPjm)0<_-N3Gfvw(|P=<3-R78JiR~KDfY=eQzW+ z$~|I|-zs%U+n#jysRI{n1D5^GuEZ~l9C@4qeX@18dxcHaA9H0@M?(rt8`M&33{J&!B6Y55!-L9I+-plLo%50jVIpd^fiiepT=q$q(OsN+=nWtyP4q=jkwm zFAfTht{FOIl+dl8kW)N?c&(GuSQ7W{k*2mU_hk8V<>rt2N9HX}Q|~ctpem@s6|3Qy zE>f}*g`{ML5JzQAEi+t)@UkPU^Je1I!yi}p-sc+ttYgWB{O2@QdnH#Li4~`#%fxK= zwOUEoQ!?@TC?IidM=NaY)L=Xe$bzu}0iDX38OO!A513l3h|mzOcGX<`JXKhJP1reS zA!%Lfx-##aFAwK1GYPvY){gC-KtPvH&caM9r@7M-!317CRPJvlsFJ*zd_o1*&SNW; zkaaKRdTzyeLMCzvQ`+0u%hZ|_8oc1EA;bHHrhtaKyk}TAt+3;feHB*lB&Bs{7;aW& ze^J~{WrLPGd4q>Max;)ailGgwW5!Pg>_N=b&*4C-_m!Bgl^g~Kk^$FtwPi5b(|bos z#g-AJqi8)n#v-FRnoA`lG1f3N%e{v_0>Z^x)W3Rs4Onqf=ydP{tYxQV8wQ68JMH> zt<2uZ<)=0>^*JY<*=yBkvWW>fEO5`^D72|m^0)mW#@zciU?=uF!@W7z;<71({hG_; z-w8Ai-Xxh8kdn8r`9esz)hyy?tG`l}A=eP(P%^`;7ArT>LZ;+z?QM z%PX4%F1M%~ffL&~*|@?9kErSRuKyu_1yvKeY*{u6& z?U}eE`U3m zvO4vS>-%r$`xCtODi4|W1PrNb?l>tX%0LERDEWZ4l;J31MAAZ%C=ioU#iY=wX&wa?M-L6*w#cl*d!yh?T~C%d53#HC;LY5G|sF`@-?t5$%bz=SQMG@z4kNJ zVGdMtlx1s%1s~#X{{Z}6ZOIz(E#Xwt2^v8)Hu6ycW+~6=^qC^J#@XtjlLjRD3mfvJ zg6e;_M$l`zW1g_JN~DZ3R&hS8!P-a2B|Ay2OuqDyz+=RzPAEJt&=)qWdWsl{YEguB zwBu#+5VA?+#Ot!gtp<+A8EmknX!MN`RA3Bck8O%;ji5cjQF2LmY<;2}Z266sY)#&@ z6Jol0BCWhVKR&Wky0aH!gjTrT)W}$XTmdC$etpX)TyIgmmBJcWkcS3Wb}!eJBq%{_ zJdWOszj}&!=E{(}s<4ROlw=Kk*#n46-?A;>kntS?eoga%;U_P5$qJ<$Nl}${kiW#n zL+KGDi^Yv2M2r5ov0kr?0*z9?a;zlX*I zG#U2E^?+fXB|N6!R~b5_6|{=((BNtmrW^fo&(ok_<6Qoua9i)*EHcf5fMDW^H0Y&k zN$6r{ccfZf{ypYGgk&SiphxDYXHGj;$D_)X5Usq_-R1?n?92qYI%izM2P=`RC16GO zxb#i#6K@!Ke_qCc?pA;y)2C@(_c%dy?j(!FuM@IfcB~%VI%1FGJN(Twp+i7Hol0-( z3Oy8Cu?Ci;0iuZ#=3Hm>R=>AI-Sf=}!0sdP9A+d=f1@p;>Jou7m0$S$G3jdx0Yhkp z0o=J*i!0GipbQxnJtgV{tMBEufMObjo`C%wINs3+{Wlf2+j{|g@F+)IQO$`w`ky?k-{aK|%05>}_V36bKgl((<~wqPCtLbIg%@>B5UozI*})1L1OMz}ISEtZ&W&1Ut# z_4~Lp3tvvP*ydQb21^#I%@m!dM*Gs>Kp)mh0$g=i97$xF&QaBJOkC)RoV0&Z(SBsj zA@nP@g)SXijK7Vo>zqZ!76U&X<*u>lE$7XsS=Bb@ji$~_t0@f~<`j8&JM|xvn;YGX zgCasLUX=4Ukkn1dmp~F=_lFp_dUfn!3))qe@nRYe3wudF2>&-WWqt@Q&vx6|87~L~ zY0$-{RV5isHozAqv-((*&H9U&8w%9asZmC>zo0A(P@xf>*iYUs(toDLG{OM`Lk!^oh(RaYbRbig0pZeM1nQO zUhbd{Z*Uy|(fo_=^_jm)vsKz)yV(BNUD{zeSc26QO!<}^QRKfH)}ote>9I++`Bo9R z<$9FK1^^o6zsr(0$)EI8orpfMCYue!2}TL+ty`ed9_wh>zz^5bMM;bAo0~k- zbI7NNmLF;>wsRaADbDm}gsU#>hWynLM!=?=0^5DoWy!cb?(8fXaaF;ky7iJaF=M>l zH4cEksE2m~6_Nrx&%V&%W8f~qE>?Mos>fUw4m# z(sV+g&OCjd4R^G#vlla~cNIE|uGWYwP^ATjHLNeyqQPjGnc)A17n@sVOOM*qHVV6T zXQ~!;3TONo1Ad+g1}akukv^agB_rOq;?CA$!6n|h%-}u-yC)~Ecc%D-_^?|RB{%o( z$x!V&Pp>zHS+KI)+pLt?Q@4AGWt)rL&1$bV3l@kKNm%@i9VeSyqT@;Jmr~o$vZN%# zK{`{b@g`5btLVx=1_#VCunmH;L+8i9#H37T*lxM_ez1jJfGCkb(7?)NFr09`rAAc4 z=OvTO_}UApD^Ds4&zGN`*$$PKGH)p2pbb7IarH}RbV&~qS4iTrBTQ8wVi|H$ z%$7)$;0z1u;c$MhUU|D^g#Sd5{Ldd-dPALgMB!@c3RMQ5Zx1cHhh-PTgR$B%AlCRq zCU_yDRAAgDuAOflsOlC;-pIc}?SJ35&JGo^OVvaM`{L zp~#0PzojBJpO!v+h%edt@*zRb*RN8Y8tyw*A-Ot$-p0<8XQKQuSKEQG-Pu_*w=TeJ zu>n1X4)H}cIaGw_qdY<;bzyg>r1DI2p)a`tHPY5L`CF=t=;Xm%Sti;6muF6Yj@nO? zUuVA!Vi&Se5BS>eifH<>e~e4XL38XouBtzkcbD$cZ*-+UV~{sKKt-rdOc!d0^H3#0)R|o67_AGrdvZ} zpaZ79QAFbM;^ZaB7{)}NZ*nj0Ef0|(vfB^mp@k)CRb?RGsDozU$@w;cFMc8dc(r$Xe+(4_z{`Ex8q*<9V)e| zC4cN9hINScv%qxw$ij-QO%3~Q1};D(iEAaX}a^j>)T&g zz)7FGxEvk~XX+}r2Mb5|nahn5&Wk=L`|_!T5eCn9zw~Ol%ALvAgnBjijU5Z zPMI7ix7=V5i604iSZOw_vhJ{9ALHaZSJgfT$};nWK0PfL?vQ%*U~cfSoFX{q7X3+j zBek9R^5RlJ7}W{TJS=m+{0s=WKvN<323|b zGpsBLdlc;h8p&@x1G+TW%c)e@0S-c}=^WG?-%>`HO;iC(4t?EeJ+yt8<1F&4HBW7x z`nD3+%|}?ZAekY_W4vy_^E6Od8#Q?q79d=w%GDzFi?GcB7Fw%qMDvw}9C;+wY3smP zJ#W}@7^C@&=K7)hBnBW#mZUqmn!_T+{aj^6I-1tGB_CxFoZJAxzr#N@jsJ7(UzOQm zImE`W;Rn3$)Us*61-{@*j&V)WQ{}DLF%Z8E1i9g8G&>|ul9Y1=>fqK+QhHp8meNQ{ zNx#i}eT&%GyyWR5Yb5?&y?VpN(A)L?|$P=D@72 znl~tv;H;Os@q9uyKEGwgbzxLsLA=#SmunYDI`Scln++$SNa}*6~e^_n)Win=zj#iFHS$R{>>la9z+BZ%S@f-|n zs9bynMi=Jcp_xfLf}DOnEzxnKkx~hKx~w*_Sw0>hV}mG_4t9d@WIf?fu>dSCQ1!3h za!^k$FzD)>*b+6{%* zvocE-XJI0_`I6DW*;HnV>oPnl`M$@=DW=P;3yelrHn_z}03Z7>TOjRcorzAvRMR2; zyzJ`sF>9)6GyxF7z7%#3k@1%Id6;OG;W5wfogXcg8Qq0k(f%FPlg}qf&aij6!3kN- zG`o_?%|lV9EsTJgr;l9=Ac!YihXx;BHts&QH-=X5*tJ(5h=i!t=eD09We=r%^5QM_(r+s_YbJIox1vu3LG(GFO zvDp1oxBm;UuADdiMYJ}yFV50EBcJlSs8%n>gM~^8z8%{td$3_iO-bhj>2jXJ(A#%A zOzh0huIf%-pF2Ul~VYwqVr{#$y!0v%XJVW4i-btsOnh#d|nNmW6Cp^!vY zYG3Rxi*FSUi==)XQONTjWf={FRtcEyd^r<#LKzsrh@iv3a-N42tcj?FQQkUM7rV>e zp7R5j{4w|feKQ)z1DgNb?Kduj$oPeI2LM9JX3RExtM7dh?D+YUtXH{plkVkQmJ2&r z+!99c*o6KL$M;m)sx>I+esD}m+*>5}`krLwx(%}o&gVc_$e796u)0y(&b*4__g1L3 zzD_DGa@Ip!?Qkx2v8Q8{XX-gOVd1`;%4!SRl*wm2hb7WZ)tb!$-4IHKOVI>8tWAB(wdt5+jz`T$bRc=_S1Kk(zTWEPCR877L&{#HhbG zVSy1jLSsipdo%2t5(o;uj)YAFPH~Q3=gZlh!Bq<9)EXh@zBYXO>80hk?wJV4v{3Ii zV|pbzn$7s-7s7FH^p%WQ8Z!!+6ANbUH!s=P#IKi@9$YKCrvr2>o912N1*po_P0FsN zAWtt)Vu|x*a5IdIvCi60Us83e{MF<-e7_G&!e&w%n^S2yAUW1RDiJ?t$jx-igo8Bz zMpk41pf2J-@^tE(k89TgnuznONYd+&FegzNLKz;sk8&fF(gRywcHT zNPGb%0z#RscKUu%u<)9_J)s?0X9mSjou^+{1@BhBqeQU)2@W?W#gUmekDUp&Hgud- zs~ErBEsNYg5+mYBQx`rNaVDG`jkB#KAD&{Iy(K_~E$$wZ)2*=?Zi2SLp2i1tvt+Nh zu)(NK@z&wR$?S~4{5vVWDMQhspXziCYKv^zIBcR0MRJZ7ZS!Ukn=S4ZlvjWhEnAM` zn6b-#61NN*EBF<u8Y{(sfntnPCPvpANDl<5MeCiv@0hww8w zn<)Fag_|n3(-%JL4|?<4@)==X9!Aii7q0&rlWO5joy{3vVg_7DxFU3PBoY2_L7(Ww zVpy#?RlqhfZtg4*5oo{dZEUZSRGaUu=p5LBHdtKRfN3FVW_yk9xD&T!wfp(^DXr$*a*#V^Z4-OeJmuZ}VuC3MQ&Tt-)%$Ju;} zAi{(s>dL0Xq&%mJEf!5q8A!p6KCVz57eu;Jz$Tv5e=U6k#WxmwOKGs76jCIhX7C@E z()H~v@ifLoQ9HxyNUDs`_?`=!CB@u2)bJW?{mPe))Y-LW^elZVm%tJ0lK84TzQ|k3 z%8JG&4ai@mb|C`9|15o|Wjd2ih_P!<`<)TeJ)T{Vp`sBoG6@>^?3QU_AJyv_ozjPeRaEwnVQ>U`fywS+JoP+pXuQcqJP2~DC<8xV=QOOBdpC29c6~9xC-)f% z$}X$hY2E|qp>5+VSfC@wKIb%Unl0Ua#1asTSp*?}w5=ALvVG)gBxv_b^rl8NPieC+ z<@Fmw43P=8*Q;>n?%`|`Y8Qfj<`218Sx3mnz`Ttj;50_W65K?I4RxqKxHc5Z3NswT zikgNg_4LNKF$-z{FQlZ=Qq+<4z3;8xTR?TW+!TFiG-{>=x714k-gMnNzaf*!^@b*(LE=}xH*X62^xQZd&dnC;CQ zSN;b8Yem+l-zg1BHrEsX{ugxb9`kXq$IU0+F^pY3C4q4RS$m&a#&3Q;z8eA0yu((} z$7(YR@~g)?7!iZcU3wi>!{MU?w{@r<>nHpc6i1cKZ(7zkz!-jXi7=MWnPf% z{FPppbc@_(_|9>1ul$=6byw%@*)F;$+Y{M2nOAWRS6Q8pa7CN%GOm+aSOiuXh$I!1 zQH*Rd3QNXXVlTxugeNGF-aJ*G+bDlCl<%G zYehc9HW@xCVG($4O;#k&E(>tniRhXBnX73sJf%ou-t6QqKIT zhmDYKa`lQ*VWNVR^t@ayth1YUx;yVXRo$dNLLhA}Lneu(gy;f1LnAI<*kVaCqP}}e zRW0r7LDEU5_uM^Xa)ykOjhbg2qmV3uRiwqWF({Sw z+$Ov?+fv=}L)90=hZYL625KHb}90KtLjYN*K~u#EVMA27A|ycsorC!ooiqQ=1T2yrdj$jtcuocl5^Y z!Q1pSGp&nOJT-0iH`gXskT*3J4`se6S0IsulKNaVg>PePgN!|c1Go}-EghXbbf0eq zx<3-QmyU~URHl9*O32T(u&XGR-Tk7pb+CDS6=`}maQr(ZDjtZN zkiL)dEUsdFDuWZ&6rs+HW_o_sQSwQ*^(%=_-T6e^+6}pJz}|dUep*s`dOJOQucnid z+doxP32D-$a!T4RX;+z+#^l&N-PmTWx)o~@ab|<|eCx>C^Ab8Tx37_!nIg9qc-(}~ zaU9Dk1~?(3N3i;r*5>i11VSuBp3P$>A_8X}E*$;xC5WV}?*BHVEqOIt4gXRHXNwcL zt4{^icE*K}%OjMVE#cD(8{8gcKSN^e^$v%t^pl+{fm7#GX1RduQlvgL`=c~odlT6) z)u|Op`3GqRkY&|!{`)G;F&OodYoUcmLn)hjzgXVVN;xqIPDnI?6+}4FkePRpl*oy7 zKitNm^9_*gbDo=V?l#CkD&v_HNWe6tmXCXeSaf8B?cFp!!024=0UtTjhkY__$DR%h zb0Su|wcmUe{6bHWWMK%k759T-v52}@;zP_4_I3X#RN7_{SupB_3Y7drq!5Z1Yr-|UBq@| zzq?zOrOj{a_3wZU^_~t2Qzrn_!Sd;{CT96vxmHixe_uG$^6h0)XBH`t-~bf=ySl~s zz5bt%{VO;|b@YQw!~lJcOj*OhGg-7lu%f0a@;*nb|qpj+mv z_^!=P9kmosZJ&(~H=&e-?49A*pHe=?Qu>TdkhN_~`bzTR5iSy~(UdA3+`DA4 z=$}jgjAn!QgTIIG;jO+Xq&C*KG)5dVmFLT}yd&YZdLbM^R=qek2Th%8(22e5&12Qw z{$~AJ-hEe_EwDUS!15E&3T#dDq+Kx0Do@AZ&(GpqDYA$6+@(cl?6$oldBc?eK^pfc z$g>dRu1?)4Nf*m?SCiy2TYxo7fV`Fq(&8S^X*g-HaojSxG&8|SHDxYA%0M+=%V=$a z8R_A2V+cNCrg);jb;h2r079}Ga-jZxa^d6hc=1g)Xft?l zmUI1cywT7J1OC(D?WdlBqD_IZL6Kj6D{aJB5?Z#tch#s(D^@`g=}`!^GgQX>*crX9 z8UHb50wn%d0=>%wwXwOxxzp(mXBjFCU3yloC4dOJFcMepYQ_*1n51iflZTlkmGdS1 zZNZW3*sR9*agzvX8OTfem%hyz1l-U_o-1t;`Qh8p=S(aEm}%6G_2^o{-quAj&*Pq<$IICR6;(JpFQu} zrcQoh#LKFL#Q*jRD31gnGtNf<4CTBIGHoD$efCf=j?*>PDVdg=GWany(ZXIkP&KHa zPt7Qz$RFu-E7})eoJ=P!A0Ix4my4gfe|*ep!1G+qqnmM1OClFF@iN*Bh-OA-uevQV$kN@NNkit=!iVEsfb+?A01$(XoP@R^ak zg%Qp8K_h6RzW2(_(F681IaHQWntqsd+7+QVDQNI~?;SC2E+VaxancEAM1g9Ekx`rv z?|&6+9XVoy4d$gWl(IMaDzNwJ&hS=}{@^IS&@C*-Fd2vkFwAK3C-rJtYBu>e&`CDD zR9A4%Z47MmH1o{XN}y>Y!(uz=iWUf3>Wc;1#;~jSD-Gjr!y>SF<%pp2+!>rH&8E%o zyRXhqG-3;Ngi3@vTXaCwZvsq>t03OXiG|u>8>TS#(bl)+lHdln*XaM&3F_ z!|u5U>t&Z<625EqD~frQ= zDw>ROi?UBz8ibCRzTjKUI#TMe3%zCq=ihJGdz+OvrS`;%3l$E0oUgN=DyltuXs`69 zgPjelQ@gharxAI1(}bz0`YrZI7&2QfS-k4lKy^W>?6kB9)Ne3E0a(Qe;ih~`9xryJ zm{?%Bj(i_a-N%b%LWr1KF|eI`6i=H`Y9kB_!g^W} z-t*`_?_or(h%+honfj{Y1gkkD{~t?d8PrzSE>N7}?i6>oqQSMeyB06BSdrjv#ogVZ zP~6>J-vY%USn)t{xu@S;erARwlR10u$M#yZo_|95k*y{&9hF3Q4a_lrh#wnZZuo8q zQHXAY#4KnVZcs1^2IMrgBzUBl>+iwTS8~P+fAKW?Y&NDIjq^VjX%v@#iq>-mcTS>z z5(us6?3W(&5tz6M1%o^{Cn@vERAL24gOuySyYUywH0QfI73>Wg*}vo}A!SLy5i?@h z+>UXn#0({!xCV90(&#h99{|@17ALH}6mlKB`*>xtYM~AOdY_C1DiLS}h zKHzijv}xrU2Pulwbe_8Pm_#!;yaC(@>n$uu)p$5bZel!Q|2QwvH=Ccz6330eqnj;3 zXHm$Ro9doldM%!t$ z)z;~}y!*GG?xC@8bi(LptKoc#)I+aXnw)LgxisQE_vQ!fclL{a!j@%d_gyATa@ZUN zPb&j6zWuk7oC{0*eiwJds4K_bNI4Q?l58j?m(Hexf)(7+AMQaGa%|X16a`ump0-*x zV3m*wkx?uIpJci`-!TBUOFFS}#lG28U7B|>g~;RyO<75a%i^Bq%jLT=h=4otLj5;B z`zi5KD)$Q;cbr2RFy>~pMr;_lr$ax&XXq=8{@HEyItWB*Dwa2C1c?n^4$WwDHHdDI zeI@;nCltfW*Yn=W29VPpfVN;VEbiG1I+p+D)Eu3L)C?S0*rs2Hjl1Z6l@PV5>v2~t z%S8e+(>gFBpGXL9^UGCW|K|M+rcN+sP+-H}qQ$@27vdDLTv2x{!|UdLfG3X-4ay9} z%c%C%4OMRM+%Dq4qnG-UL@#&L9M{MzFF8J1Qh89MX)hFX%6}p8hnq|`W~cMJqNxG0 zR2$QIEDx^@T~2mfyA$@{PgT-_{PLJ-)lXR{T4QLX^^Nz*g5`mwSrSI20)SZfcfzJ` z$i-Z6Q&7i9m19HB>LiM(?zvWYEuJ&sfqJzRUYg45)jQHDbMfV}54yi-d?ZX||FEK@ z609I`Yf$8_XH9A#s49_l7|9{$0ZHoL*kmvtht0AvlSV*I*!PXvMP|MK+f>^E#t!Lq|9GzNW2Dm5Tdv#EH-m=ib|Q+);l56$?=7clbzFPt>f>vk=w;q zr%@<+*H4@Lw1!Xl=}A_4uQ)Svbe!PQ4RfsoS;^X+)Mwfe08q-o&Mr9%KrR7rm)cfO z?DrCb$uVKt@k#EMRb~HLdg=EKvx0+6%M28fMfPmBEnl`;z}F05-@yId-Q6^HBcA3I zLvRumxJeP3v;=We{nZTG2-8;xP9I3{<>Tb!Ty(<*_sooDb;;V{C!}`C@+*jU2WpNe z)Y`BUn#71!hRb4xGdSTeyU@!ed_-Cv@Gk0LVMZBWab%bs<3MlWC5w&M+Z0FDtvGpy z@|nfSanoqKQ0LaVmw}H2u|lczcgUw-W#X#XLHK2S+|4VhgI{Mzl86wUSw_neV&Qh#QbQVfYthge<-5){{WA{|Ia2&8d)7#o5Dt)W6 z+7h5W^o>tRqFDOFl=Ab7*M$QMtE$6ChV-l=7*&^=)Kq0M=KoShr4K3Jb2AM~y1cv_ z%pXos+Z9e?cyX&kbjf^9n(LpK%8J3;6AW~;dl2nFxJ)H^b#1rvT=|)rJP8W zX%PJV+XpdkS})7^u~r^S!66M5-rn_$NUrgN1S$f9i5_uEgjZpd)^NK=Rm{NHyKDoR++R4=J0Fq{UW|W;)#;y8JhG-1%{1>h)cmdRHH97Z0ZYIiy;?tN}=_7Tejp z7i7$u+8Spk3(M~)LRHYn(TU>vB#;Iuo*h%xPAT}k*fp`fcw5#vc_z%q!9n?0l^^2OTSdb!r5 zb<<-_mdG?xI%*7{6FOgXoB2KL6CK0Qzl&&A43&J^yiZE)CSnN^hHKj%7yt;^PJk%` z@KSuUw@1->;e3N~Qi36gv=Lae|2gWFvk+3a8sA7FXVqAdbb-I zSkQ$9SNPLfAY`3fG5m)MBEx?vt$-eBdF#!;>n|kn#LEh7$t9OZ)g}?O)Go%aY}&8R zQN&m`ZV@u*9ZpwbTx0)NnSPcAU%7@;p|pPZ9&emJ`0no{XZQ1&(^kNCpQK~t!MmIi zf;i`>K~tH~WX&KIr@x8Aj2MVI3zKc1aqkgYIshr$MyIEl_puTGm*3A5)ph^GY8M-= zL?P^KkJRWnAoZF#lhAuf)A`b$(3P^!e`7!1!5roX^t&&cD2Yq;eXzDhBuaGh-6LaE z%_*Q+&r_!5R3oTy#X~pF0m;*=eSu>c9;WC#$a3IlyBsJTmL=~2p4fncUf)}-{MV&K zT6v~envPpnX6n0263C8sCMTVTg0>YnvOe(_x_%{L-%P=&b-L+ob?;;KKbAYd-2^zF zPqU$0V*bxEnKt1eBq0}<-)lHsuTA|Af?gOsmf@xBNb!Itvz zuMhce4^Gb`PQGuMwhDTO`gBt?oL||Z4FUTC)hS~Dlri9nDB$Wk|Lr;89ufdJ!^Ge3 zKTKP>R7Rqec2IM+>*xFZngN)Ul+RPM&r`Q&YwX3`DE)|k#)xk?Bve+Y$N2q;y9u>u z+-u`0)xj#5|JF=l&uZ<_zTs6R#6Y&ELGNY#6S7AghS0eSU!K`gbJTWd>vd5O1gO)#=n!FC; z-rMH8^WPHRE?v)x-vP^FZ>~_<6#*@=kPdHk_*>Wyd8NdJE8)9!0b|cI zciVio7SN2K*X8!VMRE`JBAPo4JZe)`Q_BV zQJvy{Ap7o)%Bo3c^=BY(2hQrM-Se(?!>Rp-JzK!ZKb6w9tHqP^j3>{}kVrkbOkr#( z44!HDIk)Yavu(S>;lTyTPkmvOgtbj*hX>zwNaK%&7M)f21_gkl4SW7caZPpylmCJ) zIwR-}u@lOAPZg`-O}v07Y-Gso{UW&68t~Lwzj&HGXK9CxH8q3dWGyw8*y(e34rtbj z0j{GsKnyRZ4K04?>{W{A{dos*-TwBCi|fGLM_SEvhbqtKT!<17!~sf@r`wBtz*F-A zSVp3`U~33Gzmmd52WJS=yqhpy9e_L60Z5R&PdEU_^B+e4ylrne;KdApPzz@p3|O?H zRnek!drwpv1Pb+90>I<@aexH*EV!4P{|o_+0_-I|O9eHmvsjFhC5ewC2DZ5`iSf_R zz?z8wnBIow`>Sp|)CzabJND&Chg<<*THK0r0Q0PzR587dDS+5-^tc)8r|6v9p1gkho^}^fV+*((rjE7 zGvZ>U-jY#Q7eX8F>s5S>Rv=zg^bYaH&E#=AC7K!D<_v;Fk*!$Cg~PxfjYI8cC4S=trS1 z96GSZV`O#J2b;;WqmIsTcsVqT=b{XS#HpI{t3C>_U3Et&XyF4pMmw`c4JV;14J6D1 zQ<%eJ5<`?|iW=EBTCmkN15$&m6G@xC|gLe9i)H2kP2QY@YU8k`d8hA5!#{cFnMoCQjZxV8D|Z3Tq)@E7U04Y$P(=ad7I ziXpYvU2*=c8DcO+HtIhq@_+v|&WMqTDE8(`CW4Z`|2GucWX?whxDfzZ8lb-8B;&%M z*6mY&;B%bGdSASHAMYgy&Zz(dtwx@`c&Br=Si6R&C;nqeZdjoG6FtZ5+KTQ z_%5?w3<&uFDCE0Mp9>&_DuCA=#)zpL&tStMN?3H>dWiGv+H08PFfueXG%?s{b$ZhS z^atbR`Jq3ogI%C<-+AracX)i)&RQ=z?msGL@)8D{U z_su;12W|QMQ%yuHNc7njM);RO@xLld(Q**fQ2Sae2nIlv-^G*PfZMbx!o@l zN`wx}3mph$&?;Jh%yDF2D85=$TFngRa9|TB!&KO}U zi(=`Mu}~*7Bf4Je1sx6z^o(7G(|#B^Q~KVI?d**nX{4k%qIWq?6|tkQtO(5l;ezFj z$&aEetQ<#vU%XMx1197O#oGd@)>Z_V!g*0uLiyE^;I(?R)~}ns=VY6Go~qS8w_Slx zLf#eg7SdKlAX0fflJx=;6axxfi7GQdyWD=wwr;(98hiH}Rg{Kt%C?G%TBL*zSpasp zslGhd6A(@TahsX{!+u@B%L!nj+?BkyPrKnBDh@@mVjFV5UYLi*TI~)0*A)mtajEBn z@J!`~0nSd-fS12O2-uSohhAb|9HaugLHhaI?F;fAXExnYS`C4voipkH0fgNNJb5sk z4JcTfoq+QIe)@#d$;IL-7>(2Gsd;&K=pB($Z90&FoIocTf-@m1^j&%}qJ#jpIdj(c zb`fwT5%aMxb6{agS&PDAhjf-bu8}c7pB=C|gh~cRFOvt3{&X{bX28X9e{J^m zcdKt-4XDbO#U{(!vOP^Q09!=&4&SfjR#hICQo*O1#(*8#-pfKPKf9-vWkr_9+P-k&<_%6AE{lLa}{7jR4py{2`*^uA2{sqEDxd{{vpnimL^Pged(? z@NSc%Fkp#g{l?|m#02B=l?{rTofv_AZh6_h-?H|#`_G^1D+51w>%YME_ykSweZJp| zm)1E?lw$*~ZX`FP`QU>;WRHoQHSx|0zW7}{xvUpYs-TPIysf_d4G{f%v-ogG!Nx?k zS}n1jqUeAaJAZZz_w*;6%*l7nXe(MxR~-rnML>Wo46x5FHX)DMgLt|+jMB) z9t*+st!h7OS=$6?*1*}ht96y$b3c3`dWC>qb?GRf20QBWk-iA=v;c-fch%bRB#j-w zU~jlDo3*;15PJ7KnfIi#xOmlwK0w1Y`#n>72=O52`3I4doQ!M8h1GmNtr!N=s9}~ zWUJ0_Yxm`Tq)0^Je1dSBt1zk=Gw+2?g!F>14**%x7pLw&RTpBf8-N++@V?&Cn)sly z|H@SJzC2?*4Wo{gqjxvW=&L_q9s_hRsxQ-@t(TAt4-W{Tn>#d{9#Obsg(oEOExHI%5~k zqwr<=MnigY>m8O$(@j}=9W^OziRbDIQoW|^45E|?i>c3+ETedi)L8!Qw98pewkf^2 z8vV)y!Kw1JbKfy$FbfoLzI*eft<_tmr3rMuWc^cc$+|K+o4>uz`lj{dy4;K<9$?#C z;AHc7TfL%3XK2>!=fz+%{d9j8lYOyHH@ju+g|fD8c(Y=jhygmzW4tz(fgf6K<^@AO z1o*Nu!8B!E_;V~9jwt#Rs;NMPH`=;aTks$__)`e5rc2GReMVEa-M7B1XM+ATJaDo- z`iGQ1+h~2e&VTxU%J>sGni5;y4=?t~kaN-CE{ap_{@jO55szmRa1NkYLAdjJ))L3! z75uePIgt0C6khq*BrmfEiVVOS-$Q@3#w){ohLJ_5{spuXV36`}TxF{;O=22nginB# zpP2tJ7XkR}f7NCX77b1|o-bLZgg;Eu%FPP9#%TU(ut63Kl;P#w^OYs2X$4*IKU4!$ zad=_;1WWv|O86L%r3+qqLl`eBA-dtUIO;WA*sgkxSp!o6FFo=@KA&QwE-56LGM~O6 ztMP_jc;;hJTnOqWOG=rXH}i_h-=_MXjN^Ff^e=mcl?r7sQfQ*PNjnu~Bvu+Q6Iw~> zJ*$!SB_@c4EV2PLPt^7>8x_}g=$am953%g5Jw=OHzNZf|8;9~ zA|m=fuJ#hBJDZpc=YP2h15^LgS&tV3R3}>xGoBQ5V-3JPq!`(<4g^%u%Ru4K93?q} zfI~@bu_2u2VunwHz2$lSkMGXUtg;&Uf7|K&aIRhTAr}}|mzQZ;UGX7Q;nz=#z4=K8 z!~ZfAy;?CqiB{0|Gs%nJI#*p;H5&9Y6F0C6WNfQR_~eMjmTD3|9Q76;SH<#R z#YLZ3+gKXapidLRg&8>rlR$I)d#twNwIL-G&exznno_QuYnA*f91&qV9XFIjpZXgV zmHgX6WkJW|Lu}`3hjH7|ERZm75;Mre1e;oZM?5CvBNEM|0 zvmn#H5)z?KvsBd*Btjh?njs5uPh6?MN3$oIbnlm}G@Umdk*aDq-X{aoMYBda6oI~e zo>clVG^iD}i(69qOWmkS`$$<=6qM{IOTofVQ*458nz)-O2rFHYp<|bvIfW+qdvJaK zmY`#sbWMl2RzHht1+W3IOKDld={c7eXUR|n$%db{8rdmsvTx=gRn!D!p zT;+i&xph7gR^gDiWhJb~k(HB68s&14`k+(MN`*1PjhkGkMUO?{g|Ryy#biLEog5fy z`(Gvq)!6X&A!j_l9|L%OD7AD0&pnDja?8_w?Y_=)8@)80PDHMNmoFtG08 zheyO_0%6{4T%A#V{q6?F!`Z1*KZO+>f5*S+xtJpb$D(4EwsobCP2!j^j)5gqgZ0ZA zI=Cbi831txOOsKb`$vk`|C~rNzZhe&{%zJ+2}hlNXTf62>HhQ$daSI3h7?d+n9Lc> zP-DJ@sO3|`C!zRA`hmIR15@JJK9!itoUIr?c>KhQAwex{7lrR&qy!g$BQmZ)K2<4O zP-TPP5?Ji^6g=J9Ra|39G257UuilxA)o*KJ&G(z@naME8AtyO#+j$z!dE=&MvuKZf z*2kmTQI_COZ&(huDP5B8TnttOBe=6(E)uY4vTKj!t53W9(iL(H8&xI|4ip0&){_s!a4F?cX`>-lrK%{P5^fUWLbZQPX^6en)m76=&<6a0uWc$1>c?21_rpRabjYlR z#q?o|EQ6EDksLS)&G&{4?u%tA&*f-d@seu`xQmA@zX>W0vxH=YOw483yUHSkLml5` z#4a07Fd)*6IQ(^4KjIAT44EYKD0~%^QGt8gRzjeg-O++;ZV%pUd42zBYqVl$0U#s}eo4~fip@dhtFiy84(`GobR@|nr!^P0 zF=|m#F+<|JRaJB|N>v#{Ash^DPClR@i$1OB-=dnBW4EXvUi=b)rKxU>%Db@5hL&K0 z;jAqfBVh}@znoT(%PncA>R069&#X`kd)0^dsAd#Z+d=a43?b-!BEJaV#ltYTFwQA- z9nkkLaj;b1%*A`ylWUm=$}E^az_(RpyQA1NPB>(6OWUKcDx3R3bZA+Oq|#F@I)EdC z?=#@OFmGAn3+v(tuU3piRy~3W{d?t?cA*dB2Q@^A$u^A7Z~{NKo+q7vfVIbCdmFY9 z{t(NKykHb;4#d{tP+A})1wT$Q_}rfMvp1A2Q%X|YY;W!Yvb*lAfK>#=qjZ%X=>90> zTi$xT6IVmmBH*_fJx*8Q=+{ACyzC2tH@hDo0`_oba`~Bj@@>Du}n01$--@+ zTwHZC!cR48PMt3*PTq?Py9>ZM@p?MjbKiX->VGpf-`w?`-6kQT(jSNzO#%in)>^&} zYX@8gAzyUgZN5D1Pd>PfD1cWq(oZ*EEH8X6X5NbcIS@e(cHZmjBJ1AU<3Y{QcnF2B zSKC8cwo})RoN{@(srNC~+a;DgQSK5+T)W@XS*w}rIK6Z4{V=B(^oSNnU^KaKc$HHv zwzYl%60qB|W#j9O3;(5^3 zH(ih`q%_^ENQ;I*J*~=@Ht3}V^qDmlHccxb(_XxUT-i6}H&7)b+jP!*rnKh@z~QD#oK)yV5ptAU@t>5 zRfYR}{f687oq_tphmOsgGJ&_jfJ>}R@U@7`%sP(&Qxa?Zv3y#>Mm97TACGx&fISKoT;>&jZg|O#bU} z{%d>wlh8WKUW)&n=-uywWj6mLhX6Xp==eOs|wyZIa7{McBJ>0p)Pj{!6_Xl?Atk0~Bl6Y{0Fh;0C)PCJ&S3v- z{t5N~`iCIh%zv_T(;f3A-Y^~8>t=rR66ZUh8$7KB#C~{zA~436mzCiZwruPaLasO8 z18!~O11?;8kTG(0^aVZD`G`h`wd)&kZ^?p`#I3aI!jR6YrlVJ)a#wq^5Yk=m?3{hf7QM z>2oTM^GYf|W5B~Se%ljd=a_#Zmltc_na0!^6?tpCZ641iO+c{7&?`Cvnjc$F=XVr7 z&-Hktf9ayyghUF)0wIsYLu-~X=DX`{m(4K4zU z(jPj`*n4*mRDc2oA@5GQ%NhFe&m7p54r?udgLJIcR~ry zjOcvy!c^!^``q48tCgwjqO;5{`|AS}A~Rp0Vk3S92&qquwuHS;nTnb?WAQ!oDGmj# zMj6_!+zg`ETpMI_HfU-Kek~rwhxPvb;nWR{W=(r|17A>MXv<^&2|kJsY?_)|8S3)l zVZa4k?`%*cABM?B-j2XW$GR1J=HysWqZCwfQffpV2}RfUn}~lfX_KP2-d72KpQZfj zh*BHVrJUkE>3$|R>{VtFZ9LFDxr=r3P4*Yr+YaJ<9w!1G-o=}>KU8!R%2E!SUcBK8 zOq%ZlKisx>yTT|Ho)rBsE3jp*`~dhf*FG#es{PZ)=J`0&%i;VtIZ`w;ZM931W*aDD zMDbfsBB?XMs4xWn91vdvIX%Qh?$u-DUmXOs8n=&W^wSq!q47QT30i%yzQnkJh$oN3%m80Y0}r}4cAM<{+I}@c=G-vA2oZlQ z7FSgB^@@karG5%756T?r^UlgNzRj@>mEM}^V}z^$74APoz4!D}&g;mIWw#(@b!ER zp-Va547~dT3;+76Jv+B+TW;g$8#mGc?4Ko&lrHlml@qquZ^x{wk+CQg1Fq6do8Yai zCn5IlJO+A8NJ z7cC2gkk*9ML4^sHL37b#N|g&1%J`fdY*M(j?M1ME+bYhs0$>d2zd`Qip3k|@CfY@}!t~!g7@xG`X*ye2*ju>RgKU+1aC!=?ylxWiR|7H!UYE17^nF zMj5U~!6~rK$CeAeA9r-Lj8|2_<2 z38|&DN|VBm#sEG(qHjjYBf|?{sNYZH&b1q1Pma=he!4yV?SAF6c};tm&k4vx5A#H4 z4;Pc+ousrV8s|+E(*z38U95ciO8Vt*o&)#|gz6hSIbZTs{*44kroN}e)Rb^|Zl$bpg=>Wl zSQ5!221n(?}L@;F_;nqcL8d&u9q zdMVErvrv2Iw@Fo(b7OeP2Va6VsiY*Zr5w+D`D@Y1Hp4`FBs)}pm2$D@V3cnLkPwXeuv3nr5^`D&uwj8$_c>f0%2 zc8ZfNv2&?L6DF@gpuiI_3?cnyo2EZtuf6EXAi@;JdbkQ( z^Au|H$+9{oR0=K<=hme&+};;xlkRwsIn~Njf^UuzX;Z4y@ody5N>)>OKijc2up|+w-)tcl_jsu@p*@!ej4YkeAQ$>&Ge`+?N$gpoO<~ zU7S`dANRWdau)zhR5*7UXL+If)g$XmO}of30J=gcu%}A~Kxk9ps#I|c9GQ>0UI5_h zHo&s}mfp|+gwqzjzlR>Gnt&^-qrR;*UqmH#V52>+cG7 zDy-Z>>_Sw-%%6p|SU;U6SF=`?rB03Enw!h#x;&ET_5Q6wyCN*8izNp?UtNe@4dFq1 zH*z2JZy>|5h)jyrOin@mzg_kT^m>k`outlJ>i5*d9w5c>AlH@Wx4>l%wOOk6W_HeQ zJ{hcXj_y+)Zyyde3UL?mTI*# zt_6hL9PB%3Cct?Nj<5gta}y$ z!g`kgDw~`74AeQ^Mb2#PjC>G!tlC)XmM(=Y=<$elG>+n$sDrtl9}I2ft?fR@x&Wfx z>%kOgEfdgPT4}{1Y7;tpq(>t_dKNw&@nM6!;RruQH^fpZA%KyM&bNg#6kHNa5WhwBZNtDtQ8X7`2zF3*nwJ+CX4@mFqXtNjrDtC&n!J3~>7i~f_k-W?#j>_b)^`lk(kd);~y z@%WuseDAE<^dAx|h@h%_RH*aL{JZcE&3;U6eM+>`Z^p(zi2L`t_wu@R-4~76)aT0u z<@4*?Lj)ilZDS{rq9~${j|;1*${|NYOC+G0f1jFGM|fx*D^w{5J~Z3nZb-&c5}4?!aHsO{uv8!YcTm5J z&A4-MdxP{&CRXEzaFgK+KtufK@O5UZ9SUVN_1@oqduX5adtf!|2P^ZbyQGzOv2fPo zMA1Xi)6)w^BbMmE+Nv~yY6&<*>4dmz(BEIJJ%1_vPKzVr$;0S;kM>U7KS;sFo6vn<*50INc!$fJNe6h}SKvGemDD83qGT@n7~@yuMis z0fTR~-#36Y_;vQ$vM%6+3h2*TO#b?Dkp{GjMn*~8Qf(=0=bj#cxtF#MbYL|^0e2wQ zW4>+-Y|U^5px&H!V(s`hy{VFjoZ5k5y^>9VR`5kpZ*C%`Ey#oDg?UaRp4aBR2OL+O zN12mt$tX#H9Pr`!QbEm>-;aZ?FZjK4Tn7L3^}d|60N?EHbS)k)n9>SsPM7joYE=ClW$w3z_UP?-|6j_}esXBwz+ikU8}p zoB;`CCoQFIO?B7p)(nhXyf7yiD!3u#4Y@;LDShr{ma&y z+S{=J@Z|`eZgXT!DF+>Cu#%4l&^YdW0^Tm(PG?_Ful7cJUt{auBHmuaK|uR>or&H< zdWBDnDv!acDx;10S5lKg|1af{^WPod$+t5`|J{q%jb5K$GmUwE=c{k`<7%(RM6WkY z9AU;a=qv8$GyNHa!V09{tE(0~_+*@s2A{6-Ul#+SlSg=G#je-#A8!DuH>G*6y)eOv zw<=Vz4<}^|3gr=-d`=F4s%?6W)AwFEy<%`Iwz1g%2igvQk398<>}%W3+uz=2PF6hkiI3ya~N)OQS17Z00(+@aWK@DyD1>7u(M9yp}^c5HbR2W=Tvx9gl8p4r5niNG4=~DN~2Bnk~Lk2O#rT5mw3B}2w z(wD2&ai5qCQ!!F-oR0?QZNGslR_Ll#lj>{&yn-hs0W(JD$A>enpruZ&DJ#(pObJv} zWHvD}y$q>5Su+@(#e}qF7?F;+njee5CCZHD3c*r}U{Q*71-ywp)6S)@uhN)FJuz1x zG7r2BF>mukIS6#7OvuHZZ)J}x1bDp%c?J5{h2~cuZE8*5BqN2inb3NSP^zsLr9(#4w){i(k(Zb^_wgfk5_4^kWK=^+*g_i_`xxsCX{S? zA3sW4x{|@u=F|`;i(m@}x3WKbcO)K%EHB9k(j64dt_t*GhKyu{FYL(+)X0N{*K1$#~UgZYRw++BM)%% z#(Bf?26^gfn8qO6sffwwa!rTLkaWT}HE-Nk*qVvr`nD#3OKg46Z^=l6pSX`(w` zyz;60XyW@pLJux1*$8+I)j67z#61}_F`XszT}K--!m?-rylfn<;j-jxWm-CQOq|zr zOnPt_Ox_yXL=jTu3&q?6U;#>VJMTW>aFCcFP-&4hQ`(S7`DF>;M6zEi5Rphggocn#&yEK2acm5Wf5-J|gi!N#@^ zcm)innDPf8euyDgWW@}9r>SKfwjPB^Bgi+nd|>jI5r#GTbi=-m$9VY=P5vlPXj@md*^(61AjGYBPdc|FyH0nLV zTc*CVeTsg+be_z8R|w)N?*9A-3?maxwXzT{t1<{rj`Zbl^nrGzp$dm&nIcManc^CI|!v30W)<)siQWFHHtq2 zFBvng$uT8@l8mJ4s-48GY0#-CxwqIOKQpq)wyJlaI9A^bhi7SHlI99`L>X!qeq>Zy zS8xIgCK(%p1C>hTrT9dOpoId(_ICmg20SYeKVpXn6I~iy7WvNOj8$;m7Zn1$Xf687 zKZe*!KR^u|n1%u+;KOE}Wd%Y9e55OI>yQ|N7xFwwAvbQWYQ2;sm9oNco~MP&@cXD0 z^0#1Jo1KU1-SH%XUju2raI#b;3tvOEEw-hqzbDv=L|3}YnVv5RWCn+FnA5IO1D9iI zqTwg4U*ArV-aV zv|c(2gq*At;t;{7G`5F*0gJ{NXO7!!yY_)oOE6n{vUa;BE}8XR>vJ| z@J1}ZR2>F&T{E5t(dg@HQ>QRi!{Cc%N7ZFeD*l^P^x*gj(dD6bQ?V(J+BRpdr$Xrl zJ{9tjtiXQq-T=&zB2HdB28S>ctVpP>HI9%Z52qmCcD_C$w?G# zfN5%BGRog7E9In(9jmjkxr5;8y!nXKQ+drr`AN^5(JZ?QNMR6}ZB3qJ!CH9M)Ex5M zTcAS%-RdGvx%iejb@k^2W_An?0^0$64Q&6=^58uT4K$KQ>``k02M$&)2S4Rv9&jo6)^$?e#}%{Bd9=>N6eR zb7x!&uA@$-$$OSes&vixP!N({1HVi$Nqik-#p$U~RBJr&>(dp&%xJ8HsWVD3KpyI@ zv`XIbVjD1rHyOti9(Xs_Fi)wKUcXY#nyC!Qz1k{=s}zK4+G!ros(nggCH5EA1M)OmgSz|CYAZR#MQ5M6vl%`>$bJ`6+$!3_5GvQFzGUGqi z*iYb~)&%0j-Th4Iuqc&Fhcrb^9pQ-EK_ErJ3|D!lMm0D4zP`;7F9E>5AR@3ytRqj1 zGoy+8L~P8aHm~E#m{orF19|Db?bDnre6ya32`?RWo}>F*CUm@}o9`BB%8(L#pnP3a zq9bA*nYHhdw1wTK5%Hf^g&f6jW_lzSD}nQpnJMgc3yvHN<*Z{^RQi;v-G2&Jgp;(K zCNo#5;w(Oo(x!9F7{i8YV99t9U(#P?8goYAF)VTNi`WddDy!mI1D)vnjHa>wvd3-I z4NQmM+5CkP+muY4lFCBI4i&?0qqh093#NZyfHMzbWtwya_ORU(826|AB!U{I!9Nv!o^no4KDI#wux?R5KIN5mjf5 zHB=P!o2_}Jm)@Y2rE|s5$%nZL$Kp3zK4d)+BvlIO=$RVRZWf_XbvItKJpJbQp|JpQ z{rfnFC8azn_INfnE+;Pdw9(_ZVktQkK^Cff6?p=waV51DzI4>$;T>DG;soPbErJZ~ z3_lNX-yF$73;hp_vCcG^_6E{9@9&u7(xNDq=4VKz0)yRUB)>5+oibyGxOlrtE9sT4 z55Wj&AVQ(o+(JmT^uMo4$2Xlyk!Og11T~~+DXe1$(-nvOh1R3G9*dLHRFPZB{R~%x z4(#C=BOvzkqDvL8gF=G`D9ka23UWvWoZoSB%FZgf`-V@`rsl(NGuei#Gk&s%;3)Ov zrdVu7sbDcNb7CdVMN(7GVt)Osgszc8Pwyu8S=EtrLP;f6X_ULDsP^HNdpe7xpOnc| zC``pgF4gf?sGyHZ!1rzW9b%YhA1RZGP#8P$03UICF*i>L75Q6|5COzM{i|G_)Yl?J zorafpK^|F!&OG)qd$Q=M`||-ABE?@;L`$pDExrr##=xeeXR!!qj0;(j6n_{xcFErj zhGcv+ORlWk{}@5YcqcRM)K=iT*3aafN?{knyOkb>NNIe(gJ-7YI;tZ@c|R%`?X}1Z0uOQkEWQ8`2W80 zWF>@+_ZQczWu&57ZteJl{k~Ab>?7Do_*L_ibYZETB0+B=`X585f^YyEf3_QbSj zuCA7$d?cC~><@hfIlY5B=VbmVkD1$6@?XplAo**nLvc>GZ2pyceH`2JMTwMnyTf^^#^Ong!- zZ~Lm|740rT5_9=8Rrc9J{oKXR8@INuJCwlxqv)!`n*7=@qg%Sc5gRbN!=a;LbaxLV zl@ghVzX79rFj}NLhaytaFhUwBkr)by3L|X&_Wk>w_j=B`wzISIJoo+F_r*6S(5;t$ zG;YP^r!i6Kl{+wMf1$G!FA+Omsl>>5BPkz-YGCE4OBRw|N!$xV({%}bxur@YcSF{L z1uDg9T7EjOxs-OEauyCz9qy!4Cp&Dh#qWp32LpMJI?l3&xlBb{AgBlm4Od8;oGqUd zlKKZW*sChhre2YCCVeQW1xizi3m{kyk7F|m!ahj|kGU60iyQmhv=4WD=mm*;$L1sI zixWVI2+~}Aa>R3daVD$xuEsQx-%JM~v>iEs z&S3?BZAv1`W{)0dW(OU8!xOTBS~hi+H@6mgl$2hm(;GP^X)1^mU|=_#vd4wY#5Y-f zu%#sg6qdIE-BsdM5^FdQol>9_shy^ZPN4P*%qu)MH+$9K&1@N2cC+ZfMnsyG+XHFO zTDkZ2Mq3da*O2j8ZkKKh?`;#fei)58P-_0N;c$!WKY8Cmr%8b4qR;*_EO&+b7aJwBrr$W8sDnKO_l*^3)i(sVGO{Tf4i2r#(wX+j=$Dm-OG+I}{d&W^fpQBvej;|HU5{qH z(^@`nx3qqQj3<%5c72xpTk*#>f?l3cXG94W!Q&WSMDB{eH#N`Dd-2e4dGBcU)#~;u z4hLYiR$L+r<2d7ChFLcM~B+^l*q+yoP-)jpJlrTb%m`AV0is` z)jsz~J{YZKuer7Xl@_34))(AGG#*tzoXR>DbB;RH7+GtU*ec}dRjaWNI+EqhYRbjE5Gi;9SGz^iIll%KkaCI67%_X+vqf@f?eYgNzq z*^LP(UkN0*|LgUSjD>@?6_2o}&Bx?+-bF?JQJL>hXXVaR=3_ z3=A`;0J_nc%;W3r=dt&WlomZM$EtHg=K+GfX*e?pP6Z7!_NhD?3Vyfux1=vm>_q3E zw;Hed<8Y@2hLr&UF;fiH>NzXI->7+Cq$sS0Ph417HQR={3uPGypAh zvs+(cxIp6Cx*}NvjX5o?^LO4%(O5|I(ewQn%t&7MKPkSk ziTl~v`p~Geb57cB*#A5??bj8G@vA$HQJh) zHb`zD%vX)%i|W{7akjDYc|=8B+qkkHIN8q(`{9ODUJ)tmQgAA-$3o$+XInkF#<8wi zXO4l#i1$+6j?U=yQg#`(mgVgfYL&a!PPUdF(sHn&nu~r>JQuGNEq$&Km|L4lSPgDG zEd{f)wgHm!J|9_tT32DDJjw37X^4_Zk5d!)nZs;RIqSmkig5We2V|9uUo#y}^>hA0 zZ+?H_!NA=HWA}W$@aHvu3zOxQ8ie@MIpM6`n$tE$QZJr8;N!5Umm_d?HqICK*m)7W z&tCv^i46rV9<*kCr;jcZp+jw~Q6IKegLFNnr23R&=~U!I4P#yHE%H69S(uwcD}MfS zJWKI?TYdlV{N-INcIhRHU^ElG#`Du*7wUgw{63aP6u{g&ToHx%K^d&~)VgNLp@vN? zcPn%7o;Onpw0Bj-EXgAM&KChPq^+G7@SCH9XM4M91w@BgcKXNy`S^x!R@u8oiejDr zrXw0Ej4KC;Lmz0(j%n_~zNh-otvCrSOKM-j0!vgXWr^feo~PIF3;`EEDSt* zL3ul=fIAg1J;U($3Gf*+3T&f&TWFKRYl!s??bW{y)~g z&m!V0POMW2iMz_1DWZ|O<=U2-d!CC!b~6mSBdivZzhzn?_hTeEIHuynPmu@{P>InM zQ6j-)9FBl%1*-e)(wl&U=YzcwnFYyoq7Nm&25VI;H76=>B@jb6Sk?{W*~yY7Su8|~ zm+-i}v<(O$dq*cA;PkYgjFSMU$$^OT=ycLBUbP_-jy?-*JhE+!2$<|wu~&qpPII5> zxjisbeH$D{dAtza(P3K!|FEk*8n4rOb@~=Qq(-|ayEETlp*(qczjEc?yDYk^&Wi41 z`bsa81QD#o4RXqNj_$OAe7{E6Gm9XdPX5SzL zVNWb{UoynK{VR}{zQ-7l!yuRCS&&5CcdD$J$cv0@F;l*O@GSaF>)MD1wJ3@lH7W;O zspqQ+i|#s-<=)jKHe)4srn>H|`@Q6ar0@RsjGxbjShSH8;7qNeF?`c-O`D0EqzU04 z+Vy2^8n-bx&jOrx36(yTWIO{NH8CD9ax;At+++1TLj{NHvUh|!yEoZNH>4J3S6J_r zo6ywAuLt{$6!=@dUu7OMoQx+pG4z873hQ!rUZjAt!SBl~WC}i3>vtr5?VQ9EG$58E z6=dy7po$6nmL&VTryhvr`yd*kG)wg(`Y112*{U0)qD|f**!dCo?+V3;=+Lg1>Z?jR zI|rO#B6TRY7I|$7bhF5xB4W2?I9oh`EA*2OV8szHkUIdrSZmF6Tv!RGZQ^e6>9%b+ zm1gl1b<22LU79p5=v*)v>{#zC#ammJ>(Gk{0hm0AX1v_D%)jbgFMFRC6PIaeop8-3-(i8GyhYE%Qg*k%5>l+Hn(rvF9XYkv zm*yrUKE)#B>JhUT=x-kQ6M%&Nx7a1e(+|xvb-PEqV6SXInP8q_3aSnYHkzKYS?GWC z*Wb3s;tkD(<5c9vF7v&oQoMq9YA72_m0Pn}^65RdTQaYY7`R^qH^9Ed*Lsr{QugH# z)Q)F9a=962vJ@}(s?CB)JlkZPp-LWPanpEQ930|_%r^;%Ual1}2u32lSaw;1__bFK zlZI~bKyd(rdE0PHh<$l_nBE7i>B|xL2On)oLb75LA{>so;Y0bZ0>e(M!T91|8f3DQz5NL|Us8nOlQ&Ab?cFrYqC>H-U=|=>h_1Lf9YN8{!6qVj zcR$i>W_1`UpSpT&-63iq-vw&NOfs3;)4nos85O<n3xL$QeM@{ zEy}u7z!P6D_?no5KKb8p!^4Htifj!pM6*>Ec5X@LFK_6{fU?2HN`59GSW}|dP3rDN zN$xfw1HzK(J(_)mg!JN)I4GbC+lu(RL_FIc=g1yvFZTwxlEp=v+VIVSgpVAY@Z`?) z_x$-kZh?GW5(C#+eJ)A)g-Y>_+*^AxRe%t+DxjDtNW11Z829Lgv*ImPD=7)=?FPh- zm)-XOl2XsM!$+m_qTzAFIaoO=TmRu>;ax_6iW#@YclyH(8q>#(qkPlsJ)Lx8J|#=Q z`|gdl&RP^TO06mizAH;Zke^g^e|kqF(*Uu#$!4~AO&JQ_nek?yxWaioxf&~9JzDB9 z%^01HN;$Br)ykHd_60RFb!U>M>5!Lw z`T2Ka@23#kaD#GfM?B(QP3A=(wW#_@0FwL?gbDHYBmF1HiqG5PsA^s4?U*$Xr(HQ& z=!?gxo6tXO{AwMI4j?IHYF~OVD8j;2=SZ|D6XkoXPkN?oEGK8K=b=+8iwKxP%k>iY zjD+Yp?jra}U-=uq-z`gsU1{iXw$` zMLsA-P~iA(ev~UbsGrPs!_Jg_#(^`D3A6% zFZ)=lED|9=Rx1s>Xxge;crBstLR%d^lxXjU`lFgJwY|#(j1yRxz4laDn??5B57tdIJzZo@jOy2M$r$NCq28q#gRSjSyI;fZ^$5VoYM60@E=Xxt9^Fr6>#v;jbK+l$#c;{?M4j^K%XR+>?!B5(XA)(o!qP71HF5nY zpr^GUtNNU+my{2H_1-7x6U+4Z7Jp-c|0jGc;<5o}FZ;3YMvh4S%mWv>#Z)PyF#ql@_ zDUwJ=kPU#Kg9Di$!+%xAs)xIY;1^?~nZ0(n2oY7$`OK7Vez8l-gkQ3S*);BKnB2RY z=zaJH|E)Oa6>nOcLTE+dqyayCLem}>z?Pb>9E_l2PbnQlyr0CHhEjhx3^UW3-i3uq zM+Ygd^kF!sC{%xdt-4VQs)22U@=XY@|B*tlc~Vjyh2`i&3Hu8PL{{SOdRfuX%DgI6 zX8Y^s-we~oof7l8>=jGTssy`LSz-b=WrbT1X_3^)M)Tqjk!APv81Bb@T?viEVS}j^HBbtuOy>`J z2U*e4k$f{^5(Y0H3H==b6X_wm@;*wxQw^-b8nn2!0j_?bp@64_1K>~aIwN+bpvPwR zL2oiG%O5)TjKVmFnkTh(mMXy79|Mq>&xAObK3i!=kvo}vNdsamtTcK9W*)eBB{(7? z^yLKMhS!#UzVY5@xWbWtU-l6*IOoty#kTx;r$XZ!{b0>3PlsnfZY?!S)M8O&Gp)8k-B!>kLfKSN&b%C&wZdiFoXV+lkkI-N z8%%HtxWt4B)Nk}b`K)!wW?{0zYu@(ruyxl+N_###oN>1Ryxc|WQx|Hu1eh$cf@(5; z`p8z%Ezhh)gUcA{M^cVQDWsS=x#p3nzOAQrUz${wFcpPVijFeYqDMWB0XV56!Aa zmxLdI1cID1$p^5JnO{QrPjqv~>NK z2B4-=`N<4P8eADfqG{=m&IFcER9e|)PJt2{gRYQkh;I!gvEfr(Hv|hS&oJaK&&L>Q z*UkMXo8{uePgV2K6Y8j>ui6o!^Eq&IG~PhwgU;6UXgRdw+747I5FF;@M==mBu1!5L z%_Yk@!;r_UCo0QX8W>+u@NL~!%E{G#vCyOjjIRdQjt&!fIBIo@Yj&`v=(1_pZOuof zUZNCS&jj4dIjGdA{F|-m2>9sdanHiTA;k~ZsDP$sdd`+!X3v}Q$8Wvq8XRm!u+IuF zOe_McVIM`?HMzDG`4BFX@a_(VUDNQYV%3&uKtvs8T*gIKFJQ$U&&Z2@M6A^wb8hPA z*{;Z}K2L!s?%S59p;t91Lx~m7l|;8_CF$?c|4yCAeRQP<2r+GJ_?dC|gLI~*5fUr0 zzU(26g&SezT0OBIc*;hAur2ek6;lI7o)5wAK(dO4o6pSHDz>IX|Dh$n%@th17`O`p ztoOpfXVN0b3H_wmRIpao>c2d6K`;2?jhM9>6nN@G(MPLl&oUh`l~3=MmpM1pCHPlS z3ss`ZkiXqEHZ?O{U0l4e*pQW(XH;%Hm6r_WdgCl%npqJ}R+5mRmqIwU7KYP{Jri3v zl@ye{HewE$>s-L+LfIKZ8`q6MB`9lc2Ln+ar0OkK^@3!%g9xXii}Y}K3ED??Fvd~W3Df6DK{qHUBG5IFkxpK#OAfDQr^#a9!Aquc1C!-O?L8**Whv& zA`%Hs;oMS8n?;o3H)8J4eNYRUwyY(WpaCp@gNq^!idXL`vJ;DRwx2VZ=!=Zas0NnE zs^s^VNNId5F%64;1usZ_wK!XOx&;R>h?JU2%||j;hAEah#bQr)gUQpL_p@fJ6^k%;ZNyJzn-60a;f;_#R&6lyNljE-?o!T=I^ULrCqj?Y88qpDfILk05le_RN+R-!$m$_4o%@ z{R`Yc1z%!3k19+uDM!RS=+l^BQjzs;JAuLdS7rzEXx1r-x5oV$&}91BDiNw3RDp?| zp_%jG{NxDR(w#t;mk)k~o|O12I^-0_nK8NP6My^rzj`R7y$}|-xuT*tv2aT~^(pw#pGvue-dxFqBD3MG=Pz?u%ti087tD#KcU^0P zwhCSvO`~iThZ7}B$*3EM%BmZ}ksIYNOG0;k)}8msj~gr38CS53bA4|}9#pYv9H$wp z4|F%1%IQiR#!Ba2x57nnR+IcAp}h}(WjGIi6-f(M{=o z^32yO(oz;fK7`@?G-1=J3(vwwqgZ~eH(~=i+Aa^Jy}$c_Ss9D^?KbF?gQC(RlBSW(Jx*3Qj-HO8kSa2QeyT>J@qvQf9fue zFMGo*eXX^$9NB|o&Y4m7u%bSxhpL|K{j5!mh^}w;DubUF)&v>Y1KMw_uiK`2_Q>NP zw<;q+)rYRyv~kItew&-Vy5z}C3h7x?RHRwGN3#fFTO;*Vhpxl4j}xyRQAoG$Gwt3--KPAEV!Q)e1lB;-a56r zA$3A^QiCluK38N6LOqC)$ycoQx1{x9t;C=kWgE&dii-8+m5qHvMD$*Sxn>xQ;MI6E zlUU_tFV{0cfee07_>>~UM%gyjmjmbJmcipB+-07q5i2JLb+%((FC;ef*MM^NN)=pECHuQPnNfRO9(EK{5%M;n9V9u%EQ$eJ@8 zCdzmAD-jo>_O#0*O*vSyeRBSjUYbfxo4YP)Fr0gAWL(!{TZMN3-4Kpi_wT-~5gS?^ zn(jW8{tIAp+6e6-E&ljC!MxXZe1?}X>fNmYD*^DraU60gT| zGbOr!nuD|VXD?=E`e43>x&dQcKET0IIS+A)qK*W_gN$zivyPhKAH;&gH=4cESxapS z^LYgJgR~b);nb$KFR-R5?-kW+{*fF&j!$|1*x{MiSlR2WWSbs!KYvW6*;`zZQ8`wG zR>U%jRgK)v&i>?6kS>EHra_7=6Z;>7qX{#(Fo}>UgU>8r`dwIZKi&>4J{u<}PS2S9 z^7c(zd-qxPVRq`XJLx>Mv&rgOE{R?<6Nx@2La%8yL_PEyi|X{(zXifO0H!H5@Gc|9 zGBSOAQ>0U;){#kacY)cnz*q-7weNvCq$~QWjldYMzGq6n`ci}+{QP#n=!&Z5O#2zQ z7Kexc8&8r8mwlcaoA}xbDRsV-lH7*ThJR+cjL_ZV(c1gD?%}$@^5;fm7PP!9b&D&ig+;h>$|i?7WYt>1|6F40-#zdbJ+zU2BW3=(OeC?&R>wck zKaxmT5)s_gM20$Y7x&DOXWY^2#t2(fPs6$N7Zo1z-)KR31Zkj(m9Lv$umgmx+(AJi zH0r#zy4zCE8AQwr3iY7B)x(+zPqZe1 z!s(f{Pn1b6>$Z3_0(4iKI5K7=)L!m7*r*+n`msWO70&>t0*`H4wTy0$hN{VAJ0w2l zTEeu}cE-r?rbunnhKuGHZsLfHPk&L-pmUZ@*C@%CL{xiRrPbEQ+)(>EkitNd@!rO- zG?vUhEz;exaksfBoy6~A7_VGjA*EQ5 z6W)RYEeHl(?tFUTBOX{{$5jYu8O*oik@rqMjCS|XNl#($li`*9PVx2&X*!$F_ufTehn?~B(WQrNN!+&JxVE9p>Hl4LnLGly536gt2uAk@OBH8VX zFM}KV(=&At`7$UN!@OvsL?WM8z_t{7`jurZ&XAx z5U%w8rK28#^cj#|RfY!cuK3^f&B`%a3U}>@8F@oQ#z+-*h`l147^TaT^(vt|niIr^ z`GRW_xBflbc6#cK(YiZ~p zyng!ZKpO}Z)-=b+he7UK|*jt47ylmdP_?#ynWxr7(6wG*+ln=%i zYDcDQaRHdQWMb!(sfN22z_<4$Hkm6LKxrcrDkY8>S;k!DE z*u+e_|H7P^;;*xCRWeHq#g)@u+%1}vO8MS3@sX}FUXx%;X$3EilWm0IHzcn{r_bYYLN(2E!#q|?&#O^vDxykq$Dov@ zPymOf^lG1m%VO$Dn$GV#CeaW@aE1>1!A4HL6l%MD+~=DMXyy&T#Oq6Nbg5dfhaK*M z5-kQ18bKJWQSJ+KWXu?%TFHe?@CJzq=$#I6_Qh`ZGJkDKI;9y7c1S^yJiS@QU0v%o z#;Sj4)0&A*4wgC*jRnIl@hEmSACBQ|7WwGo*bvr4;smYXLfjdF*#jnVR=jwN@00Z> zC!pNl>>Nw8HdP>)(Z?9I!CK zW0u24z`Op73Q#ASYd ze_e8Ht3!umJwjK*VnGe$tEuhM^Jl9;W{+g%i!ja+EdwxCVY~2wf<%@KtWZz1dfD#n z3a?$MV!fiIA>Z8YvF$?d;Nq-x zJpPQOAjiSOR&C>NKF!aDX-L(71furw9qHl_S5kN_dFwc^=9VleV)-bWkDUE z83jE9S_n>WgI8=i@1wK&M}`+ z=>2xm>j#J+t<iXT z+~)Lo~>LBQCs_rpLxpqAB!o0QoyO|jRO2Em{pUAHUt3ok#aR7j z?(4K1USN*+0SRcfy;?iPhJF<$IE3>| z7EfDRl_wE4R+}9_rAcuoRmU+_Tp?xnKb}2_LgrEZ*-32vqNxmx&-*2`jzrRbJsC)#_C}zE=)T=qZM*~Y30kE6I_wtn zmy2vA|DouGco03M;m+>|K$`f*>zcpuv((?D%seM<<^9kA`{gBGTk4{W|7t{wEU2qQ z4c$|q1d(+}EZ5mXr4(Or;q$r|CW!(S>CiYRz1kTuT79#^0?h3V6k-5bsF;zpCv`eK z;%6JC^7|t_GUpVP#Ps3b9SBA8wBGdhtd7e1Emc;ShjjK&o?e$fbt#ml6?eN>+{A_x z$s)hP3MC%=2Baz1XQw&@=iGJntUf+}u1;2(Mx=ZsIh%H#bR+YSJi}0*BACNd+Z*W% z;iZ+Nu%1?C8mb!sdqnfTTzK1z!HQ#&nG+G>LDtw*3e%Tm(5E5Vsme~vL3(IRGF6l$ z0wEWr*YF>$LK9*W2MrYNS%dolm?IYtXoa*Pyiz8DD3LuC$h)KX3XEjZiwH7R6m`{{AwLv6lnG(Jq$uqYT7wO6m_H$XU;0 zUv_k_QPEsS+MI(Nb*Guv5Cb)C&-Z|LzZ1oEcv$z9=IfU-j+uxKqGBGXV>pzTdeq(w zL<0v53Mt4xcMV?|(_yhGVk&JBqN_^kAszU1Z~lMNU^z&qu!>V6qoK3#O9~E`(V4>v zOfk$$>46}{KNXAK4JRe-*JPPBcVc7&ST{zb`a^6|+QZ4Az5FdgYO&AEU6z%NJE1h9 z7I#Tq8wv+SKEuFi7z5e;VBD0srBxW_mG`xvKdiNiTrpnDUoadDNtZ1RPDO%KD?DI9 zi$#4=V8>rqodnf~uM)lf?A34_ldUM&_6MYxTTyO0riK>7zGP%-l(ZNp&f!Owrg%Lc z`+YBav3sxP__7txedZz6e1UZZiE2w>3N%^f{r>{9BixHtPoSj8@!@sP~rLw9Pn^djw@`3;noBu|7BQs{^> z{|NmSk!z@-E!3Ou(2Z%;jk3yWq!X&fL9e?M&L}@|P)v^afpeeneK-<&5qrmT*Zj4; z;_y@dd!Q7-_M)fnNR`@x3DY%lt!1+%J`X|2D`6)*WxF9Cj#IT*I)oxBUBYIv=tK={ z24m`Xl?4R0++-jxyz+KlLDYjIQ3|RW`MqHF$ZWJvV?0NfBO*cIkPTUUmHUb8OJ0H{ z(}{-3kqF1k3_wE%nKNW?Y^3`J0J$}FJqu_Sl7Ec>+&emQMNR}ChGn%o*~vujr4u#= zwbICs#Jd0^B1j?a3R2>F&vMI;SpIY({;5wbwL8GK7Jhw3Bsh|-WTq}U zR%iM=b4TF@&i6ou`Dkk_Bf58e0{kHQyei6%HiVug9ioBChyQ-8nv$#Zkfdux#{Zae z_Ezs%No$r-YHipmo(qkur6OHQlikhB_3nc8@ z-7$S>0aWm^I)CoW$r;mmj5gJ(~GUKj7;9L3_d&=g2Wt~5VI~Z7y3n7VH=PRac02w zG6~}}MV7d;zak<*wVHG31e(cgn{Nv9^F5?WfvRq3c{42R!Gf(Xk!xgNG0tQCvHC2` z$CBRlix&i?hkK8>)8NqJInB@9Cs_hgzvMsM4QQ0 z7@Oh^E(VFM>H1Kkzqa1fMB;)9SDsCdvl=1W3$kIfpAbN`HK5(98KZVbT%`Xthh6vs zTK`dn-?ZVGRSu0-)fH(P2`2{`p-i|xI-&AyWq3)4aof9$gmr2Swkg-9rjs#c2w!j^a07cj(Lt-T!>~WkEXsQQbD3rnbwb!+BRU_ImNh>U(On8OdE=3BCMc7U(EK~} z1s(esF(v&+GV0BaLpry7y*yOVRYH2(liSItV%%F~gdETbjVwxO zTPs+iT2DHChZ34V2;F}S{3)y1Cluzv5Tta;0TG$&|2qmH7C?Clu~($;${ zkX#S(%prWNGK=a(##>n)X9JdypEVc;LM0RO_SSb8Po`cR?tD>m%!W)mdBZe)w=jWU zdLBim)%+nl2U`yxuK**PG7BJ_X%{X!*GK9IliC`nN?Ec38`Vsn={+x>{)wi;!zyNM zi)ThC@d2s?!&~lO=gazyYM_4yGGr71#H8yEk^>F$`jOz;KlZ{?d_v%dG)y> zyAv^2*#R`is#P9^PYoV#26$=B>8hTbX1A9_kgd>{90`?Q_V1-S$%z z2tN64iONeJ5UIsG-`Ld@&_RQ_&}TV$8A&pKenrh1WzpZ7F*rwXswN#OR%G#FDh?}o z{i(KTiscQZ#}3NU!g#Xu$)Z0mEy|fyCwx83l@eJ?*@1c^<#S$l*gB#D0L31e<3y4} zTVp7#c(3b)ZW5n;`A@WYl=i)wwu(_J)~U7-1ihDqJpZ)TLv>0{$OgXI63_GwEH9NE zZ3>bir{hRaumOJV?8M&Brpl4vyhYAptB5q6Wa+)Bdr9O;T4D|=a9nV}&I*+p$ON~j zxj>pqJs^|?G@hfxDa2BOur>Cyzc>gN94y-cwu1sJK*$0a8@#r+IjB@HTS9QN#8u%k z2z1Mm<4=3Da4t2K^^MZMO$bz#BwRIE@ytibcCrI!Hfyc_YN!JV%x;WeoCfb5$PeVC5#(&ewb*cW#2qvZz5=cKlrB)U*r zKSTMJv`m(u7oud!+Ml%3HO!txy~57A{bKM;0KIrQ{su9fxf@cDwzl+uwux^2>LKiz zX&ETSfb%WlQ)Qo9;3jPB?0yC)kR8GP$|m|vV;_Su!Wv~pM~GW}h{}Kp!Vy_aGJ)$p ztkWh1X#o5|Ex}T)+$=aoWn%Q)(l(4~$1V`Hj#2pcJsJOEy z!@Va(n^Cq6Q%WJvi}HSs4O9Ob%@!bty5++ZFou)I%*p5A-oh_Zp3+K>rL}S#Q4(AX zHIF{P_6N2EGEl47mq{vKPFGdOMoogN4sl-0fG`Bk?=}x4G zWo}8Hr%z+r`XqH%Fl#R0@#&f^o3RVd8M!`GbC6*?+AF*@)5RI+?X@N?tQ#sl0%Ook z64VlXq}pv{lLJ?UHAtstv3fh=4AT3p@gpgn!S4X96K~8iPgr-$-Ns5F8!47U-XwRF z1G>~mD02N1ty|k0Ox-lY@2R;do2jzCtT}YR9YKvxtdeA(djftk;`e1#&m8M7p$m(m zWNUN3(uh3ZlqhAVQ>+7xvyo0aq!`PIzj&sTs9kKGsv+IN<99HSrTj*qC zwqtZN^$=uyl(WKGVy2=(q9d|#r3=Gk%ht(c2@aRNhsM1_yol99On3M1%hm4f{|FyY9noTM4eoWg%<+p^M=e z993!*&S~9|d)GPYJ{=XSjgF8zfGXr{gnQAk`-Fh3AvNJHD^%t+BCaNq;r6mL2wt7T zR^U7;!B)a~V=I~_Qi4OSQ1}T(fa3-AtW&mNp7^KreOOdVVRs}rMzxA|zt!#Qtap>+ zLDU&KV?j_LU7lt4-$p)}5Xv1)n+mZJ;9~lsyQS9>(wG8VRi=#V7t)O6)8q=N>I^>b zUt!?`uZ?Ej|2Azr7dmC+u545RL(wuT=CZNQISI4#xA`2xNuEHDmnXhcOf&+p;%Pix zIb=J;x@WiF7#-2y^~_P2nDJ!2`k|4u6aPbGSKHV3x?2}8JL7R=qpRx8TFO+P6x{;) zVp*6}TSr&OSe?tbzbhA*6IZh4t@aya+b=Hl!nZmjda>9dU~SZ`yMb9;{S3eRDMbYD zZ|yJVNj}7+y-Ukn&-4|aCP>@))_~t!Ug*ApAa5zFz-)!6yqB=z#1Ko2?wWLEx6xLc zP2^KJaE2O@vBuIB_MZQbOg*(;5lAVgyR*nG>kUbqWYR5oPH+*vnjp-OWUj`zlS*A?< z=XhxMhAA;tTyXc2xl^j6RPEBkQ2peL9MG(DzYJ1(db(P@iEtK~VWX2tf(2>yzGif@ z>Wxcw_VZMNPO%sVs0T1x)SMDmsUHl8J6_;i+RUTiX7#H~k{C`ZR}5`qf#rECPO&BZ zAP;I7z&thlVo6Tfq>~!!il_9g*^1*Z{4nB^OKaAD-&r^6O82{-J}VA%TT9xLDT1!} z%2xRBkgDPrpeMZlmC*z@-ei;pq5H#8UFW-1jA~0A-d=8A6g1Dx<)+XO@+(%f9krTV zMQUh}Ht0zrv63E}s8R9i-X5_$*1y|yl3!TQ!dtDjjmc30Y@L{llOhclC^+jvo%*B^ zYLoIYf0`bG3JbYKHA3}~R4s|b$3oHw#*~HB)UIIIL{a8ReYO%?4)4_Am~grMnkUOV zdf(EDi77MFY;KNZ2i3}W+Jl!nNntg+@a-ke~ z`@fOy##i_n%Orw#kn{?nyJK&L6=StYuCN)Mb~tb@!QfJB@ek#96dhhgGl5StLbe75#xC|1nFidmK z!AaL*$wn?p6C)C!c1D*Ey`x6ks_eKm1a5<-V*(8=>siS+={8BCe2o9^KlSQFi`6MK zNIJk}nl?|GLM8e>|GC&$gD2CADXAM>$|YjDMFPWo%>{-@Vm_Mr2DEL{8dgrB=2jxZ z%zLmT1VY_P2dq|HBt}6bkN{oXqWjketGn}FK6>CUOB0)if3~klIZoH@ciu(f5;4*> z394@Li@74)15K$+&*I3KIUfGS#^BGp1-hTKjz@~mL zP7t@bxmjmXniXvg!wZ*2PT`rDf+TY$J<1oBQ=kk*-!@{tc2-X=1!Pm*=UH1?QuIBs z{bV3t8-8!FKN@$>;&=%o_hlNLni>0?o$p>A#pi+R?Vz!#+`sIZNl6oRb#))={Nhf% zD!4VuGI#fFlaiV4MczI=On*2#tp#B6Ob!SP3?|G!F=G9!ce7QN2^_2q$VhK zMKQ!Y!z;lpKeEU0mfvAH)gz%JZIRgUyY<>i0sHt(4dc9z#;mgNA-8+cr8HaWJC9zC zYIPaSnaO0X?7i5(E0>}-$-X%dM3|}W=Al$h3exWg>woF4KwoOKKLaRe$_;}5PILIl zxYf`H-LMR{=`xBJ8cf0uzes-jf@qTXZ8{x%6w(icaEs3mp>wGz_s?E*cQfDI*-R3QyN-Sl_KfejA^LLbdwOZ>sINFb4&LyB zM@da`tHfVQ40qsX62b64#@;e2j-cxn#@*c|xVr^+g1ZJMNN`Ai2_d+85OX#}xB z{f(F%sHHd>=t1;1{d0BSQ`>&7=|mZX-|0R3Q5FY>Glg=|GLF|*Zj{vOl8+t)+nF9n z;PiQ3>Ek|HXyM8~^5M&|NZB=ewdz?rc~weu!kfkl)n+(Q3@7nk&WSIW1d#9C5WD~& zno)gK}k%L_{{ZonJR?tI5sO|Ge|3dNDn2E&tt zqpDt^%=U)|Hce0(JSPQ!d43XJA4fi;ne*WsdeewbV^{lo8N)4KaVt585jD)o_+1Hl z34l6M_YC;fAo1VVU`+nxPj_g>NAo>qhw$V}Ix1zEj+hTcxzFb20km}k!0Db=B&3{ZLG%l zeH(f zt}jg-a>2_c3ci%nw*CNt}tR@YrlGELt|Ft>u z1vIw-BTV(pyQTuyvWHtoBD}GMfY%8^+gca?^QicCIi>)~~0k zf9$8*0InQojS63oL1eZq6IJ{m^gepkG_S*LKrxofVs{W7aBsuKcHexm#|{N;)ut2{9=@eFvTwB|m|+fNF@zW?K_@4F26ECM>Qfah&- zwh*@6KkL+uc2h)fG=j>xCjSl`p#i*JA0r`G{1f`3k-^|@~jbAu|=Ok5cLX{-@@ z_(FVG0~Kp?JYSC+++UBYH?DKK4-XG}&<{Wd+0CC9$}7vc8P#*{@3P@iP#N|Ci)+Ac z`#YRxj{Ra~=T?b$>)yUm-n5J$o=S^^YE%Nm1zy+;P>8+9%oRUx5t6fw$&YGa`xLi-4lgyUk)J z6BfpU$7FZcZG�^`+cY~+nnFg=+s<7F5pAS zp@<*o;Og3M*w`>F@NWCEarbh&7pA_a2rbo4A0BUlIKldLzc+rHa3aq1c-7|b75AEddv5J*5Z$ly-a@RgjhjbJZKmi z;|d=i+MPr^13wr~X0N$*;3w4^%HwpsKhbN0Xa=1syM*f(c!R15je@@hC2JNg7fZ3e zG8++C|Mf)o5so>V#E^#zI8^b5OJk58+dPDA(}czbQLtjK{)F1XRFw5tQcwvm(=IEm zI^LBnv#5Ecc+{nKbElrhsH#aw1nR9|R0NpR_>jennxo-Q0(WZ9p%HwuYIn+jwOSC% z6Qv>jbu!?v`_jy+uaIhV1ui_9|$J0sKv7H}xwemd9zS)jbuNxmVW|w37@tao?7yWm5y1(VH&7Ix+?oeb4e| zR8v1Y#Mkhz$u~a+k5E2)0R|~kKSI6*sv^%E3V=$B?BT?Iyjn9XO z`SNu^=q=$w$EAg@w~?l6?cgEeg{_54*Fmfhb)IjBt3GWH1jG!b?+q>;{21UqA0oD+ zfhz~=VRLs$3?gL*VPSpdym@?@JGs!e_mDq2UpZub4=T;qu4^ojMxEXI?fqeWQ#FJ$ z2pXDwrb74Ex8t&swzl`{#PLRNK2h6!t9Pr;i-3hwu=h|vEYFh;g|DaFr7MDu=b*cq zNGSt20F5bz6FZFX+oU$OVS zn*&De3H?7)@wy=7drNq?8@2J>Q?Ao*2A9%i&COn3z6|&VMoYk1_uK2+<)g2l6NYb= z>vk|;KLzXr2R*ukK$pkUb02R??l){MuDjh|*SyaM>jSUQv0UJu4|k&sXQtQIyyi9J z^{&>57xH}fi>scmj3kPh;Z80lyhGI{Iz$I6lb=A0ae65*hk(j9%t|?UufVfS$3sRN zy*gS2oK!plH(PCDn{R6V`A2?P;7ftlXSjW$ET(6qM>}Fb#*HJ@@dgsYEEM=ZH(IrM z1=`tdZxUxglYgp@jcX*bvR5NTnT2{Yk(zB-Q2-$%|*|!Q_;KZ?W-QdFA+| zSC(W{?J^YoHz-BTX9dE871qwaX+0WkQw>G;>aI+CmN02p=K?e)916*Zb;M^~Okd~d z;N;Nk`ax-{bli7QOxxJDIHXAv`K99)(@&*oYt&>o*tJX~G>3AvRb%$}^aL~DcQk4~ zdia6eMT*j2wTh(P@+~GB4s2R4(Mpl3q1aMKbuY@JBq-=Y9PR`OGzn1ulo3UX-%Lqw zbD}ip4iqxu!O87jS%B?_eZY5j{Ut=T)Css>3YS`pI1^z~gT*r_fb_>_b4Fg=aBk(L zV9S0;1VGwO8v2yTlU@F+vl=WT6a2G)MJCD6p3eK{yWtd$0tsUT{>8nU?IB{t)C_HH z_Tza4acCjm;>iGPsLe>4zdEM)O=(Hoa*Yr&90=MDb)5(kh*%*i8qM1;HMJ_~XS}*W zP9VC9O#g}X9Y!)($W|y!+c+^b_uP_)s}-`N;6uqwrQ6X-i0=C66`=hDR~l7X2WO= zBVo|Cqy8duRO@9z?|pxi5j~iYJwkq2EhH0>65shjS6Nxs=P1jFG7BxyZ2|3Hne#of z*8Q=PNcTb$$7+l!YoAH~RM+Lv@_IBNa|xN6uzg_vEvS}Y-ptuDabB}{4P5>Ma3YiRJ1!74RSb~CzhLlDKySiA%fa1Q+Z@tYb z7PwqXOnKpu19E=48%9`r;lt;~TW-nYi>$FBS0qi9B0Gr)xm_s& zwciLhLvtjcnCkyPCy;!@?|14b*4C~x`9i|3UD%0@MHp1B@R^B{qu@3~$OCQ{eQ)Mw zSjC-2EAF$URqA$86_0CNq&8cK(4ZBE#t1!?S)ygW=I*D8@&uo9RSV~0ZDrPR$leN) z$GcJyl)d1~tROOwl}?ldB*S4;(+!Pl%gC=X$Ns)9VE}8`Qp;mCp@O zm%w-}4N)~SKJ1<~$u8ej+bo_G0d7K+)q_6n98f^tQY$5-$e#D@ixqysn_YMZnsdJT zCMt7~u{kY`(h$-_xn8FTCOL@@Nh$*eYSSFK4UUsUWeykRh9^$8G7yy!?$D z+eD&GJBlmo2a(;k@EfG$*x(Cv9Y{q{LgF{gj~tnb^oJ(AeQwE73t#;mWHzf?u(t}2 zx^%wT#{FqUTSK~GnM9+Olr8Y*c%FfGW{TuddH-A#9wJcpk)vAUyuT$@CH4s#3oMa? z+GvGw<9$wqhm(YIKXLi-drBZukvZGe{g{nY%L2I#73M~z$lP2XY8Hz;g`=&FH$@T^ zmHA=X#}oz?SOIbp_8Z70|4bvE1wH0TzB~!a2P+TBxM@W{!+HCy1;QZVFa5Zf>=TO90&`&~=PtjNg7dU5WxIVRpfutR zIMfL&s0h!ZGQmd*4LWp@UVN3X4uUX)g-WtmI&M_43YLm=)Pf$L7yLJL>H=``sz#JU zQrq1IK9Cd>l4!YDKH?tXpzVAS-imk|!zinS-H47u5~Ut&8V@-iS&}O~DJQQNA}uP8 z3}1wm$g7AzKCH^vG75RhHKbZP(rrmr(6>5FHyHanC$f+97E0UcfmCPgG!vMG@y+|= zL?TtLbFqe%>{jTOeH8HfztqneSCmhJI11GFztp4sR!--;w}>a6NjQS={J=b`3)DvU zWTjn?7lg)exUx2^U87_0uHu-IWb#)tO)R7(SzGp+qWqd>yRzI*bXPbVrVeE}i&3NW z=nbe(xx9-fnmeSP-k^0uG&wga^vkHB{#}XXydGl8i*gX2eOFA~XLYKqK-^&tW>a=N zjE&_v%|h7@WDeE)pbuTm401`OXvIU2Fe#%(R~&fCL)pIl1Y1s9>8F=0(xMdm5e1g2 zdOi*TICZNBUq01A>)`12R47uc70I&)L&xcTRtVIr6)TkzT>HZDC(tMz;i+)*rW^@( zz90Ry;&|T59@n$X{EnEnzsfJ#{D%$CCUhW2Dl;Oqd9BDQUmTGWjxu{;S=q>@up6oq z+yhZA;T(Pbf&D88grK1py=CSw6Y6s~daMH%;|=}JM$#cZ(npRsZ#6kj9I2eJcuiLEw6MF(<>%F@p$t<^>3;f(dwJ}BEkcG|^b z=J1F^i$6YJ?9*PXCdpM`ZSsgW<~br_v1p zw{x{J2)lCqWFh5<^^ds;9`0HSiLQT77zmyz@ymS#)Ca*nCWzN$5u zOJ?SVs;Ram$#QYJ(9H5gmwdI(+eIaDx9^o)EudJF%3+n6j8t;iz-$ynJ((8~BDCyr zC2Lg^(VSf7%&1n-LgCn-L;}v+`2~It3s$2%%)@=a?_f_N-NWhA{6G&fI%K1uI{BKi z(+?$`Oa@~hp=u#R9Gmz2?*ZJC6)<9alA7?D zaq-teBbsRJx3)w-)aVQ9cj=Fr7D!8lm2i334*d%xHRb?!p+8GYwy$*~jep$Ix6jEX zlWf!0tmur9mIeY_scR1y`88s97}MX=#}|5o{~-QEA`KxIdENrT#e2c$P{Ul)>lax< z<1YZfakjGere1+KGsB<5+PG}<9)(U_2@8hqJ-^@X5*#PXSvtBN+Upqo#a6ciHvpoTv;Y`I=k1~q-~n)28ul|AOOt&J zw*=da;mBe*EQHV;W|}Ur(?mV-Eu9gDOlCu{(zW~V{qygGZkKVcp-O}H{Q^|quY9T_ zRqW}4@GIsCkl|hxNVo_F!bcwY98*#AzOjZ!j?B}}DY1XCgw15u<6Q3FFRwn=E-#Lp zuC9S4HfUKB0m`ww8Zlp>A**B?AGjNZ!ctcbl#;ATJr46jU)M`stIArB21%W~POpaI z<eve;qSt<_s6)2;r1mR|pB8v#`*V6Lx+TnD=g$ALkL_beu-1=jFhq8HBRca** z6>EX@6;_Z^fIGg`=A*BKTvLF8Q7K0uKRRW~=LHNGsFV;Q>BR)ghZ^k)4?ox%-hO>t z`>N6!BR&BfsL}lS@;Nr;0-Jgy;)?xyWStUvtWlc5xJEFM80$hg`4$u_I#);~-O#0Z zneG`BqM2P-E&bw04fE#DPP9--(q%d&Mrkrr*4W&-6BoGUswz}T@=?_GBV6D0%XNf% zp!G>C&vVN1H9$cF}pqh{KRu~i6XzIOLij=x8~V@MPgV;!%l@u$Kd36n`33G%_B$viNY^-?!Y^8qDN@k$S%8Q8FoeD=zSigcEbR1Ij=+zk^j$;2 z{fP|A&%dZa;Q{0`L=N+opDA4=hR*LoDM1g zW5f5-nj_l!MzF!K`P*SgNf>?p%|vUHDs|LD#K)i;EXiI?c3f11lEbW6gtF4ccC1d9 zD*raj68g=qEWoBTVXV-pp1GeYRS)BKc2?eQr*erG(M5ZfDs zG!o&NC;84G2VPB`jZH9zwX&q7qQ1Vc5Vk*sZ{TQ%IZ2+pRy$7K75o(l70o9mfV@59 zGdd|ht8p9NRBnvqI}p@4u@f94Xr8QsDT8q-%PdPpSn+j(*8B5GMD#eQ*-(S*lTaZ=`DJDK zjgEr4XrE&3;d^Mg?dW+OB)UW}7};WD_47qO(p^@@97`EoVd@cii%Z-v6G_wjO``rg zjEg}@)#VSr@V@T`KaazlE&2z54Oecsx!!)NfPtm1j`)D)2HNAKLeO*{ZqdJ_qi~Q!s6w>T;qQ3L{ORLMb>C0iVF(8 zPT41TT9Ens)}W81cNeIYj5w+I=zzsN@ZoD{_EB2MHHxj~&CG`$`EUnbV<)am?K{YC!>ZZTfT6(qfbShPahR2TwglMY;O4~c03c4UBjzbm-CL9{_lTV}G zjpUKkpiUWpV#RW?;K3RKzQy?puB`6RTdgHZ_@gu*U;qE#5MD3-S{H6yLMCWKrClj$ zF|65RXH3PLRa5#P$ftsD#4>`a@mm%ml@st2ZAYI2GY6*NH`lNotOcmoSE1CJ#8o1v zL$E4NkldkploVmm4tZWL$2_rXgCvO6oWt+yOl=$iE3=rYiq?RxxPe60k&GNN;Rq@S zC4oE4vQxwhC9FRgSHk)vVh_Dbk)4G@Q3(*wMa#UoU8J%?_J*#Ej0tWq)3|c|oWb1m zGy=1u%)qVKqF@44wI@lEo$U2$NzhhhL2(=D<%=vR(_joI5)R?x$WH>NIITJD+66TN zEE_DG!4e_j#sB>sB4mW1t(vN&K;`LjWN{1}F)Xz7B`8GY;QzexUn^)=1Zwl|8Hwh` zv>ae2g;A=QTgX`aw13`61z1wQH2B+zE!n|I`eP>YR`YY42i>%TWqn1U}5*+E!~n0p%M_ zgM$;1-ZvSP(`b=MMKZd*0gPk40@Zhl($wG(MoC-?(?Azx1St&Q$UwlhAMs z>eYo0Bcn~sqB_`t8ql@IdQD_2MLcyzs8J_=I9S%eZGfc%YQ6_KSl2D;9~BVB#0ywJ z$`c65sF6tZL1iyJcM(_D=%m)49Ub{&RPF_PR5yy%{VjN!?^p@>o5ct_qXM5=d#M9z zKC=js(Kz?#D^8NOp*^)EAa^F%xS8T7XSu423kb?!@oSI3v*zo4qZ>L)7D+VnDMPEu z4Jk(|1^x-2>`xfAwYMKCXd!3*f*ZcMNisvW4%=naq7PNYhy8`L!cM2^i52RGTYJ+P zoFbq{F~kfbS1WSCA2vtcpTBOaw255|2JxT65%k;{$Q$qFOB*j#cXtSisd{qGeB*~E z?Ty0brV2WU_d_YtJ`zT)mrsNbfNou#pXdGFe_1?8-^btz^?oo(aj|LGzMXy*q>_tW zWGfB+z1GjlgUylW2JoUXrt8e5*<7J(3@{~2I6J7__C{d8qd6O=n$P{T>4Z<@qX=0t z)+2qVXAFKECgcAS6`H?_rnYN@w#r95Y5x?(C<|O825F%5t-h;1%Wyd0^N~v`K##AG z$dL{~SHLyocPOP}hvGk>KEw+Vkf~}*LZRA#6u~U9v(NN|0eF50raU2;YoH;@>h2$ax4EJaIpy9CU1^d&^V$C z2vP$rm?*KXkOLoi1xfQ48X3YS}C|Fh}uFF^}JP*NYTaCBpW zzuJT5+|hR*91-vBd11jDTEFDtf zxj+y#nmLj*(QmAf>5Du>{<%|FzqXir!MK%~nX6skP=V zMr?>*pg!I&lrdwfQc%dky;ah{`M=$1wz{;$>oz~k@p{tzde(Zt&&NmXDMnjiQp!OZ zC$GOM@ikfA>NeZiXW38k9S2A4J98ZxjD(T>{C!!4f+|Q@W!LpD4pL49@E)BmZ4^wz zE@~%!XoSXBDLO#4lV9C<58J@!z{r%}EN*yAsZxOmUOVbyHI|225=R?p>!I)Kz3<{Lqs{eSudI()A(zZBxdh+YiqM-M1F@coV|l?AO1TA>V=WK;J8I+8 zi4L{1a!7lhULxe>p!s;r)u;(h`BXO4Q^Fakr)o3;ahXCwY!qt9({U@3hA`&#>2cG; zByzB&9b`!BYIE=K95Oo08H$uvTeC%GhX~$TUAYkRbGH@ihmWAW(_G?U7dH3;3vxob zBYE$U2$-v^^3^Xw`Ufm$bI9l6XwyhSWXCMsAc;^BXkb^8xCD8JS>2%k<5_$|5D1i| zF#hr`E}377kz-r%Ho>3hpjVSx(XUAaWl7-mU}$uD8^az zyZZ1}Z7xN`wrSE--R4J&@G8mqO@IF$)mCr050frxSX zea!(z@ZHBPRGP($S3?!-6^*W;%OLB- zZ_l^Y&idUZUBa+X$P<#Pa2?8~)b>p98hT2_6thjNM!L$2n%LHL67=19%XnF)ACy)`OR&j2S^!rLbN=Ux^$IIB1q}(wQSQ;fJD%lZmeyH=DBe6ldQ4(a z44b_2Z7HTk?l7Q)%#1x&fqJYrLeLqXO3t0@D6zMk@~J{Ync$ZC7#9R+Cq@6mlA>Qm z^|~N$ubZ2Ee0+)M7#i7_c@6@zPV=NTzAB9L-iN}99_?h2 z$fx14{k>R|sHRL3(iBsAn$*}StOMeEaIs=4n zPYmL(GsP;I?QQKUNPoNIGlL&D>6{{QMOV^s63O@SgMIZCkB~}LD(sP9g|V+fo|GlY zthNd6Y}0JpRr+N>k$*xN1eH<7wwo$UWK2lOciw)7o)1X>8~mud|#}o4K=h z?1PD=LxmYH{BiO>INHmPl7babnQ0!o@#$)i_`!E`N9_{WW_#qv+VG&FbJ1h79V=wP|9_vt70+ z-AOUc@&qG`nU<^FLurtRKOHM{^+2OV;-_5`Sx}S($d9})HaX;; z;oU$Gn>q(5r9MJ4+z=xr!VFyWyN(m0d9`R54Pd2!+_?l3Xt8WjFa~pp87Ra_HeycU zMEdF#ARln@rA z-0$E}I=|5}ZtS}BqPA4nt*nB`oeHc2Jv9?5Wj{ofdZ4jsso~i_|M$i@c0E1kU58*)s^#Sak1Woi9EX$BejpeqpgHC zrAXol8&k7TgZCs}>iH5-%WTs|EKLCgf$jJgRJ-pMPY`nQJH(kPM~1?nKz)GqA-ya8 zXK$bT_&jwgWLdqKV!hME$$R7qJbiXyZXKP=c*zAQ>-*YF`+4jbznqvmj2!A0H8;#L z3t+okftY_#+N1l|jGadDS5COPk#4p6M4aR)lr4HZwz{r~v~-_K$QSonivXD4Zec^v zEvD$TvC;JfKlpyaq)MW9K%EnECVyq(4-6P5b3t%C9a|FR9<)lLa><8Hnn~=low({^ z<-YQVCeK4N&$52c<+D~zawRCS5LC1`a6alnJl})5^#fYVAk~70ad;fsW_qwIYMsVX zSq>S7@Vx}Fs8G}**##^ZjKf{kg!#M*Lxy! z#Fyv$-dYLZ!cx&E8K;dYIb0|vpcxYLj)zYXU2 zzOCZ?ZLY<2m&8A0kTuiaUMq06Y)a0N$|@FqU-DO2KmVm$GTFtndc{FhKq(97zi!A{ z?+LXyO~=J>1q<_jjg`b9)^~AsmQ3FT-NKuK^CHr<>e27H*$D zkuL;c=(uSZ`UQ1t(56a_@S>amm9`4C3$z>pOedxEUrG}qXJKf;xAd)ePx2-J75Vx6 z&bZw}R{ZLZH}7<{#AiEO2jwi=TUq=fO*j|cX=mGC56>lt*clm_SBnbvj%fN(=XZB8 zlT}p|Pk(KRZ*FT9@*}vO^(bOI=Eja)FgXzlyiBTy3@du0QXgmX-<};E`jc~gl^avi ztqAjSe=O0$6YRcX*06IXeWeCKn>IC%xG_rrvkGZOq00HuRM>8FFq!SS0XhJ(FWqb= z9W9-m1 zzG)Zp&OwkI>MgI?*)mN1 zRN+Vg@d!;EpB}}k6ymKQPlDc^K4Th@MMYDBk&)3*47srV+uxxW;@xUv1TyAtQAKzN zm%CBafZrWL7PIKO@%p;xSPI+oq-U4=<6f%sN<&$DdwW@#-SK?c+v|m?*!B1y@rNzx z&4&Wl_8+r~8?N4NKw4c^dzFvlM zbX*2-Eg(muN3;E6TNYnQK$XE?SJQDhDBx5Rb~P1r0}nSX^6Q)95w17P8W(qKp_@-w zSMyABp*v~dIT1gyr~eiqJ$Q<4yi9T8LMPSS)_mPhNonrBb8O=aos{Y5r7fu~`d|j$TvFEr{v;7;D{T>W^1z`b*eeW8AxON*dTaEBEg4TBO2LuRHZYSWB3 zbzv47X`*^;)_6Z84zIh9(Z%7ml!RFiF%@VcTjkPs2nsWspkN(nm z;q&&^brlVqKs7dz;*QEjG;5}5W8giKbz?Ol+j8Uv^hstfY`(wKdhzOWkE*&TEXcB>#@8(NODd`i43&bpSdvQYU`jSlLh`v{7 z6c+fWDR5d(z|htLOKdQTxcgy%V^VMztzlgjjeQPf71?U-@1?Y-fv9X`o)5@T$|6Nl z(DVsj(l$iPyNDbUo{>KmEjhrZ(OCpqS@0ssbYqoOP|N1TgVPK^mb%2_N>=?+yU zWp`LzF)UF5xKYiyz|PM4s6uRJT5o-}pl4cdu@|vUes+_{JmYo64FiG%O#c)?wF`yi zN=TegXYyLiSNuVz%}tZzf~P5&BdeVG3BAw0+)7deZ#q&@m8o&N162xE6>{jXj)CyK zRnM(U{PHK5Sbeo^ASeD{W=t_9llnTV)ExI?)^Z{>b`G5DQ^)KEuERL9)Z30Pgm(ciPo1hh@rC$>CW9ao?D-IY~#3Jb0zt6Z96%__=F*dnL zcSZU463l5iB$Z>ZQ=;C8&>+@goNMT1+@S2mkF{OlkM0t+ADDH+FWG&g4?vsehD@Im z6RbXh2#s{~3M_nNGOu)f=I&3;nUH1oia8 zWX=k2mpS(yMy8QL6)`(ecG=NX`@fa1_lC<+L6_2I*4 z!T;9Jxe*CrUZ#rT6{X`qv4Kk-Ctr=GS(eZOcgjGbpvAYVPOIh0y{;{RDfjRIjgj^H zwb`n6N>(owfJs`p?MBtnKVhqNVrks<_3@b zWRm7fk`=j?l37Ni(GIl`^?AoZzusUs_m3g6;W=s49`b|5om>(#^5#WBg0OIQsiUw9 zb}S#!1Va)ER3uG-n&@0vg{Y8r6^88nEuz?nS0BvJrjQIs<)dOzFbKkq5VQ8Q+W-Yu zLI+vbdmO%?!5deqhxH0u?kyz z6a|bV+m#hU#Od0^6xi=eW_ZJ&-XYg8bsP`{d`d8OD(i_FR?k7-Ex!4+0Ma3X^;uqB z!6mY<#=_(q=JeV_XIrD{n}#mK_9>70VLy9A-2Jl0p(eh20~BYHu%e<>pA8t_9Dg}e zqT&I9D*zhg9P`#uAs~8zxa9Uwa(jr~E$zNNcfWa$u{8r67;Njc=n1jIJPzQq+^>tP zp_r+Z=H!bTGh)6QFTRhdz94YCyvO+(^4R5eA3&U$_kBI^6+3H~i+i`JW5j_5S*YMZ z@GV0dsUQygXyU{5h4mY(O3T-i#Z0HRBjDe8_6v+P6#J7pG`hR5G{VYqiOw#5MT?c1 zFmnDDko^UYzLz%6i4G2+rI~X1$J#s~jqASJ^ea32rn#>|@(l7B!6$2G?d4qj?b`R@ z<)B0*{a9>r2{_`>rM~Rzb+_66smk^MWU`V?bH)0o;{Hgy?bi9M{yYBOt{aP5LMaxJ z{DV6XT05RB4)t#kIuih*k>JJf52F#k90Z(d(uw&>XzIlv$&5rDGf=Paw+{k6$SdWTK<_dpCioa!+c!-8RncjIc& z2}+uXG4E}K@bBFxvc9(W?M)X;ivycOELH}G59RTSlMI!dcpJR;>z1~=gA-DPD8!;Y zJ8ns>`%JE(Mc~N%C{4D!{d3=oimn4CY7U#mPplGYaW^y_uSAbI--~30`11KdpuF8M zTrQ^0cgJGQXgi8kxDp1dQHA5o-~}z#1rTexIkqZ4 zRJPz#<{PQ_$UKT8sDx>QHMC0>|5oe`31{ejTBzP|*+p;nya*w0w)j`dLfHLK^rvG# zs@8JQ7KG$=*&F(L0{p7(gq>2m!7EGiU!Lqr-hAI6Qw+J^A;a;7B$?wjlnY}OXh7Q) z?`L4<>8lx8s5uDn`y3=bh{57#f2a&8`%;NP)}lDs%d(sC5xa4OWt5qEDu3sYKhMGp z>VLj*YD{NSc&$NAkZRkN2zaX@UdAiiH(~sM+k98(kTfCny%c|U93W^t2?aiVG(+IZ zUxtFF?qzC{Az{j-Izz5ZkNeJ_2SZ&P>TU3v3&q9rE#xZJFtaGtw%xorU}A&@`w#A&ZGrD;4*bK63cKC!G^CXYz`ob zFJL@o?BbV48ts3#a9&nPzTv3D{MP1>Su9~)Bg?y(WW=#HYG|(RiH9chI+BGxG{z!; z9Cg&>N~iOAM>@`IbS>p$txWf^q%cr}=X%q}IhEqLcBuxZ2CqzL8j9YrZo&4exU#2^ z3Z)afOXbK$ylePG(*e&W@!skyh0{X|R57Or1e_0>r`Fw9T;YDQ=t%hSaxVAfL7qjo zN=8x3ayPAZ_jO;I^67<8Ox$sW_wAZyd}d*x@zdCT?%NLGrqD$@M@LOleFg5pN)nTn z*h@U-+Zn@~$5YhNgbLO0%hz`#Zd)wNp)!w$+xTONSdgPFW$QG$;WX1903yOCWyJs6 zXd33HwC=%nNGz(l4;>-3a9FcGOx+S;=640SQKE7yE(6n!KS+*cNT?4`u3A}V4vb7*1>x}+0uXfH z`VsOmG6(~JBH9S4t(OKq_^SOoQQ`#B64X)L0_f)qB~T_nty6)O{5whNsf6y$BV;an7@C6r}9m~PLbJSizbXb52lNE?OcRXeTO&Y2#E zLBUgP>fE@UfK~sp8X#g}id^;paiN*BqrK=|nvm&JGe_4ekf*SBtQXis7(PBeZu5Qp zYx*|$=K`qR1%j*I*~LYV@frEIRbcB}u`7ut;VX~#HH(@B>dEB3$wf6(%n}X$>x5z* zJX>Hx1z;wWx!#@NFhy?N#Z}@t;9P*(eJ9-v$|Km&1B)L+bYzMQG+=VqfOU<60E0S+eA`Xz~BFhH8kAKX%7$ zjtxxN|Dkmw-xsKEO3?~wYg}s6s-6cehh$CMOC}BOr7V%Na^8?Do4y2yVjZ-`PwTlV zU@D`CFHuS>hJn;xr<0L-PSr$-p3;*USZ zf}V>*7w8B8Y|DNheJO{P@_?B$yXHS*qg5_JdQvs9dq`p=c92f~IE(;(LQL+k`2Q}2 zFt^f@V#zLkVTIbA3c1xZ3CaNX+Py5-Yz(vfcbp>3IQ6*EfIAb|A`O)W9_r0IEf7X_`BVa6%)J^e_$xSF>y%!DzX3`cf5ywb3wz3 zr-$Bxb}~2!Wwefb5*Ee=qRv(yJR)Cx<;JCp$xVX4j82kR| zw%YeEKoU0Z;t`S+^f+DO0Rpa4nphGcH!$a`vAMA4dBi~Ya~Oyu@rpzaWp0JSHhSzAxp}jykh%@}`|OHCjiK1V4q zdMc4mF-ZU6O4XAw10F`)$TO0!WYAq^d~nNEh$W?h6|WX-fcfUH%19+Nuql;#eR5T z#vSgGcUW;WqQ2PDAsI1qHldr*F_0~Tsj8fkD}7r-{ufhk85QOGg$q-Hgdif)-O|!9 zfPjF2lm$u)f=Y{YjD$1{-5~;kKk1I4yFt2!7`le8AuXy|3ES zym&T(XX;vkkDov19NqEN`@j*j=)+nm`oEujQ#Q@ZK1JPecsQY@_$1kq44%d-6`e>G zPg;m)R_^N&fn53WSn9a*#UmT0|11ayd%$yL;-d!*Ud6+mqyx9g9%Ph$#?XhP*F^X9jcMZfyc4$=SW|Wfj{&t7arQZ!M{r2m7#vk~6{*5sd?&9hZZQfKV30As4;6ea!KIl!6lwm~0 z>-LZzYIG>QM3=^((LtIYSaeOCDPo*rD55`TNF5gVP358W1;_8PhH=MgRppk4)`WVU z#C37^_qv5;o4aEZy=o94;$;*%ee^8PNH%=1XpqXp;~;X@-lWmX-O7rKZ$MKM;DqO$$q_9Y{>UPd#S0 zF5v~g^qAf(KZbCE)|0pk%fqCHJd_~3;m%0Mv)UUXwtPFk|KG0@spsDR^SmmTCp6eR zbC2vznaU1-umET8i5|6rGX)-HjM!BCDU}6fq)us!Q}8Rxs$8U#K6R<~8M-#c{9z5>i z1D)szOJJmOJavr3bI_;#*B%8|2+cCr0gi)GU>91n?3dhrhAWL{vG}Y z8QBVx)~tH)W!xwNZd{;g(oMGlj@6U$3OEqqsfrzXl!|+^*yqQvS*(mxH5fI-G+lJLr-d0)a|&AT?wX)hf2Yc7a$VVeBmC%;!dKlJ1e^@({p_OQDTSNU~} zRg_sa)5k;ZI8}kz!TLFDC9TL;rCB0G1FIHp_TojxhYwA2hxg3d>VW^;1uz*P1EL;< zD4eZwIr%0gE=tNI=QUW`l?EK@#|9$7V`Z=NR|3Huf`rNJiE7!{*zD|WA}XEM+sNc0 z&>J{F3s1g{GTA!Qyn9USHupj@R8PCnwq52bhE`C4M2h?L{YpY8jUT>RH!r^Ou^tCq ziLW>hy!A1SjL2rp;p5k36%p7K^CUEiGgvd6PhAL`k(R7+a^h*fnmu^q)k`OT=}oS{ zUx#iKtBc!K^I(U*DqXs3R&4Pnr*qH0nnd3^Mo*JN@0kxhL@Pt*a!RMV*<<@v&!#Zm zuixtKc%j@psMWVUrI4_lDW!PG>mDMd_<}nv?-h*iZZmvWw>);@5Q%BAY47}V-yf#g z!=}@&1BSy-0v>Jn`@zq*a@V18cloBC&LF-!2PZ##@|tw*tVAf_rDIA%;0Y&~KJW)m zXSHPYKTCW~HhlY@zMNq7!+u2B$;%8o+?d!zHAlIsyRst|<|?Rx{X45!vrpIJ2%kF2 zz4cfB!PvR~X=1!`YuXA59e?xpt?X=hoJLUpVciR6^lPfgk%4ocHaA9c(^-4tU1FR+^2AckC&#=)D=fp=Et?jr(af& z)DsK@t1wwMOD~?!^#6MjS=LW%Bi>c}B3_rNymQaxeW&xzm=@Qd=V|10c+ThcMSl0> zhq`}aBF-ocdOiqS&g192{x4DDbr0V8SG={Pf#)eIB#4+qHS*$M^++x{5fA$W7=LHM zZ1dlrF@(4;d(_-*#u$a&G)P&x?tS7Q1{JvC>Pz9@d`t%6@2atR;(r%=t@6(8@(zFZ z84exJa-^NeBI1m=s-Pt#q;apc5hL}(75%izk_RpzQQXSErhG(i@?OOM!2E^$QHd&j|-nKtK|sk;pgQ zXim_HC2os=m|q@)v%_>OUpIIObJdPv=;5r93xH%64}U8~y=V`E;!JJXrcXRlQ0 z-Jcm4q~ht_fy}Xx>mP4q56L&-4+TB-^hAT+4m{OG*|Qwfd9xJHZST*#Jc3Qv1=+J0 z4PZJmYwb@)7a83CvoEe$jt*iOJcnID(Sz2 z{<4ovR~>>ruB#{@O?2H!Gw%wgiS-U=n0lG@W2OQ9PebrxddQ~=g!|y0E`{%C4y zc3u+|T9}Uh)=V_n=k2`5b|Lk*!8EB?d0Mu7MmNa>|1}p0PzY>+CZVr_H2?Fh-Fi3m z_ovdFAhAbY;hj>(a*6KlK7|k=BA%Y#_qT;TNAs1971Vc#(9wzYJaoIPo|HPt!fKB4 zhn+2W=4~Vo84F>tzzEA!j`Nyvaf;b;*YhG$l zKS{hufAS6?c_4Q=We!7l_3>{{7Nc^QsI#gAx!)-jGiGpMVwynJznuONtXmM~*Y3aC zs>+Bdv$!-<*vZl`3I+g~*4j*uy3rSM7qiBg)w}L`VOGA^R*zMtcU40}`W|U`9^`|p zr9CZ}`0%atApm9c0pAvBBoqGTexN1AsJNmasiM4E~twq1&q=%vyDiy`Yfi9#a|9S6v5R+oif%g4Fuy3V_+c z-dBw8$L=`H(dGD6P-75N@r?RMoW-l)lcWX(V6M+j;%A(-g&0;R{kaQ1SK~yNMaE^% z5b#v|)riYJlbb_T`Ku*CpNqa(`+D1s-uMzEQNJ!HOYv(5?^(EeAFAkTUYW}HyxZ>% zw<1zUC;84-YO{rt;ioOd9xme@O^xU4P3Nm145zBP?~jFI;A5KY(dm&|r}e?XL4nf6 zVGPpS%UgWa1LAg|^UgIyx=H6Rxf2p&V#>%vlRs>1`1Mawp0e48c1?ZZr}P7{TcPM^ z2~tjK0~9Y!{4k=?6LhFWdqy!mM-8T5LBPi%C8fZ~|*+mHA4!r!C zrEjdR-mAiG8Jd+%{KQ;u3I?B-mDP_rjnpzc*bp(tx$f%31@I2YV+xFYKs&rc>~Gp(dDji^M5%Z`mz@~*}1hBn|YaXO92#X^fCl}^*-~` z4-wnOu500&qrwTxEZzUzz3$siDJXk&2&t^5>L#WE#Qy)@nk8F6^7sGy(lCD??%OBs zZwYngh4jTl8iiudBq=sWsI*BjCwq0{$-si~je();|1Q?Ee&CIs1#NS+_4=Uq**w*x zTHS-*XD<);?T-=$++N=tCN^CyDv^O}eRsc&%--61Ad!lJSn+K}d95Uk^^)HY6ZFjF z8p7MvTB8sA@qngZo~SvC?+;$lZTkkvrh8V0Hy&<^yVDq}npG<;2>mmTD4GvRT2pg<$>h3{%9K>1-d+sEbx&NkX|5(RI=IJBMYxPe> z_`N&hd%tOC7Zh5X0vV5k8Qu;W8pOi1Z)M)eKj%}B=<5-gXBHS8$oQ0| zM%VEPv$e@TvcqV9BWdQD|8eA7;?Y^X)95+!LNLC0;t&2Cv#*VN;^)>E(y_52q_7vk z95m(3Y?F4MyxAwFr($5H14a+*Ygne=W{i^eiIl|N^=celY)_JG*3VDR8+&lhZY>OE z*<*)_MOi6XXd66cQn>&0r^|ceJqvHIx5l*Mp|04xXK4_bdy_Cfv6qMKtlkIV_ zL7uy2Zf>&`AN#;_t+nWhnP)g|z^{qZrk7s=2wz*YDnmyTb!*uhlb$Ky-k^6|RIs|8 zmihf6H`Dd!Y)erQC9mFM19TuoY<^8U4bRj)K{MFRUjjLhDghAg6A+H+aXP*3vWut$ z;flbeTwqxHb+j`giCFD{xS`=E)e`F+61)X95NqaOkV5{V&gg!%unUf%xVp>CAAMYR z@n@$Mg@0n`=xBjb2ei=Dx7)X8#Y`6)s$^48C_0uils_RcFrqhHph4kPkDsu4C;WQX z{x%PKxvmYp6nVv|{aJ`9Zn|f!mzZFaWhrI6QF@+v)6{tE*&4-U+RI z%4lmMFlj+&ijEGz;&K15WHTfB?OTOBz_l=Q(HK`&cT zpo9fdrrEiFPn>5edfXO1e{usEg3#-26AZTzK;cDjy)2}~8mMoqXEixfX)OSRYzB6< zs~~iB3P5^xQBSqx7)NYtqS>_5aKyeFnWJ{MwmKQcfH$z(c7A50cJ@DEN5-+Y&#=Fx z?bVzsx)Xr~jaeJJUFw~FNTGQjG(+a~jurGE%mjYE941M`3V>^?v%OP(Ng;zxc;{zQ zHg^CSw)K>!W={IOI z3NW`p!o&y5IMWp0rQ^%9$Vgf>iVtzQDla4OlqtdVoYfHaGS~MHg3Gs?AH9rY$)PLB z05bhZt^|PwK~QxigEz^w;{+j+YZyu{S(Q}L&wTewa~oo_SPFTLjARn= z5UrzjMOWE6ts}}EMik*czPWJ9jdbH8%=aMk)4#*rh6ZPb)Y01cr2?UqzZ*uVNVjT^p%S;w8?C&`J)#Ed1w3&V~ z_w#4HHP!V!VhU@Puh+^U3fnzR^mw?1KrjGsL*|y#AC=bCwzGj*pHswRSzS?`hKpM{ z^74ucb>Xww@w|G9yEB!7HnWZC2pJJ#T-?3qQDH$5>lp?OHq&2om>nmJjBdn(C4dd4 zolSxfo|>BKc(N$99O%iVGFRzDb-d{4eU!it(r_8sK9tdk+ceLL2Yl>guLMva%T%5tpDB$De z805t!8p^M0&+&%NoyhTEF{e#!aB;Kr=80)8m46FFfFaMv==w0m> z%A$m?Be=leS&z70B7>gu+xzsjhfs7F-=!(DlmH)V0=5*;jcSMuIo-94nqlr z2K)W)Q)WRhI{C=PTQ5Ifm*ung~n+N=2%>V?2{J|xKV4;M;V;XM#K`dcAbCm+v zvi)XU;dc1N5tG-VFFBhEd{fhYYikF7)`+%ix^|g!;WI9C14s~1`2tP0-Ivb^?mc&- z{M&(s@cR}Jtu|Qg8Mga_j)%#l_RH#EdVMn|lwG+j1H6y=y*gs`Q-oC}28q_^c%k!% z!j&CU!~k_T$_&udxWrTfZihX2;sp!e(eoqOs^%J*wc?8xIoHW~nT^mJuXY%?sI>b4 zVu7`rd2`HV!EbQdzs7ICOnEz3!x~RI-Km*02tt89Co}izP>t?kkN6EszjgqKLv-M49GCKOYZ!Mh6=m>DPeFR_>m83xK$hPcl!ZonDy{t{I9}SpiAkmM;YVEH?6tD z{b8V&eREy-h!0FLfG6<1JIt%!Q{2Y|Io>-UJ9`%)X17yAW$b0PH&@G>P~2=FrxH!p zgfoS_yShD5SdZ3r&Biyiv9)yvf!g-%YnvXg1GOZd!%nwxWIkk@@3wwLed5=D8>x`g7rMoTw)J!NW zgo5koF6eWCkUt#=i%`FmVaqj2L+6AP8`|U&q99ZlArDw8rkYy>dd~w zot~C5Yi$SI3^p&wQ)$>c9@SoG^hSd|RpbQ_RCzAkl%Lvvwq?1OTsQE(jHQ;l1t09s zj>YK2@ILCkGVJN$$1x(@iGQZk*_rcCvnY$_pY^x=aB&dtRaHk%1Q9S zGDn~R$OK8O|2Q<>7U-9nAv?`sQkFxqR#WyltluMCWd$3L|6vNV)p$MdFO8oJB9_NI zd1-#c%!5>fJW}si`yqU_vGdqxhuk+HPrWKT8wp~vn?14T+u5{pS$W0$uxNRbT>bi) z%|H-F%s}^lU!VR=JG7+6|CPJ?U}PXNg#I*$aZnWIK{7)A`TL*xzvv$T!Psv#*+W#K zqm;;`uER&crt0#&SJTPpJf>Uogx;xN`0%&sKfLGSe(ogV4_`cBLGXO`8QK#0v){7v z!OP(xk7K-!Kxp*60ev9z7)va9FAi^54hQ-QsP_?n^`iJ%8&JjrBqr?0G1L1LOnPV_ z1Iaod1fJSn0w#BQo+38Hw%8u4^%ZK_hfR>5o$Y-CcbC68fbCZW8~FY1{Cy2HZO+A> z3&OgH;(#vimj$Mfl@7`vHX?7Z1tQDrBl0C@~N+86#Sfb%#K*X~DXFXLfhrF@x z^LSncMn#-^_nDr3Z1#W`{rd7O_~>f_cDQ?9;h>nTlgJ|T?RpCi#OhSv27tlFbGM+Y z0@xrxr6z~cY6Y(Y7;bSS3&z#B(!KtvaqTt?AwrPP1w{f3XhIcaUbmXT4Q;BWVl;!P zR9j-q?TfSmIs3n}C9*1ti^dz8w1V)vkA$&~H0JNbndws01vK;p1n9&Zn5=^D$NfV4 zw(j69qgwVaDUMcsOcN8Hbnx6MseNnsSSn#XI*QiWs>h2yLT(5rc^urVz$t-E9@1>G0t z7wlu|wf^#jUc{1*QT>2~G-2z!dRMW5b*w2RY)plpVI80q%D(%P6G{R|GMr!gf3hKJ%Us?_f3FujUszd>#lVe4aQ#azV_?tj=v?c z=+36wm&*ef)C*{Vk%UaVAp|)KH>cIm%hAl{ebC=8*KUV!Wl#fyj$QYhr;DD|y2iF~ z-RaD>&tYt)q4NpTem;ym%NF$e^|P+#vQ0uSap*#Bk2Hm zFT-PVew(*zF$CL%oxlV0XdQwO0--49HSj(nOcuuT z8~ILtfH&8hr+z0uhm~haF>7i-s-u;IKG7Omvmz^t;jaqY@Y$RK`Sj-W4?{ey(x^Nv z+PelU-&k^{iSBo5k+#v3bD6~{Z>Dcc6x;%Oj+$3Og)yRNj5+&qWuf zt|tLJy^{jr!=Dp721gSAkhGVJE<6v$FO-RVkG9M3&}KUq`3sX{6(-NP(y)RD$ok#!NWNt)q!7ynHNlJ270zyQqkdsm}1gh-W& zh$#>%g$;tkJAWS@=2+%`uho*4sjCYbp-~vmjUg|07x7M0Xgd8^+<*YqLG4UA1~E20 zTq%^_muOig;+cQdYA!E7W>w9|=zIxYb9%-Uv8ewulIMq@WP1A7j8-}_Y|9!fk=P7I zDT)i5T>G?uACEJm<0r?J%nl1}pB1irb9KkoXL=E<5^Wt8VgB{<$Gflc-#egfbcpXK zpY6o0Xd;!JG@N)raErMY-e7su$7q(4V=rBf?xDK>)H^#ungjzIPjG#9qVuVkn9WFx z9tTTMIo78=N4ml z^D<-Svo)VHHzkfF))N`=+L&dv6TeJDhoQOJS=XI*N(#MQwOCH?^EM`*>tw6tDw+56 znKlNit1MrS^G9Y~Z2(o+<%kwo*bbikHh0S4*$*PjU>&kp0)yQ|hl&qO$C7k|7+j|Q zldFa^NZ6sgPvw@*k=l?=c8D+15@+(#{b;ZL))#%CRr6*1@f=9uI|WUz%yKZB zDva^y>gaDG2qyb5U3Pt%DrS2r>hXbTVt9Hyglh|f(qj(K(_I-re>EXt@{B9!-FhZF z)qO0uSH~eG@7wR|KXJ)`wdUn4-m&6Tgk_xswD9xPpABWpAJYc zA{l1&iVRPVUuoOV*4;}0(4U_Lx@s46&-J@iv&J5q9qF^1vu|B@=6ns3rwJG(zZ_Ga znKOWOEwd7(6iAkbs%>UCtxGhn+xQhGaC6cDINEf07h~6e)ZT_UECUGPLH*m(bR3ea zKXeUliJhdvk;&_ z^~O*yv)BhM5701;37VyxV2L8%3Y2nNUhzpg%yhGy#~}DnYg!0E#`a zoY|q6sa$k?{T|bYAFWOF!<_NS>}Z=qW+MP1Xfsno{?Tdfplesc`qn&B?y@^OG7U62 z#w$+f5#NACiY`I;xOldF`5)tH0N(zl9x9!u;;GYDdBKO|Az z4bGwd5*z>tQl|nDL1j-fnG_(OY0saGo;_tWj!TK$LR*&^E;}s$T-l#;*vlL25P^BI z6LH~p&2tku1Cj|tLD&V7$*v3oNl}lNV#{IkcLV*nJ&C4^fn1FQ_*!LgM=tQVxU;E- z3o%($j96udE4qK9n~w;}rJ8I!#|)DJmpA-!>#y*}az_|gO4Fgd3{YlnZ4^BsVw(|o zIS`JZJ;`uu4dK-*Y|TafCvWJC-mOM@1Xsf*s>J8^MxE-7RQm6HktkRwaXUa(12HPb z@@Zh#`0?h--Fl+v4o8>7=-JEKk0_czF3L1CorDd@Bkib0cn}M;J`Yg5LHu1y03GT- z++S*&G*#|>Yk(ewTpz#EpX%)V4XT#2WeuNe&|3W(vXYT;#P$MWyZxIdF8$Po_uWWv z`MB`kpZ1ppG5Xxi^U@$5H1Y9Anpc>$U3O?BAY8U>YbF8ap zDKPRLXR>QtO#oyTX-iG(=!f2Ar$65gVZ0x{V7wkD0Cxb``~v9EBpa!zqMs1?{h|M_ z*kU&f5~s#oZZ(>}_3Txlba%EF9P5dvxWcm-h5N-hrgBEXCXZ+@Vr^CwLZ8zW^|%Ftu21+1)V!d_9qM&WB_fb%pUxR3|g}lNM~PndqXhMxR0aq3pR1? z$&Venw}*g#+?GA-_Xe53mOE0oxGkY)%YTa$CnCsX&liE=$KfCL>zHq1KgY8#T%2te zN^#HFK_|#0Ks;#-od;jN;W&hAAAf#kCXl4gBT3adh1G)PIz$n^NcjLMa`a?w|}S)&@$mdg{mlAP|=T>M)HiE&_M&2`>(s4rW)81Ig` zEnM;~8BUTlaw&-+lP_Du)O{HT$WAfw(L&<4Zrcg`HQLR(HJiUv9Y*R;5)AelJ@-b3 zAQ3|S(Q+Bg{{;d&4|3~rpN(um28GDg$ZS>yBaHqCEzi+NxX_>L$)b0D{UDw!FrNQ6 zLxim*ZYa5J;&#vx#NV9?*veSKGqdu4fZ(?~z@Y z${@o<9tjxU^~tfBucPb-?cY?zpI5@i9Epa0rtkyvH(*~KV!mumgWO>-n=rj>sQt__ z5W~3a)Hs?p*E3%yF7CO&H$Q0ZKavD-vgVOemw!#JA0rl-K*a*A+~A1{f|ccJ`chKb z&85{=*fP|SickL>_$)skuJk0eo;BTGgESqpXYIGgdGfLc?G#z}tL*@n*Dj6J3MSK~ zl~i%NFTMC3*U>y;{T6hDJD6t9?(IJP;Z@2yz?Z6;AnR$4=3R_F=S!eHKvmgib0`w+ zB?BHf*-cz>Ey=v;Cc?fyQ~vfHzMYPPC@4Z??XJ$t2R&q3Eka5bp=Ykp>aG=8Qn{7I zE+$WU0(>Pl;vt_l;q6l7TE7&=@h88jVAm6KhnNb)bW_^9_ZbKgzu0fO-EI=Tvv2C> zHgARj!6?O|7QfL|cA2a%S^e}Tana-QB3Fw8)S_2Mh)E{u}R4@2orj~7ZCK`L`hSC@qjsn}GW!hvcr{*Py zeA~vLTY2dov@>zScJxILFr{Li{PpLwcL4Br$-}a%cNA{lY+%EDGiAPR z3MMyWmE++)pQ|+|&@$Fx@Y-()%oMhrsQ`a;<-+x#D>zJP)R)K|lDj(g0kn>6DYt@d zy~@1IyuD!RZuXb`9@I?cy`j{_}S;rgFN$!hcOPV_{ z3CUn^dejTG5K?fN?g~@UZzQApAz<(x)bnDs=WyFTiKlVLH+~NOnF2v@`)x9l(fgaO z%ZGVx1PAcjAJXlyhdTN;NcWYru>FA z%tV8@_#HAbd&1y^xIyMnXt%!;ap4=M3JoZt=E^w6IDHRdI)bC!($xDB1kvqW^1fTL zYa8Z`t~VDoRIRpzd-OH?U8u@4L``MQhF()EIz5$q&2LY+scr+jCW=A9faDEA3J1i} z#41QppM$%X8)I*DZJq+?F6!p_?bsi$7M2$&6$DzMY494Fr=haNn=pFhHA5n2_)X^R zNv0LRGa!kjv3W0i2CR*p22E}_o-z7NnMqRJ?_r}h)tRF*`r2bpD!=0pd~uj~%aEt7 zN9A1+@$6-hNq?P`FZXt1B~Dd#-2 z-%(r!z%F(N>L%kl{ zz(l%{Q4pgCchTUnZ^iWsX)@*>T)5k8rzYZ>Y;IwC`iEIIF4h1W=8W~{Kf3r# z=<}`x;N*WwIio)dW)+)h?vw2Al>Y@dq_)hpDCDu}vB~w8o?8I5u-7>O;`XNLa#50&_#RzzK_Dyqc#0SxT3`Q|&x_ z22z03q7h@%?rXZj%JAbv2@~Er;OUA0{%Jpf-=GAi#)(!6r&^S))PoG<0}g4`P@;!T zpm&iUbRcat>J-oBSxCN+wEHT$gVyUy@7NznCEfSmLdx&7xw6Sh(ri+B3HZ<_M!Pl~ zr31YzyWMZ2W(;4r`7v?Hl7S1^C3h*DMpd&j2j*gOJ0H!{>;-8a`l3&EXRC~yPQ(^~ z3Jep1zP6T-9Vxv9?i}gmeKv=)2FAp8U_IU`?fQ8y@mX4{PH_#26me$a5ue1Uc zA?%B+Fb$ePI|w0WROR9P3u>HsK%SkU7jAF(tLNrMMncLTTnz_`M88bnhXSRX3u?w2 zkSURjVs+6zi;+IVD1iPk;LlWirVvHV)#6TK^N|V=V~k(bs3~6{Egd9&>>kT^1!||LauZ-Kn3qe zSj*Fk^#kvGW=B2ynvB(;V-j0}<8|N(2>A!ITJc2?IzkHl$G|k2DvM_38^P!xfmU?? zJRnR;fPtE7$Qk7Rw`+rIyAKE}z$}gL+heiX8Q|J+TLcmF?`uD-BEy)vbUWi6U_G&^ z7ftDo^nmR_0ZWeH`wzScS7QC;0K;e(mGD#N;)`xoxqssD z-3bGGAV%P43@>kzVI#|r>Ih5pLV2zubDDiSmDj*>f!v%^IQ(0RX3QfTB!A7Y^D1xT zEMPgOO=fVOppkyPkJ0mm+(lfhjP}mgI0-v@hrz)VF%7NiqM|(@dN6bYd5cEhMnI`l z@~oy%QDNEkTYEQo5|Tn&4qImLg@ZZU=rimEOq|)g3tcZA*PX#@HP6NQWS@-_V2PC8 zJ4ZUw1rjc+?B!>}{IoJ;vBN@mr-}tH?%_BHdv(d&kgN;Zu{g{a?*kCu=VBG3Ifr!l zE(ah1xEsau>h}k}ZWSyohsL8hTq>rESDXOc2T391PF>^3{WemW!|rScPP3O}z!Lye zTp^tRp7k63FSnBNY^Wv~gGK<+Y-V%V4?itFwj%tRN51#2^pk-Dp??PElSEsao}MmA zUz5K)Q|WmoU>NCeuwaGq#tav(Lob^|1#Htz5a{7zje`JA>mrnFGv7eLo2 zE(clxSP4i$o9AtmUX8K@(ev30Sn3Au|JO1MW?;5Ksb0M4&KVEOBfB3l!ld-*7a891 z@vvtzpsRuWCjqEgJ`BuM8qFI~-?7&MfqbbqhiPOlQsp9i?8?c$R}0LcmstfC_`_Y* zO|LKSdG3kf>TLnI9t@+LSXa_n3e^TvByX`8*+BC>jj6#7n0;Mo4L5{E8L9U>;SM9L zaI3|}eNf5(SA`^^XHgau^x87JqVUb-!n-&nTUdyPsVRW`xJVfPo7rZB+%`tnd0XuU zE$(#D09V}%5Wt9t?-34ycD|%VUk#Oop-F zaywLD{~g$sdVu75dIVS+;(Ilv-!F>l_f}vczk9oA^!08eky>+Jiz-*KAfKz$X~Ul~ z2lr>|tP~;%2!1?fjyJ8+d@fgdUQHCZ-zaV?p>J@^tTn6+47NqI8R3qsx zKmlY0Q#+Qp)sqLW==;6CL(IMHhFT|hoFewyKb3@Da}K(gzr^y)CyOWH8mNLhw=^@J zT+Bmn?B?27rur=$vO0;MaTXdwykXeXPo9b4^@-aAedtk`?t57^NJ&W79$KLQ@7O}Yj8KJLGBcBwB6Nkc|st)B-00Y7FawDD1jh*t9j z^vba&eBOP1SAU#FUg>>9WjLqiSw%F5Dn(<0O;0)8%A0 z=Uj3(h%-1<;`J*nS;`7+xzcX~N7gg0)yQc=Dwl`-px$)AApZxjNhPGJ{N;$Y*CB@K$WW%^uhx+R_|pMQaPZsQiPe2-U^GTTm!`%-A->WKz|2_NT?;*!IB zgex4$;ARyqA%nL_Ly3APf4!-Vf^QG{lcq#eWBjI{+b&Nei%s|Q(qCo1lejRCihwF*f%SF&m zjRF~Ws7%D^>3mospNiPBjr7Gztb@5f8{B!e>Thx58iD*db`e9(5=g4`Ih94Zll^x# zHmW6KH<$)E9NFu!S7D6a1q}_?Nw-Z6+gJs^re>%f*wOlmK6w5q>&|_g=d4k8aegs# zEAu=K_RD{GXN>F7Q}1O@R(-78{J1l79YXF7MI919JY_{uuRVfknbrPe5fQ82Mgro^17g*e&tt6>Gz2O)e%0QL{)?wW=qYx@-jcH^ly)3 zcY$gGup%u0)y}hTYFwOvyE~1|UO26Xg@#>UUr*1=yq5XGCn!Nhlchb7B#f(3kT2(r zgPZ!({sZ$RsK!b_;!ErvgpjoX=(9R5|Wx0eh^b>Wk8Z+ zW0eBO-WF!DQ?9N;Go*jy-reH5^=QnaO5jFvYNff|mY}oI2%1L|*nQ=3W3OM+8mO_# zSTHa#!HUx3)18NYdQSbEX@cI$>FV;ouc%2%`I^$GIGd}X=QiE0%cVPDTK_gqB zp!>{#qo{*{&tkwNIo3~-!#LT1*bDN4g(HA_Z<6&Hj{f_!Fx(UM*5Fs_znBvh-xkv@ zALz8_r}&Fd5mt0$n+m9ju4Xe=-wkmKWq*q|85K`%&0gB6jIXJv_Oq3T5=PxN(H#3; zms0F$Kj)YU@auYQJ_*-P(Uwh0JiA9XQ}C`t!<#B0#h4>J_*Jjo)&vfdU~teIwl%Ww zZibnl=-Fo{TV@gQiHYc=qD+8j8CVJwE|bYqFt3?qaw7fy4EBwd8&o?Kj2WFXSXZ4l z_xthCD9d@Sz3}mo%g4pRQ3PzQf3&u{druIF-wZ!HwF`KRBYP3WFS{hbu?qPuog|txI9(&@=1r)Elp zjoP5T+46`f?ia*-dRjg98$5kxc)voeqt?^+?4(}7(kj@|PnlxhNKN(m`H>T=@qMi% z`F}5Xh|v6r&q%R`y1H4J&p}6^wO;Y%`MI3X6?S;DjT#Y7!KRr86hx9z=i8&Eod6WN z6UhGyZ$2k{3WoJ36^q79?cO%4)CI|lY0!9|1FU~*qCuwf0>tz>@BaIE6>v~O50RCP z8kw-2{a0jYMp*k|Yy4>6feE0DJJaQ*t(}V@Sy+~Y6MGGN8*g6gAJ3C5q)Ryk!tJaY z9YOf%_Qi$JCHk!CFPRu!iYTGYDCfh@A&}l)qSB;m$Em6?y7Z837ii;rLSSdd#~zoP zRv9UW-<}NxFD@?rR?rjOb_pJnrf5ohxC%SHkv?V1RsXc>BhzgjVjuc^et5 zUgYssQT^qDjGF_P4adgDrl>UgG(lcFQ^m2n-nZgDC1w0%@j7buY&+tRZXh-2+wM$m zmR?(L?|)-)W9{w!)b~vTem={8bQeo1wVJuwNi~w1oDo6UBl6^lfZ_9&#l@vf8u|x* z(d9ngWm4nAvvePArps~#g?qL}$Ajq};4AEkdojD9VJ1IEBgJR0lNnf<&s7+a@2Ny>4=#wQ4 zd<1E@=*_Oo(6F$!`oN(SvDnXgI;J|GQpL|m8(o2{MyQaOIIQHZ)IJ(JpGc!m-|WVg zfmYgjVh4?aVr{b?!vWya8VKEQ8PPXt-VcnbFi0&n)|B@=C1DSmhL|>EZLt4FEiT>< z*8nc!&AC72BU6j-J1fKcU+}%sxguU4f}UNw>Qo^bJexqT6Gfzk2>+-T{6uZ-w{eSTq5IQAK8Zl{#ch{9(5znC-6T}rqJDKU`UEj z2loRMyyfHT5N#}2w!I(pxx?L=<%19kCeIz=XVFx?5*?2o{u69E6oa`ayHJ1vXeywq zTZwmf223vexG`*oU`e=Fak8l|X5XeXgNr{NQXbiD2 zohuk=bZ2PKA#ks%cwd%FP2I&Sei7+hf^q~RAD+(vZK}>(?mJLC0p$dS6JX; zWZJ_K9510QHB!tdT1Qon9+C$BagQYqC#HxJjmyz5TYdu`Z3E!bPb&vr72v9c6yEB1 zEbOWzkw(0w&MjuEr|PdnWs3;cXsD}$yI67PdU4x5T`OFt)*G$4Go>|8BqqY?vB%~z zyQeW#@la}yv*i{r-|o&A+0B*oJIr^;0Q+W+kSDH7FjIC893rO~k~|-g-)7J{0^-j; zF&mLrkhPi%UtgaDl<$aX8N=w@Cf7k{0g*e|4xM+mAhgNb;S8v<2|Ldx)Trg_i0CK%JI+yeJP2Eo}rZ$4ob@IXHTq7%nlf*yW{~?!tmM*l9F`y^-mkKZlmUXN~`wN?+Q?iDn?A$$7sZ?#mwh*>P}7m3pCABKb5chUJrj1??)a3Y=I7 z4cmX2C91TUrKjg$gDn`rLO!>S;OQ~)ct&iTk^H1x_ZS#{nzC7p3+a0ph$e*4 z(VIO6eihsA(a^)Bq0x0#=wcz|^b5mmqd2h1U>}Mj7j?O2MWAG2G9P|5T|BZml57fv zF2^Xq&7hYK|JStq+HqAvjbjSv&gf`q^P8k_8#mMq4AOFQbG=2IVseo+x;mrt@<3SU z%i~QKR3jXV1dSdgT;m2PiUDfFUUod9~8q2CSX=BKHtX`|0ni3Rlo=@x-hA!Tky zzu`BlfbHAFES40tXthV4!VdunL!d@UuKc~>dv!-BM8QbIDA8Erbx|S`LP}W9CK?ta zI*eBZbrqX+uA>f7l(G^ogf3UyAFFS2x(*Df%|_ zn7}%I8prHH@q@Qy- z$YTI}q#wnLAy_d69bsLT+Vk9gE(4=?y)X%ka-&wCat&!<9=nQ-h$u!!Eqs6JrXcOA zxzPO$)9?qyD+t5()|QhEQ@$3kL9|uAypQ!Ip3%Y_w#LSrZ94fpo%#3})ZgC^Akrl1 z(dOh)g*;jRaJPalMH1x4$6!DE=gh2&7xP-X+c6yp{?CTVGmUC*f$Q|22*SSYE6?z> zCFfqDt|TX;qgEc{>>GP~tgyJHc0)%i>VlZ*g+HyXlFY1Y`7f9xUh8N&jPDf`6eJ~K z2g_n&Y{3da8TQ+p>Sl-nS$S;q@$m^*)xtv2aK`&+sJYjF$deNZ+b{hC($EDOXZ@X&VMcHBHa zO!^~Z96}_C{L3pikvq^#9i_@?jo4J?kygISoGQ{CLQ_&23B++3oy+6EAh3&K2qIKd zpf0t1MC^(Rr_5y*Mnk1JP7l@+*{-M0g==X3Tre6fNzR(QEQN;lRZsb{!toQjK}e3~ zx{INRa!sBlrr6i0p$R;-Xen~5&~Tl13zN7t(Ge2S>g001u0FKM$6GAAZpRVkP3_a} zHI2Op^C#c@CW3;wf-W{cTAy0fbg^+}@!Ky!$K2n*A0Ka?dX8h3=H%qLAKhPE=ILQd zi0C`GNhE{xXy;(qH=|NX=x_<2Xvc4v&zV0FeTJ&TgLnEpFkb;Z0N`Rfznk5iFMtEZ z;oa6{ro|f@klTS__d8_{wOI4`^LbFA5!a9B^Re6;0uH1+$X|c|<f?7yvbrs z!(4LR{RIA&wA?XinY<`XBX1p30Cdl1=*6e@`6=~@_WxG4MzF28IZ=EsdWd{btkM5b=Hsmmf0m&bv5{)QS z-HJ90za>@^MCHszv$5Y`yQ|OnMK~n1$5k>#9UuCb&5L@t+{W)bH9V}K+$PnEOTtwV z@d=brz0+IXWT(qRNXlRNbo6^}Wu>dQc=PsbV?b6GO8vXZHvF5HD96bGC^2+6^LBD_ z0uu01uB`x<2dpD`Fjp^-4nCdsTc>3vdY*5h>R}fY6fn};u|bvb7H_31l9GOc)wS+V zD!?NL9oe>xyTp2f_Xx8>xr@AN`YCvK$qh{*-3#6Od9wHf1oVf>5(Gv@MmRW|MA&!* zozdur9iA>brVCvT3+fmZ`TY^$TAMNfGb2E=+LDzUSJ91aK$n?f?PpkO#t4a!gd0ia zz0C7Z3cfd?larGxbS{oX;m^XKLlMS&W$f(i?B@2GP@cNdf+0 zbLMZAX8pL2tvM@)vTd)c3spT~H-x@=_1*vFd3II{MZ#W7Mjk>TCc<0+@lH+Ju;8!9 z9qy~DnH`;kYgrcAnkLp}t<}^JQYT6C=pFIQ7a?Q^h{?yf)&|?}DvMv=HTeO%C=wQQ zcdy5n77KwvH3!&ZIi_+1XWDc*`tR@WOjUX>Bld8c6%GCrdhAO6x~MkpbZx0A8T5V>WP!Z@PG4_Uo?&T4 zCZ?K~f{xut^+xG%TtKM;CxbB%5mOvuGKm|nNCqSId<*kR_RaLVLPL*Mm($yTg;mL4 z*llbPY%#1Jq#JSt!#?aUriS3Io{96;Ietngs!5sJ_I*NviLtS<9~D}f408-g0>Sd8 zt26gat-n_tQ_N#uIHV6VY**>nzAVHG78Vx7BE7pk?gfLM;4@hjGcz+4E^V{N**d_E zrhnaj(5?|M!&lqS`#Q0pjf6YYX5G2Bw+D9ro_vs7@?jR*N*;|wSyLHp>!@(?r`1go zd1_=rP#F^Qg)8I}ye=@@vSpp4Do-$2}NG+EUoOGtv+-kDKnccTHHSXeQ|A>xw=G?-fI?^aQn1RFAB)$`U=?dJ0W2 z8vDOfG}<7dZE?3^1spI=2D=bF7xlZ~@+Yb+<5t%d!r8Woc0D@Z4&%g}p!9I=A1zyV z2f!}3eWFnoLLMaJvx^QtKz=Em4w<%?pb%gS)L5^Sw&wobx)fXd%k9E zeXXi8F>Y9WB&`_5v7>jt8-7CP_sUIX^6m@6Jb1nlf8(t8*}UiJcH`9tF@Bfh%4*XR zbRL?N&Yba|EEQqe_|84tTfaKIb*l^|lQOq8_aic4c%`TBa%>WwowUt z#58xKMrr@Nc|1ad#ZOJuQ`XjrY|^oVv!fzeR#?~N6j2a(niN?Aga0+tIJsf14`s{P zO*2YFq~ts!BU1;BtZ|MhS8pg{*}f92TqsLL6a#(}SF=|YlilztWzHC8+1R>ZWcKj( ze8iBKwUyO2pbIX5zyO4aAe3(Bw;@mD2!5B=Lw4n5D2`fgryC5qmFrFnk{#sXr}!T54*~ z^3Z+Fqdy>a{?$|H*CE`2&n1C2flu=})Wa3ji^4z}Rv0!4xL%+{pdMmLA0G1>CdB@# zLe42=GKYY0Ta*dlt(KM+Lj*}t-puOi_(XByH24;G45tjdW}U$QOiWhuy^kYfA|(2I z`uhP(X>z>u3%D@jseL*;FUsHgCpjh2*Psb2kb=8?{{7iBrbb_QJgHHu-J-6spSHTz zLd)A70G9ZGC|;vWbE5p7AOz8^XpSy{3=izrr)9_#Atg~LrG*wjMe7o;BI3m$lHM(^ zv7t?s;M_F_b;1}K$`8ciLW zeykcFpAvsDT&`XLk_V8WXWD|86%+(Fi;AXvLH{DMBudPGUGOJ`x|@jDPu{{p`Xmf0 z4j~gmP~?1~sRn|)()TUvYiohb|1D>cYQQ>QTC=|IuBgdB1#*FZP~BL%|Ko9?J8&cO z?{q!iXFIf?0iE-Xao40aN9Aip6_$g<0jGlEjRL0cb#+uAFAWv72iluEi3=0Byu2h8 zB(0uVLPu97S5LSV{30WA5_T!6ai_vmOwAuFknjdn*MPD#QODKg&d$!VGN9S+IvWIX z;cH?fZ44b$RMf@AO|o|+J3GP{21XxxTQCl|`BzJ$+<6*#DB&1Fm7rV_u94B!$~FC% z(3+^$-`5dCz;@ z16>X!KaLQ@ps5>4xd7`yE`Q-UVKhN=1a zcfd*iWuqGwJD&Jzbqt77!OK(ZX?zCw!-iLTf*nqryrntLCEsR6fIioN07K91s9tWk zx;FtcC7sIP79wdT8XFz=?8itrvhI#e*xa-jcVti{oto-WbtBSSv|MzijG~nZkV~sZ z@qY;jGcw}0Psx5$nzW9~THB10MZ=m2K!&vRDfJsH`mA)6qdPQ z;*>X~IU?8)fg4{Gp0Em^B`lIXoL3*||Gs4CWE0H1Nv8?&TzSd;MUE!Z@c-v}S$^@T z@6yVsQvo54Ms=;1?!fdnYINHxSE( z?r2mNx>R0H$nl=rGFc^%1b<7Aeui%K-17V<=}M}MB*NJ)>`48)7T%9C_LD5{h^g4G zaJ0K}l|5xWGg~l_L~t_P;9TVzZ7E&Zb-ZhW+S^59F^63UWMyUf$E`v_8nHg}xy%=j zBuoFP=St7y$Ps@T0~V*URe6+qOOeN=2HzLufk z?;2C-(abICuYxhq(~lTlj~wN9BwJf|hvw$-eB45E6a;&{`@=lr7qEJtZFjwhIvlsBvgk+^ zsgwNFNOwV9N+^exW6I((^>hBveu|?4@73-zR}BO%iRC5~ z@3OT1($(5wumPhrprFONVBC&9v{#GBM6ho%{n{=Kg-Y%h(loM%veM|NLq0MNF)#0Z z!jFmFtvy9lREa*#me%H^wc(P^mPe!z$%v+=n^h`lV8tqFJKl$=bh@#@_x%Fz!|!&B z^1FN&J5xaUIyIRm9GNQVo~vxwObv@K52u=|CCnY1uj<;}&= zKEl>7U(&x++QQE=riZCTF%HMnEtQoqmJa=;!S=6Do#swR5ldx(U74p%v5bO!9g{=L z?FsbuZ13u23OJJnhK62%-Oc;MS}#aL?Ev7S_zP(~TDSu5*Vi5e#q3z;jN2}5@(&DE z>@w**{ToGgQSPrAc@z$uet-QauOY;xw9CP(r0hk<|8q@1h*(ZIs2c%mouI|3xLwVJ zhI^BWFkY7D44b_s5jGJkdWf_R9rgm%P9{vGzTdnHWv39q9wVZjiTo2T_A@CFX3B+` zq@l>#m?28Ka}l{%R6sM%;15S}(t0h~ViQkP>a|~`9zN~eu_4LOm@j&=1o-%VAny&F zjM#WqBm}~=-`MEEg9NULnc(sN(9%ral4LCfEI|%EbYGq~BZYMdX@l-!ujaqy`HhZn znR*rRkZs99qm~fT#u>K9+pJA1Id?vb`!^Pc_)z7@B|acQ&#H^xt9E6DT^S$fe659J ztgaIATkoH%)FtucCl<2X?GA+h9TJ9wfZ)OZF~o*s1Z+}uZx;0s&-pkuIksaAI-Kc_ z4qLuc9uSj*#JE#(Q7;6(|F$<~7RF}Kzq<&IKPwYb;o`?_z=T<-NM;A@&|CCa*XUW& z(rWk;I+K4W3X7c%S`AxF!HfNX;x1__IlhzE_1gWoLOU-<*dMm>)n`FeekDnLXCfRg z-2QzCA$!J`_5R9_e?^KtqqkRGGDYycP}5-P3LYyexa;cT7!uWv`(kCuO#6ObEFriR zUwfqJY5^v@v?hVnPzv5!D-||6iDzf>$ByokLBq$bwKZUY=BY=oAe={;cjFAyGlks@ zxPGIi_Hr>LuF;{A#d~&f5xghcg5xv{F|IX4qK!a8SwCAf2vmrtr~Gkg2EX5{G!UHU z(X2EXX0bijWzP<%|n^Sd(bh z|7k&>{OFTHwvJ$f7vIT+dh-Jh!jwTchBMe!iNCs@=8Y4}eN`~hZr z_=6>-Sif^1BeAYM+`bgbFT!F=TKmBiPgHzAu8O9U>1Sh(&SpSU0vg625Mpcw4gGb0 zEx5@9eQqnOUr+k`KJW8Yx?DI%=9j(pT2}*%&KFf*ulq|Ip3r!eb>nC`Avur`w(cj4Mlw}sc=*tfsCP(6NIsnZ;~s;dDZGhQj{?>K_5Gx^F$IMi z3qH@}oUN`nsEkGgu*ua0yIyLINMBp1_~o>8HCWpA`E1kK-Vx*DBL;_9Flk}vk}(Rw zj#8DO5%%da`k)lJ=PGJsF1%62?Pah3&l+vL5QE6$Qb>rtFBvrv~ zZ>-U!hx<}{Z}w_|hW zb<0@{OJm22Q0ZwV0l~&s|1KiJrlR8FW)KEk-Fd#h%T)v)98~ku#6lu&q~3kX=rXjb z>dnI3KgxdZCuEgkZ-wWBnEU;d_>YDcz_S1h$^LRTe0wrG`@hjaUU}Siui}MFNYH<@ zdu&3SENo#^3yr0qiijm^+60s#w79D_0vv)g^xZ2IQtaq%FGG7w2>JG+`OAB%D%_p&AibVT8Esg6>fk&j=d`MM~ z#z_!oI#+`1QVE8OE2bXBhMb%{&a!WBbLJAUX&s$#GEdn3TVY)x5TN4Vi0&0(ZU*3@ zG=k-(#l`p?FgVV)A|fJEfeeZhag*P(HoyS<{=3`6TQ%{mlM}T;SWUaE@QiHepkH$% zJ>erN+CX64^t6Qm8m>&9KF&2UR9;Ex+pHu99&5<0Ag(ieIaj;wt@6wLuN@LGV_?J` z#-TB2{1~}EF*ykslhZIv5+i?ezwt0=-7Ds8>bhdAHr`CRTI=~AV2*1@Y3N}a99RcQ zyHS~l1;!31gr|8N60RAhbjQLbx<$%M-nv-uzL|_h{GTze2Sb%Chr{11VC0-etI0+V zNlT~1_4^u$ycBYTk<~?6iI*U!DTp8=MioNvmZyL^;gX8DA0P6h$yhe5;zyP6pp_6k zsE@WZ`_0WU|>KV6z%0=bvwfKJLw1> zSyk;KE$Goq=BP`rM+{^;6PWJ4zuNcq_MSOeTei28m@2N~Hth0y8p?B{BU1z54s|1o zX^+Ir|NK2@&V8eXI*lj4p1@`6Ge{FDd@nh<+v>bE3I41n`}hhs?E^8{t0*UEx5#)G7~>y&TVV!Js|D|EZY{(CR=C**Il6Fi1mu0W&# zb2Tl6XgOmwBO8;b+vP&%6Y3Y$Tnk8=iw=s4l4k;`B1$N<9F>|@Q8w=L!Jl7KQyg@3 zbYgz)US3`{HjA+&TO}nWf`X+dT~F6jGhb@WN^PL>`*@Td`tz4T^Ac^3_XlEH95xwB z=Z1==8dPb&!$;T-ynrO&1CLjs2jG;`!pf$=_H^>62{KPPzphs$!LPpN>FK%R`*H+U z_4amRx8qqsPR@kar00~2`PNm}5$~FdxQa*aYq1-oMkr7h;9R9vf|{LkSr@<$w?XFhEA|+}zwe-;Ae_<*jMv zcTd-iHB71a6IQ8h(2-mjGtP2zjixO!G&c*_P@#NwlkGga&(3Eji1}}uv)wl~JqQ5N_;j_KI`2IosLQebPTOkYqjbQZ`BLHW> z!fsl6)N437MQ*}i4JIvZ(^bRa<8|-MO(%y~qmOYHO<*#7^>D8GG?SkX zBx*C@MZLRW2`uU$@7Rb`z|llqeWtg!7amZKRP^*5c_KLqtIhPbQgc5%(owj|k(3dQ zw-F(s^naLgMX-%pJjz5RMG~_gr6_O8yQ6g_b7h9(Uj+TugioH&h9vpeB9_Hjl{OuyaZ4D4{? z&ixT!DZRbB*PP4Wm#9=JwSOd_LuSX)z0W)T%1ccl<09Ws!!eeGqd6M*P9kX|A@-Yn z8CncAEx85dX7eliekQfyK%_!eS6}Vw0{0>yJ{3P7ra5Wg3NL21awkTMj2d?#->J2l4|ETQ!OJi`X- zsMtBPRBB~7w1_zIj~_KCW6g1tt z1yYv>O^OAChs5R-`C>4o$`;5xvh}}J*Wa|_uj0Y$2$^)Vr{?F5FvHBr%xvMY-vP|+ z;%#(fMQ!|48L~Ve=uugeJp`SV6QYoRXGO@zg;uMnO+!g#Ff^n9XX6LNy`XnQOq5Nf zZlB3tuY(;6<^D0~ zz*=Q@1VADe)jRI{v$YV>tvF-+#8GNuwYt>dK=p#8lJ!K#^$*&z3cDlQn8Qt073bB) z;@~7(5>2?c9nJe0MYb#t{9bR3*5t6q`rZXwPJp(9ZC*2wD~~ z4=`jo3TDPJKPIQ9Hh4{BfwZk|8Jn3#w()?ynbM|^hC}+8RzuAgg?e-h3TZAcusV|W z2j#34B+|&q$;iyQJAHC-fj}VgYM#KY^}F77%tp+kjF!?Wpqj%Ad9a9QWTb?yWM2{^ z_$RPEqY9eZ-aQ~gV=)oLpqJpg$~ZiYXqxi2Ip1kY`gK;?1_Q3J7b|=%q~HX^Z!0P+ zKsJcB-$rk<9RnHa5NOQk0&YyuE3^VMyrazL#d81;>0xcQ;Su-ma@JC{q8IWG=<+u) z0i5V5;V_IMrH_!Tz75ef`n{e&|7yrvf?zmBAOKLx6>(VLq~W>P$=lGV7gu|VWcB*{ z_xpeE&SOy%3Iw1tCU}9K>dDir*l9qr;dHqJjS$mEo zA0;R~q-L~2-pJQsuFg{165r}?<*%O_eIoeCZ#=PKHb}k(!o(aIh7ebzSxRuyB7_Gc zLyrG;JOI+H)H%b4tWOAt^G*+UjBi0)ps~*xVhZ|}sLv%z822|Od~j`&mkIi%)FV*s z80NxKs5}@KBL2Rk&Ba@lT*MP#(SgwS956zzqF&OR; z2nNcoWs7GE6xqkeCxLI}3+n3iwLMB^wV`5PRn%l}e4rNI87v*0df)q2S3sc*oMTir z0HB^!%twHMANjDTuyAR4Y4I>t?9=h#BG90CU17RINN<03JBn8;WugJ7XQh04@3rjyX^aBtsavDCD(ZKO^s`M&P_vuYd(2kV1OLh)F*-t zeldi5VXFoeOkv_`QmPWD8_MLe{%LcE>{D!goNaa*(_wqK+P(l83T5-hh`=ia@^O>aeR1cunZBpWO{^Zm$*U` zRrY&sVZ>&9zje8;H5S!A@VlOAHIIareXB58sH!SsWn&Tcx?HG!@axF+{~X(qK~4>X z`hS`z1})zh;9auEBQkE_`9IfCy)8OLnq9OkI!vBrbkvG)6>Qva8k1 zpACI3IP>qHKYyBPPXJbT3E1GT1}*2{NC$r2y;cB|f=uY9o87bBqK(>bUr*qY8+yQT zJIwtkY7e>pUozZIoqdHFQ|r|9#i^r$%qc&R0}CkGMX`igM;vi$ee% z3cc32V>zMbGw89|pVIOFSH0qQM+ap$?iATus0D39h)77LQoWDw^(2e~O)t{a1yFU5 z)0-8Lc;&gb%mtlSd~Yx*#M(`zt3Qh$8=kKr{|l4=phV&T$N;76%5Hn8c?iFvm|n@A zXHb-9Pbi~0k)rOVRXXhe?Ab9T&Sd^ z)O!n|W2EA=z;>aJFSvhr$P@G?I0}*rd<5?2kcRK#RIs+6f0zT;@^ZN7`=BN7t7AT= zb#uTxDXXf=nWnQ+LE8L4cB@`d(JUcHY2(RsZq%>f!yzaA8cj|dJZDOO<|s`OgPBJI zIDKyq4+*H@ca>6LVr2KZSq6FlGen(oAxNr3Y9!)<@(2Dy^V@jb6M8}^Eju=$)^8IN z6U)Hm2=L(aw3P1lJV6(N!;F9c`b)RZ2~p;=`GK{dECzU7)|Wh8jLkD1ev3S6Jc3l? zApA8YteVUAom|O(Eh!gMT>)G!IqYX3jSCnC7Y2> ztm#zJ7X%aU>g_aE22x#-m`T!xnV6X57`FCUVXzwHy)8 z%UzuFHC&4kiSL665C3FOciY(@+xAxQc_#|(dXHKrGW8phrgR2~%Ptzmwz)aJ_3b)t zOL9YWSqgxKFY{H%kQT|H=KQmI2{}DksHG`1+$-{=lxQnxPuJu~lwTa-XR=A-rNRlA zqVOZ24Y>Fz;&^s>j&?FX(KkaQEbP7V*LSmAdPLd?up@6oGKR$x10=_P{YsDi{)$)p zG$aS4)B@&^zw>b&{ZwYTh!QhKZX6Gse1L+`OkOr^g;BoTMhU-PNjqf(?y$%iW}fJ; z^Vw#=-$MF$3N?c^`=iKYhJW8w;4Je)sT(@P-Q`B2dSkEI80Pg$2A8>!@0Iq??>o-# zz1SskT)w>VWEP-B_^$VGO;!qGKfn%r7B7ZY(x8RATkcMC0&>i5Z+XMqo}M29+m{Ue zx?=Wqv{Oec?mw-FxoYpa0U<%Anh657!5TP&|Y-{fwI2(;`xSG)6KMMQ$YkuPe5cnRT?2~=Z>xfBe{ z$n0?;-I0t6L5X$m|F}WvR7u5q>~*-PVQAPugH`AS(44lJcH%71)=29?lM)tTewe8y zu?h?q2Y8enO&A0BcPu|(c7nl)AZ3MeB}G=Tmiz4H=7{(&@X#Jx8)^v?$0_Sb>%CG# z|KFo^zuDuuU~ql;{0Jj*wAbdV2=`VaRvex<7VXav+73${-a#c*fPy|x402pGV!P%+c+nE_~K<1o~k&|;C6S&9b+cnJuEt5oV zgVujoA9N#x)c&2A*gZO02AwDxkT?uXOi>Tcvl%e10TkN_o|nUM*3GNg88vzN6;$Ha zY=G1911T_ir}&$McEHa9!k~k{b{-bRulq+r(9p7Y_ae_WhLYo>v~{d3t?KwhOJAu$ zroxOcYwZWyu}shys(Y{~jt@@UcTW>j^QsJQC&3wsaHzlEgv;qhG}uZ+xX3-vNYB$G zZfaseGTKDY%+=)rj)bEc>D#EhdG{+85;YFBDe!`CZmlzy!3o;)0c9VcJs}~lYlQ+C z@~?JmvCgs?%!=xaxv+TXbN{PkAy>+G7^|z>$6<)bR${$@r$fyB1AToR1@6)icgU>B zSadlWN&-T^9&C}Jp`9rF{NmHYO&<5wh@?A2>JyogNIf7BGgttYU_KN}B4h`xL~w%r zf?Dgi>DUG?jQrJJvJ=}zG^TOB4dn}9Mr$&%PZ!LKD7+Xs8EeEQ$f)n`?qkUwPE)?* z9{${V&3X@HQyBLEFoj;P0XD$wWq~sB;CQ)BMUeigh*8IjmN1lpMaE4s z=`Rus%a4C|SMV2_n(?SXy^#?)C2y1LY1B-G0A6)YTal6OXg+s4J60r7asL-4HI)|c z>27dnSZ+3DXJ-%d9fL1*k8Bx_p;cc7MFjO9Lp8#sSssf(^_Z-L1dJE9P;+&)vCDLW z_3_a%ijF{fi54+4xt0)Zv0y97U}cQ$FUpa-3&PRSaXo){=rrI2e%CW?^&(=(<0Rs6 zdN)rh{ra0A&ck!zfAD-_wl9k@tPo^tYPtsSu1*kQ>H*ZxUN^_^p2SeVr^o6oGSJgM z14McA*61G1NLE%bgK~KQXyt+n#29Osgg%Rl9>7{b?yp)KUd;1Ui=~!1(?QHRu%H_I zoozioJ*=JH+%S+$^@gz$M&&VolP|&pYe)~L_j>;bh1(;HqLlQzoAwR{3=(d2^;!4w z__%mpS=mi=oGloH(6X&9Ym{-dm8VlO3u%;vpZY0V(v3FV@J1++Xb3LT32jR$TwQ-8 z54j=SF(K}Izwu*9nt1G2svi_sW?F|3(GpTp>Yx4`g@z)kWb^rgPz%llv~@1~`9KlH zg35}erKKKBx2xmZ#|cV z74*7oR75O8QpZ~uAN8o};8RoaYx>*|BOX4TRO{7aKm}Go%A@t4M$82%mZ<34ZX8s48n} zMozhS`{g#t*PJ~@o8S~yZ`?9$c#V1NMm>a$>Obvy<6ytHsW+-_zm*HnHYNbCWl9VsyTG<0OZ$KhY(B~6;=SRIKEw1e_8)o zcw?HPHsoNY%{}{d!BP+!_V2fj>NO&iaCbv3Be*zQN*x*ZK&NDa6XZpoI!uV%kp4Lp zlaRUKlQmYI`7FFm0&uw30cC2uMwqQaDVWf`Vo)fCLD zBEFz(7dfsi`9#nr_LpPQ1@1~>P;w`!!LoklZJ^CUP%gAsSNtQDMxM}0gol6&F@s4= zO!FX+pk{)lsnrz`3&L8EP_)^5Ub%L7Jg@xcTa45%4$mf`F9uWm`fxEiawmPc%^!9* zw2$0lt^gq?@9|Wl&42Mba{p-^cI4Z0WwLf~biO`b4h}sGO-aGMpVNyl(AUt=Gzi*j zSFvWaLO*V%e^iWSm)age2xwr{!2l*cB0;lF;J?Bl#Xa0P_*13tcw@gz4)uEh#958*@WA5w+8D- z7=a&Mj(u%yjjUJb_Wn*X0EwNQii#@HU51))eA=~F+DSoB9Y>Es;!yZFB82HDEhoyB z6su-noy*W<4Yj(gUN#akvit7z+P7zSsv<6Pxh6V?jbxfjjn`GNfCrFLU@iA0eyF4F z)7zhIamoAZEA;7jQ_)DCFcqg(kLr`0o!0DspB>;Wwdod3dJEAGz8;IVf-ZwK`O8B= z>*;*3=t78H)qbb4=*gNUa(SGt0)I(h(nbk_r~VU&8C~(aVI#ijq`Fb@JRfm8`txx2 zP=G=v9EM5kdU6X^JI9x&O_sAw6Bkv+h>-oG+1gi|lG42B_DEg=)HF2z8ro6gRiFZn z`SI0|ia5NCd2$PDP%sG?QW`J0d=wOU@iY5PGV;F-YI$W~Lmsh1DlV_+MdNO__0V$7 zn{4_-&{(EEH622)0!N8UjMb=qbG%$2c%>d|s44LiKGktQgH`4uZ6bY2oMixO)B~ad zCq-zqK!tkOYI1Q60$u9vS__wBa4z=ONomI#6U7up@{Z?EgBBUhcfYC~7SA!~+dxgJ zo=~62b8aUsKDr&XfA;Ia^_5bU+CNPWYF$}CdMsR}Qt&+i*k;eK0g6 zbroP{juIu1{7$X!%*`d)%xPFTO#_#OKnhCg*GrUvGqcNQ&zZ)-fxoCWzh)P}1Ebn3 zfUULFGcqOXwVKG06(c&>k5WxcO8RFPuiGi(06P=g2JxU=`u&v({Y=w}{R`NSxa|2M zsF_cX7trouqF0yo`M|(BFq$hGfcXcBn-C8#7dT)=t{QFLwk$4H>YjjnLWB+|Jcry5 z0NJSJsj7Blz?~Vse=j21VIpH;X=zrdSLeD1_$uIk0T0OV5V<$TXS|XYwchJK#+7pIq9PcEK;xkS zH)BNQPZ+#f(#hq~T~V5jI3m3L8$I%Cy@`}e-8295pD3Y6Uc1u;m?UN(HaLAw z1mTkAXSF$hl9)QXbkGOY*SlwKclMwqmD$HBuq2_Ods#u+xJ~(eD%c4S_)Y zcSwlu<(SeHS~MC*jxa;#o}csUJ65Zaf0?K(>=-J4|Hf8eqyk1tMOk?W1)lEGemAy& zMqK;_kb~k6hdf$1ho=DJ9M9rIcVVeOe1hw^YFhEXIlqjEitFrzpwl>dl zu7rRN-hEucTx^9vJVuukC<{R@&ht!HNn$6(7)&;DB!I zdo>5dFNTV3F@CWvE8>(U3pJ*P+XNN@0IJXJ@cz+E83rReAiK+FSyBS-j(<+0TD-kq zO%!Q9yOJ;!h!|Xj^m&S%j?Yp>gRwxP%83$i3r7BL&;^D>z^Y|6l{MEci>?qi@LJ9x zhIuyw+WK(ak$mm0$^E-o8*oH=_JF9zf*)RXhuHlrMy+G)(g1=WRErR5^UWRu^sn$k zi##9reOh3d!bMV?Ed zCS@LCO~9zaCZJbCJGx#*tqf6E#z2FMMCJ+@Rwx~=aOLKROu=5jjc2WD3CM=CU^qy_ z)v$%5BSBsmRY+YIL{??C_^-$4?4vry&TIgUA+L30MRM>iGhinFf~{q|iYPM^#k5wh z5zg9o46XaDpTf`}Yuv29hi;qle$%FcdDt`!Mie$z&J34K$aNQ_pK`qM$SB#h4bMv0 zf;od3ugi!vd~Zm?%h_AO!OA#1Imyh%7F>V@k6#LBg(B-&S;1TzHfR`)@95-IuKeUB z*4YUXWN0veh(2S=KEr{Rlb9>dv^Sv2L{CG1(*D7`FbF!_S{U>u6NtCf(*V9z{jkiFr*R>W&hnytuVU?(UHOs8{$MmQj}c z&Vk*QRxW^V%y9MfdFoCVeT$l z7vud08(3TCZnK(|p6tD=V5VW}q@dsk2vMrn9l?qy2?U`7h5jJs9a#B1AC3@x?`6&g zQ_(gpmq)>EDROZ+vq(P!Uj8+4uv`Q}da{A|SxB*1&)B(996E??{z1Q4*qKKsN0^vd zWmrGXO|49g_05Eqg;!arOH}Qsqgy*QPDt8z;su$*O1&Q55|Lv}$?rXCKkL>Lzw(20QK{)CX?$D;nRj+GGkRxi+{d6xJPzZz+vdGRVD5H5O| z|F4hvLE2YqEymo+TG)AD1xusbH2nZ`%6{1|is1I`o5ulb?k|0ged# zF7nkOIr%-k#Md!Q49FV0l9U%W=+?MUbpy?)hEIw%s)vPUVA{jgZK zl?@R$4DySuEmKrCar|x)@&QgibBmu@$PFV~&}BYfGPu2igu1=B`F6FSUrooi&i$mC zj&1-73qboYmcbB^^M!|x4@3zVzzPA3{hx(C^(TZ>ju4f*&%{VNqtbbzMm!_3fEX@Dl&o~#d-Yfzr(@YNq z9UcA&oQEUU)xau~ZtRIzM@7Zj3JgTQ;>g4)2`P;8U|#4UVgk;CF&}uic}hhD>FzG~ zI-l_pEApzq_0|3Um}ri4XT9UiJjx$ss^MN)s)Q}jyR zdraJ@(_%3RoOdKCU$)Vxx=jX?n zYr1F_p{k}fH8yc|bwS3voBI!&{yne_*PZyhn$x)fLpnB1-N4-o+sLh1-{$&8PAw*K z@w5l|q{!)Dt}3cST+EtV@p)2-8`<1i#umk@#2VMP+1s0D_xJDmm!trXIPS+9 zUc=n%b9WB5LZBJ^Q*ZNj)A`=D?#C`MDJk5=8bDHGO5dX?Nakhj0A zncYgyzvTI7>S={6`hd=Ipd|a~c!6D|0ENA;8?lIrjMT3+lQl9TzqbP?upjaY@87os zO@?~5|JT+y6h~K3>9)V%bQgsW6j}qE;8SkD5n+X+aQ z4gsRjKm*d zEbo9Z;9rS59ot0TGTGO#80FCna!B%fW|e17RVS6r zS{xmVoDlRjsL_%fxiu1CoBW>scweFbyUE{6n$>lS1VnCbR=65k%XtASna1eA5eycQ zH-0FZ-=$FKdDJ*K{Kfsx1LV}zL5thc@-RAKL~mhN;130l)*o+=an{%2nzFM24(a(N zI5N<&xi%s^Fz^oddt6>#*B6GnQ-SCpcoE=UzDw}J##TngEzD|3#4M4g-PNwW)J_S* z?BJ~B!~FQWSn*ZHjb0q*85DD#U60h;BOsiF1qB9a>et3 z)v&%t!-z#BGC;qqiNGFYL~L%Jby$^qT`_DGRScI%nu?)fB6!bhfB5mB+0ZhF&j8V) zc+`+|)f{nhP1CkUx1AVo!|E3e!91t$t5>gTF{r}V_-xk0dxk0C;n|=4IvsmZ3H=_i z{r~*eRA4Ky)qKfpQWo;b3-mlJAh}=e%aSvyLlq2qB|md!bpPBX{)-8(tEgz>M!!||sT9dC`!nYY{)<@F)YsNBOi9g5_2Rnvc&|MxeUY#&9fmQu-U&>o z!=XvPiXi!X=;-LSha16}l;T~KqL}lG_*JW1lOQVw^cBdHgSN&vvXSha{BSM6s)A}a zdEJh$E<3xzC;cYqf#vPol+%5EJV&GW-&-)?y|lDuPuKc1`g&my?eitIn?5cRH=un- zZg2uHLkc>flCtu<#*bI0H1RPM;+@Jnlh{Zpz|x6>gTpCKiI5>7G7BImKSd|hn2v2W zgG<28`E}d_lW))POu5UK-Cb*5ZW=ju(2i&Oqp)T1jS;K_dhfzmXu;Nu05`YUdjAjw zNX!S%YEewp)9C0Zd$D1_+OI;eZvJij?;Y_#;DW~89WoYacm6EMD6n7drNVFyOk4!^ zR$kbclE=pb;1uO}--)rth1_Fc&Idqd^m{X!p{SPzZ^e;# zB{ejhe%2PHR~!DX(%v#EuC7@Z#ogW0xJz&k8r~MwyEX3a?i$=3f)m^&SO}Kn ztbDTH_w4WPvwvL1Xu8+zHMQrgRq|9-!N#Tn)JfWa%<=mVM}5y+E+Jt_R#fwu3!Y#o zO<6<3tBPb=AU1@6$Ju7r2dAl+d+tbF4DYj*a8ItQ%?dSVXJ>CoSR5=o0Te%8Hj}_v zAf+d*e0o520lE1KSg>5r_19}?Hi;UbK%o_W&^A^EfnmgfXQ2&`V|qb2<@*?~v(qvl zK95hkPl91o?w;8FXTT7XUR02M!lZ0$KE#du@xJ{h5PAmCY_Al0yKzSreKw9bS#3~r zmPRP1`X*tX3`x7M3-_!GfFj_wIR2#n>I7mk2p=TB`Ce6tGDc*;O1V#jv{3cI2^a;Nmho2V*mj2YBXL9I=D<;shw5p@ZvxjgL*CIO1(~ zDLLJ~ri6V&Z@-8d#R+ohc*;n+PJ%>^MEOv6{^Z zHk7!h0?DBn+H<1nUQVrXoO~|tJSnG3C=e#c%B-_lv@9=7O2U$-1AKyeJ!3yb0A?sn z;7DX}+F(U&opKDsq#!lg;tWGL7P7K7T0V2KwzR*KN2!pi-&*+9BQ7?%iL}K36vS3yJx@FvFt(9ciDc|5iULO?cnZQmxCd{3l&}~S?U%ztT!QzXJ`oK@iLk^HaV4=l_miX|%A<`zFk)^t zk79I2=4B=&C8lU-Xb|qanQOF=6Jy$*326o};{Zyu%j?uMjvgMHItrSx+y?M3%;Fhc z5>L;6y1gUz_Gv>y4Ye3hJ;XmK)0gh~^rR}|5-A6rwp^pz^i9Du*P^k10V5X%vah4P zJ%Z$2O0Hjy-x?)p;po z^6v1qZv6Ot9N#|?*_LcS7+&B(uBo?A$9kAQlApzpRO-^vYITv@v+WIevjh|JhX~4J zcNASjnRM!~M(4;;ETP~p+IES$E>u$=Jp+Qq_;t~ zt$P?bt+_t!Nmjd#(ZG~LQW>Mcou!1%=OB2LA`$KN`xBB%iTMxl?jMzU}oTd22#SFEtbXC zTQ0z;yL`*-nU(jU5n%KIZ1Dgi-Cc5t(wF4LxtV#9>9UMW-i zLDLK$lJU=F=!DQTtC6%FPGmb@gG8b@zyEWoYh?!;6~aACNh$-I8KwXDjzwR8E6Rid zgYI>0?ZeWi`dP}fY8zzPvIs&%=idSbG9r7*mW425Lg#a2jw^WR+koTjo)R`JL zOGz2i>EwGR#I6Mq6+y%|BO*jH`4kwU9J`Gs-7<=wSX2{2l7^6kk+h>qc9)ZEM|5VR zMMcf{5F;CK1*%|HRgr!KBa&P13PUj_~`6IGSwNNV9doC=)Btjokti5Rvu zmsoItd4z=w26qrGn~}npSVk5wZC>eDG3RQEVOb^@{B8F^%FxN!Co9#w%Q3-~7gUr^ zsZNkD7)HXK#Vd?Th0)%v43ShNB9GNjuEd@YTbie+9;P== z1izOy!vzl^6E}7jc2_UyD<}B>dVSjV+wcd111>CJg*1t#$SX<1ltJuK?}7=>nZV5a zggU`0tOd0D6$Elk`;-LY&*Cf+R??VMs zK3)lTm}5ZN(Xt%l4(9}Kgr&@CiunK!BF2U@I-LjxT`c3!Dl9x1n-ES-(F(<}P!T00 zWaKu7ZL%(x{rRE;v)K0^p)@nr^hFg(?KXjwvVijZB2M7yx-{ITVJH)#3UJ~A5Zo-Z zw8wvJ?N@8ZL@%6{G9>u3j=TwAN{y0)awPcUNGp8v*P6)D;V=4R;k>IDN+`|&RexI+ z_4y;X<5qR1|(SzF`Wp0-H;YuSYA~Pq*4Y>?JS9upb!ZCeExL?&W=d(O6#mW zn*sh<&Se^&_kD>K<(>A1)=|!0<)F}t_}-r0=@{_-RA5F{rll4QU|&LNv;9IAOws)@ z;YQ11WXMbruPk*`g?Few%*!+YTE8Y)7Wf&@LK-nNnyEx`mMEB#77%QhT(;LQQI7jf zD+ui+wr$m=1ZB2W^W#=RzrW^C=D^{9{ADUB>8+E|QQrRe@$2_&66~09_UARW^t4Y% zI;yyDg!{tMBSu0UKW_v?k$($tIR|7ypS95yp1ybaE=41#J;a?I#0L8M0Nl`Fxebc@ zOcL9lRG~Jg^x)`_OyJ|ib-`c-zFOl6AQ^F-iHe$#4g%(6!05kvL$X{lSnfl9H~?h$ zkQ-Yg>?thzc7N~w!PBN%OX*U}(7;Y;RGIXK$*vJ~^Q^Nz_cyasg&uQmEQzD{Pi-lW zp_eS%Tjp?&8^_-3D3ad`EoHH`c8y3p9j?C?99-@~wGJNBYK0tl>!g7qM?+5@6M?~k zfw71dRsJ+$<9FiJC7QA?9gys%$eR!Xgbak*#@4hvBJVHs9Ru75*9U6=qjh0p#~`6M{X!C=1{4BBeJXB_Q)%EJ3#mZ_I-cif&;+=B z?0~^LA$SDB{4N-_5xf69k)v!(CC<_D%Fr+u$TEAMU#2*q9;OT-LlqoSf;xvnJ)}#2 zc?>re!R!ouVP0--99WRE2|?&G-I0=}1?c4t4-a>d4n>PNZI>c^UqhYniBT{O6pbK5 z6+64Sd=~a0Ld%JwXsKHh7CKOJCQ-~(=#-OXoNB7#%i) zn%%G`nf3zECkUd{XHl<(d;!k~0-%UyEx`$>j>IrHZ4i1Sj%(lrW_&PQ1$0GC&`pI7 z97RQq1R7gPA&X5TTy^sL>=@<^lW6c#;F2c!E~S-D+ECSh-6OVgkU6#|Vq5hn6=}t& z!d0@&)j`w9o3PICOJ#3OR$ZauOXdXv<)1k^gW%7LA2?irNzQ>hKrI?{Pn*SM9NJ`@ zRw_^>OoAl@)`56rBAJ?a4*1qcuDidBcaiYnHNddCUJy3AI?XVt1AGbAzm%|w-CgP# zkpkcou&u>2rvkr-6Y#A^kZ?%WM!d(E41#ZPNrYJn0mC^Lz47P^HIlfq z(a8;jr+5>%HRBkYPMo>h^wZDD>f<``pF*UG2 z`F^+sBopS@;UDPz`RKZB%Mn5#0NY^xur^YhY7Cyxgt5qk z0JQYtL?LxO&P<@hoqrOjBs$nY1wt?YEFw88njtSLAqH?e(jg4WDD_ydebCCEqm{uhVRhPd^s=0!;^>n0&IAAJr&=j1E#@ zj85%S<;53gdClY0-`z9T!ht{sQ7g~8DbuK7Bx3xEN5(2Z!hx=qfV_sV4YQ?7re9_B z=VPm*P)5=KV~CJELYHsDq3blCsFbQcrp&jBswE)*fLBJNpq(G?mknS-A`_9VlpXK? zfA#U-chvB&Qb2*390ZR~7q6ybOY5|7%J4QKA-cNvV1K%S7HDTI{HkqW{ z-clU%SBz5x){du&{=aYgTtYKhfV5P+08x-U&w%|4l~V^vK^3>eQWf=|t#KB1fS%Av zI%%pv64>Fu!qi_`H$uokMmggW2GUeSsd7}n6}ty*s5lbM>nFUz$9=A&iIxY0&x(00 z1on?a40w+VTb~5L!I|p#vvDMqa}6Tl$go0?V9A6fa~@HoM!rChb4s{ezmzWZUV)6f z;CjVdsHLJZKd9HV<~6_f(*f1CGeZm{W1l6!GhpYA- z3jX>+<5LS;3u`Vk-|OK}mG2VyjiclZvlz4dWwcgNYdh}V*1#nS0}2qN1gz?|`6xI2 zr|MFam*VbwTrz)Sgm8o-$}CtW?M&?HJos4ke$KNfhzpljZSeT_XNG zzLsywII`8gDB7~o7C6cji8(}Ag_bQgR^d^mB4{0%`(|y}<-0&Z9x@~DK_kA+-c4_W^R6-}@~_i$jc&Kft}dAeEtFqtB)5{@ zhpuCMv&89u^OjCx=-^dwJ!W&wjOhN~s{k2|*K2 zGRzPK<|o-?p)%nf;0Z?&!j@8rU^qkmKAI&}p!WO82&5YB+1?(NB1`Js^$T7|I*oA_ z?$GE@tIrfXSPD4-JI1^BX}mU2jgg{=A;p5W#p6Vx4zxt`S zwQ0n{(lAMQVlFGHC#u0x3ZTm7W4@c`(t(xvXaUzko|{xgO}7ZSP8fkPV4FXV^;21v z;f`^U-k58>)C&ffTYT*}gY*I;M>*;ZSdjD|qp#O18eag#T4Q$7FsgCTA&`bq^{@x8 zVB^jhhEOD*@JgzZHiAhy|gXuaFfiZ=nYdA%B5j3>Nus{ z8UJ1xkLt9A1H&W`yq7AN6G(E&Pz#><%1OeMBrrB=$Q$kOJ!)!eqz*SJv&+=V zMb~&|@{j7$2FW>8l_+Sp4fr#rdchQW;@`D(lq|S3@ha>ZlO&rux2R?MkM zFqI$!O;EiefXJ{27h{ca5oHlr-OGgQ60w{*duc8z-WGpv;XJ}CimqQz{Kj2Da{%)O zr`$x3&e-1s@nY=OGOBD!>`&8QiK2eYE}0*FIXa5)LRzY4#=&Uc3Mmr7Ez}y91vx?6 zoId_&rh;MD&5+XF8e+bYD@u^PN(mfUqt9KoGtbQjwNXNw75;VV-&Yc|Q2W8EoR(o#29GYC?VH%jkeLV-6$U>Be-s2$&Am8!$jM<~GQq(KI`Al40o~PJ5jlhb z@W?4*WTle*&@KT44qCDr&ZH{`>o`ggl#cy%id2PhcCK5Q?0=^D3FHS1G!9JE&tsHK z=s4mTrrS*f1kU?y0~{mI$Pece%A*@%z=GE@e=g!Ux(ThU==z94AsS_eaVfoc>%WN6U($EKekZYOm)u)}7PC+j z6adMY8whG@hYuwWh>4xQnm0T|SmD!EcsQc8s!PVe^3aQWG=5I>Ixx-idI(Tn!btsM_rOI(OnW&m) zW+87JYiOW(i~tHjoj~oH>lGr~KmBK*Bp6Cn%#K%!giMSXV1xy*E@7=`S${0lnVwQ& zd(`unV%JUC8&0>x02jdAUX{@xzGstId3s>H34vR{?t;1@CXT0pmPr+$nOiyJVWe?g zM3b_w8C8}M4HH9b%&0dVLyDyot*$@|zYkZAkP-&!NBM+zsf4WsfSDq0W9IEV}{qmybj*KyI!T}&dB^EXT+^CSeX4K z2>4mC!W4H5viA5O{cUbYrq5XoR&7NF<`BDo_qQCw@QzI5ec!IE_Y?tkUVF;kTH!A} z+|<7JQGmV#^<+;cg!!yfPkUm_#gSW;x2+r4KBX%y8haINU}q{1YzLvzIt#|}c2{l1>D!a;<%( zSjo4|R;$8mKgpZ|QEJ$_ZdJtVhV+D1i(2rOkuf{F$ZI(AyDRkC)VC$Hb+a=e$x_X0CG8?ILIc>fVt05W3CdVw(w^*e}G21p~$4Zt)6~9{L*}*V66u{tHND87U z+8~G7Mq8C6IYiPb*rupY%kF9XRVy6tLJ<^Iwru`PR}P~&luZ3o%C_;4!VSC`pQ*TG zE+=TCT2*YTiB+cxVV7;*tXLt0XOfeG;;9xTXs48%^64@trByj7x{)H+AR&28x)^KL zm7GuZN=kv&xv_*{p;%MqOEr~Y2?RH9WIZ)-ykvAjJT%!?73goPlQWrcXDQn0828p- z1;z=$4lW#k=<)B~h_fYlB?bTLtazOLB$Fw4Yfs0?$h%lWm5VWQMMa^Pnl%d~rKmVx z0(;)zDLxD**=iM8E!;o6mY*au+|)J{GGnNFUOy5#B7=A_oiw*5V^_p1!D8#TfN|E! zA=h;pKomh63eBe*92J|)*>SX|f~Ly-&`9OZHJjTFtZ{S5lG{G$k)P zYN&`)XXNOtE5M&*UO*JvlbD=lTXeUO*ywuuMB zwQ*F-9D~yHXZA+^utvNpf+9}QnSTz8bD>wjS3Isj7DI&{i5rL>W?LwO?##Z(J;;C3 zY_34;VL$^mefoIZ9Li#dx(lcW{cy_B{(v}v+zsLX`moO$rsw;g#p2FS$B4K;sHKG$|qgQ=f!$zwA&gpiJPK@7rsyVblhK6N? zh-H*HlQV$ol*j8;@8+Sn+@jbi3&|#|PH6DyoGN>1&a9f!)v2*)S;ZtG&AAu{OE8$;@%7(wQ1 z*w=n<(C>a~P&z@@z|&<2p9y)AO(3_jd|_;u^tKpWisZ|5_BP)fn8EhC$PLdy*jkl7 z#@E<@-SqLyoJAxK9Bba*_?90?G57CvC=f?(>CG`wR1hBH+*j_AeOL|yBve|8YTdvb8KXJdhay(4N3YsxhYn-3X z3i~RXu9g%@?rWuOcT|_t-Fk4knokkk%6UTTVGDl3f9=6UtlA73MFN{%B_ z1&@;3@TI5Z-EkXwrFtoNUpez6t{{6GPu|51KHi`4orry1mNwr5=(~G&zwyOPv{_UZ zhy80%5JbbLG&SjOS7f$Mk$eC&<5*vI4o;W-d!Toh_3Q#14(ZzauoiAt$eF-Wb<4$! z$JNk9IP_d>tym%WS~;SH6(@o6h99a4Ng=xvt1SkkHco%rP`^~mD=qXN&*pQ5d=!7u z#NMs2G`0z^G+Aw<$EUdY2`GEoA6iSV9w(yzC`p+QX!ebkmY${M*2U&GJC_%`dxC|( zt+b%3^M;@hYWjY(h}vz}P*@TtpN+Gz2pQj)81}_ftBe3;o|QF&lvLj7 zfhf4hNSm{(sozO`h79zTPu7FX;uGE!PUd z*UV_U{&wD2{A@jaOEZ^n9^yP{KDjg=g?q@qMf}N2>f^+XX>fs?*GY|kqujsA(I09; zX6qwBDU_0pj6u4d3C)E@5<|!? zrBOk}-wf+}$N!0y9vsqGYNiIyhzxaED~}IW(UF811MpSIf&d7H1Ow1 z1qI@T;qb(9qeD5S{Uq)9H^nbH%Po$CP+T(_GHbkqxU9XoYB@7{#?O$<@={vAq(N8R z=vViIhKLrn)qhdc(HaS6C#(9G@?4XGg=r{MIy6!?+8UzYeKFK7QVQmTxoJ2r%a7xe z*hyo1{>D<#@Z#y{SD}G?Y?}gsO%N}rxvxM{x{9Br?~lg?0KBA8Wa>uuX<7Wv+2v(_ zH#|c?10M*z zMm6K4*X0DGx-^lccTxzatWv>_njKGT`&`RkRI4nez9vY_`qD|ScN;I`FZIp6mz_}2 z9~{`wd5bkYeolk#=WaOVc*PVMv=m&v(a-82m*)5ehn6{m_fx8Kx^x4*_lK!&m;E%1 zjg-LkhFp`cX=(Dg%~X))xn`p%W2I8)B>Hbd$+Y^{YgfVbw(D|*p>@{Qp1OhGsjAT| zzO#{Kkd>_)JA9+z{M0_5(EGgQA#?UKv%a9IOo^2EY8u5AGm%+*OiA*&HH|F&RTISy z%{)^K-95b}N2VkvO1Kh~8=TPVy9~{tIh0or%AT$uwVyh*!>6v#+mrTs%NEvht);0b z*)Mt@M2~FhS*A=rMvle^g9edlv+xL;ge*k94CwAY}azN^mfUob|^iS-Zg>O>plzL8;t%d>kgjOKGNS zmf76xw5`QT-qI$Dn+>>6??V?-=O8vv5fwJL{WhUmqg9+q@E#9v&4IwgT^7X6qGGm0 zcdo$h(805E6!Lv$yR?#7IB8=45T-L%zD!E#vgM;Yv&65R7K4V$9rB%+5XIot&@%vz zSf)^*)x=Ow*9yUgGKivKR=|`Ov>5R#A}H`?I8?DtWp_ zYRc%d0Osmv-_s%!n{%U&=kQhNmRi}u2vFj$g@kM?r+Zzi;QPTOn<59YvkHmlhYx8a zJOrb$?P`p5^)egSKUhhTwT}6+B0g=fmG9W%eM-PR)UB30QY;<-aIT-GJG3*aP=e`t9NcS>cyr?y9H(f7^PU=)N zlIfs!%qESiFJ8oRiW!im`r$_@uE+KnPX1jtr;T@#Ufro2&$rF^7|_8Cs@pT+w9j^| z49-+?(Bp6USeX*`#cXW!i?7$J&GQLZO_4r)!5cv~x$Q?r@I~)d6}2yOuysUgj8?6+ z#H6}=O=uOm?%s*Vz=<#T{i-4L7I%Yd`c9=!iUp<1_tNIiM$W`>RPx)trRBrEkn_X_ zrEXSosuCHS*KOgn%qbC`_H~3tB;y%*gF` zq|CJ!uy>^{JptUQph2IvQ#9O{y4cCK2&AJ+v061t>E3t`-B7xHWJO zq(V@NH}u77E^kLscR6S!3Qi+LRK!841*y zSV#SoXS5)cir!DX_3Uf* zpRaDinyMLP@rzn@UpEfRmLTvPRATx7J}?P+UXPm6koNPIJq z-H;1+H}e>*PUH5Gp+RFooYr1jpvS13#~v$f?wX8hV%6zam_;%rVH;in>3F=wT)eXL zj|DE3?0QR+puk(4nIyL7@YtU#lZkL{7lDgl1cwGn%d$1zk2efsQxm&;q};}!w-(4q z?WmB;hE|P(__bMEtmy)&K@J9lVzf+pJpNwk?-b6rDU+y}SSiUw*5?8)sl-TGU?FQr z%$z^3MO%esMUzLj^biN_1m3MUq`%|e6kw(I+&$P;fi7j6-PLMg$T{Bc zaIT7CaLkk`Krs~_mLMN4F_@S;nl+$*z?d{9>KQLpIkxa&Gmq*?fa7u z+P4cIhDUtjNaoPjvQQ71Vub5<`OF7EW8)Rg*UeBq92D$g;51SclWW2*_n)r~TNOm@ zUTqEEYm);>2~4Et2ymWJX`Qfei3hE!eS8xV;-Tz$sJsT?t4ezS^mhO67v%Pb)Arxn@Fy=w&dcefb$OlwGaBfD&H2+@k&}a= zxi9CM7HM$nEgA3rxOA%nr1^-`hD{hOmrr^%6`WbyNx>sM9UXaZ^W>;AYA(NTwRJ{W znewFVa|~wxR4v59B7%XyRRbJXJJ0X69(U$+&*2d~;wc||lyAd?@g!la`94U3x-kaP zwx8%5nd z+CqUGtouB%Y;z0HjL2A4!VoG^H6I*dyuxF>EH1AMvQlSAu&w~e|IeUt@uCs`1W@jD z|AjU^quD`rPh@136dX=IoIJgh3N-xw@+gMJ70DFg+L?M3Da-G;tq94VSKS(j7jJz* z_DGzZE}kFG3ho!&^h#3HoIz+kAp0|WZ&tSVpP}I7q~^5R#0KH^h?)|*4@F-CW)mbM zjJU zYa(0I2ht%evqmza<+4Q!4djPbRUANIG7@PdD8$jkBA^-@3iNdrJ4;Ak=Qmi_7hk@# z3+ZcO?9%D@G_%m9m-hfUtq!Ic_fY#6%Wjzsw`L}7oUZRrlj2fw+W3c!NnQr-on>C2 zs(+N=UkmvBO_Q=ov2^AM=NpjW4>F2HJ-~E<8ZUq@E&j>II1nZ=HpNSJ5dkT+v!>#B zto>fp^!sf z6avmquQ7nr!IbVbtha_R6S!+%Zex0%@H@JS?>STM@6pfF;)A z4NN6!;`;hrf8%_0fRgq7P}|DYX3uHxX`=Aa0js5g!OZ7ZC8vV$??~7>xMlWwyxtI6 z(7~hfqNws&ZA`h^1v%pFaLOgBSI!+F3fc$)bJ@)wm(w8uiWe=1x6KYRzNZ`u)qh5|8x>N$l+e$vk zWaoaKDWS62O3SY+H0S(nV^(^QP#(LvG*}&Zm6%7DHR;+I{=LKuwSWN0Lt~qy7`&oE zxAjqkv*KiPzo$4Hnp$_1swHTep2Tzi%_gLLl4_l*(b+Qf`C@Fa)jRqvuH;~@aIRSX zJc-O=Ehz49!Xp=Q z2MPQnsZFfB6V6z3IwVn+8)K!kEKcbf#z||NCgk#)XBq6%;*NGt ze;D|?-QFo0eov?)*xV#4i^s43s2ED=cl`|XXcAGn(C^?DMk9)NF$C@chLn%tlg1Z< z-j}tPj8-`g#upEPS{Kxc;K* zSu3TkEhTFB@JUwPoTox(>T>ADs>nLPA$lzLmdz_kiE{Qdv+*)TCkdOeMf8LC0L4IY z$L-U{TP0Bbhn5%#!p5fl8qlvMYMHR>HKlPBFW7|>H}h1kN|2vg^%{m?W12nm7=v~i z`09dyGF*WiKIn=9J*eJ+R9LF3dBzw4A>d=Nku>E7;!$zkGL`hC#?Ki$=`MGSr6$kun;x?!&$zbRC=Av*Kq;JY>=2i&{#QGId zP;RFBOen+s_il}_Hu%PbW5fGzh7x);2V*cMyZAQo%|m=nZPSs*TjSQAQD1|48tl|i z`-{@9HUTi>ZJU)+j|8o5-Q} z8U>HWuPm=@(V1Vx((IF6zQv$)Dm{cKKF6iUE`8lM*C^c^I;t5ewm6VZY8fbdqu)Ik zHf!|b0l}2Vu#jj%XdU$S#Uce8izw7C>LNK?`3S#|f`TU5Dc^EIGi%a+3>p?KF1y?Q z(w<=BMUBZ{W+_%MGBJ~^?Sq}{H5jw;p5kLKv^Km)v7G(;(HzV#iawaWX0+58!t!*SOu|=?AHlq+r_$ z$}F!aDFcoZ*09Hq3MA`$sN{$&WVLTS<)f_bCpoHxwhLg+lO}R)JIkHa3}!$s47BElcC$~4po6Lu;R zECeFY|7Dlh*DSzm<4BjJ@}Cfa-c-#MaPNEf@mi!hL#w-&F3?YF(O&lJL*953H+I{> zi30BW`}iRw-xa+kO;YpieI{uI?VG6+ST=#KnGDNQMu38SVN*vrc)^6WK>lQ>Oz2v# zU~*3H#QP$J5(9Tr=^g#BAdbo~RjRguC!ax-Y|HlG;|;|{v&IJ~pGs%}?mZ$gR}AIj zBu~$p6y1=|DUmU*U7W$|RV&AmzQnYn5!b;y6)vdhhf2elNs@XLZvNzXm+<`*ts7rj<11i&W|*aeF}7*_nygR|Bi&%bKS$ z4Zq2aZm2%&n?U%?U1sJmrr9fTH;{m=21*^uj9Gb9w-oU)c9g(pJH3~uyV&8*WmL+V zM?bSnr5iJ?y4lHKN=nNg%^Ast5T$VU(()EEy2YSt~ebJLYFz$U` z5A1FM7#fsuxl|X1s7#%gg<{+jwIZWjkgt0X>8H-8tq(tl#b_G_6_|s4;$jw^F{{6i zPDd%A=G5CaylQI_8yl$J4B_o;qcb?fZTH4@=Z>7$8|X@zpdbX`(0{IrBM)yC_RhO@ zS3>1y-H=twq1e2cnIB{LRnun5N6o1CuKnZsBOtMd%^^08IamE%Q!9DtV1-khGbpBe z0}h142}kon|LE!oUqsI3xqMw75fM?|zmI=`6c;BF^TkcXV1TBZiyVBRBwut&0T+|o z@=(6EYBI3!W2AAA7uj=~5;MtX9k$DCIY}G|3lD|%ExY`dWq+wEvFrUS@^{qZK1|ln zWDcCgL%nQ*m0A)Kb>;oo`1S&3+@5*8R}NRn)b}YKk{z66Lp!;z_(la<0heV2N%--* zA!)%q!TUni53hdZs}9Iyq#|M}O->GS+#w2vEuQTDMPEMu*1pAD>xmvgFQlhekQMi* zK>oez{cPdNU$)oqX}U-V=Qx0YXg!w-E{|MkCZuF^g*?$p${FYFMm0cgg-*U}s13vn z%e-|`AQKK?fSF^oeFRHdLwyrk*V)jTEQ*AWb!dw0C z+FSbT-?6ax?r1;LYeIbsfC%2*seQaJrnf%7{`Y(8Ac>1vT-BreJz;aydGZlAau zp_!3D{7o8U2W7(c<@oF#$4mS1w}oek60pnEDN6R3bI_uTZBCSz%om{5A`g^l-Egx$ z-5zey?_)A80<0U_>NynlD0#QsWg+t8&!~B=XU2i#?n4753+sQeM+E?FduZiY9Tle7 zSZ$9k<9F|)wjVe{byA8cmGk~~UEsFt_pXO{O;@?ci8Z|8JC`lsl7Zl-07~|C z9;(2*JmybDREIckODHJ$Z|$Cff_-EnXuz{((Ew??Fzi`IJ>J=s`)t5tgj4a7u=d7& z{b}6%7KbO0{t%}j$U!)wU-+ofrIHR_^GhnmW^9hr4wj(lP1_%y7QMJMLdp7IZjF)0 zDV>bG!9lR-*j|UvKqY*eg$&ZDGSW{eaH~yAFtyINIeb$>i?dls24R4vcH=q^abDf> zTdnv}^#)%Lym!vPZAC1~$aMv=r=uai)qP+6vOZ*Nph==Q?W|Fc+m8YAO?+qQZ&||0 zi_L)-e3)r-4U;_6Z%AjDWWFsYid)uhcHBju9=z}#49P=T{MlR$SkU22>te#F#N!sz zD+i{(Cc6wqS%^p#_XK}-C8CmQuwJ9&^*9Dgpk(SVk)&r5_ZpynK{A8UxBFE;-kEdy zJ`WXh_65g;MBtZj!@`<41{O8Sn;vT>U))K8)mVGVw>etfn?q0~qoEA_Gu8<$btofa znAr1m3tImE3HEvAA|J%z!q5pCytV)>)6c~Cw``v-80|je+Px3(r}OTb!1!55Ta=D0_cZ>)z+WQRNqb4TmWIYK-#L?F4XLn;0yYq;2 zt9_?;GY|<;y3{UN2e^I_grl^1WtYW$rcctm59VgtY3VoSE*bJ=i?<%!!G!+agFH?t{;DlEQ?fc3o+TEhReWB9ikjPvPMskg6DqIU&kF*u z6v4+A>OG!wABQNU;vB!+pbyMbW2%{^bGYxVqjJ>v%}M-alm(C<7E3*83hd}3wOh>& z-+B+^R~z2{zJh*}^>`3*qU_|$y8k8uX|bQ#j@$R{u9xEg5!KB2u`fLDlPgYhVDw6X zIMQORcac#fV}6<7)SEZ8=tO^w)crN~MvM19VIc+LLHwToi6IdWXa4_ Date: Tue, 31 Aug 2021 04:15:35 +0000 Subject: [PATCH 04/55] Included pics and datasets --- Module 3/Notebooks/Module3_Nb1.Rmd | 27 ++--- Module 3/Notebooks/Module3_Nb1.nb.html | 161 ++++++++++++++----------- 2 files changed, 104 insertions(+), 84 deletions(-) diff --git a/Module 3/Notebooks/Module3_Nb1.Rmd b/Module 3/Notebooks/Module3_Nb1.Rmd index f710066d..fa9e6d53 100644 --- a/Module 3/Notebooks/Module3_Nb1.Rmd +++ b/Module 3/Notebooks/Module3_Nb1.Rmd @@ -19,7 +19,7 @@ Imagine you've conducted an experiment involving measurements from 20 animals. I If you throw a single dice 20 times in a row and note down how frequently each face occurs. The result of tallying all counts is a ‘frequency distribution’, which associates each possible outcome with a particular frequency value. Such a distribution is an empirically observed distribution because it is based on a set of 20 actual throws of a dice. Fig (a) below. -![Empirical and theoretical distributions](/Users/lenovo1/Desktop/mtech/courses/stats/Images/fig1.png) +![Empirical and theoretical distributions](dice rolling probability.png) But Fig (b) shows a theoretical distribution and represents probability rather than frequency. It depicts how probable is each outcome. In this case, all outcomes are equally probable and therefore it is a ‘uniform’ distribution because the probability is uniformly spread across all possible outcomes. It is furthermore a ‘discrete’ distribution because there are only six particular outcomes and no in-betweens. (Chapter 3, Winter B.) @@ -34,10 +34,7 @@ That's a lot of theory, let's dive into some data now. ```{r} #Change the path according to your PC -path = "/Users/lenovo1/Desktop/mtech/courses/stats/Datasets/data/" -fileN ="aflsmall.Rdata" -file_path = paste(path,fileN, sep = "") -load(file_path) +load("aflsmall.Rdata") library(lsr) who() ``` @@ -47,7 +44,7 @@ As you can see there are multiple variables of different class and size. Let's take a look at afl.margins variable. ```{r} -print (afl.margins) +print(afl.margins) ``` This output doesn’t make it easy to get a sense of what the data is actually saying. Just “looking at the data” isn’t a terribly effective way of understanding data. @@ -88,11 +85,9 @@ As you've already seen in previous classes, the mean of a set of observations is Try finding the mean for the first 5 values from afl.margins and then for all the values of afl.margins ```{r} -#Don't forget to uncomment the following before running -#afl.mean5 = -#afl.mean = -#afl.mean5 -#afl.mean +mean(afl.margins) # average margin +mean(afl.margins[1:5]) # mean of the margin from the first 5 games + ``` **Median** @@ -105,15 +100,14 @@ Probably you mentally arranged these numbers in ascending order first and then f Now try finding out the median for afl.margins. ```{r} -#afl.median = -#afl.median +median(afl.margins) ``` **Difference between Mean and Median** Both of these are measures of central tendency but when to use which can be a bit confusing. In general, the mean is kind of like the “centre of gravity” of the data set, whereas the median is the “middle value” in the data. -![Difference between mean and median](/Users/lenovo1/Desktop/mtech/courses/stats/Images/Fig2.png) +![Difference between mean and median](pic2.png) *Fig 5.2 from Learning Statistics with R by D. Navarro* **Some key points** @@ -151,11 +145,13 @@ mean(x = dataset, trim = .1) So far we've seen how to find the mean and median but what about mode. The **mode** of a sample is very simple: it is the value that occurs most frequently. The core packages in R don’t have a function for calculating the mode. However, the _lsr_ package has a function called modeOf() that does this. -Try to find out the mode for the variable afl.finalists +Say, you want to bet your money on the outcome of a match. You may want to find the most likely margin. This is when Mode is useful. Try to find out the mode for the variable afl.margins ```{r} #afl.mode = #afl.mode +modeOf(x = afl.margins) +maxFreq(x = afl.margins) ``` So far we've just seen the central measures of tendency, but we saw in the beginning that individual variability is quite important in biology. So, let's take a look at some of the measures of variability. @@ -180,6 +176,7 @@ That is why there is something called the interquartile range (IQR) which is lik Try finding out 25%, 75% and 50% quantiles for afl.margins and also the Inter-quartile range. ```{r} #Use the functions quantile(x = afl.margins, prob = 0.2) for 20% quantile and IQR() + ``` IQR can simply be thought as the range spanned by the “middle half” of the data. diff --git a/Module 3/Notebooks/Module3_Nb1.nb.html b/Module 3/Notebooks/Module3_Nb1.nb.html index 880ac831..350b7d0b 100644 --- a/Module 3/Notebooks/Module3_Nb1.nb.html +++ b/Module 3/Notebooks/Module3_Nb1.nb.html @@ -221,17 +221,6 @@

Descriptive Statistics: Central and Variability mea
#Initial packages
 install.packages("lsr")
- -
trying URL 'https://cran.rstudio.com/bin/macosx/big-sur-arm64/contrib/4.1/lsr_0.5.tgz'
-Content type 'application/x-gzip' length 214898 bytes (209 KB)
-==================================================
-downloaded 209 KB
- - -

-The downloaded binary packages are in
-    /var/folders/m1/c7s91v016q36bkqr9zkl051r0000gq/T//Rtmp47b7Y9/downloaded_packages
-

In this notebook, we’ll take a look at how to explore a dataset.

@@ -243,7 +232,7 @@

Describing data

What exactly is a distribution?

If you throw a single dice 20 times in a row and note down how frequently each face occurs. The result of tallying all counts is a ‘frequency distribution’, which associates each possible outcome with a particular frequency value. Such a distribution is an empirically observed distribution because it is based on a set of 20 actual throws of a dice. Fig (a) below.

- +

Empirical and theoretical distributions

But Fig (b) shows a theoretical distribution and represents probability rather than frequency. It depicts how probable is each outcome. In this case, all outcomes are equally probable and therefore it is a ‘uniform’ distribution because the probability is uniformly spread across all possible outcomes. It is furthermore a ‘discrete’ distribution because there are only six particular outcomes and no in-betweens. (Chapter 3, Winter B.)

@@ -256,22 +245,16 @@
But why is it needed?

Loading the Australian Football League Dataset

- +
#Change the path according to your PC
-path = "/Users/lenovo1/Desktop/mtech/courses/stats/Datasets/data/"
-fileN ="aflsmall.Rdata"
-file_path = paste(path,fileN, sep = "")
-load(file_path)
+load("aflsmall.Rdata")
 library(lsr)
 who()
- +
   -- Name --      -- Class --   -- Size --
    afl.finalists   factor        400       
-   afl.margins     numeric       176       
-   file_path       character       1       
-   fileN           character       1       
-   path            character       1       
+ afl.margins numeric 176 @@ -279,16 +262,18 @@
But why is it needed?

Let’s take a look at afl.margins variable.

- -
print (afl.margins)
+ +
print(afl.margins)
+
- -
  [1]  56  31  56   8  32  14  36  56  19   1   3 104  43  44  72   9  28  25  27  55  20  16  16   7  23  40  48  64  22  55  95  15  49  52
- [35]  50  10  65  12  39  36   3  26  23  20  43 108  53  38   4   8   3  13  66  67  50  61  36  38  29   9  81   3  26  12  36  37  70   1
- [69]  35  12  50  35   9  54  47   8  47   2  29  61  38  41  23  24   1   9  11  10  29  47  71  38  49  65  18   0  16   9  19  36  60  24
-[103]  25  44  55   3  57  83  84  35   4  35  26  22   2  14  19  30  19  68  11  75  48  32  36  39  50  11   0  63  82  26   3  82  73  19
-[137]  33  48   8  10  53  20  71  75  76  54  44   5  22  94  29   8  98   9  89   1 101   7  21  52  42  21 116   3  44  29  27  16   6  44
-[171]   3  28  38  29  10  10
+ +
  [1]  56  31  56   8  32  14  36  56  19   1   3 104  43  44  72   9  28  25  27  55  20  16  16   7  23  40  48
+ [28]  64  22  55  95  15  49  52  50  10  65  12  39  36   3  26  23  20  43 108  53  38   4   8   3  13  66  67
+ [55]  50  61  36  38  29   9  81   3  26  12  36  37  70   1  35  12  50  35   9  54  47   8  47   2  29  61  38
+ [82]  41  23  24   1   9  11  10  29  47  71  38  49  65  18   0  16   9  19  36  60  24  25  44  55   3  57  83
+[109]  84  35   4  35  26  22   2  14  19  30  19  68  11  75  48  32  36  39  50  11   0  63  82  26   3  82  73
+[136]  19  33  48   8  10  53  20  71  75  76  54  44   5  22  94  29   8  98   9  89   1 101   7  21  52  42  21
+[163] 116   3  44  29  27  16   6  44   3  28  38  29  10  10
@@ -301,7 +286,7 @@
But why is it needed?
hist (afl.margins)
-

+

@@ -329,13 +314,18 @@
Measures of Central Tendency

Try finding the mean for the first 5 values from afl.margins and then for all the values of afl.margins

- -
#Don't forget to uncomment the following before running
-#afl.mean5 = 
-#afl.mean = 
-#afl.mean5
-#afl.mean
+ +
mean(afl.margins)      # average margin
+ +
[1] 35.30114
+ + +
mean(afl.margins[1:5]) # mean of the margin from the first 5 games
+ + +
[1] 36.6
+

Median

@@ -344,15 +334,17 @@
Measures of Central Tendency

Now try finding out the median for afl.margins.

- -
#afl.median = 
-#afl.median
+ +
median(afl.margins)
+ +
[1] 30.5
+

Difference between Mean and Median

Both of these are measures of central tendency but when to use which can be a bit confusing. In general, the mean is kind of like the “centre of gravity” of the data set, whereas the median is the “middle value” in the data.

-

Difference between mean and median Fig 5.2 from Learning Statistics with R by D. Navarro

+

Difference between mean and median Fig 5.2 from Learning Statistics with R by D. Navarro

Some key points

  • If data is nominal scale, then it’s probably best to use the mode instead of mean or median.

  • @@ -383,13 +375,23 @@
    Measures of Central Tendency

    Mode

    So far we’ve seen how to find the mean and median but what about mode. The mode of a sample is very simple: it is the value that occurs most frequently. The core packages in R don’t have a function for calculating the mode. However, the lsr package has a function called modeOf() that does this.

    -

    Try to find out the mode for the variable afl.finalists

    +

    Say, you want to bet your money on the outcome of a match. You may want to find the most likely margin. This is when Mode is useful. Try to find out the mode for the variable afl.margins

    - +
    #afl.mode = 
    -#afl.mode
    +#afl.mode +modeOf(x = afl.margins) + +
    [1] 3
    + + +
    maxFreq(x = afl.margins)
    + + +
    [1] 8
    +

    So far we’ve just seen the central measures of tendency, but we saw in the beginning that individual variability is quite important in biology. So, let’s take a look at some of the measures of variability.

    @@ -411,8 +413,9 @@
    Measures of variability

    Try finding out 25%, 75% and 50% quantiles for afl.margins and also the Inter-quartile range.

    - -
    #Use the functions quantile(x = afl.margins, prob = 0.2) for 20% quantile and IQR() 
    + +
    #Use the functions quantile(x = afl.margins, prob = 0.2) for 20% quantile and IQR() 
    +
    @@ -478,14 +481,10 @@
    Quick cheat sheet: When to use what?

    Let’s try out summarizing a dataframe as well.

    - -
    load("clinicaltrial.Rdata")
    + +
    load("clinicaltrial.Rdata")
    +#Check the name of the variable in the environment which contains the dataframe and try summarizing it
    - -
    Warning in readChar(con, 5L, useBytes = TRUE) :
    -  cannot open compressed file 'clinicaltrial.Rdata', probable reason 'No such file or directory'
    -Error in readChar(con, 5L, useBytes = TRUE) : cannot open the connection
    -

    The psych package also has a function called describe() for dataframes. Don’t forget to check it out too!

    @@ -493,27 +492,26 @@
    Quick cheat sheet: When to use what?

    For instance, run describeBy( x=clin.trial, group=clin.trial$therapy )

    - -
    #describeBy(clin.trial)
    -describeBy( x=clin.trial, group=clin.trial$therapy )
    + +
    describeBy( x=clin.trial, group=clin.trial$therapy )
    
      Descriptive statistics by group 
     group: no.therapy
    - +
    - -
    --------------------------------------------------------------------------------------------------------- 
    +
    +
    ------------------------------------------------------------------------------------ 
     group: CBT
    - +
    +
    + + +
    ------------------------------------------------------------------------------------ 
    +clin.trial$therapy: CBT
    + + +
    + +
    + + +
    #Also try replacing describe in FUN above with summary
    @@ -541,17 +562,19 @@
    Quick cheat sheet: When to use what?
    data = clin.trial, FUN = mean)
    - +
    - +
    #1 mood.gain by drug/therapy combination
     #2 data is in the clin.trial data frame
    -#3 print out group means
    +#3 print out group means + +#Try interchanging the positions of drug and therapy above @@ -560,7 +583,7 @@
    Quick cheat sheet: When to use what?
    -
    LS0tCnRpdGxlOiAiRGVzY3JpcHRpdmUgU3RhdGlzdGljczogQ2VudHJhbCBhbmQgVmFyaWFiaWxpdHkgbWVhc3VyZXMiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KYGBge3J9CiNJbml0aWFsIHBhY2thZ2VzCmluc3RhbGwucGFja2FnZXMoImxzciIpCmBgYAoKSW4gdGhpcyBub3RlYm9vaywgd2UnbGwgdGFrZSBhIGxvb2sgYXQgaG93IHRvIGV4cGxvcmUgYSBkYXRhc2V0LgoKQW55IHRpbWUgdGhhdCB5b3UgZ2V0IGEgbmV3IGRhdGEgc2V0IHRvIGxvb2sgYXQsIG9uZSBvZiB0aGUgZmlyc3QgdGFza3MgdGhhdCB5b3UgaGF2ZSB0byBkbyBpcyBmaW5kIHdheXMgb2Ygc3VtbWFyaXNpbmcgdGhlIGRhdGEgaW4gYSBjb21wYWN0LCBlYXNpbHkgdW5kZXJzdG9vZCBmYXNoaW9uLiBUaGlzIGlzIHdoYXQgKipkZXNjcmlwdGl2ZSBzdGF0aXN0aWNzKiogaXMgYWxsIGFib3V0LgoKIyMjIyBEZXNjcmliaW5nIGRhdGEKCkltYWdpbmUgeW91J3ZlIGNvbmR1Y3RlZCBhbiBleHBlcmltZW50IGludm9sdmluZyBtZWFzdXJlbWVudHMgZnJvbSAyMCBhbmltYWxzLiBJZiB5b3Ugd2FudGVkIHRvIHJlcG9ydCB0aGUgb3V0Y29tZSBvZiB5b3VyIGV4cGVyaW1lbnQgdG8gYW4gYXVkaWVuY2UsIHlvdSB3b3VsZG7igJl0IHdhbnQgdG8gdGFsayB0aHJvdWdoIGVhY2ggYW5kIGV2ZXJ5IGRhdGEgcG9pbnQuIEluc3RlYWQsIHlvdSByZXBvcnQgYSBzdW1tYXJ5LCBzdWNoIGFzIOKAmFRoZSAyMCBhbmltYWxzIGhhZCBhbiBhdmVyYWdlIHdlaWdodCBvZiAxNSBncmFtc+KAmSwgdGh1cyBzYXZpbmcgeW91ciBhdWRpZW5jZSB2YWx1YWJsZSB0aW1lIGFuZCBtZW50YWwgZW5lcmd5LiBUaGlzIG5vdGVib29rIGZvY3VzZXMgb24gc3VjaCBzdW1tYXJpZXMgb2YgbnVtZXJpY2FsIGluZm9ybWF0aW9uIGluY2x1ZGluZyBkaXN0cmlidXRpb25zLCBtZWFzdXJlcyBvZiBjZW50cmFsIHRlbmRlbmN5IGFuZCBtZWFzdXJlcyBvZiB2YXJpYWJpbGl0eS4gCgojIyMjIyBXaGF0IGV4YWN0bHkgaXMgYSBkaXN0cmlidXRpb24/CgpJZiB5b3UgdGhyb3cgYSBzaW5nbGUgZGljZSAyMCB0aW1lcyBpbiBhIHJvdyBhbmQgbm90ZSBkb3duIGhvdyBmcmVxdWVudGx5IGVhY2ggZmFjZSBvY2N1cnMuIFRoZSByZXN1bHQgb2YgdGFsbHlpbmcgYWxsIGNvdW50cyBpcyBhIOKAmGZyZXF1ZW5jeSBkaXN0cmlidXRpb27igJksIHdoaWNoIGFzc29jaWF0ZXMgZWFjaCBwb3NzaWJsZSBvdXRjb21lIHdpdGggYSBwYXJ0aWN1bGFyIGZyZXF1ZW5jeSB2YWx1ZS4gU3VjaCBhIGRpc3RyaWJ1dGlvbiBpcyBhbiBlbXBpcmljYWxseSBvYnNlcnZlZCBkaXN0cmlidXRpb24gYmVjYXVzZSBpdCBpcyBiYXNlZCBvbiBhIHNldCBvZiAyMCBhY3R1YWwgdGhyb3dzIG9mIGEgZGljZS4gRmlnIChhKSBiZWxvdy4KCiFbRW1waXJpY2FsIGFuZCB0aGVvcmV0aWNhbCBkaXN0cmlidXRpb25zXSgvVXNlcnMvbGVub3ZvMS9EZXNrdG9wL210ZWNoL2NvdXJzZXMvc3RhdHMvSW1hZ2VzL2ZpZzEucG5nKQoKQnV0IEZpZyAoYikgc2hvd3MgYSB0aGVvcmV0aWNhbCBkaXN0cmlidXRpb24gYW5kIHJlcHJlc2VudHMgcHJvYmFiaWxpdHkgcmF0aGVyIHRoYW4gZnJlcXVlbmN5LiBJdCBkZXBpY3RzIGhvdyBwcm9iYWJsZSBpcyBlYWNoIG91dGNvbWUuIEluIHRoaXMgY2FzZSwgYWxsIG91dGNvbWVzIGFyZSBlcXVhbGx5IHByb2JhYmxlIGFuZCB0aGVyZWZvcmUgaXQgaXMgYSDigJh1bmlmb3Jt4oCZIGRpc3RyaWJ1dGlvbiBiZWNhdXNlIHRoZSBwcm9iYWJpbGl0eSBpcyB1bmlmb3JtbHkgc3ByZWFkIGFjcm9zcyBhbGwgcG9zc2libGUgb3V0Y29tZXMuIEl0IGlzIGZ1cnRoZXJtb3JlIGEg4oCYZGlzY3JldGXigJkgZGlzdHJpYnV0aW9uIGJlY2F1c2UgdGhlcmUgYXJlIG9ubHkgc2l4IHBhcnRpY3VsYXIgb3V0Y29tZXMgYW5kIG5vIGluLWJldHdlZW5zLiAoQ2hhcHRlciAzLCBXaW50ZXIgQi4pCgpBcGFydCBmcm9tICpsb29raW5nKiBhdCBob3cgYSBkYXRhIGlzIGRpc3RyaWJ1dGVkLCB0aGUgbW9zdCBpbXBvcnRhbnQgZGVzY3JpcHRpdmUgc3RhdGlzdGljcyBmb3IgbnVtZXJpY2FsIGRhdGEgYXJlIHRob3NlIG1lYXN1cmluZyB0aGUgbG9jYXRpb24gb2YgYSBmcmVxdWVuY3kgZGlzdHJpYnV0aW9uIGFuZCBpdHMgc3ByZWFkLiBUaGUgbG9jYXRpb24gdGVsbHMgdXMgc29tZXRoaW5nIGFib3V0IHRoZSBhdmVyYWdlIG9yICp0eXBpY2FsKiBpbmRpdmlkdWFs4oCUd2hlcmUgdGhlIG9ic2VydmF0aW9ucyBhcmUgY2VudGVyZWQuIFRoZSBzcHJlYWQgdGVsbHMgdXMgaG93IHZhcmlhYmxlIHRoZSBtZWFzdXJlbWVudHMgYXJlIGZyb20gaW5kaXZpZHVhbCB0byBpbmRpdmlkdWFs4oCUaG93IHdpZGVseSBzY2F0dGVyZWQgdGhlIG9ic2VydmF0aW9ucyBhcmUgYXJvdW5kIHRoZSBjZW50ZXIuIFRoZSBwcm9wb3J0aW9uIGlzIHRoZSBtb3N0IGltcG9ydGFudCBkZXNjcmlwdGl2ZSBzdGF0aXN0aWMgZm9yIGEgY2F0ZWdvcmljYWwgdmFyaWFibGUsIG1lYXN1cmluZyB0aGUgZnJhY3Rpb24gb2Ygb2JzZXJ2YXRpb25zIGluIGEgZ2l2ZW4gY2F0ZWdvcnkuIAoKIyMjIyMgQnV0IHdoeSBpcyBpdCBuZWVkZWQ/ClRoZSBpbXBvcnRhbmNlIG9mIGNhbGN1bGF0aW5nIHNvbWUgc29ydCBvZiBhIGNlbnRyZSBvZiBhIGRpc3RyaWJ1dGlvbiBzZWVtcyBvYnZpb3VzLiBIb3cgZWxzZSBkbyB3ZSBhZGRyZXNzIHF1ZXN0aW9ucyBsaWtlIOKAnFdoaWNoIHNwZWNpZXMgaXMgbGFyZ2VyP+KAnSBvciDigJxXaGljaCBkcnVnIHlpZWxkZWQgdGhlIGdyZWF0ZXN0IHJlc3BvbnNlP+KAnSBUaGUgaW1wb3J0YW5jZSBvZiBkZXNjcmliaW5nIGRpc3RyaWJ1dGlvbiBzcHJlYWQgaXMgbGVzcyBvYnZpb3VzIGJ1dCBubyBsZXNzIGNydWNpYWwsIGF0IGxlYXN0IGluIGJpb2xvZ3kuIEluIHNvbWUgZmllbGRzIG9mIHNjaWVuY2UsIHZhcmlhYmlsaXR5IGFyb3VuZCBhIGNlbnRyYWwgdmFsdWUgaXMgaW5zdHJ1bWVudCBub2lzZSBvciBtZWFzdXJlbWVudCBlcnJvciwgYnV0IGluIGJpb2xvZ3kgbXVjaCBvZiB0aGUgdmFyaWFiaWxpdHkgc2lnbmlmaWVzIHJlYWwgZGlmZmVyZW5jZXMgYW1vbmcgaW5kaXZpZHVhbHMuIERpZmZlcmVudCBpbmRpdmlkdWFscyByZXNwb25kIGRpZmZlcmVudGx5IHRvIHRyZWF0bWVudHMsIGFuZCB0aGlzIHZhcmlhYmlsaXR5IGJlZ3MgbWVhc3VyZW1lbnQuIChBZGFwdGVkIGZyb20gQ2hhcHRlciAzLCBXaGl0bG9jayAmIFNjaGx1dGVyLCAyMDE1KQoKVGhhdCdzIGEgbG90IG9mIHRoZW9yeSwgbGV0J3MgZGl2ZSBpbnRvIHNvbWUgZGF0YSBub3cuCgoqKkxvYWRpbmcgdGhlIEF1c3RyYWxpYW4gRm9vdGJhbGwgTGVhZ3VlIERhdGFzZXQqKgoKYGBge3J9CiNDaGFuZ2UgdGhlIHBhdGggYWNjb3JkaW5nIHRvIHlvdXIgUEMKcGF0aCA9ICIvVXNlcnMvbGVub3ZvMS9EZXNrdG9wL210ZWNoL2NvdXJzZXMvc3RhdHMvRGF0YXNldHMvZGF0YS8iCmZpbGVOID0iYWZsc21hbGwuUmRhdGEiCmZpbGVfcGF0aCA9IHBhc3RlKHBhdGgsZmlsZU4sIHNlcCA9ICIiKQpsb2FkKGZpbGVfcGF0aCkKbGlicmFyeShsc3IpCndobygpCmBgYAoKQXMgeW91IGNhbiBzZWUgdGhlcmUgYXJlIG11bHRpcGxlIHZhcmlhYmxlcyBvZiBkaWZmZXJlbnQgY2xhc3MgYW5kIHNpemUuIAoKTGV0J3MgdGFrZSBhIGxvb2sgYXQgYWZsLm1hcmdpbnMgdmFyaWFibGUuCgpgYGB7cn0KcHJpbnQgKGFmbC5tYXJnaW5zKQpgYGAKClRoaXMgb3V0cHV0IGRvZXNu4oCZdCBtYWtlIGl0IGVhc3kgdG8gZ2V0IGEgc2Vuc2Ugb2Ygd2hhdCB0aGUgZGF0YSBpcyBhY3R1YWxseSBzYXlpbmcuIEp1c3Qg4oCcbG9va2luZyBhdCB0aGUgZGF0YeKAnSBpc27igJl0IGEgdGVycmlibHkgZWZmZWN0aXZlIHdheSBvZiB1bmRlcnN0YW5kaW5nIGRhdGEuCgpMZXQncyB0cnkgdG8gcGxvdCBpdC4KCioqRnJlcXVlbmN5IGRpc3RyaWJ1dGlvbioqCgpgYGB7cn0KaGlzdCAoYWZsLm1hcmdpbnMpCmBgYAoKQXMgeW91IGNhbiBzZWUsIGRpZmZlcmVudCBtYXJnaW5zIGluIGEgc2FtcGxlIHdpbGwgaGF2ZSBkaWZmZXJlbnQgbWVhc3VyZW1lbnRzLiBXZSBjYW4gc2VlIHRoaXMgdmFyaWFiaWxpdHkgd2l0aCBhICoqZnJlcXVlbmN5IGRpc3RyaWJ1dGlvbioqLiBUaGUgZnJlcXVlbmN5IG9mIGEgc3BlY2lmaWMgbWVhc3VyZW1lbnQgaW4gYSBzYW1wbGUgaXMgdGhlIG51bWJlciBvZiBvYnNlcnZhdGlvbnMgaGF2aW5nIGEgcGFydGljdWxhciB2YWx1ZSBvZiB0aGUgbWVhc3VyZW1lbnQuIFRoZSBmcmVxdWVuY3kgZGlzdHJpYnV0aW9uIHNob3dzIGhvdyBvZnRlbiBlYWNoIHZhbHVlIG9mIHRoZSB2YXJpYWJsZSBvY2N1cnMgaW4gdGhlIHNhbXBsZS4gCgpUaGVyZWZvcmUsIGhlcmUgd2UgaGF2ZSBwbG90dGVkIGEgaGlzdG9ncmFtIGZvciB0aGUgYWZsLm1hcmdpbnMgdmFyaWFibGUgd2hpY2ggZ2l2ZXMgdGhlIGZyZXF1ZW5jeSBkaXN0cmlidXRpb24gb2YgdGhlIGRpZmZlcmVudCBtYXJnaW4gdmFsdWVzLgoKKipTa2V3bmVzcyoqCgpJZiB5b3Ugb2JzZXJ2ZSB0aGUgZ3JhcGgsIHlvdSB3aWxsIGZpbmQgdGhhdCBpdCBpcyBub3QgZW50aXJlbHkgc3ltbWV0cmljYWwuIEEgbWVhc3VyZSBvZiBzdWNoIGFzeW1tZXRyeSBpcyBjYWxsZWQgKipTa2V3bmVzcyoqLiBJZiB0aGUgZGF0YSB0ZW5kIHRvIGhhdmUgYSBsb3Qgb2YgZXh0cmVtZSBzbWFsbCB2YWx1ZXMgKGkuZS4sIHRoZSBsb3dlciB0YWlsIGlzIOKAnGxvbmdlcuKAnSB0aGFuIHRoZSB1cHBlciB0YWlsKSBhbmQgbm90IHNvIG1hbnkgZXh0cmVtZWx5IGxhcmdlIHZhbHVlcyAobGVmdCBwYW5lbCksIHRoZW4gd2Ugc2F5IHRoYXQgdGhlIGRhdGEgYXJlIF9uZWdhdGl2ZWx5IHNrZXdlZF8uIE9uIHRoZSBvdGhlciBoYW5kLCBpZiB0aGVyZSBhcmUgbW9yZSBleHRyZW1lbHkgbGFyZ2UgdmFsdWVzIHRoYW4gZXh0cmVtZWx5IHNtYWxsIG9uZXMgKHJpZ2h0IHBhbmVsKSB3ZSBzYXkgdGhhdCB0aGUgZGF0YSBhcmUgX3Bvc2l0aXZlbHkgc2tld2VkXy4KCmBwc3ljaGAgcGFja2FnZSBjb250YWlucyBhIGBza2V3KClgIGZ1bmN0aW9uIHRoYXQgeW91IGNhbiB1c2UgdG8gY2FsY3VsYXRlIHNrZXduZXNzLiAKClRyeSBmaW5kaW5nIHRoZSBza2V3bmVzcyBmb3IgdGhlIGFib3ZlIGRhdGEgZm9yIGFmbC5tYXJnaW5zIHVzaW5nIHNrZXcoKSBmdW5jdGlvbiBhbmQgYWxzbyB0cnkgdG8gZ3Vlc3Mgd2hldGhlciB0aGlzIGRhdGEgaXMgcG9zaXRpdmVseSBvciBuZWdhdGl2ZWx5IHNrZXdlZC4KCmBgYHtyfQpsaWJyYXJ5KHBzeWNoKQojVHJ5IGZpbmRpbmcgc2tld25lc3Mgb2YgYWZsLm1hcmdpbnMgaGVyZQpgYGAKCkFsdGhvdWdoIHN1Y2ggYSBncmFwaGljYWwgcmVwcmVzZW50YXRpb24gZ2l2ZXMgYSAnZ2lzdCcgb2YgdGhlIGRhdGEgYnV0IGl0IGlzIHVzZWZ1bCB0byBmaW5kIHNvbWUgInN1bW1hcnkiIHN0YXRpc3RpY3MgYXMgd2VsbC4KCiMjIyMjIE1lYXN1cmVzIG9mIENlbnRyYWwgVGVuZGVuY3kKSW4gbW9zdCBzaXR1YXRpb25zLCB0aGUgZmlyc3QgdGhpbmcgdGhhdCB5b3XigJlsbCB3YW50IHRvIGNhbGN1bGF0ZSBpcyBhIG1lYXN1cmUgb2YgY2VudHJhbCB0ZW5kZW5jeS4gVGhhdCBpcywgeW914oCZZCBsaWtlIHRvIGtub3cgc29tZXRoaW5nIGFib3V0IHRoZSDigJxhdmVyYWdl4oCdIG9yIOKAnG1pZGRsZeKAnSBvZiB5b3VyIGRhdGEgbGllcy4gVGhlIHR3byBtb3N0IGNvbW1vbmx5IHVzZWQgbWVhc3VyZXMgYXJlIHRoZSBtZWFuLCBtZWRpYW4gYW5kIG1vZGUuCgoqKk1lYW4qKgoKQXMgeW91J3ZlIGFscmVhZHkgc2VlbiBpbiBwcmV2aW91cyBjbGFzc2VzLCB0aGUgbWVhbiBvZiBhIHNldCBvZiBvYnNlcnZhdGlvbnMgaXMganVzdCBhIG5vcm1hbCwgb2xkLWZhc2hpb25lZCBhdmVyYWdlOiBhZGQgYWxsIG9mIHRoZSB2YWx1ZXMgdXAsIGFuZCB0aGVuIGRpdmlkZSBieSB0aGUgdG90YWwgbnVtYmVyIG9mIHZhbHVlcy4KClRyeSBmaW5kaW5nIHRoZSBtZWFuIGZvciB0aGUgZmlyc3QgNSB2YWx1ZXMgZnJvbSBhZmwubWFyZ2lucyBhbmQgdGhlbiBmb3IgYWxsIHRoZSB2YWx1ZXMgb2YgYWZsLm1hcmdpbnMKYGBge3J9CiNEb24ndCBmb3JnZXQgdG8gdW5jb21tZW50IHRoZSBmb2xsb3dpbmcgYmVmb3JlIHJ1bm5pbmcKI2FmbC5tZWFuNSA9IAojYWZsLm1lYW4gPSAKI2FmbC5tZWFuNQojYWZsLm1lYW4KYGBgCgoqKk1lZGlhbioqCgpUaGUgc2Vjb25kIG1lYXN1cmUgaXMgdGhlIG1lZGlhbi4gSXQgaXMganVzdCB0aGUgbWlkZGxlIHZhbHVlIG9mIGEgc2V0IG9mIG9ic2VydmF0aW9ucy4gCipUcnkgOiBHdWVzcyB0aGUgbWVkaWFuIGZvciA1NiwgMzEsIDU2LCA4IGFuZCAzMiAqCgpQcm9iYWJseSB5b3UgbWVudGFsbHkgYXJyYW5nZWQgdGhlc2UgbnVtYmVycyBpbiBhc2NlbmRpbmcgb3JkZXIgZmlyc3QgYW5kIHRoZW4gZm91bmQgdGhlIG1pZGRsZSB2YWx1ZS4gSWYgdGhlcmUgd2VyZSBhIGxpc3Qgb2YgbnVtYmVycyBsaWtlIHRoaXMgYDgsIDE0LCAzMSwgMzIsIDU2LCA1NmAgLiBZb3Ugd2lsbCB0aGVuIGZpbmQgdGhlIGF2ZXJhZ2Ugb2YgbWlkZGxlIDIgdmFsdWVzLiAKCk5vdyB0cnkgZmluZGluZyBvdXQgdGhlIG1lZGlhbiBmb3IgYWZsLm1hcmdpbnMuCgpgYGB7cn0KI2FmbC5tZWRpYW4gPSAKI2FmbC5tZWRpYW4KYGBgCgoqKkRpZmZlcmVuY2UgYmV0d2VlbiBNZWFuIGFuZCBNZWRpYW4qKgoKQm90aCBvZiB0aGVzZSBhcmUgbWVhc3VyZXMgb2YgY2VudHJhbCB0ZW5kZW5jeSBidXQgd2hlbiB0byB1c2Ugd2hpY2ggY2FuIGJlIGEgYml0IGNvbmZ1c2luZy4gSW4gZ2VuZXJhbCwgdGhlIG1lYW4gaXMga2luZCBvZiBsaWtlIHRoZSDigJxjZW50cmUgb2YgZ3Jhdml0eeKAnSBvZiB0aGUgZGF0YSBzZXQsIHdoZXJlYXMgdGhlIG1lZGlhbiBpcyB0aGUg4oCcbWlkZGxlIHZhbHVl4oCdIGluIHRoZSBkYXRhLgoKIVtEaWZmZXJlbmNlIGJldHdlZW4gbWVhbiBhbmQgbWVkaWFuXSgvVXNlcnMvbGVub3ZvMS9EZXNrdG9wL210ZWNoL2NvdXJzZXMvc3RhdHMvSW1hZ2VzL0ZpZzIucG5nKQoqRmlnIDUuMiBmcm9tIExlYXJuaW5nIFN0YXRpc3RpY3Mgd2l0aCBSIGJ5IEQuIE5hdmFycm8qCgoqKlNvbWUga2V5IHBvaW50cyoqCgotIElmIGRhdGEgaXMgbm9taW5hbCBzY2FsZSwgdGhlbiBpdOKAmXMgcHJvYmFibHkgYmVzdCB0byB1c2UgdGhlIG1vZGUgaW5zdGVhZCBvZiBtZWFuIG9yIG1lZGlhbi4KCi0gSWYgeW91ciBkYXRhIGFyZSBvcmRpbmFsIHNjYWxlLCB5b3XigJlyZSBtb3JlIGxpa2VseSB0byB3YW50IHRvIHVzZSB0aGUgbWVkaWFuIHRoYW4gdGhlIG1lYW4uCgotIEZvciBpbnRlcnZhbCBhbmQgcmF0aW8gc2NhbGUgZGF0YSwgZWl0aGVyIG1lYW4gb3IgbWVkaWFuIGlzIGdlbmVyYWxseSBhY2NlcHRhYmxlLiBUaGUgbWVhbiBoYXMgdGhlIGFkdmFudGFnZSB0aGF0IGl0IHVzZXMgYWxsIHRoZSBpbmZvcm1hdGlvbiBpbiB0aGUgZGF0YSAod2hpY2ggaXMgdXNlZnVsIHdoZW4geW91IGRvbuKAmXQgaGF2ZSBhIGxvdCBvZiBkYXRhKSwgYnV0IGl04oCZcyB2ZXJ5IHNlbnNpdGl2ZSB0byBleHRyZW1lIHZhbHVlcy4KCipZb3UgY2FuIHJlYWQgbW9yZSBhYm91dCB0aGlzIGluIFNlY3Rpb24gNS4xLjQsIExlYXJuaW5nIFN0YXRpc3RpY3Mgd2l0aCBSIGJ5IEQuIE5hdmFycm8qCgpOb3cgbGV0J3MgdGFrZSBhIGxvb2sgYXQgc29tZSBtb3JlIGRhdGE6CgpgIC0xMDAsMiwzLDQsNSw2LDcsOCw5LDEwYAoKSWYgeW91IG9ic2VydmVkIHN1Y2ggZGF0YSBpbiByZWFsIGxpZmUsIHlvdSB3aWxsIHByb2JhYmx5IHRoaW5rIHRoYXQgLTEwMCBpcyBhbiAqKl9vdXRsaWVyXyoqLCBhIHZhbHVlIHRoYXQgZG9lc27igJl0IHJlYWxseSBiZWxvbmcgd2l0aCB0aGUgb3RoZXJzLiBZb3UgbWlnaHQgY29uc2lkZXIgcmVtb3ZpbmcgaXQgZnJvbSB0aGUgZGF0YSBzZXQgZW50aXJlbHkgYnV0IHlvdSBkb27igJl0IGFsd2F5cyBnZXQgc3VjaCBjdXQtYW5kLWRyaWVkIGV4YW1wbGVzLiBGb3IgaW5zdGFuY2UsIHlvdSBtaWdodCBnZXQgdGhpcyBpbnN0ZWFkOgoKYCAtMTUsMiwzLDQsNSw2LDcsOCw5LDEyYAoKVGhlIGAtMTVgIGxvb2tzIGEgYml0IHN1c3BpY2lvdXMsIGJ1dCBub3QgYW55d2hlcmUgbmVhciBhcyBtdWNoIGFzIGAtMTAwYCBkaWQuIEluIHRoaXMgY2FzZSwgaXTigJlzIGEKbGl0dGxlIHRyaWNraWVyLiBJdCBtaWdodCBiZSBhIGxlZ2l0aW1hdGUgb2JzZXJ2YXRpb24sIGl0IG1pZ2h0IG5vdC4gSW4gc3VjaCBzaXR1YXRpb25zLCB0aGUgbWVhbiBtaWdodCBnaXZlIHlvdSBhbiBlcnJvciBhcyBpdCBpcyBoaWdobHkgc2Vuc2l0aXZlIHRvIG9uZSBvciB0d28gZXh0cmVtZSB2YWx1ZXMsIGFuZCBpcyB0aHVzIG5vdCBjb25zaWRlcmVkIHRvIGJlIGEgcm9idXN0IG1lYXN1cmUuCgpJbiBzdWNoIHNpdHVhdGlvbnMsIG9uZSBzb2x1dGlvbiBpcyB0byB1c2UgdGhlIG1lZGlhbiBvciBhbm90aGVyIGlzIHRvIHVzZSBhICoqdHJpbW1lZCBtZWFuKiouIFRvIGNhbGN1bGF0ZSBhIHRyaW1tZWQgbWVhbiwgd2hhdCB5b3UgZG8gaXMgKipkaXNjYXJkKiogdGhlIG1vc3QgZXh0cmVtZSBleGFtcGxlcyBvbiBib3RoIGVuZHMgKGkuZS4sIHRoZSBsYXJnZXN0IGFuZCB0aGUgc21hbGxlc3QpLCBhbmQgdGhlbiB0YWtlIHRoZSBtZWFuIG9mIGV2ZXJ5dGhpbmcgZWxzZS4gU28sIGZvciBpbnN0YW5jZSwgYSAxMCUgdHJpbW1lZCBtZWFuIGRpc2NhcmRzIHRoZSBsYXJnZXN0IDEwJSBvZiB0aGUgb2JzZXJ2YXRpb25zIGFuZCB0aGUgc21hbGxlc3QgMTAlIG9mIHRoZSBvYnNlcnZhdGlvbnMsIGFuZCB0aGVuIHRha2VzIHRoZSBtZWFuIG9mIHRoZSByZW1haW5pbmcgODAlIG9mIHRoZSBvYnNlcnZhdGlvbnMuIFRoaXMgaGVscHMgaW4gdGFraW5nIHRoZSBtZWFuIGJ5IGV4Y2x1ZGluZyB0aGUgb3V0bGllcnMuCgpMZXQncyB0cnkgdHJpbW1pbmcgdGhlIG1lYW4gZm9yIGFib3ZlIGRhdGEuCgpgYGB7cn0KZGF0YXNldCA8LSBjKC0xNSwyLDMsNCw1LDYsNyw4LDksMTIpCm1lYW4oeCA9IGRhdGFzZXQsIHRyaW0gPSAuMSkKI1RyeSBjYWxjdWxhdGluZyA1JSB0cmltbWVkIG1lYW4gZm9yIGFib3ZlIGRhdGFzZXQKYGBgCgoqKk1vZGUqKgoKU28gZmFyIHdlJ3ZlIHNlZW4gaG93IHRvIGZpbmQgdGhlIG1lYW4gYW5kIG1lZGlhbiBidXQgd2hhdCBhYm91dCBtb2RlLiBUaGUgKiptb2RlKiogb2YgYSBzYW1wbGUgaXMgdmVyeSBzaW1wbGU6IGl0IGlzIHRoZSB2YWx1ZSB0aGF0IG9jY3VycyBtb3N0IGZyZXF1ZW50bHkuIFRoZSBjb3JlIHBhY2thZ2VzIGluIFIgZG9u4oCZdCBoYXZlIGEgZnVuY3Rpb24gZm9yIGNhbGN1bGF0aW5nIHRoZSBtb2RlLiBIb3dldmVyLCB0aGUgX2xzcl8gcGFja2FnZSBoYXMgYSBmdW5jdGlvbiBjYWxsZWQgbW9kZU9mKCkgdGhhdCBkb2VzIHRoaXMuIAoKVHJ5IHRvIGZpbmQgb3V0IHRoZSBtb2RlIGZvciB0aGUgdmFyaWFibGUgYWZsLmZpbmFsaXN0cwoKYGBge3J9CiNhZmwubW9kZSA9IAojYWZsLm1vZGUKYGBgCgpTbyBmYXIgd2UndmUganVzdCBzZWVuIHRoZSBjZW50cmFsIG1lYXN1cmVzIG9mIHRlbmRlbmN5LCBidXQgd2Ugc2F3IGluIHRoZSBiZWdpbm5pbmcgdGhhdCBpbmRpdmlkdWFsIHZhcmlhYmlsaXR5IGlzIHF1aXRlIGltcG9ydGFudCBpbiBiaW9sb2d5LiBTbywgbGV0J3MgdGFrZSBhIGxvb2sgYXQgc29tZSBvZiB0aGUgbWVhc3VyZXMgb2YgdmFyaWFiaWxpdHkuCgojIyMjIyBNZWFzdXJlcyBvZiB2YXJpYWJpbGl0eQoKVGhpcyByZWZlcnMgdG8gaG93IOKAnHNwcmVhZCBvdXTigJ0gYXJlIHRoZSBkYXRhPyBIb3cg4oCcZmFy4oCdIGF3YXkgZnJvbSB0aGUgbWVhbiBvciBtZWRpYW4gZG8gdGhlIG9ic2VydmVkIHZhbHVlcyB0ZW5kIHRvIGJlPwoKKipSYW5nZSoqCgpUaGUgcmFuZ2Ugb2YgYSB2YXJpYWJsZSBpcyB2ZXJ5IHNpbXBsZTogaXTigJlzIHRoZSBiaWdnZXN0IHZhbHVlIG1pbnVzIHRoZSBzbWFsbGVzdCB2YWx1ZS4gVHJ5IHRvIGZpbmQgb3V0IHRoZSByYW5nZSBvZiBhZmwubWFyZ2lucyB1c2luZyB0aGUgYHJhbmdlKClgIGZ1bmN0aW9uLgoKYGBge3J9CiNGaW5kIHJhbmdlIG9mIGFmbC5tYXJnaW5zIGhlcmUKYGBgCgpCdXQgd2hhdCBhYm91dCB0aGUgZWFybGllciBkYXRhIHdlIHNhdywgYCAtMTAwLDIsMyw0LDUsNiw3LDgsOSwxMGAuIFdpdGhvdXQgcmVtb3ZpbmcgdGhlIG91dGxpZXIsIHdlJ2xsIGdldCBhIHJhbmdlIG9mIDExMCBidXQgd2l0aG91dCB0aGUgb3V0bGllciwgd2UnbGwgZ2V0IGEgcmFuZ2Ugb2Ygb25seSA4LgoKKipJbnRlci1xdWFydGlsZSBSYW5nZSAoSVFSKSoqClRoYXQgaXMgd2h5IHRoZXJlIGlzIHNvbWV0aGluZyBjYWxsZWQgdGhlIGludGVycXVhcnRpbGUgcmFuZ2UgKElRUikgd2hpY2ggaXMgbGlrZSB0aGUgcmFuZ2UsIGJ1dCBpbnN0ZWFkIG9mIGNhbGN1bGF0aW5nIHRoZSBkaWZmZXJlbmNlIGJldHdlZW4gdGhlIGJpZ2dlc3QgYW5kIHNtYWxsZXN0IHZhbHVlLCBpdCBjYWxjdWxhdGVzIHRoZSBkaWZmZXJlbmNlIGJldHdlZW4gdGhlIDI1dGggcXVhbnRpbGUgYW5kIHRoZSA3NXRoIHF1YW50aWxlLiBBIDEwJSBfcXVhbnRpbGVfIG9yIF9wZXJjZW50aWxlXyBvZiBhIGRhdGEgc2V0IGlzIGRlZmluZWQgYXMgdGhlIHNtYWxsZXN0IG51bWJlciBfeF8gc3VjaCB0aGF0IDEwJSBvZiB0aGUgZGF0YSBpcyBsZXNzIHRoYW4gX3hfLgoKVHJ5IGZpbmRpbmcgb3V0IDI1JSwgNzUlIGFuZCA1MCUgcXVhbnRpbGVzIGZvciBhZmwubWFyZ2lucyBhbmQgYWxzbyB0aGUgSW50ZXItcXVhcnRpbGUgcmFuZ2UuCmBgYHtyfQojVXNlIHRoZSBmdW5jdGlvbnMgcXVhbnRpbGUoeCA9IGFmbC5tYXJnaW5zLCBwcm9iID0gMC4yKSBmb3IgMjAlIHF1YW50aWxlIGFuZCBJUVIoKSAKYGBgCgpJUVIgY2FuIHNpbXBseSBiZSB0aG91Z2h0IGFzIHRoZSByYW5nZSBzcGFubmVkIGJ5IHRoZSDigJxtaWRkbGUgaGFsZuKAnSBvZiB0aGUgZGF0YS4KCioqVmFyaWFuY2UqKgoKSW4gb3JkZXIgdG8gZmluZCBvdXQgdGhlIHZhcmlhbmNlIG9mIGRhdGEgZnJvbSB0aGUgbWVhbiBvciBtZWRpYW4sIHdlIG5lZWQgdG8gZmluZCB0aGUgZGV2aWF0aW9uIHN1Y2ggdGhhdCBhYnMgKFh+aX4gLSAkXG92ZXJsaW5le1h9JCkuICgkXG92ZXJsaW5le1h9JCBpcyB0aGUgbWVhbiBvZiBkYXRhc2V0KS4gTWF0aGVtYXRpY2FsbHksIHNxdWFyZWQgZGV2aWF0aW9ucyBhcmUgcHJlZmVycmVkIG92ZXIgYWJzb2x1dGUgZGV2aWF0aW9ucywgYW5kIGlmIHdlIHRha2UgdGhlIG1lYW4gb2YgYWxsIHRoZSBzcXVhcmVkIGRldmlhdGlvbnMsIHdlJ2xsIGdldCB0aGUgKip2YXJpYW5jZSoqIG9mIHRoZSBkYXRhLiAKClRyeSBmaW5kaW5nIG91dCB0aGUgdmFyaWFuY2UgdXNpbmcgYHZhcigpYC4KCmBgYHtyfQojVXNlIHZhcigpIGZvciBmaW5kaW5nIHZhcmlhbmNlIG9mIGFmbC5tYXJnaW5zCmBgYAoKX1JlYWQgbW9yZSBhYm91dCB2YXIoKSBmdW5jdGlvbiBhbmQgYWJzb2x1dGUgdnMgc3F1YXJlZCBkZXZpYXRpb25zIGluIFNlY3Rpb24gNS4yLjQgZnJvbSBMZWFybmluZyBTdGF0aXN0aWNzIHdpdGggUiBieSBELiBOYXZhcnJvXwoKKipTdGFuZGFyZCBEZXZpYXRpb24qKgoKQnV0IHdoYXQgZG9lcyB0aGlzIHZhcmlhbmNlIHNpZ25pZnk/IEl0IGlzIHZlcnkgZGlmZmljdWx0IHRvIGludGVycHJldCB0aGUgc3F1YXJlZCB2YWx1ZSBhbmQgdGhlcmVmb3JlLCB3ZSB0YWtlIHRoZSBfcm9vdCBtZWFuIHNxdWFyZSBkZXZpYXRpb25fIGZvciBpbnRlcnByZXRpbmcgdGhlIHNwcmVhZCBvZiBkYXRhIHBvaW50cy4gVGhpcyBpcyBjYWxsZWQgX1N0YW5kYXJkIERldmlhdGlvbl8gYW5kIGlzIGNhbGN1bGF0ZWQgYnkgdGFraW5nIHRoZSBzcXVhcmUgcm9vdCBvZiB2YXJpYW5jZSBtYXRoZW1hdGljYWxseSwgYW5kIHVzaW5nIHRoZSBzZCgpIGZ1bmN0aW9uIGluIFIgYmFzZSBwYWNrYWdlLgoKVHJ5IHRvIGZpbmQgb3V0IHRoZSBzdGFuZGFyZCBkZXZpYXRpb24gb2YgYWZsLm1hcmdpbnMuCgpgYGB7cn0KI0ZpbmQgb3V0IFN0ZCBkZXYuIGhlcmUKYGBgCgojIyMjIyBRdWljayBjaGVhdCBzaGVldDogV2hlbiB0byB1c2Ugd2hhdD8KCi0gUmFuZ2U6IAogIC0gR2l2ZXMgZnVsbCBzcHJlYWQgb2YgZGF0YS4gCiAgLSBWZXJ5IHZ1bG5lcmFibGUgdG8gb3V0bGllcnMKCi0gSW50ZXJxdWFydGlsZSByYW5nZTogCiAgLSBHaXZlcyB0aGUg4oCcbWlkZGxlIGhhbGbigJ0gb2YgZGF0YQogIC0gUm9idXN0LCBhbmQgY29tcGxlbWVudHMgdGhlIG1lZGlhbiBuaWNlbHkKICAKLSBWYXJpYW5jZToKICAtIEF2ZXJhZ2Ugc3F1YXJlZCBkZXZpYXRpb24gZnJvbSB0aGUgbWVhbgogIC0gSXTigJlzIG1hdGhlbWF0aWNhbGx5IGVsZWdhbnQgYnV0IGl04oCZcyBjb21wbGV0ZWx5IHVuaW50ZXJwcmV0YWJsZQoKLSBTdGFuZGFyZCBkZXZpYXRpb246CiAgLSBTcXVhcmUgcm9vdCBvZiB0aGUgdmFyaWFuY2UKICAtIEZhaXJseSBlbGVnYW50IG1hdGhlbWF0aWNhbGx5LCBhbmQgY2FuIGJlIGludGVycHJldGVkIHByZXR0eSB3ZWxsCiAgLSBDb21wbGVtZW50cyBtZWFuIGFuZCBpcyB0aGUgbW9zdCBwb3B1bGFyIG1lYXN1cmUgb2YgdmFyaWF0aW9uCgpOb3cgdGhhdCB3ZSd2ZSBsZWFybnQgYWJvdXQgdGhlIGRpZmZlcmVudCBtZXRob2RzIG9mIGRlc2NyaWJpbmcgYSBkYXRhLCBpdCB3b3VsZCd2ZSBiZWVuIGF3ZXNvbWUgaWYgUiBjb3VsZCBzdW1tYXJpemUgYWxsIG9mIHRoaXMgZm9yIHVzIHRvZ2V0aGVyLCByaWdodD8gCgpUaGVyZSdzIGluZGVlZCBhIGZ1bmN0aW9uIGNhbGxlZCBgc3VtbWFyeSgpYCBpbiBSLgoKYGBge3J9CiNDaGVjayBvdXQgd2hhdCBzdW1tYXJ5KCkgZG9lcyBmb3IgYWZsLm1hcmdpbnMKYGBgCgpQcmV0dHkgY29vbCwgbm8/CgpBbHNvIHRyeSBpdCBvdXQgZm9yIG90aGVyIGtpbmRzIG9mIHZhcmlhYmxlcyBsaWtlIGBhZmwuZmluYWxpc3RzYCBvciBgYXMuY2hhcmFjdGVyKGFmbC5maW5hbGlzdHMpYAoKTGV0J3MgdHJ5IG91dCBzdW1tYXJpemluZyBhIGRhdGFmcmFtZSBhcyB3ZWxsLgoKYGBge3J9CmxvYWQoImNsaW5pY2FsdHJpYWwuUmRhdGEiKQojQ2hlY2sgdGhlIG5hbWUgb2YgdGhlIHZhcmlhYmxlIGluIHRoZSBlbnZpcm9ubWVudCB3aGljaCBjb250YWlucyB0aGUgZGF0YWZyYW1lIGFuZCB0cnkgc3VtbWFyaXppbmcgaXQKYGBgCgpUaGUgYHBzeWNoYCBwYWNrYWdlIGFsc28gaGFzIGEgZnVuY3Rpb24gY2FsbGVkIGBkZXNjcmliZSgpYCBmb3IgZGF0YWZyYW1lcy4gRG9uJ3QgZm9yZ2V0IHRvIGNoZWNrIGl0IG91dCB0b28hCgpJbiBmYWN0LCB5b3UgY2FuIGFsc28gZGVzY3JpYmUgdGhlc2Ugc3RhdGlzdGljcyBncm91cCB3aXNlLiAKCkZvciBpbnN0YW5jZSwgcnVuIGBkZXNjcmliZUJ5KCB4PWNsaW4udHJpYWwsIGdyb3VwPWNsaW4udHJpYWwkdGhlcmFweSApYAoKYGBge3J9CmRlc2NyaWJlQnkoIHg9Y2xpbi50cmlhbCwgZ3JvdXA9Y2xpbi50cmlhbCR0aGVyYXB5ICkKYGBgCk5vdGljZSB0aGF0LCB0aGUgb3V0cHV0IGRpc3BsYXlzIGFzdGVyaXNrcyBmb3IgZmFjdG9yIHZhcmlhYmxlcywgaW4gb3JkZXIgdG8gZHJhdyB5b3VyIGF0dGVudGlvbiB0byB0aGUgZmFjdCB0aGF0IHRoZSBkZXNjcmlwdGl2ZSBzdGF0aXN0aWNzIHRoYXQgaXQgaGFzIGNhbGN1bGF0ZWQgd29u4oCZdCBiZSB2ZXJ5IG1lYW5pbmdmdWwgZm9yIHRob3NlIHZhcmlhYmxlcy4KCkFub3RoZXIgbW9yZSBnZW5lcmFsIGNvbW1hbmQgZm9yIGdyb3VwaW5nIGlzIGBieSgpYCAKClRyeSBydW5uaW5nIHRoZSBmb2xsb3dpbmcgY2h1bmsgYW5kIGNvbXBhcmUgdGhlIHJlc3VsdHMgd2l0aCB0aGUgYGRlc2NyaWJlQnkoKWAgY29tbWFuZCBhYm92ZS4KCmBgYHtyfQpieShkYXRhPWNsaW4udHJpYWwsIElORElDRVM9Y2xpbi50cmlhbCR0aGVyYXB5LCBGVU49ZGVzY3JpYmUpCiNBbHNvIHRyeSByZXBsYWNpbmcgZGVzY3JpYmUgaW4gRlVOIGFib3ZlIHdpdGggc3VtbWFyeQpgYGAKCldoYXQgaWYgeW91IGhhdmUgbXVsdGlwbGUgZ3JvdXBpbmcgdmFyaWFibGVzPyBTdXBwb3NlLCBmb3IgZXhhbXBsZSwgeW91IHdvdWxkIGxpa2UgdG8gbG9vayBhdCB0aGUgYXZlcmFnZSBtb29kIGdhaW4gc2VwYXJhdGVseSBmb3IgYWxsIHBvc3NpYmxlIGNvbWJpbmF0aW9ucyBvZiBkcnVnIGFuZCB0aGVyYXB5LldlIGNhbiB1c2UgYGFnZ3JlZ2F0ZSgpYCBjb21tYW5kLgoKYGBge3J9CmFnZ3JlZ2F0ZSggZm9ybXVsYSA9IG1vb2QuZ2FpbiB+IGRydWcgKyB0aGVyYXB5LCAKICAgICAgICAgICBkYXRhID0gY2xpbi50cmlhbCwKICAgICAgICAgICBGVU4gPSBtZWFuKSAKIzEgbW9vZC5nYWluIGJ5IGRydWcvdGhlcmFweSBjb21iaW5hdGlvbgojMiBkYXRhIGlzIGluIHRoZSBjbGluLnRyaWFsIGRhdGEgZnJhbWUKIzMgcHJpbnQgb3V0IGdyb3VwIG1lYW5zCgojVHJ5IGludGVyY2hhbmdpbmcgdGhlIHBvc2l0aW9ucyBvZiBkcnVnIGFuZCB0aGVyYXB5IGFib3ZlCmBgYAoKVGhhdCdzIGFsbCBmb3IgdG9kYXkhCg==
    +
    LS0tCnRpdGxlOiAiRGVzY3JpcHRpdmUgU3RhdGlzdGljczogQ2VudHJhbCBhbmQgVmFyaWFiaWxpdHkgbWVhc3VyZXMiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KYGBge3J9CiNJbml0aWFsIHBhY2thZ2VzCmluc3RhbGwucGFja2FnZXMoImxzciIpCmBgYAoKSW4gdGhpcyBub3RlYm9vaywgd2UnbGwgdGFrZSBhIGxvb2sgYXQgaG93IHRvIGV4cGxvcmUgYSBkYXRhc2V0LgoKQW55IHRpbWUgdGhhdCB5b3UgZ2V0IGEgbmV3IGRhdGEgc2V0IHRvIGxvb2sgYXQsIG9uZSBvZiB0aGUgZmlyc3QgdGFza3MgdGhhdCB5b3UgaGF2ZSB0byBkbyBpcyBmaW5kIHdheXMgb2Ygc3VtbWFyaXNpbmcgdGhlIGRhdGEgaW4gYSBjb21wYWN0LCBlYXNpbHkgdW5kZXJzdG9vZCBmYXNoaW9uLiBUaGlzIGlzIHdoYXQgKipkZXNjcmlwdGl2ZSBzdGF0aXN0aWNzKiogaXMgYWxsIGFib3V0LgoKIyMjIyBEZXNjcmliaW5nIGRhdGEKCkltYWdpbmUgeW91J3ZlIGNvbmR1Y3RlZCBhbiBleHBlcmltZW50IGludm9sdmluZyBtZWFzdXJlbWVudHMgZnJvbSAyMCBhbmltYWxzLiBJZiB5b3Ugd2FudGVkIHRvIHJlcG9ydCB0aGUgb3V0Y29tZSBvZiB5b3VyIGV4cGVyaW1lbnQgdG8gYW4gYXVkaWVuY2UsIHlvdSB3b3VsZG7igJl0IHdhbnQgdG8gdGFsayB0aHJvdWdoIGVhY2ggYW5kIGV2ZXJ5IGRhdGEgcG9pbnQuIEluc3RlYWQsIHlvdSByZXBvcnQgYSBzdW1tYXJ5LCBzdWNoIGFzIOKAmFRoZSAyMCBhbmltYWxzIGhhZCBhbiBhdmVyYWdlIHdlaWdodCBvZiAxNSBncmFtc+KAmSwgdGh1cyBzYXZpbmcgeW91ciBhdWRpZW5jZSB2YWx1YWJsZSB0aW1lIGFuZCBtZW50YWwgZW5lcmd5LiBUaGlzIG5vdGVib29rIGZvY3VzZXMgb24gc3VjaCBzdW1tYXJpZXMgb2YgbnVtZXJpY2FsIGluZm9ybWF0aW9uIGluY2x1ZGluZyBkaXN0cmlidXRpb25zLCBtZWFzdXJlcyBvZiBjZW50cmFsIHRlbmRlbmN5IGFuZCBtZWFzdXJlcyBvZiB2YXJpYWJpbGl0eS4gCgojIyMjIyBXaGF0IGV4YWN0bHkgaXMgYSBkaXN0cmlidXRpb24/CgpJZiB5b3UgdGhyb3cgYSBzaW5nbGUgZGljZSAyMCB0aW1lcyBpbiBhIHJvdyBhbmQgbm90ZSBkb3duIGhvdyBmcmVxdWVudGx5IGVhY2ggZmFjZSBvY2N1cnMuIFRoZSByZXN1bHQgb2YgdGFsbHlpbmcgYWxsIGNvdW50cyBpcyBhIOKAmGZyZXF1ZW5jeSBkaXN0cmlidXRpb27igJksIHdoaWNoIGFzc29jaWF0ZXMgZWFjaCBwb3NzaWJsZSBvdXRjb21lIHdpdGggYSBwYXJ0aWN1bGFyIGZyZXF1ZW5jeSB2YWx1ZS4gU3VjaCBhIGRpc3RyaWJ1dGlvbiBpcyBhbiBlbXBpcmljYWxseSBvYnNlcnZlZCBkaXN0cmlidXRpb24gYmVjYXVzZSBpdCBpcyBiYXNlZCBvbiBhIHNldCBvZiAyMCBhY3R1YWwgdGhyb3dzIG9mIGEgZGljZS4gRmlnIChhKSBiZWxvdy4KCiFbRW1waXJpY2FsIGFuZCB0aGVvcmV0aWNhbCBkaXN0cmlidXRpb25zXShkaWNlIHJvbGxpbmcgcHJvYmFiaWxpdHkucG5nKQoKQnV0IEZpZyAoYikgc2hvd3MgYSB0aGVvcmV0aWNhbCBkaXN0cmlidXRpb24gYW5kIHJlcHJlc2VudHMgcHJvYmFiaWxpdHkgcmF0aGVyIHRoYW4gZnJlcXVlbmN5LiBJdCBkZXBpY3RzIGhvdyBwcm9iYWJsZSBpcyBlYWNoIG91dGNvbWUuIEluIHRoaXMgY2FzZSwgYWxsIG91dGNvbWVzIGFyZSBlcXVhbGx5IHByb2JhYmxlIGFuZCB0aGVyZWZvcmUgaXQgaXMgYSDigJh1bmlmb3Jt4oCZIGRpc3RyaWJ1dGlvbiBiZWNhdXNlIHRoZSBwcm9iYWJpbGl0eSBpcyB1bmlmb3JtbHkgc3ByZWFkIGFjcm9zcyBhbGwgcG9zc2libGUgb3V0Y29tZXMuIEl0IGlzIGZ1cnRoZXJtb3JlIGEg4oCYZGlzY3JldGXigJkgZGlzdHJpYnV0aW9uIGJlY2F1c2UgdGhlcmUgYXJlIG9ubHkgc2l4IHBhcnRpY3VsYXIgb3V0Y29tZXMgYW5kIG5vIGluLWJldHdlZW5zLiAoQ2hhcHRlciAzLCBXaW50ZXIgQi4pCgpBcGFydCBmcm9tICpsb29raW5nKiBhdCBob3cgYSBkYXRhIGlzIGRpc3RyaWJ1dGVkLCB0aGUgbW9zdCBpbXBvcnRhbnQgZGVzY3JpcHRpdmUgc3RhdGlzdGljcyBmb3IgbnVtZXJpY2FsIGRhdGEgYXJlIHRob3NlIG1lYXN1cmluZyB0aGUgbG9jYXRpb24gb2YgYSBmcmVxdWVuY3kgZGlzdHJpYnV0aW9uIGFuZCBpdHMgc3ByZWFkLiBUaGUgbG9jYXRpb24gdGVsbHMgdXMgc29tZXRoaW5nIGFib3V0IHRoZSBhdmVyYWdlIG9yICp0eXBpY2FsKiBpbmRpdmlkdWFs4oCUd2hlcmUgdGhlIG9ic2VydmF0aW9ucyBhcmUgY2VudGVyZWQuIFRoZSBzcHJlYWQgdGVsbHMgdXMgaG93IHZhcmlhYmxlIHRoZSBtZWFzdXJlbWVudHMgYXJlIGZyb20gaW5kaXZpZHVhbCB0byBpbmRpdmlkdWFs4oCUaG93IHdpZGVseSBzY2F0dGVyZWQgdGhlIG9ic2VydmF0aW9ucyBhcmUgYXJvdW5kIHRoZSBjZW50ZXIuIFRoZSBwcm9wb3J0aW9uIGlzIHRoZSBtb3N0IGltcG9ydGFudCBkZXNjcmlwdGl2ZSBzdGF0aXN0aWMgZm9yIGEgY2F0ZWdvcmljYWwgdmFyaWFibGUsIG1lYXN1cmluZyB0aGUgZnJhY3Rpb24gb2Ygb2JzZXJ2YXRpb25zIGluIGEgZ2l2ZW4gY2F0ZWdvcnkuIAoKIyMjIyMgQnV0IHdoeSBpcyBpdCBuZWVkZWQ/ClRoZSBpbXBvcnRhbmNlIG9mIGNhbGN1bGF0aW5nIHNvbWUgc29ydCBvZiBhIGNlbnRyZSBvZiBhIGRpc3RyaWJ1dGlvbiBzZWVtcyBvYnZpb3VzLiBIb3cgZWxzZSBkbyB3ZSBhZGRyZXNzIHF1ZXN0aW9ucyBsaWtlIOKAnFdoaWNoIHNwZWNpZXMgaXMgbGFyZ2VyP+KAnSBvciDigJxXaGljaCBkcnVnIHlpZWxkZWQgdGhlIGdyZWF0ZXN0IHJlc3BvbnNlP+KAnSBUaGUgaW1wb3J0YW5jZSBvZiBkZXNjcmliaW5nIGRpc3RyaWJ1dGlvbiBzcHJlYWQgaXMgbGVzcyBvYnZpb3VzIGJ1dCBubyBsZXNzIGNydWNpYWwsIGF0IGxlYXN0IGluIGJpb2xvZ3kuIEluIHNvbWUgZmllbGRzIG9mIHNjaWVuY2UsIHZhcmlhYmlsaXR5IGFyb3VuZCBhIGNlbnRyYWwgdmFsdWUgaXMgaW5zdHJ1bWVudCBub2lzZSBvciBtZWFzdXJlbWVudCBlcnJvciwgYnV0IGluIGJpb2xvZ3kgbXVjaCBvZiB0aGUgdmFyaWFiaWxpdHkgc2lnbmlmaWVzIHJlYWwgZGlmZmVyZW5jZXMgYW1vbmcgaW5kaXZpZHVhbHMuIERpZmZlcmVudCBpbmRpdmlkdWFscyByZXNwb25kIGRpZmZlcmVudGx5IHRvIHRyZWF0bWVudHMsIGFuZCB0aGlzIHZhcmlhYmlsaXR5IGJlZ3MgbWVhc3VyZW1lbnQuIChBZGFwdGVkIGZyb20gQ2hhcHRlciAzLCBXaGl0bG9jayAmIFNjaGx1dGVyLCAyMDE1KQoKVGhhdCdzIGEgbG90IG9mIHRoZW9yeSwgbGV0J3MgZGl2ZSBpbnRvIHNvbWUgZGF0YSBub3cuCgoqKkxvYWRpbmcgdGhlIEF1c3RyYWxpYW4gRm9vdGJhbGwgTGVhZ3VlIERhdGFzZXQqKgoKYGBge3J9CiNDaGFuZ2UgdGhlIHBhdGggYWNjb3JkaW5nIHRvIHlvdXIgUEMKbG9hZCgiYWZsc21hbGwuUmRhdGEiKQpsaWJyYXJ5KGxzcikKd2hvKCkKYGBgCgpBcyB5b3UgY2FuIHNlZSB0aGVyZSBhcmUgbXVsdGlwbGUgdmFyaWFibGVzIG9mIGRpZmZlcmVudCBjbGFzcyBhbmQgc2l6ZS4gCgpMZXQncyB0YWtlIGEgbG9vayBhdCBhZmwubWFyZ2lucyB2YXJpYWJsZS4KCmBgYHtyfQpwcmludChhZmwubWFyZ2lucykKYGBgCgpUaGlzIG91dHB1dCBkb2VzbuKAmXQgbWFrZSBpdCBlYXN5IHRvIGdldCBhIHNlbnNlIG9mIHdoYXQgdGhlIGRhdGEgaXMgYWN0dWFsbHkgc2F5aW5nLiBKdXN0IOKAnGxvb2tpbmcgYXQgdGhlIGRhdGHigJ0gaXNu4oCZdCBhIHRlcnJpYmx5IGVmZmVjdGl2ZSB3YXkgb2YgdW5kZXJzdGFuZGluZyBkYXRhLgoKTGV0J3MgdHJ5IHRvIHBsb3QgaXQuCgoqKkZyZXF1ZW5jeSBkaXN0cmlidXRpb24qKgoKYGBge3J9Cmhpc3QgKGFmbC5tYXJnaW5zKQpgYGAKCkFzIHlvdSBjYW4gc2VlLCBkaWZmZXJlbnQgbWFyZ2lucyBpbiBhIHNhbXBsZSB3aWxsIGhhdmUgZGlmZmVyZW50IG1lYXN1cmVtZW50cy4gV2UgY2FuIHNlZSB0aGlzIHZhcmlhYmlsaXR5IHdpdGggYSAqKmZyZXF1ZW5jeSBkaXN0cmlidXRpb24qKi4gVGhlIGZyZXF1ZW5jeSBvZiBhIHNwZWNpZmljIG1lYXN1cmVtZW50IGluIGEgc2FtcGxlIGlzIHRoZSBudW1iZXIgb2Ygb2JzZXJ2YXRpb25zIGhhdmluZyBhIHBhcnRpY3VsYXIgdmFsdWUgb2YgdGhlIG1lYXN1cmVtZW50LiBUaGUgZnJlcXVlbmN5IGRpc3RyaWJ1dGlvbiBzaG93cyBob3cgb2Z0ZW4gZWFjaCB2YWx1ZSBvZiB0aGUgdmFyaWFibGUgb2NjdXJzIGluIHRoZSBzYW1wbGUuIAoKVGhlcmVmb3JlLCBoZXJlIHdlIGhhdmUgcGxvdHRlZCBhIGhpc3RvZ3JhbSBmb3IgdGhlIGFmbC5tYXJnaW5zIHZhcmlhYmxlIHdoaWNoIGdpdmVzIHRoZSBmcmVxdWVuY3kgZGlzdHJpYnV0aW9uIG9mIHRoZSBkaWZmZXJlbnQgbWFyZ2luIHZhbHVlcy4KCioqU2tld25lc3MqKgoKSWYgeW91IG9ic2VydmUgdGhlIGdyYXBoLCB5b3Ugd2lsbCBmaW5kIHRoYXQgaXQgaXMgbm90IGVudGlyZWx5IHN5bW1ldHJpY2FsLiBBIG1lYXN1cmUgb2Ygc3VjaCBhc3ltbWV0cnkgaXMgY2FsbGVkICoqU2tld25lc3MqKi4gSWYgdGhlIGRhdGEgdGVuZCB0byBoYXZlIGEgbG90IG9mIGV4dHJlbWUgc21hbGwgdmFsdWVzIChpLmUuLCB0aGUgbG93ZXIgdGFpbCBpcyDigJxsb25nZXLigJ0gdGhhbiB0aGUgdXBwZXIgdGFpbCkgYW5kIG5vdCBzbyBtYW55IGV4dHJlbWVseSBsYXJnZSB2YWx1ZXMgKGxlZnQgcGFuZWwpLCB0aGVuIHdlIHNheSB0aGF0IHRoZSBkYXRhIGFyZSBfbmVnYXRpdmVseSBza2V3ZWRfLiBPbiB0aGUgb3RoZXIgaGFuZCwgaWYgdGhlcmUgYXJlIG1vcmUgZXh0cmVtZWx5IGxhcmdlIHZhbHVlcyB0aGFuIGV4dHJlbWVseSBzbWFsbCBvbmVzIChyaWdodCBwYW5lbCkgd2Ugc2F5IHRoYXQgdGhlIGRhdGEgYXJlIF9wb3NpdGl2ZWx5IHNrZXdlZF8uCgpgcHN5Y2hgIHBhY2thZ2UgY29udGFpbnMgYSBgc2tldygpYCBmdW5jdGlvbiB0aGF0IHlvdSBjYW4gdXNlIHRvIGNhbGN1bGF0ZSBza2V3bmVzcy4gCgpUcnkgZmluZGluZyB0aGUgc2tld25lc3MgZm9yIHRoZSBhYm92ZSBkYXRhIGZvciBhZmwubWFyZ2lucyB1c2luZyBza2V3KCkgZnVuY3Rpb24gYW5kIGFsc28gdHJ5IHRvIGd1ZXNzIHdoZXRoZXIgdGhpcyBkYXRhIGlzIHBvc2l0aXZlbHkgb3IgbmVnYXRpdmVseSBza2V3ZWQuCgpgYGB7cn0KbGlicmFyeShwc3ljaCkKI1RyeSBmaW5kaW5nIHNrZXduZXNzIG9mIGFmbC5tYXJnaW5zIGhlcmUKYGBgCgpBbHRob3VnaCBzdWNoIGEgZ3JhcGhpY2FsIHJlcHJlc2VudGF0aW9uIGdpdmVzIGEgJ2dpc3QnIG9mIHRoZSBkYXRhIGJ1dCBpdCBpcyB1c2VmdWwgdG8gZmluZCBzb21lICJzdW1tYXJ5IiBzdGF0aXN0aWNzIGFzIHdlbGwuCgojIyMjIyBNZWFzdXJlcyBvZiBDZW50cmFsIFRlbmRlbmN5CkluIG1vc3Qgc2l0dWF0aW9ucywgdGhlIGZpcnN0IHRoaW5nIHRoYXQgeW914oCZbGwgd2FudCB0byBjYWxjdWxhdGUgaXMgYSBtZWFzdXJlIG9mIGNlbnRyYWwgdGVuZGVuY3kuIFRoYXQgaXMsIHlvdeKAmWQgbGlrZSB0byBrbm93IHNvbWV0aGluZyBhYm91dCB0aGUg4oCcYXZlcmFnZeKAnSBvciDigJxtaWRkbGXigJ0gb2YgeW91ciBkYXRhIGxpZXMuIFRoZSB0d28gbW9zdCBjb21tb25seSB1c2VkIG1lYXN1cmVzIGFyZSB0aGUgbWVhbiwgbWVkaWFuIGFuZCBtb2RlLgoKKipNZWFuKioKCkFzIHlvdSd2ZSBhbHJlYWR5IHNlZW4gaW4gcHJldmlvdXMgY2xhc3NlcywgdGhlIG1lYW4gb2YgYSBzZXQgb2Ygb2JzZXJ2YXRpb25zIGlzIGp1c3QgYSBub3JtYWwsIG9sZC1mYXNoaW9uZWQgYXZlcmFnZTogYWRkIGFsbCBvZiB0aGUgdmFsdWVzIHVwLCBhbmQgdGhlbiBkaXZpZGUgYnkgdGhlIHRvdGFsIG51bWJlciBvZiB2YWx1ZXMuCgpUcnkgZmluZGluZyB0aGUgbWVhbiBmb3IgdGhlIGZpcnN0IDUgdmFsdWVzIGZyb20gYWZsLm1hcmdpbnMgYW5kIHRoZW4gZm9yIGFsbCB0aGUgdmFsdWVzIG9mIGFmbC5tYXJnaW5zCmBgYHtyfQptZWFuKGFmbC5tYXJnaW5zKSAgICAgICMgYXZlcmFnZSBtYXJnaW4KbWVhbihhZmwubWFyZ2luc1sxOjVdKSAjIG1lYW4gb2YgdGhlIG1hcmdpbiBmcm9tIHRoZSBmaXJzdCA1IGdhbWVzCgpgYGAKCioqTWVkaWFuKioKClRoZSBzZWNvbmQgbWVhc3VyZSBpcyB0aGUgbWVkaWFuLiBJdCBpcyBqdXN0IHRoZSBtaWRkbGUgdmFsdWUgb2YgYSBzZXQgb2Ygb2JzZXJ2YXRpb25zLiAKKlRyeSA6IEd1ZXNzIHRoZSBtZWRpYW4gZm9yIDU2LCAzMSwgNTYsIDggYW5kIDMyICoKClByb2JhYmx5IHlvdSBtZW50YWxseSBhcnJhbmdlZCB0aGVzZSBudW1iZXJzIGluIGFzY2VuZGluZyBvcmRlciBmaXJzdCBhbmQgdGhlbiBmb3VuZCB0aGUgbWlkZGxlIHZhbHVlLiBJZiB0aGVyZSB3ZXJlIGEgbGlzdCBvZiBudW1iZXJzIGxpa2UgdGhpcyBgOCwgMTQsIDMxLCAzMiwgNTYsIDU2YCAuIFlvdSB3aWxsIHRoZW4gZmluZCB0aGUgYXZlcmFnZSBvZiBtaWRkbGUgMiB2YWx1ZXMuIAoKTm93IHRyeSBmaW5kaW5nIG91dCB0aGUgbWVkaWFuIGZvciBhZmwubWFyZ2lucy4KCmBgYHtyfQptZWRpYW4oYWZsLm1hcmdpbnMpCmBgYAoKKipEaWZmZXJlbmNlIGJldHdlZW4gTWVhbiBhbmQgTWVkaWFuKioKCkJvdGggb2YgdGhlc2UgYXJlIG1lYXN1cmVzIG9mIGNlbnRyYWwgdGVuZGVuY3kgYnV0IHdoZW4gdG8gdXNlIHdoaWNoIGNhbiBiZSBhIGJpdCBjb25mdXNpbmcuIEluIGdlbmVyYWwsIHRoZSBtZWFuIGlzIGtpbmQgb2YgbGlrZSB0aGUg4oCcY2VudHJlIG9mIGdyYXZpdHnigJ0gb2YgdGhlIGRhdGEgc2V0LCB3aGVyZWFzIHRoZSBtZWRpYW4gaXMgdGhlIOKAnG1pZGRsZSB2YWx1ZeKAnSBpbiB0aGUgZGF0YS4KCiFbRGlmZmVyZW5jZSBiZXR3ZWVuIG1lYW4gYW5kIG1lZGlhbl0ocGljMi5wbmcpCipGaWcgNS4yIGZyb20gTGVhcm5pbmcgU3RhdGlzdGljcyB3aXRoIFIgYnkgRC4gTmF2YXJybyoKCioqU29tZSBrZXkgcG9pbnRzKioKCi0gSWYgZGF0YSBpcyBub21pbmFsIHNjYWxlLCB0aGVuIGl04oCZcyBwcm9iYWJseSBiZXN0IHRvIHVzZSB0aGUgbW9kZSBpbnN0ZWFkIG9mIG1lYW4gb3IgbWVkaWFuLgoKLSBJZiB5b3VyIGRhdGEgYXJlIG9yZGluYWwgc2NhbGUsIHlvdeKAmXJlIG1vcmUgbGlrZWx5IHRvIHdhbnQgdG8gdXNlIHRoZSBtZWRpYW4gdGhhbiB0aGUgbWVhbi4KCi0gRm9yIGludGVydmFsIGFuZCByYXRpbyBzY2FsZSBkYXRhLCBlaXRoZXIgbWVhbiBvciBtZWRpYW4gaXMgZ2VuZXJhbGx5IGFjY2VwdGFibGUuIFRoZSBtZWFuIGhhcyB0aGUgYWR2YW50YWdlIHRoYXQgaXQgdXNlcyBhbGwgdGhlIGluZm9ybWF0aW9uIGluIHRoZSBkYXRhICh3aGljaCBpcyB1c2VmdWwgd2hlbiB5b3UgZG9u4oCZdCBoYXZlIGEgbG90IG9mIGRhdGEpLCBidXQgaXTigJlzIHZlcnkgc2Vuc2l0aXZlIHRvIGV4dHJlbWUgdmFsdWVzLgoKKllvdSBjYW4gcmVhZCBtb3JlIGFib3V0IHRoaXMgaW4gU2VjdGlvbiA1LjEuNCwgTGVhcm5pbmcgU3RhdGlzdGljcyB3aXRoIFIgYnkgRC4gTmF2YXJybyoKCk5vdyBsZXQncyB0YWtlIGEgbG9vayBhdCBzb21lIG1vcmUgZGF0YToKCmAgLTEwMCwyLDMsNCw1LDYsNyw4LDksMTBgCgpJZiB5b3Ugb2JzZXJ2ZWQgc3VjaCBkYXRhIGluIHJlYWwgbGlmZSwgeW91IHdpbGwgcHJvYmFibHkgdGhpbmsgdGhhdCAtMTAwIGlzIGFuICoqX291dGxpZXJfKiosIGEgdmFsdWUgdGhhdCBkb2VzbuKAmXQgcmVhbGx5IGJlbG9uZyB3aXRoIHRoZSBvdGhlcnMuIFlvdSBtaWdodCBjb25zaWRlciByZW1vdmluZyBpdCBmcm9tIHRoZSBkYXRhIHNldCBlbnRpcmVseSBidXQgeW91IGRvbuKAmXQgYWx3YXlzIGdldCBzdWNoIGN1dC1hbmQtZHJpZWQgZXhhbXBsZXMuIEZvciBpbnN0YW5jZSwgeW91IG1pZ2h0IGdldCB0aGlzIGluc3RlYWQ6CgpgIC0xNSwyLDMsNCw1LDYsNyw4LDksMTJgCgpUaGUgYC0xNWAgbG9va3MgYSBiaXQgc3VzcGljaW91cywgYnV0IG5vdCBhbnl3aGVyZSBuZWFyIGFzIG11Y2ggYXMgYC0xMDBgIGRpZC4gSW4gdGhpcyBjYXNlLCBpdOKAmXMgYQpsaXR0bGUgdHJpY2tpZXIuIEl0IG1pZ2h0IGJlIGEgbGVnaXRpbWF0ZSBvYnNlcnZhdGlvbiwgaXQgbWlnaHQgbm90LiBJbiBzdWNoIHNpdHVhdGlvbnMsIHRoZSBtZWFuIG1pZ2h0IGdpdmUgeW91IGFuIGVycm9yIGFzIGl0IGlzIGhpZ2hseSBzZW5zaXRpdmUgdG8gb25lIG9yIHR3byBleHRyZW1lIHZhbHVlcywgYW5kIGlzIHRodXMgbm90IGNvbnNpZGVyZWQgdG8gYmUgYSByb2J1c3QgbWVhc3VyZS4KCkluIHN1Y2ggc2l0dWF0aW9ucywgb25lIHNvbHV0aW9uIGlzIHRvIHVzZSB0aGUgbWVkaWFuIG9yIGFub3RoZXIgaXMgdG8gdXNlIGEgKip0cmltbWVkIG1lYW4qKi4gVG8gY2FsY3VsYXRlIGEgdHJpbW1lZCBtZWFuLCB3aGF0IHlvdSBkbyBpcyAqKmRpc2NhcmQqKiB0aGUgbW9zdCBleHRyZW1lIGV4YW1wbGVzIG9uIGJvdGggZW5kcyAoaS5lLiwgdGhlIGxhcmdlc3QgYW5kIHRoZSBzbWFsbGVzdCksIGFuZCB0aGVuIHRha2UgdGhlIG1lYW4gb2YgZXZlcnl0aGluZyBlbHNlLiBTbywgZm9yIGluc3RhbmNlLCBhIDEwJSB0cmltbWVkIG1lYW4gZGlzY2FyZHMgdGhlIGxhcmdlc3QgMTAlIG9mIHRoZSBvYnNlcnZhdGlvbnMgYW5kIHRoZSBzbWFsbGVzdCAxMCUgb2YgdGhlIG9ic2VydmF0aW9ucywgYW5kIHRoZW4gdGFrZXMgdGhlIG1lYW4gb2YgdGhlIHJlbWFpbmluZyA4MCUgb2YgdGhlIG9ic2VydmF0aW9ucy4gVGhpcyBoZWxwcyBpbiB0YWtpbmcgdGhlIG1lYW4gYnkgZXhjbHVkaW5nIHRoZSBvdXRsaWVycy4KCkxldCdzIHRyeSB0cmltbWluZyB0aGUgbWVhbiBmb3IgYWJvdmUgZGF0YS4KCmBgYHtyfQpkYXRhc2V0IDwtIGMoLTE1LDIsMyw0LDUsNiw3LDgsOSwxMikKbWVhbih4ID0gZGF0YXNldCwgdHJpbSA9IC4xKQojVHJ5IGNhbGN1bGF0aW5nIDUlIHRyaW1tZWQgbWVhbiBmb3IgYWJvdmUgZGF0YXNldApgYGAKCioqTW9kZSoqCgpTbyBmYXIgd2UndmUgc2VlbiBob3cgdG8gZmluZCB0aGUgbWVhbiBhbmQgbWVkaWFuIGJ1dCB3aGF0IGFib3V0IG1vZGUuIFRoZSAqKm1vZGUqKiBvZiBhIHNhbXBsZSBpcyB2ZXJ5IHNpbXBsZTogaXQgaXMgdGhlIHZhbHVlIHRoYXQgb2NjdXJzIG1vc3QgZnJlcXVlbnRseS4gVGhlIGNvcmUgcGFja2FnZXMgaW4gUiBkb27igJl0IGhhdmUgYSBmdW5jdGlvbiBmb3IgY2FsY3VsYXRpbmcgdGhlIG1vZGUuIEhvd2V2ZXIsIHRoZSBfbHNyXyBwYWNrYWdlIGhhcyBhIGZ1bmN0aW9uIGNhbGxlZCBtb2RlT2YoKSB0aGF0IGRvZXMgdGhpcy4gCgpTYXksIHlvdSB3YW50IHRvIGJldCB5b3VyIG1vbmV5IG9uIHRoZSBvdXRjb21lIG9mIGEgbWF0Y2guIFlvdSBtYXkgd2FudCB0byBmaW5kIHRoZSBtb3N0IGxpa2VseSBtYXJnaW4uIFRoaXMgaXMgd2hlbiBNb2RlIGlzIHVzZWZ1bC4gVHJ5IHRvIGZpbmQgb3V0IHRoZSBtb2RlIGZvciB0aGUgdmFyaWFibGUgYWZsLm1hcmdpbnMKCmBgYHtyfQojYWZsLm1vZGUgPSAKI2FmbC5tb2RlCm1vZGVPZih4ID0gYWZsLm1hcmdpbnMpCm1heEZyZXEoeCA9IGFmbC5tYXJnaW5zKQpgYGAKClNvIGZhciB3ZSd2ZSBqdXN0IHNlZW4gdGhlIGNlbnRyYWwgbWVhc3VyZXMgb2YgdGVuZGVuY3ksIGJ1dCB3ZSBzYXcgaW4gdGhlIGJlZ2lubmluZyB0aGF0IGluZGl2aWR1YWwgdmFyaWFiaWxpdHkgaXMgcXVpdGUgaW1wb3J0YW50IGluIGJpb2xvZ3kuIFNvLCBsZXQncyB0YWtlIGEgbG9vayBhdCBzb21lIG9mIHRoZSBtZWFzdXJlcyBvZiB2YXJpYWJpbGl0eS4KCiMjIyMjIE1lYXN1cmVzIG9mIHZhcmlhYmlsaXR5CgpUaGlzIHJlZmVycyB0byBob3cg4oCcc3ByZWFkIG91dOKAnSBhcmUgdGhlIGRhdGE/IEhvdyDigJxmYXLigJ0gYXdheSBmcm9tIHRoZSBtZWFuIG9yIG1lZGlhbiBkbyB0aGUgb2JzZXJ2ZWQgdmFsdWVzIHRlbmQgdG8gYmU/CgoqKlJhbmdlKioKClRoZSByYW5nZSBvZiBhIHZhcmlhYmxlIGlzIHZlcnkgc2ltcGxlOiBpdOKAmXMgdGhlIGJpZ2dlc3QgdmFsdWUgbWludXMgdGhlIHNtYWxsZXN0IHZhbHVlLiBUcnkgdG8gZmluZCBvdXQgdGhlIHJhbmdlIG9mIGFmbC5tYXJnaW5zIHVzaW5nIHRoZSBgcmFuZ2UoKWAgZnVuY3Rpb24uCgpgYGB7cn0KI0ZpbmQgcmFuZ2Ugb2YgYWZsLm1hcmdpbnMgaGVyZQpgYGAKCkJ1dCB3aGF0IGFib3V0IHRoZSBlYXJsaWVyIGRhdGEgd2Ugc2F3LCBgIC0xMDAsMiwzLDQsNSw2LDcsOCw5LDEwYC4gV2l0aG91dCByZW1vdmluZyB0aGUgb3V0bGllciwgd2UnbGwgZ2V0IGEgcmFuZ2Ugb2YgMTEwIGJ1dCB3aXRob3V0IHRoZSBvdXRsaWVyLCB3ZSdsbCBnZXQgYSByYW5nZSBvZiBvbmx5IDguCgoqKkludGVyLXF1YXJ0aWxlIFJhbmdlIChJUVIpKioKVGhhdCBpcyB3aHkgdGhlcmUgaXMgc29tZXRoaW5nIGNhbGxlZCB0aGUgaW50ZXJxdWFydGlsZSByYW5nZSAoSVFSKSB3aGljaCBpcyBsaWtlIHRoZSByYW5nZSwgYnV0IGluc3RlYWQgb2YgY2FsY3VsYXRpbmcgdGhlIGRpZmZlcmVuY2UgYmV0d2VlbiB0aGUgYmlnZ2VzdCBhbmQgc21hbGxlc3QgdmFsdWUsIGl0IGNhbGN1bGF0ZXMgdGhlIGRpZmZlcmVuY2UgYmV0d2VlbiB0aGUgMjV0aCBxdWFudGlsZSBhbmQgdGhlIDc1dGggcXVhbnRpbGUuIEEgMTAlIF9xdWFudGlsZV8gb3IgX3BlcmNlbnRpbGVfIG9mIGEgZGF0YSBzZXQgaXMgZGVmaW5lZCBhcyB0aGUgc21hbGxlc3QgbnVtYmVyIF94XyBzdWNoIHRoYXQgMTAlIG9mIHRoZSBkYXRhIGlzIGxlc3MgdGhhbiBfeF8uCgpUcnkgZmluZGluZyBvdXQgMjUlLCA3NSUgYW5kIDUwJSBxdWFudGlsZXMgZm9yIGFmbC5tYXJnaW5zIGFuZCBhbHNvIHRoZSBJbnRlci1xdWFydGlsZSByYW5nZS4KYGBge3J9CiNVc2UgdGhlIGZ1bmN0aW9ucyBxdWFudGlsZSh4ID0gYWZsLm1hcmdpbnMsIHByb2IgPSAwLjIpIGZvciAyMCUgcXVhbnRpbGUgYW5kIElRUigpIAoKYGBgCgpJUVIgY2FuIHNpbXBseSBiZSB0aG91Z2h0IGFzIHRoZSByYW5nZSBzcGFubmVkIGJ5IHRoZSDigJxtaWRkbGUgaGFsZuKAnSBvZiB0aGUgZGF0YS4KCioqVmFyaWFuY2UqKgoKSW4gb3JkZXIgdG8gZmluZCBvdXQgdGhlIHZhcmlhbmNlIG9mIGRhdGEgZnJvbSB0aGUgbWVhbiBvciBtZWRpYW4sIHdlIG5lZWQgdG8gZmluZCB0aGUgZGV2aWF0aW9uIHN1Y2ggdGhhdCBhYnMgKFh+aX4gLSAkXG92ZXJsaW5le1h9JCkuICgkXG92ZXJsaW5le1h9JCBpcyB0aGUgbWVhbiBvZiBkYXRhc2V0KS4gTWF0aGVtYXRpY2FsbHksIHNxdWFyZWQgZGV2aWF0aW9ucyBhcmUgcHJlZmVycmVkIG92ZXIgYWJzb2x1dGUgZGV2aWF0aW9ucywgYW5kIGlmIHdlIHRha2UgdGhlIG1lYW4gb2YgYWxsIHRoZSBzcXVhcmVkIGRldmlhdGlvbnMsIHdlJ2xsIGdldCB0aGUgKip2YXJpYW5jZSoqIG9mIHRoZSBkYXRhLiAKClRyeSBmaW5kaW5nIG91dCB0aGUgdmFyaWFuY2UgdXNpbmcgYHZhcigpYC4KCmBgYHtyfQojVXNlIHZhcigpIGZvciBmaW5kaW5nIHZhcmlhbmNlIG9mIGFmbC5tYXJnaW5zCmBgYAoKX1JlYWQgbW9yZSBhYm91dCB2YXIoKSBmdW5jdGlvbiBhbmQgYWJzb2x1dGUgdnMgc3F1YXJlZCBkZXZpYXRpb25zIGluIFNlY3Rpb24gNS4yLjQgZnJvbSBMZWFybmluZyBTdGF0aXN0aWNzIHdpdGggUiBieSBELiBOYXZhcnJvXwoKKipTdGFuZGFyZCBEZXZpYXRpb24qKgoKQnV0IHdoYXQgZG9lcyB0aGlzIHZhcmlhbmNlIHNpZ25pZnk/IEl0IGlzIHZlcnkgZGlmZmljdWx0IHRvIGludGVycHJldCB0aGUgc3F1YXJlZCB2YWx1ZSBhbmQgdGhlcmVmb3JlLCB3ZSB0YWtlIHRoZSBfcm9vdCBtZWFuIHNxdWFyZSBkZXZpYXRpb25fIGZvciBpbnRlcnByZXRpbmcgdGhlIHNwcmVhZCBvZiBkYXRhIHBvaW50cy4gVGhpcyBpcyBjYWxsZWQgX1N0YW5kYXJkIERldmlhdGlvbl8gYW5kIGlzIGNhbGN1bGF0ZWQgYnkgdGFraW5nIHRoZSBzcXVhcmUgcm9vdCBvZiB2YXJpYW5jZSBtYXRoZW1hdGljYWxseSwgYW5kIHVzaW5nIHRoZSBzZCgpIGZ1bmN0aW9uIGluIFIgYmFzZSBwYWNrYWdlLgoKVHJ5IHRvIGZpbmQgb3V0IHRoZSBzdGFuZGFyZCBkZXZpYXRpb24gb2YgYWZsLm1hcmdpbnMuCgpgYGB7cn0KI0ZpbmQgb3V0IFN0ZCBkZXYuIGhlcmUKYGBgCgojIyMjIyBRdWljayBjaGVhdCBzaGVldDogV2hlbiB0byB1c2Ugd2hhdD8KCi0gUmFuZ2U6IAogIC0gR2l2ZXMgZnVsbCBzcHJlYWQgb2YgZGF0YS4gCiAgLSBWZXJ5IHZ1bG5lcmFibGUgdG8gb3V0bGllcnMKCi0gSW50ZXJxdWFydGlsZSByYW5nZTogCiAgLSBHaXZlcyB0aGUg4oCcbWlkZGxlIGhhbGbigJ0gb2YgZGF0YQogIC0gUm9idXN0LCBhbmQgY29tcGxlbWVudHMgdGhlIG1lZGlhbiBuaWNlbHkKICAKLSBWYXJpYW5jZToKICAtIEF2ZXJhZ2Ugc3F1YXJlZCBkZXZpYXRpb24gZnJvbSB0aGUgbWVhbgogIC0gSXTigJlzIG1hdGhlbWF0aWNhbGx5IGVsZWdhbnQgYnV0IGl04oCZcyBjb21wbGV0ZWx5IHVuaW50ZXJwcmV0YWJsZQoKLSBTdGFuZGFyZCBkZXZpYXRpb246CiAgLSBTcXVhcmUgcm9vdCBvZiB0aGUgdmFyaWFuY2UKICAtIEZhaXJseSBlbGVnYW50IG1hdGhlbWF0aWNhbGx5LCBhbmQgY2FuIGJlIGludGVycHJldGVkIHByZXR0eSB3ZWxsCiAgLSBDb21wbGVtZW50cyBtZWFuIGFuZCBpcyB0aGUgbW9zdCBwb3B1bGFyIG1lYXN1cmUgb2YgdmFyaWF0aW9uCgpOb3cgdGhhdCB3ZSd2ZSBsZWFybnQgYWJvdXQgdGhlIGRpZmZlcmVudCBtZXRob2RzIG9mIGRlc2NyaWJpbmcgYSBkYXRhLCBpdCB3b3VsZCd2ZSBiZWVuIGF3ZXNvbWUgaWYgUiBjb3VsZCBzdW1tYXJpemUgYWxsIG9mIHRoaXMgZm9yIHVzIHRvZ2V0aGVyLCByaWdodD8gCgpUaGVyZSdzIGluZGVlZCBhIGZ1bmN0aW9uIGNhbGxlZCBgc3VtbWFyeSgpYCBpbiBSLgoKYGBge3J9CiNDaGVjayBvdXQgd2hhdCBzdW1tYXJ5KCkgZG9lcyBmb3IgYWZsLm1hcmdpbnMKYGBgCgpQcmV0dHkgY29vbCwgbm8/CgpBbHNvIHRyeSBpdCBvdXQgZm9yIG90aGVyIGtpbmRzIG9mIHZhcmlhYmxlcyBsaWtlIGBhZmwuZmluYWxpc3RzYCBvciBgYXMuY2hhcmFjdGVyKGFmbC5maW5hbGlzdHMpYAoKTGV0J3MgdHJ5IG91dCBzdW1tYXJpemluZyBhIGRhdGFmcmFtZSBhcyB3ZWxsLgoKYGBge3J9CmxvYWQoImNsaW5pY2FsdHJpYWwuUmRhdGEiKQojQ2hlY2sgdGhlIG5hbWUgb2YgdGhlIHZhcmlhYmxlIGluIHRoZSBlbnZpcm9ubWVudCB3aGljaCBjb250YWlucyB0aGUgZGF0YWZyYW1lIGFuZCB0cnkgc3VtbWFyaXppbmcgaXQKYGBgCgpUaGUgYHBzeWNoYCBwYWNrYWdlIGFsc28gaGFzIGEgZnVuY3Rpb24gY2FsbGVkIGBkZXNjcmliZSgpYCBmb3IgZGF0YWZyYW1lcy4gRG9uJ3QgZm9yZ2V0IHRvIGNoZWNrIGl0IG91dCB0b28hCgpJbiBmYWN0LCB5b3UgY2FuIGFsc28gZGVzY3JpYmUgdGhlc2Ugc3RhdGlzdGljcyBncm91cCB3aXNlLiAKCkZvciBpbnN0YW5jZSwgcnVuIGBkZXNjcmliZUJ5KCB4PWNsaW4udHJpYWwsIGdyb3VwPWNsaW4udHJpYWwkdGhlcmFweSApYAoKYGBge3J9CmRlc2NyaWJlQnkoIHg9Y2xpbi50cmlhbCwgZ3JvdXA9Y2xpbi50cmlhbCR0aGVyYXB5ICkKYGBgCk5vdGljZSB0aGF0LCB0aGUgb3V0cHV0IGRpc3BsYXlzIGFzdGVyaXNrcyBmb3IgZmFjdG9yIHZhcmlhYmxlcywgaW4gb3JkZXIgdG8gZHJhdyB5b3VyIGF0dGVudGlvbiB0byB0aGUgZmFjdCB0aGF0IHRoZSBkZXNjcmlwdGl2ZSBzdGF0aXN0aWNzIHRoYXQgaXQgaGFzIGNhbGN1bGF0ZWQgd29u4oCZdCBiZSB2ZXJ5IG1lYW5pbmdmdWwgZm9yIHRob3NlIHZhcmlhYmxlcy4KCkFub3RoZXIgbW9yZSBnZW5lcmFsIGNvbW1hbmQgZm9yIGdyb3VwaW5nIGlzIGBieSgpYCAKClRyeSBydW5uaW5nIHRoZSBmb2xsb3dpbmcgY2h1bmsgYW5kIGNvbXBhcmUgdGhlIHJlc3VsdHMgd2l0aCB0aGUgYGRlc2NyaWJlQnkoKWAgY29tbWFuZCBhYm92ZS4KCmBgYHtyfQpieShkYXRhPWNsaW4udHJpYWwsIElORElDRVM9Y2xpbi50cmlhbCR0aGVyYXB5LCBGVU49ZGVzY3JpYmUpCiNBbHNvIHRyeSByZXBsYWNpbmcgZGVzY3JpYmUgaW4gRlVOIGFib3ZlIHdpdGggc3VtbWFyeQpgYGAKCldoYXQgaWYgeW91IGhhdmUgbXVsdGlwbGUgZ3JvdXBpbmcgdmFyaWFibGVzPyBTdXBwb3NlLCBmb3IgZXhhbXBsZSwgeW91IHdvdWxkIGxpa2UgdG8gbG9vayBhdCB0aGUgYXZlcmFnZSBtb29kIGdhaW4gc2VwYXJhdGVseSBmb3IgYWxsIHBvc3NpYmxlIGNvbWJpbmF0aW9ucyBvZiBkcnVnIGFuZCB0aGVyYXB5LldlIGNhbiB1c2UgYGFnZ3JlZ2F0ZSgpYCBjb21tYW5kLgoKYGBge3J9CmFnZ3JlZ2F0ZSggZm9ybXVsYSA9IG1vb2QuZ2FpbiB+IGRydWcgKyB0aGVyYXB5LCAKICAgICAgICAgICBkYXRhID0gY2xpbi50cmlhbCwKICAgICAgICAgICBGVU4gPSBtZWFuKSAKIzEgbW9vZC5nYWluIGJ5IGRydWcvdGhlcmFweSBjb21iaW5hdGlvbgojMiBkYXRhIGlzIGluIHRoZSBjbGluLnRyaWFsIGRhdGEgZnJhbWUKIzMgcHJpbnQgb3V0IGdyb3VwIG1lYW5zCgojVHJ5IGludGVyY2hhbmdpbmcgdGhlIHBvc2l0aW9ucyBvZiBkcnVnIGFuZCB0aGVyYXB5IGFib3ZlCmBgYAoKVGhhdCdzIGFsbCBmb3IgdG9kYXkhCg==
    @@ -607,7 +630,7 @@
    Quick cheat sheet: When to use what?
    From 6718529ad1445a6db4c7b15eec53775823e4ffe3 Mon Sep 17 00:00:00 2001 From: Arjun Date: Mon, 6 Sep 2021 17:54:00 +0000 Subject: [PATCH 05/55] Added a note on derivation of variance based estimates. Added Bessel's correction --- Module 3/Notebooks/Module3_Nb1.Rmd | 73 ++++++++++++++++++-- Module 3/Notebooks/Module3_Nb1.nb.html | 92 ++++++++++++++++++++------ 2 files changed, 141 insertions(+), 24 deletions(-) diff --git a/Module 3/Notebooks/Module3_Nb1.Rmd b/Module 3/Notebooks/Module3_Nb1.Rmd index fa9e6d53..ea61e465 100644 --- a/Module 3/Notebooks/Module3_Nb1.Rmd +++ b/Module 3/Notebooks/Module3_Nb1.Rmd @@ -150,22 +150,32 @@ Say, you want to bet your money on the outcome of a match. You may want to find ```{r} #afl.mode = #afl.mode -modeOf(x = afl.margins) -maxFreq(x = afl.margins) +modeOf(afl.margins) +maxFreq(afl.margins) ``` So far we've just seen the central measures of tendency, but we saw in the beginning that individual variability is quite important in biology. So, let's take a look at some of the measures of variability. + + +```{r} +mean(afl.margins) +``` + ##### Measures of variability This refers to how “spread out” are the data? How “far” away from the mean or median do the observed values tend to be? + +```{r} +plot(afl.margins) +``` **Range** The range of a variable is very simple: it’s the biggest value minus the smallest value. Try to find out the range of afl.margins using the `range()` function. ```{r} -#Find range of afl.margins here +#Find range of afl.margins here using the range function ``` But what about the earlier data we saw, ` -100,2,3,4,5,6,7,8,9,10`. Without removing the outlier, we'll get a range of 110 but without the outlier, we'll get a range of only 8. @@ -175,16 +185,26 @@ That is why there is something called the interquartile range (IQR) which is lik Try finding out 25%, 75% and 50% quantiles for afl.margins and also the Inter-quartile range. ```{r} -#Use the functions quantile(x = afl.margins, prob = 0.2) for 20% quantile and IQR() +#Use the functions quantile(x = afl.margins, prob = 0.25) for 25% quantile and IQR() +quantile(x = afl.margins, prob = 0.2) ``` IQR can simply be thought as the range spanned by the “middle half” of the data. + +```{r} +quantile( x = afl.margins, probs = c(.25,.75) ) +# try using IQR() here + +``` + + **Variance** In order to find out the variance of data from the mean or median, we need to find the deviation such that abs (X~i~ - $\overline{X}$). ($\overline{X}$ is the mean of dataset). Mathematically, squared deviations are preferred over absolute deviations, and if we take the mean of all the squared deviations, we'll get the **variance** of the data. + Try finding out the variance using `var()`. ```{r} @@ -193,6 +213,9 @@ Try finding out the variance using `var()`. _Read more about var() function and absolute vs squared deviations in Section 5.2.4 from Learning Statistics with R by D. Navarro_ +Also note that the division is by N-1 for variance for a sample! Why is that not N? +This we will discuss later. + **Standard Deviation** But what does this variance signify? It is very difficult to interpret the squared value and therefore, we take the _root mean square deviation_ for interpreting the spread of data points. This is called _Standard Deviation_ and is calculated by taking the square root of variance mathematically, and using the sd() function in R base package. @@ -200,7 +223,7 @@ But what does this variance signify? It is very difficult to interpret the squar Try to find out the standard deviation of afl.margins. ```{r} -#Find out Std dev. here +#Find out Std dev. here using sd() ``` ##### Quick cheat sheet: When to use what? @@ -221,19 +244,59 @@ Try to find out the standard deviation of afl.margins. - Square root of the variance - Fairly elegant mathematically, and can be interpreted pretty well - Complements mean and is the most popular measure of variation + + +##### Derivation for deviation based variance estimates +Mean absolute deviation; Variance; SD + +Say, the sample is sample = [20,30,40]; +the mean of the sample is then 30 + +The deviation of each sample data point from the mean is: +deviation = [20-30, 30-30, 40-30]; + = [-10, 0, 10] + +absolute deviation = [10,0,10] +mean of absolute deviation = (10+0+10)/3 + +square of the deviation = [-10^2, 0^2, 10^2]; +mean of the squared deviations = variance = (100+0+100)/3 + +root of mean squared deviation = standard deviation = sqrt(variance) + + +##### Bessel's correction +While calculating variance and standard deviation of the sample, we are always +trying to estimate the variance and standard deviation of the population. +Remember the heights of students example! + +Now since the sample variance and standard deviation is biased and less than +that of the population, we divide by N-1 instead of N to inflate the estimates. + +So the variance after Bessel's correction should be +mean of the squared deviations = variance = (100+0+100)/(3-1) + + +##### Summary function Now that we've learnt about the different methods of describing a data, it would've been awesome if R could summarize all of this for us together, right? There's indeed a function called `summary()` in R. ```{r} #Check out what summary() does for afl.margins +summary(afl.margins) + ``` Pretty cool, no? Also try it out for other kinds of variables like `afl.finalists` or `as.character(afl.finalists)` + + +##### Summarizing dataframes + Let's try out summarizing a dataframe as well. ```{r} diff --git a/Module 3/Notebooks/Module3_Nb1.nb.html b/Module 3/Notebooks/Module3_Nb1.nb.html index 350b7d0b..ee6d420b 100644 --- a/Module 3/Notebooks/Module3_Nb1.nb.html +++ b/Module 3/Notebooks/Module3_Nb1.nb.html @@ -378,16 +378,9 @@
    Measures of Central Tendency

    Say, you want to bet your money on the outcome of a match. You may want to find the most likely margin. This is when Mode is useful. Try to find out the mode for the variable afl.margins

    - -
    #afl.mode = 
    -#afl.mode
    -modeOf(x = afl.margins)
    - - -
    [1] 3
    - - -
    maxFreq(x = afl.margins)
    + +
    maxFreq(afl.margins)
    +
    [1] 8
    @@ -395,16 +388,36 @@
    Measures of Central Tendency

    So far we’ve just seen the central measures of tendency, but we saw in the beginning that individual variability is quite important in biology. So, let’s take a look at some of the measures of variability.

    + + + +
    mean(afl.margins)
    + + +
    [1] 35.30114
    + + +
    Measures of variability

    This refers to how “spread out” are the data? How “far” away from the mean or median do the observed values tend to be?

    + + + +
    plot(afl.margins)
    + + +

    + + +

    Range

    The range of a variable is very simple: it’s the biggest value minus the smallest value. Try to find out the range of afl.margins using the range() function.

    - -
    #Find range of afl.margins here
    + +
    #Find range of afl.margins here using the range function
    @@ -413,13 +426,26 @@
    Measures of variability

    Try finding out 25%, 75% and 50% quantiles for afl.margins and also the Inter-quartile range.

    - +
    #Use the functions quantile(x = afl.margins, prob = 0.2) for 20% quantile and IQR() 
    -
    +quantile(x = afl.margins, prob = 0.2) + +
    20% 
    + 10 
    +

    IQR can simply be thought as the range spanned by the “middle half” of the data.

    + + + +
    quantile( x = afl.margins, probs = c(.25,.75) )
    +# try using IQR() here
    +
    + + +

    Variance

    In order to find out the variance of data from the mean or median, we need to find the deviation such that abs (Xi - \(\overline{X}\)). (\(\overline{X}\) is the mean of dataset). Mathematically, squared deviations are preferred over absolute deviations, and if we take the mean of all the squared deviations, we’ll get the variance of the data.

    Try finding out the variance using var().

    @@ -431,13 +457,14 @@
    Measures of variability

    Read more about var() function and absolute vs squared deviations in Section 5.2.4 from Learning Statistics with R by D. Navarro

    +

    Also note that the division is by N-1 for variance for a sample! Why is that not N? This we will discuss later.

    Standard Deviation

    But what does this variance signify? It is very difficult to interpret the squared value and therefore, we take the root mean square deviation for interpreting the spread of data points. This is called Standard Deviation and is calculated by taking the square root of variance mathematically, and using the sd() function in R base package.

    Try to find out the standard deviation of afl.margins.

    - -
    #Find out Std dev. here
    + +
    #Find out Std dev. here using sd()
    @@ -467,17 +494,44 @@
    Quick cheat sheet: When to use what?
  • Complements mean and is the most popular measure of variation
+ +
+
Derivation for deviation based variance estimates
+

Mean absolute deviation; Variance; SD

+

Say, the sample is sample = [20,30,40]; the mean of the sample is then 30

+

The deviation of each sample data point from the mean is: deviation = [20-30, 30-30, 40-30]; = [-10, 0, 10]

+

absolute deviation = [10,0,10] mean of absolute deviation = (10+0+10)/3

+

square of the deviation = [-10^2, 0^2, 10^2]; mean of the squared deviations = variance = (100+0+100)/3

+

root of mean squared deviation = standard deviation = sqrt(variance)

+
+
+
Bessel’s correction
+

While calculating variance and standard deviation of the sample, we are always trying to estimate the variance and standard deviation of the population.

+

Remember the heights of students example!

+

Now since the sample variance and standard deviation is biased and less than that of the population, we divide by N-1 instead of N to inflate the estimates.

+

So the variance after Bessel’s correction should be mean of the squared deviations = variance = (100+0+100)/(3-1)

+
+
+
Summary function

Now that we’ve learnt about the different methods of describing a data, it would’ve been awesome if R could summarize all of this for us together, right?

There’s indeed a function called summary() in R.

- -
#Check out what summary() does for afl.margins
+ +
#Check out what summary() does for afl.margins
+summary(afl.margins)
+ +
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
+   0.00   12.75   30.50   35.30   50.50  116.00 
+

Pretty cool, no?

Also try it out for other kinds of variables like afl.finalists or as.character(afl.finalists)

+
+
+
Summarizing dataframes

Let’s try out summarizing a dataframe as well.

@@ -583,7 +637,7 @@
Quick cheat sheet: When to use what?
-
LS0tCnRpdGxlOiAiRGVzY3JpcHRpdmUgU3RhdGlzdGljczogQ2VudHJhbCBhbmQgVmFyaWFiaWxpdHkgbWVhc3VyZXMiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KYGBge3J9CiNJbml0aWFsIHBhY2thZ2VzCmluc3RhbGwucGFja2FnZXMoImxzciIpCmBgYAoKSW4gdGhpcyBub3RlYm9vaywgd2UnbGwgdGFrZSBhIGxvb2sgYXQgaG93IHRvIGV4cGxvcmUgYSBkYXRhc2V0LgoKQW55IHRpbWUgdGhhdCB5b3UgZ2V0IGEgbmV3IGRhdGEgc2V0IHRvIGxvb2sgYXQsIG9uZSBvZiB0aGUgZmlyc3QgdGFza3MgdGhhdCB5b3UgaGF2ZSB0byBkbyBpcyBmaW5kIHdheXMgb2Ygc3VtbWFyaXNpbmcgdGhlIGRhdGEgaW4gYSBjb21wYWN0LCBlYXNpbHkgdW5kZXJzdG9vZCBmYXNoaW9uLiBUaGlzIGlzIHdoYXQgKipkZXNjcmlwdGl2ZSBzdGF0aXN0aWNzKiogaXMgYWxsIGFib3V0LgoKIyMjIyBEZXNjcmliaW5nIGRhdGEKCkltYWdpbmUgeW91J3ZlIGNvbmR1Y3RlZCBhbiBleHBlcmltZW50IGludm9sdmluZyBtZWFzdXJlbWVudHMgZnJvbSAyMCBhbmltYWxzLiBJZiB5b3Ugd2FudGVkIHRvIHJlcG9ydCB0aGUgb3V0Y29tZSBvZiB5b3VyIGV4cGVyaW1lbnQgdG8gYW4gYXVkaWVuY2UsIHlvdSB3b3VsZG7igJl0IHdhbnQgdG8gdGFsayB0aHJvdWdoIGVhY2ggYW5kIGV2ZXJ5IGRhdGEgcG9pbnQuIEluc3RlYWQsIHlvdSByZXBvcnQgYSBzdW1tYXJ5LCBzdWNoIGFzIOKAmFRoZSAyMCBhbmltYWxzIGhhZCBhbiBhdmVyYWdlIHdlaWdodCBvZiAxNSBncmFtc+KAmSwgdGh1cyBzYXZpbmcgeW91ciBhdWRpZW5jZSB2YWx1YWJsZSB0aW1lIGFuZCBtZW50YWwgZW5lcmd5LiBUaGlzIG5vdGVib29rIGZvY3VzZXMgb24gc3VjaCBzdW1tYXJpZXMgb2YgbnVtZXJpY2FsIGluZm9ybWF0aW9uIGluY2x1ZGluZyBkaXN0cmlidXRpb25zLCBtZWFzdXJlcyBvZiBjZW50cmFsIHRlbmRlbmN5IGFuZCBtZWFzdXJlcyBvZiB2YXJpYWJpbGl0eS4gCgojIyMjIyBXaGF0IGV4YWN0bHkgaXMgYSBkaXN0cmlidXRpb24/CgpJZiB5b3UgdGhyb3cgYSBzaW5nbGUgZGljZSAyMCB0aW1lcyBpbiBhIHJvdyBhbmQgbm90ZSBkb3duIGhvdyBmcmVxdWVudGx5IGVhY2ggZmFjZSBvY2N1cnMuIFRoZSByZXN1bHQgb2YgdGFsbHlpbmcgYWxsIGNvdW50cyBpcyBhIOKAmGZyZXF1ZW5jeSBkaXN0cmlidXRpb27igJksIHdoaWNoIGFzc29jaWF0ZXMgZWFjaCBwb3NzaWJsZSBvdXRjb21lIHdpdGggYSBwYXJ0aWN1bGFyIGZyZXF1ZW5jeSB2YWx1ZS4gU3VjaCBhIGRpc3RyaWJ1dGlvbiBpcyBhbiBlbXBpcmljYWxseSBvYnNlcnZlZCBkaXN0cmlidXRpb24gYmVjYXVzZSBpdCBpcyBiYXNlZCBvbiBhIHNldCBvZiAyMCBhY3R1YWwgdGhyb3dzIG9mIGEgZGljZS4gRmlnIChhKSBiZWxvdy4KCiFbRW1waXJpY2FsIGFuZCB0aGVvcmV0aWNhbCBkaXN0cmlidXRpb25zXShkaWNlIHJvbGxpbmcgcHJvYmFiaWxpdHkucG5nKQoKQnV0IEZpZyAoYikgc2hvd3MgYSB0aGVvcmV0aWNhbCBkaXN0cmlidXRpb24gYW5kIHJlcHJlc2VudHMgcHJvYmFiaWxpdHkgcmF0aGVyIHRoYW4gZnJlcXVlbmN5LiBJdCBkZXBpY3RzIGhvdyBwcm9iYWJsZSBpcyBlYWNoIG91dGNvbWUuIEluIHRoaXMgY2FzZSwgYWxsIG91dGNvbWVzIGFyZSBlcXVhbGx5IHByb2JhYmxlIGFuZCB0aGVyZWZvcmUgaXQgaXMgYSDigJh1bmlmb3Jt4oCZIGRpc3RyaWJ1dGlvbiBiZWNhdXNlIHRoZSBwcm9iYWJpbGl0eSBpcyB1bmlmb3JtbHkgc3ByZWFkIGFjcm9zcyBhbGwgcG9zc2libGUgb3V0Y29tZXMuIEl0IGlzIGZ1cnRoZXJtb3JlIGEg4oCYZGlzY3JldGXigJkgZGlzdHJpYnV0aW9uIGJlY2F1c2UgdGhlcmUgYXJlIG9ubHkgc2l4IHBhcnRpY3VsYXIgb3V0Y29tZXMgYW5kIG5vIGluLWJldHdlZW5zLiAoQ2hhcHRlciAzLCBXaW50ZXIgQi4pCgpBcGFydCBmcm9tICpsb29raW5nKiBhdCBob3cgYSBkYXRhIGlzIGRpc3RyaWJ1dGVkLCB0aGUgbW9zdCBpbXBvcnRhbnQgZGVzY3JpcHRpdmUgc3RhdGlzdGljcyBmb3IgbnVtZXJpY2FsIGRhdGEgYXJlIHRob3NlIG1lYXN1cmluZyB0aGUgbG9jYXRpb24gb2YgYSBmcmVxdWVuY3kgZGlzdHJpYnV0aW9uIGFuZCBpdHMgc3ByZWFkLiBUaGUgbG9jYXRpb24gdGVsbHMgdXMgc29tZXRoaW5nIGFib3V0IHRoZSBhdmVyYWdlIG9yICp0eXBpY2FsKiBpbmRpdmlkdWFs4oCUd2hlcmUgdGhlIG9ic2VydmF0aW9ucyBhcmUgY2VudGVyZWQuIFRoZSBzcHJlYWQgdGVsbHMgdXMgaG93IHZhcmlhYmxlIHRoZSBtZWFzdXJlbWVudHMgYXJlIGZyb20gaW5kaXZpZHVhbCB0byBpbmRpdmlkdWFs4oCUaG93IHdpZGVseSBzY2F0dGVyZWQgdGhlIG9ic2VydmF0aW9ucyBhcmUgYXJvdW5kIHRoZSBjZW50ZXIuIFRoZSBwcm9wb3J0aW9uIGlzIHRoZSBtb3N0IGltcG9ydGFudCBkZXNjcmlwdGl2ZSBzdGF0aXN0aWMgZm9yIGEgY2F0ZWdvcmljYWwgdmFyaWFibGUsIG1lYXN1cmluZyB0aGUgZnJhY3Rpb24gb2Ygb2JzZXJ2YXRpb25zIGluIGEgZ2l2ZW4gY2F0ZWdvcnkuIAoKIyMjIyMgQnV0IHdoeSBpcyBpdCBuZWVkZWQ/ClRoZSBpbXBvcnRhbmNlIG9mIGNhbGN1bGF0aW5nIHNvbWUgc29ydCBvZiBhIGNlbnRyZSBvZiBhIGRpc3RyaWJ1dGlvbiBzZWVtcyBvYnZpb3VzLiBIb3cgZWxzZSBkbyB3ZSBhZGRyZXNzIHF1ZXN0aW9ucyBsaWtlIOKAnFdoaWNoIHNwZWNpZXMgaXMgbGFyZ2VyP+KAnSBvciDigJxXaGljaCBkcnVnIHlpZWxkZWQgdGhlIGdyZWF0ZXN0IHJlc3BvbnNlP+KAnSBUaGUgaW1wb3J0YW5jZSBvZiBkZXNjcmliaW5nIGRpc3RyaWJ1dGlvbiBzcHJlYWQgaXMgbGVzcyBvYnZpb3VzIGJ1dCBubyBsZXNzIGNydWNpYWwsIGF0IGxlYXN0IGluIGJpb2xvZ3kuIEluIHNvbWUgZmllbGRzIG9mIHNjaWVuY2UsIHZhcmlhYmlsaXR5IGFyb3VuZCBhIGNlbnRyYWwgdmFsdWUgaXMgaW5zdHJ1bWVudCBub2lzZSBvciBtZWFzdXJlbWVudCBlcnJvciwgYnV0IGluIGJpb2xvZ3kgbXVjaCBvZiB0aGUgdmFyaWFiaWxpdHkgc2lnbmlmaWVzIHJlYWwgZGlmZmVyZW5jZXMgYW1vbmcgaW5kaXZpZHVhbHMuIERpZmZlcmVudCBpbmRpdmlkdWFscyByZXNwb25kIGRpZmZlcmVudGx5IHRvIHRyZWF0bWVudHMsIGFuZCB0aGlzIHZhcmlhYmlsaXR5IGJlZ3MgbWVhc3VyZW1lbnQuIChBZGFwdGVkIGZyb20gQ2hhcHRlciAzLCBXaGl0bG9jayAmIFNjaGx1dGVyLCAyMDE1KQoKVGhhdCdzIGEgbG90IG9mIHRoZW9yeSwgbGV0J3MgZGl2ZSBpbnRvIHNvbWUgZGF0YSBub3cuCgoqKkxvYWRpbmcgdGhlIEF1c3RyYWxpYW4gRm9vdGJhbGwgTGVhZ3VlIERhdGFzZXQqKgoKYGBge3J9CiNDaGFuZ2UgdGhlIHBhdGggYWNjb3JkaW5nIHRvIHlvdXIgUEMKbG9hZCgiYWZsc21hbGwuUmRhdGEiKQpsaWJyYXJ5KGxzcikKd2hvKCkKYGBgCgpBcyB5b3UgY2FuIHNlZSB0aGVyZSBhcmUgbXVsdGlwbGUgdmFyaWFibGVzIG9mIGRpZmZlcmVudCBjbGFzcyBhbmQgc2l6ZS4gCgpMZXQncyB0YWtlIGEgbG9vayBhdCBhZmwubWFyZ2lucyB2YXJpYWJsZS4KCmBgYHtyfQpwcmludChhZmwubWFyZ2lucykKYGBgCgpUaGlzIG91dHB1dCBkb2VzbuKAmXQgbWFrZSBpdCBlYXN5IHRvIGdldCBhIHNlbnNlIG9mIHdoYXQgdGhlIGRhdGEgaXMgYWN0dWFsbHkgc2F5aW5nLiBKdXN0IOKAnGxvb2tpbmcgYXQgdGhlIGRhdGHigJ0gaXNu4oCZdCBhIHRlcnJpYmx5IGVmZmVjdGl2ZSB3YXkgb2YgdW5kZXJzdGFuZGluZyBkYXRhLgoKTGV0J3MgdHJ5IHRvIHBsb3QgaXQuCgoqKkZyZXF1ZW5jeSBkaXN0cmlidXRpb24qKgoKYGBge3J9Cmhpc3QgKGFmbC5tYXJnaW5zKQpgYGAKCkFzIHlvdSBjYW4gc2VlLCBkaWZmZXJlbnQgbWFyZ2lucyBpbiBhIHNhbXBsZSB3aWxsIGhhdmUgZGlmZmVyZW50IG1lYXN1cmVtZW50cy4gV2UgY2FuIHNlZSB0aGlzIHZhcmlhYmlsaXR5IHdpdGggYSAqKmZyZXF1ZW5jeSBkaXN0cmlidXRpb24qKi4gVGhlIGZyZXF1ZW5jeSBvZiBhIHNwZWNpZmljIG1lYXN1cmVtZW50IGluIGEgc2FtcGxlIGlzIHRoZSBudW1iZXIgb2Ygb2JzZXJ2YXRpb25zIGhhdmluZyBhIHBhcnRpY3VsYXIgdmFsdWUgb2YgdGhlIG1lYXN1cmVtZW50LiBUaGUgZnJlcXVlbmN5IGRpc3RyaWJ1dGlvbiBzaG93cyBob3cgb2Z0ZW4gZWFjaCB2YWx1ZSBvZiB0aGUgdmFyaWFibGUgb2NjdXJzIGluIHRoZSBzYW1wbGUuIAoKVGhlcmVmb3JlLCBoZXJlIHdlIGhhdmUgcGxvdHRlZCBhIGhpc3RvZ3JhbSBmb3IgdGhlIGFmbC5tYXJnaW5zIHZhcmlhYmxlIHdoaWNoIGdpdmVzIHRoZSBmcmVxdWVuY3kgZGlzdHJpYnV0aW9uIG9mIHRoZSBkaWZmZXJlbnQgbWFyZ2luIHZhbHVlcy4KCioqU2tld25lc3MqKgoKSWYgeW91IG9ic2VydmUgdGhlIGdyYXBoLCB5b3Ugd2lsbCBmaW5kIHRoYXQgaXQgaXMgbm90IGVudGlyZWx5IHN5bW1ldHJpY2FsLiBBIG1lYXN1cmUgb2Ygc3VjaCBhc3ltbWV0cnkgaXMgY2FsbGVkICoqU2tld25lc3MqKi4gSWYgdGhlIGRhdGEgdGVuZCB0byBoYXZlIGEgbG90IG9mIGV4dHJlbWUgc21hbGwgdmFsdWVzIChpLmUuLCB0aGUgbG93ZXIgdGFpbCBpcyDigJxsb25nZXLigJ0gdGhhbiB0aGUgdXBwZXIgdGFpbCkgYW5kIG5vdCBzbyBtYW55IGV4dHJlbWVseSBsYXJnZSB2YWx1ZXMgKGxlZnQgcGFuZWwpLCB0aGVuIHdlIHNheSB0aGF0IHRoZSBkYXRhIGFyZSBfbmVnYXRpdmVseSBza2V3ZWRfLiBPbiB0aGUgb3RoZXIgaGFuZCwgaWYgdGhlcmUgYXJlIG1vcmUgZXh0cmVtZWx5IGxhcmdlIHZhbHVlcyB0aGFuIGV4dHJlbWVseSBzbWFsbCBvbmVzIChyaWdodCBwYW5lbCkgd2Ugc2F5IHRoYXQgdGhlIGRhdGEgYXJlIF9wb3NpdGl2ZWx5IHNrZXdlZF8uCgpgcHN5Y2hgIHBhY2thZ2UgY29udGFpbnMgYSBgc2tldygpYCBmdW5jdGlvbiB0aGF0IHlvdSBjYW4gdXNlIHRvIGNhbGN1bGF0ZSBza2V3bmVzcy4gCgpUcnkgZmluZGluZyB0aGUgc2tld25lc3MgZm9yIHRoZSBhYm92ZSBkYXRhIGZvciBhZmwubWFyZ2lucyB1c2luZyBza2V3KCkgZnVuY3Rpb24gYW5kIGFsc28gdHJ5IHRvIGd1ZXNzIHdoZXRoZXIgdGhpcyBkYXRhIGlzIHBvc2l0aXZlbHkgb3IgbmVnYXRpdmVseSBza2V3ZWQuCgpgYGB7cn0KbGlicmFyeShwc3ljaCkKI1RyeSBmaW5kaW5nIHNrZXduZXNzIG9mIGFmbC5tYXJnaW5zIGhlcmUKYGBgCgpBbHRob3VnaCBzdWNoIGEgZ3JhcGhpY2FsIHJlcHJlc2VudGF0aW9uIGdpdmVzIGEgJ2dpc3QnIG9mIHRoZSBkYXRhIGJ1dCBpdCBpcyB1c2VmdWwgdG8gZmluZCBzb21lICJzdW1tYXJ5IiBzdGF0aXN0aWNzIGFzIHdlbGwuCgojIyMjIyBNZWFzdXJlcyBvZiBDZW50cmFsIFRlbmRlbmN5CkluIG1vc3Qgc2l0dWF0aW9ucywgdGhlIGZpcnN0IHRoaW5nIHRoYXQgeW914oCZbGwgd2FudCB0byBjYWxjdWxhdGUgaXMgYSBtZWFzdXJlIG9mIGNlbnRyYWwgdGVuZGVuY3kuIFRoYXQgaXMsIHlvdeKAmWQgbGlrZSB0byBrbm93IHNvbWV0aGluZyBhYm91dCB0aGUg4oCcYXZlcmFnZeKAnSBvciDigJxtaWRkbGXigJ0gb2YgeW91ciBkYXRhIGxpZXMuIFRoZSB0d28gbW9zdCBjb21tb25seSB1c2VkIG1lYXN1cmVzIGFyZSB0aGUgbWVhbiwgbWVkaWFuIGFuZCBtb2RlLgoKKipNZWFuKioKCkFzIHlvdSd2ZSBhbHJlYWR5IHNlZW4gaW4gcHJldmlvdXMgY2xhc3NlcywgdGhlIG1lYW4gb2YgYSBzZXQgb2Ygb2JzZXJ2YXRpb25zIGlzIGp1c3QgYSBub3JtYWwsIG9sZC1mYXNoaW9uZWQgYXZlcmFnZTogYWRkIGFsbCBvZiB0aGUgdmFsdWVzIHVwLCBhbmQgdGhlbiBkaXZpZGUgYnkgdGhlIHRvdGFsIG51bWJlciBvZiB2YWx1ZXMuCgpUcnkgZmluZGluZyB0aGUgbWVhbiBmb3IgdGhlIGZpcnN0IDUgdmFsdWVzIGZyb20gYWZsLm1hcmdpbnMgYW5kIHRoZW4gZm9yIGFsbCB0aGUgdmFsdWVzIG9mIGFmbC5tYXJnaW5zCmBgYHtyfQptZWFuKGFmbC5tYXJnaW5zKSAgICAgICMgYXZlcmFnZSBtYXJnaW4KbWVhbihhZmwubWFyZ2luc1sxOjVdKSAjIG1lYW4gb2YgdGhlIG1hcmdpbiBmcm9tIHRoZSBmaXJzdCA1IGdhbWVzCgpgYGAKCioqTWVkaWFuKioKClRoZSBzZWNvbmQgbWVhc3VyZSBpcyB0aGUgbWVkaWFuLiBJdCBpcyBqdXN0IHRoZSBtaWRkbGUgdmFsdWUgb2YgYSBzZXQgb2Ygb2JzZXJ2YXRpb25zLiAKKlRyeSA6IEd1ZXNzIHRoZSBtZWRpYW4gZm9yIDU2LCAzMSwgNTYsIDggYW5kIDMyICoKClByb2JhYmx5IHlvdSBtZW50YWxseSBhcnJhbmdlZCB0aGVzZSBudW1iZXJzIGluIGFzY2VuZGluZyBvcmRlciBmaXJzdCBhbmQgdGhlbiBmb3VuZCB0aGUgbWlkZGxlIHZhbHVlLiBJZiB0aGVyZSB3ZXJlIGEgbGlzdCBvZiBudW1iZXJzIGxpa2UgdGhpcyBgOCwgMTQsIDMxLCAzMiwgNTYsIDU2YCAuIFlvdSB3aWxsIHRoZW4gZmluZCB0aGUgYXZlcmFnZSBvZiBtaWRkbGUgMiB2YWx1ZXMuIAoKTm93IHRyeSBmaW5kaW5nIG91dCB0aGUgbWVkaWFuIGZvciBhZmwubWFyZ2lucy4KCmBgYHtyfQptZWRpYW4oYWZsLm1hcmdpbnMpCmBgYAoKKipEaWZmZXJlbmNlIGJldHdlZW4gTWVhbiBhbmQgTWVkaWFuKioKCkJvdGggb2YgdGhlc2UgYXJlIG1lYXN1cmVzIG9mIGNlbnRyYWwgdGVuZGVuY3kgYnV0IHdoZW4gdG8gdXNlIHdoaWNoIGNhbiBiZSBhIGJpdCBjb25mdXNpbmcuIEluIGdlbmVyYWwsIHRoZSBtZWFuIGlzIGtpbmQgb2YgbGlrZSB0aGUg4oCcY2VudHJlIG9mIGdyYXZpdHnigJ0gb2YgdGhlIGRhdGEgc2V0LCB3aGVyZWFzIHRoZSBtZWRpYW4gaXMgdGhlIOKAnG1pZGRsZSB2YWx1ZeKAnSBpbiB0aGUgZGF0YS4KCiFbRGlmZmVyZW5jZSBiZXR3ZWVuIG1lYW4gYW5kIG1lZGlhbl0ocGljMi5wbmcpCipGaWcgNS4yIGZyb20gTGVhcm5pbmcgU3RhdGlzdGljcyB3aXRoIFIgYnkgRC4gTmF2YXJybyoKCioqU29tZSBrZXkgcG9pbnRzKioKCi0gSWYgZGF0YSBpcyBub21pbmFsIHNjYWxlLCB0aGVuIGl04oCZcyBwcm9iYWJseSBiZXN0IHRvIHVzZSB0aGUgbW9kZSBpbnN0ZWFkIG9mIG1lYW4gb3IgbWVkaWFuLgoKLSBJZiB5b3VyIGRhdGEgYXJlIG9yZGluYWwgc2NhbGUsIHlvdeKAmXJlIG1vcmUgbGlrZWx5IHRvIHdhbnQgdG8gdXNlIHRoZSBtZWRpYW4gdGhhbiB0aGUgbWVhbi4KCi0gRm9yIGludGVydmFsIGFuZCByYXRpbyBzY2FsZSBkYXRhLCBlaXRoZXIgbWVhbiBvciBtZWRpYW4gaXMgZ2VuZXJhbGx5IGFjY2VwdGFibGUuIFRoZSBtZWFuIGhhcyB0aGUgYWR2YW50YWdlIHRoYXQgaXQgdXNlcyBhbGwgdGhlIGluZm9ybWF0aW9uIGluIHRoZSBkYXRhICh3aGljaCBpcyB1c2VmdWwgd2hlbiB5b3UgZG9u4oCZdCBoYXZlIGEgbG90IG9mIGRhdGEpLCBidXQgaXTigJlzIHZlcnkgc2Vuc2l0aXZlIHRvIGV4dHJlbWUgdmFsdWVzLgoKKllvdSBjYW4gcmVhZCBtb3JlIGFib3V0IHRoaXMgaW4gU2VjdGlvbiA1LjEuNCwgTGVhcm5pbmcgU3RhdGlzdGljcyB3aXRoIFIgYnkgRC4gTmF2YXJybyoKCk5vdyBsZXQncyB0YWtlIGEgbG9vayBhdCBzb21lIG1vcmUgZGF0YToKCmAgLTEwMCwyLDMsNCw1LDYsNyw4LDksMTBgCgpJZiB5b3Ugb2JzZXJ2ZWQgc3VjaCBkYXRhIGluIHJlYWwgbGlmZSwgeW91IHdpbGwgcHJvYmFibHkgdGhpbmsgdGhhdCAtMTAwIGlzIGFuICoqX291dGxpZXJfKiosIGEgdmFsdWUgdGhhdCBkb2VzbuKAmXQgcmVhbGx5IGJlbG9uZyB3aXRoIHRoZSBvdGhlcnMuIFlvdSBtaWdodCBjb25zaWRlciByZW1vdmluZyBpdCBmcm9tIHRoZSBkYXRhIHNldCBlbnRpcmVseSBidXQgeW91IGRvbuKAmXQgYWx3YXlzIGdldCBzdWNoIGN1dC1hbmQtZHJpZWQgZXhhbXBsZXMuIEZvciBpbnN0YW5jZSwgeW91IG1pZ2h0IGdldCB0aGlzIGluc3RlYWQ6CgpgIC0xNSwyLDMsNCw1LDYsNyw4LDksMTJgCgpUaGUgYC0xNWAgbG9va3MgYSBiaXQgc3VzcGljaW91cywgYnV0IG5vdCBhbnl3aGVyZSBuZWFyIGFzIG11Y2ggYXMgYC0xMDBgIGRpZC4gSW4gdGhpcyBjYXNlLCBpdOKAmXMgYQpsaXR0bGUgdHJpY2tpZXIuIEl0IG1pZ2h0IGJlIGEgbGVnaXRpbWF0ZSBvYnNlcnZhdGlvbiwgaXQgbWlnaHQgbm90LiBJbiBzdWNoIHNpdHVhdGlvbnMsIHRoZSBtZWFuIG1pZ2h0IGdpdmUgeW91IGFuIGVycm9yIGFzIGl0IGlzIGhpZ2hseSBzZW5zaXRpdmUgdG8gb25lIG9yIHR3byBleHRyZW1lIHZhbHVlcywgYW5kIGlzIHRodXMgbm90IGNvbnNpZGVyZWQgdG8gYmUgYSByb2J1c3QgbWVhc3VyZS4KCkluIHN1Y2ggc2l0dWF0aW9ucywgb25lIHNvbHV0aW9uIGlzIHRvIHVzZSB0aGUgbWVkaWFuIG9yIGFub3RoZXIgaXMgdG8gdXNlIGEgKip0cmltbWVkIG1lYW4qKi4gVG8gY2FsY3VsYXRlIGEgdHJpbW1lZCBtZWFuLCB3aGF0IHlvdSBkbyBpcyAqKmRpc2NhcmQqKiB0aGUgbW9zdCBleHRyZW1lIGV4YW1wbGVzIG9uIGJvdGggZW5kcyAoaS5lLiwgdGhlIGxhcmdlc3QgYW5kIHRoZSBzbWFsbGVzdCksIGFuZCB0aGVuIHRha2UgdGhlIG1lYW4gb2YgZXZlcnl0aGluZyBlbHNlLiBTbywgZm9yIGluc3RhbmNlLCBhIDEwJSB0cmltbWVkIG1lYW4gZGlzY2FyZHMgdGhlIGxhcmdlc3QgMTAlIG9mIHRoZSBvYnNlcnZhdGlvbnMgYW5kIHRoZSBzbWFsbGVzdCAxMCUgb2YgdGhlIG9ic2VydmF0aW9ucywgYW5kIHRoZW4gdGFrZXMgdGhlIG1lYW4gb2YgdGhlIHJlbWFpbmluZyA4MCUgb2YgdGhlIG9ic2VydmF0aW9ucy4gVGhpcyBoZWxwcyBpbiB0YWtpbmcgdGhlIG1lYW4gYnkgZXhjbHVkaW5nIHRoZSBvdXRsaWVycy4KCkxldCdzIHRyeSB0cmltbWluZyB0aGUgbWVhbiBmb3IgYWJvdmUgZGF0YS4KCmBgYHtyfQpkYXRhc2V0IDwtIGMoLTE1LDIsMyw0LDUsNiw3LDgsOSwxMikKbWVhbih4ID0gZGF0YXNldCwgdHJpbSA9IC4xKQojVHJ5IGNhbGN1bGF0aW5nIDUlIHRyaW1tZWQgbWVhbiBmb3IgYWJvdmUgZGF0YXNldApgYGAKCioqTW9kZSoqCgpTbyBmYXIgd2UndmUgc2VlbiBob3cgdG8gZmluZCB0aGUgbWVhbiBhbmQgbWVkaWFuIGJ1dCB3aGF0IGFib3V0IG1vZGUuIFRoZSAqKm1vZGUqKiBvZiBhIHNhbXBsZSBpcyB2ZXJ5IHNpbXBsZTogaXQgaXMgdGhlIHZhbHVlIHRoYXQgb2NjdXJzIG1vc3QgZnJlcXVlbnRseS4gVGhlIGNvcmUgcGFja2FnZXMgaW4gUiBkb27igJl0IGhhdmUgYSBmdW5jdGlvbiBmb3IgY2FsY3VsYXRpbmcgdGhlIG1vZGUuIEhvd2V2ZXIsIHRoZSBfbHNyXyBwYWNrYWdlIGhhcyBhIGZ1bmN0aW9uIGNhbGxlZCBtb2RlT2YoKSB0aGF0IGRvZXMgdGhpcy4gCgpTYXksIHlvdSB3YW50IHRvIGJldCB5b3VyIG1vbmV5IG9uIHRoZSBvdXRjb21lIG9mIGEgbWF0Y2guIFlvdSBtYXkgd2FudCB0byBmaW5kIHRoZSBtb3N0IGxpa2VseSBtYXJnaW4uIFRoaXMgaXMgd2hlbiBNb2RlIGlzIHVzZWZ1bC4gVHJ5IHRvIGZpbmQgb3V0IHRoZSBtb2RlIGZvciB0aGUgdmFyaWFibGUgYWZsLm1hcmdpbnMKCmBgYHtyfQojYWZsLm1vZGUgPSAKI2FmbC5tb2RlCm1vZGVPZih4ID0gYWZsLm1hcmdpbnMpCm1heEZyZXEoeCA9IGFmbC5tYXJnaW5zKQpgYGAKClNvIGZhciB3ZSd2ZSBqdXN0IHNlZW4gdGhlIGNlbnRyYWwgbWVhc3VyZXMgb2YgdGVuZGVuY3ksIGJ1dCB3ZSBzYXcgaW4gdGhlIGJlZ2lubmluZyB0aGF0IGluZGl2aWR1YWwgdmFyaWFiaWxpdHkgaXMgcXVpdGUgaW1wb3J0YW50IGluIGJpb2xvZ3kuIFNvLCBsZXQncyB0YWtlIGEgbG9vayBhdCBzb21lIG9mIHRoZSBtZWFzdXJlcyBvZiB2YXJpYWJpbGl0eS4KCiMjIyMjIE1lYXN1cmVzIG9mIHZhcmlhYmlsaXR5CgpUaGlzIHJlZmVycyB0byBob3cg4oCcc3ByZWFkIG91dOKAnSBhcmUgdGhlIGRhdGE/IEhvdyDigJxmYXLigJ0gYXdheSBmcm9tIHRoZSBtZWFuIG9yIG1lZGlhbiBkbyB0aGUgb2JzZXJ2ZWQgdmFsdWVzIHRlbmQgdG8gYmU/CgoqKlJhbmdlKioKClRoZSByYW5nZSBvZiBhIHZhcmlhYmxlIGlzIHZlcnkgc2ltcGxlOiBpdOKAmXMgdGhlIGJpZ2dlc3QgdmFsdWUgbWludXMgdGhlIHNtYWxsZXN0IHZhbHVlLiBUcnkgdG8gZmluZCBvdXQgdGhlIHJhbmdlIG9mIGFmbC5tYXJnaW5zIHVzaW5nIHRoZSBgcmFuZ2UoKWAgZnVuY3Rpb24uCgpgYGB7cn0KI0ZpbmQgcmFuZ2Ugb2YgYWZsLm1hcmdpbnMgaGVyZQpgYGAKCkJ1dCB3aGF0IGFib3V0IHRoZSBlYXJsaWVyIGRhdGEgd2Ugc2F3LCBgIC0xMDAsMiwzLDQsNSw2LDcsOCw5LDEwYC4gV2l0aG91dCByZW1vdmluZyB0aGUgb3V0bGllciwgd2UnbGwgZ2V0IGEgcmFuZ2Ugb2YgMTEwIGJ1dCB3aXRob3V0IHRoZSBvdXRsaWVyLCB3ZSdsbCBnZXQgYSByYW5nZSBvZiBvbmx5IDguCgoqKkludGVyLXF1YXJ0aWxlIFJhbmdlIChJUVIpKioKVGhhdCBpcyB3aHkgdGhlcmUgaXMgc29tZXRoaW5nIGNhbGxlZCB0aGUgaW50ZXJxdWFydGlsZSByYW5nZSAoSVFSKSB3aGljaCBpcyBsaWtlIHRoZSByYW5nZSwgYnV0IGluc3RlYWQgb2YgY2FsY3VsYXRpbmcgdGhlIGRpZmZlcmVuY2UgYmV0d2VlbiB0aGUgYmlnZ2VzdCBhbmQgc21hbGxlc3QgdmFsdWUsIGl0IGNhbGN1bGF0ZXMgdGhlIGRpZmZlcmVuY2UgYmV0d2VlbiB0aGUgMjV0aCBxdWFudGlsZSBhbmQgdGhlIDc1dGggcXVhbnRpbGUuIEEgMTAlIF9xdWFudGlsZV8gb3IgX3BlcmNlbnRpbGVfIG9mIGEgZGF0YSBzZXQgaXMgZGVmaW5lZCBhcyB0aGUgc21hbGxlc3QgbnVtYmVyIF94XyBzdWNoIHRoYXQgMTAlIG9mIHRoZSBkYXRhIGlzIGxlc3MgdGhhbiBfeF8uCgpUcnkgZmluZGluZyBvdXQgMjUlLCA3NSUgYW5kIDUwJSBxdWFudGlsZXMgZm9yIGFmbC5tYXJnaW5zIGFuZCBhbHNvIHRoZSBJbnRlci1xdWFydGlsZSByYW5nZS4KYGBge3J9CiNVc2UgdGhlIGZ1bmN0aW9ucyBxdWFudGlsZSh4ID0gYWZsLm1hcmdpbnMsIHByb2IgPSAwLjIpIGZvciAyMCUgcXVhbnRpbGUgYW5kIElRUigpIAoKYGBgCgpJUVIgY2FuIHNpbXBseSBiZSB0aG91Z2h0IGFzIHRoZSByYW5nZSBzcGFubmVkIGJ5IHRoZSDigJxtaWRkbGUgaGFsZuKAnSBvZiB0aGUgZGF0YS4KCioqVmFyaWFuY2UqKgoKSW4gb3JkZXIgdG8gZmluZCBvdXQgdGhlIHZhcmlhbmNlIG9mIGRhdGEgZnJvbSB0aGUgbWVhbiBvciBtZWRpYW4sIHdlIG5lZWQgdG8gZmluZCB0aGUgZGV2aWF0aW9uIHN1Y2ggdGhhdCBhYnMgKFh+aX4gLSAkXG92ZXJsaW5le1h9JCkuICgkXG92ZXJsaW5le1h9JCBpcyB0aGUgbWVhbiBvZiBkYXRhc2V0KS4gTWF0aGVtYXRpY2FsbHksIHNxdWFyZWQgZGV2aWF0aW9ucyBhcmUgcHJlZmVycmVkIG92ZXIgYWJzb2x1dGUgZGV2aWF0aW9ucywgYW5kIGlmIHdlIHRha2UgdGhlIG1lYW4gb2YgYWxsIHRoZSBzcXVhcmVkIGRldmlhdGlvbnMsIHdlJ2xsIGdldCB0aGUgKip2YXJpYW5jZSoqIG9mIHRoZSBkYXRhLiAKClRyeSBmaW5kaW5nIG91dCB0aGUgdmFyaWFuY2UgdXNpbmcgYHZhcigpYC4KCmBgYHtyfQojVXNlIHZhcigpIGZvciBmaW5kaW5nIHZhcmlhbmNlIG9mIGFmbC5tYXJnaW5zCmBgYAoKX1JlYWQgbW9yZSBhYm91dCB2YXIoKSBmdW5jdGlvbiBhbmQgYWJzb2x1dGUgdnMgc3F1YXJlZCBkZXZpYXRpb25zIGluIFNlY3Rpb24gNS4yLjQgZnJvbSBMZWFybmluZyBTdGF0aXN0aWNzIHdpdGggUiBieSBELiBOYXZhcnJvXwoKKipTdGFuZGFyZCBEZXZpYXRpb24qKgoKQnV0IHdoYXQgZG9lcyB0aGlzIHZhcmlhbmNlIHNpZ25pZnk/IEl0IGlzIHZlcnkgZGlmZmljdWx0IHRvIGludGVycHJldCB0aGUgc3F1YXJlZCB2YWx1ZSBhbmQgdGhlcmVmb3JlLCB3ZSB0YWtlIHRoZSBfcm9vdCBtZWFuIHNxdWFyZSBkZXZpYXRpb25fIGZvciBpbnRlcnByZXRpbmcgdGhlIHNwcmVhZCBvZiBkYXRhIHBvaW50cy4gVGhpcyBpcyBjYWxsZWQgX1N0YW5kYXJkIERldmlhdGlvbl8gYW5kIGlzIGNhbGN1bGF0ZWQgYnkgdGFraW5nIHRoZSBzcXVhcmUgcm9vdCBvZiB2YXJpYW5jZSBtYXRoZW1hdGljYWxseSwgYW5kIHVzaW5nIHRoZSBzZCgpIGZ1bmN0aW9uIGluIFIgYmFzZSBwYWNrYWdlLgoKVHJ5IHRvIGZpbmQgb3V0IHRoZSBzdGFuZGFyZCBkZXZpYXRpb24gb2YgYWZsLm1hcmdpbnMuCgpgYGB7cn0KI0ZpbmQgb3V0IFN0ZCBkZXYuIGhlcmUKYGBgCgojIyMjIyBRdWljayBjaGVhdCBzaGVldDogV2hlbiB0byB1c2Ugd2hhdD8KCi0gUmFuZ2U6IAogIC0gR2l2ZXMgZnVsbCBzcHJlYWQgb2YgZGF0YS4gCiAgLSBWZXJ5IHZ1bG5lcmFibGUgdG8gb3V0bGllcnMKCi0gSW50ZXJxdWFydGlsZSByYW5nZTogCiAgLSBHaXZlcyB0aGUg4oCcbWlkZGxlIGhhbGbigJ0gb2YgZGF0YQogIC0gUm9idXN0LCBhbmQgY29tcGxlbWVudHMgdGhlIG1lZGlhbiBuaWNlbHkKICAKLSBWYXJpYW5jZToKICAtIEF2ZXJhZ2Ugc3F1YXJlZCBkZXZpYXRpb24gZnJvbSB0aGUgbWVhbgogIC0gSXTigJlzIG1hdGhlbWF0aWNhbGx5IGVsZWdhbnQgYnV0IGl04oCZcyBjb21wbGV0ZWx5IHVuaW50ZXJwcmV0YWJsZQoKLSBTdGFuZGFyZCBkZXZpYXRpb246CiAgLSBTcXVhcmUgcm9vdCBvZiB0aGUgdmFyaWFuY2UKICAtIEZhaXJseSBlbGVnYW50IG1hdGhlbWF0aWNhbGx5LCBhbmQgY2FuIGJlIGludGVycHJldGVkIHByZXR0eSB3ZWxsCiAgLSBDb21wbGVtZW50cyBtZWFuIGFuZCBpcyB0aGUgbW9zdCBwb3B1bGFyIG1lYXN1cmUgb2YgdmFyaWF0aW9uCgpOb3cgdGhhdCB3ZSd2ZSBsZWFybnQgYWJvdXQgdGhlIGRpZmZlcmVudCBtZXRob2RzIG9mIGRlc2NyaWJpbmcgYSBkYXRhLCBpdCB3b3VsZCd2ZSBiZWVuIGF3ZXNvbWUgaWYgUiBjb3VsZCBzdW1tYXJpemUgYWxsIG9mIHRoaXMgZm9yIHVzIHRvZ2V0aGVyLCByaWdodD8gCgpUaGVyZSdzIGluZGVlZCBhIGZ1bmN0aW9uIGNhbGxlZCBgc3VtbWFyeSgpYCBpbiBSLgoKYGBge3J9CiNDaGVjayBvdXQgd2hhdCBzdW1tYXJ5KCkgZG9lcyBmb3IgYWZsLm1hcmdpbnMKYGBgCgpQcmV0dHkgY29vbCwgbm8/CgpBbHNvIHRyeSBpdCBvdXQgZm9yIG90aGVyIGtpbmRzIG9mIHZhcmlhYmxlcyBsaWtlIGBhZmwuZmluYWxpc3RzYCBvciBgYXMuY2hhcmFjdGVyKGFmbC5maW5hbGlzdHMpYAoKTGV0J3MgdHJ5IG91dCBzdW1tYXJpemluZyBhIGRhdGFmcmFtZSBhcyB3ZWxsLgoKYGBge3J9CmxvYWQoImNsaW5pY2FsdHJpYWwuUmRhdGEiKQojQ2hlY2sgdGhlIG5hbWUgb2YgdGhlIHZhcmlhYmxlIGluIHRoZSBlbnZpcm9ubWVudCB3aGljaCBjb250YWlucyB0aGUgZGF0YWZyYW1lIGFuZCB0cnkgc3VtbWFyaXppbmcgaXQKYGBgCgpUaGUgYHBzeWNoYCBwYWNrYWdlIGFsc28gaGFzIGEgZnVuY3Rpb24gY2FsbGVkIGBkZXNjcmliZSgpYCBmb3IgZGF0YWZyYW1lcy4gRG9uJ3QgZm9yZ2V0IHRvIGNoZWNrIGl0IG91dCB0b28hCgpJbiBmYWN0LCB5b3UgY2FuIGFsc28gZGVzY3JpYmUgdGhlc2Ugc3RhdGlzdGljcyBncm91cCB3aXNlLiAKCkZvciBpbnN0YW5jZSwgcnVuIGBkZXNjcmliZUJ5KCB4PWNsaW4udHJpYWwsIGdyb3VwPWNsaW4udHJpYWwkdGhlcmFweSApYAoKYGBge3J9CmRlc2NyaWJlQnkoIHg9Y2xpbi50cmlhbCwgZ3JvdXA9Y2xpbi50cmlhbCR0aGVyYXB5ICkKYGBgCk5vdGljZSB0aGF0LCB0aGUgb3V0cHV0IGRpc3BsYXlzIGFzdGVyaXNrcyBmb3IgZmFjdG9yIHZhcmlhYmxlcywgaW4gb3JkZXIgdG8gZHJhdyB5b3VyIGF0dGVudGlvbiB0byB0aGUgZmFjdCB0aGF0IHRoZSBkZXNjcmlwdGl2ZSBzdGF0aXN0aWNzIHRoYXQgaXQgaGFzIGNhbGN1bGF0ZWQgd29u4oCZdCBiZSB2ZXJ5IG1lYW5pbmdmdWwgZm9yIHRob3NlIHZhcmlhYmxlcy4KCkFub3RoZXIgbW9yZSBnZW5lcmFsIGNvbW1hbmQgZm9yIGdyb3VwaW5nIGlzIGBieSgpYCAKClRyeSBydW5uaW5nIHRoZSBmb2xsb3dpbmcgY2h1bmsgYW5kIGNvbXBhcmUgdGhlIHJlc3VsdHMgd2l0aCB0aGUgYGRlc2NyaWJlQnkoKWAgY29tbWFuZCBhYm92ZS4KCmBgYHtyfQpieShkYXRhPWNsaW4udHJpYWwsIElORElDRVM9Y2xpbi50cmlhbCR0aGVyYXB5LCBGVU49ZGVzY3JpYmUpCiNBbHNvIHRyeSByZXBsYWNpbmcgZGVzY3JpYmUgaW4gRlVOIGFib3ZlIHdpdGggc3VtbWFyeQpgYGAKCldoYXQgaWYgeW91IGhhdmUgbXVsdGlwbGUgZ3JvdXBpbmcgdmFyaWFibGVzPyBTdXBwb3NlLCBmb3IgZXhhbXBsZSwgeW91IHdvdWxkIGxpa2UgdG8gbG9vayBhdCB0aGUgYXZlcmFnZSBtb29kIGdhaW4gc2VwYXJhdGVseSBmb3IgYWxsIHBvc3NpYmxlIGNvbWJpbmF0aW9ucyBvZiBkcnVnIGFuZCB0aGVyYXB5LldlIGNhbiB1c2UgYGFnZ3JlZ2F0ZSgpYCBjb21tYW5kLgoKYGBge3J9CmFnZ3JlZ2F0ZSggZm9ybXVsYSA9IG1vb2QuZ2FpbiB+IGRydWcgKyB0aGVyYXB5LCAKICAgICAgICAgICBkYXRhID0gY2xpbi50cmlhbCwKICAgICAgICAgICBGVU4gPSBtZWFuKSAKIzEgbW9vZC5nYWluIGJ5IGRydWcvdGhlcmFweSBjb21iaW5hdGlvbgojMiBkYXRhIGlzIGluIHRoZSBjbGluLnRyaWFsIGRhdGEgZnJhbWUKIzMgcHJpbnQgb3V0IGdyb3VwIG1lYW5zCgojVHJ5IGludGVyY2hhbmdpbmcgdGhlIHBvc2l0aW9ucyBvZiBkcnVnIGFuZCB0aGVyYXB5IGFib3ZlCmBgYAoKVGhhdCdzIGFsbCBmb3IgdG9kYXkhCg==
+
LS0tCnRpdGxlOiAiRGVzY3JpcHRpdmUgU3RhdGlzdGljczogQ2VudHJhbCBhbmQgVmFyaWFiaWxpdHkgbWVhc3VyZXMiCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KYGBge3J9CiNJbml0aWFsIHBhY2thZ2VzCmluc3RhbGwucGFja2FnZXMoImxzciIpCmBgYAoKSW4gdGhpcyBub3RlYm9vaywgd2UnbGwgdGFrZSBhIGxvb2sgYXQgaG93IHRvIGV4cGxvcmUgYSBkYXRhc2V0LgoKQW55IHRpbWUgdGhhdCB5b3UgZ2V0IGEgbmV3IGRhdGEgc2V0IHRvIGxvb2sgYXQsIG9uZSBvZiB0aGUgZmlyc3QgdGFza3MgdGhhdCB5b3UgaGF2ZSB0byBkbyBpcyBmaW5kIHdheXMgb2Ygc3VtbWFyaXNpbmcgdGhlIGRhdGEgaW4gYSBjb21wYWN0LCBlYXNpbHkgdW5kZXJzdG9vZCBmYXNoaW9uLiBUaGlzIGlzIHdoYXQgKipkZXNjcmlwdGl2ZSBzdGF0aXN0aWNzKiogaXMgYWxsIGFib3V0LgoKIyMjIyBEZXNjcmliaW5nIGRhdGEKCkltYWdpbmUgeW91J3ZlIGNvbmR1Y3RlZCBhbiBleHBlcmltZW50IGludm9sdmluZyBtZWFzdXJlbWVudHMgZnJvbSAyMCBhbmltYWxzLiBJZiB5b3Ugd2FudGVkIHRvIHJlcG9ydCB0aGUgb3V0Y29tZSBvZiB5b3VyIGV4cGVyaW1lbnQgdG8gYW4gYXVkaWVuY2UsIHlvdSB3b3VsZG7igJl0IHdhbnQgdG8gdGFsayB0aHJvdWdoIGVhY2ggYW5kIGV2ZXJ5IGRhdGEgcG9pbnQuIEluc3RlYWQsIHlvdSByZXBvcnQgYSBzdW1tYXJ5LCBzdWNoIGFzIOKAmFRoZSAyMCBhbmltYWxzIGhhZCBhbiBhdmVyYWdlIHdlaWdodCBvZiAxNSBncmFtc+KAmSwgdGh1cyBzYXZpbmcgeW91ciBhdWRpZW5jZSB2YWx1YWJsZSB0aW1lIGFuZCBtZW50YWwgZW5lcmd5LiBUaGlzIG5vdGVib29rIGZvY3VzZXMgb24gc3VjaCBzdW1tYXJpZXMgb2YgbnVtZXJpY2FsIGluZm9ybWF0aW9uIGluY2x1ZGluZyBkaXN0cmlidXRpb25zLCBtZWFzdXJlcyBvZiBjZW50cmFsIHRlbmRlbmN5IGFuZCBtZWFzdXJlcyBvZiB2YXJpYWJpbGl0eS4gCgojIyMjIyBXaGF0IGV4YWN0bHkgaXMgYSBkaXN0cmlidXRpb24/CgpJZiB5b3UgdGhyb3cgYSBzaW5nbGUgZGljZSAyMCB0aW1lcyBpbiBhIHJvdyBhbmQgbm90ZSBkb3duIGhvdyBmcmVxdWVudGx5IGVhY2ggZmFjZSBvY2N1cnMuIFRoZSByZXN1bHQgb2YgdGFsbHlpbmcgYWxsIGNvdW50cyBpcyBhIOKAmGZyZXF1ZW5jeSBkaXN0cmlidXRpb27igJksIHdoaWNoIGFzc29jaWF0ZXMgZWFjaCBwb3NzaWJsZSBvdXRjb21lIHdpdGggYSBwYXJ0aWN1bGFyIGZyZXF1ZW5jeSB2YWx1ZS4gU3VjaCBhIGRpc3RyaWJ1dGlvbiBpcyBhbiBlbXBpcmljYWxseSBvYnNlcnZlZCBkaXN0cmlidXRpb24gYmVjYXVzZSBpdCBpcyBiYXNlZCBvbiBhIHNldCBvZiAyMCBhY3R1YWwgdGhyb3dzIG9mIGEgZGljZS4gRmlnIChhKSBiZWxvdy4KCiFbRW1waXJpY2FsIGFuZCB0aGVvcmV0aWNhbCBkaXN0cmlidXRpb25zXShkaWNlIHJvbGxpbmcgcHJvYmFiaWxpdHkucG5nKQoKQnV0IEZpZyAoYikgc2hvd3MgYSB0aGVvcmV0aWNhbCBkaXN0cmlidXRpb24gYW5kIHJlcHJlc2VudHMgcHJvYmFiaWxpdHkgcmF0aGVyIHRoYW4gZnJlcXVlbmN5LiBJdCBkZXBpY3RzIGhvdyBwcm9iYWJsZSBpcyBlYWNoIG91dGNvbWUuIEluIHRoaXMgY2FzZSwgYWxsIG91dGNvbWVzIGFyZSBlcXVhbGx5IHByb2JhYmxlIGFuZCB0aGVyZWZvcmUgaXQgaXMgYSDigJh1bmlmb3Jt4oCZIGRpc3RyaWJ1dGlvbiBiZWNhdXNlIHRoZSBwcm9iYWJpbGl0eSBpcyB1bmlmb3JtbHkgc3ByZWFkIGFjcm9zcyBhbGwgcG9zc2libGUgb3V0Y29tZXMuIEl0IGlzIGZ1cnRoZXJtb3JlIGEg4oCYZGlzY3JldGXigJkgZGlzdHJpYnV0aW9uIGJlY2F1c2UgdGhlcmUgYXJlIG9ubHkgc2l4IHBhcnRpY3VsYXIgb3V0Y29tZXMgYW5kIG5vIGluLWJldHdlZW5zLiAoQ2hhcHRlciAzLCBXaW50ZXIgQi4pCgpBcGFydCBmcm9tICpsb29raW5nKiBhdCBob3cgYSBkYXRhIGlzIGRpc3RyaWJ1dGVkLCB0aGUgbW9zdCBpbXBvcnRhbnQgZGVzY3JpcHRpdmUgc3RhdGlzdGljcyBmb3IgbnVtZXJpY2FsIGRhdGEgYXJlIHRob3NlIG1lYXN1cmluZyB0aGUgbG9jYXRpb24gb2YgYSBmcmVxdWVuY3kgZGlzdHJpYnV0aW9uIGFuZCBpdHMgc3ByZWFkLiBUaGUgbG9jYXRpb24gdGVsbHMgdXMgc29tZXRoaW5nIGFib3V0IHRoZSBhdmVyYWdlIG9yICp0eXBpY2FsKiBpbmRpdmlkdWFs4oCUd2hlcmUgdGhlIG9ic2VydmF0aW9ucyBhcmUgY2VudGVyZWQuIFRoZSBzcHJlYWQgdGVsbHMgdXMgaG93IHZhcmlhYmxlIHRoZSBtZWFzdXJlbWVudHMgYXJlIGZyb20gaW5kaXZpZHVhbCB0byBpbmRpdmlkdWFs4oCUaG93IHdpZGVseSBzY2F0dGVyZWQgdGhlIG9ic2VydmF0aW9ucyBhcmUgYXJvdW5kIHRoZSBjZW50ZXIuIFRoZSBwcm9wb3J0aW9uIGlzIHRoZSBtb3N0IGltcG9ydGFudCBkZXNjcmlwdGl2ZSBzdGF0aXN0aWMgZm9yIGEgY2F0ZWdvcmljYWwgdmFyaWFibGUsIG1lYXN1cmluZyB0aGUgZnJhY3Rpb24gb2Ygb2JzZXJ2YXRpb25zIGluIGEgZ2l2ZW4gY2F0ZWdvcnkuIAoKIyMjIyMgQnV0IHdoeSBpcyBpdCBuZWVkZWQ/ClRoZSBpbXBvcnRhbmNlIG9mIGNhbGN1bGF0aW5nIHNvbWUgc29ydCBvZiBhIGNlbnRyZSBvZiBhIGRpc3RyaWJ1dGlvbiBzZWVtcyBvYnZpb3VzLiBIb3cgZWxzZSBkbyB3ZSBhZGRyZXNzIHF1ZXN0aW9ucyBsaWtlIOKAnFdoaWNoIHNwZWNpZXMgaXMgbGFyZ2VyP+KAnSBvciDigJxXaGljaCBkcnVnIHlpZWxkZWQgdGhlIGdyZWF0ZXN0IHJlc3BvbnNlP+KAnSBUaGUgaW1wb3J0YW5jZSBvZiBkZXNjcmliaW5nIGRpc3RyaWJ1dGlvbiBzcHJlYWQgaXMgbGVzcyBvYnZpb3VzIGJ1dCBubyBsZXNzIGNydWNpYWwsIGF0IGxlYXN0IGluIGJpb2xvZ3kuIEluIHNvbWUgZmllbGRzIG9mIHNjaWVuY2UsIHZhcmlhYmlsaXR5IGFyb3VuZCBhIGNlbnRyYWwgdmFsdWUgaXMgaW5zdHJ1bWVudCBub2lzZSBvciBtZWFzdXJlbWVudCBlcnJvciwgYnV0IGluIGJpb2xvZ3kgbXVjaCBvZiB0aGUgdmFyaWFiaWxpdHkgc2lnbmlmaWVzIHJlYWwgZGlmZmVyZW5jZXMgYW1vbmcgaW5kaXZpZHVhbHMuIERpZmZlcmVudCBpbmRpdmlkdWFscyByZXNwb25kIGRpZmZlcmVudGx5IHRvIHRyZWF0bWVudHMsIGFuZCB0aGlzIHZhcmlhYmlsaXR5IGJlZ3MgbWVhc3VyZW1lbnQuIChBZGFwdGVkIGZyb20gQ2hhcHRlciAzLCBXaGl0bG9jayAmIFNjaGx1dGVyLCAyMDE1KQoKVGhhdCdzIGEgbG90IG9mIHRoZW9yeSwgbGV0J3MgZGl2ZSBpbnRvIHNvbWUgZGF0YSBub3cuCgoqKkxvYWRpbmcgdGhlIEF1c3RyYWxpYW4gRm9vdGJhbGwgTGVhZ3VlIERhdGFzZXQqKgoKYGBge3J9CiNDaGFuZ2UgdGhlIHBhdGggYWNjb3JkaW5nIHRvIHlvdXIgUEMKbG9hZCgiYWZsc21hbGwuUmRhdGEiKQpsaWJyYXJ5KGxzcikKd2hvKCkKYGBgCgpBcyB5b3UgY2FuIHNlZSB0aGVyZSBhcmUgbXVsdGlwbGUgdmFyaWFibGVzIG9mIGRpZmZlcmVudCBjbGFzcyBhbmQgc2l6ZS4gCgpMZXQncyB0YWtlIGEgbG9vayBhdCBhZmwubWFyZ2lucyB2YXJpYWJsZS4KCmBgYHtyfQpwcmludChhZmwubWFyZ2lucykKYGBgCgpUaGlzIG91dHB1dCBkb2VzbuKAmXQgbWFrZSBpdCBlYXN5IHRvIGdldCBhIHNlbnNlIG9mIHdoYXQgdGhlIGRhdGEgaXMgYWN0dWFsbHkgc2F5aW5nLiBKdXN0IOKAnGxvb2tpbmcgYXQgdGhlIGRhdGHigJ0gaXNu4oCZdCBhIHRlcnJpYmx5IGVmZmVjdGl2ZSB3YXkgb2YgdW5kZXJzdGFuZGluZyBkYXRhLgoKTGV0J3MgdHJ5IHRvIHBsb3QgaXQuCgoqKkZyZXF1ZW5jeSBkaXN0cmlidXRpb24qKgoKYGBge3J9Cmhpc3QgKGFmbC5tYXJnaW5zKQpgYGAKCkFzIHlvdSBjYW4gc2VlLCBkaWZmZXJlbnQgbWFyZ2lucyBpbiBhIHNhbXBsZSB3aWxsIGhhdmUgZGlmZmVyZW50IG1lYXN1cmVtZW50cy4gV2UgY2FuIHNlZSB0aGlzIHZhcmlhYmlsaXR5IHdpdGggYSAqKmZyZXF1ZW5jeSBkaXN0cmlidXRpb24qKi4gVGhlIGZyZXF1ZW5jeSBvZiBhIHNwZWNpZmljIG1lYXN1cmVtZW50IGluIGEgc2FtcGxlIGlzIHRoZSBudW1iZXIgb2Ygb2JzZXJ2YXRpb25zIGhhdmluZyBhIHBhcnRpY3VsYXIgdmFsdWUgb2YgdGhlIG1lYXN1cmVtZW50LiBUaGUgZnJlcXVlbmN5IGRpc3RyaWJ1dGlvbiBzaG93cyBob3cgb2Z0ZW4gZWFjaCB2YWx1ZSBvZiB0aGUgdmFyaWFibGUgb2NjdXJzIGluIHRoZSBzYW1wbGUuIAoKVGhlcmVmb3JlLCBoZXJlIHdlIGhhdmUgcGxvdHRlZCBhIGhpc3RvZ3JhbSBmb3IgdGhlIGFmbC5tYXJnaW5zIHZhcmlhYmxlIHdoaWNoIGdpdmVzIHRoZSBmcmVxdWVuY3kgZGlzdHJpYnV0aW9uIG9mIHRoZSBkaWZmZXJlbnQgbWFyZ2luIHZhbHVlcy4KCioqU2tld25lc3MqKgoKSWYgeW91IG9ic2VydmUgdGhlIGdyYXBoLCB5b3Ugd2lsbCBmaW5kIHRoYXQgaXQgaXMgbm90IGVudGlyZWx5IHN5bW1ldHJpY2FsLiBBIG1lYXN1cmUgb2Ygc3VjaCBhc3ltbWV0cnkgaXMgY2FsbGVkICoqU2tld25lc3MqKi4gSWYgdGhlIGRhdGEgdGVuZCB0byBoYXZlIGEgbG90IG9mIGV4dHJlbWUgc21hbGwgdmFsdWVzIChpLmUuLCB0aGUgbG93ZXIgdGFpbCBpcyDigJxsb25nZXLigJ0gdGhhbiB0aGUgdXBwZXIgdGFpbCkgYW5kIG5vdCBzbyBtYW55IGV4dHJlbWVseSBsYXJnZSB2YWx1ZXMgKGxlZnQgcGFuZWwpLCB0aGVuIHdlIHNheSB0aGF0IHRoZSBkYXRhIGFyZSBfbmVnYXRpdmVseSBza2V3ZWRfLiBPbiB0aGUgb3RoZXIgaGFuZCwgaWYgdGhlcmUgYXJlIG1vcmUgZXh0cmVtZWx5IGxhcmdlIHZhbHVlcyB0aGFuIGV4dHJlbWVseSBzbWFsbCBvbmVzIChyaWdodCBwYW5lbCkgd2Ugc2F5IHRoYXQgdGhlIGRhdGEgYXJlIF9wb3NpdGl2ZWx5IHNrZXdlZF8uCgpgcHN5Y2hgIHBhY2thZ2UgY29udGFpbnMgYSBgc2tldygpYCBmdW5jdGlvbiB0aGF0IHlvdSBjYW4gdXNlIHRvIGNhbGN1bGF0ZSBza2V3bmVzcy4gCgpUcnkgZmluZGluZyB0aGUgc2tld25lc3MgZm9yIHRoZSBhYm92ZSBkYXRhIGZvciBhZmwubWFyZ2lucyB1c2luZyBza2V3KCkgZnVuY3Rpb24gYW5kIGFsc28gdHJ5IHRvIGd1ZXNzIHdoZXRoZXIgdGhpcyBkYXRhIGlzIHBvc2l0aXZlbHkgb3IgbmVnYXRpdmVseSBza2V3ZWQuCgpgYGB7cn0KbGlicmFyeShwc3ljaCkKI1RyeSBmaW5kaW5nIHNrZXduZXNzIG9mIGFmbC5tYXJnaW5zIGhlcmUKYGBgCgpBbHRob3VnaCBzdWNoIGEgZ3JhcGhpY2FsIHJlcHJlc2VudGF0aW9uIGdpdmVzIGEgJ2dpc3QnIG9mIHRoZSBkYXRhIGJ1dCBpdCBpcyB1c2VmdWwgdG8gZmluZCBzb21lICJzdW1tYXJ5IiBzdGF0aXN0aWNzIGFzIHdlbGwuCgojIyMjIyBNZWFzdXJlcyBvZiBDZW50cmFsIFRlbmRlbmN5CkluIG1vc3Qgc2l0dWF0aW9ucywgdGhlIGZpcnN0IHRoaW5nIHRoYXQgeW914oCZbGwgd2FudCB0byBjYWxjdWxhdGUgaXMgYSBtZWFzdXJlIG9mIGNlbnRyYWwgdGVuZGVuY3kuIFRoYXQgaXMsIHlvdeKAmWQgbGlrZSB0byBrbm93IHNvbWV0aGluZyBhYm91dCB0aGUg4oCcYXZlcmFnZeKAnSBvciDigJxtaWRkbGXigJ0gb2YgeW91ciBkYXRhIGxpZXMuIFRoZSB0d28gbW9zdCBjb21tb25seSB1c2VkIG1lYXN1cmVzIGFyZSB0aGUgbWVhbiwgbWVkaWFuIGFuZCBtb2RlLgoKKipNZWFuKioKCkFzIHlvdSd2ZSBhbHJlYWR5IHNlZW4gaW4gcHJldmlvdXMgY2xhc3NlcywgdGhlIG1lYW4gb2YgYSBzZXQgb2Ygb2JzZXJ2YXRpb25zIGlzIGp1c3QgYSBub3JtYWwsIG9sZC1mYXNoaW9uZWQgYXZlcmFnZTogYWRkIGFsbCBvZiB0aGUgdmFsdWVzIHVwLCBhbmQgdGhlbiBkaXZpZGUgYnkgdGhlIHRvdGFsIG51bWJlciBvZiB2YWx1ZXMuCgpUcnkgZmluZGluZyB0aGUgbWVhbiBmb3IgdGhlIGZpcnN0IDUgdmFsdWVzIGZyb20gYWZsLm1hcmdpbnMgYW5kIHRoZW4gZm9yIGFsbCB0aGUgdmFsdWVzIG9mIGFmbC5tYXJnaW5zCmBgYHtyfQptZWFuKGFmbC5tYXJnaW5zKSAgICAgICMgYXZlcmFnZSBtYXJnaW4KbWVhbihhZmwubWFyZ2luc1sxOjVdKSAjIG1lYW4gb2YgdGhlIG1hcmdpbiBmcm9tIHRoZSBmaXJzdCA1IGdhbWVzCgpgYGAKCioqTWVkaWFuKioKClRoZSBzZWNvbmQgbWVhc3VyZSBpcyB0aGUgbWVkaWFuLiBJdCBpcyBqdXN0IHRoZSBtaWRkbGUgdmFsdWUgb2YgYSBzZXQgb2Ygb2JzZXJ2YXRpb25zLiAKKlRyeSA6IEd1ZXNzIHRoZSBtZWRpYW4gZm9yIDU2LCAzMSwgNTYsIDggYW5kIDMyICoKClByb2JhYmx5IHlvdSBtZW50YWxseSBhcnJhbmdlZCB0aGVzZSBudW1iZXJzIGluIGFzY2VuZGluZyBvcmRlciBmaXJzdCBhbmQgdGhlbiBmb3VuZCB0aGUgbWlkZGxlIHZhbHVlLiBJZiB0aGVyZSB3ZXJlIGEgbGlzdCBvZiBudW1iZXJzIGxpa2UgdGhpcyBgOCwgMTQsIDMxLCAzMiwgNTYsIDU2YCAuIFlvdSB3aWxsIHRoZW4gZmluZCB0aGUgYXZlcmFnZSBvZiBtaWRkbGUgMiB2YWx1ZXMuIAoKTm93IHRyeSBmaW5kaW5nIG91dCB0aGUgbWVkaWFuIGZvciBhZmwubWFyZ2lucy4KCmBgYHtyfQptZWRpYW4oYWZsLm1hcmdpbnMpCmBgYAoKKipEaWZmZXJlbmNlIGJldHdlZW4gTWVhbiBhbmQgTWVkaWFuKioKCkJvdGggb2YgdGhlc2UgYXJlIG1lYXN1cmVzIG9mIGNlbnRyYWwgdGVuZGVuY3kgYnV0IHdoZW4gdG8gdXNlIHdoaWNoIGNhbiBiZSBhIGJpdCBjb25mdXNpbmcuIEluIGdlbmVyYWwsIHRoZSBtZWFuIGlzIGtpbmQgb2YgbGlrZSB0aGUg4oCcY2VudHJlIG9mIGdyYXZpdHnigJ0gb2YgdGhlIGRhdGEgc2V0LCB3aGVyZWFzIHRoZSBtZWRpYW4gaXMgdGhlIOKAnG1pZGRsZSB2YWx1ZeKAnSBpbiB0aGUgZGF0YS4KCiFbRGlmZmVyZW5jZSBiZXR3ZWVuIG1lYW4gYW5kIG1lZGlhbl0ocGljMi5wbmcpCipGaWcgNS4yIGZyb20gTGVhcm5pbmcgU3RhdGlzdGljcyB3aXRoIFIgYnkgRC4gTmF2YXJybyoKCioqU29tZSBrZXkgcG9pbnRzKioKCi0gSWYgZGF0YSBpcyBub21pbmFsIHNjYWxlLCB0aGVuIGl04oCZcyBwcm9iYWJseSBiZXN0IHRvIHVzZSB0aGUgbW9kZSBpbnN0ZWFkIG9mIG1lYW4gb3IgbWVkaWFuLgoKLSBJZiB5b3VyIGRhdGEgYXJlIG9yZGluYWwgc2NhbGUsIHlvdeKAmXJlIG1vcmUgbGlrZWx5IHRvIHdhbnQgdG8gdXNlIHRoZSBtZWRpYW4gdGhhbiB0aGUgbWVhbi4KCi0gRm9yIGludGVydmFsIGFuZCByYXRpbyBzY2FsZSBkYXRhLCBlaXRoZXIgbWVhbiBvciBtZWRpYW4gaXMgZ2VuZXJhbGx5IGFjY2VwdGFibGUuIFRoZSBtZWFuIGhhcyB0aGUgYWR2YW50YWdlIHRoYXQgaXQgdXNlcyBhbGwgdGhlIGluZm9ybWF0aW9uIGluIHRoZSBkYXRhICh3aGljaCBpcyB1c2VmdWwgd2hlbiB5b3UgZG9u4oCZdCBoYXZlIGEgbG90IG9mIGRhdGEpLCBidXQgaXTigJlzIHZlcnkgc2Vuc2l0aXZlIHRvIGV4dHJlbWUgdmFsdWVzLgoKKllvdSBjYW4gcmVhZCBtb3JlIGFib3V0IHRoaXMgaW4gU2VjdGlvbiA1LjEuNCwgTGVhcm5pbmcgU3RhdGlzdGljcyB3aXRoIFIgYnkgRC4gTmF2YXJybyoKCk5vdyBsZXQncyB0YWtlIGEgbG9vayBhdCBzb21lIG1vcmUgZGF0YToKCmAgLTEwMCwyLDMsNCw1LDYsNyw4LDksMTBgCgpJZiB5b3Ugb2JzZXJ2ZWQgc3VjaCBkYXRhIGluIHJlYWwgbGlmZSwgeW91IHdpbGwgcHJvYmFibHkgdGhpbmsgdGhhdCAtMTAwIGlzIGFuICoqX291dGxpZXJfKiosIGEgdmFsdWUgdGhhdCBkb2VzbuKAmXQgcmVhbGx5IGJlbG9uZyB3aXRoIHRoZSBvdGhlcnMuIFlvdSBtaWdodCBjb25zaWRlciByZW1vdmluZyBpdCBmcm9tIHRoZSBkYXRhIHNldCBlbnRpcmVseSBidXQgeW91IGRvbuKAmXQgYWx3YXlzIGdldCBzdWNoIGN1dC1hbmQtZHJpZWQgZXhhbXBsZXMuIEZvciBpbnN0YW5jZSwgeW91IG1pZ2h0IGdldCB0aGlzIGluc3RlYWQ6CgpgIC0xNSwyLDMsNCw1LDYsNyw4LDksMTJgCgpUaGUgYC0xNWAgbG9va3MgYSBiaXQgc3VzcGljaW91cywgYnV0IG5vdCBhbnl3aGVyZSBuZWFyIGFzIG11Y2ggYXMgYC0xMDBgIGRpZC4gSW4gdGhpcyBjYXNlLCBpdOKAmXMgYQpsaXR0bGUgdHJpY2tpZXIuIEl0IG1pZ2h0IGJlIGEgbGVnaXRpbWF0ZSBvYnNlcnZhdGlvbiwgaXQgbWlnaHQgbm90LiBJbiBzdWNoIHNpdHVhdGlvbnMsIHRoZSBtZWFuIG1pZ2h0IGdpdmUgeW91IGFuIGVycm9yIGFzIGl0IGlzIGhpZ2hseSBzZW5zaXRpdmUgdG8gb25lIG9yIHR3byBleHRyZW1lIHZhbHVlcywgYW5kIGlzIHRodXMgbm90IGNvbnNpZGVyZWQgdG8gYmUgYSByb2J1c3QgbWVhc3VyZS4KCkluIHN1Y2ggc2l0dWF0aW9ucywgb25lIHNvbHV0aW9uIGlzIHRvIHVzZSB0aGUgbWVkaWFuIG9yIGFub3RoZXIgaXMgdG8gdXNlIGEgKip0cmltbWVkIG1lYW4qKi4gVG8gY2FsY3VsYXRlIGEgdHJpbW1lZCBtZWFuLCB3aGF0IHlvdSBkbyBpcyAqKmRpc2NhcmQqKiB0aGUgbW9zdCBleHRyZW1lIGV4YW1wbGVzIG9uIGJvdGggZW5kcyAoaS5lLiwgdGhlIGxhcmdlc3QgYW5kIHRoZSBzbWFsbGVzdCksIGFuZCB0aGVuIHRha2UgdGhlIG1lYW4gb2YgZXZlcnl0aGluZyBlbHNlLiBTbywgZm9yIGluc3RhbmNlLCBhIDEwJSB0cmltbWVkIG1lYW4gZGlzY2FyZHMgdGhlIGxhcmdlc3QgMTAlIG9mIHRoZSBvYnNlcnZhdGlvbnMgYW5kIHRoZSBzbWFsbGVzdCAxMCUgb2YgdGhlIG9ic2VydmF0aW9ucywgYW5kIHRoZW4gdGFrZXMgdGhlIG1lYW4gb2YgdGhlIHJlbWFpbmluZyA4MCUgb2YgdGhlIG9ic2VydmF0aW9ucy4gVGhpcyBoZWxwcyBpbiB0YWtpbmcgdGhlIG1lYW4gYnkgZXhjbHVkaW5nIHRoZSBvdXRsaWVycy4KCkxldCdzIHRyeSB0cmltbWluZyB0aGUgbWVhbiBmb3IgYWJvdmUgZGF0YS4KCmBgYHtyfQpkYXRhc2V0IDwtIGMoLTE1LDIsMyw0LDUsNiw3LDgsOSwxMikKbWVhbih4ID0gZGF0YXNldCwgdHJpbSA9IC4xKQojVHJ5IGNhbGN1bGF0aW5nIDUlIHRyaW1tZWQgbWVhbiBmb3IgYWJvdmUgZGF0YXNldApgYGAKCioqTW9kZSoqCgpTbyBmYXIgd2UndmUgc2VlbiBob3cgdG8gZmluZCB0aGUgbWVhbiBhbmQgbWVkaWFuIGJ1dCB3aGF0IGFib3V0IG1vZGUuIFRoZSAqKm1vZGUqKiBvZiBhIHNhbXBsZSBpcyB2ZXJ5IHNpbXBsZTogaXQgaXMgdGhlIHZhbHVlIHRoYXQgb2NjdXJzIG1vc3QgZnJlcXVlbnRseS4gVGhlIGNvcmUgcGFja2FnZXMgaW4gUiBkb27igJl0IGhhdmUgYSBmdW5jdGlvbiBmb3IgY2FsY3VsYXRpbmcgdGhlIG1vZGUuIEhvd2V2ZXIsIHRoZSBfbHNyXyBwYWNrYWdlIGhhcyBhIGZ1bmN0aW9uIGNhbGxlZCBtb2RlT2YoKSB0aGF0IGRvZXMgdGhpcy4gCgpTYXksIHlvdSB3YW50IHRvIGJldCB5b3VyIG1vbmV5IG9uIHRoZSBvdXRjb21lIG9mIGEgbWF0Y2guIFlvdSBtYXkgd2FudCB0byBmaW5kIHRoZSBtb3N0IGxpa2VseSBtYXJnaW4uIFRoaXMgaXMgd2hlbiBNb2RlIGlzIHVzZWZ1bC4gVHJ5IHRvIGZpbmQgb3V0IHRoZSBtb2RlIGZvciB0aGUgdmFyaWFibGUgYWZsLm1hcmdpbnMKCmBgYHtyfQojYWZsLm1vZGUgPSAKI2FmbC5tb2RlCm1vZGVPZihhZmwubWFyZ2lucykKbWF4RnJlcShhZmwubWFyZ2lucykKYGBgCgpTbyBmYXIgd2UndmUganVzdCBzZWVuIHRoZSBjZW50cmFsIG1lYXN1cmVzIG9mIHRlbmRlbmN5LCBidXQgd2Ugc2F3IGluIHRoZSBiZWdpbm5pbmcgdGhhdCBpbmRpdmlkdWFsIHZhcmlhYmlsaXR5IGlzIHF1aXRlIGltcG9ydGFudCBpbiBiaW9sb2d5LiBTbywgbGV0J3MgdGFrZSBhIGxvb2sgYXQgc29tZSBvZiB0aGUgbWVhc3VyZXMgb2YgdmFyaWFiaWxpdHkuCgoKCmBgYHtyfQptZWFuKGFmbC5tYXJnaW5zKQpgYGAKCiMjIyMjIE1lYXN1cmVzIG9mIHZhcmlhYmlsaXR5CgpUaGlzIHJlZmVycyB0byBob3cg4oCcc3ByZWFkIG91dOKAnSBhcmUgdGhlIGRhdGE/IEhvdyDigJxmYXLigJ0gYXdheSBmcm9tIHRoZSBtZWFuIG9yIG1lZGlhbiBkbyB0aGUgb2JzZXJ2ZWQgdmFsdWVzIHRlbmQgdG8gYmU/CgoKYGBge3J9CnBsb3QoYWZsLm1hcmdpbnMpCmBgYAoqKlJhbmdlKioKClRoZSByYW5nZSBvZiBhIHZhcmlhYmxlIGlzIHZlcnkgc2ltcGxlOiBpdOKAmXMgdGhlIGJpZ2dlc3QgdmFsdWUgbWludXMgdGhlIHNtYWxsZXN0IHZhbHVlLiBUcnkgdG8gZmluZCBvdXQgdGhlIHJhbmdlIG9mIGFmbC5tYXJnaW5zIHVzaW5nIHRoZSBgcmFuZ2UoKWAgZnVuY3Rpb24uCgpgYGB7cn0KI0ZpbmQgcmFuZ2Ugb2YgYWZsLm1hcmdpbnMgaGVyZSB1c2luZyB0aGUgcmFuZ2UgZnVuY3Rpb24KYGBgCgpCdXQgd2hhdCBhYm91dCB0aGUgZWFybGllciBkYXRhIHdlIHNhdywgYCAtMTAwLDIsMyw0LDUsNiw3LDgsOSwxMGAuIFdpdGhvdXQgcmVtb3ZpbmcgdGhlIG91dGxpZXIsIHdlJ2xsIGdldCBhIHJhbmdlIG9mIDExMCBidXQgd2l0aG91dCB0aGUgb3V0bGllciwgd2UnbGwgZ2V0IGEgcmFuZ2Ugb2Ygb25seSA4LgoKKipJbnRlci1xdWFydGlsZSBSYW5nZSAoSVFSKSoqClRoYXQgaXMgd2h5IHRoZXJlIGlzIHNvbWV0aGluZyBjYWxsZWQgdGhlIGludGVycXVhcnRpbGUgcmFuZ2UgKElRUikgd2hpY2ggaXMgbGlrZSB0aGUgcmFuZ2UsIGJ1dCBpbnN0ZWFkIG9mIGNhbGN1bGF0aW5nIHRoZSBkaWZmZXJlbmNlIGJldHdlZW4gdGhlIGJpZ2dlc3QgYW5kIHNtYWxsZXN0IHZhbHVlLCBpdCBjYWxjdWxhdGVzIHRoZSBkaWZmZXJlbmNlIGJldHdlZW4gdGhlIDI1dGggcXVhbnRpbGUgYW5kIHRoZSA3NXRoIHF1YW50aWxlLiBBIDEwJSBfcXVhbnRpbGVfIG9yIF9wZXJjZW50aWxlXyBvZiBhIGRhdGEgc2V0IGlzIGRlZmluZWQgYXMgdGhlIHNtYWxsZXN0IG51bWJlciBfeF8gc3VjaCB0aGF0IDEwJSBvZiB0aGUgZGF0YSBpcyBsZXNzIHRoYW4gX3hfLgoKVHJ5IGZpbmRpbmcgb3V0IDI1JSwgNzUlIGFuZCA1MCUgcXVhbnRpbGVzIGZvciBhZmwubWFyZ2lucyBhbmQgYWxzbyB0aGUgSW50ZXItcXVhcnRpbGUgcmFuZ2UuCmBgYHtyfQojVXNlIHRoZSBmdW5jdGlvbnMgcXVhbnRpbGUoeCA9IGFmbC5tYXJnaW5zLCBwcm9iID0gMC4yNSkgZm9yIDI1JSBxdWFudGlsZSBhbmQgSVFSKCkgCnF1YW50aWxlKHggPSBhZmwubWFyZ2lucywgcHJvYiA9IDAuMikKCmBgYAoKSVFSIGNhbiBzaW1wbHkgYmUgdGhvdWdodCBhcyB0aGUgcmFuZ2Ugc3Bhbm5lZCBieSB0aGUg4oCcbWlkZGxlIGhhbGbigJ0gb2YgdGhlIGRhdGEuCgoKYGBge3J9CnF1YW50aWxlKCB4ID0gYWZsLm1hcmdpbnMsIHByb2JzID0gYyguMjUsLjc1KSApCiMgdHJ5IHVzaW5nIElRUigpIGhlcmUKCmBgYAoKCioqVmFyaWFuY2UqKgoKSW4gb3JkZXIgdG8gZmluZCBvdXQgdGhlIHZhcmlhbmNlIG9mIGRhdGEgZnJvbSB0aGUgbWVhbiBvciBtZWRpYW4sIHdlIG5lZWQgdG8gZmluZCB0aGUgZGV2aWF0aW9uIHN1Y2ggdGhhdCBhYnMgKFh+aX4gLSAkXG92ZXJsaW5le1h9JCkuICgkXG92ZXJsaW5le1h9JCBpcyB0aGUgbWVhbiBvZiBkYXRhc2V0KS4gTWF0aGVtYXRpY2FsbHksIHNxdWFyZWQgZGV2aWF0aW9ucyBhcmUgcHJlZmVycmVkIG92ZXIgYWJzb2x1dGUgZGV2aWF0aW9ucywgYW5kIGlmIHdlIHRha2UgdGhlIG1lYW4gb2YgYWxsIHRoZSBzcXVhcmVkIGRldmlhdGlvbnMsIHdlJ2xsIGdldCB0aGUgKip2YXJpYW5jZSoqIG9mIHRoZSBkYXRhLiAKCgpUcnkgZmluZGluZyBvdXQgdGhlIHZhcmlhbmNlIHVzaW5nIGB2YXIoKWAuCgpgYGB7cn0KI1VzZSB2YXIoKSBmb3IgZmluZGluZyB2YXJpYW5jZSBvZiBhZmwubWFyZ2lucwpgYGAKCl9SZWFkIG1vcmUgYWJvdXQgdmFyKCkgZnVuY3Rpb24gYW5kIGFic29sdXRlIHZzIHNxdWFyZWQgZGV2aWF0aW9ucyBpbiBTZWN0aW9uIDUuMi40IGZyb20gTGVhcm5pbmcgU3RhdGlzdGljcyB3aXRoIFIgYnkgRC4gTmF2YXJyb18KCkFsc28gbm90ZSB0aGF0IHRoZSBkaXZpc2lvbiBpcyBieSBOLTEgZm9yIHZhcmlhbmNlIGZvciBhIHNhbXBsZSEgV2h5IGlzIHRoYXQgbm90IE4/IApUaGlzIHdlIHdpbGwgZGlzY3VzcyBsYXRlci4gCgoqKlN0YW5kYXJkIERldmlhdGlvbioqCgpCdXQgd2hhdCBkb2VzIHRoaXMgdmFyaWFuY2Ugc2lnbmlmeT8gSXQgaXMgdmVyeSBkaWZmaWN1bHQgdG8gaW50ZXJwcmV0IHRoZSBzcXVhcmVkIHZhbHVlIGFuZCB0aGVyZWZvcmUsIHdlIHRha2UgdGhlIF9yb290IG1lYW4gc3F1YXJlIGRldmlhdGlvbl8gZm9yIGludGVycHJldGluZyB0aGUgc3ByZWFkIG9mIGRhdGEgcG9pbnRzLiBUaGlzIGlzIGNhbGxlZCBfU3RhbmRhcmQgRGV2aWF0aW9uXyBhbmQgaXMgY2FsY3VsYXRlZCBieSB0YWtpbmcgdGhlIHNxdWFyZSByb290IG9mIHZhcmlhbmNlIG1hdGhlbWF0aWNhbGx5LCBhbmQgdXNpbmcgdGhlIHNkKCkgZnVuY3Rpb24gaW4gUiBiYXNlIHBhY2thZ2UuCgpUcnkgdG8gZmluZCBvdXQgdGhlIHN0YW5kYXJkIGRldmlhdGlvbiBvZiBhZmwubWFyZ2lucy4KCmBgYHtyfQojRmluZCBvdXQgU3RkIGRldi4gaGVyZSB1c2luZyBzZCgpCmBgYAoKIyMjIyMgUXVpY2sgY2hlYXQgc2hlZXQ6IFdoZW4gdG8gdXNlIHdoYXQ/CgotIFJhbmdlOiAKICAtIEdpdmVzIGZ1bGwgc3ByZWFkIG9mIGRhdGEuIAogIC0gVmVyeSB2dWxuZXJhYmxlIHRvIG91dGxpZXJzCgotIEludGVycXVhcnRpbGUgcmFuZ2U6IAogIC0gR2l2ZXMgdGhlIOKAnG1pZGRsZSBoYWxm4oCdIG9mIGRhdGEKICAtIFJvYnVzdCwgYW5kIGNvbXBsZW1lbnRzIHRoZSBtZWRpYW4gbmljZWx5CiAgCi0gVmFyaWFuY2U6CiAgLSBBdmVyYWdlIHNxdWFyZWQgZGV2aWF0aW9uIGZyb20gdGhlIG1lYW4KICAtIEl04oCZcyBtYXRoZW1hdGljYWxseSBlbGVnYW50IGJ1dCBpdOKAmXMgY29tcGxldGVseSB1bmludGVycHJldGFibGUKCi0gU3RhbmRhcmQgZGV2aWF0aW9uOgogIC0gU3F1YXJlIHJvb3Qgb2YgdGhlIHZhcmlhbmNlCiAgLSBGYWlybHkgZWxlZ2FudCBtYXRoZW1hdGljYWxseSwgYW5kIGNhbiBiZSBpbnRlcnByZXRlZCBwcmV0dHkgd2VsbAogIC0gQ29tcGxlbWVudHMgbWVhbiBhbmQgaXMgdGhlIG1vc3QgcG9wdWxhciBtZWFzdXJlIG9mIHZhcmlhdGlvbgogIAogIAojIyMjIyBEZXJpdmF0aW9uIGZvciBkZXZpYXRpb24gYmFzZWQgdmFyaWFuY2UgZXN0aW1hdGVzIApNZWFuIGFic29sdXRlIGRldmlhdGlvbjsgVmFyaWFuY2U7IFNECiAKU2F5LCB0aGUgc2FtcGxlIGlzIHNhbXBsZSA9IFsyMCwzMCw0MF07IAp0aGUgbWVhbiBvZiB0aGUgc2FtcGxlIGlzIHRoZW4gMzAKClRoZSBkZXZpYXRpb24gb2YgZWFjaCBzYW1wbGUgZGF0YSBwb2ludCBmcm9tIHRoZSBtZWFuIGlzOgpkZXZpYXRpb24gPSBbMjAtMzAsIDMwLTMwLCA0MC0zMF07CiAgICAgICAgICA9IFstMTAsIDAsIDEwXQoKYWJzb2x1dGUgZGV2aWF0aW9uID0gWzEwLDAsMTBdIAptZWFuIG9mIGFic29sdXRlIGRldmlhdGlvbiA9ICgxMCswKzEwKS8zIAoKc3F1YXJlIG9mIHRoZSBkZXZpYXRpb24gPSBbLTEwXjIsIDBeMiwgMTBeMl07Cm1lYW4gb2YgdGhlIHNxdWFyZWQgZGV2aWF0aW9ucyA9IHZhcmlhbmNlID0gKDEwMCswKzEwMCkvMwoKcm9vdCBvZiBtZWFuIHNxdWFyZWQgZGV2aWF0aW9uID0gc3RhbmRhcmQgZGV2aWF0aW9uID0gc3FydCh2YXJpYW5jZSkKCgojIyMjIyBCZXNzZWwncyBjb3JyZWN0aW9uCldoaWxlIGNhbGN1bGF0aW5nIHZhcmlhbmNlIGFuZCBzdGFuZGFyZCBkZXZpYXRpb24gb2YgdGhlIHNhbXBsZSwgd2UgYXJlIGFsd2F5cwp0cnlpbmcgdG8gZXN0aW1hdGUgdGhlIHZhcmlhbmNlIGFuZCBzdGFuZGFyZCBkZXZpYXRpb24gb2YgdGhlIHBvcHVsYXRpb24uIAoKUmVtZW1iZXIgdGhlIGhlaWdodHMgb2Ygc3R1ZGVudHMgZXhhbXBsZSEgCgpOb3cgc2luY2UgdGhlIHNhbXBsZSB2YXJpYW5jZSBhbmQgc3RhbmRhcmQgZGV2aWF0aW9uIGlzIGJpYXNlZCBhbmQgbGVzcyB0aGFuCnRoYXQgb2YgdGhlIHBvcHVsYXRpb24sIHdlIGRpdmlkZSBieSBOLTEgaW5zdGVhZCBvZiBOIHRvIGluZmxhdGUgdGhlIGVzdGltYXRlcy4KClNvIHRoZSB2YXJpYW5jZSBhZnRlciBCZXNzZWwncyBjb3JyZWN0aW9uIHNob3VsZCBiZSAKbWVhbiBvZiB0aGUgc3F1YXJlZCBkZXZpYXRpb25zID0gdmFyaWFuY2UgPSAoMTAwKzArMTAwKS8oMy0xKQoKICAKIyMjIyMgU3VtbWFyeSBmdW5jdGlvbgpOb3cgdGhhdCB3ZSd2ZSBsZWFybnQgYWJvdXQgdGhlIGRpZmZlcmVudCBtZXRob2RzIG9mIGRlc2NyaWJpbmcgYSBkYXRhLCBpdCB3b3VsZCd2ZSBiZWVuIGF3ZXNvbWUgaWYgUiBjb3VsZCBzdW1tYXJpemUgYWxsIG9mIHRoaXMgZm9yIHVzIHRvZ2V0aGVyLCByaWdodD8gCgpUaGVyZSdzIGluZGVlZCBhIGZ1bmN0aW9uIGNhbGxlZCBgc3VtbWFyeSgpYCBpbiBSLgoKYGBge3J9CiNDaGVjayBvdXQgd2hhdCBzdW1tYXJ5KCkgZG9lcyBmb3IgYWZsLm1hcmdpbnMKc3VtbWFyeShhZmwubWFyZ2lucykKCmBgYAoKUHJldHR5IGNvb2wsIG5vPwoKQWxzbyB0cnkgaXQgb3V0IGZvciBvdGhlciBraW5kcyBvZiB2YXJpYWJsZXMgbGlrZSBgYWZsLmZpbmFsaXN0c2Agb3IgYGFzLmNoYXJhY3RlcihhZmwuZmluYWxpc3RzKWAKCgoKIyMjIyMgU3VtbWFyaXppbmcgZGF0YWZyYW1lcyAKCkxldCdzIHRyeSBvdXQgc3VtbWFyaXppbmcgYSBkYXRhZnJhbWUgYXMgd2VsbC4KCmBgYHtyfQpsb2FkKCJjbGluaWNhbHRyaWFsLlJkYXRhIikKI0NoZWNrIHRoZSBuYW1lIG9mIHRoZSB2YXJpYWJsZSBpbiB0aGUgZW52aXJvbm1lbnQgd2hpY2ggY29udGFpbnMgdGhlIGRhdGFmcmFtZSBhbmQgdHJ5IHN1bW1hcml6aW5nIGl0CmBgYAoKVGhlIGBwc3ljaGAgcGFja2FnZSBhbHNvIGhhcyBhIGZ1bmN0aW9uIGNhbGxlZCBgZGVzY3JpYmUoKWAgZm9yIGRhdGFmcmFtZXMuIERvbid0IGZvcmdldCB0byBjaGVjayBpdCBvdXQgdG9vIQoKSW4gZmFjdCwgeW91IGNhbiBhbHNvIGRlc2NyaWJlIHRoZXNlIHN0YXRpc3RpY3MgZ3JvdXAgd2lzZS4gCgpGb3IgaW5zdGFuY2UsIHJ1biBgZGVzY3JpYmVCeSggeD1jbGluLnRyaWFsLCBncm91cD1jbGluLnRyaWFsJHRoZXJhcHkgKWAKCmBgYHtyfQpkZXNjcmliZUJ5KCB4PWNsaW4udHJpYWwsIGdyb3VwPWNsaW4udHJpYWwkdGhlcmFweSApCmBgYApOb3RpY2UgdGhhdCwgdGhlIG91dHB1dCBkaXNwbGF5cyBhc3Rlcmlza3MgZm9yIGZhY3RvciB2YXJpYWJsZXMsIGluIG9yZGVyIHRvIGRyYXcgeW91ciBhdHRlbnRpb24gdG8gdGhlIGZhY3QgdGhhdCB0aGUgZGVzY3JpcHRpdmUgc3RhdGlzdGljcyB0aGF0IGl0IGhhcyBjYWxjdWxhdGVkIHdvbuKAmXQgYmUgdmVyeSBtZWFuaW5nZnVsIGZvciB0aG9zZSB2YXJpYWJsZXMuCgpBbm90aGVyIG1vcmUgZ2VuZXJhbCBjb21tYW5kIGZvciBncm91cGluZyBpcyBgYnkoKWAgCgpUcnkgcnVubmluZyB0aGUgZm9sbG93aW5nIGNodW5rIGFuZCBjb21wYXJlIHRoZSByZXN1bHRzIHdpdGggdGhlIGBkZXNjcmliZUJ5KClgIGNvbW1hbmQgYWJvdmUuCgpgYGB7cn0KYnkoZGF0YT1jbGluLnRyaWFsLCBJTkRJQ0VTPWNsaW4udHJpYWwkdGhlcmFweSwgRlVOPWRlc2NyaWJlKQojQWxzbyB0cnkgcmVwbGFjaW5nIGRlc2NyaWJlIGluIEZVTiBhYm92ZSB3aXRoIHN1bW1hcnkKYGBgCgpXaGF0IGlmIHlvdSBoYXZlIG11bHRpcGxlIGdyb3VwaW5nIHZhcmlhYmxlcz8gU3VwcG9zZSwgZm9yIGV4YW1wbGUsIHlvdSB3b3VsZCBsaWtlIHRvIGxvb2sgYXQgdGhlIGF2ZXJhZ2UgbW9vZCBnYWluIHNlcGFyYXRlbHkgZm9yIGFsbCBwb3NzaWJsZSBjb21iaW5hdGlvbnMgb2YgZHJ1ZyBhbmQgdGhlcmFweS5XZSBjYW4gdXNlIGBhZ2dyZWdhdGUoKWAgY29tbWFuZC4KCmBgYHtyfQphZ2dyZWdhdGUoIGZvcm11bGEgPSBtb29kLmdhaW4gfiBkcnVnICsgdGhlcmFweSwgCiAgICAgICAgICAgZGF0YSA9IGNsaW4udHJpYWwsCiAgICAgICAgICAgRlVOID0gbWVhbikgCiMxIG1vb2QuZ2FpbiBieSBkcnVnL3RoZXJhcHkgY29tYmluYXRpb24KIzIgZGF0YSBpcyBpbiB0aGUgY2xpbi50cmlhbCBkYXRhIGZyYW1lCiMzIHByaW50IG91dCBncm91cCBtZWFucwoKI1RyeSBpbnRlcmNoYW5naW5nIHRoZSBwb3NpdGlvbnMgb2YgZHJ1ZyBhbmQgdGhlcmFweSBhYm92ZQpgYGAKClRoYXQncyBhbGwgZm9yIHRvZGF5IQo=
From b31f80d9a34855d75bfd7e0c8e4fd807e59a9145 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Tue, 7 Sep 2021 00:09:10 +0530 Subject: [PATCH 06/55] Added fig 4 --- Module 3/Notebooks/fig 4.png | Bin 0 -> 209171 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 Module 3/Notebooks/fig 4.png diff --git a/Module 3/Notebooks/fig 4.png b/Module 3/Notebooks/fig 4.png new file mode 100644 index 0000000000000000000000000000000000000000..6472dc32a4cbe79ef29603067415801c72968f87 GIT binary patch literal 209171 zcmZ^~WmFtZ7d47Q&;Y?T1VV6kcL)}I7(4`-;O_43?(P~axVyVM1b5fl&%3_${kix4 zpjiw(Rn^s1b@thNpO7C4QfSD8$WTyFXfo2`%1}@+4Ny?9VMs8*C$v`@?!Yf-J7pt$)mit%15ux(ul`Q^_H5nl zydOX9x8V%h;?1O)sHhD2=MV3)E=->z{1rr{MXhq~EzQlX8@t->DV7pjR%b_EJM4^& zogAI+j=m>$a^A zDUO&@g2|4$N_4ar$Ylgf{Y<&RrvuM{MMmsc6&Sahvy7Ey(fOoxBJ9K!cRLh<{!tHBHl#UHtl@Nhjna5q} zF}H<5ek{DUl$%KBp4?cMytUE63o!xWt&#MU+eYLeFWX|1%%dEkk)ZOtF7*C2XKr)Z z^yVqoa)&-yC88X8GA@hBB};~5k>ij4Gfy$Wc%Lnov;VAt=l$kCBNg3#!DJF$trIb6 zsV_&Y5c{ZbEJdN~-vsd+cQn()00)t$&qs;3B7qCDB!YixGqbLYh>l3TSYyPTRH7p9beZ1foC1DkyzR z@vTb0e=&xwjG}ds?DQx0`3Rnee@3gZ(5K3;Pnc(`)&*m28RW_Lj`%z1bAa$pxOy9W z5~AnT!4sXX5E=iV2u@5U?0KI#eVyu!k1Gi3qF^nE0PJxA6(%X?vUsZ;2vOb7q03Xu zoCx#*Vo`95TAq|B?!0JOng}NrQ@7QO5aUYf7>hTwvJ1 zY*PCiQ)Wh{n5+iUF=@P(yhKvVIs{Y^fdkPgeQjL|Aq#=j7)D1a27y&mG<;vz$$;Fh zrdDy!WmonuIwz4}*QO~#X1LpI6bU~YmynmbTT{vAMUwiPi)?w{Hh&dneVtE`Xum$0 z&=+J3CGYw2X92Y}1=DjfuO`2HT>lGb%2Kw9{STA8RJ0Et#xN)A(2GkY0>9&u_~h6` z2PcJyx3Z5mZ>Y?j`ro}#Z5zSzfYROTkk<`wW>OtGib_{LoW9ETjv&}pb3dBmv<@5; zaU6Rpsx@LSKRY@1(P2f*gJ=v4tfb3CQHg7G^yn;*%7;za2}ArJdVhtX@l{ar!-4sH z{p&dl76vY2OFzO&X)7*&1OYGmZ}1kC+Gm8wrp&s})wI}`wwOJ#r9dk-0uV8MwXfTI z6oE;q0r=e8uG4{?rTnbhMlLxyg@wlNZ?9(aHoX>>EA zeSaz3$Ip9U!xP2CBgf+M8i@-S&}h}RiIl~IWtrALmgLTzKA4t_(#n)I?PWF*7pO8< z*!`j>|6pKtv(8AC+~cu<};$37|vM zUWp6lT}{>azDa`*;*}_L)xmetiQPg*!y^8_hZmd#*&o!F#b0GJ>APvH}yTmaNGBj`B_c^Z=jNzL=>eUcz^d zYE%9!)%>%zO)|YdOIY1&n2Vf(gk_^yQBaqm%mqFi>J)3|;5z)6fDu$Wd^{oi8#^0aGl6$WBP3 zi@=~PW{fzTlR}zp)MfCAiTEQa>x_!BayaY<0~FM91v?HbWsnKGa_h_g#<`gmiHGI> zbOSM4sBF8PUx}B_!3C?aV@CXh@4SerD(^uUg z{+{Q>Lu`f=yfcI(Th8yG@oO|Pp9CE|v?*8^&s4G9nVT0jUs>YAz##r&X=!N!orcH7 z+jAPqRSbTwWHzx#piJ74=~z6CUi;hAF*9d#m+)8&=*nkS`yp`$ej#)?6i?TAEB((z z`_oZb$II2o(b4ac+iBixyn#LXyrWjlI@75%tJZcCMaUj6Rf%9l z=~+zwY6U5^UZEgYwjK?$P4Hjm1d*+`SXHThPoVvd@2OBYQlW4yplVp-%G|VB!6Q6& zxM;vnHvN?mjQEXAxfQ?MVYZH1kKdg1e~*oHZ&JJI+6;%UDbTdMma_$8K_B_?*qeY= zx;U^eQ+9;hPAwjOxhWk%!lF(YA(|j%Bo!g9CR`SId63Reb$%4{2gYemXC(c#vUGCo z@bIwHhR45uLhpUyhir7ibk?4#3$y0KOrQqy6hRGf2xN%t{h_GE%jG_?LaU&+2NLd$ zHKQOH?lV_$+(tjye>~{jl(UnNp6_%DKl3!QGs@-_8tf?Nd(7_Ff`CY#A9U<76Po-+kvCM^Hb?_cs%^ zf!LGyoX>v#zlT9Sql4P>?8)Iq+RBrXx&-;P#*yBxrWo*!zfzJ!yW{^B^w8*XJJlc! zPE6=Eo2Rr$2ZuIpxI6>E(c`Mbei7B6!kzne@H+K-?S^P#+IdpWYgInW+cBHTW);j&tj>U*m z@A{Qwv{y_|;0bOoR+bS=&-@e7VgoHO7FpU04?B*OTnD!-w$J(<9gP&4CKn42l_-u= zK;SiAMN->stsWK;Lrzw)$3wzJ^RV{=_P(b;qvVE(iIK66O<#hBj)&2+ShZohI@rL3Chj<=vbF({yK%EfNqy!fsE#8uOBoCJ(J_ zU{(Xmj>IHxUC^k}ECN=}Wh@i}6DE1|iwL&w)^BeKT%P3F`mqJPTWf7?y|}*aL8M8F z3ig7e`4Y|I?nP(;7<7ijW)L1*=|dK$+RKYjXaA><>G#n|@$te@wW?DQVh#=x5)v{t zH0r}RI0-lWhVo;VJyGwsRi0}t8dk|_8VjFrPBS>n)Fq7IZ8X%n;5ircyw(KnU!b|R zxeLgBv>|4tHbU}Pv$R84``-*;Xc-v3w7DW+AZ`mO{H`oTUh`%tuA?F`R71l|OiWad z*YMUxoS%QGh;+ThNnM!Ir+*q(=jVSB%L_64UHeA~ zUY~Bw)|xp&WJs7ghvpA*v5n+(GGFZQ@-mi`bd?O`=MSG71_EJ~Zky#=bA?u8Zfa6ekn9(A)H3y| zJ@CPtkLf& zDJf0LjGDD@{v>>k;@AONC`pW3$oC9djon`v7%Wbk9m+JSXzA&9OTIM!>_f))!xj+7 z2F*SXWJqBQ!Gi4_uJ;+9?@xQS04&pm6_%7hr(Ul4$Mv-N_CP2+ZI?sjX}dFtQMcCe zl{dM|rY8{X;JPw{504&HZG1~uS8F^*7>?>MpUU24!=Tr`dMY_%TmmUMAdWQZ4<{HP z^Kw65Z;OkKbv#{$Pm3Vp)c?h-xx2eNsgx8?uiN@CB}J;)`fI3qCvv6Djcb45tBVVF zr$iWT1-Kp=F(EF)PkQ^~WCYGgl3|O>wK1xLr6nV}K~G==3LfL=M%{-$l1fUL2*lp} zQT0Z9M&u&)SJyPi2g+sY6_b_31VYTVXPb{fN}}y4nrc6NBkU<2__rylg|kkA;`Q)( z>E&3e{SeS%v7&q$XPqDS{0J8>@~WW{b(hJ@FS|L6pKcDzG%EUehKeQwZ-H01q8=Pa zP{dBjyjbHgFij_HJZM#v#V zzte?ohIlktEc&o|BfW!Q&1|~vLq|-yK{!-plD;sn{{GTmJL<-Sgv?ar$2*Ia&jXJg z20Q(Jh!_;l%<>j14QOkinx9nZTo%hs=8v}8$@ixljn-QfqYAuZNqMmHY3zM4h;_3O zYGu*hrtLB+u94OoZ?E{HySwo!iUK%e2Ib612h98aWAJG#IONz<(9(iW4?9JfuC?!*fX!(zU0VueZw2S^NKDh$%`@sY-X=!Oe&mS}Pk7OY5b_CK(ijH-V~M)@kAdK2aKVz}KKvWK(RRJz5>Zn0eF`vS8H zO+HZlGlSoS^@@ykccmL1g;{g+#A>0Eq;QjK!yQ{hMqWm<)}BTkMl4dGp)P;7FG<(^ zsHBM3;b^wVYQyDvUp_<71K6K`UE)P$WQIt19fb+s0mS8UHAG$2diA}WbG}0Bd3c0L z==}xdk%$Y8*Vwu&k)cQ-NrRgZ4H+-GGfX9l)4TKL~NbrdJq(uJG z&lrLan~(ppq@F%E9k5-sN=1>T5Ts3j)ojysKbt>a`lMw7!Ah{yge?; zzI%LFc>ZhmPw@3-hWp#%%k##&=hkjLPlK+gJ11cZl^QVtUSx=YZ&0&L-&JtsJ7Q0$nkpJ$U1 zlfRDBe~Q%BlRzK56oRiCBzg?5F#aFPKQzhAWIw!aUFA<#rBkQ(+KE_T`6_LJzqx&L z!#1HW5|!rD7l!9?*@w5*?39GpV3O%#JUm;{)NhD75JeV6fJOayvDL!@%l~wc*A#2u zY%-qCa)12ybfwX1DHncROIt*v5|ogX6y~=6E8isuy$QAB{q6aF-HmDdeJW4NFy!iL zq>5ZDhIIgybhTEk45CuB{@mDMkULO-PJMShA)r_N7fN0(jTddq;AmnWrIeo-O3MGH zH{kkmfNVelkBf-=+NPlq*dAg7kxkQI(&j64f)0^V!emg(;PO`z$F!I|)|@sr?#@>_ zTyInF*FEs)AgeF}Qk(1>;q32hj4wTb7-9+{p^Q{T`QFfo0hZZ0e(O{)2&X>JWSwK9 z?QL$dN!TF+0&!>&}eQNu|<@(yv-)9SY9Z$5= z?$qet3tZATrLT=-lMHxmXWX9~Foa%$XI}hgXFpMoVOmJu`^*@+prkH2ftQGdi4 z+&!*rAzipyYjNBXbr@l2Tz#C$LMP$<^pAbIrLfs`XqyV?mD!TqvgNd)tg`uNpKM)Q zO(lQ;Zox`BuqIt-CwyiglH~c7>?Pal{jG`UV5VilC`l)fjWp?Zo%Pw@e{cH>9ph%x zyXh>3XHSnhc)IqOg|J9Kb|!}p+tiIl;<_qqL6Se808|AY& zE49$$5LJ@4ul?)Ep9yAyF+J}0 zE<`eXcI(ZG#x=*&`h|7poe1u-Opmjrj21`F^Q-d+e3sk?eU`*su628C*SSLZW2HRF z45xLMn0(4nzXff(u>=k6$k{&Bhhe%ZeN5rChs#q~L^SssvRO3OrwI{uu(tBc_{ur? zHB-w??TTev1+bYxq8975@Qp|dI!@Ug6gqTnl> zId`Mi>#-geB$jJG-OlUnPu7<)n=7Z&X`H&IQ4I~Xo$e_1j)(2A7)|M7bqny$3mJ(r2ZPS+g-VqW!ql!u~jFu0k7-UBc3$_8N2f&5T-*@eof=WjSHM> z?@ncl+<5RwU*}7+7ChE3Xah-Ha&5FWQ~Lvju^(M!>lHA7HwNGB!vmc z>Mt`Uas#P{&A?n=|bU98Ezh7jV8b#U%X&;xrX5k&<l5U21sKit{=Fuw*8JuGjUzPQa`8wH{^01T-FG)IA7?q*SJ4kF{E)NB_$cQ zxi23U88~V++aI2-wRAPmc+DKmmGL>8R0F(&TABLi8OjbgP<7!txCv({4(+&HZd6m~ zd1-?A*8S>|`uYA`iX&ty$1uqA^=T}f#qM;u9+aWq2D256S!92_jDx*BM4c6m+1br6 z!0_6%6KS^I+Bf0pxR7F!@i?cUcfQ<)Qulb!PwVRO>zVT?&{b1|0;}tzL8XA#$>YKG zuo|6Bev8w&XwZ}hu`{bN4KbhOXLt!$JBs01bywb28*xzZrt?(L{@CFMsL}jn8{>)0 zh%}+aywte38Gsii6=?3kWFrJ43I(%l(y5bwyw^X{Y_udvByqRGIl?XiKm zoR(Z-Z7(!f!f&(S2jkV4vawFr97!-@5ORN`V`HPEYk|ysZQ9jP)7SxrJwsLxw{Ns+ zY~jxy(zvYNZZ+&^>1Z1)*I@iOEmpEKjK@-Ue$g#!`IirkjhM|f&nccg40%Jpa#^j1 zV-qdB0T6rpDBv2~*p$V0CZ;yM1IBwl@#~G8cknhNDnk1Hmv3Vz4L?$u^c z=^96U!diT%>0BzP%a1Pz$OchirYk*K?gmJ>KHalzJg@KJWA93XT?va^u3J1E@ph9B z3KcchK!0r|;GGO>PXebfi5E(WGD96uuP|o@BTxChf0so@K{5C`;M1+}hdA_x3VAUF zB6xpXmBgUqIxIuYWi?NXb+Zfi{h9~JPlPAbQtwZe^7sl|fDC!lmmQJmXCoHm%`Ic! zFoWHyNd?6;pRIw#RDhcj+$N3`+w|HX$_rY#%WQS@uhG(WV1-kqy!e1q5kLi{7YSW@ zHmOX3Z4K!?j8Gw#i8M1@e^EIDxBl1rJWM<+?)vX+@X)3n#Ff*EBJ} zdEfNIc-we?MRyv_jyHd44PS+s4f(eJ0Zsjij11+Z(`8zQ`g2On(Lm}GaMm^LADLO3 zwR!eP(r-DPE!O^{{wa>lfkDbVuPWGwx*6Bgs;$jdXJ1&w|9)W4H$=aHPxG+=EgAuu-3<~w3pnu)&H$28n*q>)&3 zRqq5i!5qh!mgLDgM%C9z)7N5?)`Qt@93n2LCiF`PE&$RCs{UnDi5@;h5KVfNx8gB^ zg6nB4TWs*cWHFIJ0#)F@SdAB2C@40y1|<=8L>ivjSBR+i7h6GO0++pUW((zA+fYdc zx>eV{sA$>Z=Z{~kF`CF;YRT=Tuj3SXQ>NXaiyn`yv^{R?xwG!i)<({0zx5emLB?f+ zW@5TiC7=^H$`;~3;W-`8N9d`CWgBW}+rX>C0^}nikXl(Bk`pA?*4otqX+4x}U1T1& z<)RG`4I_~>)K#IS5lh*vK3wPKwhh|Y8$R0F8?qFBT0$fAa3Q}+rhxJDeh%sYKxdn| zQuM^ROZl#!que8oP0Hi0s4z4z@%v)Swe_u1+w4|r$cCIw>)MOCsTmTNv5-h-gHX}b zJlA2GFa423TxPgMk5!}WNel>GYie3#{IEp6i*=-fJ$1#>o7l8q6j`X$`GC@qj3PgW z>|5BL%I{rbl>t%2yJNv*b@X>VRM*5(A4xTMkgnizQA#lE3n4j4OpDMTWDasTvX8!2 z;6+pXi=pPG0Vsw?4|W-(gmB!3t0f^h3dFnfj_qMOfUrHK&T>DRjrmf2^!^a17)@u2 z(~wR<%Z2pvMzcz%&#HWSaAy#Hi^y0h{V>t5*g3{-DdBo^0IcBk26;2>eIP}8_%qJy zHk!U|fw{QCF>F!>x0c)oHFD@1q}eiT)$X6z))lJbU0 zNs1frM;0f+!}r&`D(C&uIpie zA0m4HDv}FCGv&MS83!&1`>WhyjUgZ0D&p-%sS%xY^;>j}m_`kE5BdlpFERR8W3=h1 zMcTZhqtaKzJAe>$NVa~zeb@njTrZ5--f)7N+7-!~`I#TzogkX1{Jx0DNg>-3n zk7>%}a+26MQ*MDn@)2_ci41J{hNR~sc^U`gzoiZ}E(%6E=82{{aCCJAuW&X=S$OQH zm}J_at3MlBHf;r(RkfkZ`iy7r)myH)9?g~rwZGnlU{h;*z1~u1I4gs}gt)jfh4Sxf z=U!1|I{@6aeOs&n5*@@Zm%GM~=?c3wNPu8{c_u-+T#5LhmL%DGQ4Tqk?fN)0#`LP}VAVzfv zId%o$tvc_>=SfBM?|OG8#K-G*`G1fE=LVV0S7vbAP&{5N3BSi6ok9O7&Sx)z?Zmz3 z{FZO>OIV)uD2!UySE#lQ$OZuXbau1|W-v!BwhvKbf{`cAnm@jxP9uQ;6RqS!4L zD%YwF1{lDt2LM(fcG`lE-re0NwHsw|3k!8TU(W!zzc7!uLizpC6gI0j_oF{2ys#!% zxX%y*2q;Hm$|SnFyz0e$yB7!+=!E=8C0f;gy$i!jOFi7~fsqy%4n$fUhPWP)k={Vl zKZWD=`?N@SL~Sz{e~kF~Cdw6R&t-kmnO?O&+Ec0*&4em~p4~?!oA|OjAauCi#z#Lw zN4MEwv(pc3#wP2PhPt|0O3W^M?+=!Hr3r{(VJTT}TVb%gkGpX-UxDBa-=A_&T55oB zw$&486Lg@4cEo_ee9H({QB(2LJPebGE0W7t{-ZGgh)B->J@ch-^X0{T@@jApQ#o4% z<*P4D?{F&Gi@Nf^FY(jNU^fb9gBcECPm!Rd4=QI{(R%3Rb7WWyBIuoivn(UoBL@B2Vdo_GdmupWu=K%Nq_w^76kHrua@(6#4|4_lnNlYlk=*vm>nTI4|`6m~0i`%}&N``jOS_a=ULZ zn)b=xa4s}~t|R@*=sA+4*3K4}0hBE$si_v=Vhk*rrWq(AR|-TZzBi4Y9H{_G&{u1& z=F`=#HT_@4MnZQJ1C#7gl+QC7l9q1oe)mxX{2%X8ES4LFHZgvSTmwW5lU_S97j4t4 zFe0-7a4_Qhq2imq9N~B#DoWSZRXQwmakwp=E2}0EH0NG4x`*Pfi51k-!6{(RdgootARkmWu__7OLm;cG~I)hI?Zj!77)ocTFhrmuao1)OG{ch)qRY#k_P9VTg zZq_yy6&C|r8$@D7^R3gtW2NB~@s6zXZ)RM^TBBkXz(7}MbyT+IwgO}dB0BN6Z{Lc` ziy7d(L0D)6i)1uz`fjO-|%~`6gbuj^|IP0 zQ+L9a=QMO&js}&Y_^$>7(TGCtK6%{UE`%k~4-F4DKMj`!p%J|ee!(~gBEfy7&L886 zR9>T_Jq>No(df^hgc<5cT3Yogu$pRJ(o8KOqA~~s(pIju+zBM%H`!|c4fn+IGk+x_ zp)Aw$2-r{0xOil%4HeeUcNPI!jfsiz`nV#B^8gVHu=osGoQC{0xuRLJvY|7|Dp7ov zAY=9Uld6to0996Iw1De>N2oVg()5CJ^skN0YY1Dmnu)$Dyto4ynW@p)YE?(_OCQIA z?o5%QUifq(gVx>Il3yWnDd@m_xehb#cHb9<7=FK7aUg2o$^6|17DyhthynYGqFg(> zwC)dqo5WdpI8N(|Zft0BC8P=_%$Mi;nG{P1;ajmr!(zemw-S5XdiJYDL!=e8|@y| z#R-u0au+u3IqTB%rFv|FHm7sJhg>tjo1^qa3eY<|ujeazc*Xz?!R_|QVGl>c*W{?K z4EopH) z^Y6-+iK`LB7kFZKHcOHpCU(PIX)i_&Z}hoe!h`^Wf5 zbtxjl%j+h_(PFvVlPD5MBl8*hOY6!}^Xf{-$x4DM0jbCSII*I|@wC75=XbdYX(5A$ z5Kyl-StDW-5e*FuBmHVL01+`|MdakGp1-BB}Sl4NJ8SDE*EA zsw6L3u;ZFS{p-S3@CYo30k1%Iy(j{xKhU@uAjZjIxqx*qbPh{Tn>#39rnVqR-L^Jto~}1!f2p@VW^_ zKkscJuXL1r!IZ-OE85zl-(?R8e3?34utpw%Q}j7MPN6pfhB5lTRL-g3y#0PXb*_wB zF_YhRcMzZif|{n8wAx!sn~_JhILzkTpVwRbo-kUUQq6GbK^HG5Oyqmkl|_YxK&-;o zqJN2b8A)OQf@=>D{BDlQs@yO4k{GlaI&tvm?lT44e#%XvSz9i(K8CZ6a|7(hR)B<< zt|j*F>3nwu0C2S0?H>Uy$Lnc^&!)%6r4Ns3H80C?83NjnOTJhNRim3P*JZQqm0qp- z_3sy%kUPHmJ(<_lP_2>dztK#)x5ewK<|A6U7)8OyU4ZkkE_pjTu0rO-3nvsHY(xfV z_rvG&j--@?zrXv2AMF4`gqvVtHQ@GYbG^^El*?#$f2=)ZE8KATmm&QIAexKQ#`W>x z(O&J8mHZ)sqO8aiq%e1>GfIearwNxclQCo=K(+0x=sK+uWpc_D?GTv>!$( zir=XdYj4eM1ix!L|KT&?d0GK0qi<~KU}B!?pO(1pSLJ{bn}1f?V$N_l%Sl?U+ddY(K+ zTe$&)s|^+_kvvXvx|X`Y8KYHic?&GQpXw=s9)y->RvoX7_Ac`$OYe^pUeV|v%B`m8 zhQVGSOx+0NyBOp0@>r2hyO*CxQZGdu&fqcVhP!=`Lzfn&$E#NDrbUGHy{b0oVTP{& z)z}_xQ_-n24p3dM+D!ls0^=Zb5=DVq)m3$ev+2hX8Wr_Qkk69-D*O(>+g$e(Srrx* z==XVt>@9vCKqoGqcE8M(NM4eRAiecVvl<^6d)=K;%=CJLUsW+k@U{j7Qlv(zC7!>@ zW7VZ*QS3sUkaqhIh3KnACG781^X@%?GeM-9#_WZ6 zaI`_nWeQUx)9r8Dq0aBG_ds&g*M+e}bkWr72PTeh&M~cDtVB2KqjPrA&?RX!45#e5kL4%JF)tvU#_OHxY#9Zzv-t4eMAW+dr#G6 zj)b;r4RSvgpwRA1yVWseDHy_{b{t{U!lZK_4k4VK(4Fg4KS_!Knq!Wp-)Egq#UiY* z`hjy!VYm#$vXi3iRvVtHH;upNl<%?-KZA9|Jf~5m;Mk&N+-QCY7fM^x{m|8&&zDh= zLI2PxHtg5OB#eu5$_H|<7JI%U?`_pqQ5hpcQ2O%6@L%MvwC#vG!<68gyM<3tb2DKD zF+XTEUxqYLG%KAQomqmYHVbRDvU3^zkCuey;~VTVi<#Inoe<-+B~NE6y}Sd{7RI{h!J z<8q(qis1&7;EVPbH8gfwIeq;mJ|S3jL6r{@Y1Xlul(B{WBkY@4@pQUwnzuiCglqpI z5IZdyGalnHekovJPh&xR*#~Tcibzt+cIAA+SK7?DDto2jjDIkQQk8k{PKh=t*Fqg2 zE|y?(%mGB_(Ae0};Ak%TFzl9$q%m$O_oz;bV~)e>`;Yos3J!S0jPL3kv1f+(>oQ)&}wbhvVi)xN#*;*Vw$;P7(Gu^^Xv+O zN>NwVzM5(AZ1!AxqRw>A1vF7^&ArE?06u?q^{eV{MAD2C$}2;qlHS@&Li-=&p>m#L z9L_g~_8n$)GXfJ!D^o3$6j?ND$XhWS!Px7TAOqA-9O4`^V3uBD#KlhJuMS7FZY2=u zkRwzS3$abDYz8_yk6=$!-byObogHgZ5bqKcuSG5l-6qSw2m&`ie6niAG?PcNnezgq zAM26l?l2~R{A1_QtjvF8HF@z8Vsi^DIe(D=mDWo>AF9qlDiRPWJMyWxDADt~v#Z%5wnzw$SaeSS zrxF^CStDABdUYcLEKh0aS@(=u=Zy)Ii-tiFniM@4HbO*8L!ncQXj{=twAe)<0@1VO z$8vL5&HFwgZg5=UIJ?8LxVY{2;S8sjy6o&tA;p(}fClXG_V-_=^Hm67YS9HK3Z9#j zPiUp1RE`eK!qL11wp)i5CzaowMncXJm(mI?i5P#NKo~x)TP6?eLyrcp*X3pyRH}a8 zy;C^*rLzpB4g2#}Jry&LYD}O`w|5)WCy2ARqq5HP86j5(dl}*qqR*nzs$iah zfHT;~G!r~k>S%yn$=&a|hMynNC3Ugl1|exOuD_rWuVww?dUxV7py>IZMq_zUGcf$` zK7Kmj%Ll{Tq53x5g=H-idU;I(_PCRyEI?6Y#q4<5vXPUaL8MLW$d6@1{3 z6j%-U!DX>p2kkuiibFn#(*j-K5Mdwk-(9HFqAM<&NU&gr>^4`ZLitV!QNH3*49^H9 z3@3_Nc_J}Fjg=aD4jd@m8AuK@gtv>4|Nq?@<)jMPO^`+SgmdKoz+h0ec5nM%OL~U0J^y{X zU!KT&U{w#=SG$Jj2Y5j`>A(Jl$QkM~5F?qh=U|r05cQYgv?=TSN}o0t@NccDMb`j# z=P(}Oe7TNO+OsZP*53{oxWD;ISjgpZ#)QQXA$p3YU161}OkLA%-LOy2vjV!>O8vOe z%T-DaDn`n-OF6e9A58HOD`5Ek62aQSr8}CMJfwcvyktk1|Dy2&_SjL+Zd!1@v$+mE z+(*8b4wFep+Tu5b3``PdVlr)9>DPmd|Q6*(UC zV9mtMP}Tg@Zmrm{ zAJ!xzIvC#3wj|u76@x)nrgYPSNkBk=N5xyq(Ey3856R?0e?F{Cj(Qb5C0Q&_*L#X!4e@LpoqI z6V07aU(`TGCkElyTP|H{vq=v@PE$+^c9PT#g}QLfX4W{vHD> z@qhm3Ye>SyU{%jC7y05GATmX(aQc)HiKjvA6*vEpO%5z1&FCOkYQ5Ww(sFckg#0F8 z@PP(x`nL={*fmF_RKSXdJf@I+AqxG5Vk9pP=a6pA{oF7*ZwJ$5OQ(f~nIRFruMbh9 z9CUfR`WJB8LEv{fQ7N-|4lHmb|C!|~g)c{*u3!-A8IJ#;a#fN@bdRR|yk?xywh=of zN>@=)m+5mm9gBpKlz5M7ryn8aco{JuJ435LqkI~ZPCw;H4Z^pL$2{i3D@$fp&lLSApn^=3+mp0N#L{}fr-Bu^ax z`B);oPP6k6)`Y}oOs38fVsLA<_@+_#gg6Eo0eljVccP1Zt*92ixn(=1(m)@I|CWMA^cuEq*0wP269-jhpmIlx#4gmU8OlAgZgO)G0VppX_ zi-fR_ez+^cFDzj=>HC#P!q8P1$9ihdW)qS!R)qC1>9#t|l~R(J6*w5+KMn3mHa`$Q z{y6YeQsXc>iqCqzG2vQu?wN(C)YN{Z(wgiC8i{&xb{PeV&j5>0{tg!wlk~{&FsaAQ z)VasG8<0O{-H|O?$qh0l!LD}2CncS){~_{8tOLPVuGc;Sc+7Ptg6r;l!;8Id1ePYh zqD-CY@Ik&WtkJV++_MRGh5RvKgi!RqOwG;nz2!f@!|j4z)&52wx%t6qDFg zv^L9+bK{?U^M2|;o!J)x0)mc*J|-ab_#Pu#{xcAT6IdC9LZ18rJiY!g()q>3riZMe z1<&+m0xnEY;QR7bw&=*W2d3L@gj*J^@xgX#*H3I%~&Cp19cQLix1T)>cWa+YG`_jHu{bw9H4s^AiQr<8bl4W{ z)lx(UGf1k_AKt-=wwIbyX)Tqd+(Xt;ua#EmpPonGq)6nHSQB)-&-a7JM(xi_fZ%+l z(_)~mqZ81D$l%{c#Vs}akVihkTwGjEZ=fatA0U&LB2wZGwR`#i%`L zYGCmB#Gu3;*(UtI&TP05^lwAtRU3^_&GcHeqgQi#K%X(0>yQrKUY{{PrD(GUCa47; zoC!>xNNVrmtE-o6D%W{q4I7yzME3=g_!DOkMicWp0~F?IZ~#RT8j-NpRr*r11D*R8 z65F5+q4|329zgH&IbT4TKCVKQT6g`&+qm5yWu(&!MN?tql$)Nf>$EuKkSn65bJwOt z1CzlTzC`zF{xd3(M#v&q2=%zRpAI)&wVFbZRqh-=cdh0AWc9B~Bqc?#@DKA0xT?}v z=p-e{>QY*|Jq!rNJpaSZS7y0=_NVm^>bAbH62Dk>)$B!bu%USIH{qfalcC7tO}^ZQ zXI@0|%0!aqI;7)kHJJOb&?lrwp7camF|(r{_b}+<&JM5;hET9T{MSN088n^0Ju_`( z*>tm_{Xj-*Z7l&pQRM4v>qB=me<*@)!5on5i)U|?fIG3f**I7|hx zNMBz57Em%AS8WCiQk{=08Z%u0)W<-`>&^QX;MmiB*VWTAt3LU|_iWa?H==1w~_~fwAdaa%hJ!C(n0TY-!J)u6Y z=|yLa;Q(Oga>MsR)sG?-_^&ht2tD$dFYu_y2Lo$n|JnTj>&_OsE#Rg8PX&;Xxdf~b z{*R^rLw>wq)j8|6?(%PI7F=(;*R{Q!BNhbsKm(c%-Cu9H0BS5NHkEZZ`Ewm;wdM;K zwaE?Se})xE38cx=19;|pKwdZ%db@0@F|@HX2Q&o0P|}^^XPI3w!qnk@vDtMdQ`!HS zn^;P*mH82PZ79K*{VEWcNThFt%Yeaw|Ng~pES0kdveE2t3>12m83v(GQkVf5jKgY) zAFY4@n&D!LQ&tu5P{5cM>mWOT59$-HrB=;P9??M6*N2^`Bzhg!?hn-Z(Rhs7!Te7^ zK}kktjG$qExD2pbsHn*n8?9y!rgr)xWEEvM+6|xe-mdV{c`yWCtp60svn+f`s!8sF zM_}s@z|(f_PcivrY)nz8DDXJjJ3-xGy8d(aKnW-hXg(?}v!M%N`>44Au;F~?t=L>i z$$6ZX%Qr`KRphJRii(Q#9G40J?XvF@urxaToIaSZSV^`U*Q~ZS*qX0^93BGBXFGrf zKjaAqO0S^(9U?y>TKr%zQU_xV!|8Q+3jFk$)Nk*5dFdg0Eq0kPRusCv0hVe`UsHzA z-OJuc;zXtZk;YzKUERjZ(*lTFE`!(MHg&EEk=uE*6Gub$Kch=QVPW^)f0`d7FS@do=q1V1DxR`)u??HP|66{3tgv&sI5R9Tc?d1M{_M2L3bqJdP|23ONAwsJ;DdtSmq!T%Qn3^S2m2MG+luku@C;?Hw?eG20_q`{sb6w|;^C!&AGka#9z4lu7y6<~66*De>I-~sb zz<&QOaCXPyozsq1Zcb533B3RO+d(QN1`cK_E;oE}PnbSq%e;3T=oqKvE{}Pddq}7w zhWZo3fOhEJv(NWOn}32gIvqw+Xp@Aj08U<^S?rK7^YK;4+M}M^9c^3+eyZSOgQ<(L zeZzA7qs3lYr=SLmV365WxXb|x_lsM^V4i^G4d8Wd;rM_beoLnhHUr3kdPUOP7mqzw zL>lnC_ea{%?rw*&^jR9Ji$iIg(!%~+7Ms`FuBWZ0MWFrynX%8gP*m96WOp3U%V2u; zf?of@)QIlgm_?z6`O)8tyido=wR6|vYl1It&)eM=dw%{20e3A`68PR$?Ku=J^TS3` z>683++s$kS6WGp#SRPno<<1Q<9%xhZFfsCeXgD^l_R7E%#}X#XG7`c`F^*98$V{V` zpfA=z>$Ka8+&Zx7B<Ax!eNz2TP@u7pcyV#$)gi~uPEHyEzE$tY zejs(hox}BHZz-%$GN~wygBYSF&e+7rmgU2D=;-7Tl>Ic?|+PJ z(%$-rk*%)2t{8M=L5XDjr}vDxJN>oEf@nzMjr)4r^_Q?eto%2uYRN;{5!m}fq>TW^sYrWOmjsDKOqAwyLt*N*FT_&yD~r)zeAqv}6XqG+Dd1nI=-^;oYn z`4sxfDDw%V-8~_w#UU=WBVufNLdt23NJmIw*KMoYVH7lffS@b%PtbQe^qF?;Jn$`^ zUVf1uZA0}N3P(ou7Kr2_B`5{>i*g*po9s-PSNE`jz9$*eoU>8f8yR~9S<6&PqpE}r z+hs|qDV;AQ52>1w8p&+2wYw!;_7{~u3tPR2Lfr2pX=0IHF!GFnHbl@_?+c+Eoi}p7 z1%CbkNq107~N!QtHb>R5VrZ(FXqqqu+WPiOXzHZ zMz@uBe+TG;ULCDcE|J{sXn{!B{X|a^{X?fYT?x{O{}ME*a-3ei_gzKBGJV)bk)4ef zH^&y@>sP;lDhzO7UJccF?ML$ZauJm`)XxfIJ8bdPQ)t?Q7iiYL+fn-*jy>VZ%j5fWzfuqS znVx&Tz>mUv_GGzq@ZSGOPk#4G`mAFYFt)`_&pXZ?QhXO*KZ`(%0Q}DJTkMAs< z>@GuNV_0X2?Uz&84ivku5tXR?hX!_u2MhK3rcO?C9J;~RhhKXw#Ty9IcgO;n207Xp;m%)UeS)gJfnq*PS9Jy)fMOBp*T(UrueT+ zhK)gs-}fdvz-5(2dd?#$*=hN~vqN>Tk&T1C0e{;$J#+ug%{N8B~Hi7xIg*wLi?}B zQq%A6#ri|@pS=D?Bwpa0a!@=oSGPS;iQ~YGeRTpI?v1Rc#IYj*p)m5M@n%oT;Yk1(np;beTAVlhd=x$|_Uinfhc23>;G}Zcow7EJGbF{n2(;V;7en zYn_*~r2aJL@96Wtc{6yfno9U{=km;5ihI;GH1KjRyHlHQai-+)UM%V*88m^Tb#jpp zY&t#VSdMBuYTv2uv)+)O>wg76IqiQxqUyv2< zKm88#SS46WxPm=bL6c0?R+^;XYn`VOvPa7#TOw&V22#~T$yY!rDrq4JG@S}1wf^gp z2LE`79Xzt2uq0|m?2fWN6WUcqmtNlSu1G?~2_vbHAPF{`e^#98HCH8?ODUmRasq0p z)8J19k1@5;jOXA+K6gH$d-T<&oke?K1O_)VS`-+yEtfM|RH#Y6 zuF)?knV#U_ez0#8bew>p{<_&6$`|)S#-LD6G(o94?LPbCsOf_M8*r&Ylb?iQ>Gq!> z9@JzsQdbgF*!k21WQ=RwX{2=hx>|a=nm^#3+Tci@B^&vq37z}c`%7eeGK#^^OU+5m zQM9)R`PJxa1>}kG5ppzi5!t6>L|qNM=J6)1x+o>_YU#)3r<9&wA;vJTo8zy5{804C zHq=vZL+c)kmOkIlTm8jI)V~ zKCYlDt5V113Z;1WO9wePIzK*d)n2H zbz0Rz@pMyTQ?fj=>Ma@rsLy#{e-!(0M=9W#hAwrwQF_uA4J_N^)bywP;A!r?uebUA zWg@5kG5oR5^!7K!kK?KVy}V6$RMg_|D>VR!U~!1bh9?rW*5IfPCIGIwc)e@^PNpkT>Ys;bPtnacjaY-0mG0j{fJHxX# zwtGTj{!m-G-uheMj8Xg+8?pAVC zRwek-zMm25e1a{h-#<_Z$hcOnTN)diSQO%(fqVW;{ zGcJ1xH~tPXp1!_Zpj#u^f)Yj4qgac+;=||l(Xtf{HLq~Ht-%=b~0QVp6v`)0^ zZdD4PX=!TeMHr|NV85{a`=_l99&oZ+Sy`#AZk6*2#x`$;f@Fr<@bmKGLXX;KV%g{F zML#+v9*qdr)C3A9L&{F-B_#k^cZRk9+$?PObzq z62rANog%Hx!g30fm(Cq7&YMlL{NxvW%^iro-}@0!m;h>+SYl=%>3wuQppt{1omkQ)6{LD}(gDW+wCdg(z)b~p*6}fK+^=pT z0YWPr%8rtNqYeD8*?>VjN@;42?z#FAC>AMnFA9!VI&l@FF_f)MApy4Xy>^n~;*?H> zTla43qC{v`3=$M7aXgAYPi0r$yZGIFeU=I+R?}1^K>T$vIHfWP&EI1LDFz7ff46`B zTzmC%{aKMe$Fxubs+i|mJasHdAvS_@?fnVJ#%t+HreZvud6WsdJHq^eU*b^5+Ly@#BqN+S)6?R@1qE@RQt94M_r^+mG=q zj&($qG|@*O6n^ID807`z}melj( zeAaG&_r)e4Mep z6tVRgMmgU}5*U&4yr>w@m*(c?PXAzj_TtA{(Czs)5lftpey7*jM|50Ddn36&x7+4? zr<T8>0Z}5%l(nnbn07Q4cunDrbd*k)7)9)vLA)v0pmY*0$zj*_~ zOUYpVy!RQ(mKc^}q4=}6{v7-olezq?EK6A59)>v|6W%3kG6!~wKpB8UMpC}BgQePVDkcXqcRYSJ^#EWsq4~eR zK7Be_uV0e=x%N2h&&wfV)=z*Q0*JEhpa;_xyCIXdU}ZSF0aBAjXfKU}E;FY|afUKk z;*XD?s2*X5n=+~AK;5>6Idg-}DYnp}mVkdlD-kt-p28zgg~Ak3_@<@k`T(35OO5s$ znK@9f`Jb%(iW&F&!ADd?9eTbsO9qfHr-D4?y3PbJ)OHlI`5`dpiR@aC`VHsU0*Vwwt69 z`m6DSH%%X5e~eJi&2cFu-6{ae+AYnfc^l{rZ+$1S*|qa_R>ILXyPpXp&r(~VJZ-q! z&AEzj-8%rZ zXl=_67-W3bkX99m?b}_UlrL|j3Fo-%pP%#Z zcma~}h+jf`l$peu>+f|}Pi4CtG|U>ICR)W1-hWz9fJG5M@{8na?rVTfEul=m$c>`2 zye*@Z$XIN&F*7zs0|2LOpV8Sev$A08AlWl*M87?n$Cyx5$jxzrB-$gwY2-q@$Iqq< zqSBkr7GEQ3nk(rv3&PP*4EI+e^v)$%d(hChP8xH}`I!fhXmC z&U9)Z?SBdjU6&HvT2u8iFW-`hkX=(xrHY_U1@wz0R@qu;J*!tuB zxk|qBeAuYjl2li)eQEzDM{Q;WgW7%Wd`2=NwmgNnnbIcs2S`HW&U-GWk7mmsP3LN6 zJz_P=&+uz|=VR6dpvpqR$vlD07CTla~%&kqH=2u!DU8@ZIr~`kEe%GVWE6;B-70iOQ=oAi zxguewP9l-uKl{@cfeI4C)R;kV``j=}2!@^Z0Eq$~wea4>nRTlFHqZv}`E_>H(L9(- zQ+Tf51N}YI55W}^lbo+#CG)>#w9rdGUvBfCEQ`SUJg@c&CNaj_PHqJu*R?h`?a7C zil^~~xW_=wZU<1fp3J@Y`|;IWmA?9>Hx}um(2YjRrGG@QtS_YcGD1HtHO>9Dj)$K{ z;*J9ZFEZrGlv2k?$>rh8^IgmMJj@jJqsJn3V;sp;?>qJ!hTc<9=oQP+XZ@`)EQbao zD*yiZ`RVez0F~s0G27CFNj-;7e#`T5lEQy3EUJG%fkp9H5dQMIKy<7fm{2*yM7Ry9 zGrp1uxuMhPc~FWf!480b$0Veini|v4(+oOW{|S`*TsHKlbJc|IphO8BBJ0CG2Mc2{ zGPCg$J(cm1MgZS|KC0jSEdB>GyWYh8wUN?94P4K@ynYw@JNW9If4yl3A}h{e)R0VI zssJN-PdtdRaLdOFZyHkgFw@L ziRJs}T+?`W{HW3Rb6TKQA?CKi_Ri7O(^9(FB_Ooap%WbGm0K3nC1eokaHvkr{M6Dy z^o~SNSckK=wsw@x4=>v9+tl`?8U)bZF$o#6i*3RQN|HWXig+#5k(-uuz_+v%&ayzk zdhN70Ws$L0ak}1RM=@xTrKL|?39jVulDG4hF*BUGI1e}N=iA#5M^K|W-jVfNl&6w zHR)Rx$16i)7-mqa;mLZpxGX~9#W@OP=n(yfVC_8Klhsc)msOv0`D|jb(W8=w)w=^c zDET1CRQ;__s`Yd)e3u%mlPpc9PC9Cm0dhK?SqZv6-KSkgf|S6*&CJwfX9v^P$g($h zA(5P?o|^|ynlTA!mV4C+CG5XKU>~rmz4Zb-0ngNXAlw37#7V=Ro0e>wZ}?Cduc&mO z==EJMmg%D*0#f|X$Mt3)%vM!ZzTZx_^T9jmYIg%|sL0o-lxINbuZW7-?y(dAKKz(K z!z0eT%K|)LP*a^sZwL~T+MZu=0#(@nPiL~@;o;8sRln3Q;-2;P?P5caUpfVfe`K&OABTP8-5x=`_pA^$$9?}pv?}(BN20RU$N3bL)4m8#x0S9~gh zshxt&qKU<8po`5uW{A(@OnhUkQy_6NYazki_^Ew`cxT%!<%9pz_slbp27*y|jBBMt zF1%T}cQNp8C|*xenEC?&==hTQ5atzRy1&3v)D`IpoGsG^&LST^-2nH`HnKenT z5;d-bJn{3Z$KJ6amdg0?pUEjvFo}<9>=}LHO%olsa;871%$$dCe=KlTWp7*%toz26 zF*D1_&Dni0Bz^|5 zxwP%`B`tV9W!UP)ZjDC3!X!wfO<9+-V?NO}TNkYJs9w0q2}b<+W63mEB+d>>-lJ?`N$>NGmki}OZ5m;)fUnOCV&fQExqIU_Z-pVx;CMUV~2#aqJez^o_SY6KsPSP=r)@BeF?6ANhsXyw$vuUK zv5(lHc=>Q5rTct$Gk(kV3s$J{Phw68zUXmA1r|y{F2@pPfs7WV%UZTy!$~Sd`Uf8x zg8?;RVffX3AA$wb+808K30Y4Ag`D4i&k%9xH8A?o|IRJ9%WyBIs-lt`iFFt+!S{JK zl4-O#I1xWJfxaq;&z{k;?OIf1S~x~_x1NyFEMw}J9-gw!KD?75YsXJ zeDBW=k!^Kd?4(jm%bCauBmtz-`P7H@{{_`HMMtAr7=C(VW-4qK^ zkJyt``TTw0!NgjY`13P)jsr~W?62h}n~K?!{gbsUL%jZvReWp=+{W?jp=AEI%&L?b zw~!trA6UL(iwc#vrxoai-D#_95O(gBp|I(7XD*#!Se!>4J@-1TLEDvrj;?e8=2RK@AG@VJUfyFGb}>fVa$)P~~4@|;&YENASv7H*KX z>NX<@COP(-k)-YCX=FMh)>#fTgpDg9IYQ30m#Hgy+9|8f^bA$(1lC3l%0;DJFsyA!t}GaB#pm7#x$JK&pw?)l$BU#= z$nKw!4gTiW_#A<5u;hqsG`i^Hj=3>)<%h>6wrP30ET9^Uoc1a8 z3$GaH*4MIGSEQ5U1(Zcr`5R~EV&=N!C>1DZhHz)3KTl;%s-PA#o+1CCrhJ$}iCtSU zfAx&k{4QO#G_qXOMYEBNt-^>8wyD+AGOTN+8grlGM8eZs*4R{60OZZzJ{L%Tx?p)D z6moQot&>C}e$4$8TWiJ5VH0aCu0Eihta@Zjz`-`?`!bbl_{#N6*fo}V@1 zkWigdjf+L-Uw;PsLD5yv8 z6v@x$q|~fhI_P2%19U!sN9B7L!tSohErtrhe=fgeLEf9C-jEmU_WW_Pd>UL^oLId6 z;xr7jk*tEa6))Cg_<2?TcGf)&cWAH+?nakEDvm6nqD@=OM%K*O1E}H}#`!`tQq(fS z$b_F$LsT*8H-%Bj@oi}gMk8ZYt)(A3jZwjv0Hv|K`%X;j#-}iOPgEw~`L=LA_@|DJ zz_D}(feu?bHv;Tj_DG;;EZjf6kIi;HD2&RKeTwXslZ<1#D5+$?Z1-XVp}aT-@nmZ} z&Z_XoNSmmmW=FodolPxznsL*Up=Yd^*wy=$WmfH&yDViodwVH=(osV5q$w1j;A#MexGllv|T zPC5g@CTtzn`#3ikeBDwg+*)fFwtlbxP#Zlzm_a;TPG8UNC@yND`8Yj<8*MkHafg+;U7N&6YR&132w#SV zMf&326Y2M?ixvQMm;>Z)=+B8iSGQ&>d{Y zwQp2g(VY#M_Gfc!()&`4f%?LT(vT3|)`PqogYtf!bR{Et3V4%O>lVNFJn6!?g`)8W zb=vf_MutS6dZ!u3i1~VFYn^pQ5B4$A)3~gK<@y*#&@IQQy0R`9IbvZMV^rr+5XPBe ze~mjt`%zI>#}vZJZsau6HWQ=~VY$P%l>KOFUr)i`3Lsf>qwU0$8I9w3Jtcn|3bAlPSD8p=><_H%dbh-D zR2f{Oker#tJ#8vm5x!No_qOo)aP}ce&P#+agItS-2VHyBFf{M{=gBax>%AFEyP>OD z9U4+j|2S+~o}oXGi(FBvwvL+$VWbt68#Aqpvqs|8StZlS|H7ya7an=2*V9s-x$=5T zYLXtuI6J$R%D81D35_=!0hi;=q&<2$7B3Cu)|E(juTCYmCj|c@+@!?%@t@F|VFKlQ9)o^I9B(C(Y@v=< zS-E}WD+h7Wmhe}8>~evGlQP*QxY|muu{KI)st)O{xyi5kR-C^wA5`iTJ=r|d+EM92 z%8eE#?olq)O=}D6G+`nZpgbnJGO9{=xM0wliD56*K|3>Wo&&>5I+SRCr+aI6c{Q%pG3JGPSC!k_$9qh$IAVmu7E7$VLa&#=(PJP-h4TYIZ6Y!a0ZqWU}GXE$YEN z+4t$Ys+;BGQe4LI^BpMdsn`TKzmyYuxytBY2dgcYdPldFNVq)nJ;1cBk#U%E+z52W zzENZ@A*on6WWaGOw_PkWNm`@! zUb%?ilx3YVJ#g+b$42p`teSYT2ofstL$yiiyu}tD^*46+C=&(ST@tK)mf}{f`scGW zOp+G&*CTxeDxr|}JZaQ|f76L-&es$3u8|hrf;l(X0*xz^Maa5G>dHgfgT_G<(?aY! z`_(2PosUageoMf2hXtMgiK4VzgVbXjJY(dPXf+rr7D}azIn_Qpl{e~Z*VPj=u4o(Z z$z;!9s_8!_;>!*&4CJ--qabR9eKWrM!JRX*c10$I+_UQS#yQe=i7cH;KtVS;9)sFu%(Iiu<< zo?Ck+D>~!pmCU-(!jL)KZu!MWnCQ5l#fLdOC-?qu{}aJ@G;;vMUqQ+eeVIq=KtvNo z>im2K!y|m0W%?Z!vV;vXd8|2ZuJ_P+q9zr5+`IVRKaCikyApO(^GyBlJH;RmN2xU! z2lY@>Y>6lEgk135FZLaB`Ty%9&H2#*`^3Zo!4##T+5R>yM6BWz6;3(4D|TiV!Xt}@ z*Ih}v{A9Moz2;x*pA7sy9Mgy=ZZ>znAx=iO2Lp_fq=ZRG5O9s5N!0)L=lRg& zcgw$lb_qm_w3+6TMeT%V_@p;2U4k9-D^!Z2sS`U~?6AfZv2Y2OPBulmRzKqG5%m!h zzRMrkX+@^1+@#oX;kcnv)u#v_1*4GnY&-km^^k9KT*WFqFKt(lb}IHWRal^M-qLbl zkW@GlGUdZ_z4hJQ@QTg-z&mG?h5vai!dC|wZarh(4Rj9I8Cr~2M6GGFK~3ceX?py?TGBg3Ea+UBT@R_E@udUoyQ99xEd;eaY((U2fss4}kuVa1D9!q9YUJ{GUt3#pG8-^nzzY1H zis_~Uc7iUVGOV^_h6H#GkvmDnrV(x&jYf>VJqIxukuQiU%irgGO85~Y_LIk)p(Vf; z&K+3y5o)js!-gAuZG7WtRJUj>mfouAHlTf^lolRis*Pfuy%oXUTIy@Xi&}4I(xDXA zgVpNX-f2S&cf(%~LVfF6LJ7tqdB-FK3W1WC1mU|?ixHdwqKjF6Jmp|X%(MxkR?ihl zKedXgo2j*YweG?&6H}Z7l^}b%tGrdlYBmaPAhRPvS=xxkcrJ@Wj4+(jVUFgv_yQ+p z@l^&Bm;oaZ@a^jlsmV+T0=bDpEE2|`uUo&(Ns73LG_K>^UVbIMvp>bpt1+a_s&Ryv zhtZ@8XV^f~waD4&x>b7cL`-|gUbvpwi{N$^vp8nabZM$Dg*WPA#%X4z9l_0jz_9x#_JV+2IB#5>?r|kGV zvmG;OfBu=Oj2-gtePA+I&h3I;5iU$pYF9NK=ZUUkeb8|rf}~&W0gtCL!u*~J*3JxF zS?T&d_+f3eYYXd;n@GTeR~k39L{TEL3xW$~)jjNx|F?hP3~AF&PDkE`SXO@=t#rKRedZg6$M7$;s3kHd*ydN|LY>)Dj%@l#?9mB3e(EUuCqvuWBrwK4#b89TeOv1VV|j)Ym^Vy&T# zlN_^H(kd*RzexBM&!Z=`KOzS!aV-6YA*K0eDnFRI#{zZos-zv`=?9Iy18WHY5`qi^xtok>_60kXh|2{8uK)ee%q_wfgb38H zd?b>=l&QTo$aE(Nd!8k0$wdL^G%mjDnUa6sCSi&J^lF}C0c-b3OUI#CEKZHH$g%G5 zAyQZ0E3DA{+`73YPgsO4^?BhrhdsW^$td|^4%qO~vm85)1t5j!%Zc@8&o-4>UL(14 zWC39{g-SqrK%{lIG7rnn05`3R>Am{;oqb8@Qz89``x0n$>q~;tDE}8JCq7u#*kz$l z!3H2&WtEdFDB4l@oeE^!g!UnHN@kHYj20|VhM^mY=q5Bn`8F>JXgeSA0PzytlNWS~ zuq~N3XIfNsB9C2sch*@k3^tFbEO9s%odqoA-yBN>#`}!_db|*oCl6~oxAZ6}Sf-bV zv2j(Lc)F;QF?!CBZ>B3kpnZ)h6BE?MHe2Xcj=0{<&2J;8o0YT`V{EfG+ z!{sPirDun6nd-BJvCrHhwt7%cBn2-bewWT1!lL4UpVupHCr~DMCH<%o>xodY>W{=o zt<3p=bkm{Gw+l_Xu?>weAG5)%g45wus`U@EZDR}qjvi;)EKqRk38xN{qswZNlrwIF zlTwA{6B!AJxokrB#HoQh`yaNzix)@)?oqyBh3yQuR>y=={2i6Xn>nagKBx9E!LMB3 zRM!@LW$?a4E1`Ho&!ewGw3Pl8tc^%2wdKPN>OwGHgWXA3OuUFp3o?Yit(}4cgE z1dY-tU2_S685|il7_jm*Qwk7rx6TvtO7nK^N3}zd-=&ecI-dP1MANK{MQhnfY(pRW z;%xv$qAgQ&%t*_G2J4Xz{ z@6j%%P_KYO*r;S{>zK36Xs)hlRLiWGp8J4@xsM*G7On-i@wftx6ZhRPxm#y^XDzcq z_KkcPMhMarH;1^CT3AEt6Wt^zAb4Ig+&(-;AJaXPq{rr8r?X# zUcq8>x8Ips-5h(P2S&i3~{?zIMafrt>|i-mW6BcLLNpU1I1mQNSOs|>6 zoh!3G$CYsQdZ*|@^6i86EB%Q^niapLri?BtyD>?$@ULBF@}OZ z*<#M(-H-duU%lQD()Z_ZJLc0R4jF%OYa=~+c~cTHgu;9pg}tOGj)L4o+@vZbd?Mz= zJ% z%vg`{#|9-m=3*9Pi3OOT7Fhoek0146o3GPyK{yV0g6 zGrRn(kr1s-u%LldQIU*(bT`apC}3JCsZ&Emt{!X-^2^V zq21L)Gc04XYf!(-gHUDgC2;m9i+O+WQI-VFo(m$kEPp+r_DY$0_0_=rqsGP+Z#j}- zsjYKLzi@98yhqYw%=26vmMl;X5=0`l`IIS=f9)vUE&14Kl0*YCgp_+D~4MqhI|f zt}<+5vD73)AQGM)VS<%H>2VB&gRFv(_xF?cpkfXo&SpqJlr^?xf&`U};7cHN`ba_` z7pOcG#J7K@pU>Xg{U~m$q@*#P{RvKmP2xbD%+CXw-a~J{%iI=m9&6Jomv6Ar$nz=t zoBUy@O3RHRF2Rp5($YWf*n-oX&y65&_8q1g4BHvNIAGRPk%+S17q+tKnp8?h@uGYn zmHWVI>_bI@&>F%$Cu6h2YGhr6fgfn?-%B)x>XCOGO+^kF1?~YJ;S{t!OwFM_i0{I6 zmU2^b&?FJ%9_*0(5waBMY^{Oq(W|9zW)0zX)-8ltWy*ad7EFvr;v?TP&5#Je6oYW# z6Y%ykpU-gLVk}nd_ZH>iq*fQ_Cdxrb6(M!LUzLxPw49Ir&9yE4|KY*V#|U9=3JCXD zBa6=s0h>qW`|ESbk;8X&atF-zjDs18J%T7Gq2KC8+^6_xS(};s*_L3)w-nkq-);eC zKv`$fAKT)6tE8Z_W5fpt#j$(|#$xjYUW0PU4anfm`hs`&0f0eBAPHSI$xQ%x#At!@ zS7gH{gGO-*C%rH*E0&mViT&x3HI}UA}BnX^{UM@egCtQm4ZWRJa1O~F zUnFD9QbphoO}f!dBE}N)05dXZo32^+H+>2vq`r=b_7ln3ALzqRJun*3&}zt61|?M8 zv`68{MEa$Wtydz{+1Y!U@cxY|-zzM`tmP)xY==w%H4DSEo5S^CHOcoj+6x#x5Q!{bel()a6_XaraW01G>OU%oe+<+C&ETC`UAl5wi- z2c@$^BvJ~6(7H3FDr)Re4z~Ll+gY=VXm~~84=IM^kKj^XWU>fdvLj}D?dM)AN$P`b4qiSIWNv(MFOy_v?dtZKAyIxD1|zdM{*3p3m#xLz zz#d407{JS1f)x7Ybv!_Q5NAU_i&NkKAWoRUE5pMZI+mWTE5i@ioRQ-LryF=Bm%64CnxEhH(OgSme-e$I>B zOrD9qQ{C!!y7Q(!Q-4}yAi7H}#RwHg9N}p~cJ-GU&t5-dv4HmIoO|cW_J-Eq-p($& znFixZJd{R=*{*XqM$y6>huxAKrpJPJ_Y~p3Wj~b8pjy&;6e7KmfvCD|wWLr^i3W1`mzl^ghX88ubj-O8vht^kn@@yZS0zApwsuI`V z3`g|ZU!w>eIr?Y&qnl!XmQLDjCSvuXkkzNCeSPR`;)PFVfxv+;N`vBF{f?(4RiP(T zFU&d;UzE1W6uZsj2BIS9vQY53mNwlKqj3dwy0idh#6jDP+K5Jr;ZoET?828GJFzLW z8!RX&2Z`NOQ=%1?L3Q(yINSxZIxFobp4i`5+AmlM?Xn9Y&WO7f(sPksh_YK7n<4az zv_199X$nl0-gvJcc=#rcjgh|&n#~po&QbI&C2r8Zb-~M1?B5cBn8HHot`WZdu?Y{p z$LpbrLyIJvCxNAuj+jF|FNR>0!*xMBN!2x0CN9hG>|6^p^eXEqgCodvKEt^gcjEK3 z&aE;s)p#&4))W0A=YnG-%)jk)lL`EWqTM~D?Vjko9Ma|?p=^7`K#W>GaSFvxpffca zh1Ky^nnGai)$CqBsRhlxi|vKpA{TNl7C2m2ze!|GLQWRrx(-w6YS8Z5zr%$gy)YVl*HD&o+G|U>AER(`IMFs9R zylj&+-K$dFv~!C)#3kM`5vLq)rt0$Ci+O#s!zOo2!B1)=`pmV*>K20{J>)Nd@EG$K zH{Yf$A_xc?p5w#a^wQMkxB-Ylz-!BBP9oVL2QkSt;%O9W`Gb*G5UBdYBWhJVz73~K zBhMruKaS)i`x4Nso|>Q$pMf$ZHwJup6VFqO`E-T z5^9UGAZ?+ibkC4W_zZOQC>~j{p9bnboRj-p%O7+OF&$D0@J>u74a2{%=vzHvpy8>K z;nBJwF(YDFI`i%!d%mvaCJ;<4%&GUm;z+brA{rhdnh^M-D`ydU#q!jk(DU7*n^JrH zm@7vY<0A-+l=^F#iKWn%PVhkAvjj9opYq%7u;I@F39B1KoqTuVF?1#Fcxj_K+|1Tl z-OjK&rG^Kihwl)?m_+dC;KviA)9M9VHEF(u%40Bq+tz&f-v`E#PwIR1vu=H`6%YHa zHj`f;W1Uf#fLmJLJt zPjPwyw!mP5#$R9l#!&e;O8gBQ>hn8b508J5%+;TzI_X)q>YeeHon<^?F}rWYydhB4 zjivI}@UJj39;d{V$)TYzcwRMe3Y&}(;Eg@)`tk>=&FO)~_oact+F5|ib#65Lxhz_w z`8j;Cow)78y#}*vf8z%Z6t1U1!I=kk5#| z;48FG-Z6*i@NV3!wHIv8V_Ja@r8HHQX4FF)^ksEw^D3&kF`V)Tu8mk;*eyH`T|=?Y z8*@rR`2u?nClqf?8M$=!%%TRhEtk~BHV#>1QYf0^ofi!Y|2X(uZw?v#D+drA@12if_lKL(&Q_|RG%id9Wca4pcTUeC+LXHXqrP(CTo zGv(#I!qZ>C>@_JBPJ^lbO)MVm!~yJyggBEt6je{}AI{2x4Zj{Z7JT(AmO?T4_wvmDVbt)khLu zE)E6Jx{Po*`cslXF=eqVcW!F+2mHm_pl*-sZ@7|<8V0jY6T)3Z8hXSYA#u|yZF{80SJK^dqy%T%D8@U{?QIBDnI=+MAV z$^Nf5M7#Ui-dOfSxYP`q#C+W<`W=}hJ)@de85$|9kD#3M-$)4`g|njsv!vitmcOtP zF*atSyhM6wOa9ecSJ70d_ZY^2!2^J=S^M6!xLiG256YI725Hn$&>l+Abc=LUT)D+u zoGaXAcj+7}Vd<2>P;5zb@2FzpDTM|=2&2dqadVwpH!xlP2VHL+)z%lh{kFIjhv4q+ zTHM`=I|UkCN^yb}cZw8>26t&F?k)v_7bxy7L5tjce^=i3uDkA9`8%02`<#=#pP6|+ zyq48J*l$mX^yh8PsTx3e!nDim09yqb zs(W`bPU53fM|Nd5UZb%E$Z8OybGT*=zul9xp0^da1?1;FvbYkPI7ryI$Ye5H$f;O7 zjAs!(7^a6bh2S+fv=t`5b@X_uLIIy=YFZ2WC&3#wu|8km-lDue5Ik+@S=JX1Dk=2nViXPM|_d~ zB3Oe}$xi=WWMMK!(&wk|gJ#1Q#;-GLC4#qaO`Io+y#kIm+R3^5^Hfb}JIle(Z!6Sx zG65iym?9yI5!IF(Qr4Mo2gYq_UQkH*h$BYH>{obQj*5H9T2R|urzYenqGF5brsIj>SF^6oY=@`bc`f zv1-*HoLArZi>bD4#qM?EE!c{D_vThke#}Si5*#I7;9DJY)_jBlHn-EuFi0C+V?gKk z%bf48c}8Nik5{=Vf863KxMMOw9JhqY-@NBKcRPux7%x+imwo?#gZMGRU3vrWd$TT_ z4_NGNDw`3e;C9!~fKKt{`nteiD+=ob1Ef-f^sZo}O!_y790!M(&sbjvF^^v;j|WaN z2gB|h{=VMt+U$wLK2N#5){R(}JI9Agm~8KUA9s1)X6z2h5=ta?Cw~9v@IfLGyZo$L z4{KT(*Z26dY&eyP!8duS;*s6Cm!19X)Qwy7|4~L;7&8|z%g|NW$Cp(Np1D-}$SrYN zRmtnj=5s=KYh=_AB8S@PQus97Klt+A z3WFU2X3kh~$@gRQX9u>D=to{>o+k|pM{g0|DHN?N#td^2aIZ7wy{7m+e8N+wBO(HK z$T}NyvBi##uYA^rS1vI%4jorh)s7=(zZR$4xiD6N0F0Xnbx~#|35Kx3bRT_T3T*T?)yu8173;Z1z#?`WKX3I^GDB1Jlz#JesF{74D+) zOc#2Ji46JZ-utnKHX@zxGrBTv!K}N3xj)-wc$C_VBMaR?f4U#d%3VdexZVFp)u3K6kh&&>2)o!hjmy{HSD&4O{dY6Vu`jp zlBV%O?sC4}X3;?PA{=$#Hn8E~<2HbR!d-2oIu_sm+s8wTl(A;qFoO4~49i}G^mSlE zW^w2+;Lq~GD(w*Fse$24W2vw3>uMS(b=x!vz=7y)77i)ARBhxl##38(m-zW0 zoZ17n5Nd~HWyUG=8$i9T=0vIP2h(u5kdj~KnGIRR^#$IS485s_c#x|OtgQ5hERfYH z7QXvGgWN+SGolgV^z^=C@>jf=RbuH~R0pIuru1p;H61WzL-bx46~GW9P`jufGjj~= zq=(MbpaGW~z|Iuc{9;&ruWM@`gQbofpC$mk5%K7i*jmCo*ry1O_CX2>p+JD4I^`z4 z63c{5`K4!I&K#L08BRBXAS$X3m$w0a$Gq7;g+|au`ms*yO;*0%z@e+U$$dfx*s{Y( z7I=JVLa`(eVxS3*vn+Q_NjO)ZKW^G}dqm2bC4AES(&kmuXWlt9eSryU?A8^p9YbCr zy?o%eOo_-1s?CJ?R`rTP)C(+ir|Wd?Y;;j+#Rs7ABWBeMTKbIylp9 zP8vO(uhNuCG23^^b00wuF_2iX87=VqbzR2!bc|K7wUA|vnU8PvpG`G>V|Fra zP@2l$gQy|QD4d_CPJ`{;fV$_@jGIUD1($Gb`q;bZ(WE$Z<%_bxPp`P_Wi9LXJ4(}( z_2@PKSICmA+Uvehem>$R*2crb^hBOyQL2+&m33)Bv?>z}hjB)qqRondcZ+JgTgf)O z5flwxzgXvc6ygDC@9VLvBa3&z=*lOq3?F2g4$0XpbQ*%&eUF8={&q(9(9IigEldwkzWqIP6uLGU$C?ibFQg5Wp5#Z?+cdNVhz}?vUGJph?iF~ zRT7c^Swy#zztduLZLx^Oiz19;-H9&wsZoJ)RzAi}UG2zP%$d2G5Lt#VTnsonzaIRA z6VrT#=k}bqHg9T9Bi>*_=}1?hJS+$-6Ij`B*n_k6KRN zsfo8J#pUX2w)#-ovdwwf8Bk;-%}~Y@hrkj;Z1|koX)~sY(U(oV-Zz%xsFBa{^e{)p)(_NGzL zJY5i=X>J@q8v$RgRb>FYf1>nScst^lNcK1?cj3!zKjqQ}g(8Ar{q2w}khWn^4HL_R z+nEnpVVJmS5VPt=fjZ7^Rvzlz;Ka|FbqzpGlzyBx@R(6t2AXg~y4OA$Pj`H4IqBo8Uz)rV1)o^WmR+m;__U{O)rxk4H1>I&id0# zKxFlFhMFh6xj+s4Z+Sf)P-}=*124G2t+$2o60@Il-H*nWG5@8>L@l5CHu)Ij)~7_2M67bmMVUY9eK62*-NP)8Q_^F$dt%$o2w@aeSB z<>N{na9I8{#Zu34--mfRImWoeo@o)_lkcWUG)A4#WztV((!ZIRdN}z}8NX8d7!lG+ z#1Ty5nA{uO*0s#8K6#u<9jGOKn=Qw)<#=wP^K6NC#k9it3E@admC>S_Zd#uWQ;W-@ zD?^s}?SAryPEg+}-O@l~%%1b`CJt{MFwPve`}5Et@-)I`@&_y^&h;Gb?Bm5P>y{N? z09_@veM9>fu}L13Hag=mU2sQ%b!#t8>U6o=C21xd^m0%5GrDIBAs)CXgkRs6Z(&m4q zr;{InswT2=Mtmo;!!VNI#pz%R5cW8X`4D{*v;u-1?p9F~Ju52B{#35b*wfK5mJ!9a zSG~Z3g?1fiGqoV9ur$+5xNuHBRfyd9r(~<^$rEW2{yBtg4SsJgS}{~Im?|Luaf)m+ z(|s@~({-fghMsNhcrO7}z7}})x8rNld_r0EEli$I!`VcFwl<3-1-FT%PC#N;etvFF z?IXamQ_(es0R_|2eTEAf=M@U`E>&khAkRm#<79ZjH0hfI&A8(|g$cSJULk@D7I*)o zR#o-RWZ{?Q0mq^e&yav`7|~iy6n0?O>^6p+a+ov&m_bQrSgX1%!_Ed=>n{_wzC0vGdy@! zym)wrS>NL~KBdm6;e0nB?qGlUTyuX>2W~VH7%jnTIk*Fx2TLH>mfwbOFfl7NEId3g zZ!P|(@)erCtFZF!Uk-6@k=e3aCWV+87)YA2H(c~>2!*F6YT++_RYJztTNA*T z>KV9&0Y}s_$F~BwuHbdXrP+n;GulCn-J_&N!|!rb$cTiJQOg6weu#$2w5qUsyuWJu z23)hi61T(>Gps@1N&w(@s6dRB9`Tq$h~MDp#QfN>P07Yn87+>JVBi^d?wi_yo@~y* z#ll_GLAX3mU>KKq-qXgAok=V91@JML7A1#>-Qs($7#5+_tNPRW;?@qiJW^D+kkMdr z`%r9VDV+$!@jT-HUP#Gdp@+PHGa2Z-)w907Al#f86!htD7lb4eBDkF$dz^tT6o z)8&+Hf48F2mzUI+dQaiF;?IP^pYu%Gs8R_O;~Saq1j{0 zCOlD75y4jPl;Jo<_;>t;UeDNMrZS=AP@Z}O+TO#R4y%e-D;72zqoaQprXxhA8Gj%| zzriWCkLDVVIqM%N_&I=XIIEO%xLUkfC1D{r535oAhjI8*rCoR$GwNaxHdmb>vS;R> zLf2lw@>jzx&v7wp?QZ&ENm;j1CT=Cp@v-CPrxZSUMr@xT7>KGN@iCZFagBk`vxS-V z4dxy_gwZWLr~kozi-^L=xvHuP?pFXuA1qcGa%a3f(o&V1kBK?%suMQ%@mO=Kqg`P*w7A4u(7lT1+~xAt?XZea zs182>gMQRuYmR)d^;Hgi(ue-NKSXC(W&^Ll^0RUwGr%rv#VTFM00gI8?C!fQ|11M8 z)my86fp1Mt@i3^;($oJ2zdrv*d;ZT7757R+orInc>ELMQ9b#eLoW+EYi#r7e+?!~Y zhhlrLT<&8cE8uA3py!C-TlwTA_!@bi?pMK}A0S7vyz{%u@`i}f`;ut#^qL}_Bd;1x zV6DWD!6%==u?iSiT9d!Qsc5Mw0)jY&TNKQY4Jje&3C#t&BX@qTGc?;ii72s=Tv)T}(b2(d~_9gGs4Nj+zgD}D}-4iOA|*Mwbw$eYn! zS`@L6=q^X!o1)#qCSGcW=0gY@jjLNH9A}EDey_R@mTd?MFR#Frh@9QeI&7wLWa;&( zCiwGPe*BCsJ)ciN$5>Hnj_+B}f3a|`m>~`-9L-K$YUv-({B_-?Bd~`ka2e)syinT? zx64Ua?sJcCm%FO^h7i*IHJy>^%lmNBFdnVc#jN@Nzo^BAF|of30z1{$LrT9=;eN~& z=caUYJh)MQ@TBQB8c7!W%O%B6YKiHLn0NE@Ko0jBe)`WZO5!(vNN#xqc??<(8vD$E z-@b9NAcuZR1FjE)*h7d5e@_w}9>U&Z{L(OuGx+nIGl5dJC~j!|Jz-LCW>tKDksu^9P3tFf<%S@H|?1TvN>CUm0%w4PYYvEh}AC* zs(ZPYu`CaD4{Eb!1grR93_;v2TqN_KalY zmzD_^zXo4Up_<_e=P58hMw5dJZ83CLjintz-V35Lv^nR?ve|FC^-w4yY4zu6ICF%voTA%jW+jgjK85UW%naBYvD=7L%aif+TfK8=X zyg1QvCnVDk|FxUbPVNA}bVeU|tIe0`DLrbxklPIJD?4hPrJb&XK3rX%wJvQAAbC=-NX3qA9 z6U1ChG%V@;|N7j&ihQ$-jWrw@hVLc9JS?Gx4tX@3DPV*b5ugCo?_0bs;> zuitbSefD!km%0}o+M)yRX@rpAW`wG%_}!1&H(yY4Fd+>hveji4bq12(7ciq1LKjo4 zNl5vW?S5;ib!saB#*oCr`$99N`-&O$*vrHSG=g1*P2PP|%@DMc01|n{pf2#C;hPm` zOs5P)$#iJfun_a-0e%?9NkrJ3a_H1Y=PQR~J!RHI$#@(_32_*L$GO1f)NInG`kX?X zFi(W+1^NZ<#F_Kbk2I+V`lIkCsQbr=Ypo;&ZExZPzHAi@`r*npJv5tM#9|Ip->Xo) zo}Y!n7oCCQ@+x%H$obJpe8KVihsJ8wW0|S~wfFTIGRYeVE@6obngf^!FP!0j>Y#Vo zgr~SwpJtm`9Dybp#;7JQ6SA(RkBx$&6Z7-1FN*0z8xX88Bmj_}z^q{$>73TYJAr2S zr|I-C0b#U~a({uyDSB&z7rbXPSmPQ|JwaTMh)fctrM?^zCU;lcSY}3Ad5g{SfA10=ugt(_u>0 zy_Uv4H*ILv(_InvrQ>oQ*U=1zpfQEGP&@%&=C4wd59v^HqAGTl%^>*qMBf*$7T&~% zu=TjEdtYu^4oGnm@mqlZRRZ6AP<0AZNFd?{6hfK?)ZE@H?_|pDiO6nJ8lj}`(AWC< zQIdj|`z0*`Im@*8#)Cnx-EnVf5Lp|i$>@`_$WJ}O+P;T&1WBc2=m&H-Ru-izyFXPS zeY!`@kYRi%=Y%U1Za=pzF*}waGFgO?wh(EiVnOS}t>>Ih5#&_3fm=zPm)R!(Esn?_5C`u1ui(jDg z#4ET#V9Q(x9Y079KwX%}3y(sMpyz>$KF8}3-2j*6ID3u3jh_eP-$qbl1}z=JOmS`b zIur1)Vceu!v5U7~z*gw#73sF%uph`MoY{ZOrPpU);P0|4B|lyyDic(*&%)Rph*e%d z|EKURxRAN3HBjXfjeLGNiw=eVj6r3Ha*B1CB2BF?X??UA60kGmNP8O@_rECQJB|pr z%{uA=r6EAt?7bMt{zHQFBlFRxjQ*oBv}ZZ+1d*8{ca10lqXM4)O|sLd1I#TD7YA9b zLq0*Ih5ZUjJt+5aAX96my#PK?h0m?7Ve~ohrpT+IbE4}@|r}i)*>-&JZi7fqa z90Lc9w0^#?iph(&f=x1CLWmYg435=DwWC5AHSwdO^g&~@i2lNo1T~v7{q=fFRFgG9 ziW;OWWMH^9#3ST62vM!TCPbX39?{wP;dB_YvG@Zt;Ol+xx54k0Gj1ZC0ZB%J2^kL~ z4Phl)CDd_cZn)#jy7;L|fsn@Lv=V*Qqz`?%^l06IUkZ24`=P4I#vww{ zaxs}mM2M?zLn*C3!e>`TBv=)^q++^kfUB=Dsn1)v>#@582S3zP5KJ>-_TBK3g0(n) zNH^a=T+83BQu(Vk+mt4PqJqba|4u9lTj+RL zMJ1ObrF~z3>MvEu49qezs>tvFQT!q zn_6Py3{FYMBw4;CIGJF6pDhsFh_~u=5QLD%VYPaQ@4+b9x127(H5&IbD~p&IHIb@IvVksYpD008odGI8cu%zfub}h6`M_ zk0;*(EyKK-Si)F3BhZ|pU7Q9hv%rwAV}q!NsJTv+@0Lj}rv2f4NTeF_*ORcrQ;1he zmPY7dYRu_bWcJLlbh$l-*SHiF)Oxgc%?07rYiI zTyeg_L=56k9b@ff$BqUEUNf5>Q`f;Lprzu^w;cHInGL-tq^EL$V&n?i-b({r4 zX!^@X{SU$|gb-`(?Y{X3(L#)9lJ7F782xLSEbiLcP6!Dz* z^_%7bRwXwv9gxaunHwv$WgY`+v)p`w%8+Oe;HB(s##!8q*0kbbW{`aqU?L`sE;db2>>-Rm+LiR_b~*`HMz=aw#K1HG+A9B0a2lkk0>?`yErt z#JM?eP1TExBUKl1!C(nkf|g*vHzRD6)MkN2&8}$4t+>vVDs$XamL0%BmMv87fhUQe zjVvE84>EQLqT{Y%bJCVrN)?KqM>X8v|H?*VL$P@&3p)KPYxyN!AEZ#S)Troe&L!EJ z1nP|G!Y$D~S)(wK^ z4qHMn0_5GOkMn4v@;wSiZvrn_j-=3smpY(OqQ1L#Q^pPKyl3 zB1zjL9>SWh&QN8YCp{~EyF&ofkB778bM|yI5v^M@$9CDfWPl1-ff-sVY`I}R%?;JR z{QKsm=9?Nr7HHRQ$1{AF>L-t#kNBSeVxABj88L*Tcgf@orDQjF;xbbCc`d(YraaxCfOg)?#BSi!5_Y z1F=08b;nMnxjVtidvB9&u?k7z0ZLp^)X2X=8{F<+9pjv6vl ziY~Y2X`%=2Exw|-l;e36!>;S){bI^%J+JP_Lxn9${v8}AAF@iGA#wGeJ}PqE*O2%$ zw;TxDtk%i@Oax!^da-MLQ*-i|Aqs4|eX@Ta#Q3kH`OqaKPI9lA5;;UDrJSa$m42_1 z$7a2v8aaP_e2w~vhxq44mzfl!|%K#+tGtk#VMNsO8zZ#pKh zH^)@Q9vIfeXi?*SUTG&d2vH8zTQw5 z`@MYA|Poa%Zb;I{Vx6$EApdp9C^G`V^ za4U$7)gO!)?K_zypPXz*86FkC zaXbhhdM!x)i^#Y{ez=OU(F!f!tK;fX|DH#?d|P^MlA-mX2l2T%NhRkpEa53B<`KDj z0d7H+m!IGLX^Lw5Q;rR-koDF1c`Gx1$zn4Fxe47w&Zyegj0Nh4SoC?5rQXkSZ|zQ* zD{{G4qfX_3P7Z8HsnE3q9@+CA6KlKpP1#$aWs<)?ZC={9icklyD(HeeZ12Q)cMu*; zt~NpiEIL$U5Bk4aO418);QcVf(4l?Ir_xZRwNR&1HsrwODYPP8D}JYe5u`=*H*$71 z#(vyu)>6HDvcofjg|l?rZ(I|6?4Ip2Z6vXU{FwvU#HWnZb|1xrE-f=UynUeO=b&NT z430!~w(2#RM$3dI&I``=fVK|vgD847brY%Z;E%S#w^x{IUkBre{WHG!DgR~7hXchCjJuKv?@(Mh?%)2TBpeL90#KKvf}ut z{5g}Bj`IhFyS|DBfc41~y=C8ZhHKeR83}!D+cqWUCRAngoDy_xm~s;*Z;Y-%20tEm zm9bhbEOJ_uGnd6^%7INY6}*X)%@wlBxr*v^jU-h9ZJ)x3rGi^R?XSS()Vz&BjZxHYKrlJ& zi)6+cLJZ=LOx5QOfw><4s9qVf%SIV!BuzP8AABMKIOqGoiXJP3R4mq_cQQFVANJB* zv!ewI`gz$`612#q6Z`L~oMoSn0UT-ZZ>cjz@>jisWROcwR}Hw7Ej24H0)g8mtr^oq z4pLG*AeC`mVf-|!+Ge-B$ZEl(2{z=PdTJQi&i5FegF>2&cvaMW)hDRAyI$lwU<9iq z84hFG*f zB(HIi;1cwn_ZX{;rk&w-m^mTf^g~KPY}EUDh@L`^aDCIPHwjI4Q|T1$wiKt9fQ#ER zgD3qEdszu^KJJVy`BpRwHhW@JYmgCJw}v~?9H12UZxa8t!|3VxN!bHWw20GEEm`(^ zHml+~)v2gD1jv;rYKlcdKjUd6Qx(w0K<}^{k#(|Zf6R54C@lRoPy5g(o5U{{_(#_3 zkbAOA&Dny<`y5Q3n2P9S2=S{h5|>kdY&Lo-G2%7taE}u)BFrH>7_#||b@?DQkgWj2 zt25@Fw*7rNCu)JR8u|`?iqVN_wwS}OqcJlPFQopjrqDWkm_}39Smn{n6&vSWsjNLH zM`g5JLAOD^^f>FkS)@Nr5tU|X{M$i4;g~&R^0$~?HhjAC|CJ~6sR@E0O`<=d5I9SU z7;&<|QbUeuGQjZZhQZ@CYip`3HrR|MuPv`JM!Igj6@o<;s@&Le1%kR10HL}tag`j; zTz^a2>cihi^In*R25YWv9|tk-a7ezre2T#nj^0zgc)Rtr3i!~-pMPfL9@pr=+BwljP?7%@Zd{$ZtvPv=^uUd2m2!@a%VWeL;pVa-q0+oo`_Q z_ZG)zrJnz1X)^=45lClsK7Xw|h=?S8eyq5o;|aH!RY-$&CH&~cX!Pjx8mwr?Ko_rx z3RQzZal(>_tzx`CK&TL@YY;yny_pTe6hSP!7C~V#<2tqzi4xZ#hIySz${}+o4S(ggbm-Ejc83>&FN^%D4j?K<5I=kTY2~ zXUYA2n-P(*r(E)Z;B&$iOnE!x=kKx#=`4TfO}wJLNFDvQlPKP5+X=_fjB2&#cGcB5 z1UQh^#3+v8%*@7+chPOfn?3r5c?5>6n66pVC&dD1e=2m(Hr(SDxf0j3L(fMzUsLz+ zkgD5cAt%xi57aT?PkR+}wjL9$U}I)(DPl&Q2G7*{BZ8aA(}_LsoeC_`m7@LQ2=d2O zTL2k<_dzFG+-?A#e|Dr9I01wk2zjICH5^-h-yv$&l z^g^6cG`~2Ks&h5b)3b)T^^P<}ayP@ET5R|(o~p&Kr0}N3B6_!2FA8Pui0XVbH6(|X z4i|T0 z%jTpoZi)g3zf{$T%Lz2+940eJLB)G9_}!=J9v?NwxwM zAVn&FIFIU&T@cxYS=bVtS6jB&C7@kfIp9y%=pb2hrZY$+(N5~}P0zMH1=#fc)pZAo zIWW5p;9k=dejfRRg2U0t$xA22rqWEKo*1f7=oM_cZPwrlAGZ0CA>-!Mvs|(cr$N34 zxgmA0qQ%}m%kPKMu^Zaj>a~73@437xyp`1OI#oL#aGueHNyy->@07EIipY3Awci)E?sI!TwrwAP$%ltEERv-7N?9qssgSy+JVG- zQOTm`Wywh)WG-gs&1fst`6R+;oYCc z!rn(!)q=GICeo(pa0R~waA@DozuSOh{6!B5N*n7#H+nMD(Pm`?Wna{?Cd+VOQrGak zD|^TI4Wq6oiFgzJbMvU^RhKVoeF)KqD`O;y9?e&;-`jV^p7WSdSoQ7*Ae{fmuJfc6O(m`X_heot?X6~(L{^&`ce_86v7W?{usfUABPn`8&dAUVt zGZY6KE%)v`VAO@-#wCHnMrt*TOrXMyIbNKdK77sTBfkmEQJ_C*T>LLhdp~Sr&`dbf zE#CpMjKQxCTg6TXhIAD_mS;$9)|Z4FLC_VVTrGhXVo6hJ)hB^Xb3K}HBVtJtJ2Fjj zRVE?}CF;}W3`^{;nulbvUEu}og|A%+iPG4cCe$@+CjM20BMh9+pHZzeVp)Q2uDWE| zKJDl>BKp`P{*j; z)yQBHDXy3HG+^A)s9Hz9?#y0n(Si=_*Ena=5C`Ax>c{D`AlMNT?o zAO!RLZz`&hrlOOhBR19h7LVX z50GGah9nM5*+l)~6Jue<)z?8&eY&U&f?OpZNssHcV-)xt8grIYZR`}6P>Fo%LQQr6 zthF=Z$hMOqBsH9b@Uw2?C))W|xq^>zADu5J6JSImEg#NJC`m;k_XtHTTKMlzWZ*5G zuxFt7V$9LiNW(TP%FWBC9?j?~WyxGxOWAf88i3jM4pFLt7xM$5l2nKA6*S1^(zl^G z`AQ1s*m^=-f9ubAT%QK)_AtC%{zokgTFtQ9B2RCgL?Ei+Kqs<^p`t+Ta^TZOBA_U6 zj60~J)GV1k_cmR?_W~+-&hnVg>YpoXxh_9T;iCn1y|gis$Cw8G&qaV?vi;x|N!ZAR zFp1)^@)P!38m*KKIL*pb$W3O?K;NL`Q}H&&8zsxce*8{OZua$#R;&KVcgnZ%@$ox5 zw!a#M%A6|2Q@IS>f~+dckptN;V+XB6o#Mk6UmJki9~TW!^iCe8|5QkhRN}&GVusSm z8^2fLT&fOOAN%HQrW7AN!yxLd*wGo3(G!6x>OnduYl`dL7RIu5dKPP&_-YR&h?XEPO4fQQD1C2dw#%KD|cC- z=zf*x>;1o?Z%i7M6&0nz(E*_q_Wh4HulK_r;Q)bLL8k>hEs2Oh4F$gl>w}pw^HuZt z3$H&jrma=NoN@;0*r^2|AOt_7c1WY@(9ERFiv=RXl3JVwv><;Z8{lt8D4;Qw8Hjbh61gsFkQ=1xRxdoOJS^^<30-S(LbAssly`UCugM2Lv&>4Z@LG$ zdJl1f@B*4bestrrt6|L7^_YaZ{hH`Q6a>0LL?i8lyc+8?$mmzO$$}hvQ zQK#u}T=eTR&faA1KiJQyz>D4}qTQ#@!WfkyY1|wff%i})I2|L}?zbA8d;2wcyDY6VIHW3t`~5tGm0~`f&Z0;0dNhu0KxgOdK}@1qwG1U*s&&b8_7i1a1l)& zbgiq?u^1Cv+?Lvf*pLlkGfy+D{1L!nzKkZp&U0nYd*KBwjU(~T6M4aClBAJ8#Qd|@ z&3SuHq|iPv=3p}qPz?_pU_*k`%UFKXb%+Qh5C2PkXs|g@HSo|)ECD|_$&K(CGmCt3 z?FEnQC&l=kM>mGM8dfl~j-0WS-=p+UzHM&)qL_;+^rks{s7n$eQu;kXEQjlfZtfY( zGiIdGN@3be+;#ti84(*FHxYW4$8jKXT|Z3G`Q-$Za6>9Lq#& z!dIpP)a-lu8Y3JGPvRB`EDG92fXp3}>9ojpJd1&E?i(Ba#_hl$y#iG1O6ID=U}%;#|VrXNS@X=|LDjlHVa+*fU<4g+JY79@N< zuBe7~tnxj_nney6F0H*WGzDooVQZtL=i@u9A~L08!Ge?3*|)h!q7IAT$u>Q+?z?)Y8Pvv)Q>q#PLU<33DiSZy0f6 zQZ&=j`e;9+#Ar#Eai3=izzwmbiyE9`w3;@>BVONh5pW zhcI_H&1=hc;`rz!uUO&A1?0=p&SK#pJ1E(WejpBGEl*T%b}HmlWM`R%>`!Y(*GC%u zq&3Ucwz8i0e{V=UZl_XC@cjGozY${I?d8hfZG!JuZFV%EYh{YM596BZCPsZ-4l8KN zo~9K@%sr~px-?Z;O9EOuJ5cs;W($q(UNpp~<`YG342s|i5pRlTrkzAVn?9)nA3GoC z;&|7^A8YTCepagbv)O1#cB6}>GlhztL!Af)10u=^CA9EbIctWEQU43Isw*%$A!_M=h5`I}OIxLx$xnEsIkQcw1d_Ruf6@e^*YtzkZDe0CgK zR4>t8R(q8PtY5V6tz$!dFluUQxI1`0{a$X8i^Ov1Q5Y_ETknErzY|U({{?Y1NZ-ME zz0N!Pwc_gJN;Qhw@_!w9Ef)>IK!h) z!SMdfX?JAcmILxIvl6gq{%VA^KR3T$JdD8 zW+$3C-`BJE=|Qq)g@XQrwCl<(cc|8Jz5XLWxa@4hf3jA9j!$o1xu1;25GELXg3}87 zP0rpOfcktN`1q&Fot+K`Rz{(=56YT+z*w7`F34-eHF?>`dn%R#KC-h1P=rQN+5L2k z1^Bq1)ldD6VV#q_Js)F!4aZD;`do|UH&~R=@XvrrbJziEt;+e&S8b%Q(c=4j-7 zmh5(BzwDK#)S~D{^1b|?8H|}EDQ~(GbX8>5w&nnr+#D}-w`?e^Q3?oOpUGiHy`yY% z92|oS;MO>FH(NwFcvQhp4JeKW>o`()Dsp`8Jt1qI{!&uc4;nxEW~Fu0On{n^Y}DgM zm^{vkhq<5LK<$7Hv9okF)kP5NeiYT{dxD~xwfeU;4Avvve($5ZUe6)-eqNjzNRxuI zDB6)mSHnZ&;g+$ydz622P!GDgp_p2;6Qo{?`M@=-vy5~Z`W+^kFX=k>_x*#O0N_!& zz&N5BydKR6hnwj|bbQ)z8A$td^p*A&A>Fbw3(lW?d~UzA`7Y@xK%b;~#5wS{cI}^) z;<+BFc)}yBXwRNZG&>Q58JibGeO8h!^=)qo9QCRYmj|X_Gs+6&c}K0|x^>71IGX z8Xr&rL-nFd6nC9tb1DZLZNW{h#p9ByQo#~p_m+}5SXBBc*j!u)t&bu6#H+no9Sfl~VkCZB2cC2-@>;F#b#*l(&ReEkM6p%8HO4>%*)(kN<=P+CR(9wp-PtVF{? z#vv~^Q80Fyh2uewggb&Gs(ikWH616T!PjHVUW}Z(a|R-E5o)5IldICpLXiX{G2SR! zFuGEjbL!&d`#&PKSC&DVu%-kBZ!J+8sf*j)oRBiq9NU5db>GUOXPi7>%fjWJQ}ue)$#g7fw?tkiDSRL`5NzZko7v# zw!4&6zl({(z`d&GBs}}50Xqru6)nDkx=Pj*_;l~w0A^P}vUQILK`<1uPC%Oobwj|{p~$J~ zODXaPAq^+t;gR>bqgJE&Y?t^XZOIFqgdgz73#>2eXWHH+{C?zRRAf}i&gQ9^db~Ln zaZJnr_D9}0uXn$`N#E@ci5!Z|_|0i*a@k0kzaWd$S7_QZ%bPZFuQKyS^u-rqg!b!8 z2f}~Z7)<~O+bW^{eF%6wV?X%hR#Zn7*PL4z+>qeefQg(wFyj=OY#?W-uhO}Uk(ST! zmMig}^YPx-V9D0-=Ees376n)3uWx-WZhVOt?wq_XeiNM?CeHGd07;!^*0QT}^51(R zOZf5UN$EZx{}DfU_~-D9vRogrC#jh9I!vBz>I(@%Wh@I$TYGl$-(EZ<5I%|mw4jsk zVu`9nf7kkJ@UWu+i!nX;-t39`Nh3l@R7xzVB|P}p)~p!K(Y0`_Pxqc-<@2*z z_|LHrXqImlL!E$&9Pqs7qc_vF8Gp#90n?b7*bo-E<6T}hXSaSvlpJIGkctGHXSVc( zUqUA`6l|s@&F)14f`=c~*M9IUn`DDcR$FJhZfyzp!11|?9A+D z_8+Ksu=#2o2ZI!=46QXA7%@G{p=H z0l5q5xe)8`?H9@X9$Cpgq}TQve-4hj6GXA7UU7zaf1VA-$nab+%Q^M77dOT63SPOb zYj*qduhrLEGh*y+$EYIS=9!5F_n%15^+7T2wTq_Sh+Td08e#_S*m^4slLX^Z`cWlh z#V^X8e4$vw=>HfdiFipkl-9QElQcA*$Ew%dpM{ zDD?3HiIkFpZeDLh|ILbk1z9$$CW%@wztiRntci>6RUMdd$zaxn8@O7rMSEcak|&$$0pUXL}jAkr@g9-j#+=fipp9 zcU1oeRbLquSFm&&AV6>k?iSoVxVr`oHiQrYgFAz}%Mb_>+%-tT;O@cQ-CYLvd2{dg zz4g}nf7UrweR@?_*WOiIpnP5%oLjIiW#Kt+_3J5HivG3}4ZQY}gfUTb^0;OvY=`O@mJ>P_|c!aRZs2l%1UQu(au@E? zSmrZyVDBJ}ncfBgDuqkd3;uWiE3Gm(91wen^U@k*1Z&A#rE$%g?-8dqip5Ub1mXR*TsnZi96 z1l}Kp)-~p6fD^Y%)I&Y9qAN-8;PxX|vipYW?pRq7QMFNw`+;AZt4P>x)g zo{$TJVd&~7;+9H>U141^d{GPngB{JK$fcqh{os)(qDgaUblf*=#x=I>Y0#o^Oe7YC-EM;%Pcc(4oP^W& zP4SXbh^({V7OD4R2n}GW%juo2aF8-0HogJ^VHg`r=^6^5hi8k(V%#n}{$A(Ku zU!`#Dt$Gm}b(s5AueC*B_mPY6cqBAK+bve^oij~4{M-0}aP9Rl94&=-ib2sIkL65} zEiy(E6sFSq*2gP
?;CKluI4*37oMWM2P>U0iQOXUQzF#S(|ecD;Pt^<8;kv%-*1 z*HLb`v(j}!>RlNCo{GGN<%W$l0zDKBU5pjvW=+8 z$TJk;$ij}p*RW*C1s$yI>`25B!CJ~N6tYCQn_U50C#}KvXRE#>+~5A;y4z{7)holw zv4GWQF~lViu{|#jNGRK{i_)@(J2)E#H9Ca5N4l)a8EWExedE`=!ipQs*&sFu;$Cdj z8+prP{y(ekc~>v!KWc~)u15GgChh|_YeAw*d-@|Wunbh7ce=z-^SD)ooEi*8}IxzBaE}Lf?|t`SrRhd)j}JtsWj1| zhk7?rp=miZ$?sq$#?SLrNMvhvk~UbTb;|C`@0=a&}0sMKfE>?m%nI$@_4s$ll&QE-r4MePzbhl~*mXerb zY&5uHh(DP%Z@Ied?sL~3GQu#;1un(~?_{r&(CvXGVSI;u`-f}84;yb}Ua2JpNj~(3 zNW^Zl-N&7;YC3$mW=%pqr)Q*;VQPzDJW+jW4~-8HrOMk8xypOad@57N!XuiB(X@G@ z({&O;a@?@Y$q(?O;&RyZL$HZl)A2eYGC^(H7ILALUBvk8Gedq@XI3yR5lDGGwRrt( zy6~hc@9B@#4RR+xD%w@pcKDARbeAkjwNaglYLia2kpOV2@Kb@}pT2M`a$-)Ce?2eo zgeC-AB+~O81`&HFjso()o8$S)3^A|EgUNzAD-Q0u(=nop8o&OS4u9ExeGL$*$i3>i z`hLKm+eJ4ZNdZ|huJ$aCtvyh}|J=-JZ#=KDp11EZ5)ITJF@%nvlxcEmX{c+E zyj`$BLd9OO%JBouU!2sAo45>8b2V-RhZIvozCJ{&az6Cv8JO11|7;7#A(yb(DYbp| z!@_wN|8Xmlqq6dD#dSOcM;!F(wXc~aQujw$5*M#pS%Z+as`6GKO&8UX(y@9hG}9eo zo~=rSGyL$;qFXv`&kjt_?We^!Bmc$tEL1hSz_wi)2cV9Tt>C?m@AST%G5hVf0uG6S zJvoquYkrc5s`W}!iEAXN`8Mt#CJ>K6S3G2(Oo+R0l%o);flQZ@YKk8 zdPb*a=jESH!-si){0zxs1iN?VwI>;5jlaXclQk*sR!M#sU)QXq?k z3aZhwUVj?!3^6xd5*0#lrGVqq={veV!117n?oIE_Fkv?R-yg4QddSGh%+j8^ivpUj z_4adMi56h{#Tl2=j_Q{iNB_~;WxvZaIEd47H706MY2tOMYBn^R4aX_4giHc@@f5Rt zFO_c{1`zF*Uo9v5K(knD9ul8(oZe^*pSolEdwZ?mmW;-vj(qc79Dr(1BWrGIQ`W{U zimukgGTT?b@`L!l;~ox}RwFs8n#-IK;1_SoAsQ5~e^GN;Y2i{|0LS~;THcDIk>gOw zM`Xv8C8YfXLJP=`H!|f=a}-*rRi?)a+rX*fX(oq0o3v`DD{IoS;a}H&Do4mT{HV0? zAzytUZ{9zLcneqh{t&F}d|T~{s|_3&1<(6tP&EdBU)9Xew~#^3jN-Aj>%W=;o5+tp z5J*}U6@-FTyHC&jsIwm`8~4JnR|3xHniouT~#wH z)ILs+sU%t@+srpRBj^AXo1{}T5-w)$w+2s+ti~SuxcvQ}otaus?H#wbqp-;5)mzVW5(dSQK=*naEUALa))#<99+RtmcXOqYcm}m8m7w|u@H!wix22|uf{szS+inJ%<}h(4}wJZ=WF)WS7W!z zdcjt&+fF{~ne4x&^8UG&_?$l#-{=5jP%{CCLd=Hu+&4De_ZvGHyD~@yI65EnZbeuZ z_d!Mtu~cm+T>dB4MUySlp@$$W`jCK<)UmuU%`MX(uW!*xWn_!S1HbK@@w*9m{WcsV zx89O&Jm7ZY&${OnIoQ4Ec2EK~Iiv)8s@becdp;9ceH0Oycu>^r9#wDk*;-w!lq^zo z=nZAfnA4VJqr6rTmyPKQPac$%j5GY=1zY$V-hZl|ggxg&YC&YX(;80frAz_8-=lwLzTZk<4q+}~-+%H)7j(AfTtR6c@%V1#zYUJ z(UXR9mB;f5m1-ng5~*4h3)`Y`?63PuS43Pj|DAMEqs)k~$GXb;>tH9X+Ysu(MlD<0 zV^@^k)(2`m=jAT8>w^v`g=-79qCFb_I1(DMC)VFn<#a+N-k)nAw z0`iT@eo>8leskntZJ-&ObJyn0+bcHcIMS;YJ5CNk#eyd} z2dgFH=J5Y8XK1CK#*H9E@d1q~UU-jzlJd08`%dKe#8pFdcP39Zg5N2!5V48`%hc+} zFkL;~8p&empE+uUIeLy-#16{LWR)^Te(I8Uu0)yJV7hCdKrYc!B{7#mqOSg!I*}xO z#~uDbucrY@9MSv{M9Vq%5xWYLBwI}^6#HXRaYt}`08`w`@U85^6(F}sXcZ>p{Ydq! zboKe$g!R(?XEob@KKLoHLqE6mUC0623HwY%qSHv%OSVu3ZCl*%wwc?Cf|hht61MuS zWL!UWq!-@jHcJc3zLikV;8vzSPsP^ddR@Wa-IhuY&C(VZrQc-9EK_u{iG}q!RxX??XPu*-7mlLGPKn9FSy}81p?Od>Wx-LnE??&+9{wf!GJERzG7d zK(ziC-N7QEyaQP&dZiw17N>%2MwAIrdkzAu`D$~Z3zeGpixliOK0dYm`X@XfgYN|6 z;?(2R)pd$b+}E1+HL?UNJ#aY6U{wg5xRZ!ARM@4dk5IG8F@!{QK)*qeZ=I^X8x}I9%^LEd_>Wk_3|T z-vpf9lI-YIp6o}w*7Kj>N%O9ZDXF$c1MfR^hX=G#KXl2dm2DJoH=6K>@le6l`bJ#5 zCoJpxdYn%7i)FFySvK=qwz|I3_b5CWG{-_8ez`eW!lu3Wdwg&X8tl4-TRAvf*gtdt z?dIpw?TnC!iL_BGLD@_5_&DriYki$m%1#7_f-}LkEPRuNiTRLW0-LgVeC(7&L$jKOWa@hkgQ|)R*l~79{+hN`*=NjF8L9XGZjv zNW*wdjh{2>UcT(+c^FA~a^hVe+Fs$2$SYOMv|f{?m_v@X1%B86wN37%bK@rk&;7HB zAqIG4o(K|VnK!f@tZ+>>mZcrZx#bh>OsHhTpf#dr++-ry_(?}K0YhojUKhz|s3$YaK6|sson9CQd_rjN)Zj-jV;7Fzi;F2d@ zW?q8jY8|Jm&ut)#G*^o$qYSL$LAOkMhmiW-W8DH)_5`Mu^zRHr5R=%b-{O(Zk?=#o zrdVh(;CcnrgrZ_0p<=CBfW@&FV1ZHij4tP?LgF@n9HNE6$5caW#R1M?R)_*CTUteC zP{J=FsVQS`-m@_uN*$n$#{B^-R&xuNbQS;mqlFm1HY9V)vGHg_)}!E)kA=PtW_)tS z{dP4HeMm`FK|Q($qmE{-?3nzdvEWx#KB+R#WJj-@d=O7$Ok;xDBUpsSG=7G>lAg3So%lZ4v=r0^F|AzVxo-Zl>P{tMM zzPhwmm2`jXD#vVRyehGB>@j0*JF!Y*wPUkh@{09GS2BrT9r@bsbxPk_`X^eSpi}=s z#(H-~JA6bnM8=wO7%ARyy)eJ6*Yzzl*DYt->a*^_HLo(U{%Ass686eW9#al!3|J^; zkmlgvSbx237#F`=0ZtbWE{d(sN>gN}B4MxH8|VD6{Y<=nTzjwWN)_4gMm`K;;<&t% z8J;tE?EL^C!}}376Fwz3Som&5EdZqSwR{PNdH z5L*HTr@-|UC*nRie#nwqldAoF>W5+qO~)qzsP#ts@IiF-)FpA50X^ldiuZiZj+2=N z$MZQDbYjydGvnK<^f-h+(-N@TB${Z}k(I*L{c1h)_VM2=Kao(sllzXMY1QG^EyjNUi{2e6d=M;XDIiPKv7JNa@8ZcxC@d-=mqxftXX$p!Jl73iFm8mN=eL1 zkK28Ux*0-dE`touJ-&OttZY~cjJF9xrXC>Q*L%<-^C3o|l7)YlD@Szd^a52mEfmHK ztC6)u!jqkXe@wBu&#}p8glSgT`=*c-e5vS*i8)Nb9`jo5GVF_-Qjo*G(3w>mP>n8K zfgbPtuyyk3VxgX?wqI@x_jkhZtxs+14iY3|(7KA1i&B`%JW8N6_6X ziW?H4FaV5lg(}F#nIYqXAIqi>_-omIyS(u3O{^(d2CJBpo}Rw(5SyA(nD7Z(1wf7S z<(;@Qo5+1<&~-VNMPgBV2;@Qk*et`?=&bp;>KC6Cz^Mya;lJ+CUa+^OIq&+_^aknS zA>zsJOkvXDD1C?kyF0f_#BlAdzd;_ev^KP1HZRo>D-Q_3qod=U;K&8a)}XIvlGw}b zbV|evVx$NgVGK5f$xp!B*=fFP%9RpEGSiLo|3-0nuG>4WOA$582@{G{Tp9IqQUg;f z2}ndvTm~T)i<-2(!_k7`W_zL=QL)RA;H6G^a-WGkPRzQ^SvkMF-|XiY7#t*?==HPS zd8^jX`=Hg>df{|A5&(SQHL61wLX+^K_i(aJ-H1Y}>P*p3ch7P2N2qpoz)vdK`bJN@ z(2Q5NPwg)F-AfU5p2!0$&Q~tuOSXsWIB|Uz4)}57S#dq6@$x9bunF|#zE8d2???> z5W`ZWq=M04%Vi%JI#9s(KTpdVTeV*3&0x~n^)M2?CSFw+%y$_QMiGY(8z&0H0B2>y z4!((i(8KlhiPV-CGBYoz9xrA|-YTI+*yjYfb&?)z(DzTy6dcwV^nk|v(lne8-y1b$ zW;ca=Uk`a19C{esyZOip?|v9xQO}rLde8lbz9H&pV0kfTErx3W3=}$ z?z{FjlEVgQr{)+{y)e(J$~a`fJJ3STy#u z)X#I-KSi*T3e+sqZWJD^` zre~CTQm5sSW2Bjb>48VkMs034_B9^yFKn^7uRXG;A337apt^zF4 zFq)U^K)2TasaHU!3Y3-y&@X<(5#wNFcVL`bH9uBdFSwI@E>T1qAz(t9qBKDx=MI}Z z?$F%#iwC&!oVxRqq>L8p#oSbXu@zmb>g^cqVcH~8I@|Dj+M=xSLlp_%#D{+9&fVnq zrJ(c{EVlc)St{;a;MNgzaF3cDU4gSig|P^!DR06$Hs5$Ba#jf$a3d2zsm{rw!!hJW zoadgEeHr$pI65_IjzU;e%4vG3B_WVn*WMhowh%F?yR*JW50A zSr?+sF)M^;OhN($PrJ>S&NgvglBk*xI~tWOEH6Iu(R=WO3Qp+~uCO^Bh7A@7O=T(q z5825&Bsqy1^KBzjA9>3IkO5cNVFBI))HGb7_PvCoEik28s($R4Q3cIHgICGSV{(3U zu>K{pdB?W1F>e*#<=#6E(fG{R#kk@uIi_|4N%BQU?zqL6@N<++)iriUKf7xi<2OJA z+XGQ2J;k#iaw;Y&rGd62g;N9#w?9U>6Z-BfPmk?tI)TB!DV zHH1AR`mUu-CErfEx<9_c320{jM6=!ZO36^3H6Ri%Txh7u>z7Wap zt)xb*b{q0d5U1(AusH>b-uzqT5oqz=c3u8X@kQ*$Y=wSg>GcI3y*sCqR|ZhA6;apk zK8xJiUlJ*w+> zQ1jHm9ZurZt;Ze9D`t2CKTod4s30C&$XoKGHJ_9P~-*>t(?A-T6 zNM}}72FxNF;MO`6wATrHbIDLO)~`ZN5xnD5CQnDi<(BbFo6N0DRAJA-BPwfBsM#`( zFNFSIT|1HlCM3KGUv{S<2VTB|PdJ4QzB%#!eEu6T6A$65twHcRhv|#GQOo-s9qhdE zm7rsq*m`{v-VHa$8@ocqjMEKFvq*WXa=eHd^DgQ#DR&ji#mWt{i-B{CY?)Zi(E9rs&GxbRe|P=4kyTRUpFS=%8aOL|8fgdX zbM<_%Bo~^O4y%g~A8f&KF>?9cM3QSB zSJxuZhHON^y6z%Oj!Yo?HdCX-_cO|6zWqrUUyzMIp&kie#p+w~8eEtiOJ7$=n9Y)h z`CK%6D6IiGtBJI?8O7buZaMbu5^^xXbv;`suTn^r1o%0) z>L9p5pOi9mlxXuMipS(bn?z1ZwFZ9&ReAgJ!KK=~2wBUc7-Odu&_=!DW6^_uYE9b! z0knv+$24A^_)(~)R#&bB^6~N8iN|_U1B8**dUd%)Cw<;-AMtA52@}K z4n|aTTV!AZnUH}Gj;~(3JDyWfjs*sOSX`=*y4m95GfK+jCh!JA->^imC-Zg{;`27! zSjy7pfX!*Bja|NS#0SU5GznjZwtX-J26TDV3Tz9srCQ+{luelB3ZMTfO3LN2<6UX0 z4>WXi>~z!m?c_?RMho~1zT{aYMO1VIrxw@MCkV2Y`JKfkY6;~=sAPH_2p z+DA9qN9p?<1PWP#6L!vDL)@Hx<;iuOZ;$j8BoMkLjgn7i*7al5b&pxSpxcX{biF?k_GC>K@JW4d2z1gX#=o1|S}#~57eK#W z(ON*YL+ZGu))dW4;}GaoXJOV>+C7 zELsi-^ZBiy)(HtASs&9 z;ht?2+;+_@+k!?^VE>~Ms zU4Z#{ud0F62S6-lW#KBFWfdBdQSGgI)|%{3eZ%k82qf;j03wOXE)Pnsuv~MF%836y z#(gdxh#i3CcTLuO!K)@uBkN(IWzedNdM=51N62ezHawfJH{eJxuFgDVzb{c}?ViTW9ZEg!C7FabNmX zS5gQ0BfC~mB=e3wVs2Vg5I0;~CDW+4)pubm^#zlcBSHSBK942b zWVA}LyXy#U*yY6w)ZY!+|t}TpzBNg8yS&m;N%OAP$$+ z8VQi0OJ#yL39>{e7#pa_Ak()r%$*k}tLA6uLCQL>E!hyv$l}eJ0@Ywjdi+P`enF=-or6M|oFMYIuA%$vRrO2x?+Fl3n999X(g*}oP3N>k+m2^%9SHHORu(qEJ% zR4GuF#0jxKvJSgi+uAIU*k?hzC!`$qmA!tMX!hBHdk$wXfRCz&f%s5@udZe@@h#TJ z3a$K>tGsIU%?=#m7dV)BE*sGo7_#Y-VwVT%if!2*%OQ{0xd^gAZUC#!rvfZ~xq60|Fd)AdnZU5zSY;*u6`uEn%OrxaC_o|kmRDFkBSc9V#W}fv!>wLwvZ+rLF$ew7 zX2y95)Z<|GGF&XGg%8QN1ypzj$MQQ%x)sWQK?YbPMNaM*@V1H z(peM;muB{>N|lof5D8J6t^KFnpA{WLoI|EE{KhPUr1BqK=!2dXD}cbOZ)Nj+l5Hew z)%cAJVJ>@aTz)u_+9Rgio&P+;b$iFuA@zUw0o%hN5!0_sTi?H*RhckT`^K)K8qi(Y z&>;7zZfB3kh9Zr3`rE7*a4UAZdQQq3e8`w9uPhe;DANNpuA*T*aVsD92UR?7#;T(+ zxaekU7#c;KbMsxX=ju}S*AiAC$jqs9A-%Oe)E1np*hKvf`@V4_3Usq(+7fT{^-7H$fHTIK+SlVUZ^~@7~jyH2gk807{1P>dB*OE*U#Bj{7*_1%@51 zLg%Jx6R&=}3uQPnx}w?SR=XN+iU6d$7?PdYA8r$Y*Q0^x_uGpgT4H4coK%wgbgv) zJU3<)T}1GZkU2CEzCNP}ZGGALi8EP7UA%f*VS?QxkrHkb&u zDy_qU+3ql4H(ro}^z-`0s)X8hIFjf6lGg6+TN^FclOW}|de+E1hJK#GlIQ`d z)emHC*`oLJzz!Wy2jpcyHDa(&wQ{OdgH1Lx^4DHngY*KTz(!&UDZx)0lU_OAxrMV| zd=O+`o{yTFY=O1{w$#`>f-E;L*6M-3YC0UWbHXiQ=?kx^Jz77r`%j3)f7u(A;c~5n> zUjFU$oD@(~{jH0f_6`)|;ES9feG4(y3jrY${IAs&l|*`ZSmi_SfE?`hiyfHg_g|GJ zkLnaFi#|K3S|GwaTr?8H!smc#~KvHi#69B+@wEBPZS}gOq!K3CyQH zK-p>_neNRyMt$O3xUyQd^ZE1kDF*wJ3+$nZC`lk zu#)2d3ezde>aF+hwz~o*6PqBuwBpWum1z-_2nF`4yLoJh%l`6r&q)qXSd8|ojp=?C z8NHd8g`Ip2lhx}o0WZuRr1TyGJw_`JPuJbc$rnDEE_H@8bpJj(q1<8eZ-u#(1jGVf zEJdDR2RG|ID>#cKaRTVuVGWzm_z+kR({OShHeR)_T-_h__d2ih&3^-cCw9lJv#4AJi-pJXW3u6;WhiLE%^0GRE%)M!u#flKE_Rb;q@@%08Bh}zOKp! zfFsp~{=DK}b0qjT--yYu1hNh32_q$s#t;Wsc;giEaplkZCyzBn0xSMQ`K3E%y#T?-(=ggv26Sp+6Gi;OSzZN}yq%sELTTa_fHH ze(F9ZXwj9pNQ@P{&5Ns10jjMTJp4>dkq1;``N7#46E=}a#tVc@A1sHvhOTamJDWD> zW$+A}P*-cJ9>ejE^TXXCM1UR#Cg_%h+u5gQz7aF=GlK(DEG-WR6UO(6{y5P5Q$H5u z8}{0VU#iAkGc^G(B;syJtA4_(7nCQ`YmYi2H>=lkIh&62f#>$?UfdjwLDTkRy2; zL;A~1&}eH$)dN{S{+*e8s)-VQ@pOxS4EAgB`Q#tRA_-ryHx12O3=QaUX(qyZmDf`^ zQ)h~st61@}h9|Mm_l?S&%?ll%hDwMHPz@5%`O|WhgC@w*2uVe~f>!?*O8vWCgshVH zMp^piBU5`1WF&3XQ@nWcz_vLQF*92Z;gU-usg#sXCY4EVrD?K4V6t?%c>@@PMXG4! zpQsR*k4F!O+$S1e*jiD|EiH857%oss@Y0Tb} zP-inMq&HJ^eC46MVjQVV;m=RJs1O2__S2}%&COtVegYmpgPetvu~%|t>*cXCXwa=i zFXnuo8ydd0hn{i+5PJ^GLiJ0AUl~++7UrPn2V%(+N7r-l#MHTW14z>J3X}hSxE-(^ z<{E4$NkQBW9%ed-z4fcx`Q7NSC^%d?%-cYt&(xzn;ez(Pmc6^Rz*)p}f1Ne2onYinLx6neuti!M1vvIu_Ozgz(p1p#X3ny9$6?a8FQq^jg^* z;!0N2hlVJkSvR|dT)0)F6Rhj}uNe3eE`ZN{l|p}(P=A;ztw|~1@-4qaA8}?XQ2Deh zN~_>f1;wbKe$Q!ExwifSI31WNnLe%kcJH6l_FG)#MjEwi@i=V{#m=zG>j7|-U8=P=%M9XbL zP()K~qtfKqHYT#n3-zQJUk$y&8Xbk~2c_XSOfa8({4&O|QO|OrSZoXJt_reLD223c zwDms{Uhjz7zdjhUkYB)RpiU@NKM>OYgh;3#T=Agqf z`3}4W1_@+cN*^(mQy3XFP~ec+nQ+AG9Q59Oxpi}M%F`x<%#|(CRbFO+4T_Ku|6uX2 zgb7vUmpBweR29Z^r1i&nTJmalX@%8Q5KpZJ!~eFG5p z#Ej^fZ9Y@c`AR=5wQ&$T-I_nhnW4AH1}Pt4M(WeE9B5?41!PT0VlHyCWm~u zT(*uj{eFLo>QrT#uqI+#NOC@`) zHdC(5U>$AC#TLTC8c063R!terL)M%~m;VTkW~!ZiCq-6oN$LLzdxTw7y%>60>@963 zC5AKF@srz`B(Ge$Ht!i{29!le-Ni6QL5K6kYX|O52-HX` zQ1a%JB>rv2bRS79N>z*7AF0adI<^>$4jqrS{5~jS0kKO-{p#*#$sX6vo%JZP_8cjR ziS}B&aWweFe34#FTxd=zD|EC0v68XqEW1_5rW6KY7cyjn3_TMvNj zFQr=<`dOq-BhOzLfLSyu8?D9>ZL%e@pBZkuP%5%kgCgwD9@RJeuD$^Tm67PzN>A|7 zm8JL2I_k&%h4S5uN;C5Tt@*<7dQ9~o;pz_`VwR~JBcOE~v?usDes@qz4X0k(bK-x@ zEoL{op?leeP2!B_nYBkbz&Ns3rxL-KCP0I|nQ=(CukNCey z{bIaq-D6{P@p)>k+;+IHG80U!Hj)$MT8_?aW<4D_$e+8Vxl+-I!+q4LW?AF*HB0*x z|FaLX%`@gNBZ8)0_c38CV56^lt2vg-^XDyVKjyCbXoEKly;EiGHcyenF#R%YssX=UTsMFjVph(1hFRj(Pa`?^jL-$Hz&p z|Fo&vOZEsOQBx8&zsy5C>cp5H=%^O<%!3f&!WsFb^OOCfA00MB;`A_RK5=v@(%7a< zOgBudM0BSPlwaC&Ad3{)1*3aM3e`x%m)tj%-#&9pxFiowew0Pk8uynsZJ;NZuZ~|L zZn8U%>st5(Z$0C@p{CLIiDgQ6;t9r4bh@%Q!XS6u92@kB5QxDSvuIm0;rft%$87rI z-V7aZd%-y@=bBt%_yOo?zxqCr)bKTUzX;>xQ|7_&hHHd{d}8vIVR0bG{Nd+S#k)<^C(e7NPNs)Utf1li%xsv4~-E zV=0#6H>~Nr^(pSa3`BBO<6zSTOSE#H4kSM`*4_CV`Oiyf4A>H)MZ!&ys;UWMqXhA0 z`O=>H&v))f%4FI^=AO z^G;S6JgmihL|>jNuB$b-)ki-vF_~FY@xV8*r-TdY{x*Wd5ZKL$ba#9IFCqsD^QIi5 zn3~rj(*e9#kH9n;aSSoGS$@i{P9k&(~j6ttk$#gyPp+CT8E%J|-w=_G4Z=*N!T}(_?vT!^H5R z9ofTB*n|4`bm$$@H4s?_nI{&P($-$cNRyU1Z1@ACU|n%u77JFe~GO`=M8mRqnM znnaDM_l|nvOFmQ6^GE@a`$13LF6By$=A^6VRv`m5xpbsFr^qx(ko#f>yWE6*7$LrU z70GyWY--p$$j_(ArM~OV^~tXDj&O%Z`OAY@P-o&z57R_1@MF89L;p{vl_xq%v99Nm zfsQbRxSqnp0T;TH4KeHu&XIz*ZWkC(Er=%k8n&pT;ZH4c|H-j8j)2HmP>XI>${YXe zxkJL@%^TRYvYfPT^alTYy*&npZ*+EhvVKRYD99ataN9g@5x19y>w0T43W=_SF_GPp z3)m1S;4XfTUti75Bc#d;J|X7=w0Cw)&!TeH^zHrwwC!fL|76(C_?;Qk!_d5UwdeoJe(K5V zZ3#2yck!gSiC+c>bhEXbX7GRct1HX2VN(5?42O=U&Eioxiz(PV)qEH;_c&KPX#k34 z4#oOLt2MmyGUxsaNc?v{u&cB-DdjEaV2SE%7kdjmW?_buJ~w@@`#;#69jB2DCK5}y zTS>(9eVDK1T9=lV_Qoe_`eTrBF4Z zr^<*dX(8Xgiw63+u>v?xogdX`=m6lRa!fU+f`gIrzo5J~m*;Rf!Hx##CUTQeswaX@C>5og~pCSG?jZ#?TZ3h|uiFatL4hp&I^4P|W= zc#Q0)J}-&U7s@Nd@cTxIezYyZ~5D4;+*s+A>TE4`j+I;-fXHc;lL-i^eXZ z8dG=`L^`53hNP03tZ9xn#d^W zHnEdV9>a-q84;JRt3P&6;ySTmlH6Zu-#2{i!jB?=ITDR%?hiUg;lI-aXky(9h$=84 zYUGhG_J=iArd31V@c;K^%hoslYZi-|CKw z|8@TAB@S=+8kcsL5m%Af*8tT360E-Y9N~dhcT{kkq*#F~QjBM#u2D^CU;oCwn{9hX z_S+@Wrmeftzpr{IzY+(8XNg(2(O57nV&Am#=P24%ivL3Su*5W0Rya0U>~RX>2nc$8 zQGcAQfCfBO!-uELl8|bW)N=Q~n<3>|Yq=r)EWDv60&U}WfNdbC?jBRvmy2%gZZK2) zg-C@98V3q)COco!{{0((mY|*E62KhzGmJ+e_Z3uWCOvPaCMlBR|7_E|OAK0Qq)TEb zJhs+ZCE+^Uh*Rf(Aq0VELPNO!;{6HAL*|7nBC=PyU()hM5&Oo40b)MtTPCo0W$Kt( zM|ycjHti{sl8{C5YS_NGpq1zDEqPSEQMW}&07iZU|H=I@OTR_LenL@@k^=qerqjAN zo{L&tXvsD87a4?|Z&~RrDm#-DCcy1IG1X0^MD~6y>b^mOc_+Cy`fq^n&zFi=18EH1 z3w9`svuHQQdQhzS+!10||4KN@7Dc#9&PB!Gbgn>cKvbK1{{g#R{AF2BXKw_gad4y&z9u7}_bE{_XyoPVEr#BGY^ z{~K=EO0r5&&F=y%nB)0|H4NhMhz9AEPE7)UtC4)D&pLBslqPMhJTYSv-_@@E#98hq8Ra;CljwIUt zAhI2Mx4``J?>{UkR~dQO%R{CuKVGd2y%H9U%E!CAW%SmRVr!&sj<_zHZx{LJ&9lSH z1pP5M-PmJ+?$U&mGD~z{0%^|O1cgZA(n1?#dPJMmWsG%EONM7?#_b2r%{(F#bn@=K z7|Xt5H>$g_A`{gbWWNt}&SGJ$oP97^GU?A>GPa+o#dQYH%xAl1=ay3GC9rS+TD!4v zt5p~bB~tyL1e@XW-mjhxqmEZ+j>U<&sD9d+&|l^9ykCMSM2S0%;SJMrK5R}xgCbNHwD!#E#%P!Fc=rh8!BTtcy8E&1NM(#8HRvIyYU zREeC62{|6e&+3&ciw~knX4<6HZ=zOWXqsy*P11D?%{t5!AU4VR%zr$vlD%uSSH;70 zTa>g&@Qhqrlv_FCEQl`PB+)4dEref{4SlwzKOzo7sR}93{6dpIBD7d1HD`$$ zNqo-b@F*efj>D0uKE9@@`OIWkD`%@ChdnV*%|-E9_ky1fCuFfD4?*WI|BXHvmz-L| z_WK`ww1RKn60MJ6VJ0XWQ+RcF*RdNTD@p;yX_)1di{V$#v`q zw*3>@s%)yi``F|w5)_BO3`><;CripTLD*;G{fDi{=BC52j(yO6`x$lpn?PJP{y&Vp zcUV(R*F8)Z=^z9Mf>fnSM?ge+?~niiB2^P0Dpf#KYG|QD=t>Jc)PRansS!dE0tAfM z=tWUbRIuE?gZI_6kD6u*x4x0h#flns5PP zWC{1u%k!VClBt=C{R))+U9&_gXeay7?%hthV7_ui$a{ zzeyY-KWuh6vy3y@F-m-rHj{W3)~4pL6Q8g9d#O~n(W;7O2BNV1jtk*wFdLz4nIu66 zVPHhOBnJYIN73KYGJ!TJb`d5iHJryiGjBDL4+va7gJ?KbdDZV7LaC=Y>K*-({nXH7 zNllRrB`d_1^CsnEB}0R?G!fpc@Azxafy3&%Vu+*EixAuLbEX zX%arB6(1j&m3{1W-j=wRGsizozK`f+W$SI6A5|YNSOA0?<_P`#!=n-9SKu%L4RO6^P%XQ#X5xqC(~?!mqDZ zJbiXj3ZRo^#fSo=OU63@;Iz+Jo9g;DEpV@XLZo>*CP%(*yHOEx;pOU%h5qbYMQ#VJ zYkb?Xf|UZ(O5c#8((FGzD8m=d?^4_ge_31mJXQay>|Tph=PYw>g&%Xk1{3RC8nInPLdFl^cP?i*SUw~`i&&6cK5?w-@I5J_HfN`RwBf@ zoema*!C+5*eYkd{1v^t`yBzPf-t1a!axU&^F}`eb(*v<-LoA4Xa{@WEv+>gFSg{9U zCJ>_&WisGiH+M7B>+RT+=+A4`zoSOKhb%wW`)s2m@95i{_~RAUR^x|Q%&z6u+*7p= z1^x?65sbIad5^Ks9+a|Rnl!YQW^1~`x^Dpozbnk@8+A7;C$?KdvTFD~-@hNm^TV@#F{A5XSk~6&^O>;52iE7l z)iK)DFTb`lf0~B2Z`%Fl@%dRs?tHIeZ2Ipn`iC>e0Djq$C}*rjqG&!XZG~!|b|Wt; z;JJ2X`8p)pWLaRMmE7t5>az&5%X@3ozFjh)_$R1KQ8Yq zoo^4hAn59tg*wAtZ4-KL-e5pAK-)d9@OW+PJx~q@Xszb0Q{7d&JfjEhzw7+HO!CH< zl5Bl!A_mb`oHOmJu#k}$AKPF7yjsaV3!_V`otUc`MG1{%`Lzx=i3I7QV* zSu^73`DAj~332O<6T_Eo5%P|meJ%g^I5pk}8KG)`g>D|G{)yg4W-``bT)U%WI0-*^qXZfM;ugyK zA)>f{_Jp$dOnXcr{ZKqxNe(qm^OczLzUB1NpmnMf0VYr*K!2u#dQVguepnMBfnp)` zGyG|F{u1$!yOE>BVB*(Q|FQl0Uv>hGY66JQaZnzu_gP}f_?=LIR9IPRbX=1!dbh%^ zxwA7<^7mUVQ@4H%gpajPvV4_J$DYo3%Dct{Ei3^zQdIn@qjo+{b0^CY^qQp}MyIgb zXH?Ys5JL{4524((Kv*xN&MG|fNFlHwVVtNI2U4>*d~0It+E4w8eM{Y~;Ft;5jqf+o zShOD55u<#*vfd3mk15LAgM|stodqd>_K9jzgHHoV0cX~4$4?##iN>%z-YN^H++4Xu z(wyGf2j*Ovx3JVJ)W$NyPct(fccE}9&yo|B6qp@YloX+!)0hsB{|eU=d5f|EKLWU- zrm(PPKiD&fJ@yj12c#|dlA$yF9VJNIbelfZt!^K9B2195$4~`sv{t5ZHppOA z;4kx!4-2xQ752B3oqAq$FA2Odc+ApM79|`MALdg+9tmB~E{bnsqePZP?nh~AI6SQi zC)IEKx&tgKh7-5G2;aEke+u?8SnXY{K167A1w{R;$uEVM|ydG0${afY;riNXbIN?$KwGg5~vV{MiCg z*Or1^0$tNwpLAT-U;%cf)KtaFF;Fc}{j2C7g4?M5Uc+{Wk_oI(Y$yf zbLvDn=D%D+CQtr#w?TezIx>jfi24h%lV-MY+|Dd}=6}1!E_AU9Hyp2KPgexDuhjH4 z=cv@@9q8{v>~oy4@M~eS?zxAHY(%!>%Vafpca8pi2IWhIsu@2Dcbi1_9|}YX@R14w zh=Jy}t}?@ulR{Rxc$LddN7`=lqSlWodgl*x5~`g>wU?}fNkj6DZI6arm@T{}kBgtX z7G7%Kw)abSlyzm;`pzEDwSLJsJjONEPK_ae$U%-`rt=VP~dj3L4LK;^6&_cg{1A3&+*yJ zwU0uHP6XYuf3!ZveZk6(MVLwkZ=1_ItJq5G!y)2D@w~<*QLlSdnX{;Gnt}}qrLEaF z3hcKX)bT6Kn;;eVZT2XFmAt#u470m=HwQu~0o`3oQmo`m;ss30Llq?+ihQ)N@^%B3 z9&ZW&y8vQrF^CmeNW>IHxQxY7t1+%|JE=vM(K`{tV|x3zi3EXQ{~4!iiC?x)$znWD z%B*r!6yYH49Qye9(w+VrE|zxNCE~ttgAW97Ud9w!>Fso&+i`z=JZy|YkxzvfG{1G# ztkk^z1%@u%-;!1uyirh~9uCJs`_;Y^SPa>tEbXprgR#*P1W;5y_*SSdf}qvpapV=)q3eKUnaSz_AS)! z^HOw+L8((<%er(nN;}U@`R%;VG(PdB>jUA$I7t|A_sT4-&*imo&ctjrrilBD;<5}Y zQj{F!&h)}Yi5zuseLxM)kd2M7JMsogB%n-ex35&(Q*w4yWyf}Di>N3$Y-yB_2;d|b zge^>eJ~$~e(G)_FUhAg|P{q66xiqo)-trW4L%35v?cj~wdW%!c(6j5MzWzu?d*dK) z;CVMPz~!@1ug<3yy?T^di77I~YJJimut43vw(&S@)+Tf-EU#A8FX3{X!g}u>&A=2< zk^r${$gs#&{QC45n_Z6Mut^AwgZRz|HgV94e0=yLu(oDR`*FU}?BsD<`Nxr|E`_<> z?9#~Y32TN7H8@5M&O3x5Mj#&IjD{j+6y-9F;{uD?fSkt93kb9a6^mHCdOrK(=slh!SF$i@j%WmG z6|lQoO#c6WFC$gq?&~qjbKb>aKl{s|!?uirO?Z)asTnI5t?EB8Ry>n%4O~(o@D4Fb zb-sU5&%abINhbSoikKr1^0~_%Bz7KmU{MIk{b{~QxK;UC8(15LfIb4tK+FH`!;v&5 zeibYPP~L^iJ*EG0)J2`z(93EaR^Z4Q*~%=sRW0%5e%)Knk0A~s<*Qa2=C%Cn^`A3N zAPcb8ll7Ue7Wt|&`)VQ_u&g#o)S5Ikwj?c12nVRjug6EAQ&PxR6hV%X8&iYpmrp9& z)dmpx|7RiKNr-v}9FX=YPmUD@E*3PD2qqOE9YXwlJxSvzojAhe=X9lkP^JN)8c4JZ zJCYvd#g1aVM@8DQGZ9!C{cAP0i;b| z)o6^Xt+eK2rs%doX_{Xs-Jg;49~yYqT((su32VU_RfU-3klA*fIR**5Spn6^+E_w7 zoda*zF+0_$nS*k>M~w!<;`ttd+Sv>W++n9A@DugO3k87afL4qBwjL+mAkB;2jai(m zh|kWUuFVj{I(MC-Ex}0-T?SbQ0mPFgB{<;arp1<0je$JaqoJKRMW(R3p*#Uts<}nb zXC#dKr4Lc4Rm%~^u4F4P$dg=d8kZIJ-!Yyz1;KYD+d zVLOWJhsZHjd&$5jffqRW-xbfFjaB_;0clc9xg&H(9&&~FKAGilq=l<^vM0P1X%pyh z0!8=v6T&Q+nkoo!p>Iu??Z0^%V!Yn5brN;jO)No~m|cx-c;Xce8O1@kRPO^1O=NCV z^yL7eV!1|}{6hj+Vhsv}D}n166?n)BGJQD!%^E$$m_1p!Q1dyKxgopdlY#^HmZaj| zrV;b`kFfXC$xZ%_r+~MBZdj~)*XN@P?|RBQ!i2+w)S3vcGtjito$hFa>J2!^~}dA^oRc_lSP(vfnb^@BlpKeFU^L; zRPofYRp9U)AB5X(SnXlYm=k0 zdoBZlj=GM}A%KN93xD;1a-Fg=cLA>c767IaJA#gB6aT%zLt_iCqyIEmta@7%^pP1f!vO zzNn-CB00*`8|lSfY*n)Wjj;y$oPL(j-?sw45to464bJ)H@kD6l0Db8*og02%7 zMtyx&$W(+n0nEch0GFU4?uNZScs?gwytp;{#pi}MRTDr4RtMY32T6pBK-)%)JE z6=qJIpOClQ_Tm5}=S04wJpOE|GVIXtJL>iTzYSa8tUeTMh$&?d%mS+{Yx%6p)2B(`rs00}j!OfNf3) zYVx_D3>V(tvGD0#2s!0gK{)w7CIzj@@eJNF&e@ zI#-yb4^L3Gz~;z8@^sA9S}EVD55Z9Cxug*9S_qy0-NhP+o$4tAXY_TF9Pp<9oSwWK zaLZWem>G=OU~R=FFL0rlyHd_L$|MHwNXocKd(qNzjrD(NE$Q*BhlT0iVOne-!Pe*ZDnRjy46Ot@ z#kc~iksc7b9M9lM-l#bf!tqvk7g{~A#V-jrV%G2{EFQ3a@yVlW{#x&43%{@x5L*qUs3k=)7rC~)o}(!&!m zH98w1=<t1zy@%4RtZNjd~*FoHRN z=xLhM!4W_NT!FVqKp58t&h!EFaL2c7G_Y1&s<7KtEbr=2Nq{v!m7j<*l78lW;CrO^fK-__|a%Z zZ1HKnQ_p#Ups=di?cWU~<#F6&?7V~S2q%iAu|E&}M&I2Yk~3umH^lh`gT(MwBb1TO z{VN-2+hza_GR25ez#GIp_T>Oal7fM-^2Lf*a9lom-z&CYckjO!eQ_WbYYlj~62Y+^ z>_r)<(o28II=GN(n_Qn5=K9?&dbL;#%lst?#tiv#LPVBK4-}3e7rsOE4O@*=htu;= z>9W9sDh@Ar8oKasNdPRUgWc`S0ZMy}h(`SXyZ{^&swl_CkfDr$Wb{?@b%ps~4NfU1 zHHSPpzHa%t@JGy6@1$QFR+=;|)Lm(ic%9y@3``!!r4yKX-}l2HC}#^Nw9-vo=Nt7_MitX z8B?x>K18^;**3XHO5yV%%a&COs;&4c)*CThWylPNQ%c+2mYQQ%Ya==X_2l@^le#te zrq~<83(vMg-8w#q%k87;EDQP z?Ij0aOJlk5+kDE$re7pW95TU>D?WYFJu`9cINna-4|uB?t^=3M0OSPovIO(($~|5f z_6Oj)aOQ#i{9!Q-`xrbZ?{A7$pQ;VKWFUfaGXq?gtjGwMWeov7Sce>oI*_f*)KZjc z^SPBo(8bp}!rFXh08=TJf67b*n>*jGZv^DbP-OA*?MUDstPdoHa*mAzxdABXXadxr z1r3z_vkbvf>?+{)8Rbs`{iUy>oM5zoxhuL7FQ_)19#ryjkKb(^#EVlQA#+_j74bb# z0_oW@E|M#zB(sqRUUedfI>G z_9_QTEd7-l4rw?GkW)a9B8ieGk-3w{mU4gx!tBM-FJX1VI-d8JmxvyD9DZgwV9R^+yv z^p@Y2r%7?!*c|`#+&0J+ROG_C3M;I9!e`VLqg}0UV5M*vGeynQ*za!j`q54$(R z27PYKq-A(|LHD_B-d(E~p?^^dj^wJ3N#-1j|hQI0!vc~1B^L4m3Pgir;AX|DWX-WIZ%z>ABl4T1{8SAiv|7% z0i&WVDOTP-8)H$Z=eth8{Y6Km?|4;P>|_X?zOx8pJmK!ojO_plGL6TNKoCrcoX>vwSZ%tm#pWEcJu3)A!SreCN>lpAw(&@xgyHK zl1Z=WCFQNR915BR`oB3CT5m1SSe!4zHgi)o$9Nl`R(_=f_9&`g8cg`f8KK>P6+MAv zM)MY?8bv#{LTh^j-IW@%?WI0=k}@2DE`Sj7i_SikYCcCjLjJTRu&Dp* zD{Z;3yQQs%v-Ehhl3)DK`V7|3bLrMMZ}L6Y^n+NGt@;loIT|Nh(35l@oG!qPJiJ?* zW6e%EL`ta;3`^`bcqnG_LgF6B737+3OQ5j%yeG^!1tgh;wgIc5rMBS^R%DVb?AzI( z64=1gc)#Q9vOu3zdef!O84Jy4|>_YvAA{G_|!g$-T91g_rslBX+{=~;NU=) zhu=-p)6brrYUIHF+_#mU+UBup*!X^_vscv!#%Nr07X41Rx7N2H**>VsL)>n= zoUwf&S ziGs)%W{RA<`kLr&0+Y4=4XhM@m*c9E(zE`O@gR*UGChhV0>=!#ARzPo-I{Ec36nZ> z*5T~la3*Hu{vSMw+9eSYamH??2LCusX?^Cd?x{1F`RAU<%)l_L-5$iY-l} z>J3B5_P_`@x8BK8;gbdkup59s<)_a}?wcD8;Y>Cm15v-oQNwg8sm|$8sYQ|o{+|8K zt=MuE_)|5wYM;bXLG>K#eO24-e~!`CyzBJz?RQ>ohbu&Iuz}Nlf9%YzZs0LweM|h+ zCobhERDfud`}u5Y3fVmI1Gqm=CFg7UH%Q!R3ZZjW#nhh$&8gN@v7=YYLAt$}E0Kep zG8~MNFC5Pl1j&`4LuHp`jw;)&huM)R95jF!9{K}QbgWQ$8JGVr(1(u?VMEXdWw3MV z6!4fs(n-0@?MnvA>xu@alcQT6BuFYO^E}Wo8Q!W>SZ}WMm$YnFV=X)^b@&25o7Pc> z=dJVM#QQr<5%ik`c(Yx5eJ;ojoP;TGeF-3j$~%#)DF8nHZzWzCMUzZ`y;>|-HKL>y zhe-`g0HS=Zm3F>!GBp0J8rw@J_9VdeUhH_hX(mAvsyWGm^mGQ+0uo@I03Py!U7ElW z-~-Qebx|UaJ?reqeTO&8xg34w9Vu9)KEQsZr~yuLLIAtURtc*e&=qBSZTeYVr1xjxbKI&GH>7Nnx>6^q&0sAP zXA&^l&nEjCI0Fz@!-PZL_h$dyFmGfx`I6Zxlf!mx{KS<-y`ga6w;JH{S+tbXPG0&R z;9^JDZ3kW;)?2*vX9m_Fu}Z2XBQRW+@=rDSGjXspoWc6bYZ7(9=1U(~q0t^~x$=EL zxh9mMA%fDkrhZk-w^uB^C@z~`kL%AQ7EWwPFjy0&Hu)Bpcn)dC+?L+FA^sgY-*{rA zQbbNSO)+H6z+hhDesZBk&Hmt)PkMCbYfh801xT3m1nrhlYE7y!8}p?#ryk}d!bn<8 zDqe7%h@SJU!B_cojOf-OE{MC5*kzZ8k1GhY4}7LOSz@hI<4}jp)d>1_Tp~-7OO8Lb z#JX^IDXEan?Oilo);O-*QFex4QQG|@iN~Bbg`e%oIF1aM1y;=e9DJncxb~ToR&45@ zk9znjhY@A}!eiLuQO_~N>;7iW(BzZV`K2dTsA~avPN(ic2d}syKQt&YBVodE5;*-B zb(H z3dhbe(~033oA(e>k|`W0Rw$rr`%H*Dh_>DQ?k7{u+I^&uD}hgCvZ(uq%4;PvIVzgf zO`A86Su%aZ7{+@%$7Uw*yCScdp#eLvyz#VOmz-rY;m=JWNb-r7)XjbRdrZJJF7Z#H zTyCVPw1Jv!^Sdq+A!d4|slnX@6DGRmt?Z)l)*}hl>+Y_0O5Q;sn#R)Epa`47YVTvN z2kitmZNA!0!r{cL?&&}kW9(6gm`!DD>hinS>Tu4bQ%E=QNiWfHthooty3P2=YK5Ht zH)Nc?4RAO@}Vjoudp-T<&peoZq`vQ!+ zhk3hBQ{}Sc-U^tt*uu|NpihXcB?9Z{jl3{qJ3Q46cpm>$0vQjvg}ZFL=LC!gp`@|W zw2}Ovf?Woao(ez>a5`t1^)*5MDp+;AZ%*8o<_os#0>Qd)RL{m38+V`Vl;zK zh73BmScvRiHsMe|Lbrcb62ThGJQu(6v(XI>6xedtI2%*h&|2No6bS|brY{(P_fR9@^w8C$ARYmVY)Ky;y_T^mXgHx}^ zXPb71nYtBfndEj;BC;GrTm)Ih)$p88g2NVN#f&Y{YIAtd_txX(seWE9A#;WE7KTE^`V*h z$BFA|Z!S>+dF%JHD$C=qffbrkp}cimb;Bitpy1M`A8PgmW-67JB zC8f5BUy%a7oM171SzPHoLQ}pjGE0lowv5rVxhmrma!#IMeO-OXJ8)-Ot*?BLs|H9E zdVuaGupMxY#mS~<&9x)f0mrlVq)*CpD{q^S28xRug#yrt96bP`jyxL+qu-h@!a1qZ zZ@VI>_;(h}vdOFIGK~8i_~%!A#M(F?+f3GEiq~>(aH3ev%bd&jy-#$VC}}RR?Kp|7 zw=@hJMlN$^RC($HVHOEokeg*~`B)UaqB#xeH02pWtB{3TjH;Pfh`0&Sc(SzYidlkv zBPGK$d*rZEA2j3;t=b>#_}f@zcqlAi&{|0~6OFcP?P)L4#v$Z7w=BX;ZRNuyz*nGl zouJcgNv}oCs(5?GQqdC^oW5#t-j=O2BZW0M0dv)c`ET4t+w%E{1@0}+-W^z-NwL@E6mU}`8V$C z6E_WVBw2@o<@2`%>N$lt@O>>^1WDDbQY{t03sSI~R}Q4W#tb7FS&S7_w*P_jIGhL| zL!!11rL*-S{DIeWx%wwBLia=Ra-*~`cPIL>2LHkaM#fIUZu{AVWy!qY3nsop?wUD= zy6&>u{CKrhdP!`aong1W6h2e4#Z(M$>jC4IOrHr10(30mrN^S8W&b!hlTv|@{hvDk zJ6zK45hp+@45-EKKVvs$S`{5g#oTufGRaUId9);b5|#`}&*$9@t8Q_!q-eO)SS4lL zYZ2W@eN@XYCRNjUgekwWJ^M1jksEkEzyKR=vBcKAPzI8xVT;vDP%JS{hnB4Y0rI`K zChoYrTI8NbpK+~p20vbFqF!lvwLh)XO2%?#<$hd>g(V1D&!<~v?;!&};J&~X95n0} zNCR<;r980Gx27<|4A0GgpMEH#idWiJy>3z)>Mrx>t1LrizWHh!#4}ara1A27M4M3Z zo|+(#uKlRfWJNeP+;8Ft`LG63*|-c_zJF^5%tVlz^?;xsM24{og{$Lto6CC0JQ6I{ zO$z-7TdTEiONZ;W>M~&h(~(@QO&D#ZD*$Slm=1t3k5xr@)pR%ZB5RLBeWVe^`>vZgYv zK#0jp9iVcFP`=4U(=abW3Mi&fBQmM~7?{cucF+eYYSJ;dhAql)KU7z}-NV zZ{BM!r4I)JdY}*Y{nc!@$O}xu+<=;< z1i{9tbN==%-cy*N=rJ8^_7Ni6mTYXyQ!_Qr{#k)?`nsx`0S#Wl- z=W96vv~SO8CCEJ1!wpk^o}UU?7g4rWHfJS+D0eTz;h$GhrpQg35RF6?bey7K!u&TZ0IdSERlM0zDOvnth;lg75 z8v#RATB*AihP6kdM2(IMi2h{_J!fVS?Ko!N=)#o`ylzMKL8%0!mc53)BF>Te;;`00tf@ z0agA7l8Yh=m3Ol=qB)O-`EFd=Ft0tF^8ovtUQg<^RRNUAq(s%a+jo&{^l(UYLME?4 zDIx#u z`~hn#Q}T{5UY^2VV}kzS*GF(;$|)VqB!w*9Wtp~+bcvXl({z8vG*^&ysjJF7zv}E? z@!a)s>K1|5rQVjF>!Dq8Fz}i&$~4{6;zTXV-ILsoeX?chQlD9=i(vqnn(WW~Yk0wQ-=}ZpkW#Y6g7g6{qG!SdF1Q$2zBHBN)(RNn8IA|&Uv2~72qaatr!UI=saukjQG3zuZuOoA6=Fx#EWu_}OIUl|DuWR$<>iR^i`$q`H!u6?WB( zlT@@OdCw`4ES822H#5IO=^fUCqzIu`EVin67|jbHf{P6d%dB_;-4O5d^xkOaAIU0w zRS?TlSS~B!IHcfZ7@|%xqX1N5Yz(eM0(;0Bj=Q{O08slS`{Rvm`)&0e$ox zh^|?;F=qh}wKN?13U@@wt81Uabh_LyV&U&i2Wv^(6r02`k{D#B11*ETALM{?VrDIZ z`jL9Sa(h@RmyW2D-ErrNA;(`bbWgFh z!Di_#k(Jk#Rjxj_@2_acMZ!Y=&POKPbrmz!gvt2zajeN-0g{mO3(&wpIEs*m7VJXY zoFV+~7FBP@IEbLB0;;D>JCFJ3K{=cq(J{@!$*%C3*MfmPq@X;+q!m-7x);C#)K~?z z^0}qfti%GLYm#h1hs&y@lDD45kfXmua)Pq@CzydVEUd84=%mbg7_U*SXQ=To%TWNDnfJ|6wNl|pm$V51P!=!~syeYqUSaR0jZW3dWJ0JzmLGr;JA zusUYLKH^H1CKi?h#%O4zk~_$+fZ3*CF@{;G5>cTQypZGg79kTP>dvdxLMOKmgg*YS zCXI4%FwH5aPH7qEeEBi(DcX$_w*@du{dkOEmY}y{`{fcp4Hh<^LGT&&xL4-St27aE)5k5;qZ21!UtGQMIc)naO{6_z6K<}&`!rYX9u zA(W)oK_EkRAR#g?`9u{|ygF5HrX4(j``3vb0Dq}(Ak9I6$I;|2(v5S4LICSqCpqR+ z0k+A%;M$*aO@KUrdolyEM^E;@G2Rt0l<}bk@Q38{;rB<})Pf7i{W(kHi2kXPIx=wi zLuKt{?Yf*34_)Lc3^7!P$aty*G%h=a&F5a=)$SSHu|KD0FcHLZwlBksUogW`-01bU ze_g z1zwdAsRD0n?iwxBmwJ34OsZLXoVNz_%8sq{mi!sG3XHmt+-~or5#h8xo%YV;ika92 z!UKaBwaB1yVIST zVIB!@>%>CdTUFLvF1w+&(zf2A`!j(_CLz5)jVe`XtoX;Tq?v0b3^Ll)V0CljijGD# zR#Nt2&T-UE(=QJ_nH}~QUo6i}+lfFaiGS5@KQRqEg`GOJl_! zMVBw9@qr=W=)GbF0#>Q|`Ko+e(-pw0)#h;11BVI=7&F_66WEM%H(`xuiwK`0&3$=$ zaRdF4GJbO^IT`xmv)WSeAcS>};XDwDJKN|KK?2Nb7q#uy<}4Ca?$nwXwr^B#Rrv9p zelowu2r{(8!*36nYd@-y`!K>7ixev3KXso@W9KvcyN9a^@(6Qb& zo)=07bT(hV=oeLh>x%;sappa_lGC)w<>AqNg}gCktJ|UazrGb&1~p^Z3o3B?@!-$( z_~f167k(W`g|E(UQn;tPZph;CX4Gj=8y0-t@$YokKk>aUudrg_%uX-8s}>p0Tu647 z2@M%=ry2kWj1om4d~Wreg$G!6AdWiF6K5|XsQ|$Oy7yuz)+?fcNe)WRNw)!)$yVKw z=D^(tnNXrd8I|&LedG6-H&bmzAwR38(Z;lH@bg{1TT|`lEr=9=g)__rR{o6&s(*T` z{OaQ*v8NSRztg|k7YV#k!zA$qAzI7q_8{QItKa8g9Z7)Nm*BlR)8|gxm%qzOb+bA6 z{Py4N3ZIzIyLool(nKXpIGR(zs%+0yn5ngCz~dr3dL%F~&6RQGg@n3bHn?5;Y2O38 zYu(k|?O3&((J4~U8OYT2%uT7Ks7|26RC8JrkfKWW5?8SxSU2YKMFUY3tobNU7W+y;bT)|2 zF0~oHxX3=X7!@KaPl!Ex>$7z4PwOu)**CY^oJ6?gG$PSaro1?a&C!JUl&?aB&@gHQ zYc4HcybTKaxA&m3bbu1LKo7NZRtKB_KS9u8-*TjOKL7E#LS7=?U1r+=8)=|z~r<|I4gx?$NTItN4YC}Ir!*^ZfG?zD! zQ*>1nZpZ)>U?(E_r^Z%*Um__ZJOs(=nR>xsx(@ot8Y^Gh?D*`+C&4wical~L)-nS& zBF4>}-i{Kk^VzSz2K{{c>qeoWR0t~{uq716{|{|(z!#%UGrGdgU*SRgTMNAcheBAv zBY8!mxkN+dMZcNp?o?bYhIjkq*HUK7zUt(@{(L6p$F&W}o61*pfrZ5l)kf=90pF#! zUZsG`u9K_Y@NB(${#V2sxus#dPhHnH3BaoPk<0J29jL(1A^AuyJl+*Ti*Zy4;0B$l znNVn|WUEf!#%t7}6?abaKs+zKg%tL{XRTf+4TrU@G3N5-BPmt0SH#bL+Pzbt)z*+8 z4~U50rxb%bACwvV>CM0cF>g6bUKMy#G4lV_Vd8KKf%CYnUh3;Z>zJ3{ethsbbx$&9D6<;sLb6v>DiWS{WjlaPF!fIta zaA71HB_28`;4Z}`A5(wjBGBf;urY1%ySO1^Lv?A#oEy>&Si|8@n)DPAeevv(XCMA* z!nkr*1-p@2MU}7wH_; z8EECY5j{;nza9vMjU_U!c{fjjVce;%bpG|FYS%c=?*5d3y9-s7E`G|V^Eya?6-G^N z7D@;_5|w^Y+-%1j8`p8}vIO1~O+98J7otP}i~!YHt7ZVOn*X<=_PM3PK)0Y0Q-@4` zJbaz9*1sUql|z*@-e#;WcmRT7-DyIBILJcau3GPP0pmZd&X)l*$BEjjw0fm`FnCZy zboce{lwx(gyP_FUZeB=KKR&szX@2QlS(9Zc_4EAd84SyB`-%wf+J;yr0x;p1uEYh{ zUy=VDNHTh+X7Q@GExlmD!Y@IZ=g+xk3k}`+CaOm4tc0mTP@RTSUl4vKHriaD=a{_z zNjx|8(d8#za0Wz-?#o>i4zDM!M2mH>8-MJK$VKWF| zi5H!BhP??D7~tHG3%3-0y?gbg%XQ}CYs+odrWe-gDg;rK#vQZ0mp7)q*;!xxDTcq4 zWteC#Vh}JEHSB$R4>(@tRFhA1s`&ABM(L9RQWlg!c4L`838Iz{%~)BJ0lnkK4y%yj z?s_(w2|xpxB8f1+wZT&RRLKLKKoZo<7Ucqro)10*xfcb}-DQLOEou5j-KGXmQ5kfC>4#r2ML)&hAiJ~tY0?iNq z#;q5BiehZE0R~p{*Bw3l?l%bRbhRu#2o=8`gqK-w z)P8raMdnkQ(-8%f1wPn>i^CHEmVz1_X|htMVJ}0_1=1R^3_W|HFJ<8@cL5Ji%%e=# zF(9L}KPyJJ4)h0Yyio9I{G%~d<>B(f@Ga|qRvNz!2eB)Nw1wv6#u9%=Na9@8qM}AYQ#`A zjz(RkDFSWi!DaiLmHRp#=4=ks-lOo>5CR`DLFm+=0_J*E7of*G!kGwQzB{t*zVY^D zEGt&)7Vf^|kFETL^t@O~p=CnzYH;dBez%UkdRxX&Tv)B5>Ka@|jRPw9jtcZIRIuCm zyQ(jp88AR{6e^?w(p106=lXmK7Y1A>zMl8HqB!rFINR6eE;oLpE7eZUx+U`0+V`XJ z%eOBUaOvl>aO2>Q5#O1>7avoaFC{_gLkDxx1-W_eJ}J?P@J4j{>rX`Y<;nJG7icFD zSRR=XPZrp{o{n=A9eiEFYQSXWZocT8*g{8kg-Xcz=d3*z-wG$K z>mPK=)zRq?jx=w5Gp6K&a7VFeE~O0MK%lSsC^jG?b11+yyGU);!BSDP-cp#U#OU^= zO=38(G-79`&3NBjeKcEsI)KNY?cf&fGexd7*!HXVv99Oh zsDVRrCBrf%CEfrDZsl5l59@E0S3$rJVe;h7S^l;^f~rfYhFAX4?wa5~lv5c88(bl^ zBj3NbCyX)O|CR9jr)uwe=kQlIHg~r}p8BW~x(q3Cmwx%Zv1@x&Tvw5RY3xCad~KnO6nyF-v* zg9LYX2@LMR0t6V`J-E9wr=Rz&uf9{K&JX@kbWhjNd+)XGbzP0NJZO#DJ)wNCpJw~Z z>}LLjn&Q#AzkZhDwMc&-^TSj8Isc~Hr&QQq8h(fLe5rKTwaeaY(Snr^&_E-5#0Q=( z+t;0}H>h`TpBxsXu(FE@UCIhp9Ux@6@GZKB!;<|P;)#xccxK{zTM^%Y8{F25DA)Vl zz0;iHHa1CK>sQpvd^|ANIgfq7fv{djwPT7@lbe(9r$1a$_^gAdyv0>+nI#**w4l_g zmA(zNlUDv1CuXoxGm$LO`%1}l&Nq_F6S=7RKX2(-JndngdwkzhYdwN38C^g1HU@ZqGdh z+wahCcKK$z7Ws6E#FeZu3Pe!Lq$bVjC1+~3Ou z0Es21#e`8-CuUcFlBOGFD!AmeKk-Stv^191R&i&LEk)y*$;IfZlvV`rf@M6rf_cY8 zUa@d^$h;Cm7#Y2NzeTJyKKbxAJ|pcDQp+Pi=GnT_K_iagLM_kLa!OVMUX|F8SxxdU zKh^nd(^cA9TG<~P zCM0F23T)E>OX1X2qSf+=>)F2R4!mFhG@wys{$-%z$oR{@DWStSoe|0^v_o^C$ss)x zc0Dr8XDcTh+j4K&U@lrLQT^XwvVtbpzKM4~eBu!edcDhY>7?Hh zk=>GW@)XiG7tYUVRoDxXBPgDP(ehYhANx=ML>hh^`3)L*URyKnjw`9fOByo4O!uWM z)#t#2s_N|OS=F65xx*%jTn=Zs!yfN1Kp#iF!SuPVQ3`%BgK}PnFKv^{vV0tAO3x(M z`?-hNS(9TYPYUk`*DN5(k`j2rvJQ$arH9J5`K~kmA=O3#ia=ID6#7d@Z}jPZL23Ul ztWp*zYnr71aFPzLL(s#{kE_s-{Y3{@D`65&1(WaJAcYlSCdy+Be6Ef*yjAL$#Vj#r zO25m6;m4P-jMQm*ZCqfzSbo7hta?+U*Q@^@z4o^XHgNH^+Rk^AYZkz&HGS zp#oh$$E5BFw*_2fz|Ek(gvRZn>arH@o)&6fIx-^cn6}@2$cb8NPUowvggR5(_C8}C zXd$w*l983c*N0``RfdkFe(Q?f+m>Z5?5zxmj#d}k#r{REqRq<~Q~SNTJ$F-0Q$4#H zhXcdK4b35vtt}qQZCiuPKwFjua2Ehy8t2*aw&||FuY36Ni)W(iTtl#Glv%VELyo-k zGI3Ke#ic9WRRw-n@|BOm7HgQ)cNEIKMj)&K0-mQfKl2)lm-WFYvwz_3LjRXpNt#*D z`uYd)^#7nGEu)A}DfucDU#`ETUkb3MLk53|wFO+da!{4=W5O2iW6Xtf7k zv=O58rW$*NklaYSKP8^#j(O}~N}lD?z+aVTUZ22=<)zglNX%aSd5tznG`0}2*Q&=X zNl85QY0ogTH1+laYew%DzFG6upb|c2CN3}y*k2K-({qZBU|H3w^sI#UCNrZxf$QgQ z^s3MJdIEBC!|+8|;;&bNf&}>um>hEoN!|JNPiakzCg=_iurJ+~75&hb=Dz zDMqftaSqvhUdQY=`Y1r|C~w=a7^SkrUQh0@MjHuhS5JNkV8YL358mCK#@)}G{r87B z&gABiz5({^_s3NNA+6qTV)X?kW);c#CN7Ggo?GJI=gSFAHnJ7@7s(h{s#-yqBe|k}5P6#gq8+$>N!GKpu)Z z#w}GrgTX=v&0PAi+2D^-ShHEgpP#dPASMQGX2OYGgyi6 z=O1id;sZSO)Su{uT||)6YDbcZ9&Y&)+SrQT+Yi>uclk0uUngGO1tc_%mKHAYZMF3F zkNhuYRC)%;_5A-)Ht|0A&hccLMbk|`P|JEuB6%Ajv(`i>;=R9Y5Xw?I{Nu}xT%tnD z=H?j7IZ}y@e_S84)!!RzUcVP#agLdse647)K9T0OyV>B*X`kG=`#If@eE>5CfP^UX8L4!uufr?{DqWZ(UQDxq(?(QAWcpe ztLlFUn;YLcbxK^UDAP{O*P$Q#ig3p`Ez*)C^Zgnn+ocA1q^ibn$knz=G;%tp+xX8l zJZm~HeBMf7c_wLa((D-TF_Q7cr~h+CDCXaLFMho0Bo-1-;FPmSF@*Z~xfZ8a_YN_!xHHoM%q0tMeh?ZZ!uGK=6@CX#(+FZ5))c*!C3;0C=tpPrU`OEsWU5Hgngrfs5D!}X6KNfyt| z@A>>>eBH4EQvQiW?Y;FXR;UH7{jb0IE&P;@s5lhL9p;MfszCRUoXp$E|Z);IDb8a3ekOaP2)rAANn(S zAtAuEc!F)W$T7}uPboPXhTu=)rA=%XulbF+E?*JN4Z4X^3BP|=^+lGMxEowkP?nP> z!yAHbN2J_l@n(!dHeq|DpUgayZAhlp~ZeFV}P{)R^AWRe>u)^rJ;NzvbM&pY~G0( zg)aH?ICI4;Wss4BSMaSB&y@S(Yv|i|Kc1?43<5sIvG}mfZ{Mtn0vehcMsvg+wuh6# zDcw_(XH_%!piRt+pXnohSspJaVn?NBvh|ipkrrsD_|s3@XSPOECZ&nEAJsDY?P+wrHZqv${l_PDl-=sDn)@&=RFU!OzANj` z3WIs&7L?A735SZ>c2)iUGJOBw6lT|z=f!OjVn9)d)c$@m*pt{Dmgai)MIfEDMb7!+ zao-fQtFmVo_b z#@1H#;llJ5;dD~sZ^1WSEKs#Ku8|NJO#;o^G+)JNVqZUHvOwRxK|C zq>7fq%J)Has@OErv<8QHAMgQEc7<$o2l3R3$7D!Z27t1PID}uLq$PRXF$nFbxE{#u z@varlox?r$j@XAb(BKh8jU$5jR6?vKi-8NjNi2AARf!#ujAB!||9f`8eb9+9-C%0S zN~*R43;+A`AVypocTTntJwg-~iyD!4=u^;PouNADqELzsi8<{TwCxXLV$igL>vdAg zC+y9buVk};#?!D`z*miZRDtp0mDneWnsh1tfv9>M6@a)rwKv35iWftnqzRIee!s`r zX)`ZS#lfVHMT+y+i^gkHR-ZFRhrM8Sl*a@CXHUhC{1*jJ>R3Cv9Ek|e#^<}G;r+ZV z@F;%kj?&c~tEZUH443x-u5w{S%W4E)bsqdF@Z~-Lx;~V@`cEfY#oDE!=k{tcGr9?Z zX0z%oyLrVob2z4G2haPoKLmHLo!YH2h2?+&@Q44(O)kvO=SUAr@CoWwNe^SXCI&MG zTGUldsdHHk9D^S7(D0hVF5k?P_GqH9Wf z`xqi>(#+~#=a4$1KHGPAp2KUMTqo?3@QkFX@AplulgmcUYp8h)bL-&B3e8)N}B|j-zCUQ3a$e4B#N_Fv= z63)@ou-X57*x5C8GzdP%Oc&2MfmdW^V&!6uOhzI>pPKAHinOb{RvhsBfkVx!CK@@qH+?vpj zPUla~_a&UN@j=0E^)Ny;X5jLTz5j2Nt(Do{{0jdDbgcC!9>HsnP!(y$zV=@6H|%$~ zNsPPw3$!vexdxxir4~OqDCtE6B^S#jw4!{5VxmB8N#mI$-ohSC%G|FE#HMPq#~kLh z+7WDWbU3)65|BQu_xMcG0}OyjlGKCdnv|yT0C@?h$LYQFWW!0Gx9P7QJ+`QjP6nQO z#WqYbdnvf$P;ZK!V+)YS`-c9$A+Q=R0N9fl5Gqd++82aVERZk$IJlwVYi~N4)jWsL zrlFziHv8kIWkSE&P<)?$I$T5)AYX(?vjSL?q4*RJwHmk)pboa6~~J}Z3yl>=vU8h@haTe_M`C{&`{ zv_*%~@Lt7JuK>B8H)0xKu~J}1$3xy$NkRscDl^*@XBN7?kqmV6M!#-FG8Lux>9bx~ z;#fXUFN9|K1-UBJ`n#b%R2G=cu(SFPPm8sLBxV;;srBUnYUK%~&2%e$Bh{e%=7F^~ zalmF9DH`wOiGJmh{o%1B(F?NqKJ&-e15!**tWPTSBfxP~S_HcJt$`dMoEV;a^>hIl zs@nq@Ge+1xbrC(NVC0ZL^8r#=%xL)enEN$1>%ng0e^2m7=i#}cOvJ&%}FvJL>dyp|X4my01)Aft@zqZhCLj4r2NUn*ICpRJuZ&2cV{2fV*Pa*X| zD~dR!*&LZscU=T-#+8&LRdF4-R%_@*Me)}!)&355<%&N2@q?;eq)u`txiq8Am$vVM z1XNLaD~*x5RCVbzAX7@7yEr^&s=!iTqO@OWkW^I%w@8@&K}3n+R)e%5j-lCuV;xin zof{g-ksCv+^V0$V)Ykolk-g=q{K)YC!R^*~I`R9TTUjqee>6@Wi_b&geg{2MST1cY zOG;+XldJA8`i{W0y4IYo(-Cpo8J((J;ujq&l5-=7PakH}DH+ht;dLZLF?zL+X9r*9 z`Oi0jDRf7%+_zpk(x-Gx)<(syAPh8y`NH%x(lrur0oS$-@DhBjnmmhX>H#$=WYAU7y7NwLKQ+&SD)siHpJ;$5Xc-YZ!iFrC#^p@>gDWsHJrVBAfn zT+lYQycwG-jh;YS=&civC$>B*t8jIy9KU~#|25ykuBBB_tGb?2JAS$&jfyZLL>7-M zQYF>3bb4wJ$FsekJfl-zNRzcL3yU6ZZeY{rW)brE9JK)TCPs)4%nSwX)VtYP2YI&eX+qc@HK8 zD90DfETws-1*j;{TF68sLlczp9jN1RsxX9OL8*q3tPKx`B#$jLPl76&d3`M843-mq zrj%V^;2&HN*XG4upL!$Qa*>>~anV=8jc6VhK{`-@TgQ?cpZ5&rM3rUU^GSo(!n znTE2*5d244l~PEfVJtTsOe(As+Lq=1SoU63ym6SYlgRaMx zB0==a?76tTumQe5G1L)AX9p?Wm}1Cbny5ai#&KPlkb~T_jCVU z4p=BHi0J_LVrHT**J3IyZ^B|F#ZT3&k>HEG>qCDN*$cVFB+YJ;EOVi3Vc#EciY9#W zFMRvzmO4+;O`2k~=JI~kecM5@AP z^l!6ecllcoMC(;rDuwOan|B00dSDqnzk67EzZZ})*=nv|1gj7~_P_^;`P>li2c`^Z zbYg!^86WTr4k8G=yiyPkQ5?}vccZqO52S@JZbPrUNcefy2L?h^3lKxVn_5EuY?Wz3 zrtp?o|3QsUJ6GD=S`3%W+J)Li_F06whEVpP(kg$g^XmjyZ!9`owzP9SwW;Z zve%`NPD<MP1mB>~@8Jvlp`2we9nJp0sp?vc~} z{42}Yuc0pJGXCBqV=`HYdax2v_BPfx=5L19l{qfcc=Fw@k>b&(c*MiGK=|vd~B!& z{)bU?`HNJW{aeqotVvzIEG^HsSABLokETZ~7ArA=1Pk7M41R{cM?ik19^(8#%))Hm zVN@OId?PCg$l(*yiH=G^QZgW-e(4xNJd=`MDzlry4$$ZQ74eNM+}qV>wW8kf!TRav zFm-rdb6+ZS0wiZDg>rIZdRQtC)H99*ftO%*R#BTTFy+?qY4%>Tr==8y!w!KDP*W zopG!@@-H@L^Hr7HtHE5FoZqWtw;@}eN;11`%`UZzE!;9#%QM|Rz1u+SIeI(`>@5|o z<=5*-WrM#GeWGq2&kFKM;;YPi3EBIrrW5Oryc717-3TvM$RTNkx_&OF`)=lJ_HUy*hroUGa!IB=5T)$cn@E1~~CpDH!fN%@Z0 z_ody7S+_c2fiQ_ACQGj3-!ErcO#%)yCbsqJw$snjuU5^Ni!OCPe&blg9FZB+LNXqX z!*n*(>e?2WO(wv|Av(jLu*0;{NA5ocBPtC2PAz`6{XAh!%sMbR5h+h1keGj+*X|2; z5DEPH6QuM3m?4OuVQnz@3KrE(k{W;sb*o|cek^$0>aWA~ewh7t!49jtZ-#Xb5&$!@ zn+u+P%k7WgH3Be|e1u8O znOH^=Gn)8MQ_~47z6Ib=CQaWSkBx&*qIE-e#3D5PZs9SgxFzvEn4IsFvX$)bF+`or zxU4a+$qg0G9xJnw#|oLnl=$HhRLvBY7vXB%Tfq>J9G+1~VgMy&>Y(k03)Gv>0&M?9 z0mnHem$FL$YQd%=5~#x_U;TnP>X%M5{`(n|g;WIfG`an_#FN?JkZ7?Pm%E1BAg2?! zQG79kxL*;~u0Cix$~Iq=M*Wy^E;40wH~TTD-knLJ$kO^Y2eZcXMU9gAyn$GF;x(=* zwCk4rIht@XnI%Tjm42H`B? zvaEn9&&{iQ{T$|yVJ4O7qlV0;S^)|6Z~#(_~F$e>XUG@lAoHEj6RJ;%Xc6T2CC|y=~i@jd8w~tLx2Tlm>k`N%$nW@E2StC3D zTwPo?@=|1)K)N`c%wgzn)2EbS6`TzrzU`aA+P_enkmjE(Xj=DwAYWZL&koKN<3*3zjs`|ByNS1r9X;{`X{`ce_UpRO=mpdUN8-RZ27f5vzCARk~VhV zzHCQ>w#>5Jj!|Q`3`Kl=MfIxEAohp4SJc3f9P;3L@%I5)in1+3dfoOnYVY?$+@i&q z4AX$NUtQlN{y)*!Pt^0u2YYQVuC(&1dU7q8=da9f_=%zj^ zEH2m6({I41sj|@h9%_z2qk%+fTA2Gk-0_&$5D-Qco*lM;cIqS)p{9YYa1>!vB2>8& zVZvm&n9E9REzb0ROkv3K_gfR?ga8XO9K8x%pzPzh6BO7gTj>`$L#d!G#eIV$6%A^K z(&Wghg#Q~rxdfj(;N0aRS{Bv*%dr&0-K(gk*Wpm~+(f-{(P>5cDZIpIlDQh-X+H1S zZsd(c?NV6)f6jV&GWFj0sNWfFAu8GQ6b$kO`QF*A1=`@y@MZMLI4peE#06IQM%zBz zh-250bWCVvK{8HzMPvg_fqr{)1Wv{NkO98ffj$?(d!sKUhK+NcMMA+K^YsZP8Ukhs z9&`96gj2^RXEvMr}%^6)gDT@St33JpjdA8PXgZ`%95%Xj2n9;PAR+XNg(B+NFBHEB1i@D5eax zOojL%$7IMC$WGeC(x zVvZDVWdSdR-k?=S*mVR62+LOdeAD%iaj_ZSgXvcU1X0#= z94M)NPLsR#S}@84P?=A7ElYeqjP+HYj8k{vJ~1*OR`%^9a{jF>CUD+-YYNQ0-%7Z| zR)!>xtJpWE`akGD4A~@f1w?|Hjj2k)aP?R5#JuQtT-yI3d7s#4qN-~JsyGVXpC9bW z^VO7)cPVvwB0su$ivOh5UaSNH=g`} zYJXLauRMoWfY61l_n^Z@=iL{5uBhTHS%)Xw4nSKEI2QlNlZmCV-C=bcJ$uGnU%7xc z>OF<5`bEe@(#2eP{VrtNr>?i)c@RUnnhrg-xA}TJEPTI$F)##1GkzPN=!oHii-2&F zL$-vmc((tIxAzThTGfm_Eu^&m>5lD1dgwE zTqD%!HiBhbf8>*WQfE?Yb4fxSlq2a+U}&qUbVJUP*yarFE|aC9lG<`K?Nhf#bAaQS zUZ(!P-r(M`yn?kjY^p@4-KQ=}Q4D^xBNwTJ7Qt=_aK@v_Za?GJO+n(C^dp55YXt`` zi5M;(qn#e|@d?`GVW&Zw=W7ekP+b)Iz_u3&UH=%6FYcVcuE=jWaUSQ};bPvQz&E+u ze#=S5#d2`z%j`lyk9Tq%@fFsQS4}+PAm7TVy4aTsQ~h7qy2^8`c^$Fk%Biu8*X)tP z-=W@BI=s12|D)?JKb1Mt4obVn1^9*=yMXE$>8`x{udOC<&~mMMaCG*%NCddDr3i6G<5sxX(iBWoq8C8%bkVV#1%X^XLDA{mZ zD|%$><^Ddh>oQl3O`)J9@^C#nS(}9EPHC6HaV@n*>&bepQ8Q?=4P?MC z@g`c`p#G#dR0?g>vE-@cU&EtPLVUNE0GsA$Mw@d|s}ZM!s=_b3DK5V@x{F4YW`xU6 zA=qz(@Jy3`%Gu}`g_X4qZ#Ozv#uv}nP~SuEXZ^9h<^KC(mo2J}Y-fp>&0;q<&tF{( z_|D-^bfBiYh~e#$Wl*7tmVbUm2{{fY=;2sp~v%T0Oj$^Xg$yhGiDX8a>P zyvA4t0!sYbnlqr>lLZ-Hk;DV39L}vX!=_c`+GE3U&)GW@%z0ThL>VC>$(?~$XXmba z3q$jMMM%TmK9MQdZzk1v1bza{O40rbOm8~SX15$1EhjW~D62XTqy33n+O5-akYAXq@P{z5-+zn^_hS#Dg za@aujbQReOkcpZGES|m++QIH=g0$XBjvONh^Ty z`3$_|8Nm_oGMvP$39yP6Q)P!Df#@37_7tJ3F+V}6iDI4bL_Ksx?eF}F)qQC?WQ@PE z7i;$H-)|S^7TTV9Y7Z*jEk@JTtuw?PfA%7U@bwwHN`Na)Zgo#Fe>s6_IT1;inJA&p zrcjxw+p??XnRhwGKb1Q{!fCrIQBOrT+te^c&~&!?iosfGK1zBGAUMrQdp-a@9TKdTS1SlKIO8y+c_}L?<@gG77T&A%S_o9fyi7W4XI_dZTkB z4NNTX!x0jh*wSN~IER!{p=cpd7F&q)9BIR*yIWzXA|WvO_gxTNv8;h(6|~Oi;_OHd zg-7sGaLT~SlXN?x^Q>rdywveG3inLUYl^DBQ8Y+cR3XcLw=0^rOAh}^HGDae40yQv zTm?7nCHe6mXDZVgO_u1GvT7^M~5Rmk7hEq#?fH$cP(SF5a1@Y81@q3S#AK4vI$s!?g$&Wbwyc2`f zgDRifS#45a7heQAh6>P%m!U-UAHG5wBX7jhigOffh&K~noqD6<79y+lqG(YSpT*iP z`@6zO0fX~72hXX!P$)x>v`#N0kRF`sd_M^q9G;%2GXhxR`ImI)t@1~`H5Q{#lqDjK zeP1J-ghQ=AI*_{RgP90>hMS5npGL&zxvTRkI)mPmwAkQLDwOykI9TuTztX=sn!)48 zKk-MWd{WFjUTTj&X^94TBCSm2I~Zfrc(!+rEA2HmZQ`6B2%5${{6Y5C z!J&v2Yg5P$w`OqFW((bx?3kemyS$hh>u}y{{S~7YTEcJ%#v^dL>lH%VjsulPAVOXUq@F_NU;fl>)~ zVFzxnP|7LHAN*3qFc(P97qK>>aofB^^f@)T46@1U3@xevjgRi6hyoCbH1B&3PE3FR zPdyb_hZQ(WWOLgdB~i22Yd;|eJojJ0uCMk~T&Knz)d(P0#=gO9UhGCUA0H0o_Gfc8 z{8Y(jHAWc0DPx5L1H(X(l$L$4NE4MhizP#*!uY4PD{OOD^6oCcYMaa2u1FfBPy=UE z5ltRAl^N_z!wq1)Q4w)W^96dqJHr|d-Tr;YpT7RF50dBjxkCwyTXB?`RmH@RQ6*qv zS18V-0H!o({_iIM$O`gPV}2wMjM6z~Y^tCs&)$Kk;GV8g91@qyb(6)90<=x0@2VNs zN$CVb=4RMyiDZge z0?|-z(7k{!Ht(=U#}5yFpU;!2(aRxYcUs%siH@E<;1fAyIkSkR3E2^g%{vnptQTU@ zaQcL2wSwE{B(~O2Aj5i6Z5=09;gt)sln9QZbjFTfFkvnwVjp|uHE=^x6D`xq!wF18 z^)|-nqFNQH+s1f0d0&_|Goa@XW7sb3wuR++*?;_Tg`Y&@;>8sb?m!VMj2ZgX}x+>w=H$ zJss$%+ME5?Kg(!knA8s$#x7 zK0YSrv-REl@!r1ke&_yj_x5nENiC-{=HMz(ZfRnoCwU~9wd1&P$-Z^Jm>A?~I$ygn zIyxGo5+lMuFvF#@@|2SSO6B*MKQkRw8O6bg@us&mpI$5=q_LXB&f*bcWNy&53Io?e z^Xn&p^i^ZvEV`X)?}1yfsb(dRG$-7I3gzUvbpldge0Bz8{bivuh}zc5na306*12eG zwTQpjWNWB5|J2o#)nb{aVx$T=S)m|LR>%vPZLy5n)B%dXjQF;r(9sOW>Bo~7WY)B( z2~@0Gv9MS_VK>`6#E|`lwcjn0RA^`Lz&Aq?LrE$liT=or$}Xol34nsEO(hQ`y_d&a z>tbb{8zjBIu(ThFc9yV^*S0b6t{MaH(qQ}OU5UoW)mfpEiSvO-iNHWt3JkEoqmrvdu!9v-*7@P&HC?>gdJ4Fe&PM!!?1H_{$Cil0dR+Vg^Sy$y^}R3T@|2= za7bcd2+@Ru4E{cZ0zM_o#t4+h*Wf`|S*jSm582X2vc?jh8dN`GR_Vuv z5UjSutPt?~a6u7i6xeHENuCWGfX&lr;ttHLR6(=IQneR7Epqjt8q=`b$RZ-Jxs8tt zo$B8ObkbF*M#))!B^9a3if+@ddmx5f{30H2#e0NRj?(R)=1( z+x`NPrKLq`&-EY&->r-ceZG^%rDo>p=1m)8_~O5zw$u7?v7}hs($0I8RpTQ*dww0i zXB*=j5wDBY$D@_p&aOr-rapf=(pLA@)yBrLz`RdL=I;T$5mcyzRZ2gKrg?UV;oCmc zx@Zp3jx5b6JhyGD=nZU=UU%q8rrweI;$T7KNevipBU{>b59$FT^?QxRFxW31YihBb zZUe&9&xn0tjkgG{FG13YLsR?FY7@=KwGa}qAK6_PyM$r5CCKBsy~fgV?P0M2X!bOE z9nH@BXbA=ZK`vp;#0<;7!ee@ku&|7Cla%&;1Z*`jiqUPH_vOAx&2*cf_JN*hr_TfA5k-DcJcx&HJ$bIs;R>B8pW>N9!z%==*9y7l$VJoK+U zpZIH*TwB|}JQ0g^Irm5Q;)!PltSuxR_hmJqK891joT0&=cDrs?eNGqZEsdX6qKMh` zU13-I&kr|BWt~3f9>nY*p6A>UAVbJsvapCsIKx#jWux6QFU#F%3P;MvsmR0HYw@(I zQ8e#~{u1BE3JiB;B`EdH*c1t$nBEr zZfU`*#0vz~U_vLqvG(&uta?}sr42>#c1chnLGJfRem37U2~_6s_!(jsmPBZ(m{J$O zuGM_{yj@&}0Yk||2mI)Bh`h>JXXC$XF9j5cIxGYcUr7Id6i^)FADBvUiMPIIL<_BueIHMT~(>HoN0jX z6boKYYks*7p?-4gk0c~E_B{u*rd)Hr-~Rn9&;KWIk-w>(+klaO#$j<2bVSZr~kp)_Ffn;hPL@2Li)7`|M4_JA& z)|!7gU7|i53n!q}6zx*?^`YwehT3=iJh?+=HI7JkoT}EB9v6%FLM(Tx@JJEz@omf7 zYVuX`g<<&6rN_Gz!_=o;V%G&3*WTL~ai29r6J3q#fYqCot5qKh`ha&c7yn{YG7)@D_xxFHbWK{OZy-kF}G>9GBwpEFa^A6^4xEwUaiF zou6xevo3c!TkP0I*Jv8c&OEp4uJ&%mW53$~-SHyhr{wgXKTOH^eusBEO*W3EJqDmw z=>877<~TNOts=X%5vBn#Q68YXwPNHwGEihF;#$Zk)0ZK zC5Rb5&eyd^vSH@nlICK6@la#bg)jfTtbr{%NYv&~-}Cn4UH`8%axuiY95nWozbnQLSmF!~ z7Glenes?n%XE~=+Mk=hMX=&pON|a)hbL|C zl~Xx#;enBnk=df&(UihBA!*bshRwBU{_c*2@9cg}-JZ-;R9E8~bd{HvH#Robwbte3 znJzWjv5vBq9%#+|&`xr5YXH+|+1q^#k!DMBmDp52j!&GM91lzQ)ci_-k5=)!AJK@M z`Wu^3`N@H4Rhm`KybCc|YTPYI5Y_YDOf_{_-s6j_NuRp_N`>S3X{!SN0qC--XG5S9{At9{D6*3RK=D%_53i3T8 zBz;pvZ`d*F_?}0CXd}y!DJ6rVvG$EUP0j|U%jTu!Vkv?sNrhihIn7#c_g=0v)e02J zK3*mpUY2SUkdcuyF*DoPSld{a*DoYj88mHn;)Np>G+^@b^0F>i4GEmY-AJo z<^wU$WB(-^mg3c|3ZCP4zf9<<@uL*jd6BB5HlNC6<_Go)$ z93~wD77J=k=~v_ovx83jOqXdn99gEPC*ZkGS9-A4e#bvvjxZ}&8^7!RtB~8`!w?>& zRt8)In+P<#nq}O8mWblm)#e{#lw)3@#a=TK5Z~yW@eDaM>w|4R_NjN8P}c z*SAdMb1z2crImq-8cS&@&6r9ZXMZ30;^Z6wr(ybsGwb|rnS=Fe+M z{V+;^|JJHbqTj`oYW(YKf2N?z!_|J`2G-2o{%qCK!}a0$9gUJO*2(_ST#-@=7F+w- zflYPK`6~78?m9|2Cpub_RjU3@gU`>X*lI#y``E5%_r@Y89c3U z)9=~oWBq*+pB2HvZMSz&Swgi#I_q6|--e;Kh7r7dQv2LM^u4rDh(E#D6K>|cod7(A z$B4{c=w)?F&$KTH)`Ha$Z#r$t<3r{?;#RTW>@~1e3r@e&P%fn|JDZwDs34x)ka3A! z{l~L?^Y>_o!-TzcF0UM^+(}DARye)0cYS_j{bx=0knwkaX@%I{U`e0eUpXODofw1u zWU5ahnU5|M0pEs4_Iv)QivAGMl=XNI<4%(qz`Et#e8s33SD3#@iw^zyZs?mcZ`MYs zT5m2VtX@2(BJ4TX`~uPbE`G=$|gD^$etM1$k9H&8JnD2_5cIh}C~ zz{>6JDCV_6Z8*7ul;;`LK?ZdG8~S?-TLA%Bpf>942P_eH9ICxbr8n{Kk&)$k_SXW{ zo=C@@Ni%^$7QhqV8Q6IA)9r~0C?RLC@t!37OKczV7$C)-nv8r7w!6RTP9QzIGTz^g z``XPaRP31-g7Co0-!tiv7erkE-XYa+im08NxZ<%;;dMR1?7b=QOaIRDVOat(9!Y4O zn4CP)J|oYe<)>2Lq_;bt{JR+qaWuq5PnV`ocHv1WA93a;rSrMo3~>LBA7M4_qzKqQ zynBU^#WWTv^PvYs2{Isfb1&}KNb*FUv@hpDoXEcgAQlw@;9 z{?B4ynleX|^FO_XLO9wvEkAEWC!~0T)9)4s2wLV%p|OQpiyxvb1AB=~(QJBhj#-Y` zA5LXzECe@3cp6BvF#fSk1h8D+)OX6kO9H5^TQAr-gLClT;=N_?pCBdm7ViBcy**a? zQAv$^&4=*%iJ%Kz&IlbXTWVaC$_X*^iBMp_!f^nyo|*G|LHzrcIMyHtDRC_SBN46` z_1FVvrq?@B%g~1Ye6;AIeaiTRSP{MnRuoqXht_bzHUnkY{ei0E-k|CHEAO$dzr#1W zxmQ-qq30|Z{+!I#>$Q;Gv3t(UM`?k}Hl9x(-kfX8y!xc^DhA&QOG<+ z?RGkqU1+xuz0HuH8Ez>OdR`_27&;a<=#5K^2G@V^1-@YgXpA{+Z$RxhjB6Np zaHQnXpySai!^zFtJ1c9ax=~iLfNR~+kS6LNyzKBQkvzaT&$BO@n*H}^It!P3r&G$3 z(`x5kZd&%QCHH+rHxjORHcRY`S0w?&s`o;fFDk8)c{Tw%GJ32ub42-c;vg{XiztbL zmM+QH=kLFDiS?t+2OqhYbDRBK^M0a+eH60E zV9+1aoItZ`nyr1j?hx^ir24&SbCvhy_}WP}Q5YgLJsm^Aq-QvlAWet**lSh@utMW5-ULzKt zM>Wca!6cZdI<=#G!mTSrm~8JB#igJ>nNqo^rBGAps-{E;yu;Bs}!muo=nh$m#QS#JO|5itkf3qWS*La4R<#p9y{u#pM z@xC-l8biMEJzBb5^H?iXNQ@PG052Q!@He%?S0Bg4;ZNWFZbiY93?j9#YPujaOi}ME z3gD;j2SLr_vD=6)i}+>)Jq$bQllC~3sCvWc_a9vyC#~BfF_9P)0=yTW;}?h9^voLR zu%Ul#Sio4J*7Ltb@$(u7Vp0TfMq5p0T*-NC^IEW|?>;K~Ak2=HH1*E77gX=@B#`k} z8l|=zW^ioV&qE`!JqIQpUP>mg$j!z3q$Uy)CD%_1im@t1*ASVB zVIw=jx4G0-t?q%J?%F0Yy>^|_iKqfzCMuNFgmhkWi(>K2_GS)2EhQCX-i_{YWfm9U zIW&AHW_Lg0jULN&Jyv>TpW_c`S7%-fe<2t)FAa0sdbiHgimVnQp1&$g1{mbk6_1E-0U2D|+jHnO7n41YryX-0K6n(*U1v{N0_p-M&0F5L#Z6yr*E*kp^K(CP zn5LR&gK?LC!WfeKKU(Q9U<+(|FkJ=_dH4eyD%QFJ0$e|VXUH{6#GWFGq?+1Ct!t$p zQY3oLBlGRHisB_I+?omfWMM_U6XD$xDU)elZPM>(r5%1yhy;O3T)X!j`%3mV{;_pf z;lca@+x6v)5GvC0Zi~mfNLK^0?Tt%6l)x=25ehW%NCH^09J)J`?f%R-4D;A;yCk!^ z)=VY_6t*P+lbVmzD5;55_7rv0B5>l?M5`%py{4b5ul?5dUBBYrVj$lXC;p^6Y0fDt z&G*o`f99+O$S+ ztqQXbQr8qz55u-QzEpt9w8tR_*w3-<)O-D2C?Xt49W=WQ_eVMH{B+CE3V)`g+G^4DE{5J!Wd~PZ$nw%f@ak%Pm`lI5i#WMc}hxxo1tOF}rIKjfH zrj#hWDBhZ(56h$cuLO=nAZYV}8K3c1~T^=2;2NWilavuSP@SgS)fHyFh6_67C9U54Vh z`JMO6`FQVpv-et?x%Xb{+G|~Fk+4KH>Tmeo^E>#HD9?lM?yv$oFjzJE8nymd>O8hO+k@f zlDFiUdo*Y(Ft;2JRWMC+*kdgRFcRKmBd)WZnK*W=%l zx)zT}AoKYw@R0eH#Fc2@AJV=(rH)W8Z<3^*{#*!#O6@bJg8Nuez_Yg2t@xi(`_lL( zf8-+fQ4a0V!D(*|DH($lE|?PW*KjX+tnjWPOTJ9Rq`rUdGLC~xe1KQ$UDUES_TyRY zR80~`-qo|Pv9JeY?#~*p=-j4`IWZPYeCXFDFeW^lr4C}#_&_wS4g)ln%C|w}2PR!L zdd9sN9Pz2XvU-!OtETj;LdERwCDR$ z>8E3Vf7-LkA`q>PuX=jgLRWICg>71$mnyKCGv_Ha?(bG*u>qXeQj?qQU9m3*bC@!{ zaQb~~dPt*Dv)(HRLUT|HfrxA2#SOK^H@VirN#3#qXnMM>VUdS=#I8=sZ!r-^z2c)U z;T6fm^!?|w2*<0@WbtaI%yS~xiq>^_gA+yoJ}g<8`1a-ip-iD3@U0W7vYwKV3?R+x zsejnJ5z=>n_CL{uKGtFt*iV{>U)UrzGEtVQ3I7m|jtfqhT92?SSNw|7uNT1s&{JN)p0 zBxCOwgh0)z=lMO?5f+In*_DA8?*-dH6wj`B+2}Zhj-;#|_hnoN7RIlU3svCto-Dei z0|TCzZh-T)j-u2^?s&ty;7#Z85&ut_{@3*qkxvvhV3*(5&rduz--wSaR*poOG(>0a zZv^iSyrzHfT>ppg$`b9tIxm=bZq5`GPL8E)AM>Ox`D|VKZlqv_Q;Q^PTK8pS0+pd{ zdW`8q@b?4LCtnbM4jL=LU2Yfz6#XUo>ZCSH(d%0ZHEdks=g+2Mr|3W3A8!eNbFcis zUPA3-<0BZtSkoCq%f5dvuz%&r7Kt30V!PYybe&?4x-fs~wer@Nx*40lEF1J|goq<@ zEnuqH{-{)Nen7D}dddwLeQ-R;g6 zd5&xBs6LE&nsqA2IjGAylvKLP?tjd%iDKEL{W#Kim&YQN8$CfsCdy9gyf^MLvQIgJ z>@>?9v|4+FEIp-s4Co&poSgksIu(s)$q`2hj(-+~S2S2W=hqm-B4dHGKO|pqLmLg+ zY`l)qd}v%F75t2bJy121vd_v`x0o>i^1VBG1965@Dl)_J7pmOJuXJR!8T)*}KU2kf zqM|*;9Tp8JdTZJ%-qCwpj^EE#Vvcap+L=WAk(c_U!yaPEzF)$auzbuGBaMaOoq0^! zRirMRdv=h!(aQ5N3Z>xj6lzQGiwvHtiFAgqPtOLi$r?&GAJ9Ux!bKvEp+A>wpZyee zvhVQ`1iiTG4ALdzQ1#iDI9`1+_;dN<0DblAdM z+r5gQp1zw;A3o_?iM33Udh=)n?qRvyX#OCi#G&C$P-`xcU#x)4Vgl{GB~zeREuvKd zu@Z#Ys}!@&srW_X?STf=Af4AbFH*kWPL0L#k4!z&3{%*&!--YOe5<*!vVeSNG)5Vh zOM7tZ&iXr>)l@ueVl4X$&qkd0##Q?;!`b_vO#0F<9}92wR`opc8&;Kh;~gTq?j63h zB&I!H>*~oFy#x?tm?B@mEGZ-WpGJy8HVvnUW(*45H?}+)Alh(htFGHNJ=p+!~KcO!M^q zsMiMapL2WONvHYVV$P6=ceF3Z)+#;EPB+WM%p}De(i8J`80HJom*x_S%5Gb7A!3(d zet*gJQ+R4kFMR2Qto zM3n?r&ke#D41h0`AQK|6Q;#xLrer{=$G)24t7wwJ<-w-d2Kg7inde{NTHXQLzv6wC zLkcF8i3P{IJRDk&N#hgJPZrIV)hfJX_=?MlFY>JN3ty(Y`z+)=cZ5Q7qK+u7>HCX` zZIl#iu3ORkFfgdx#=Ti7m8FZf8x*nf5JReg2AMtVoUA?X{Zdx_#5QAcF3y&`Sm5}+ zE}x9YT*t@X`(Ipq4U>#;}qIJNFZ33jC;Pgc9J<<^FMup6Ro zHhaGJ%%IFp{mxvG>2t;IrX~_fmVJ|NWvh#Qbp2}uGx^1$Vb^Mg$S_~*3x5Dgm zg5h5|LJu^HnHfxKw~3Bl+$1fMHOsC;TGb9ER_=loF5?`&nwOs5xEutRsk0H061^bg zzcp=ZV;S79J_DOA<7)B`cUC4>6P;&Hu6-5W2e~!W6WGkpw>lYEvf3=8=Dr-hMkNqk zMHRegYi`?~DeM$-U?8J8rCJtE*g4x{?p<7>T6G-vNoY6gkNNXH#TI*I0>RXT?1pOV z+kyt9`f#}0V~O^MZhy8fs9qgowx`g-G;s*uOzhQ*k6gM^qWfG?$PpGE8j21H2?=iJ z?v`+j7>2jJ9GB!eefQ|_=qRAF%VmsEQsiZG^Jo;QH$*JV27b2qYA;74zNNY4Akq~` zY3$;1R1Wao;-bx9~hUWXppG>Kr3N!b=#!zFdA5O`~=mbkr6nj<6nELmwt|15N*@~&1a z$@ErVwMs9Z#AQTW^Yxtp>_R?x_sRa-irq_5t*Wp=~%pOquR`XZJ$`YoRHH-?jhJ59@aCqo-yvg{m z08n^YuUp01Js9zmSs5lF77#gH1hQUg!BX+iWINP46yMy><1$F2ZEJ8d>q^DwwhT?ZuYDR1<1(DFTjqBud1h>6Cc0AB2X|rB-Za&KK;l> zUtB`Jjd%E2`8W46({D=1rzT4_b8wq=$nzs4O=6tdgjiNn*qG9SS>vRmMkUup z+5=XM<;4e#3j5l&Vr`-~p_{zHIs`Xpi12<^mU#Z{E)nnjw~u`MY^k|UT-_t88Jgd-Bgua$hmak49nA2B>(f*=gzQH3S48dxINBKu&E?($$5o_xU;RRAi zRpc+X%d_9k2V}3mr`VJEYs)$sn-Md7Mr8WM`fTp8$hX)2vEmKneRd6kVJKiX(Xfl& z^WAt6ziM-B9yQa&6=LCC6s?_IMe?{WuX~Ngfk44>&)l9RXXA?L6pK>SvW}Py?Kbah z%H9~|5^wBsY*%{IYnqmBLzeA?@0Wi&v$q*LGf{a7?YjiSr?KKLK6Jch91o1NG%z(c z!tBp&&(&X;u1!RwiVBN>KTWP(Ty37{x~Mn}F-GCv-BWrInBFn2%HuqgU+pcwze@M( zmTJ({<#_Yr8YTEO0sR(Fccb(6i~j}xCi>%8W7`5bv#E4N0u^mLE1Q^dIGb`9z~~R< zJG#5c!C;H(*ZB&e)$at`r%!^oSwmGXnDC!+X#ciSy$FJBDMnDb8UARa6KAQ(uoJhi zG^T;Xr~FTf)ZzX7cb`u8r|JWftj4tY!Kb(?5yR${)z7mZctMkvf;KSTFMIvg?pYTi zJ@2vl3$enABK=cimviH!F8&rqWyPPWRCzNnhI1Mz*n4$+DYr%67gV5t%#1dKd=JTT z-w8g_+E-pc_0kG(FZ!OR~h*$67%#DD2d(ahoWALVAf$bvFzA< zsaBl$n*Bo6o^@5;ul|ocrudN~KFLQ>VnwZ$qN}BV(oc4!B97AvyJ-K-?%>;dP1tgu zY=`pSdfFBS?qrlhR7A>+&*Bs>eO{Y+?M6Jda}O(lEe;a*-nyPwjRcFwNy=a>I`l>( zReic(SEGGot>ht&>-6W4v3ffc1+6%d4x)U##YGrvo%ng4O4I1DYTba|xUsm*`uhK- zJa~*#v!@=xbB*JPG|rOAQ%|}~ns^}wR&*MQJ∈HF^OU2S59oy*ct#eLGY!_o1`+ z<)t{ZM^`buqs+slOeOQZ=ZD}pp7)8SH>G~SKu&Kqzx^ z>}kG_w`3$-cMwLAWu)7^0lgkH9BCIsZE+kDzzN=W^*18Vl?592Wknka60(9C=%cMk z%!xF;m(7L2sah#Ez#eg?5-+o5Upqt31byn zWwITCS&o3AW`&9~Sw;%g>@PjYCo+!5`^y}!DR=R1NF%PRr>Gou_ZvZZDTQ@2wBltQ zD$>976uCzn2?Ik9M6>m#U+nrcpvh89RHS7TKk2m>`>aru%Z+}{u8x*ZEpBSA>D{L5 zMtPK2g8=_6q0s;_^e(TeqUNjbR^rfzCS}Z+TIuH_f#cK*+$ZE~bQdf*&yQYi7Z+>x zz7OW%Qdx1(k+)fRDl7e)?&Z`r(F<QcMO{!$Y`C5K&VeQ@{ z`QhuP;LF%yE@0)Y1dPJ~@AGeV{bY_p>kAP+mC=(mqIZ1$KU=$4j}0(DvzninnpgNh zSE#JG-z%y&ZNxNHg))|$YI7s7PA>X=WMC5gVJ*a6=jtgU>0_-sF`xbi-D!mhz>Xgz z(Wsse-VypJhIgJThOA;cF_d9LMAV`GA`4}Z!>PprwG-sOBtH^JOu|oF9!A^~&n)(_ z(*k6+S0}z*KQ;pVG)G9)-l%}eu-?P3K_TX=up@&Z%%hKJF5D{;TJ0Glh>d-IEr0Rs z%a(21lD88Bh1|xr6~+PD;{bU)T|!SV$y6kbj%giHYxW(@Pn@kebNH7&2JkJvV}Bi- zFk+4Ru9NxFl+qJ~py4$mp98qWLUT9xMC&S$ewaY$L(P8#@T$I60gW9kN+sm+9`d+V zY$XQDBY+Jk?Qvmb2WdrpqHysSa}Wtl0wnAJmYVVFH-x-hcaF*+?`3vQKpMmBI+C>1 zz!2oJzKa=cOV*5?oh5TRkVX(62fJn^@u(4K>S_+fnk_N;4ctGyl@qzUcY76e`A+xX zuAM={GG15s(Y-J>y28>B!;R&3WPdEd+328J(x3K`5}v9yX>uhmMUAhESl&ez%Ygp$ zXn<}sna&vz|1+Gdo4Ee%YS#%sEb}K~cou`&Vhp|BOCKz@Q7~gU?_Gg_-@Em97MO83 zwkMgjXJio~cM<4Ua2LOHT@;emPhgo57X5e*WfB@Qc;$$?AO4aP^fa0P7ue89R12>*bN}=T1f5Z5ueFWi{-EuXv7)$CEEWi zQtZe06PLd{5@Dnn57WSmXjiIt?_xfyK*TRs7NC#m*L(&2TAFL9a%nrzZV(XO=05`5 z-n8`h|1plpv@Bk9{l#s)Iz;s!*={j;%*Kel@pKX$cG6_9(MO&yec4}nyN>bfq}X;B zVwMc6t4Vs=s@hhuMmDw8uakHyNA#Cd}rx|2tU=#E6dA%;%9xJa2isoa(I2vi5k|&~{ z-K!iVc(kt(H$iVqkp>KljGXjnQ{FWkA?9UHx!fR-nbT4HJ zrkr*}L?U^9>@WGB6`mimbp(`}NlD3!NN4Wm^6B;hT+V#oqqKC6=q=-hK5&63b5{vt zpQh2haz0d%`0?=d<|1KW1Y(8q@b!=U<<^!Xtwxn`%f-G|`wuf359cgv14<={xxZF#LUE^J{vKjljgB81RAZZIj63SaBP!uuz+VieRgc9G+y zI^VSYxk-Dz@Im5<&5t8ja|E-{l~=;8V4&{i<&lDq8sjr=EYEp3M!3YcDm_tro#MyW zI@`{ljC#^V#8pm>FFG!bBY3O#)K~7T{xaQe*u!>0VP}FX9Tnj2m>Zk(Z84r6PUVtm zROYO(2MWCqd_@x$@>KX7;(7vvZA_hCt2uu;lDS!o89d-ui+$AqU~8B0t9{KDLd^>6 zsi2RW{^RsxD&T%Bl{PgZpn*CZnZxfKEi4gYF(NBa)0`4oL(Z+$`2)Ib#PfZt8PxGp zOoIjAas$Fn`IrAI5X%e5v9AVFj-4kYjnV-YgC$_ftS~~A4-#9>jD7OQQ8KL2l8#ge z(=%T%x#=~%#~|s?@`Ll*9tx8`YK#)hzaG+4Jfw`E+#A6eJ^4VfB`3n2ElpPId}M># z5?3%D77>%N6Uef`NhVgS8I(L-r^6wq{&t-9o@yl4{Vd+<@c?j}UKu2r1nyBU=~8f~ z_f1?z6W)AZd~icHxr9G)8L(wdMRTmLjc}{R)w*N)n^|!~Q{eeBp6#a~qYPK|+YDCY zu)pV~E;k@WW=LxzOCEoP!2Wdaqh}Fo0c(;nPMe3}!SKzcyWywe$QDP2K^#{#ttTMh zt6dSt2rd2qI?lMY!#|~-w|eb?C4ZESeLsXDm>%W4PV@jp9h}LWj7)YT&@+hPmzsYP zB?E1@0{ z7Xb9*f#UL^+CjhyXMTB%9~&4^qOaq}lJ_ z*c>*F(?$;UbbKTlqeQC+p2g{{sOnGAgX1T=pZG|UZSy=_;;wY&Nmal8-0SdU%#D`BKRm!Om=VR~DUs(xFRa_4QuGXC!R(yUvK zKLpn&mgfuN=yy~Xw>BK5@*D{axB3hkUm{swT(hzLRVo~T3yehr_h|fyw1jRubAIxd z6cA=5b$(Zf8;LRte(hfK@iPZ7CO77BXu5fFKb7P!e5_{mzr+^|H3FNpfj5jZAiQ*& zz63VfeYX$?Er@82vwT`H-v6v~BK&AyWB+f&DxHrVIiS(7ALmSQR=CO4=G-xX>4iam ztFq=c-Zunk>yeIYT=jNUm=j}=0P9nNb(fgQ;3y5szwvbUISU^jS7B&!+#$TkKMiF1 zhS=0a7=G)Nq^0sSmsv9v!F@vNddH0Rf24mSxQW-JT3+?zBFI~rw_d}+wT`+SkW zH!eJg0&8wVzC4gKRAyBSyuviQzjoC}>G|M!K1-CsI|r=|+h&pQVvWnfGAEpSLJdUiNPbS$u5q9B&IPpcr>*LOOyL}IODR`F%#9*;RISM@lo5UQ5#Fd(ks;bU94drAY( zJ=XRMna_|O2pvE?*Y?)@)~yh06Nj?F^rUg7@`{S{1yh$TC+VhdAOZs+B)Lh2h^%5m z;o>?g!lG(D9S9#Tf)odYS6SrJeQ$loTTCAQh)~{<^y72Fp<4;%2-)>;=QmtPg!j*h{}jo+<(Fe+IYa~Fl((er%cmH_+X zu0hhqb}~P-`+o79KOfvkN|%1LT=j&)&_ShgSLtx6yg}{I$`CJo)$g`wF}hLh`s=Iy zb~Qq$r({{1JgH`5%)RS8V0Ka9XM03NkCvv^mrq$o9fjw`z3r)3op)(Q&b-j~-&vdoHR)rLh;x`iP} z{Ni?cJUZASWsUB^9k7{hKsNmdbmtqA1|jMQ$B}zu(C6;>Al9tn&mAXp z?Y4gLy)P09=bR@jV3-GrOdHmCu~9Tv1Cd8KYONV#ad4KvCn_c3KSS+?Dh}m#{jo7( zn=b(ytsEmCITGjmlB#JJRdp@lC#F0xX$CLhapVB#XufvP=Fh8*YA2*-#+eHFGi4U` zYeApSq*rW2dv~m2e*lB*>_bSqG}t15$JQLjF~WV4Ri8nmQz``lsFGao;~WefgEcjG z{lB{W5>J%@6VtYLbvc}E`hOBVhkFJkSD5NjZ2i*IVAO1xNLnUrKFFehc6&}3daxF- zi<2e>17Q1QO0PFobTx!)BSoqb>vQ!%Os15)zYA3p3mKfBHq<8oxYC3w42{`q=aV4T zQow1|4;}0bUIn7w1t3~~ZeU{-l+CPXeLHdJawpQ2GkROf9l0j3Ly@wW`mw0HU+GRh z=*N!#(cSP9(|4_9x??GwQ^SpZF|7F%qY^5e2^uCHnI6 zgKs0tKQD9+_|C?5BUTWprvl2Cz+dk)wtMCe!!H;wc9$Y66Pl%M<54zIZe4ta3>pk3 z3-4a!J$e(k-eV=rv%KXJex0le1>~_r47{=A^WUMl3;~S?{VCk6uEQ58o}% z=Bd@dzNr|Q3=ThcFlpH`jyoC#o%Ttw;p0g-&KI^MO*Usq_C%QXWMwDNZf{lL9mam^ zL^Pe5_SsB9Ci8c?Hh4sJ%lxQ2DcpHBuBBf_0eIk z!5o{1akPB-g#xy8O90{6vaB+}FKcM&9H6+{Y!8bJ|91_^Zm`KAJlr{$Y~mL0rO& z%cq?f;Of06`j}BoU}=wwTeUI3qMIG_F3-w2(3Kl_h+nMiqg@OC^PQ?EXn@c-0UdpB z@0#lU5b68d&Ve@yxI@FQPlMmYC|H{%5B=7xbGSD&XZ+b^QKsaIbRl4T3a^jNx;t3@ zd+FCC^jiwgsLE4|(+_yR9$ebX0xi#t=oloxq{4eT*lZJX)2IvHEMBkYWy`VrU{f@y#nY_f?Ojtl)lUm;4 zEjUmHH6U3&Gaqf%KiV&B4|~SJ-cMgNq$@AlgFxogT&Z84Gi=OrjF=ZA1&KtW#<~2L zDL2=Ip)pchoQia@PLElsTJ3R-BgKKCO3&GIJgI47qo$d-_D)*g&;h5!1TE@TqL6Y? z4iwa6rTQ2OX(vH0T|8UwXWxfIE;hZa#oP`w$~J`DeB65E+@NDQi6WWwE-VQdzKl~j z^|_xw+qCH&wQ()oYJ`{FRUEdz_dbNk3{wvug^dlW#eQnXlNmesnoz5jUmmTNNq8H? zxAs#73!lQiQ=XqMNo)(kervJjPHw*{;l^cHtGz~P{ zS-u?SK7P63bz;iim!;|epG_1|(W7-p%*dQyP7?8D?8>QM}IN3%PG>}d4?->eaxZ=W@N00w@>rPu6z=aJJwQX(d z(p%^_qMTBzGwC-Jr9^nRcw(#W=Xm!>1Bg)gwzD&YbC)z(@WKN|9gPRyTuc_Vd^XWF z62sHn-_uYa@)p)in~JJEE#fj8VB@MZ7z?j>{~jLgbvd!HQ_bE5i?mD+e1Bpm$${nK zenm`qN5g)nV*F!mO)Fn$`AL#Idy>)+UT-9IgPJ-&<9_75z{e{4-A3P|36%ee=f4uP z95{SEmMj*(a7~~ZrBd@oH&sgq?)$;EsnvyG9#Uq{al)e2aOZnaf^3{4lowb zRAy0$$93f#{g;-}Xr6G8uQt+wm!jVQie)1EULd;Im7<~l7s9a3;+#5cWfqXup7v62#Ot$bD zwwn+0MFp``6Wo=%)7I8iQ`?BdbqhlxV|FjUqHrI{kK~n}e=$7Y67BG4>vzlXZjkSq z54Tr=>W64j*@yEDcKY6-H_uIn&*LxQ&jsKiPB%p;%h9v)prqI+Gi5Zd6405zp%uO6xmX$@;3I`tn z(arh%L#H^pWO@k)K0NbfWJA{y*9ShA+YisbpdDQ8DTPSYcId99+fUmBCBQ57mujoH z58PdUXBF2KR#~kMA>QM#?7AA)7;p1^6k8Ppi@uY2!ZK)5^a7MODuAV?0uLC}yO+>! zH2D&@@f;Dm%?Pb!dohVebyPog^``96Lvw#C5!DiIjYC9OKF_mz(3)07=R9@~-th~H zN0l_|R2rbl%!oyl^gjt9ap@~h-lR{oG*Fmad!4pqe|vl3ba@!x-*zKq{d|9BhU4vv ztJ}HrXQpGDdm0O134f}JA3T>cO6N<-&iks!Ccwo$Uh)e=qTiSK*@LeG0Lr&4c0E+f zt%-loF7FLHd})_R=JJ*#y6FndJ{L?1pEx1vv>AO~UWmbCPRb_@OSm0Y?E->s~h0$sv@gp#)GG$ z(#U^Rd@`_l*H~|CEmiyKq5WYm4_>le+A{7Q9zvjZ3TcDFLz6P&nP*UB{Mw~Y+3TX( z(bC%H>u8xsZvf4bttd$!>P0+cS(LCh-ZT0bjcih44dkl0u)bVb@;|0ih>6Kf#s=WT znK}S$*KlzqwU6sehTdK-w=O%g!4QEoCW>BzCdR3wlVCL8)?Uf1(e%T-)ZTZB73{m2_D zOsQ--KPl6y6{&y1-cGg-vNLJ7cV$9v{TBOt51aHD7L|W$7kNv#f{pF8(P@ul>yTf6 zip>bTTz{7*9KVgVy5l8@G{0_2>=H9(;$?{`nkCur{4;z#M#{Ogiae&Ct5D#oc zDk)zT*o=ihMQ9N?9Wr&RgWHKj*GKeYZx%+E-*tpb&%5)hy7^86Wpmy{t`Ex zpBpvQ=vB?eGn#UlSQJ^gVN7P&EwEg)K!|jWvcO=)f3?>Iu6D3~iNwd29QahA24iaY zG8V)|%+@C2$0|@@JzP?Y&A=EXP)kg2OB~GF#UTo_-A2j%pF@CNGrqb<+H0lvD`#~J z>WcKx3O9>*DER_dQ76(gz4bg#rLL#$b;3XGRkI_5y2cFqiF>^`%JGnaV{3T3-Bs(Xi^>87k_Yks?6nl+y9_*e(B9UC;+N!hm6pZn8|eZ%fIM z0`OfvA1|pCi6X>1L)wf#P##Z9!)E=}ArQHTNNi7C*>NsrbX|MzOYj0Z(RS?5P|fe5 z4Te!`7WVLy1E54^dhFenq9m+2%^A zt9&c04kLx6fZoxhRP#|&Pv$jXQ2Pp)t@yMuF_~J>UFTy|fee_&${#qmQf*YOP^3tE zdfzI%V9F=9kB9Hu-q%*{Y8bCCnS&F5ezHyUcdqwY?yh^y?HtzoFD_%o}8I zQ|UQqc>xefY3}Z-;ipRkuHq^2)7RuKI^o6iT+Pj}Z>z7mpd`%>od^iYsEnR))zC9) zP@{{ZV@^?>qVJ*sj9hppkPq$)B5Xv#?De+mC!hmVI@}eZ6EOWc43II^-(Z_AjX^9i z*RF_N{Iz3l*0)GK3i!E*2xX%TzIE|j*C_X}s)e3#HZ8Riwf+(Cn=c4hpgE?{XGKpv z`mV`G8NPRb zTLV$aaY`}sk@o_Mz5Vbl&WhN!Ef8huHb#)Dol@kc0b1&Ke6YCnO9znWOjMl5d6J&a zP=p@k&lr7IJ_+CodZRT!h4moRyEuKB#Tj@5>K`!F0s8_A^P{<0#Pmdf2wniH0TZY} zW9t>DA(S9Gh3oEHUupKb0N<6ihR+@bPS}r`iW4LBtt%CLII_?n>j8R=l2Ux7Ur$YxE^QVyUoM+sa6y=U-v1rfz_z?)`^Oz!JYxesICDVU%mR|%Cpua;$%*Ft(@0}hBLfcKMD};I2rV@b(99jEV`%m? zvU^V0TYO?ll{IXKE0DPdQ<#0)@Isvfz#-- z*RjH?O|6OowNe8C|lA|bTKS9Ud?wsRX)<+|9zd@_={5+I7~glwDHAWIU=FU5)N zb>Nz}i9wUx7jrhOa96k#R~l?J4(?bztxX=^Mx(DtG?OIFo}}9z-$Xh5?agND*U_RS z>g1efBZ*Ty*y_@xa&B{@Lex_;L`;cX|NGfo!BYeUo2YWu>=9|D!46-uzD37IFpf@= zF|c`1x<8uexp$_s#=V_RTeL{(mAb>+X;4GX6HFn*X+eCSv(+6S@KHc}{wHtJ!*^~Q zNTI&_1%Sm#hWnbr8>9|2UtuSYvC-jQ(pL)-ja#Z*S_)VocPocH+#%EHGGOMmVLlQo zvv?6&A?im_3Cr3yt~ry2V|0DIv7}x(?m)iBE!le5$uf(Rg#Gn#={|7IB^Zp`aO7&S z=wLS!vu@aG9jtH@_)@xut^U3{q@R^tLGgN z8orz^K;z130miM$Llz@y6+U#x#UW-3KDKe}oMUU^vDh3sVv&N6k`fSJs{#!=^&v@Q zH^-ZLj8KtH>G##2wXD%V#KcrOrxaqG@=YPL_>?Ix!E=I^5yc!gJ>#Vl89qb^CJ zW+G%pp+*f#SnrU7yKl6)T)6npeBGFTGE6X(wD2{zrFHWl`?DgrzsM+v9#pmyM9U73 ztND?xVVCq^MzE7gtcZtiFewC@`9F-Qg~4$DqY@9aKGt7E0qpgTiV3u(YoQ>TGwJO) zHTQ2ZkJ%Z-ukGJy7}AG{FFy}o4WY~~zGtY1d=0~RS1``=<>8yG#sf@1;i3M9uEe?R z9c;C(^p(p=SSUD(8z&@{_hsg$W{v>xh!+o$#t&?=gWZ7Js3Vk^p;GVveZ%XfYP3&Fa-4*jl^bd9Kc5}i7;JRDdcZ8k2#Qyc z1=EXYq+%?dtY_z-BhibvOrx=%1-&@S#c4cAiXJTL6mWB-l5+8zCTdaJDg$W5Cis@vOApNP0)OUjc=YlJHV9v z7Fr7yyxulMJn28vMIwx0%>M8BEU1#+1PpvzCD1oaV{n9|RPzRy@l}wQ;)zlm-Hf*S zkX5Uj34+NPn`;NMx$SOvJ2Wpd<7-|zt9<8dqQ71WApcHBoyG7p(U2xV61$}>7qhlw z1N!XmJyH25erJ+g0$Uz--~ra%`|mD|H*?y|;*)+1?Y$iF;ZH`2L_1vYp4YAQ2=3E~ z=~GR9a7Z8fOF=E3kKjxrUFKnu5eMcyf>c-rPx!(T?LS#SHJ6H|Ky=zHTU}-#-+Vp$ zMl#ZG8G8WlP=kT<&rWEj*T3tZ*l9EI2?^Efw6f|k!BMc20@wtPmA+uDHFLWRIE9V1 z{S>b%$X1aEOo6PIFPMo+PxjY;3LF>(^DPx65t9&GtBLriSgfu$5%{MdJ@2#r4ljWz zA3s&DICtM)Hf_$!ofNLuuEQ8WX%+Y*@l_+4GE~TZsWF*c3VjF_t08;}9NYaVR3W!O z75nRA1V=YjvjMf11{0`LFPJUfV5m(STuXo)!Sje0i|nkRe)rqEr1nun|0G)9vhtT~Rms7X+&J%6JJn4?4IFCFmUK5NW3S4#Ry~XG4$%Q8j z9;uI^xDWRiK~)aedX?Wzw(GmGBC#?V2o_HYXBHbZcmL^g)}?=QAGc?|4h3@o8Zy1? zP$o{Augl04b#=~qm{2hPVTwShYo);~R3Haix4|z##>2m?YtmYpQ^6P<=vKpafJl?M zPgh3?otSFqW}pFb&eZXZRcoK$%dpt0_4Z?|@5Vhewyy7#M2V{78VCYFwHYV#ah!oK zvr(&}!&1hEQ1?`+5e)!27dI_eF}N-T-gcti_5=doUBkPeb47%hTh|S!C1{dk0OAs*q?QntpDnSIXfrV0 zK-fb#X(_YF;7D4&D1Kr#WX6kMCw zq&!ilz-B)c)ksdY0%f5P<;r9L+AD~Z z-qdku>@@Xs5j7W3Jbdcd1WiN89xOM30N<*RUHpY3^{W@TGi8C;`!v9*faubqur}8d zrmU9oG}LSbJ24&Z1qPyx0_tQeq;ZlXb-18_dsjrvMO3@*Dc#a*{{_aNU^5QP?YJ>M z0SG8|i^Fa@rQT5k83|^A1Gv563Y?Rpc8jx$?`W$+v?v;p3F!e4&6L_gylScvbdM}C zQIh-Pa++qET{8N3v*qfBzzyW?tA?}KP7_=fp&qO)GV+*eRxz_!ow?l&i{%(%8SX>~ zt6R}95`+}keAQyxdRjA^q?MjjQbv}zBx&%GF-yz_*=iD=B^jL3_M26=EJ92MYsdm6 z5vmU6%;H-A>`WAC)jv1WP%y4l9&i$^Ikx9dEluT$8c_OZGe~ANwMPZn3F6GOUF}Gb z0So#narxSfx3P)KYNcf1fB*1E0iTF!t46ncBmyRr)+3rmZEA1evMG(Fd0A+JSZq=S zV?S9J%2Wn6N37pKTJ`UytKvlL#H&35NmXPwk;N8vCY01Q8R3`HT#>naE-!?&FiQnb zs7W3^aN0@Le9;~g(hg7V8^w1ik&A4g$h9KrbkzTuk!P^2!0~`=nJ=?AQ-v2?WY64w zuci*A@IIL&K1BbjI8z2pj|Im9Qqa6p>6MU_tYb*aImd+lXDZYToE~9*Udu$S{UTE* zfyHvp=b1^mcFFQzQbxSbGFDbJaL$Xj_HOr;+;ln-^cfX0REpVVoLM%qKGV8f^HUZY zEZF}nVOo8+^S8QKWJncEJM;=Vz`F&(MpALb%4OQ(E6IR0c##kOHF3tVR6qTf)P0rI zHx~6sU^;J3s#csFuAhshaP^dL(sFWLW^5ImnYP(%H90jSC|x7o+Jd7>J4Z_0kh6A$ z>lM__SeWW-2QkeAGJ^c5O=3h41j)t!o2!S^*;q8F!)(b^^Gv4G1j4zXuAC48T=MeC z7RT)!OB$@Vj1O0@azVpRa4^7!Ep@8u>74a4=NdX|9qvh*t&IJwDsB2Xa4vm1`NFus z5t`WZ?mseQ@XUL@_hxN}XI6x^PZlT7nFT-fAs&x(35d=J`pU5L+9niHSJMd$xHuZ1 zJ1TPCr}1Pm;OrF0F;nIV1LsnZq`~8`iD8N~-6t(%-KH!rg+}#eChO?{McPn(6KE}l zv!5H0K@3;d&9IHZx?K~sz1EYTYcn@xExH1r6LIe5pghY}h_YTAu_zBv7;9~#|0M&2 zo0UdkyYxR&Fi=n<6Qr{03rQq%4E4lDgq*}lGk)e-Ph%}oDM>`&kBg#yLW83?W@%u8 zv%PZ+fNBvdMH3HJMbA^Gs@_j(K^_Qzdja z(%Q4mEastA3*y_Y;rB1Ppz*}E)YNIkIxE;ygnVbi8x7N@-mV&V31Jpz!T#1z|9QNH zbtX#C%%QfmH51J23iQHTy0!WQQdfjc@SAE1r|g9y%iTP^gOjJFGbxXFUf!{}= z+jeMJI8re;=M(;_f)tl6rOKpwuMMkV>c(Fw&!f+u+CeO6p#}=Q&!Nt%a&67Pr#Lwq|_y9J*Y=4zle%^ zV^!+0DEM_|mj9e9ZWRat#E;!?m@pzi6s1>L z-W&b@=q_4EKyyi@;aftVJ5LugW~Ju~&|Dp2y$^iE$l4$w>S0jT?SK!bL4u-1SmLY9 zfVN2W(nsFeT(M@&WWId_R5q%yl++*Sf#qZ&w#okz4i`&fG+xL$r6X-VI~1=a2=DIn zJcrJkRRndm8vfoPb2>|~H> zTk5lkUryF*_tK{Gr@P~WA*}l4UHE`NzEZ)1CxLxnugo4#$ zxL3+un3szbAIRywFWjgA2+kGEjP8q>EWFQ9#7}+XqRoywLk^E)U$)!PV$68om6wC) zYMzxfVBs)8U<1vM6hMUT!0Hdn1nBP;_LgEzE>WO7VZsJ?$Q=+GmE*8aCTLL5Z=FgU zzi4kmlehdNmKb|-T_5km2>SToUvY)19nr8&PhG4Xh#ff^pasD`@@LvMVQK*6z~`MO z0`&rkUutdRMUp{o3GMP3)KsFU=ASwy{T}R~wq~1zMr+B>y>qQ&s&fP@ZFp92Nm~IK z4+|fq*x2nou`4dpx+Ga#70s!%(Qt#La_Apnmp!KA{nrjL(NwG(zWxbAlSIRB)5CuU68-}B>z)bv;M!52+SuFik;bWz3vua%HTN#DwaMHr_Uz z5Ve=?{8-aGkU#v$~Fh4t&IbPk_~tE3ge((jy5VKJ23+`V_7X0262UmRLX z7--T2Yc|COhw1;3E@%yAi}^Y;n2;d&Op78d4b4mT8sqg_+E=G=V`JSt z+OM(N>wEXCGOFE8iB~gIkl~rgL_EgTYZ;ud0(P!3NJi7 zk@bJKrGJk7_d8jwkw)Gct4ej=#1jE=VG81;0NH8|z>qDVb@9;>0T*hq06!HQXaajg zsM>MozztgpOGrZn4?^%&+(4ku*7-XgB{ys}0~;>!&mWyK`Nw}d3Xv%BW9JOp8b=|H z458+9TQ0p`ZgsDT_)lNK5n5)-XRU-E5#pLIv3XVIeiG+#^k#(LNR_(qxcolhg9ynQ>h-Sbd0D1?R zNI0%a?)R#zwrunWKYF^^25LAAWvdvD_B0lzGFv~aiQ5eWC>a19~>}I_6$|Mm=MMkUJ zWt(lng7D4K^+Dct<3`c2BFPmhn-P4z$4(io$W)Bzw3x--5(JXdI_3(lFZtEmYlktD zX4d>j zV642M1%YDSIJ5wu9N7;nQbEXSQAe0@6c)C{^`2F7(5rkOFVwZ=FfCw?5)o;qiyxU8Y%T+bE9M;^xjHVFjq#(|LEY?~M9EV~s|Ql%Mq zAp`bwSSsL?PD@mK$()-!ZeSkfRbuI3Z_mkdfr+FRH=92f#p#5`(NJe--?_Fby~}y; z9Sa~I+mb^H73O5;MB5&)42Jo5MBgBI+A^a@hhza~?g6Ko`nb)w{0Qq5RYU2rbTxwQ zc)HSRA{4!2tUwUUaBTAk5X3(9HN8+xrzPGr>j#b)Qs-6YwVwPVzVK9u-CD)cVp4x% zQ3eMG_EuMsy_`%8O&HNH#Xx`*fZ+ov#au|vdF;bQlRne2v*tS1aLqQB$-y|WR^c~yh7&8%VTXb0x=B`1CZ=_Q|1pe zXctcjQKT}O6k0sZ#{sB%%yJ}+Q~6>0+!F8n88S>n+T8Z)69k*NW#w<(DFd3|7PRKO z2d7tY$!j(W_Gyv%nwgePQg~5QtLu_^x@nc6U(~Sedj-5onZf%KBR~+yflkFrPTQ+WB8Ft zM|7Lk=u8rSnSHvO$YRQT?2eE}3eh__B**-&@l5Y`!DgrLXja&m){kt@>-L~kJRy0Y zx91CY-L=S<%0VOJhU^6Zy`)J04Rn3B*XV5XGzN?F#oB|@^u`9f6%+fDr8;}m!&09% z-itqiOYoSc*=~(b$yJ7|5ge^3N01R9k>zg|kY5PBY1Q8k+a-A8XnVG^4Ter1wQJ~m z+(cgPRms&2p8tWG0a%*J)~w)Q(-Z;9bCVgN6pkZ?N$h81akuAgHqr-(k|mX#-;OsE?dAw=z5NV8t#K(Tz|@JY*TbM2b^-JXwt}PB|puz+`3TGyH%2# z%p0p+Scn~}D%eFrK|~A&5*x@+R_I<=MGk{(h6OEC)n7p=ByYp^ef$m#Sgb~;468lz z@T^S&(}1}jHWyB~<8B3{en!*O$>L5N+Z1b40wl#zXrc-wx^929jb2&#WLlqKwMTpsOjy@r6%f|Gx$W&cJM! z!-DicWTlK3cSTeLXp&}%*BG#02fc+R;!vvUGg5kDmHFAcCGoX~;oO!y@|JVTG#NOa zyU~u!+nY=cqQU-q5Tr51{g>qn;7A3qrnxa6APnM#h7RXpN+g*uS2WxPD5;)OM>$zv#E0$Y+{oo-^= z=Ih^+!G{o8c$oEHzNnLTzOwPLFZ** zKJt7!sYYt9|2|9R|JPZCbxJ2jsJ<>D)9ZA_e23R9f^nYAs>Z}S$xCrv$L*mxv>Ige zk(DF~1h0wY`Omlgw1-fjtACRocg1w9rgr0{P=Z7J8|<$$Dao!sC9s7v6#G%@^`xeT znou68r;s^DiQBK<@CpiXHnZeIP0N7K{ab3$O^QZ_#zJBwsk_vspq7()UnL*3LlTeDCh!;xQNF;hULPyxu3b0yHw!rqyH zNvCALLJt8RZ4{AAGbyQ3G84wk#jGaGcXUl!{OogALwW+=@K^b1SMVJ#VkVoG~MhV9l=1qhP%cxr!wEd?A{eN_P4}AsNRDCv+62 z&=dqsaCq1pqX*Wx*LbQT{%sppetFh6yA0E~e7fm?d=#|`H2qB9>z%F_N-h+mrsMXYNW}lB)PSj z#ocv(WUhn&jES%V(|3BbSbDXPjV~v04$Yc1AA7!WS+l8nBi@zo$aXYbPjRe}v8dnc zWuk@K7`CvUk;SnUrpnvnx&b2zJ$}mLS(-rAlT~{e(zPqc7YTgvqM=&0Oh*nQw7Gp% z6Ct9BC*wwfl3Am|N*|AzKrWv@ z_EN#9Vr)M-q**^g0zzv*9|nSG3G1M;c_*kq>#=UdR4Nvn3`9+s+-Kp9tEIItSQn+k9sgvxv_L~>N21v2jY-S;$6}B z{(f3+!ySGV5y|)@HS_pn(5d=ezK(H>a6Dapr0*E{QFMhEgijE~(aKYW3a)e!$!(B0 zD{&NR3abj&_K~rxxZaMx#b9s_CZk&OyV2<1C(MQyBo{NL$|3QS6pLTa%{|p8B+=%8 z;lW}cEbq2T_$TPpA5;C=BjorxWcXE^t=#Ln)vKm+pTGH?m?*M^v!wc^=dDP6XvMuNloIOhYsi`sB^{7hS2XS=WJ$596W0PL;}PlWD$@pGq|LE7i$66ti*zBo#onw)c-uf&5(XxydE$@5>4Iy?oeIE zog{Q;itl$bq;*RRyK@xdrxUgc0d_qM-fi*gGY~7<0&%WQ8P3FRWPl4UJ>MdUOWy62 zLqK>Z6TiNU%$vw?(uT6l^#T*U&&53Z3a zg!*MXwKy7)JV3{buHI90+ipem1Y_UJSA}Y|5?9sP&=WjaR|58M@*vqp{HgG3f)yn4 zgfKwb8K|>0A77{`pdz`yY9Ot_NJNHnvO^yTZ(l&pc-S?~-yDC(^2jzBm;g+_%GYgO z2$JO+K*C7b&&(=H{ICDN3s-3lwC{h;J?Lvx-Pq8etT@Yc#_1rWxnVQTR9EiZ2c2xj zdYBN$ovc6x2!8;`H;CVU);uqpC06b@*#Y8IWtGD{r1&fRy{Cp*f}%MO$}e6WT8X%N zN2^^GrSmRD~ax3knJV!eG8n%zhdWwTZpZNRIEY z0wS2UD`?wcDx7FRqSNs9{oETH8_&Mq#1`0*z9d7|GSD^~EK1Ok_% zf!#1ao^OWw&~Ft_fGP>0jjhPB3_x;_6%bIT84itGTvf#K)@4CtF0~(+%AJ{45Pa{2 zon*qR2>{(z1Dza+1Z@LI)%hCxyMQ-4LC%LzJp&yx978QFy}h9%e=HLw(KZKiVQw!Q zP{eo0X{0M<6zwUg0z}RK<(`jn^oF{oy80G1vRBPn<>K^_MKR(>Yndc)mn`~p;49#d zQHdN0QpM$L;w?QfmLiuwU-NIdeG=>547@||sj7jKue%7Uu)W+PA!bIv1d|(Co@_`6 z=*=dv5Mmp%gNwz*nkCX!*!ki~%zz|cXiCUIQ1F%q`Dnl~Wf#pWZ@L16y>o#xBFW(Y z;~D=qm(X6gq7sfmtra3&$Zi5F6j4Pbx|mgu&!(NmKVSO_)$)*M3W%BzRA|e za5a(e6)BFG{ZXa%;>BiuD30IX%xukAE)huIz*{Notb~5>2=L8b6r!saB?3R1tdbJJ z!O~u$b>;)2%?qmaIwk@u{K6uY&>}!`gND_36UH+F7s0MJp42&FUDmB4)9jo<@>$A= zxV7l@FUb(~eDgT1^FMs!(d_y3`dc1YZ;DJ z-Pv#+Ec7VNmXY~+I7~u0!5S(gXVR*L;Q2wOIE+`4X*z|4LJ@<`$5+OmYF3vJJKcp$ zfALc?D&d;egP;~wrA&N(ER$Jqk1rzuDDk1&s&WX|c$?sY=JmBY?sE`)@JOdoo^uI7 zRsXm9ybhHZ@26N=57!*CNMTn&WSrnul$XHlK@FAMf+tuD(x{R>x7eFRUdlJ0pPEu_ z&hI6I9L9mr4=cc*ys=}5hEyW(umWyB6KMkLg*#5`qmY$TO-?oR)lP^!GP$tA`GR4S zP);?%I@HtVC<><>zffiW0F0#gF({gb1rEWnxI_Z!ISJ7wnNb9ICU|>g!?a!Oz+}#y zrMASvA`h&5C;{LIXf$0LD!BICPrw##ia~*B#52wLLM`65wc+v!J@X`a9-mDLS8Ief zKS%g-w5@h9**2LK5tDYMM6RU^Pj4kct=Wt?WtP;#<3Cs0U{ThVd z6r*l{PneE1-ljP9!DaX{_oxlQ|D(WJP<-Ze-pfxo(fo_*@<2g zbOoshiqDc%FW9iRr@7E<9iv~Y$>khgwR6QGJ;wEn`>ZrYJYXRv`@(f%T4XKQNKhJa z>B4$#XwE3aW17MlU)>9FV@Va*xdVKSa>Xg)@Vw4Uv5sXV6CA z^>FQyCJWQ?do@Lz0aOMFjjwRC(NFrHRnKb`c`mqM?d(If?`H!OYZogp+AR9s{ zT@KgnkR{$Z5+jC*SJOW@nXS#W1G+B(LxwU(JY<)T!+g}kZFQ^I)ppC)9{+n0GIAvZ zRKtW`EY^~>6rKX?Gvk<0AU`b;^T^Wrmy9WJE=%R1Wu|z>3r?dymQP)V4A+dmNqY4s zol+W>U)7@~1eSxhoC~?(M!W$c{+9g(OzLd*DD9g%5>`I|c1bqFL~JIySYJ3$o_u}{ zQBe+L=G&Uu!i}4A*))>7JM>M6zQg>=!-RfAv&xLP=9HsN!0#$7E8O{pgt8tEs1K{w z*UO}FRRq0JS~%WZUBdXCl_e{OLrr<|&8x2lya4%T(Sky~0j3@CeWWTzN+%Cli*;Ux zINP^NCy7R*dV-KTip5jZs~vgfV<%l!-?~#?81{4mFn!s`3s}x z2cAz9)*jjGMe2E~WYJi1IWge}7~fu_9>rK=)uo#u;Q1m`fDw}a!C@>7Xy+|rzP5A~ zr&L^U7Qa#I5nxtPr-bzoBtgaNEft>_eGT5BVS%WQLo6?6vr|02AV+^!lLxsLuWG{l zR4uC#s+b5EyKedFTr<2EY+n+JVb;_?gnliF^qiQh(^dG9)D;@DhX83BMFtgI2!q!! z@ss~@rWEPddAJ>t)fEi@o#Giu97XAQn{p(!q@V(bx9W-Gz|X@w=Y*`lmo!#HkQ&WS zYQ=>>bO`c9U)6_br%XHYehTDdx*C* zQ7#msMby!m-uf^+i`?Ss zV+Nkx(J7djXWEMqKVHJxt35}_qi>&4Jzb$fCly#*8$D8`7ON>P490*=VNP`<^i_BQ zehriQV&OABIeOARU}{X@p<;~RODlUz!jdTPcmO^nIUoygoq-I*8Mxv2MbGrhex}ef zV1)h2L3!L<7Xr~yP^naZvofmCr#Olnu%`dEi zjei)Af~&C5BUup=mGMd`p^K;1plXmGK!J?eE-z5@5W@Ye$eLFYJ)Y}StAXQ*cQeP@ z_D@>Nzt+9d@CX)cxB+ruuZ5X@Han_D&#>q~OAqZ9e3X5YG+~~WD}IH6Uj1EMwyX`$ zaoA`l-Aw*c+oO+GsejhQz8SI-~(H%RUVp4Ip+I0G>9yn(jF+-DsrF zesLmd2dYvMY<;7D69?LoDL%33<9SD&dPxlDvSCAGPnYbRk+#~tT3W4)L{;Orvbrz0 zaRUX@-xOq!T*LZh~$I|%*ctUIS1 z%I#%5n?t}|OTX8=#ihyn1r5qz%WWV+Z|iA^DbvglpwQsCx^#7HP9=#5wGK7FV_Ez^ zQx$YNYe<%Wx2#s!nPfN8TStk=W;qK3>w!EoU(SFU5Ogo#1GGXwQj6nfYUn z6GQ}aB>@F~!8UiZKf}Fw`O|wF@0xPWu~t%`7)&D|YOS2>TH%T|qqo1=n=10s=yV2|K>{`T(ngwt?5IXw zT{RzYs*lBi9C+DC8zLFQhU6a&IW==_(hP>}>FmKaR=M$MHU>Fe)9PVyUn^08W$u;jr7e1A*)Jx!&q%^z@V@Fi5cqnfGzt;&-f-{iMo36{% zA62{LT*Drb+Gt{cMYQ+$V>2z2d2{T@3?OLxe7bai7Y5-Z`nlNpyI?k;9!dG98C(a6 zS1IedMO`HOIG`vqYC0ulF8tD#wQ%f=%!RYeUUz^;e7-cNI>WynG_`huPeJT>#~XRN z;T@Z98Jsx^WLVA1J5vc-UC))Z+8IJ>238m7msxYySL<*E@JHYg{)#^_pJ!#-I!~>p zrse@_%*Utnj&3CI`13ekDDU3{3gXu0e21Y>+0Rb&T)9#QO4lUy3_J|H=bxTs_#~|w z$$uiPOAko2wf`J#w5}%a#7j0}>mq;*o8efh0P#s(L~`^cp)2~e_eTW0igm4wF4(F9 zJ$r2L@$#4o8_OqDoR<&u(1PycU2IZO+r$ilJn1Y#GE+0vmd)Uv?JG)d*$}#7lK3W0RIHn#rmu z#u_c?JuRho!f(w7$@|y+`lx8d)-_IomI4)?Y_I;J4GEt&l{iBg>fEuK>{K?t{I>C< z7AuhIIV88Q0?TAJu{mQLcz<}L0(C#)8Vp#Ef>Df)6fK<4<^iZqT*$H`nAd5`uRknE zzL>^H@g6r=Nfs2E_>U$YB`}&evQVVj*cxJjzta%X5roa*qE_na3r8FKag(6C!VZY4 zX^XTV4V)UbXfzGXNM>+4YKQ>nT;k0j{8qvNP7h2XqJbt7^WtbA)tbglh@lXwI22#V zaZ#DwXW&KzAg;(GiL};ge$m#Gt&`7!KMuSZ@i-7e8E9qkrFIQB^qYj2&lC?W-BE5d zv?8RMgO=K#txaYp02T@;Un$zbpfeiPxcsk10n0PJZAJ=0S2ln~3?>yR&G~+S@&0fZ z2owU2QTDuYv$6if(Q>;_i91RVVGOW+WEcYilO;ge+skvn4b_|)-*pDP3$ypRs_Lx{ zwuzP6<53Wk7^cl3vdcF9Te8eF@Zgvccfq`x?KRwQ>1s{%6kE~!F%m7O$i`?RHx9~k zcD5~3YKcVekm$6*I(!tO^F~-H0QQfHgL)PC!VyXSC@1DnE-}pXKQZS2z2^i12euP7 zzAUZz&jdi3q8zWW3H*5y<`OlbG#sp1WVgYH;Bm8c4neN)GHrQQgJ_^`3)%?C)Hh-) z+DK3UYuqWvL#bnnDF9EhsgNA z41aZ64zF2N7yIm}bu~J@sF%uZ?0JSs2)b!#39O!z&BMO=so|5hY*lF}M8%VC#TX!N zngGZ*=K~cp99_g?RCg}IXyMxUFFWW;B~sfuYcZ?Z@hqctA=i%#_*&Se6Zr)ArfdJA z$1}22``Ach98fki7CXzRWh6&59!I=EZlTY6dLW)xbMvE?H0^^927>cPCZPeW_R>Y5 zMbPLl1zl$@A(z+{(9kwEqBzs!#E+WSWUBq$cR9y$B}ab`S08hV zbEUvdtPzvRUnNh?q`Iyo2U~lZZ%efBN8C08uTD4Z2qIW9t1UN!ZDzJFL_Ax{r=r($ z^@T5_sCzyfE`++}X|W&*$)c-hb6`~jM&WgFxMsO3lJ7*jk*o;lS7YR)<}v=xGpACn z{%c^M5|a4{w%hJ){6hMvK?(xUzuH>#OGW{ue##o_j890-Re_-GKE74&5`lm%@dO?f z2bM>b?%2A9y;66+5w5Ay9P_&E?s0i%{?wvXJ4G%+ ze-p441q28KQ4T=Y<-tA+MDO>+o0yRQQP)=*tvz(v!L@nc(eRw^`~$(h3yi1uiV%2Y zP~j83gv9p-+QzK}ZKU|M@;slO)Tlf|&cykqDhD5EbwTz;KXq#|c)Azxi&qIdiJ>11 zSZh6yrdA!Dyft*+_u(G5$M^%QZMDehZrV6W1BmhCvN6nHpi`}A{sPdSOJCdgvG8cx zkNn#|AHQz1(vt(Sd4BjEtb`nqVtLGW@d8QwEJz%nSQ7C8*>d7tL;`XF zfKcHtbs1#?>Ul7y*Rlu_o$iQ%%`3+y-DY|b3Hn24Dn2Px+O_oW<32`*PmrY1KZ}yU z0n>%xT;M(kGAUtw;Tu@@A@%UX_q&aJE3HKX)9+8d+_4>LBcPJ0qy8!4FMqEkjN>~y zX1dC`MevmYo@*oDB(oEIf_S)3Dn{{p$1nOj@Y_NaENKcAq-pa<*<2D%rJ4s1gThJp zkp_2bZ4c~oL9DQJs=UdaYo0~{W2I-UeB)N63F+q~hvMC9O?)lC5?JNKVC;rk~KgVQ&s4o})a_RmSaMEFU zb5r#0kB6Ifnssfq)>%3Ad;`6}#*H31+2ga}YzLLxin8I}nK30`C~PD1uo>?aPQBis}X}Ug>DURT8pGQ;-vWz0Fe)71^4Z1 z&xP4kXldfY2gtWh>hAf4e?JExf5Lw-7ypFcA-SJWiOas`zcK?8Q5l=|V%t}SS@^*a z;+wTXd8^PQ!4s*oe@Knk5FktTWb?Ft4g07_%0u~Y6K@A=Ta&nM!F>DB1tu1j*5#uZ z$2n#3Kh*}u4D2S7QJ~O(QD*N6$*%nPATyn=-Raf9HnTT^YkYL8FpGJ3al_=42>==F zUG@=LtW#uNpS$-DWRMsx|NlY;PXgr_`iwKX-VaKZRrlPrHeG@4+|=fC`2~3f0FTfd zfLFxWUnSPFb~rEe<|unC_r!2tI)8LCCD4CvM)D1-WwO~kT(#K=T-0`n(XHAOgc1%# z7%V>4?OA*$v(OKJ*AG^_Jo{2fq^v=$p#DQiVxvt5Zv2e(2CZ|;*(Woy#U;~}M;#{tKwV1| z6bl(gHi({`fYt*N_<$KP2{#&EE_^&%@nV1NcO#B4cMK zCx{3mxC2cGr`+tCYb)fGC@DlN08n{!Osc3GCN0&o)Uv)*N$wN=_cfE7>~IPA(37YPhC} zudB_o7e%hl-5y+eb_6Z=SNruoX?OL>?&sFQpXX6wE>^BPv?E0-1D#euw(oD2G?O%+ z!lYR9F#r2<@h-ho@w~3nu??-p{Rs-Pcy^#tvg=ty@;8s%Xi}lcoA3z*^m;8+v1S*K zh)>^P2M`G)5d&c?q=QKVDVZY#sI)6X1zoY1g<@byYa5#W@K)Q^gqyZ^*(Pc>8s3E< zoqMlTwBHRS0&n?4H5NOFTPaZYEm@(lRP6Fgb2^;=21gvv5b3HxcoX zNY4!eNa*~W0kdIFS{$MeneX<++!Z+18|{tf>4_V=q7?O>(2&IhU@|FEk83yff1do2 zD3~=5Sk@*>BN){9!c*$#fPF(^fe;H|)3kgy>y9=x$++rN%N~14jHx+&kHCwO$|I}a z6*c>$c#BO@W#GU9!zy6NZ?9EUs%ug*M~3m+#Aol+dFZh`mvb?#V%6dy+EK}za@#b8 zI1OC+b891*#3#Pft%*Rld-7jOxnqR~#I62y7msFh?C4IoNMXb``JTVByZd4%F>h)f zHXP$!4qFusdtz8jHw*l6eE*~5r&2w4`a%}f_B5MJhvn`YyOQmvu}hB_PXi4_{+L(s zdALunFD5$ta6vGU+ceb871y?6)*sPo+x8g!pON!}B#dl~kCvi;?!?!-A7+to`}PUZ zAE#b@k?MKhXZ@JRP<^J;B@QRvo34*Z4S{#uutD5 zbc3M&ZzUgs3{ZMNlZjVB!OXA!e!1nOmPZ1=(Oyj^1`8|QI&*T(#%Y(C<80kt(~Wn` zPTg?LD~THr_d$&`O>2XUOdb_n$f7AQFYS+aRVW>+$Mx=f(vKT;Z<$YCq&ylz9c#?J zd4l8eA3>|17q#AxseTfytB*-VZ_@a5zID93^g+C0HK7^kD(LeV{0zsX@+RN;SItM_ zA>v{;_{|M)&FeI`=$aFlwGHC$ACA%8)qm`xHVPak(+xGt?x;uX^#rd0+~hL(v{%^0 zK=6xu+_JL6Hxc54Bv6+T`P4;GibLd3+6ZTwV+$hgamPu~niEgAsv5O%n%4Ug#m%ikXa(fxMaX-5?TC3o2!8TIq;u(;wMX|T ziq{8OR0b9!+WwYYJE=0ivUP6g_~Yo)pQ_%=v|TLDoOLks+18>fFtaLG1D#?=(qOF@ zyFXRLaq`k=Il(nnzEbff#sSfsMrq|o;T&oh`2oyH{kZ5M>#M(*@a4-Hj}x6$O8E}k#|{P>tl_dwSTC$*%5YPY`Gbnx69 z^?}OHI}I_J2Hy$MZ^l}_gQ)i2PfAyaLp`!B2|uGu=AyREo$mAdJhr$l>W{U;}6g|)nD#fzi(dCVR)Q(%j5(7I&t7n=f_)4duQ*E2XH4p+b{HH zCN6%#B@w>OoW8xL16N*?Ba%w2Kmg18-0N?%@Q*mU0*^VF1WSo3Z2YAhKOSC}+sa?{ zLf$WV?O)8hbR%qR&ZuGOGFo_yrm(QZ&0f-FWM%9}2Iqy$N(h<;Y|)tABRxI#ffpIT z{EGnCb-V;t6F9^pHfinT#psdy9yg_$E&>pFA|b1@(A{ohv-n-k#UZ_Oi7Zh}-~JXy z+Em7L(OhqO?_SsYLY(s0H_&*nWN?`>aq&rpHn>4?Gv;34Z#-N4{o6qAH0CiJTkY+8 zPdzptB0pX3JTeH zCfR!s6L*&R@Y(LmzLqz4S ze`47d7}~iQYZ}GSC;*1YHAa7U`n>4kqZ5Ck1`Yva z9RVWM2=~m;77aF34RYrEOr-@5zbq?KtyT8Kss_Sw^GgCVKfHjW@ZEF-Z$K`pK418B zK~?O!;~dolqUwA{5?jKD*{jU&$o8{Qc^D*qzh{r1y>KPk>5Z?V#H?Dn68D+kb!^1a zWTgLbbd`0De{wEW2i>?NegPWjlxu7cvQ+%C=v9;@AewV!$xHwa7bZ5a9h~Kri2{AN z0S=JH>3F>XU0%J&WFGeAym+|Bh2jYWB9$ zzHnK61IeycHd6ldr=IBwy6OSmLjSK?$zI5u^mxpYQ|7sY2f<=bMM9LJ@qIpU{q@bR zxa)W0k-~NOrmz=*KpzsVkDh`zqP4cOho0KcGWBvzhknSJnVaRdq>0jf0|TSBo4eN& zn49r^;WLwVs!oLmDv6Ue2H#f`fKOu*0B`U*Tv%B+?YLB+EKsFjeMLk>V{rTW;KR35 z7Pq-eKX_0NU7Zs=D~t{36k`Cd_VC<#>1NXc;cbj*OX616(1#HXna$@yH#p6*#_lLrCBnRwq+G7n38$zgTizZ$Cj`&q^G$p|DTatR3;`u>$p^--IGB+}wt`kf& zz>cc2sY_(lac>TpqVO?u-7&mz*^T+k7hZ8I$zox2^eu84oukdjJyu>@&2QG1dcZat zi~owQQS}8v1{^5iXvNb}#km}57+7CZZb~ZFoNz*{9J)`O3ECD|F3oda5mpU1ta;C^ z`)VS+IRDJI+Mulr)vb>fwRf*woAV2=arw(G${qn7>1a6Po%qSLHmq--RD}S|M=Tfw z(TY5lRRz@We{vnJ-*aClwyg)iD=wF9 zslN(#9O%9mlNA-$GI(oOsmY0vW65J%#%Wixso0q17@HXYIZ(s#m^r#m zOS{(8<8BI}(nj5ut6M3%58bIjg10q9z9D)qDROQXQck`YYWz0vN+{^tbq_kb0zYQ> zlDrbROYuai$NaA}9XjRMMx@wrICxo<;Y8N2YoAPKmy_&PcGEnTwKmU2Kl@g>7{I`I zI(7`6u!x>(%T1Cmcsje_`4sbA2hjPRQ+4=frsOhgs* zc(WzU(xiX+^Vt3%|4JD9V>_F``}2;WELVeXh2KTNHm-e<{Kj>cFcUFWw=;PLmK^MY zY_}4>$e#ve8*HD!qfkfD=3j#RR#QL2=Va>bw&5THQ`pZXs2K^!X3JYH` z9%~_R2J4A%YaDaIob`*0QML`}dd};+F1yUS-*1L*^F(E+|5Ok0-gsax7Werf^V>-H zqr-cySuuO#Z&(~dUmH4U9EZd4W8DP4>AM!SCN_aQ>Zw@*aEEy>-!rp_g-Li*fiLIM z_0!1$DklK!n1AtsN`^Snb8OUaJW4f4OYf7DJqK!Zpv~M?nIm9PMDJ0bk3rzen-4fJ z?PXeI&E3YRPtUH_MsjfK@;v=>R^%YK)IrEEW-o{3z13gQkD=lpZ>x*k(%z?`0MS3F zupTB?>=4bdM7&)uQGUJBBu?oTbOVvY1V`WDUQSvZgM8% zMJMz~zfO#J@UAtWMmnH670es7EW_93q z#$U=;0iTw$@?YMk9b;jO6llB1W612==VSHT>Qn0NL88D+$w`AmImKrpKO+uD?RFn5 zxwmqeO8@|j!FOKu0xB_vKZ=H4Hv9pUYEcnzwexXM2;zMwJy7> zC-3MwwIA!cLb@#C^GN?^t7Rj8vg+GCVr}~tqwE3f2baL8xP6vE(1Psd%8=AEpnE3s z5NGZ!#w@;dZTqXu&+AdaySiU^M}(_?PXPf9b|(jm{ zxO#cZ9DoLf6ab_91YP_^r$3Cv(n(Z_oe+%2*;p2RPAa3SgNC5%1`;t_9q8b`jL?(Pk zPicC?x4pxbOm2khe26(y!EkeC#OjxJYfJTe-qWoy@2|w)j^qjaE~$G1`J~2GJlhxO z1wERzEU8=Ao3G5_9?|pOcY!gjW~fOZyX2kKn}Y0CCX{cL zFQx$l{-I>Z-!~tqHgY$HeIL%amK7JMN4%+0d<|yFBFyxs<-87y)uHaktNbFt5+YZb z{GCi35wM3`Q$9me-SlDB?~ewq-4!>r>+yGG1{&Ma?IM`e)>_{mAon{GZ$=&a`<+4e z>Mft&w(ngjpQ6dvYvp*|eo+3@Qi|how^)~NpuH2-+< zsrqhDTE>VSH$blJVz&@gb||vOncGkQ%}|W(B9|6j_$+oYE2uKd=uTE}sa`jScv) z!fMV~!rZ?In02f=8(#ssqGei(iTPJ6Mu0q7XpI#WaOlxFz36tnMadzKPJ z58X{zT7Gp=|L?}q<-n}bJr-{>}2pI^GmH&q50t+!wL<=x45>qgnfnhH$$7_Z(^HROJ}45 zA9{=%-N*|uhVF|&Od~~pu*bi-wK9I5N=ouSt`YD|BOs|}bUO9r?&{l>hqc70xDo=7 z;^SYp!hc=geK)K6TRwapzR=?u^|}mbWa4{63U&45&IA0kM5Bn^)$eqDNy+`C^HoD* zm>SO<;QDqhGB0|VjzXp;JH0-frcI6Rj@?``=`|i;&Ybe=rLK#uon`<1ZPK2)f00<) zNSQhDQ=GH)^Ix@J+uN$2Pkl`Bu~W+l7(ey=zVpc@xA82X5dGh`c^Uxx!b#s+)$d$a z3YB>^e#G~@VExK~e=qI912ekWqF~P>D;eOkdVl<7g1ZZ-EJfBb$1k%P@p6by$8|Jvlyw$~y+CjVklOe}DQVXx{#?>h6Ob%x==v<>n-U zVYRSI%7^!vJ|hR_lvVZ>m$^9z6%9Io2bpL z0HxTpy;5t3nCh6(*P&}rbwxc~$Q>>(fevryYc8{Y=5PQpUvGVr^X^z{%(hkB+k2c@ z7dc$!69SH|IaR>Cpe7hV?Q{Lwncbz%?G9gD8O3-!(G4lM$G$I|C)6SK8$^5$beMm` zIVSh9ff#^d`m{n%js8eR9`QV90+8g}^e3|A!Cjo)_7C>ZGZOJg&7|?f0fmm0^7wJ1 z{(Q^gd5^XW@4B9Vo9i0RD~7P)U=klAu?&Sw_+~>Uf7y7Y7d4$c72ZW4EI=r2t#)l9 z3&`q30;Lc_l&8K6>b<7De+5ewMQ=a-`<*F#<)Z4E^Witgl?TH3mhKG{flg4(( zABsTp4k0N+`$d69-;PvxQweSN@oGd`KPOe;A<#1AMlO{@cD19KC{31QX(w-Ld4E{_ zBDoHgHCB{33HZPA!uK5X$4+>-jpzF0XHiod6ht3{HLLp7f#PGFuw;-2yc$YpeBl-mB-;o~z#X$;UD>4C*=cO+TNkhONj?@Eid(0?xtp-DlAl=N zv)a+r25!qzxyJo(o-5W^TO&R0ys>pAFuBhfVI$FmU_8`I=0$JLVoh=mP$Yk+XDNg8 z*p=DR{%5^Q!;Qqdxa_~{Vk@0}n{`Yhbpu3Y(cbHym{DVtL#dUji%ENv)34_eN(#lw?Y$+K@m3O_O{ZlX+bYLNM6+OHR!gE*q=kSo`b3quDeq+_&6DS zZqEG=8{J}E$4dR*0;U)#xk+Ex5XzMT`o_35HF zbpOLlitMcUsr9rmMi`R{WYPu@}mu(>cC4%K%D$v8)O1j!kH{k9cgp7OG zDcHUbeNrJ|uQ(&W(NM&5n6coYPz8Zi1<}m12jNNG>C*T(8G(La^q+XyZChR^N*XtE z!Z5@iA^}^W@AE9WA#wd%*YxwAtkBfK0|l2Ip2o1;X886S z1aumBekIm7s+$qsN!GVKy|4||`h7Am@Vy!fX~lN*zwz~H49K3!L0zuOTqYeLh$UgBH{xA_{<7K~^r zH*Sr8^9cIxF~^s;L2oP`-e29=>jIh({IBj|k9=Egq2Nn?NQ#A()^gVM&nrNOXQCaK zZ|A5__y;bH*L!>42(j7C+rviYA5B{*6U1pv+POIi)U0HNmSFF-0tSGK-56@$na^`K zc@nGjD=&zCWo7@$K*G7C*+-@-C0@-a%u5ZNgR)sd+lEs`Q}aF_x+vG(AJ7LX?oK!` zvS>CdF)U{s-iAUDV%E)CVm4BFqIF`Jz#srFe07D{Uzb#T|;f7biFrEydlfxVuAXp|}Fw_N!=B@so%Iqr3w_Ew^KgMmPXiKyUt| zYIzBIlJOIdSb-SLgZ^C^dR~HJ%^2f9n%C%gr1#2-%IoS!AGv2Yva%5p8-Xm3hsptZ zj&r$?N6WAy{%;i~wY4RPi-;Yj?a*XXj3>oekd_yovylow&&5pbP}bu`ic7fgB&f^S zVj>^Bcne9>e^2E?l87d;Ag@s$6*qmgWVqqBygVFf1&Y;JaAK6rdV8p4-j$kEf25-* zHQUinvw6?1zJ;_!Hcmz%3|0jYSSXI-3A*U~Nvb-pPfS`u^|!}LtaKufevn_efMDJ^ zKnGhDL7SAIA#VxH9~ijCUBD(Z17MHuZWU= z7^d2evXW7Q(ubU7@`s`d`_Ph*Q3r z=}8%XZ4Ja3M7W&J6Q-jA$Bhs6H8C9!j>5Q=&hJ4JZ9Z2g(zNPNvapRQAz2c_W`{JB z4+>#Zr^j5w->JYy4WRzQAz%oqZwTr5Uqb$*vD1M01Xfb@XnF;E_n_5r(EPx>kUixy zW;DYnZ|II7k;gWWG3ia}Nnsf$ag=s@iTnPV>l3F0ZfqriLs|kLpC}D_1~Yljh1B`( zzs|^b)l8+-%9Bp-(;$S8lq;x|{=V?YwG(N9Zx{yZ-rx>;Je55W(8hPV*-U1kQW?fYUsuhK>IoiRLMG*p6m z`cWn?m|RsXh0svbbF^}2gA)|%g>@jcOlVMV88_xz$ou&df3ZK1*CV(K{?tJWuR3 z$voffp)7oRvNv!aJ9i(G1vSPWwLx3VBR_=Lp@$rI-<5Xdj?zh|*zylP+4|7+$u(ER zxh5lrINcCE?dfk$wEv@IR#73U&RS;CF_fc1W-T#k;v_QX8=H{0lzsm1ww+FQbYz08wpV>#(y5w?r|cbi=VLPQ2CcArioeNY(~fxYgGNu;aY^U67(6Bn~g?pR{C)( z(fjTXh`~0t5jTyJmC1QEpz>xH7Ol4kga+T#(Q@bIOW>#a_8J{Svb?xayqZsD1e=&| zXBfq=Lb{qgkHlZ9!vunM0gWpujWz_*VX?9XE!Rzi#>}z6`$JhiT zoK_h#n?+wFBs+~DF!@3nv`Y;;Q{%fP`juwIz=Q`G-hTKYA)+t$`(bAApE0QJ&|djF zrEBEaB@tE9u%L}WC9=kY$GvtgI6=#9gPRD&n|#TSNtDE$Q}S<+W=6YdD+7Gxfc!%6)YRJCaF2r>_hBOcIi(Q$!oG5l!Amqc`8JDWJ&qpQX17 z=bI(Mt6`L(@M^wu8H0Xoia+6$Zc*tiOT9InPCv@bXB%V*&4Y>h;V%-z1+?|#71?0x zy*_AD0i!e2U~L0c+9&EATWc`1u$B4!WON;5XV=GW&`lQCH-wH_bmX^rxpXc8i7X9GCuO2B zrg_hoxa_@GV*WiFEdG#>sR+b`CzLFBJ`@th+9G1u61blAPTsf?d*rSXz%hfElIqf5Hf4!k2SQ<9% zZcWqDu|@#|oQ*MKlU!#x_Gk^3rbc^bp^r*&SVn7GH2_HrtoOM8cEpJzf9Z?8BQ}z} z4E&F8VR}?;X#PrruYs^pB2V<#Ve`dr@yUf}Kqj0TjFZSO*?< zbB*Z-Hl!kcXW@Y*GEDYGvtI1mzCU%Y9;16B!b^bpYgpWN)&&@Tgjq_+4jjMHqPwc=G$yBPU3QOcfMmx@zf(X?3 zyac2?=%j8GsVBTobMN5_U6XEMyxRn9kAQPI934RYx3&+lWd^%pI=XBD#OnU!3~@?l zt$v0Z7s?8qk*Abr*tq;b*d*j?HGZ#KCEnu{x&zM5Q@#+fOPj&a%*~V#S%X6X$n*9P zuNMM}A9P86!gc+`5k~?1^pj4J^qbDo>{wgzp2cdIw{wlwN(AQq$N2p2Zt5TJpp22b z>7}OVgxD0lm;>U(&(AEdoA(f~mNuG`Zlc3)juamxBbYNIg!GO+rfF}|2)kjhLQ%(IqUr*nQ_4!T3H#^C`SALQJ$Ct_ypvgMjQ-OSiU!1 zl|-?n5)t;i?FC2l5=v(#HF{VR@z4*E(rn!H{mB!xI5*0=BT^mE zn6^enDfxW`(xfTG`<+mn|&(+equ!W5b$+P`i|3tJN_SJ!gXs+GF-g5$HI6m$!(T> ztqKiGGZ4?TB`pqM z2>tek_>3qxj7px2yjGE(c`1BAqF%oL_3+haUj5Sl)hdm^MUwR^xK@10@(?PpUzs4t z68yy9q`^!GM^YUN6fCBK3}w9w5v)k~w(q2x>fSK+hnWJXjCW*kE^Q2M zP2+G;s(W+%g?n*#h&0Io8CfDF@ul}s8Mo{S@BeD4M&PE%B$?u)D!M?1Z5O7fR`-En)iU%=ISHdkvZ&PEa55hu%@fRs;m#jc5ZS zeG4nJQN>Wd9U_QL29SMfTz)KRSA;e~8 z*0st>c8z@AI+lGfMNM1{+v}0?7(Jp<-h0+hSX6Z2cG=jp=L?;nEk53N;vey8b3dxq z{=YlGO4Lum7FVLGLv3Y8wO>VTF^l}mJEx74A24D5*^(oAFKude27Chy8xO(qsu=1; z8ZU6(?&@Dg>R%T9e%}o#rsPi(=XDpA6M4+O^hYX5^7>7o(&ssBQXmz&>B>Lj3J?9)Ke7B?UH`j0evf%6g)zBR$v8adF>hcoXb`YB+5NsT z1f$jvpHn83r_UaBx2zXeXVZg^h0*EZ;?nqCVD9-Ou~q8Q^_^`AxHLy8u!r9Ba1c>~ zwu?=#__*Hw4Sh_kKn&*GJ?Ym_THK4uQMQtxxYI}Juo!M84Ih*lpHl&K)R#8lC0$BF z4`Mi8)6lx0pyx}17T9#M2b0Z0$S$>rl#9mxhk8^OPe`nc`ZG?Rz)HcUx>|~yiJ58i zH_LTZX#fRyg&9Z7CmgLBw>0rJz~x2A$QpaMU&LpJy+1cPjOGMP0Tl13DO$uO0EPqd zWu`uaIk}#0k1?!rwcBq2%2R=cjxWV&H5PA?Y|uk@)lkJ}0z(54Ec$2ijl1`qP%OxI z8(NlD@PqXV_g?0P7tSik*yzZy5T>{zXMND(KAs7x-nIz|M9@6s?!GOC-r9p#5eLrGvHVr+qLz!NJm zSCNizGjNt@K!r{k&>O(xY=Dx;-RMH|Cy=1sEu-}_i=0kxf(RGITwb|72W~k{j=TN(%^Ld5o76`;w;^`Sk6#H;(9-3M=-|41F@_o z-Ns!kzAvH5c6ry@GIxp(Hsd=RrV_iM=@aw!3z**~t6Q*_t8m6&rLt*&TCjr!1Xu-h z9Mv)t5*9IWtGFH>2~h@IgNEMza8Zh49IHIn=afA)LMxvyC-b0R~7Gifix*YBS`GBU;DM)_q3c1WE! zUMcxSnLxuPhEqn0xer~w7A@4Wn$#I4?EKqydAc$+d#Y2zp@MEAr@Rp!{L)JYQ<0vA zVj&fqG`UidWP%ekSL2|;f7$jYT=Zx^ZWF#>;^uTPx8bhM5YECdcu>xFY~_A*&v(ov z29wI6Yo`VTH~N`!(z8IQai7ND4$S?Ro4B9;d9O-2AXgl8AjB8LAYbJ`@Nw!+Qo<~V z0;J|a5w;)FD}-b|hAlb|l|kT=yKi4=s*Dgx)(Kw1moJkR|NkXk!65U2CQcC0o(aju}?CKT)snW*#*+IqTBC zL{ibK73O+!V86&rzX9iR!P}QZUcfMY1jeN-hOp_qI!K~BWUfz^%Rjlm>qE1PaZw;c z&SF<}7$(bU(}2E0rc75~auji@K#a)?tUP(BMDGK-)D;_&2Ip+>{vlH7P_FXAgw*WF zQJi2>w#@(@Ase=G5d$a~bkP_6h~u;tXUcBY`MIkk@uf}6-}gw`pm9gi%6 zjfvK^2JHVR+^zfr#W{)`kXEjHRZm*A)WhG4BRy9?MrX($2yl?J^5s#ymoZ{g_(qi- zpNE>-l%P#A@hiPp=ieE{H->%2p(L&avW%1rV($qDga7B`dLAWSgVAchoFAR87r>4D zjifb(F&ARqHA?V>T=-cTlFJ4v&)u0~1LadXghRV{OS3_L(&na*NC#pVt%`gZvb?F) z@)BODYoS&)E`-1kLvw}EGEeq7Z@JiVqquLq&8|vLcLaf9Dh)As4PpIE4qVr;TfSRj zzg=GU%NbAs!_bp#Sv;A_cEtNjg(s05MvuRr1Goag?<9Q0y@6Hd>ibnC%=UONL*A30 zZ7dfp0QvdGY2PZ_UYANSucp}K3=6ysqkRqj!W8-Sh2(dg9tjI#eG%2`G#%V)imgZ|knqqgwL^-;Z3vO?QL72ytBW*1BdR|qqfi)BX|>$1L` z{FcFPrQk9}^jd(}^L)QGv@BgbV>ahIdz!6?!DwrqF6XCCg2^JXLr-zqb~nQqt9#nM z<8;LrB9axxImhMhf`t)?=g@B7r-1LPtuz_K6^Y*K#1o<`3-T{qa=8+m8!z!Uu=+)* zLhfYLyjQ*WI5gdm@{~NDl-;CbN#4N}%D0&p-ZfSOL&!OF>&zOo)P2X$yWw@fj(w3O zr;lgOss)YnCMrWOzE{P!b}z~ToH7hYPW!j}A99Gks$2Y+*jY=afa zm9La>;D_D-na4AGzsF4P!YL2)(3ve|D5*6}dLp}dBU0N_?0Y?TOgHuF!$*ng=pWZV zOw`!AD_?FlS)2{n*m#>2w;Lz%V8wp_RTwZ)Yj>O!#+~aRQ0`k8saE45`nGKhKrh7= zkZN|cwxNnpQ)~3(=)H;jH_DHd^gjBM04-)1X0=nLF)xkF`-qmo8=cO1Wcnt4t3vwI zdlns?9gtYkf!Cf!=aKCi%(Nm@LPorU?yG zBo@|Ut>}-+?8=#Xhp0NlDa<43jwqRWFLXUxQHcMuG&V7cCk=a}P%|XnGV4yGca#=2 z5{{EEVxc8>F^>#M?xF~|-Ca)}VwjFHmMP4B!1b|>oC-hA;8Gm`JbPelK=ELwEJAZc zPvJ(bBdkN<;A5AVbX`6_vNNBwPsCLiV2i$9633p|hLH4IlhmeR<_lCYXk(Ri@q10GC3maK7cVwZTBz#0al6z4hZB zo;$STe!i3^rrnSk?P^%P*T)nyhWb)k9U%X2afk@XWc-8r2B&2UI?~gVySU5`G-F9B1tv9Ue<9)=?o)FVpO~K}@v1}4(7(c% zp%c7DyV;i&CC)pan`dOC`JM@z_EUm1Cg!C|2MLr4KPCtt_3ML|o$I|)BbXwc5QF3CXaFIS3=s}x@ zp5F&QI45$Sc#dm#2Z#aT^K zMB{Gs;HQNmjw+498Q70RGtAP3{M?Wn^I4!9{Arnnd&Phj%E(0~|F#D|nx~^1Z!=%$ znK=jbu4};d`AN<1fg>P|xJQD1e@BLM1-lPEN4{W&R&K0c39FYy*Fk!eD$3I6=|LhUE^`5%_+N5vD0dU^K)AzOK)7MznXRd$L0>4&{hW3 z$mtqrgTP#UMYKStCQAHVIbQc4pOWu(cs=&o|Fo>w*-Bxow+KlqL7yLu4vor6T!sl_ zOCwQAkIR!DLeL%Wqv?D4M7d%_FT(B@j%I07IAWZo`iv0i<4!jhv48~U0q#&amC-o>Glo|L(2809bc|W z#@5?iYHI2@IrrR%LduOj{~jE)Ij!)Rss1o3Z63^vmE-oYpe0|?Gf*@YLa%e%ajwR& zp{t6-ixDXl4hFcVCzB4f#!VNGJ)zFOYCPr1QP+@iTmQg@2?qWlUVMsd+Tu&&MTAz6 zJFeoUlk?rVccaXPh)`ppZ(_}^Q$l4E3*y>;V&z0EuNs5x(EyN@Kc#f&Q=eXaAuYkE zHJTSpl>!n|1TWY$28auZynSNLY4Z5TXrSl1;elixWsmSg^DB-Z8DO1zzhM!F7ITuV zoM}>0#M+Zz-e3dIoO;}KKSR;G;ECYm8N22BFqa^-cLN})@y`%qcP-=JAR*@$$c_p} z@tPJ;oRjtkdKxzFaQCqs+eXZ|@URtqM#?iUx-S^+| zrLB5h3G@Fkh*1!V7jA{|JkX&&VAH>lBD|^49+ywZdnbwVSY07nY@tzGG@cxY^ioP+ z=B<#977MF%>io>w3uiDGORdnZw6 zx*IR)VGK4H!Sq-B>br&dyU>gWeJ_z7`>WSJJ+D>1Ce>Lfk=MBu71}rM;1eIQbA&CS z8j;)n0;@I6#xR7y{@N98Hrq_LIxK7jUiQfZ!@Wa7#ciErN zU8vMB?zO&>c{qzuKq(uen~DHPh2nGS*XPMRO|g8ik=GG6Sa-JwuON;T-wPU9MnQTV z7G26aIds%lrry;Y%;Ucy7v_VKuQpRVo*Z#RDA~=Xbcf#k-1?Z`k`!Vy&VVTM#ha^SU2OHWfEu4}c3EbJ@!GEPNN&4W*6fnq}=titkU3tzr8e#oeF6YIUB#KUmiI@osRxet3zzp&M z0DbjmN}7fngO5#5{08f=P{clrZy)?d6vceo?kueMU?7;;ElUTz;g%6=G!Tzx75FVY zCmzkj6FS0M;hGeK;R`3eW8}PJo8M+44Goajid?o$ z|HFLVKFIuWWxk%Nc8lc*T+%@JtIh-BVH@#b$pQJPvHnW8OQYj@hCN_S&*Q-8h`2P< zErt#8PCK*K82=$Z?^Ie~!IwQj5|gm+m8iR00DKVbi^C%oeJ3D6ELL6Qj*c7-!jEv8 z)Mf*@etw|nynN$#&tuRPs;&Z|llSV}{kbFd!k59ztl~LoV7Jp;j)OoROo<8H%N%}O zIU4UT3E!fPD9yHW3m0XG7H^p2aTsN89(^La-YamLmEnUENhDE;@pJ^3*^&~Hz>{WIZ2sr_K+U;jh9B80%yU-}Vs6@lOFpZjC(%~@oF9^|dUkp1LZ z`#&Ra5n=}Te6!4LEE}}pp%9Jlf4K>z_uC0mN@cx0n%lg%?Nk`dpNEKU_kw0by^rVj zt4fpd1br{+I<^A9j4}9B0%Ex?Klz6UM6s8&ybk}!FEPf@O8J4m4a$|at>RocVq7nL z#si^{C5^?XBH5k(wtRSH+?8mj&sLU@V!mV5fLDzbEq*%5q0&x&d%!!q7NGS;2WhTC z0=x?O5!NifxD6bgB{^u=Y#Uo)i5Rc%D4XESHa71wscnDk^x{xQeU#lZx(0%LE0{ur zd++yD&hbIEBc6l^R-*q#~}bF{!2dh zok0vdioR!f&BKLclker00aiUyS+KYWITM`OB?3VNr^Rj;wc(KCr)6V7O~0Snb~{&C z^ikhVAPXAOw~NS{_Q&sZs>1m$L2$aZy1imld+>>Hf%;csae9ZT0Nuu#)Q+GmzZs4- zs3bwC{f$T7FyoQ!Zj|g#uZmf#SueAg+eyo%2R=~QpQ91WRe5jJffaXZWU>jqmZ6H` z3qJ!n=-V1UoOE;?DaP_97>nBon*NZJ?=aTPNCtPUeX%6L)vulWaf>DAfW+ZNEX#`< zz6YBeP??jgMBmpf1N8>R#@*o6?wkuLF$ii--cyW(>35oRjGriQq>5FsYW5l3 z5W}ty$aRyw|CdT><~KBi#gIVv<=1R6qW8RA-6!8Y$lS~|M!k#Vzdi|_PU6@ zrOl74ij5t+Lr+;umW!ZlT`vcU$fZe(y*J%PF?-SEEjwKUBPT47eji#(B;t6`|Bj6p zORdp(YAu|0YVH}y%4ymjNvL!PPjzORs*0}bbs#Xk7`2KnewdfX18nDWH^0J;AXotH zrMukm2$9L3Mz~$rzB5hX#VHXeCTThlu(9}MJ@I*FU&Lh#vf(w8_)@$?o2}cY2su4e z#JQp5GHJEvznHdG*x}_KJXxwK^t=ALmUDu$H=dcPFVyjmXW-FG-_(cvLhs}4D5-E& z4j&4Xx6`=m(W~}E$8Ie)o?N9Nm{?#23W_a@snT(dRy$?-5=7LRK|~J5Id>e>Wy#1u zMo%{Fr5BG=cDR*WIZ0f*M*ehxJnyPYd-{zg1j~5NI(JOIk#?&0lUB&61}2{1R#k^jZ(3~WWIek1fe1Shj#;-7wOM$V>a4#>fuZB|#cXY} zl&1@U=q8U?u(b&Hds+J}X4(oJolk~-T+Pm`k58U{Cs6OSo85DrQEAzd`<00|$C`WJ zZa^c2rT1oFc3fa`_g#gJSH@3tKMSFou?-jVnDJ+9Xb^+h1EuqJ-bnM06Z?}aVyrnc zKub61i%~Bbz6we!`f@z(`jsb9T&7$rDr)#_aoek#xc1^=(5CO!SlHVJvp&u@ZyIOr zj*^bAVvw;Mfl&$(NTaYTde&>lL!_-^m(i9}AV(#LkUQp4n};4pgojn-jwY#@P$Xt*>r zi+%K7s3?7;P0R7vh1&Wt;dn^IS9HnCgIm5pT%>g3=h??(M>mrcWAWUJ3^_E6wa!fu zGyYh|cTFO70AgMtNSlt-bE#PWV57QgThY>N#%|2WmofI~LQ%K9pK7Mv-a}@I#z{x> zdUdn{)*mZs6LeZ^Z_iiU zmd^~gpSFB~Uw@>RHM_kds&j0st1i*~yYmGHt%0{m>yF6yU?h$ zW6ZchrXfn7ctSNEmusX80|!Yq@4^{`X_L zm*rncB%{)oN|S(8Jroc4-j`c=7xYVyx?x9NK`_-i*Ye@ZY9qx~NO%nPl+I_Q=72^G zAckLnogXmNq(2x|`L@#NjqfBy))kpli14{^yGtp~TE>7%rh4@k8zD8Mj5x+h7EL-} zFg6$j!S#SDlKTc70(=qT8xKLFjj>g}q zcM9o!Usj0BSg<87w!wiHA89d6J+XVYg}43Iuuw#S<8>5Z-Rq1e3|cg3^4t%F*C%9*#iSn= z1YTSsVB^7vE<^$}&jSXEDGY%h>zn%T?+gy^zK=hgDMUbxUAqwd58Hu117~j!I(qjf zI2+C`83qT)DZUaLF1>j-lV>E7@tt&ytjHBf_HLSmTL`8V0;AsDFK;*5u5CxB9@q%kY^qEd6|dpI^;QK(wvotoaD= z!41LvWMX`YOWj=;5fZ;Ys12H3IEE67Y^3qV2_)6S+UIED^ouYhNElkesND@L#_9Rv z)plUe$6>5j-Y%WuPek0V4lm(Zc#9H8Q#z{es=o?a4C`cv)aCQs2ApJqHXcqH`YZbP zEYm`+Vl1}y{8(}ED6bn9cdRre`|On(REbJ!%!tEkiB>pumYS)016|hi^v-F)vD*0a zz6s!M4~el-iYG_RFh*%<=^Fh8dQn#stmO}rpJ@uoYmK51GDKww$=bIP1y8(2y|5pg z4QrMUblcY%9VQ|74E^_0cof`5k#PwB9ohIyuKtrBHD6XOV>${#;QPSNvv9orE_={x z;kfL&&k4(%Z>Ggos;3v12a?N|DFjF(;2xDLgwWOvQ}Rr0MStsZ>9+niq-lI)3t#dKuzpEUY5IZz#?*Vo3EuS`(UY9R z$P(QwkVye=lwLT*gdXAowz(MW<-n~k7&Og7SkI70lw&!uecB+Q6d;QG^~(f18g1KU zR@FM6gc<Upy=Hqd)jLGu8= z;$Vw6`Vqir*%wrs`tH+P=N8M=VgLCUf3{i06p8U0pBNG=O?rBdy~_DR5-#-ELdk-n_Z9e#lS9sNf~areW(FUCSeN$% zy?b_ktHW*Ep`8874U(_Xf+5NvQs3DqRlNpHO0P03+{Xbo;XYJ(L~q^A?Qrz8RW5;G zvtMcZEqW{kecsEGQiAr>JcjbJGt{291Jr!k!XESQg0fy7RaU+v(`JMo{f5o5# z>dm(qcI$sy|HTs$SKqhR7snicX}O&W{`&q2mb^QHp3lB3d#>1vw)Nl?(B5>(d768H zidBHg`vi2K&_B|iMRXJL+%rG^+k^~-?{J|M_N(S$?%hxRg&{C=hw-+s9}00VALx1! z0;{L*0~N;TwwgLV6Dy=wq@ z1i4U^xX5Yxu-CEr2R&Ye-2%q7Q&L%XkhyH1w<0f&aER0>>4k3m@rgAA6D3#>8*LF> zz*RtX79vFpl@U9#UUg;Y-o0K-EVAp$epCOVFJIn{5jOC=@*;V>D{%HwwY_ackGH`b z8oYBV>geeGwNh8*=!Y8G6T}rB$pIlQ>FNRNOB_Gi&^1s_DRlU6cbcVeVSanh?Jpwn z(KA+?dWX%xQtH`mI&W!iu0LqZvy0(2z*j@`xktw8C;shg=BM}bg>0$?QZ_#!1h&(8 z(hl>?@XSbc>YvcNJ1OL0&95NrihYcy+kB5rRg>qi9Q(cNwNg*c8^H38*|?dF1N-S` z{QEZEoDV!TuUHZbiGIgPa;^(!^EAzmU1CEC2O}QwE?}_FB;BlYidbNOG?@>oS?>_w z$UflH_l4mb8sQ|Xxi|BpMqd=k?hJ$fr3bJu<4cbnq z{=9Ez$3}jCOy3?cB&F)>f}H+c|;A#87p zfEU4R%I7*6e5}0z8I6@~9nnJh$=80G&cswR#UU;ADOqawS81}$i9HIoU&F%6M-E^F+ zD=2`r`Zsv)Uy~ybKwCjKQ%K5Q%pq>F>@#fMW)jTnj)Ww0T||7x;`VELt~gMi7J5P8EzL({XR3WjnG0Bdt?9Eo|)B*Qqg5l>ku) z=F9s}t62kn$#(Vt1nEUj0b$_ntMETrDg%?AU?+=YD^RDP#bxF~*g4U}u2=ZLGdlQq z_N+zg|6Rp)7)9&5jXzrC!d@q zod!J)-G=W{h?gce1js)cREfY?2_X%DL5b08r(X5BueOA5{fLkcNI`7tk6glXm4T1c z8=l0$h8&XV68Mm%i$}D+5jehZfslH>>Wbwk@W6Cd(&5dS zKW(t>$9(>sh^IwyNL_g#>^oT5@=gR2Q4b**2J^vBqdqx)7g)-$@v6iw;dEP92D1BZ zjlWsC;wuod-2KXy58FWlOb6PU0fC6`EGqQDXHBMGw*2F{+XrKEv5=@^ZOb%#YzCMF zK=%^K@ft+I+OZmMnUPvpUyo1b=-3QdugG7`K_un8IVbJq^)QrrHvzr^k$;Ox5 zP8gZ|#m9xCYFj;vNNZ!8NE;VC2C}krGn9Z7AWyJ-SE}rKg1q-yw75iFX==#Kab)rc zr))gp+e+WIWD)Q(|Hi_0|MMVLO8LwJTQ47vrD2EwL7yAJ_lLZ_;NhDY#KdqEo|8*k1Yy9CZLZ6gLpon%YlCbOr5}GW zq20n$6lsMmhhY%_8EjMEZ#9%NZ1nyx%b=3tckZmGANq_U$EcTUm^C&DM9tAPHUS!2 zc%n~P{dS|~Z(hM4j$ZVh(ZX&k9Xp<)`(wps0W%wlEAPfjoo_t@+8P48@*)c(xmDzzO&ocSzS2Jy#%JHp7WTE z>sNdZuMs?p_}$Jok=4({(qw0JRMAmwjjQfUDznPmlk?@Nd@}^2Kod95kWv(enl^nT zQ}g^bkuG|5SZrunO_BeZG|3K41F0*!T``S8fX%(8mH<-V9gc>OTeHCPC;%HC@~qa& z8|;8=D+h1_QsR9?WaEgWFLQR zyLDxo=yR+D0>pMO9=|awNO(=E3JykUcCMtb`hGL0v48PQ`K`BrOM#+`v0kIR$|dw= zB3JRT6k|;wMEAL59GOJ_WmhSENv*E~i{xeFqvd!qoKY zfP?jO!sJKDwid?%= zJy**Ay6kr<65TqnE6n$uk%pR0){|-kjios(tTlcT!UIxUr_k)e7Za950?o1leUtjc-uC$yE3=E`GXeA<9vGI$s)v7?e#k`}BCk3}CnP+h-QpflE*bag|?o_H;LvHv;`S_KM-n`TPD&*nfl(XEXDPq*<4YmgH^rx9C zReVCQ=mQObUy|G<#v97g_0~$JpI!o26JBg|2}Mr3WnYmk^?Gf#U?wt5&iCSgH~6>8 z-BzGmkilTuZ|w@&V8~nyeZZ=a)WQ0Cg?fJX&9o%w%iremT-WYnSDu-1>T6!cAW zP`;r?W3A}R?{U!9z)&2EP>lo4uMwgGV*I-m@EM5BZqc>xWkJ_~h_7#u86IE@dq(D6 zCAPOY3aeUlesXkvl0asf8P+Mww{;0H8ORlCmzOY^{;xfy?aK%J)*CujKF}_6k36uh zrUtK&#<}lynG?pz&Km^6O9o!WBOBEy#C4Gqbn}bkNmc2U9R0ZLN&7vrLiTKak?spN zHQh@RKUk&g2d`!e+Fi3`N{AHp{Qa`-w!W~iB0TNUc2#IA6@2n7J)gd`#SHhjhe!YW z`iJE;D*oAN->kvN_|&uL{)ZM%#wQvnOH|q~5@+5*!Edq8Z&Cb?GS_i zL;43X5&KFs2B>%60l`H{a-AstE-yjXgkzMc%^AqV;F#Tv9b_zh!5^b zW&~zL-J4Ph{q*uB?K^F(0V)TRgnYedh;zEIy2u=k;Yp^w&nKLm{1yCb0FH7jTP} zJy4b4NoJvO&pwG1X;FMd-(|;bm*ma1Z@$dcyMd`yjYAYVq))oX&~Nv{!sDCyd^-1k zxgg=g1vIJ;^=4X#>!!At%Zl*^4#Ayrh7thF#y zrs*mM%K{Iv5pClmdeR54?8ogT+Bt|24i)ABXNSD)dk$gnA7*aQUrk`+zHl{t?XE{Mrva^Nk0tj4*GFJJQh6{U7 zS=E%!cp(dkqB0Qh$Ys!>WSww&EjNdu%gCpXh1(`y_F%ONM*RO&{^B${8PeELyq$dg z0VUZ^s_{x3MJBK)nX|?`{EJD@stT%zq~y4dPvUqbrHeXqxMe2!5Ov~nS< z0g7yjgn{ys2On~y?5iNX;=4Mh4U4=!j7=4TFV^VEWfYI=@I zH6{;7!eg9Hw6(HUw&aruNh@!nc8@(OLnbIKTU;#fXjefm;87S-vYL?k+FP#D8?>OH zV>6`&{vGEpvh*@=yVWOy0Pj7+E2hkQ-8aGwJ~d`3;aBhJXCf_AY8icA+2_dggJ)0y zU!+WWB*sCYDv6)`)T(v^upJgETNWCc=?2dAXHneYz2o8P-hSbT-lIp4-fN zVDv6}5DbYD6D7)-`+k1seb4hg@A=1PX6;$m+SXqCTG#h`m4!?pbT`hp_}EeZ{o>S4 z0;*)*>6tCXl7-E2*AJ7^h`e{XK=*Wh-8}A2+Ft&S^x`oWnFF>wFy17@vNWQZB!QUp zM0+1df9(&tF}exAQUk&?n=XJ7>lXrQIRAXyY_cRp(^p}MOuMt!5 zo3`sZIifwLhw^_#u3dRbyXoBi`u>cMS(Iy(zd3QOhXC`0`y9J2l=<0ZeI=PLdav2s z-~GG@uknv|y^N_Lm&pq?;i{!$xbATF%2H_|_-B3+ZXsETX74`={{0?U0;Elpt5tWy zNbbI`3;TOGA^Y>0^B!kRB6B^>(2S?0 zEf}aX8_rbNbEnc-d+;Yf%;oRHy;hZA;IAp7P5PeVubT}k`?(nEA5!rkM)@N0;5;>j zc<=QXt?Z2ambZUI3)YgItn@i)egD>Z^V=7E6wJxZjOP5Nnj zkM8@xi@uPs@{#SfzUZ83*|e1-V*GB3maQyj9kn2fs!Xf$G4ta_f^Wm-omGkJRRhs* z+6woaRRhL!N=|M%l09LT4Z0IB_>27n@h{Img`K?`8jj%)ZiV=9SOsb1-u4e;J zPAux3B<{rx-CecrB=BeYp0&jumC{RSFQ2L}1-mbu^4=Nr`#>7|Yv{-#CmmRB9d0*F z7HD56AHULGS0HLUdfwj2NR~h@aU-V9GcKx%inc@|BzCHv9D+oc-^873J|#b7SqzW~ui!@Y zrw~!QI7g`H^^wY#nn<&Bla`NHZHuk{KoIMshN0Xp5B@rb-SVy8@<4hi3*K+WDsJ#! zb6r~&;D-I>%gfvZ>MoX!aVVvnC1VZ73JrV3<+3laMi@5*1cUV`{8l|HmKz<)^s*Ms zp@W-yq$|uM=Bx@Ek5~UH%e+02|4>?WSaFB)EYhVj>HcAU{ydr{em`@yMLsf=MWgLH zXulZucfq^8f@p{12%z~)Me^5#ijwo?`zd_Rx+`IeSyEQnAHP&hr1%TnC06ekTd#9G zR*nx2$+x-t#^s~d<+`#JN&UhoTKPJC!mZJUiPd)PW z`QY~Q%1p!qx$c5SjxcrJ-;VD#rZ4Ko&)$+CzlBRyi5+wB`hF6uPr8K z^Qn9Ce%`(`1(m<0b)`o!t5+e_-LQ%t_n z-wJ}N_B4e$%ZE^Y6XR{)=-A{bWqzO?j@_v{NkO20VvLSoIaL%N3Zm9)$-)vBfd&)r z8$@S@WK1jsU8<#@JbzWt{!I+;{LGw&#NM`NROOum^|}2(u#C+-HYv;eg@qDp(wi0n z+7~J!?s6CPcDn(;C?MRPE4v<(mYY!G{l)y2b#iW<@R3yOuSy3Ui$cuYa<==ER*3s} zE+~YwK#=A0B|-hqUXNA${cqr$W0kc(WDxBhq1&KbnI1g+{ZXzk>C907*C7x>a@UBN z)xVqp=)D8+5uPx-Kf%w#<~$!B-8;2EIF#-xd?+UkdqWss5EbNJs3lcv=5$P(&$@Yq zpRWNk3%^&GIqnd)R46c(+^ibu`?{~T6O=JauK3;KTv{?VOfwGQ+vPzuLDc900h_qY zEh0;}mL)ZQr@Bs7mmWpvnUuyV&HyJi3_&f9t(0)F(Tp@9hU#f~k*gvb6Nt4|VYpXO zNg)UgLHGlHifp{!$ivROC%-{y2W+Z}AOGcF@*@8%P9vGCB)`+TWzV1cxkW6`+h^;Q zEZL7=3f<$5pGBEvE}f+=AB(x=UIf~6=k`Mf&*kMf*{V%uvBJ*UPO?RM-|qEm$*XqX zy=i34Q6IN-Np@bVF;PSoMY?>1bAjWByugM#F>w|E#G3^_M8;S|cW}J!a@{rAo4de( zle%?9_DdhD8%~JM_ey_kIeiyV6IiMwrp!{2rGuylUSWeyND7GWq@|9LrIqk5kOHAA zT8mw-U4*Rsos%LyX8WagkoCP~D7D+IkV_Z-*czE%Fc#CjSSUqP-n!rFPt(th&$SEi zI#^WPeTtLw%cMWnK(>Upge^pfLrPwiU5!9v=uruHzQBhOe-Gl)_!&c94cOuGl^>3p zF$qZ}e_Pda2!xB>)M}3^g$4Z*WoUfZFxyb-6_})uk$n)=JfKOy<0T+=@es(krm#@7 z3zK z?y|l&>{dP&|4^aIL-n_yuN&FP%;du`_RZ`~Tq}t27$@hKChKb^c^1iUAJ>VNz1#zO z54U<2XRxtCG`>x=Lo+LOxeapu9ti45s@8z|44EyX(NGXEOT^dX2pZ&mrp2B-F8SKd z;A^V;vbPa`CS>Glj+ylC6&n*KFm}_-?@;P~KQ(;qe4LeE#Imd!#{piCTrsf_-Om|+ zbwq`Vxy?M2K6vUeoKqOFUd8Djrgs}FyIEVkS#{r&dS7G}`~>pb|I+B4)wetiwYzq&C_yJXJ@CuG{oSYV4vB6)}U&! z_QR-cy&NT7m(6<%%mO2q{6^*{!_cz6@mB?p#PP6ln{eQ@LywkR94IL8A9v0qtl*kP zdXGi=clq_Jx{3(k@SO7*-br@d!p0?O0Q&h!FY=JlU9T?8PiLnfaED^8qj7x!DYrh| zCDUc+E};rUkk~eX7{61U1APLOee`k_GLFFfA-{L z-yd}h`LI4qEH4eiw+vCrh+!dD=CX@^3z3^`J99Xwxy5YJ4x;3_hiw(ly!qivkMNIx z+WCfF)~DsaElBTiw+$nOul*uq>K3OYGEdZputWQrvah>Rld9-`=;ne}?$bSXI#7&b zHS;oaobzL?udH794!o1)sMlT4YOc2i4-UPWKP{6;=&P*G?0IEd2bz_N&J51&x~pGv zJ2`9Iua4!k|W*wR9rlFDdu4-b$MPL!^5aD^pIMD32sC6JVYsXv&-$eRO}A9_8cUbvak02 zwbT?o^Y#JB6QM)LAycsxcz~pd?y>ihvYw*)vX?Qro@CrdTwW(>yFqTR>*yVD5CkHO z;pN-B_gL<2x*m83E_ZT=hej&8Aipoad5*v&kG&*h10#ViUo7*A(-u~4CDG&zA280S z8$U}vgC{&o&V@O6@1D!W=$vy#rU^NqPwYyD*XPfHk@A)bpS09Ess04;` z75nSbfU@27Gzrpc%vjDP#G)HM+e+k^WAI`G1tu3yo^i}$g?6$EuU$fKms4ovI2wg;bZY#*uLGcVsANKUs*^qnLWcM3J9yJX0^RrN|YEizx>^ zY-8Z!rpVQ&tB?E!3uy5(jLhU=-n*(*D=K#XY9zq^dx0Wfkl|K4TF1}U3MdH#l8!LM z|0}=%-S;$Ncd|ERv9G&!Gwky3mAg>NV14&JQ|PTm>vfRF>DSG2)~e4qg4JeDdmn$6 z)i1lnot%|Y%@eaq?uT8!>Vg%!e|f*ez=8fwdto6CCrl@heI?}F*!h0RMM@6oLfCf?`-uI`*+(}qtOZFQ_ddOB zm{&H$K2}ZW&c*CHXYvrYG3cO=@8CMXN4FlHS=U({x{9?KyRtQ-*LSh;u={0v*DDLw zb32-rbcdq_tvcf*mv*D984nnM=oy7Ga0ULJn{pVkW(;mBBVA1?C?MTLgvd!|lX%0q5_V=(wR{*WKvsp_MHzgA9Bg?V^6`>u%ts1`M<#V!; zamUjBB&E~qV3=$MoU(PX*QX~>(0xU1A@n*V0mz%im-vevA*1~+}(8BGbDh8PF=9GvuYkWvUkDc4E3A%oe;1 z`jJw?o1X&#Jxk$Xfj{UY)DD(22w>zhh|9zK>0RK-z1ki9Y7}+ZSBGftmTY@_(P+CI z`Y`Pg$)^!woGW9Ok1hUe3DEW|1ob23utaWoEdoe;2{F+b-z&yA zOrIV~bT$H>J-vGb9_Ldm-@jY_P<|=GxefTi?%)ld5z*F^(IPcuN@Gu*?$qaFUoQ5H z+fx9&z}ru8Sp8}k5MS_3EHU&Gx{NgfTQ@v)qWmyddP9z&K5I!a1ReI|agqKvJguR_`d||OP~JVNBi#=xACmaZ!Oh_^z3ggLPt8k z>Bxr*bmN(X(Fx1qvvfxk6dvZj$Jz&~ENUn#S;|`)HuriYcks$>duK%Qzi`hsqxE(?M@shmedMz z8kQtmzQ4H;6yE}LOcjl#pk#OZX$E;JdPm|yy}vT*xTEEUt&chs+0tl+`4xez4MXrF zePYHR^(vGW4s$*v43bx9#iPCX}v0})l6@-Md;D(;lw%+4G;*)i$mGv@ChSwsTKD>>VB5WbSxDR_FIQZcL=FFB@&gCGiUI?rRg1(rVEPoNe zA!upjFW0cc9x(_%N`hbxZ~U}QhRm3$>Iwh4k8+BL;E%G8*E^J2p^{wB7S5Bi`V?mo^-F;b7vo!HiOR!pDj~~NC%?uXQfkSUTi{gGW zAolN<%P3Ad%L$esmzLXszo6p)%zvz zqfy8t^vUewDmq27d3J5&u*`lw!sHxPXo?L?urM7;uSu*+QqOqY1zCP(=eiId_VH(U z>Q*?_RwswER=({g9_Q=W-r)gwvzhCt_L7T3mx~Rfk8Wf_O9isb182OYg!s=(`gKf} z3cBN@NWglM3gyb&0Q*v}1f!E%{plq*mW}=M<~Qk6$tWGa;-Sl``aw|rA`)f(%c7(p ztaJmWq^R@4{CYQL^XR3sWeCO1p`IWN$cX;Vn^S8h#A12vOLgT^8KK=%5TjBSq;d9B z@*bqjU3bTF+ z8PRxRys#-Oc=uPv?V(FO-);0tzzfP94;>`5^L?mkL;atf?yW3*r#0j_5<3)uI%nT9 zyqFS!ZH}PB_qJNJfMW&a4E#eDOVQ}Qj{3i+J~VsSdf{|k#OrrdGT*QlvLJ;2-V^1~ z1?@sQ!02mcJPr@fdsATl$-GuLBFbVL-B-``d-LvavkKpOni3PH+j^$;BQ-j_qrP^n z*v|R9Q4nKyk%cfHwX)`3<1RUEv?Ese?>;#YZtrWN{&rFR_!aJ&%}n(D{!)5&QHPux zjrE(D#B4$34d!2ap(j+e@$~>ptoIGU52DZ-S2vKY4SK)4Z6Onp7Y~eIkl$apNnbpYzL&n1RGuUX!);B_ zl6Z@!T|l}mbC4GwYvIFGJe?>1WqwG4Y9tEKS~U9UtH;*>OvJFqP~E1)J@%|*(VwNdR9Ib;}v~qaT^jV5D|}EU z*3tK=r`+NhgA-O^w+BI10Qr!B;yQd`H`o#-6lasg{D{l$J)7ZdBfmTUqu&b+$2n zVc;DWuponG?9pkUUnHp`HEQfdLk8A=h5QS;*uUEO5iVvoIufUABR){SNQ`^%Wu@-@ zuE17XpvNBT{+cqr&CW!{X`m-cdmCyun=ERD3XP*w@!-u zF}pl+gTIxc*F(O6w-NZ#V%zcRp-}w&XHvxrulD*C6!^xNo3J((VqHM+l0 z#%RfdYH3U1GlKLbrhMLyHFC?BU4H$On;T*8H}bK++-bstRZBr~6Jt5BOz-lv0chLs z&g?{PmU>51bAXOnX8LW?hZx>VE&lg*5?tmsr9Q(1bJe=?qi$V*4>50=M$h@5B*w># z=JWKtwTzGoX4Ji6_ercfxcIHu)C@K84Q2x%R80^b;>>v-Q-_;?g7=vrIH2EvB|DQl z6`E=0JIGcEk=$wPA4ZQ;wF6Yl*R>W7@>O6h;T@K8&rAg8XQiej7{wLU^1o?tfuF zpf1ww)8fL`lwX7%30Y(}%rwXKI;Ni4eAPc3hta-ZGu zFrVwl??tYUFw+Ir^-J^q$hYUyZ-XBUyrXBFtq{nrD2r-logIE{+|tX}=K%wyP*AcE zE@KkN>*MQ+q6Wi`D#oI>Pe%smwg7uQayE)<$jQV$N9413fO?uAdO$ z+1#+Z)ZA7d^HVmlS{hXIX#tvrNVCQ+C+-uGbX zLG3nl%~h9BwXCz2yDL<1Je7Qhuq2!P(Nly;2)`5Q{1d#i$N5Zi8!KrO2k6@3tqiqko<2HizJ6q`^pZ1%NNP>CdULLTSUnTmxAx_*$@mT81iuaX|yDWVS z^+=ef)bWJME}~DKa~4IO{1|ppesH*jIjj1#Mlj}cuoEw^?{o8@NMrT!S`F_;%y^R+ z_VXk@Yd=CT-y0D@q=C}Z&qx>E{t%j{HfZQHQ1NeT_Ki4E_s^KSpxW@SzhVFaR;S)4 zJ@T7ZG0#6?CWsK+T4$pQ1L=M;%!~2`GeaS773qIfKX$NIgMo-BOx;mYdS5M1AOYi7 z9(`f`jNRCn6ad$sXbr}x<(?tg{!6|yDka|K=S5w6S{Mxy5n+kTQ=r2`l}BZV*WAJo zJx%rarkm{ImOk{F<#HsfpV_4UMr{-G;b&N6#r=5irTk>>OfI6x8i9vj*!`u&i%&3w z?7ID66t~&$bDN55Ouuyww&M@iyTy97N)W-dvgGK6^;6d|1u{DW6O&Q`z4wBnn<3mr zHk`S?cgyuF-a+Wraix~pZ!(4{Tj>f!7+=|YR^gy7;SA>|&gj{p?{*f&wkW(Y?SIZMg#vF`?i|F+YQqx&45 zq&iG@Ux?h>g?!pRc>31;&LEvACbEbh04xi8_{vz?c~b==;_?S*`+ zye+E%8{}lBk8e3-alaH<~7`|7G3r3>NZl2xB?Al)RH|k+R52C*Q+Ds+a zGw%P{Y2K?8|SDc$o7Bs8s(@w>I`i{@xj_WLsnco#gpn;`q`bi)wTqc5?|a=$7X4 zyc@-O?TradzUmnY@VE9pAPhp05xIDQNdbsw7^(d69&gyIJm@5oC(=^q>qpWhjLDEXE}Vy zRT6I980JsmIxW#7vsSY;n}f#@{`ZuiGs4GG$pwPW!N8{h+ZY5n^Wiq+oJ;$~b5lg5 zh)@}Y#-RE_yr*4^u}FxGYJqEywA4VZZ-8+Et==m?A?K3I7YS2vzPR8!k7SrqAE(_t zk*A$IZZHs4s`<8<3S&~5nrbNlmz^u?Tr_|$V?`65SdQwp!X=#?(Ww2(=A3G2s((8g zp*1&0zg7M~rBD6Q`Tw-^unMR6s(+63tpN$p_QjRm)G^-uo>wz@C&8v}F3WU|7x2?$ zYnL@fDuh*6nyO_rQ;wP*BkYJ0o!x02vXN@_gIhFE=2rhMmwEpxrB^#5){dEy+gfNY ze%(<&_Uw zZ@BKA*6f6JQbIj(PLfaxKg-Z4H!mCV6StU#t#>KjL_uHZMQ-^2mB!A`?kG6a5?ecHyg1PC+0iGRPYtM<7AgB8!t4D8lsDvVNK6{P#y^${Q&vwSnhThg4fvy{1vR6f>Xb`tN!B z;+kU1V#H1PO zd7H&jeeAJSo8=;sv{4%KRQP%yUfZgx*{4Fo$T6ps!A4Z#m50D_-Xo{>f?(23Psi@Op< zxQEHg!-5?nG?CTvhZOj#0p`=D=fh<-U_EB^aBf(f!ijBiPAE_n6BbU zx@q}5&g#N2u|PP(K@c2cT)%)q0BFUgcmJ&=;X8!O#~hk@H&apog;4kVC)9EtY?AFf zZ_1+r%-X;|!uoiXf2+;;^XDp)=81dCkET?f!5?0D!R>KB!g?Dn;ZDa$e(5--={~a; zF+-yrMcJLOgg@XxH!!nyMl#@WR5bBnB4A#CTg15}1lV8>#7_m=(Wqijp{qOYY6BE9 zxC3@=5)tqdIJEkAv}bQj{b5j$SRjz`Co*nrROYiFN3|#sDcu6IGwB@Cm%I#gy&ZSQ z4pnA0uM6xKlUem2=6g-;>H)^BV;l<~D%TOza$WJCO_T68*3hpP5I7;agyS_nBm}yO z!J$NB^v8H_JHB_45BzrttxDm^=LrosEdGJuu1D(?r+KohV ztiT)?^Jk!DB|NbV ztE8G;uoj8ElB&AoP-Zi7Rh{;hGUekAv8WWrF2BHkH2mXET2p@nLZXJqc!?i&M~exh zxI|~2OvWF4CIq_E`bF9aVc3GfCA0SpT+UUfC|C))IFl4_GjXHWeIhb`GSa!5P%EE; zPQ1m~YJ36mK!;4Q#gZ$0)EIU2@QWZ{U`cz1(uKlSHGJ4P^l|r;@uCH7J z-`-1Wk(fNixeFVUN%rNI@Gclj(6XmWIKlV{pVk5t6x*Zi<{L~gK5UGJqS6V*c81`- zrft-<*9#<*?Rer1c~d7 zGPJ0>K5k%>f9(RNQL4*S(op1uKd84G@NGp;-s)SU!4Zojk~y&kfS``;1+*X2dm*N> z%`xUxTYm%Qbzm23)x3BKKp5?`n~1#Yax?uSc#fVume@WB?~K!*7cdkFiA#c#DQT<^ zRHe?$SXc3hI}Uw_OrovNeB!)Z_S#% z5r?-yex4~V+3;K!CD%$`PtVZjC@Yl|id0(VJr#Jw%(e{lfr#fnE`m)His6_8H-eTjXLI59C#}t(TOqyWtGA=kyp6|mh{_4& zCtCWQFoFvT6Ab;Wf^>RO{TpnlYWyS#pl+i{%Ryy~oAm-n*Q8n8aW>s2Bj;}&0ipOW z2HeM|*FI=L?}mx#_uchnmBb5`!o?jyeikt}Sv%c^Kq)lSUivVKF4iPi1)m>YyN&ZyB>xl-3wacH*O&If4nJ7<1`O(4)dIu3a{BPsBN&V&eYl7}qXx z%~_{GO3SQ8Ld?N+7T4X_m{2ke&Bvg8Roq>r2qbh9JT#mq1|FkSKIyUm5J}VKb(o_w zFiJ<9c;)kVh=h!aWA?%?UnNYi8>d}0jlx0)M1@>vzK^}+3y30J&|uzKXIN53Wq86m zV8W7JRo##CaYoe;yREZzHD+^VV8dw6f3}on#n`~KJpMfP(v8SRGhKa|wkVa7`06GY z=|@AN=(ozRoiusZrP3)J?bPp@(CwN0adv2mJ`~aaK0{+2MH1eM zq(Xx6;d8V8oB$)Rr*~x@l~gNSSVk-fkPt5K9!SMQ(BqaBMT%%)?Lw=vfR>sB)tqg2 zNJulFAflsMc{E(0kjG*^{srcxE2P2(&R3$+tRj@yL{XZ?P4IHJHp9!Q<>f=~&WE6qeOxl;G*A`K2Jcka5M@;&wO0{%hv~22}dXLKVJvK_3Gn=E)~b=xw*7iBxfaO{*f?|79*>iaqo)7{cAu z;Jq(jX@>$t+$yb%Hd$O3_8@%WQNBCRieNstPDW@mDs+k{MJ0-B-;a}Vm13rFNcrODWyGRBXq7sBX?hD}T6M=OYOsTUzqe)OoCB^M-x#FK_d@mpn|37>H6m)3# zAH**WCqgO1Ngzmq4R?+YW*`u`RtWtkC>xm z+hsm^P8sBiNWIF=WvLN`+!ArH>&X5j{F5jEvXxYZV{*5C4ZvA)`QQw1%kI9V&5vH! zPxIpqV>}CK85zE`3wmD0h0x5V?@?Sc#MM?M020$oR21WZY%LU2(gN~3ZvE%^5s4`k zmb+=a>8w|VSkt(anoy+CeMx+{>|^}>yqLlb!h6UT9ZvBklTH=hcAmSI;(gj~p9jCd zknUFgH;eB-&%SCVRyP}|WNIB3bODIyd;^IR_5Skh2FW0O1Fa|eR1cnaaP2`+^EQZQ zwMgP>6kwkCC#2QtlZKLke;GqW&_%^f>nY@MvT#ln75O?`Zx9)Z$RB^ zqdF3^jLLtyiNTc?>43NVii%0>tAFQ6%-r^WpMThi+cWX|GeJaM_N?P^;*o~|Ck9It zK}|BWL3XvM-NqJFI$KILY8S)66b(YAeJN6&ftW_M?F05P>hn zY1V$8=R8+j2PCCMQ^GZ(oKF8bkkJFd{2A#Xe4NsG7!kHL3tGiD77757PpC_;Dii>Z zPwQJMmr@_{*M;mA@FxH#d;8sTh}h|urNGzu%$cZ!2b0Ly&N?)Tk>vA zVGKc-y&=VLH0KYV236xfat#uV^@=T^CJl$GNQ^3tz0!asrz7-SnB&pKHOf^M01<1S z1>`GS6Er0hLVy0qI+{I+RAWrf<{$y@E#C685Zmw3zxbLXxvj_6c?>RtBS>6)Uz}O% z`n@hGg7r|ME<_Vxg)X^P;HQ_mZA+2qzMBlPaISjdYP+@)Q6l!k??Ywki%3gTxBYy| zv0;YBjz|FFk-uPx{(QVrHROP_80RT`=t$TaATq#=(GY-zW+dQ5znmycK5n%t z7;lNdh6n=SiuLuc5tW$d_QZmtdb5_+bMSFuHA+SLyXrzoso)oC0OH|C%mx4jt@`lt zA%zCj=c{#?f>W$Td#5us=@H7g+ngzRdLNT`^>jTS{{y+)cj>_xTZZyz)JzlURgg@> zD}==0y72c#lbI3$#LhT&$4H{PzH79&5&G=E7S}`g1vm-{;zWj&Lo+8oSDPq)DT6d? zyen`DIXS5`Olsxcmu${nVuQh2#!ulGh&Q}Hj8`wUH7u0;x&cncUHuW}W`aI@ zQo_O5vmVLuMOk$agQsBjcGZx;|JmQU5mXz*i!PR8h^ET2q!?U(M8mxCv{b*cmzN$W zULii;p*p888>1XxAQ_dMpfPG+l4awLK}i43-oJkibrDkzYf4onC5DkZA>IVHu~=EE zGFa&@?2 z4qtPNyIp;Dp{c|0WKIE{-otXWv55v~CYCo8awQb<)O1-KTN(3Ia8T3ZJG(eDrefV? z?sx*`_V3hNpqUCU+p{`z6&M75d^sPt0wYNtjc6ilfT&$+Z@;ms#YMz@q#ZDNs;Pl}PIDMaRmE+WRY=2ytT086jMAp}wT-MN-Ho{tNz^pCObL-f z1L0%<#D`oL!nvjy_^U6^Du0Z~7@^s{;9UB%nn=90nZj(IL(DrkJd&ZHBOt`+qZQ$l z59?oonh36VA-**w7C6pnNX?P_B_f*(3=pQ;%Ep`;<)AeJ?RWMHaF1)=JGX{ihefh042a^~UBj?S3XU#6H01;s%@gZm1YrT-oq!@|Cqy*3iL z1x9Y73tlZZ3g;!8rbRl~I2BU_2@ZXQ&loS13MS^JmUTc~7aX2Zs7dxDH&=!#(*FEK zBt8BhqwLXST|HBXNAdd6O1X<6`9SHHLvfJj{o2ubmS* z)DhT)jAr4u<9>&<=`K?N5O%B-6QKVWwP*qA9z6RCXE4?tfp)>Kcf0UN(B!9$fx_&Ay3=?D`Th5{%!b6f()o%Dmn z)#$4sq_SNujS>I-OXox{LdT?r_ONWjv9hw#)SdUf?KCbf4xOc1L6DWnO2leS6s#0z zvLv}g~*CX7w%H13EQrku3C!379U#w$lmF9Ja^o?KB3V zJ3gF1s(ea#7Dlr~1#oQhDLQc{3LVsr$ZBfLtw?Buo#rU)2qvY6y!BDs`b;+1FBKs* zpDVaR=}+_%BZr9A*nHL(BlzS0*{bS}FtCo5)&Ho=%QV|dCU4YP^}}vCqt(!n$GPt* z!DV^T&9YVd!G#28S&2%)Lt znn(zd#&?1i$Hrm2QgAiIQ%^t7#n^1YP@Ph(UL{9G@`=#lJTW5(bokFsfb!~oqv36h zlm4T%^?(|fP=if)wNsj*QYn(hYeoR3@u`zI#TTE2yG+ZlS5Fy|VvZ^YzgFAh7_HFF zW@>b;uxrC?!+%CVKNXh;`Y^9nGcZyFX&#*eK;-%XM5rw0kzndYtxD9c!8~!1F%%@7 z3x~R5MkW?ryxgVQ26I|6Cd6%aZWa$o(tlR0dr@dPB0l=n!VS+UdefH)bp@9z5u3 z?eUQ{QR27*X5V4s!3lupI>>C%=Kk6Y(oKv@^!TR{8sjlGUieBufD;mun$R&PG;g7t6UZ?cU((WMH)$$f zjf~exL_q0M4gYDe(Vj;hG#5K~_3c1G9EKte*5=bspIdtY>U^6)RlB33KLF$I&q&^< zJk?F9xi(E@CVIYHq}}`ubIzq5b0uB({E`d+LG-wY=CL_ksR+6#I$XZ~&9Mgbi%+po z|3=gxw6z!$*MRPmO%IgUNFFcsk7R(&*N?Y2=HhvK@W#O~>>m}H!GNn8qVnu>gwpGs zBxp(n)I>Srxiqy(;yPrIvStBee^R;|Xhw_I%a`V}>h4I#OXj<1BH0d%Rlk{iq5C}M zr2a&e@$ZCQ_}EM15xxq+H$pr)Z%h+XcFT#)4A5Q}&l`1C5G=)T0$m9L6*|ohEtvfJ^+8>l1E(I1z!M zCTRKIyn0%|>@+MbJzwfC%#*WLc3h z`NYq!+8`LXoI`Wc$q;+yPtr^UkH+Bo33LjEZr=KNWL$O$hf4`;21-!w9zS;CvBONK zPwpWXvAIg$%5sh7DH!Z--1FOsb96&&PPd#uXrX$Xn)6Ww($oRZh_F-F?VS_y4A)mu zsmSrcydKP-PD{=HP^j#b4f1PL7&~YRv zEVyY%aB2NiUtoXj-mc-lq6z-=53&7A3^ z3V&#hol{8p0;t$L-q$|MXp2rk=wTSZaNQKd{L_YWRV7u*@h-KCw2w5uMeQdi>wx-l zIQm@*XN8RUpgNmRqAYxie6vrg-TrHRCN z7aIAV{L%%I6Ypk9EhJNqaBXFr$Z~t&b0;IQ2Vb%cc3uWb$BfP>7B$n#&(FUg5qJStDBQUU&zxx;+_mY%Mo2%C*w=V0Wrca z2i_d1+JW?R$sYgy9>eQVy3OvXa%Y{13$t%&s;ITt=>tTx`dqJ9hdB*FLn@qaaHlhj zFl{lBE9Y&=8s(iIb^r5whng*Yg!Sz?^N+De#-@hQS;fZC zpS>4Q^OGvgzF~$NKf|6)Cq8m>B3aZFYsCx9_pD08U$dEdY1Z>-zSRI) z!{yr=MYZe#udmpKr9{(7HV_cGO$}YY1QMPjP_$0$stcPu;<`z;O4TT?^6d1%JPzyn zhb_CK295@e(9D8i=~s!QHPFn@PR6wUiIKfTOBn)MMH=H!P$>I0&U48oD98p11g<`( z#1pVGuN92qmZ*kY#eSsPS(<`EVyo=Io_p$#gRzbpqMQE_8DPCj&F0w+V2^^Ul-O>Jh0|4L|}7|mw4BT%A$zQ+VCHAF9*bUSy`OFU~Z5K!=av;)*Y(s6MQQf z=SMwI*@j^16Y^b#>J7!UdMGN=q+jl+kHBO7ukHUAX>S=;)%U&qDhNnRcelir?(Qzx zu!&7~ilDdwk?!v9-qfZ=KvF`aQ=~g21Zg;n?=Q~tKj(VR^WwbmlEqqct__R1<{0C? zKSRfo|p~oqqbJg z-JC%-BZ}j&0+t>PL=`|FZl#nMUkoI4>fZorL$ULO%;HU0qkXm-{ccD#P{wlL7fTI4 zR*MPAGA_1)OeQCbGn~|^V^>=f1R-#2P>fQhcU}nyzw6>~awr!Q(n3qOQyeD(b|ria zmE-14?guh@pa5sRcAxGJdd~fo^e?MPEOf&e)$jwd@Yw(D@j^Isivl}cZUWn6>V3mA zDpGHb84`yAcAoH(KjaCa{H4}^2)cL$!5UKRX|`=9f2TDbybZ3?cWBTIBw z9M!erW9;l-6`Xuh*J2fbGY}=vl-uE;bj&;>+6_xVWgy3$dlqcbBcelh6(6ys_5bq% z_7<-0TAbIw5)zSTt4~Bkw9ne}-e+4A@3iJEU!G8%^*mu!`1p-(&(JaEPzOqeCg%^* znYNh>10dtK7Ud3OqLDIeGX<8t2;PwM>PBYp^l+h&rNNP*qlIG&^fnsx4;fksxKcfr zyRfic_j-ixXmA5{Q_zOqc3m_ZXFzh|jgP|22h?dd<4Bzi8>PQ&>7BL82~V$X`cBv& zO)Dj|{K~-k0??_wK51r)cuw>xPq0kDt_I)u=+*QC>UjV_ntQt;)G-ZPeY(Wo;W#u^ zK4F_gFDM(a-?wa+H!9=>H|TJ3%gZ(V!dTakA?7TD+n>nBTb6(+`BZoI?RQY)fK8YQ zqn*_s!r{+5={M+88qe)?8)}KsROuBdRW_q9=5!0HEr4BuIeU(tVcBpfSYr+0G%PBl>n zHY0gOe4?Am_f8E13xqSj=HLq5D={PKbJNtKN+c>NwH8NtH?FW8CPj?xG#+jUKIfCx zchmnGZI%gAU0Ig>bdFH%$0nZPYsDMTi6Efp=89M~iRTa`BQlzianff&@^q+wi;K29Fl$fF=dPh5SB2zbx`e@y;-zxd}D*LLXHo4(JB zAi+Ml%8>Q768-2Ge`exH7^vQm`KlYH{BC4cF^|msMC>`*2>FYG;Cjgsrj~< zJS!odiA&^nX4wB)(g2r>?r|cvP8rK6=T2(Za?2>09ve|ZFK%; zI>R+joN$48X}RlUypR+&VS?b62|V;l{yq)sH>ENuw^PqBl%lMj`|zkh!BroTHd(VY z6A{K&uiFQLNflpcKPK{13tf@d3IBU~SRaSKro!MbFnw*wTsg<@*8>T;8B$Nfk}lD`0FE!9g~3KR#uVYv|Rc=qBbc*gew!Vi6Wml(9~^=i(Gp>J&Rc@^6^Z?SB6t+vAx>Tn;B z3i91CnDSmvsNR`}m#^e(8gC6I*JP0PFl=5h$775g<@ZS-j(yj2g0BH)1yHcasMKF# z(0a05Dp!<-@f-33c*|-5PPRwY=InA%Rm;hI)%Zq~AJ zj(j~}QV$Q66rTm2kiFzduvr=o@UVtq;Q*MkWTplcPoIB(TW6YGQmVGLgTvFXillu! zZ;@Xx#?X+*GsE)7uenm>Dd=Ve-)CV0U26`y{d^>O4bR&)!duT?@&ho%{%hd|^{OWp zB15?uU_yW~R~7XWD<+D8hqtCo!)YaB}?=|OwzAW88}UWv~kSf=2@O&>^`b{VsCHqo&) zO1cB%FaV|EndmiP9A=dyLxKb&cEwyA%0dMdQv}pp%&`}?Hp|7GPi(Bw`O7Py3z{KP z;Cv^M*i7=h)sgsO?E0qt%}Wn}enp_E2WmG52qa?v%mvisVLkBebD7#oq!<79EZGC6 zqe8_i0~^ZmAv^^0Lxdt?`ASXWuin{e0nDX4V&#d zV6A}El~8?tne4R+?4w@0j+Iq1n}?SSP}e4>r(v?%JYA>VcWj?%FsKp8CXt!VIQ*`rgHjrq?Nb*z@QYn82p_hP1bOj=i6wua4I^PfOGW^ANQrQPr;g$1 zrILy)`h3y25hz>-h*@NSC!v8YTV-a0k?@1Qv<|t-0JGjXk6oe)HcDA;RuKIWkYFn! z`#O2ie}cwITK(zO@Hhvdn&>YQZ!sVs8xQ+#;PnSERM=@WorymdH!CYhbpHKMF{~Jr zZB@MZhf>@_71`SD_m8;*Dh&k-b0FRRs6hBfhCm0@h$kSN)9k(xW=Tj!#PakN>ydQ-z6g*+(Y^!naQMIrJMPW&{xu;TJbJH! z?`9sIfk8J)S~R0DV0TjX&08b4n>vosK$s84x5fXZY~#2LLgS zR;)y*xfK~kYKg;Gzk>*Vv{f>8{woZ9aqP&tXrlm}Q)fFp@%JbjCA`lxtTN->0-~Z< zh@HO#PYZ@nG_1<~PWL$wW;gp@vC9dUO9#X>|BS4EJ|W$&;1(&M*IsK5hfA$il$vul zy-^*L?f?R=?dng99wA@Dop|vz;_C1g3xM>U6Dd2pR?D8fL6q|%zDJxZ5VEzh(+XzO zxzYcO3L>y_de&?Qh+ZiAhcF1MVdTV?6wS}5HWo;M*bAYP_TS-NkZ%zB9|;!75N0WX z6Zg89hw%C5<9og!SvW1~2gubxF2?lHgDeRj|v@KGc@fmo38(E|GH z@Lyq=zEpZyA2ti%2aJ|0h(=cDD^w#aILMOsVy8t+SYjTQhby4JH76K$*FPFq1#!r7 zdRFdP(~tN2GiPWsV`#toLH~v51!T7_`0tclVNh#r_#<3m|IQBLE7p(Md^KYNi8AkYaEBAyz7Q%)MjZLF~u>nVUen_)_`%8Z<4PXi|~PGK-n z8OadFWAqme6k6#-x^=rk?2YDqkS1dmb#kD$^3?8&BDHuG3wa2}ME zy#q^f_I*4qEM7Lo9lK{bHb(CwZLwA_z`N1qKNYXUX%s)v1wR4P$0BB4s@E$ zN=lNge4A3E{1!`rEjo3t8G+c!s$wjEYV1&)+O3PxOMiG~#`c;~y&%X*`E2dPVsKC?c+Vj@?RP0bM;QKXy{ z#~BV4>u~HCn5#(bfEZTmXVxSZW$`Jblc)yFvxyn)wjB+Y3=9ql8=7xzSK%x;}YQPHdh~7nflY4|tU+*MrMqDjYEWa)G!5GYQcbkK6ec1j{MB~H0QNz{)?5PTH_`-W zLqLz7Vu>{ASvw_Sq5~`8f|csLNj@i#+qE_n8NyDsSxwlb~<;LNw!zEA8!VPn3fHT?=dC zQQ}b?ZB=@8Gz^Q_FjQ9+jZ}OoSBxW__uRB8Svo-&_Cr44gXxSep>~GKhr(&j^J;uWd&0x@-f-L0=4cbrm6RwD3S2l`pT0|J7xoggDoDL~3&0t#+MQkbDj*lhY0gaGWz-hxxtR0)WeJZzON0E*%C^|1CuKc0c&g7QZ+eF5SQuh&u1A86 zsM#yd+XxatDa*v3uC+F))Gt#pHx%%HU!&gk=yQED+^^#>2AcGBVTo1-^*=6nN|{M3Ic7iTA4axucVz z`^O}myzkWwl9@~dF*Xxn_~<8TyNnUTqp@!nd!6i_-0_!K%%`L&`*XFq=_VzslqMya znCUO%juf!P!S|9&RFez9<$#~H9^%e}d}dJ~gr@Gb(_ zmg&&bQS<)iP#QK+C;RUqk(A##sX$aS^^IuVZhUCjAAxKY79?L|50RvkG>t7$(9YO< zR=2y$J;)Ki>0D1}wF%B^^aqL?|K1Y;76=9J_DendU=EILK5=n5ze1p&3oHLc!UcWRWtb^=2*gPx5YR>YVUAp0qrCfpwexdd+fW;vv0(xZ+ z`PUGDnqeg`DBECmZ!-+oTbBXScA{0bKE%{lBRvp1;vJw=hlmv$q>y{Dmpy6@i3Eg$ zuxnP;#8N#ca$df0{Ik){!EeBmM*DszzGL5=snyvExmT(UAA!U&A024ue@0Wc$fh{6 z!U4A>u`*xZ)y)7^YGXQDWB&jo)D?R~GA^TmRR1Qo3rJx#V4|rFU}RYd0$W$40V-J0 z(Pv|27mE2O++)>2@UP16)`6Ypr^S55>*{|v^Vlzt4^4U(%CiR_Ng!L+0?g{`(gGLr=G;>j8s zG;V$}`$zsep=4tvNIlz!n5f?CGr}hJz-#2qiw}Z4Y{Zh{Wyjc&%5{XaZtBWlc=uRzm}nsz1*o zqLAkMLd``gD)jY0R+oG7u6(S`@BNv1?3GV$<`Uu0lZQq16IMj=$W0Ou4nFaEm*)L& z01BNg5NYJ`@CQYT2a%PK)2yR9P+_-;%UhfqFaNdz`f@25_{%I_O*(IfzSPoEUm!08 zt@h%hTvt!pya8erd^w=5C?l_bu0y!frjglK)dJnL60RtNdPRKQrjQPUx?-G;Dh4H~ zzi9OUOH;>turoL_G=C-#9yg0da!Q$esiJ%%BrJ^FR;&CTX3n23)=;!p3`7pVHeKGX znWRLdAsSH$vrjU2o*tGZv!`hN=Zp4geb%2A?U$;tY*T%ViRFc1Ygdi0ZVHmdJ4k_q zL};BZ$md@X!MxQ)J{aNrd5cBT&xwJFq)%_y7z0 zSv9fu(-G`-IsJ2<+Wce)OnCEI21S23wMF~2_iBFTD(?2zWK(~6O(|d6+$jSmQZ{Y_ z!tM~T&F*Frft?E}3(Q2kW5G(y@Ac%Lj@K2YWvn@!a`JS$92b4Dixj3-qa8{KiTvp3 z%~(m4T=r8|w)sk%Luk_U0E`qxzzS7Yx;!5c%}~!nSan(*YoV<3Z3Q1k9;Uc%kc_W5 zTQ1eSjuo1=iBsau3m#9~zdJeKkz5tD?II%ix@j5=v{CvsyyHWt90nxN;>uX9iuO0T zH`X!Vm&?uDDxuGeq*C8mO&4O_%gOvQu{&MZNvcqJtsXgup`$jN+$dz|Lf_b$`{UHg za_T~ufcly^R5S`O1sr&Alp9ks#ueMZ%sK1uyTcb%zPC%wC809Edq0gzBQ7I+s^vrQAI=n}jcX*Ms@@&Fq9S@>Of9QXj> z8S|ojqLqPuzG{-8&%g7hR6EC4Km{sOmQ#*PZc#XbI06G~@zGpKdPbTHn58&v43Oz2 zUr@BY40xs7#%csGmPIusr8crDq%=plWRSjheM}_Z!RVZwU)iJ5jCiRvceR9%Ep^3c zfyqLupnp$d{sMY1SAGnVcWRWTRM}(W@_vSP{qMZn+_{4hKzYRqduF&49YSYpa6o<$ z_h|U(mM4^7`VUhwfZ*~7Z^XvB5iSvl*X%MmbB1S{B0@lEZW4zScLNkj03Qhf zGSF2|HrLeCeFlQtEFdhpjbf1CPNa>5l8Go{FoTQzK5Ki;9+4E+BGIr&dIkUY^NQ&` zlf;#z(H@PPo~E`QZP#F`*cH`+#8`o;3Ag)KGpbIMucsp~<|6-dxhe9wOj(a~@m{c> zD#!=-&cwNyBDy$QLV?A6^Bpc$QV5kROzNK<)VSw zW#Pno6^3I`({ICUMYNcwE<@}+jzMY#G(Kt5$6lE0l>xRmK_hAdFI%KDgE;<4>9 z1s>w~2kia3$`D}BuZEt)`>0Qm}!91 z)9tT#dusj#3s6hRxRoXv&-HJ6R_iZtq-5}fvw0ip-bu@+Tgh9h#OHC0zqL|tup}6u z7q(ZoZVWF0@<`?*vz0U8BTCauA>;*-@0QQ;evCJS6hetjWz3ybbnpiIk(HkR_DI0| zS+PDW)s6@J#V>WcEti{iDYGh1?LuUC$UdKD;g}Vwd&B+SM^ig z0;MHt7DG8RuU+|i({q@TGwLl~W|Pe^G)X@W(g0DP+wq-4a~Tc1db{W|7% zXV5!8wNBPl^pfC9(Y1P|2VVu;wa;4PXWZM5V=;pvZL3dm5M)9}N5auI-Z^R>A*YxwofKhD9!)ib9_~+SZv2H7ycoA+Hxn<@X@5EJALE?}? zElH8_MU&Eq4{blv>aD$HCv=ODj+gGiNluqf-k881C6BD$T?1e3=1ePJ|C&rXIn_hJ z(Cn{`b$t;p#=}A6);J(Qwga>l=o4f;CN=)|*T{lj0k`}l@*kQI+lQXnR@sRDav&v_ ztxaW0zH9qT4>|#v2DD14iqVphUnTskohXdnR2yvv=^x63@~BoECAH~YZWmhf8x!{a z8*=Aifn|+?h|ro*gx7J1PIZR}JH^Y*k^x4#5cP3Wgvp!`FkGa8CFC7eBlKMQvp~mn zXUz7>VWWMfj5mwPvDt)2+82L`edx_O#5oU;$ou3qA!2u|%2`+3F!)=Bhy;|24?@ng8PG?+wLaOaO4>bUo0TF6o_p|9fiE zok~lJQ7iyIHh2DF&cfDfm8|xNeK!;HrH(6=usWkEmT7x!Ff-NqF#Y0l@YiIMQsB0O zn`>Q&E!Skx@CWgG^g#q_z>XPE8U2Sr_ixLb15n$#Qwa14o0JYoF$q$+NVu%8xAR=e z(&Ef$YPv!|CGrVK8=u#~`S1||;ZtGKK+McM1OLRnPhg~H#o@?61u^~lW3I6xhu!gn zWM-5HCLPl?ME-dD1~pwDcc3`4ekAwa6hf9qrT28YKc^8=rvw=-u}72R;=XdN>;5V_X<&0(wJ%GEdXX`QkQ_Id_j(qF-zwvG&d zp8H~Kj|sRHqdC61QnmJlffyEA0AKdvhi9PWBfiW(FMNX_T?stG)m^TqrQWq51Hx25 zsEj45$CIlNw%TjQL*~8AIq|cx+^jhli!YO$VCKF$9Tm_p9159sx8J|mS4{l^mUA&9 zw|gp>+?GvOQ%q${K_)j%Z^b;+1Ae@DH`Ztbf_ZdTMOVat>U3_eKln_W_sO*EIUctL zu3{>FHSNHyOsx|qwggJqoG&L5nLL1kJB=e|JICDKNwOT9`(!~90`aBRLmL~b0g3`+ zRTEEO9Dt(-sJ!GwuW>t=svoX!n4gHt^A<_VH~$nYtJ=R`>t!xG6%aILGO}nAp*e^E zp5}iYC*BKI)Xx5x@NlKL8bb3mw-YTgmjRR0i;7rsWOz&gQ{nv&<*hBlN_|EUqL{90 z?~(_O{0-P)=CtCvTuT~UQi@&h8UMldTH`VhiG@-m?ti$f1;^(F;s6BzVth)bZ>d)b zvLR76s~ea;^7fyf2uHjn*a<3e(9JQAk3LGeM|Qsc&65ro=owyv#K=e~iCE*?0CcMis*(a%Up8S*Y{Z$u97RUGHp@%Bzv|Up zD*m(j*|i7Qakf3knNE&8WIB}X@khke;0s$@Q)JU)X|AeHoYALPwgWlKWXnryG_<^$ zws-5XD-*n{ArFDmmAmmCi$ZfYAfeyB$9r$hOM7BLzff>5ZnAi-MMe1iE3Rgo&sv#l`d*-VbYyh~9p%vR`rC(*Bn0z{jEca-g8Q za^11TtypESBCqM)oY`BU-^j-$m@Boj01Ru4SIV{>lRESY_ZSoFZciPJ2s-_*lT*;$ zaomWOfFy1G^KpidtJ}~IZkT9!Sm!a7vG)cFWdo%1D@MlztH1OD zO>6Fcc&z@JLxt?v8QVz?M-3-#*l-J*TC`oG-&n? z_U30Ei2&2EeO*yd_0MnmMilLFwcEohW6fjlJ-$U3{y`NR$reF#xuv`P>*TesfH`pSKry`noAL}OHG5%pK?s{ z&1^}WT6rH~Sr5~%d^NCXjCN_0`C5g8>eo9W-Vnd*-Rmp=(ft{LW7!T>VpUy*nL{2u zo-9_f{|jA;v=ufUD?3qYD=<%{A%TV?LiX32?aQjsact!7TLJxhkk5tsajdD7pWtSi z56z>RdPAxtXr3vl*sZ;mLls-PnE;WGb)gqkUkgk_og?udJQR?$*L_AktSc3%_SJ_u z=^Z}9D&V{f7Goab`hw|FdskMD9bw(KJ*=?vOpZzGTk3Qk+C!5sB*4gpwxGS7=mqEz z4i!z*Y=vRfmmI%YLi{z;kMT3+{(>hGU`XEB3*JTxtOXEgmv;-zrl#I!T(EOJ`R3-H zj&EH*KVrOnR|FDtz zQoIIU3Rgg~>PlK}G+QXmNFm?@=??wk>lLft7koESJrA%$^ zU))lEg=TG*WsLI90up2dju(v4uX%EmWxO!3gI{H`=t&IbK@aa$pmo$js)qMN3q?Sgae8h24T4A@nXI2RqY%+$ev zorV-@|Dc{3ON#ulYfDx8(vorw>&ipoB?JHS9D0!HbKhS+rWO$AKJkmH$Tq$9sT_b> z6(G!tyuR_WmH>GFBLLRZMI>fNPxX$oI1;u zK%_E+;lzXB>e?Pb67+0bep`;?>iblB7!?+lBbT{EOiZa|@SK~BhLSz`*WdJ|lp+3V zjZJ{T|M*n1`+zgA5|ddo&?MF$TkyhgmYT;y>8Cz2p zj}>LdJ1yV<3|8D!oyM0(R7J_@_8EyJ!>@D-B(kfUv*c=}*?ynqMP95DYrcd$Nm%?Lkfc9)&e*{+#C4quZ1b(EBf- za2aJ%uq2fLAe&woqhA;UsN;NBk;~WT4odM(>@MmYOiKDPUr*)*|9m_!xM|gt9s~jP3G3h#BN_vCGz1=)guK@Ixnyx0K(Yf z9BdWUb)BV$`diO_$5WOp^vnY}*Xr}?ko`_H$&a|V%Qq{a<>Fc-a8Ofu?m$qQAFA&wHNQ442NOkZUgmtl zP5t&Yav8TY3+*S(%<+)YfE`?)*>8j7oe-HUVt)o>%6zHa?bmy=E`nD_bS-~>9^Z_1 z`MDI)2o)3T0NL#RBKSulIvEq%&t}I3k|AO!kl=uH<*m1dnbe77s(&4`iCHEL4W+^P zW(&g1d%=m6ltI(Ot24`A`*PuTH?ZsJwyvizk?EzUZ<{{p{s>-|!~*&)QJG|otvq*r zLtj-)WYt>D%8{*4Wx8q4Sw&l^_3F@=_q_Y#gTu85E;TdqUF|XCv&UQ?O>pMNXTv08 z@iLR7-CpVwYf6vT5@D2NTdrLe=;NJEf)bqXr-G-vY7J6MD$j)!*9D>=7Uk}RQ`@75n@*01R229zG9x^k`1I#a!R zD`0YER{zWV6xE4C995x5-LUR`)7t`8E) zVREzjL<%Gt6%bHqmwjM27N^Ja)71AD_qN2B_cCP=H;dl&vHp0^-+J`A5WAmB0tJsI zw!$*68PDubgQD9{Uu`?rJ9N@5nEsroll zig4PodupMwhOlG&eX4FMBKO7x@US-!T` zAMSztuYoA9Cm1d^M5*zu12)-{F?h?M^a7-nh(F{;XQ2IaYW z9!k#knEGLfvtOb89)lL*Qc}Jl_c<7S^%nDUM1im*AUGx*a?dS~0o7agyR^F<7>cT; zqo92u2AGv;!l9ox$cmaba(qZ7S{0qg6TSG#y{+-5XA%LP-6?4dY&RwG_YlwGv;djX zH`P&}UG45KRDH)Lm2Ew7`rR)^^AEEII4SJv|HHM~q+XPp?rkzgr%#qoN+oJZjXT%> z3Ye`UL6v_y-~oj|+DueW6KuKJry!a*UBt1*>^_XT@DGs+c)u7uEe$`kGxr@D##p4N zhGC!eM980ESJz+oAAO+)p9+#JEacTA+kDS=709_JB8}BdTi6ZbZqYrr;x}BHv$I9a zsUGs1f__m~p3_e)rRupQu~fR1?hQJ?zdU|7BT0Ty&ShRI^WVfQFZLC_Ix0@M<_Czs zcPlJElxunsrHvBJ_3EQ1uM8;1NzUTiIH{_?EsZrxI)El;?p&JCoUw0tr zQGdL!8s2h8^a_FcZEd)sz5Q88XV^>aZ)^62F616wJ7(VhPm)&b#F?-j2F5#U6CX$< z)ISK`B&6$M{lR?jz$zoDx7#5B#}R8^o^WvQcx?5%NN~=Vz}aXUZiW3u3p(SE)INVa z&nWHYF<`tzqqxkjPmF$JxZdVo=ew3^rj`7_)d}QQ4&?`I***|eKrQvfg)dTDug0)y zDclzQ+suzkqJwh_5mj0SlTbopF*K5#r+)VW93L}cm@5IpZhq6DqJ57R=nT^Q&waVo z%AJ6oTEy%GR`u5RU!t z%bu2^AIBA?x$Nny;cc}7kj9ND+`1f#1Ozc>CHE>InHwlJY_D8d?d&1i?pgkb&Yn6k zNlUm-iDqSy%;0 z4)zMe?E3re;@kkqkI5fNa=Gxo;eMcS!2;dCqP+Py=OK7LqQFV;o71uqimn6n``IM; zte#8JK$Z_nHlAzL1Brz$!Th|Yw^xXA%Um1LOuPtrfda^&Ps^1>%Ra70Ig{sUG{b^) zRhmn%x2i>j66H4DKLaS&d^M;c$)~K&To^oFTL;>tObm}QGErG{5=B~LqMq7oH1Ww_ z*dz^B*Oe1)RgWF%dcY8uCj*@yW*|NdWa>TszzN58vKE`dL6oA_A6fSI%8J$P4 zC2)?A8$DC4L;$xuGMHlHMPk1AOz4>3ZAjQ{Zr`li>)OQrmZY{5jaUpx@c#MznYF>C zmv3!NAG-dz%n(RMH;{0+DITn?^fr$?@&pSRa_IOJ#Gj&`;8n`pi)qJ7(RrPeFFemo z=MPThMx8c@Dkaivoc8}RWgsw^Q9+Wid%LoG9lMO_cP(DiB(ZYs>u%Z2cwqF6*Or-)U3-hT)les&0T8I&y@-=a&8I2? zN_xzAo<4v=U>(iDU(Myw$x#klJ;gff;=Sk+gzB~JW9%H_iAsD{&v^oRct!aE2DHxs zK9~HM9Y77BjNZGPD3TS{sx1DUVXJDF6n7qXnRNjCXxcTKnJ7;*gx2YW?ta!jRIY^k zjWZFXfI`};;lAsQZtJ*tHAcBiq|rc1zL2{CcGYKYRQXR5gE`mZZd9l&{R49eGkM)N z3*X;vPU^!6{4AN*ZmKc@PnYO89kt_MrwM&C@h_t9LC`snE?kD6bic$8tn^qW_`Y-r z=$N$I-E>Q1$XyIlbpM9^ExU%?tTbR=5;uvI*X72gkzCP z1I(nb_JmreF!B(Aj~03$db&(AgZ*NhGG$(~(4M`UEUfzG;zW0>?zaIQ(CeMinjaxF z9oW&HtuEz{W|TN}Ed(?M&XD-p%0Qs^v}}55=iPN22K@C}3l;Er z@<=KZ07p>H47mI3}7LB_ueSC+)Zb8ub_ajRcrb@jobm z=zG}of+N+s*-vEi3ldqhhXt|_9Gq^%_UezymG`;jgR_)bR*GP}>L(W6l`!rFidj`f zT4`SH3}vjclgj5=FKVKYjB;p)pP`_~#m@mFS7sMoLwH2>Q{v>hj>@NH@e$Y4#GJ!a zff|HrnpK}b?2Ojf7U$8=M13G~hIZ5L4w}7~`$G$AoWrd3CQsLC=g5XXUm{9qhD4(B zVXHPTKBsmC3eI-iJG30IpJhfP->UK+0u){HgO40vZdhuMl+Os%-G$xtiQ|bK%R?3j zPP${_0d`t*Ery@D_wM;)T+T>=V;?$dc%f7>~VU8!zESE(`&gJBHQh>6=2Q- zd6_~_4?VRe=@UcNW`4rVbuQd5_cd1o^m~5k%eV@P%jCC#1Iu|=b_8da&voan z?5;)>RE$jb9+7I_Ql-@+)%snzPx6t;u3!*gMO+Xy|I@zWELlc#Cy>S?Yd--h=KP59 z@y7mg-mmMhGcY-F%1lIC2mMzsx?N3R261}SvIUS`MpVx}qSqW6y?oLI$*o-D(S!bs zS$V!GVXI^=Wnt7gPgP_fsZxNI6`-#W0vx;dIw-r7)xz^-1~^MJUsT6s_&Q8m%Yodq z8Mr<7(ZN%p|{7Ga0 z%4CH?g&)LiqNXup5kF3jCt`bcA24gK=z(T628~$~{d3Eh>?x~cK8L5ES?UgXnj*aP z8@*}AqCF<>l5w_f^5PYoW`lHv*9ckjq!~;aJ6PN5wQCPZ!mw>^zZRDK{k6%}O0D3G zsV|OG9ZBaPGi=|aySI|U zvh8jHhKh!EsbKUb zs29U}Yo`0wNQo`ztY50VrJR*cr?6(Mv2j*#jxgqdHk)Y-jTC4lomYcK-Gah(MR<3b z*zSO&ZR5iEy)!sTM#+_MnmxuW(vgdor*Di+rhVsEP=nTQb;1%T-{+Qs=QFy9y`7_@ zBhxyIK7M`Edf2(c$LC@4yKgM=I{j9=gJ(_O-&v>L-RFnW>>X~pwvnjghC^-7m2M2i zllc!17}BA08&wbpfXXgxu%?$UT_7_;Or77mPpRWm$0DaW`d~NPCS7 znbG$zZ@cOP^eVy2p0k}?*L|RekHgFQRZyaArm`Zh>%TcHTU{l4m#4}%UbOG|CS7j5 zgg(BcJQMNSe{bHII(R`BfBi)4FR0~|;_N!thbDm)xL2V1z(k>NEcM&2>mCEi4q7Gg0l;^EEC_j?^kEpy?pB&vBRO!}aVD?4nKbbUYSr+?wzM z+3I@tVe|6endXl3`-jC&xAC>NKZGv|BDoAZd_LSmP^1HUE#85LY`4nD=RJEbX{G&t z@nBNGoF#oyRR34pU;gZ{l(_h=RlC>zmRXybIg0*_JWB%ZgVgoSO8U*}HVxdw&)oT> z{;chsbgbW%>)>3+YaONbTjcIV_RodQK#8uFITOFV;t~~L6nYh2Q;^{H&?p z9m(j;+Rvr?cRnt8v1`Yd-2B#Fd(d(7+tvH$PYv%wM^o7CNviQ_ zggcRjlv37oRZ<=kLmL3B@|WsJ5Y2B9-F znAVfSY*W~`{+)({Ks@#5sHwu3N?2gvTmo>6HqUQMt=#h7jW(Xwbdp!!aC4XzEgP4O zUv;^B>(1;%dD|5F107c3&(UMDKnn3~4)d&llKwEEva&`-nqLJheU5-~-0yM~&9!9} zwE=Eimtab|vahd&r8pK+va~FD+(UD}bA>XRd%rbl>UDrAd2$l#`Tl(_@cR)L|M7Oz zvmB~2vt=~@N$Q>4exDIyhvF!Us1||s-oEhg?79nH<>2~&{$+LejMlt0AQwTT{)QcZWY++MKpQ#Rif$;LEk^=ln39KiGU@AjVAL$t`iGipf@61h|^`}KaDA@ z=5X-8Xg(aKKk2UUS%~pz|4#K^@?$jfez1g3MV&j|;`z7hnjdiSzD_kwO$oy|b(H%HS*-me7WcC5#Uj{TscULt*7zA^w#ArJdm((c0B^%^f(^C!O+h{*Ywf?~T` zD0!7Q^~5&*j@)W(b5|Qz(Ba>JR-NXOWHjIvwy~j3p)_)xDe8pT-^je{h z_gYTBxII_}fSvv!Q<9HNMFItUWvhv~@eL*t5^x^{K&7N3=ji~23w6zGHn)U^`r6vs zD%!FD3C6fbOGVv{|?NMpC@oZip)n6f`rE^Q6zjtRmHr}PB5p?^$|9~#{|J1FEULtTf zX-vJc-h0FpB6k)d$6D8Mvszi55U%EjQp2{=ZEakH2zpLhz9k92-TIy@`Hw7dgeX4 z=T^KTwe(RhI>GDXpc8`QleOIse_$|g;peXA)n~d~^x|)sPiC3Nb|%iuEWz3uFDxM{ zs&Jx$XMZg5ltI!szJCDl^7B%fSlR)qm=}-*Ybyp4iLf)zo?odwqmr*5CI$0qOkXdE zm`(7_?O$FS`ROcQOTjYm9}WxY5O_{Wt-Wy7^X{0*Sj86`IErB$hcY$5tljBaVHCe< zE?NXN#P&$Ij9Z+p+tUq=;)bYRh|wnaG&$qNx+0Q|H- z88%L9tVC8)O#r6Ry>Y#D^Oe}UM?rK<8M)v5DH`fZ#!-);X63JI$7@EOcB!4`tX;PT zaucd?vdca*!LUBRrGGFwQM1~#Mm&|2PzTz5?jY`CTsybE2%^hv{*Sj_*4nm&mEhf2 zL6Wj<(}h8XosT@g?LYXLz7`uXH93R;zLt2@B`qp0BMcd5Oc~r-baH?RrE(I&%Xl4 zYq(uaH-quRiXvi?xF3&kE{Ab<5hJI~7Too$84ho~-hYpe{_SSPiaWS9(Fe`T8JVhA zMkk+I*|T0EHC6fo{j$3~Yp+E-ftVc$4iM9PLx=l!8?Fg&Bt<{-^4+Gd1L zN|_ll`aJ;$cH3!!p~ix}r`KaF^S1W6bBHYpsdyb;0#k?)xIs~-NvYlu|G*O|%R}I< z!*E-OyPFnn{4_Po+~BMM3LfG??#{|Q(X%>a^#qc!oVKX9*C>wY?P zUSZ|XPXR#pz0beB3Vx116{R$mygC5#^AoPqsU2{H>UcMfKmB~8UJU?crB-Pt6%$M4 zG`*kF)f7MJUDu>Ve4uATj-^+dI}>pJ!0kM8?f^4)9WJGaI#PfVyRlVTfVm%x^7|-Q6jbxDW8(IwuXgRj z{T32)qx7tt&Qkwm4A#>@hL~xCB zBihxghXP0JSn6Yq)?QzQPmt)!hfjb9#AYOi-*aKAST%L6D~9U~*oV3gB@NbZI~4^` zNKN>EVcMsi*<4pWG#+^E5vq86xkrj-bfE3sGrKzXzS~M{ecKk1HrI~-yOsK*2kN2^ z-Wj}qf}~RK+}*wo>f9=J-(Gq4>7{?FBu-q#GsITdc6+Mznp{f22!Ar#&O*iFie|;w zeoCz5{UtK4SS=7L_|yt*rCFk)?O#%&&@iK3qaE)mUF`k#{X1`anl$JSmq*nX9W5^n zURNCsc0!3f_{9?3OAeX8>7DuBjWG`!XU;ChSEz<(22fx0lX> zy_8jBa+HeLcC%}TFY0peXnH;rmUN|;m#E0MdGK!^?6lrrERc(}Aqcq5`h*VsvcK4` z9$D2!@{-uz`|W+uxbC)gI(qa({ zqUINM4(oGA1J!1o{37E!;9QZj@{o`Com{W6eA|+Jw!Ae=m9fl?EQrFez@dALo*5E? z3_RlDc@unZ(X1eV%I_+g-FE&YQA!Yx=d%x4yT!(wbbaVtuRvZh+k1Om8@>;B*X(+w z$(MuQ)6-48INC|Q*ZY~p?|0POE@~@UPKQN-Q8<&Fs$t1>!NjqL^ora6*lqFS4_X{x z1|u2Itd0la3)5y|VE5}>JO(6!t2rerD?R8Yc>syv>x^X!(k%EeJK#^hLmU(&e`RL<9FM+@vRJSrTg(Z6rOl~aZ$X5-S&77Wlncr*KfTe6|LH$K-jXsHoonb{HiSOd=3+jQkGn<=>m-ew}dfO+e3 z`=41H@SS0f+}DoTZig`A4@3}onRZg|P!?2C%t}yFEVw%!?0%My4=+F^H#v*s^4@`; zrl;3;piwSfB~d<{B<&r8I?0S|{neGyJ#LCHH<+nhe#Y`y4VTu|Qu|!3C7HO+AwPax zJ@8%fhI9J*PO*bO&YFjgHOD>Kg&R&Di5Y#3f$fr-1yJpz%&`fBS14PA!lvSN^{SEP z>9fW!fsIA3D!s(Znq%l(Kz(d^l5Ed4ET|b$tVjtZR@Wj^$Gh<~TeEcNV0AdJ&#Dhy z@ykuBFz+OpedBg@g?qk3IU^!+{8rxL3y?Q@+_^q?VdAzFJhD{3;3|4@^-n|n;>gVL z>)+aGL!0nlAGM>uK3fsG+YE8sX!AGMiZcpWH|2y4x#rY~W^bnYf zQBzZk9)3Tij}~*9P!-}d{l2{=emi%zGa-Jr7QOl^8~^#Sp9kt0%l8?%DehMtXN<0| zgj)fcK!2_YpL#OXEfcRmi^ zd?bM*lM;WP;fCY3+Zt1zO5rTKxm?c49m=!O+aEtgOV?WTJOt)5Euyw<$mv3>T|rKp zn(>kO3Jjka6*nU|ofz4`czFq_Z}y#@tIZXGve+HQpULB` zY_ZV4VQ}3)QCUfTe4@0|llzOc&i&cU z&kGJ>73aQAE48BQ)n__P)f(yw81IaJYQ^WGxAKERwUlssE?L(Mkk3z8l?I`Wm*o1W z>KMQRFA&(h;>pfoC}Z-eT{ILQU6cxk>+#9ABgdQHA8$BRQ}%CO<~sF|HBOg#TzANZ zLw8BXZjSTt>_mRucYRBp4p_K|iuzr*@DR);2K2T1o>Sy+1wvCUC8n=s!y8NY?-_gB zH=aKz3qYB?Gp=h+&62vd9TE5@k$Z}vM_qitbLp_G_gD%2d7F^jbpxbzpDzV_07|p& zL`-GoLHREiNw^Hk%5rjYT3SqAg@tMUc4Bd3Q2zDd4f3mK-c7SXTT7xSIoOcOnEB@! z_HfbA4*whN$MVPPg`;NYwd;Z_^c9Utxs~|k9RlIsaEG4@<~K}tmZwkB(!KdEi;8DP zcfUw9(gUj8e5sA<9LiRhzunU%^lkE+a#4WLe~LlLMtPVil%-tXNc2+%Qu8zXiU+#= z4=k@J%!FU_;+%D57p%oqudb`NOAAeO1yfXgWfdtEJ$G6fT4V;-jj>AQ+$J6|GfyZm z)8dRQb-3sY5-zBGaZdPRqRcMw?Dclf#&_5L$G{a|!t{>`99I&4(RkW|LG)^&N#0a{ zsAGN8>BQ4^U=YwvGVSj{_{8X^D{CU>DVx-d4~vZj+1U|s-mLJ35}a*dx$);w zin|{X>`qHxO^^?IGpRuKHyLmcS2Ggkc*;P^cdMK{)4S@=(JOdu*Zhkgp?0V=TlWb8 z(Ma(H?W|j!n9l<3OxwY}FyA`emM4@}#*IaS()Q+G0jrU~kW%H?`z4i4)3vUDO#qM- zhsc|>9L>Jp^RvSXBKJlxb*52CeKSII1eF`R5P<~a zAbG6rOJ`woFQcM7#`e%(Rjz6_>_~|WAHPHtseD4cvASK~iTQg=QC@IUk&v2+tEJP zB~G@Y@uT#?TJa#|_*kbl!oyqLKV-R7sL!F?^37s6>g72F*o2TiAd|OR+5g?Q6yeL< zmrPLNE!*dEiGq4ThL|81x~U)z;+ky8%`%pjnqFNY$*}4LTC5!kTG3lZNNokG6ev^x z#O33g^$>~QiOSqDB%Z@1v2yv~^GG~A(|d{#cDyb8-4+~IFHBo?P#+HFI;HZbrq zbw{-D?=t7*rLdxo)EHd{GY*^lT{x45zoA~JqrEgp&H@RL$oq)Rj;V*hN%foff|M#b z;R~=S>M(=dg?Z=$ zHfNm*c1c`kh1((w(}97OM6)snqJL_85q?e(6kXBv>_hc z@_o2GnMqqP%PCvCx@^DoMZQgwYP*}B)~u)vFU{NU3?Z%p0`7p#UFv~&Tn7jzlzjR> z*abo`K`q=BWynlwCDga}?h``WJ2F<}PmjU9{)h(OF@{B(T!)1G$_I*Hr^FZ=$W-_p zJ||9nx+UXDBM}wMD-jyp-E*FT7#rD`eKps%R zte~rAc{ASwODX++7{0gp=Oh9K>8q)TsqX|=k5PPmDP<3OzwD!rM6a|DKtHs$6;r;kN0v{+p%#ik@F_ zh3^*Vk&K_pH{cyfCItY4jr8h+MMl!t3{{jD_Pz(n#W z*--K99A@D${I^>gaB`jXb(;4#Wnk2inrl#6G zS4wA>00rsjE)zYyf%xH!wBhb<-Z{Fz#Mj;ZJ&gF96V3OluCrg+A}_5GdKfm&zD>~0 zr_%5B7Z8-?<)!t|lV)pCV$}!+WK5N!{gI}xDxRs__=irtWekXMSp*L=KA+HAwyrMM1D9YT6IsaC3k7{w@!_>Pf)0@vBV`_Vh zWd@YFdjfq)x({7jYe^YEb^`hdOvK&;X{DGW+hzI@-PA1q*}i1U zyWf>N!$&an_NQ$@EvC8R3p$}aBb~vAe(zf-Xs#kJtJPCnvQ1}MQpq<|N!1D6=P=~s zrnT1Hw;Bo+S=ZG%05!z)Op&?Ln$m(824G`S&;~R$ksH6wJ<}ymxcf1{MlJFxrss=` zxsjA0DSIWh5Zf~4FoYFk&kJbv6BBg(YyC_#(Pzli)E@-+#fDZ~eVa;8{44ww`F4Nr za-wmTbP80JMgTwXn*XY;Ut7BSc3e@n<=-Ux|EM_b5XvW16qVKQ|8i;)E?62ULnN}_);9?MjJ<1>V zXxaW80_ZX7j~hRcw4){$N~7DWt-U$vSLBS;0E=kW5Dc(wo7$}7L-L_>*)C$BQ>#^Y zoHVLJ@>?FZgopc+!Me1#O*xLe{izoTsvM<^1_r4B;^8~A;ib~9tat~E`THg%w=?pr zBiN(bVJqi4_46+*({vz`1p?V+yhS_jG~$4hsTUN_g#At3zu2^Jb{Vv=`NVyN(P3b& z@;A-sGAeT5SsFp00fWz6k4!htZkX!r@d@dl__TCf!+Dg+8c$b64Nf{ zQ-8#p@z``+Z=NDcFYh+(wMF#RK>e|6#QQh&`P&@92YF$l%Gp+LHThEZFEccYrWzb;?%0{oWr>J+D|DV_x#y!g|85-g| zig%RxVZlO7CLJd8D6TysdRz8v<#4#3zVlx_K2wsojEiaARiO(nHeXc_J zxgXH)Hi}INXu&YxvSsAFtq$4MeO7vY+38ze@wo4O)K<`O_!@iUHSLdvMNX6voXH<% zR0*Z;nqS*tp#vNyts1=wAVT`>->C-0rWin~5eMSSX0sD&ATgh1Vp&uC>ij6AqC+io zyqd&|q%-({GAQ+WUg_~Wiih4<#Q@_|_J5EMZecY%i3sPExIT6AolqHPlIxQrCr0f* z0E6(KdS^jMbKl=dWuqvsErRR?|4uZ9p{tChO{^i{kTI<={ zgXkD;Da@YfUq49te(CUCJXgtP5n8j*9&;#DWh_jhACE}yS7fNqX8!M|^E|{jR3+_y zc1{4kMdgsc!~92wJ{$7^66-BrHy)X|Y#UoBzJ)BlKBk;Wi`FSu%uvy| zc4Mt#Jd_1a0EyI+U$LFxhvpCbz$!Js3EbUp8-CAk_U0hkL4jQ(K|~5$R0>8fX(hU69<<(Pv&8c<%oP5QI1f~>lhoj34}hq$eN!f*F4s(D-JUKmo_8V^wBNocYulr9 zzZWuxx7_y&5)7GDH^>5Uxd87$c?OQHqdISxvwAW+!#;*G&K!&1ufaEU0&lvGAv8`Zq%5whD#-(_uFFb2KJz zUuQl#ye}KLb-RDXK-3ym7*gKrYzU%Hy1t|kTtaPP0>oQPB6)>jum90TuF?$rCt~4vF};j6lHZQ812!_d9V)j&;KL<88p2Jpi9PQCjCZPf+C~{sy|Gqn7?1R0?SSMme|GW_?z07j4#MZ7tm&!g4qLEORXyGLH!Ygs=fj z#Ye7JeFzBLmx?lyI{lq`{~1}~QegUIdQ3M%5IxEVUuDscrgqf-QQTG3_=xT5#PO(o zW%s^?jqK_9xzdD1%e;ytl4BE_?i-0O?R!7b3hOw)8dj$k_=jm6%r6qY{5u4qV3zfN z3XuS`0v2^B^C2eRgI$b^pY~(f;@So%9YHXs1hMzjD&{(qC8hu zeuhMs{~`UN`g|SX-{~2|AX$z*qCTR8%y`KA^Xy<3ZM)<+mt(SN$D%iY;I=>|CfoCv zJT8m+F8_*>$C(~(H__xOLX~6{a&u!C%E2SL*GBGqi~dB#EdF>ZUetbJY0^F*j2%Gq zA#T4cJv>i{f;Z0k;!*H}e7^w?zU9T;T?*>vsaaI9*Q&qCq&3T))QYobCF_gHq2so9D)K7aj<%u3V0GtJnOJI<6eg)K?{*ae(pk@9;~FaqgE2H~OLmJQRQA zoO_H3QJlPWXIlG|yAjageOHZzKV0ycFO&am(h!4ZNAf=b7B^-2Bp=mjhO=P&F;n(@ zT=qZTeAT2c@vV`8v8I%e%Uxb}oJP<5T0$;Knjlpnj6y~6+1sHn8=WR#kjBd+1Rryb-GH2!vTF4&Gu7NNX|AiN!;$BY=Zlr%LHWtrp_kP5% z08$`1fq(9+!{w{~${F~o061u(6-WO2XP;Yl7oiWA?Hi9F$|L1VN3RU_?`~9(r`=mR zk-ac-)d`)FJqJDy-pe^(2#_&;`!ygZ_-xo@hr9f%?|A2TrF9*gmAeo=> z5&z&(wA2{&zNOLvQ_ROouC|ywphbl$-XZn15O04%k|QCeKHGdf@HJK@g?4svI&K$*s9>rDH7)unPoksFHKghbCfihfFy9nG|OL~U@EaI0MR5fGb0!u>q=K@MoYn-M*y(Ht2hqG=n;=~44|R}^hFZ#KnfFd&l{W> zaP->ij6qnc@5a-#I8iS?Px2B zPWUMGvulKrq)e9XZvO9ZBF@w$xf}KKp+6sl*!@38eIu@uA?3YfS|T@ZiONQ}(>zk-MCo$rD$OA<#}`DnO_dpn*Nw2S&+86D8S{5weG z$&N>3O1X!ymL33g{4rk!z)^z!pg2RSOx-(2$51_6NnW2Z&u$WI?`JbBTq!iHI$qsx zt(I^F-R?JG=2juO_$r|M23M)aPqYoll#-KT#dbzBPyVq-h*kBx&8AD;a~ zmew7HLiU2w#sjmckHMlLo)iN@x;@a(q#}rK)LObBJqm^5>W$UkV%vDx`v9ZrEXC;8M7iFd`p+W)2ngL@=#w~@jEmP731Fg09@xAV zultdNtRF3{Sf$v;h&x5MIK)Z{Qm<~ zg~vT5(N*~P?cANr(I75zJgg?5|5h&`H$TPOb}N|EkX>3!5K0GxJ$MC8&R_Ye;e=}H zoGT6Ft917PKqQe?r+8QuX&15zZQ!_Pe4dmGv#I?q#u)NAJ*~SSuapm}FDlxHo zLR@mCPUuO8vi?sibR2(9MG&Qu13L@f*_{!O&*|&J7mGf~NSanb{xqrQU=n0bU6`G1 zK_WR){s-fv8FF|v3}BqVThe{tUx!Jf&`B0#$$>T+dU+ z^MT-6*S2Dhk0e$&dnPujrGV&>V{heh?R59FL(3HwHSEO|FMesNTID(r!caiY#SJ>ZzlFMUVlU0d`v`>dk!7yP$Vy zu|ovS3Zs3$SQA~w_%4b6La0~+(mB}>&g)>=KAB_8IWzOFp9XcW6~vplNA)SUOD3W- zL!SctRSHay4UpPF^Oa6g7Fg~L0;a?Rm3_G{GE>p56-1PIM;_P*YIlMho!L-T*?f z^F?;A(B7k3GpkCaNShkWD-vUp)m80Fh;w*R0dgXX*Ug59@9q|A4e|a4T`6ny00M~r zBCy!DX!ZZGX*m6(Z{YRk7GwajCP?`PGNxv?$K%c}A^MhRoa&@=TrEYRva$?*g8~bf zt~^&Vhn^2*LcKqg?oZ5$5&&-RzmQY_!prla=Ug1WbHh=v7n(}dY1yqm%d|LX-gvA& z?5&0zPN%oxkC66N{FB^*s7^+C^C8j>5ZBF4o1eBk(nA2mZ-YcW9IDjB_o@OwmeQx< zsLd=Po&mebrQELo>}F-8;Efy#4CB9eDT|~I^s{o<6v<1HPxqinpY}LQ8!+rqUuj))L z?}aX9@lig8lMs@~AR+Y#K4Hc}v!suS>0oetiz6u5P(_>Tbhtb#8^K`Gq{H+@x6uKr z)8J?xZ02A|*!;;M0%eYNCtS$%@o~Rp`XTK!^{c1V!9M=sx9ZEA)1})|7pvvQww1eI zbb%ZaWU4x#bk;5%cisDl7;H;xrlW3H@0q0D3q^lh_i^N>5JZ@D_P~kC)BMf@@*$LT zgXv^bI1{SVnj$_V2DL9coDI$gO~z^l^Ao#UfGj;2u~#(L-dp&dWxRO&J;T-ZxRCVt z@EH!ily3jy)n*n$tIQq|?wCI|DR-5i+qNLU4WFMnbwh9PwZhM${ zX4-mcm2~*HwCU;Vb`2MAylZ=OZhU0u>0{_edpEaKf%BCn5A1(`&baRb9gQO%%zo4O z0zywE*ypr;pr4=6(snxrcztKS#t)B|N20&Mk1roAZxBhI60OokrfjCw2GVH7wuHi-QSMqe0{FvGrD}Ee+J?o)ie6+P7K+FRh{YT2@R>$ zb(dx4HGM@vBVm6UsGi@lAGx1&%mN0NANo6E8LjJ$j=xuJ_X7<+_2T^vb!$WV56!w> zDkJ9Mzj*u!Hhz7M=u>bXn$dW-F%lWNdelH#b7n-$ooSlE^9&y{4>#Q*e^e@bfkw5S zt!#k01@Pkay0xuhA57nM1|*2s>pH-*s3}t1bn9|V)iS(B2DH35F&D%4YmB}z4`tlc zCuKYi!J{7+H^JWbC+Cmu*W1q6Q^_6{CAj8Km8k348lY7bNJGtR3z}S)<+sopLqhek zdPC)zAXHYn#p2aOX;FUu!(vpoUiabT3h0}o8ByVyx;uc^Xp`4 zrQvQ5OyWt)p-{A;hgwfHpC$WtS$8h#;gXKzsF=yawuCYLUCtI;>PfocMF$D&Tu=Nq z7(VmRwW;rWc>-_qyq*K+_@aCJ7tC8PPLPWbK#rQb4z{8u&!;f)&*0?<7|rU`r%D7?A@|Xz7F}vvlFhifX9K;g4f;R z19u1+2As9Gq#sXw7)AQ0v=qshmHu&y$rJfW}?w1CV8-n6DE<#Hp*%8n1t<4R<)}BDOQ_SJa`!ypQWq=8UwA zdI5Ddk0(}j(1C?wE5F8FWlvwr?D1_hj2EA$b(pi_SQq}^lkLKE=~*_B|Ot z*J}&>@g-7Pso?aKU7ec5R5Onmx*{~<`P`ngvZVQYrL%HbEnKD=#gTe2QBTqmm$|R^ z(|5(%V}|wtJ0_926e`y7u5CC1j=L;=r%uEwhd@_=2um!e@BNe|hjTuu4)~>2>Do)~ zNd(WhYLKfYqiRHo?tMAeL3O7oAhNjj+Bz|Qp_04_Pu&kvF?9IF2PvBIu)_>qHnpPc2je{_Ec9r5CMKn4jbNRh^io{cRCH?-OxYAY1 zR-%1S&{dDD%bQ8xkKG}!vY&Db81Vb}kl)l*S0&m~!au0eQnMvTh zLF&9#$UDj?O^dd))K4$<1@p`1x>FMk3ht3iIKQ*zl{!)&E{AZJSv(`Rafn!Z{M8x} zLwP?8x1Aej>#LLnBquggat=)|os@JG$DgSG4bk&HTa3?IsN5>}0ch^oGAW?fgHou2 zgIz!3pssBM6nR)?$$z(A?Unr7=dDJa{}(G+RDS798Q51D3|>m9934cQiNH+6be7mR ziTKq^T(|>*l_#Zzes3@m6a?cjB;QC|C$RaMdl2xq6Eltvo|xC&=1GppwSVHDjWBnz z4v`3l@P!kgpna6dyrs#MsWE&PppwiOo)}%>tMGl!x?4VhG+QK^QIjrQGm)mwv(Vvn=Fp49fpJF zY+g;b2IHTC)0V7;MK5thqEMn5@^>)dn2SQ67a?)LSGmar*@<2#Yq#LQu%fPnC%Ghn z7F{pl?EnQwkHI)G-{UESlPUZsr77~dx zgzW_EI1FE7C}_3K(HT92DP*ieLi611by!Kl70GD&b(|8%IGPwarc=9s04enmHJg{>V>fd)A95l_@KsN;lPpr%Nbbg ztG2*nQp!?Lfi;8ubCCk~8T)i*3p%lcDWSoIS}a8I`v>~8MeVenn7pJHMU_aya-iqM zBoW;Vw>9^j%&6aaSDRYEXA7hqF@aw1@ELz-xC{)WH2g6C(v>?Y_73{{>u=gAq}b-J zJO!n|*<2GYy^h$1aAX+z*!ox*GpLLleLEAW>%d^Y z?zb;l-~CQKycC~-k+DArWVaRR%^3w3sGTZW{eBT!b7D~Bxc^t)bN z#M{a;vya%~hR!gv7(VmTU!?UU4a4%E5p;A%XDE61~|BNKInS@fmr8V9f3XFaj5;i$Ohb;y&hb5r<4#%&Y3DB*tc@ z`;iAp*i~4i7hO>rJVD^w4T3)@=ps>efNJSfsqzxo99t}VTkG61PNe4T*B-&)38#Zb z9eiY*y)_(BI+(7RZ!~?2S@2rIOg6Cv8p|tx`JHIryUdEw&BpMzaYap#_A}Z_I`}e7 z;cJekDdt7%bah;_K$&Z~zF}t(K7m0j^gSqdaO_nDiqW&zbgMaCRJ8ac=g46XILbxM zJ`;hcHgj4U;$k9=quftq^-7oMWUeYJB%B|g$NBAly!x7~vJu!?1HyheE3vj|mt{Gd zscm!Mqsrf^KVEUPyLyn+u^{!MQnFxr5ez2&{QeRy(Pc&gs&b7afcxM!!nPJ}^4{|g zBEtL~pJ6dgzK1Q6zgKG*Km-Lw(zZF-w2GI8P*g8}M+`xYx0U#%DadE^agIfFyfsfp z4*R>mCbxabf)cxOz^18d8(l>%_@{dC(!Iy&tfE=Kd2#%aw4#G zl~gLBA&u$`6i4+VSyyh=6)~Zq07L!&kzhFuIy!%*cb$M&I7_4_+r=kDFZV*J#H>o1 zbA{kd)+axkZhKbKBVJh|JfkU&+4SC=nOG(cPYZyq-X--9oKrlR>AfM+B>Qo`uEuEu z=qTU>w#2^DnN@PV#BSH1nu!#x-9MNK`u8iFZw1U@PAzD?wNqaZyCw_l6E`nr_JDI zFwg~nKk}o+TiJ>@Zr)7b8ssx#Tg!DtE+rkZC$E3crC zvW190a`)4W60Yv7wi8r%V2CBOWuu4^2YC0q&3&6* z?z`!zj5M@ZXH3s z$Bb)lxL0}5BQ#C%83(dY1@+e2nvkF{RhO37diDB7TEjI)<& zR*tbf+1ZzH$jcwgABO7*vBagMsqCyj|MR%0jwROZ%q@p@DkU!RDpC&kVhC#6TAxHM z-&>H~jO~EU60`O01LRRWmY+yjv~2yL%7kIk>05E0#EcKgiK*MShO2!j9P_gZ z9%IY9&~$1<=Ca)>$1dUjXjXKShqkzWkOVm5SqCJ&#A51m&0s9bW!*L++wRk!%lBHd zN5!`S1Ix2qH=~xQkG%c7=TEDaS8$ubd199q2!O-0RFQZt^vvp#{dBRu;r7eiJ=UVZ zrwhWhBe&R@?(%-P1>iwf-JZi{?>$;|S{jSM7h&91IgB6|i}weEFFQVdB3OEpeP6TB zmhQbp63nJ(SG$V1MqWSW9^X(T+BTn~rk>HptH669S10U$59yU#-+H*)D@fTvi z$#_~j6@XrW-|!zv*he*X??b1(RXw)u+^Ti)e?CBu=LnO+P@iA@3R~?NwrO2 zS-zsfp5GEmU}$*p#(km?V>LKrQ$_uSHkn2nd0w5C29{{?mtXY-rlE7#Mw&N<*l}OZ}SwK;8<=?A6RCM?TvwS z_Y?Z0f521{d4k_P-hGXTDct_SIl%F=p;V$;Z5kN!EuODuhC%9;85lpW|R5qQKB6gd$J`^0L@X=`kAX_KFHzRkhznuKeR z*w35qP+RF(wp8)ebULTHbk;=B48#Oa?wsoEtzDLC%f5YnKQ2V!MEFv3rlCz4PDqhX zebUV*OR1UIAMN{=T===$^GM5#0{-le#WHdrf40#+LsTqKZL)12G8Rak2P8r)Qj_fN z@_DIZsUm;{{u8UAG}+SJk|D~w{H>a%0cv1QY2~dh0rab}e+~Ax?#^BXs#~!qPXR}QeSe+mvRYJ4`ygB8eM5PGY$H-D1P#f z5PyHp^?aVd3j0|x_&Q2-4h-#6ye)!>gCb0&u$=);+HNd7n;=PUER!9J`&CQ{u#eCL z=}Xb`&jxQNR>|$ST-pFv6NbwPLQb~5cavsE9dxGsjt|JQXX;0}5SZPmz6h9ozYX3# ze|1QXsO>CX2tEnZ$Qz^BkI`v9K~PWM&OXXO2?=fw;PYUV`Hm9;k3n}AVT;sDzs^9` zYj;RTb#Q5t!K8=tRv|eB;RJQ}y}9;7i`73K1Uw7GbSzM^Dk*nvov@~5s?bqv(nuRx0IO*8m;A8HH-dz|}UZIYb|VA!67apw{y_(vs+tcOc>62Ulz z&k)q$6munfjWjXAkxa6SWG%e*P!oTBxI72KdA~42pA~-PmK$6+CVCXe|kuey+|Pm7rbtJ zO*^AE-DA;;BJ16 zaU_3|Jqzr)9Xvw?K~`MYTMrf2WwxUL2)b%J=MR4Wf&^8iK-(0W__TVg@3eE0#13#C z)m2t#{5WlD{tw7j84{O*>nO^ilM1oB(p)ZoU;Yly+{co3>^N$E#Coa;lyt3snvH>; zzry_`3A@>d_#yM{B~6f`XWq|NFKL8kHjvL=L7c7;r}8u#uCFzH>p35<=iLu03fTaN z{LK-^0&)s7WJ|*$N`G#OW>KggRuZ>#FG4RGO62@~p!{OBRWZ@z3*b^doqL&(yrJt_ zi+-sJ+b@Q=wGH5#B# zP&Wi4S{jI>OS9f}pktJ07=$7}cOTH+&9*j=#C=ioE}(a@!U>UQ#>n!opTY?8xP+{E`CKe&}jVpVJvPKaRR+h*0dZwmJ9_nnuW(jCwJ zr1ZqOi(&jc{Ek8FG0A{A&Fv4mmZOL9m@rYGIRnfx$&3{^t)Eh*t1hjP@+ zM8z7-sVxieT$&G)urNQ?-IBg)XFnugZGH;nvq*#XOFr|Ed6xTw;0b(Ep3n~C+fqr! z$r-*U+ALb-OHmiW^QXY-LlK5LY(H&L*;IzGWPnY}UosKYCj~KwjwV3p&AxOSTo+Y# zkYkIUVOL#^A*ujV@EL>@Q^mHUDaon>AJ(kOkuqSYe7u&DBn6Bb)nIlTXJyh6x26rCV_L}lbn>;SXdE8vsg z@#ia;ZVqJYYlomO3VJ9y#6de4j5IkJBltfE!@ii1=#jG`XO~KAf2x4&b-rO+IUvt8 zugL#vu0~UP%c%Eh1q}ZBj#V=^t1Gq)7;Jm(a*|Nq|JKK3A0IW((@Vsda=|pE*8J@_)iAdC&i$CPlx=l^A;{^ymcg zzT9l&Z804uP)t0DR9AI@l?s=AAJm~A3BKvUzuhzUA8vL5 zcSMhL+kR1)O<6p06rSc5R&XM36z{8Ax9(>Ps7>tK+ArH<=^$FO6QBRC-h&~NtT3gy zZNJ|B7GB5nm}1+5IHy8BIXn0LRyXU{^@4Of0#(e=2g%QAL(O2)83;RG-|#Xh$?ea8TTD{aQ?lPX-s3`~x$P4t4n}$KzzE|MZ_7 z0_2?1tqn!|-a#hP6AUA|6|&UpPfL$-T@2Kl8mi7J6Jw z&3L@qYI`^ZlWPZVtHRQjc8ntv*oUKDzxDNI{gd&l5k_`|p?TnPa#Ff60sAi~+KIWrug0Zm<0d&^_dy@PGF78fLi@)(87_ z-X(-3*6t_wo4-ri<92CBNFeHpLF>|+d>Sx_Uy0k{myLwNSRJt4*YlE9`PwJ$bkIQv zZ5Y2#E*r`z`o<}Fep5t+nj0ann>)9olGG)H_7vGxnme-)L9)M;R>a9sZ9uCvIa|ThA*Q1c8Zs<0e7ya4NP}KEw$eMsua-Hc zrYB*xo_@AN9PW1E^KE?=`ow0xD4~=}TL($i|HC8rHn|wxqN3q2Q_0u3Xz--9={$G! zfQWS;46V`KfKNm*U_~u&jaKpfg37c_--5a1be7P%+JMrxHu#%lNeF#Scfb-C^pf2_ zWQnU2ry1ORpznuD3F15SQKWh>MN!O&4Af@V)~X97Y1&0;&l2yz@vu;UB}-Y>kd3^y z?Ks`WS!YTWW>Ka`W9J?a;S~UdWnY)fXgPgsH`i408$zkFoPC?lB}UE?4r)BSiN*J-na+{T zI@woRLnp0K`V8%2-ulbLcF{3xV&x>+n}5CD)a?aMMxPCfVzEfM`9pAJ&ruhz#fBBv z4_=g2F5Gj*Mo;=>%37w)#*uv|Z++=LlTlYIT)Mc+h= zxHP%xy`a(fV^$WsfIYV9Gmob#&wbjncO_RH;!fd`3ix|cXgp>Hg&gNDD^3O*7e5b&firtQpLF!zMk>sjOfkE z9lt{jPwR;}T{pZrQ+v~A0j}LuqKRQKYaVR4C-8h`>#@L_mKmDW9g{b?Pp_Q4>74H- z0T!OZd65}1Q|C5M+thBMSzR)7yXNaVD%_3-DAurX$LXi<8Gm_sX>aq+ab*AkPgg&e IbxsLQ0DwVY{Qv*} literal 0 HcmV?d00001 From 3e70c86898db30d1d45fe990a69714cdfda7738d Mon Sep 17 00:00:00 2001 From: juneeybug Date: Tue, 7 Sep 2021 00:16:10 +0530 Subject: [PATCH 07/55] Added fig 5 --- Module 3/Notebooks/fig 5.png | Bin 0 -> 439417 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 Module 3/Notebooks/fig 5.png diff --git a/Module 3/Notebooks/fig 5.png b/Module 3/Notebooks/fig 5.png new file mode 100644 index 0000000000000000000000000000000000000000..d4dd421a597fc2c1da141534b97ff5c1935e0074 GIT binary patch literal 439417 zcma&NbyS?ew=IafyL*7(?(XjH7PPV8uEE_24gnHef&`Z|5*$L)!QCxEf-_%!_s(1M z-rQMh{($v$b#>J#`Kr#@d!KkM4Mj{eGBg+%7))g)IUN`n_&+c(aBC=VKnYCpj1cf2 z)=NiG2Bu+};t2SF;2^Co4Fl7hivDDc2z*BMP%`#{fnihq_Xk@kp7RALr1h3J@|J!7 z&f43_-Hk@i$@Lu!4;K%&2$!%3mmm!nmk2kX2){5%u2B>W%&Wh$oV1?5#c3~cA;qW< zQ___1K@U0zhDg|fPSIXxGUM&|wgXu7SN}y_t46zWn4d;QcJS>zTP9l87Z?_tNtn38 z;d3}>&%l16pM%%aOJhw}S66kA01OSRpSm5{n^V2G30_^mE*Qv=UiuGV+Oo7wWe-jkpwMWyf0aM_0cpgCfRQq3btE?P}69{BEfx@#~A$EaXiEy)0e$#%nTL$>-)ku&xH z)M+F^+vF`!pK^`r-{a%Vt$txdd znINiRbRg)n{7{%PQRgEeUo?QlA7+=%PT*;@ndgdqKyC!53#vHk7lCX#-+b257D#}g zY&(Lo{=1+>>whlz%%5P2V4^QtQ)wE@g8t3|3`b5$Nl8KBAw;qI`H=#Pge{J-;KRLW zAf>FVETe6|&*%TImj36y)Ph$R9oOw|wL~+`w0CF!|CsbYH^g@5hOQ^A@t!|Yh>ZN5 zJ`;N13Y>mgrdcvg%7_AL(f{`K8}F9QZgwq1;qk@)bT~U6dC@LKXqPe3j~WZBNc3$_ z0fzlJMb1UXIE#$%tE7UKm3(UiA}jqDZ&k1d9m;W0QBiVoveI5U?DfsxfI$C;$H&;% z*wODJ-$$7c5Ro1p9unN5#|I;%?NGDz_1D+eCvw<%+sU}p!7yJ6Aa|D8IdYihCL8WvL!~6!M(76>-UtVW^?%Ci^U%-@05jdddjI*pe<2}%A&{^~ zdj6}gi*!=mGwQr+WTqSrj0Ui0#i+TZ z-vVGG0Eh*y1MXB&$P(0Fdf>>M+4>E_^1d{z-$$y$Nw7($ZBpa9s!QV z$)tN~Ob+sb;3S~cJ>0=3*g-%@goQC5#B<5(Pf1D|(GgK$(c#Aa6kugl3IW^OslP4Q zKN>0*1vY3FY}=0?MCPdf_4B5~X(blQcT)8&E%JtN>1~qIA2Hdwcr#QKNwsR3cj$-- z3ESG+lT%X@k?6cEC<8fdE2^ujQ&X`EWu>HGWCDOQM^BI7_UZjfBMZ&IzormS3SkR!WWnY=<$so@jv|<_%HJ#M62^MAfgfCb1>2za=-hm(hw1K(0k_w>}fZ? zCN@W$#vw)*zU)sGFliLt9af~Gp`)iG4?KGD-byu$2zjO$nF6m{tzrFgv+d}Drg%|S zVG@6=-i=@X>zZHR)!FTByUz*a`7-tugR}IExg@m9ugkPRn>t@dMC~;n%OBjUOSRTLLUGVN$lXJKwwxEJAMd zq5QXJolkz5oLFG>gb!p!^6(b&a9tVtBBu#15I}I@3#A)x^DCMc=K=WQyOwI zvZiw#U0qoj85|lp-iYxn5#|KcF@+-4f0OX{q*4w1gLV8)V} znfY^lJ(wqQBQ+^5FE?M@)vAOY@5HSmoPNi;U8v7N?INM789}>3j7r8 z`MVy}`1<67t(jUR>ifbw|KO-{qMny-Gu>pB*OH1V@I+m0)3jJqQ*#k=5oFk~dvks5 z?fsP=Lf1W1N=kYZ_M14YIYe~+L2dfUlf@pBJT$GlyUT60)ARByN|1#mFfb4o2GU@B z^`*KP4HI1!a)-)Nm2pu+Dr@q(Ux0jj;o$V#?n)hH11+>|#99&ax&;L|8LO#H_DlvO z5_4*(DPdrugKK0nmLTgE+7=e(=E=QpZZjuxIU7HJW@cgQDfHW0;0)gXKx|>urt;|~ zC$Go`33^#D7M6EDM7E#@vVk*x`o-%IdN=c$^s}b6w!5`8N`e#Co!247%jEU<+x@;Q zJU@kI;Pto&y$Cv(E|xdhket=@OAVwvofhwc`$?W6!p6rZ#5^{!QV^}15beqM3v+uA zxWzmMGm#My2i+Ooycu+7Gj2h+50SDet*%NcvQdf^5fK6Q>BH>`GC6rcsR9UedP^xv z6?j+%6Bc%gLqZ(2INm8DT_Avek7cf6_#U*ZwtK`30o$GoMtOicv*PMqAaw!9x|&;& z_jeDWkqKX#teTE@R8rIn;-64i_HUNLo|lfH;jYw}L>L+j-OY$=_89oTbhy=sbS6h) zMxLJjE$r)TnJjd5m>>!+>U~RVa}pJ_<=w)*I=P^mS%>f1_M60gU@v_9n3I*2Brm|n z2VI63SQrS1h@h2t{+EFuEd)3aHrep3e5MLHD)d!xt6OF;pteZM?4Gf%V(iqL(LB90Wk_ObH~ z?_v@yt{AX6$zShB@>?C!cx)OYQLJ5Sm`DC)T_=jrKb;A>!S zV6PB3LaC22f!c1Yqw{C|@uK(fy!#FKjdpta38a2B#b#;R{6w(M^4t5pa(VRDR!Gh7nfslGB>@|&d@UxS940pZp*s~+%e!u@6weEKw+LizY>Ce%PHEp@fDrGoaLO}1+p9yaUoVD^O zD`KsLa%-KQ+;DMT(PK`sEJ4Pvl7ux96yF;sQMkv@49GJkc1Baf{+9Iloj-m1_>s&% znB=}ny`b;%1E<*U@0q~vRp6(in_t?PSsE3j8KBOWc6N3?A2RcgzPyY}NFY}t)+iS9 ze8bt;(1!*0{QT6C2DuQdyy4YVi#=qrI@M@P4H)r`3xyjw*YheP`NPD}hwkMi=)T_L zb7G)nb?Gr^YiqlOyHz0IKAo5NRU)$WiUY$>i`%R-B4V&*UdJwC?9$_GGenNwR*PnL z^I{vENF8#mJ-8TId``7oo0O~|r?9_kN1qTK`@zeNvQl_ zu(CGqaXt;p$S&~mShY*^_0_Z2ch;@-iYq-cGBM_ITDE(C(KTsg7T^(^Ut1_DDcP9& zg-cEz^)6~Jgxmq>_SL!z9af&Z1u_^h-_nvXk5?RO4H531muKETJEJ6|?0vt7X7=~p zL=Ij4$-bBu43&q`=tcH>i5ru}$kYJ(Z z-$_b?cdJSHq)+?NIA&2Jsb`n-(e5tT;3`atvXFi$`tC#uNqypRry?VB201^m%Q_i5 z1(_CkQ20CWc1hnhjgeqt6 zSG!*sWm{!{Yf&~xJ3NLoDaB3bx0v*$lMvjbU=6k2+T!Ns22LC(;~NGB|A1D$kFB`X zr?P}d9C7e+EVWY?~p#!w5V?r5z4~(?N8f(0@#rgr5)Tv_z zv)z)K>gS=QrK2+sgfo8U&}N(a_aqVxjQFyu^9cIQeJ_2>AD6KupDurnXFi`sdD3(l zBzZ`hsbDcG{q!j9b8Zc9QyRo}JX_EK*+tjgoaXZ)Z-~TUt}q+dp3--7OJ65rQz>oI z(N}D`Ztv_Y%+J$Tlp|#7tzx8sjkd$-GaX1Gb}aI^S;r(=$nhDRg|sZ&j0a3UZ6bfY z)imNZ^D_$6)3f8db>(jEyjJ=$+@^T62`eKzY*Sv|OqiOIlEM=ysZ&x|_|W(S!6-#2A` z!e41GW=MH`Z6oC{k&kNy(2Wuap28s#wqP;Rl1+XeZL1828Rqb_52{qoB`PRwgj z^}T1#gNqx_=YFxN6i27W-``qW_PL(4$5My-U#$0zzg6xFHIgDa7>7k}_Wxb3*?%df z6Or{(@65hsCw(Xp|%^waZf3Le}?FsOMWQb@&L?qlE9 zyN}PzNP7N}Q#EDPoc4xJ8u=Uf>)7B8A+<=o+}GUQMR#`INp<1d#*?!8a+<3U>N1aT z@U&?P9LjZM%BjF=8OOx1H-J#`v`#0{+|CT z$jf8C3LUW5qqEIg?po$`&^XxJ!^E1;UA+=u3I^rkX$4g6_ERR{n*DZkWtqw1aU~?D zqQZp)ZX=*oR4BOc%Mx#&?ckFV#_xt(8aX$04z(JpZJrl!M@U+M(==ma=U19eBZK^d z9-|Q!Zi_30iKIl%_s%f=n!U#}G((PcXT<-mzC2^w+uH{O1n~3oQ{Eqrok)f~&sVCB z{UPoCVB*<$VTKG6rf?8snZA^Q*(LG4K`f%Z{QX3o9!* zRXHb@hKh;_;27y@ihr1$?mB)#(x&)%xOKF*M~xG%{eo&yr8Yd z>13r}G}*;sR>O?t-1E#^mCM&uqhW7O$e~Yw%x}VsG!PNEO?{$j;;*)y{e!x~roz^C zZEY<|HmYzi0X;a9k+48AY;e8z5m>u!rv*l~0w$`k?J{I)HDzT~n?YG}oqq!%m)U9| zn}0u2*f~JssKX8a&;Axh6*41zrq%|v6dl2Ee|K$e1twUA#2?PeQ3iyH5TCAuL2BAU zJp+AyK7q)zjE@=V>4O_jKH|1lJiOEar*i>U`-peQV}F<0Xc51%P$I|1baizrDk%Dx z^J$9=e11DJX#AhNmH-N+|qEIe*oaMQ{8(J`*O%cdkMt%xLv3Yk_VRE4+0@;ij7 z*gp*n87P&SpuMOjEvT|7A1ciT22-TN{j@~FN5sVOfHo$IWsZ*8Py(TIrU)Dle~E}F z-`-BlDRa|s=Y4+9scTT-&t5*v>9Ua1kUMXg8E-_DdGPxj!Q64!y`S9oE zNfiBPyz-H<+;bte7`&P|BJG`7RX>XN%sVZ}a)`)9Agj)25(hGgjJhMKVr`S6g6qS448q&#hRbbIM}Y>`yNzZhH<>nyzX-Bs;Kys12<3P0oe zzaS31<84YfLn|~%f%{KIUc5s%-VEEpIu{14|MMA1SVKmgb-+eTVJH$66}1xE$bAh? zPF|k&{O|Sk?!iHcs2>L>XJc(*PB|)6TtQKh-MHs2J(fCv%zr;WmMYZo_cr+D<;6pe z$oAK;26x*#1vv9f148^+)4aAH(1f=oIR}cMsp)C%5eWYvE$u>5{em_~!QmJ%$ZO_p z49;hBu06-D7_tu*G;!~(#-)9<2}&QUps1=?;lA8SiGekkWO;Jt1hw;Fy^ysnCMFE-`_HxGfVue#4KNH}{ zKBW9K-J7j+qG@A%e0Wq*RW&s|TF?szCy@qn$5VOr^oUiISNNW<{@zXuyUuP54tRZe zRzlwTO~?ojG+bQ?_2#I|wjoQ`Kk7GFNHNits+dg=tflDU!|eD>GH0Cq!pp2!&s?f~ zsAR5>MXM4~Ze(d`X=-Zv8txCJL^@~ffB$nfQTeC5IuMWFJv{7jjG1$V!E(IGt-_ip z(`H;*S^lA-N{NL`&wDt}$DH7lH=Z=k^1S4{tj&t%NFbu)o-LbOwY9D{=~&;wlsP7k zn~Ytmti|wFesG9cue>3Njz;dS#}|^9L?l^G#`Huw5nzsy_WpZXYJboI-?CQe{>M6w zlK%IDbv_RXw3@bK`8ii!YM!eQQZcPr{H$oI3ADpHqdODZEXlRETn zYbNC7%F_P`U5N{b>UL-0^oZpnx*bN8vLcP&LN+!G4GbX5j5e%MjMBo+^01nmGh?5} zC`CKy+e2?yEr0d9zXp?pqAH9Wpp9~7t6vTS^K@`$0F14Erq+b zdUr!ZD&((U;Xg@AM&%3wiTV7olMfKS_%QYNc(JyXhgW-35?7Neo_pw%k(AWHHdysw zs%Z3PV1kVx^FK>6si?XdPx`-}I}OxK!8CusBTEH#o16N{u&6%cnGxvq(bR;DjC^zi zEDJSA@YEt4q~~R2Wffg1=$kUBXt77F(a=aqP9Ds++Pl8Jec$!Q&2{A8aQ$H%-M%f&S#c|l(-(O`REcYA=0-~P-oKFD*#U$esofy|s0jVL+lqa8Af5*UH; zz&{{xbaeD$y-k#tH<5etOMU(0<*@AHBL5hxT?Rv?k|V*@9Nt0+H*AeE5|+gx^N;^* zB%rKS3luy_U@FXq`oD_)E+h#n@BTlgf;$9!i0M+1;)nam#?{pofRR)Z68Gwj?XFl2 z8$KzPM@8-;3pyZ#Nrr*m=;|)~O#P*f@AsM%QkeH^b&c`o(qb+_uAaXBjrWRJ^v+0c zjPh+SzF4B{w}$qH^78WT+912=zNS_FG{`Xdr>al>3qgAx9uN`|5@yauW>)sb+S-C6 zSs}McG9RBCa1-RmkMnb?nnY8W1}nz{KTHG(+^~ur{NK$BgU|IO4I;Z~pO4JLgqg(+ z@dU90c4ZlBNjW&vpgc*X!#~nsBc@Np5B8 zPa>`+d?}5F%8ID>sGYgH4hCMGXv)(nTH@iAbF6!EbsVQ9taWsU;zgO_0Gl-Y>h*2g@lAD0BBZ zF>X@ogP)$CWrv5M#N%ZW@r6_dmcWFssA^7h7IR}`rvg6I;b-RCmCWD@4RJL93iUs! z@8B@&8S8_I4I{52{UM}BAfrUZsT}vf#_^_hlB8!xyqbjLO)CUjR77NJKsevTsFt7c zNcOI7phm=>nphl@#uY)3@B`P+DLAEHDuFV#Nky&y53~yw+{Lhqg zX)ts~TiMn+*j{5P&ABDT#F9mWUGbI z-@kvCD%ki?lwxCHVFAss==R0j`}*~3$e)AHSy&YG^z^;Gy_lFcgoJ_(mi@(kdq3Jv zmfY7n=VoW23oAQkJ3D6|yoa{EXo1-9aAjcup56&Sq}-ev8XFa>;J&th{ST|Tuw+lW z83ACN>rg0)ePC6d06ANKe(6TgiI330!rc1${PO%PRLf9z;)B&{+AL0!FhxpLRaHTD zHjNF<;l;s0>{-ICHZLzgvzeHhdOiTx7l1f$0H81%TU|rVx!3hSO76iXI8-EtbVsTX z$-&t8*J7<9K+(|;(F?e)+dX6(BMn!6*Bgj6So%poOlZm3lY)Eo=TDP$ZEfRdz!rt4 zFn~j`5kNTh?hu~O*QN>tXNtxDPK#cc_4qfpw&GI)(KnU9l^4b%nOq$XR?-LDqfs{T z4^pADT_U0@%PR#11?1%9&Mq$8@aAi45wNhuB%w9f^3oF1#8Kt+lFt*l918_V+4|S% zse{rFc7)G*ksm1LIub*<(+y-)y+UNgcl8Vme0_XqFSR&Rg?DyrJ7*Uc7fTKG4Q=(M z4$`-9>jF58hsT^uodO#ZM8v_-pCl7wLOk^8uKS`d(M7T3 zM-i{XdQU)sfZLzzKi{S5PA)Hjg%%1?<~4oY&74En8Pa!gfFPsSzk|ePW1I{vM?Hi* zhp11f19+b2mX$##y@L(9~U@%;$O*B(*P zwl|-I@r~rd!X){uhXZJQ6kPQ6efFjb7Wo&A>{Bd|Ct(v~+3BiKovh19+%v?-wn_`>ni(`u zftninQj*@;MHf|Z$(|*Bb`%jsXQm{G;~%l8%HuZdtT!09swByFg`RnIu*CS78l+5E zBp`;f(2>#Y1K|!ahZ$cR&N~JuA|1;re;o+q?OpiXg%}(vC-)sV-3|*_^KF`*-R=$= zICvWN_mN15uV#!QjOK&2%XYrseV^qLIvRdV48vBpd^i2fEQB7se-2n1go20)Hr?x0|zbU6--3 zksiulxUAgV#8sJsLzjpV_~xXk<;3v!`!lj&%+vaY1|s3@ zJ1B_(1_E7Mb-{;nR#?`y?(PB`9b-}*Xu=;f-_%kB#OPPxf-6*2RYfO3`*Vf6*}R!{ zxy47D9Aa9+^#0dN1nf0C3tN}x6=Ni`Ty|Dgj_l@C0r%Wov!^E|B}#*!6)H+Cj)kFV z;uAu}ga&WjoaBv@ z=gDy=zmW%nFTVj%%-EQ|CX<62Tr~_eY;`zmoU&|+KjuN$8OyGhU>6g#VkM6| zZkt<5g^ZefR7YAd3F~5ikOE@fR!0T|stY8#^I+7PHDO8M0xeG?W1LW|3AIgRitnO|s*37_iu-C$ z#8(<_Zrpi~e2;fmSAUvoz&qlZnZfQ!C*V=IQh_JbyDgC>0^G0PZnjKh*|24Vq}@V{ z(!3)--q51PltjeD&1TQ;BALoe<`WPSrle}x+1sZirw9iIxtzEpCM3|3CKC#>H2oU* zwMAhqjlZ+ATh_DtmUDpJ)K3_qd(R-(gA_ zmTv#rzKyr}9rw}G!cpX!)|mCd#(-9ghQ`BUU#u{t$v`bg7k}jV;=~r>{Nn537^xfH z7|y2`V1hk^jp$*_?cOB!mF{&|KU`PdLSR-B#;byy-Ht8CL1YcA36t7Ba>{kHEjXC7 zSf7Uls&4z*ho@f*abM{RnH&007-8)U9^<{cvnm=`5qWrM;*qAHBnL*c-0n(Ff!NVf zHKK62`nd2CPLm)522BYnmTnZz)B|J*E%HSFg_0TAl0xldV3r1J7ILjx2yd@ zk+h{DJ2W&j4$D5XM7xh`9YZ?Te=8m(M$%OL&P(yS3v>~iJx~xm&}VZhF;RXLQ5LOU z3{uimRdg#yA}C1XL`dtec53@m{_dsWELp|SKuAZ==K$Dxs>pk~=LnZSx3`1A@lX>3 zAi(@4%ht{UAxl$k&R#!YkbMW^WhvQVkdT+>FW%mAsG_Ub+=fEVdjLHS{$K|JgJWbr zi6uVKCDwbp*EV!lleb2b4#ew%_NqB|{b`;f7h-t9(7+VA+=j8agU$Y=6tC!Rt7d*` z)|wuf#QGxhJZ_~J!|&0b&rJq@x~L)h^MUUMNk4Wv*{UcjfW?~ZlFj)lKfQ0U!kjxz zSX1MHu#4abkxme>zL0O+jnp>wiSP-@^_%YR5mHgTTrX(;js4@)%?%dP6 z6ubINnnf~F>MCkaPY063cz7%yVIY901vUT%@&FtSF)_%10A&mPkO`ZKF|E42y`5$Q z4He6{(_^md=EV1GIlH(x#mp=vni)m*c`h|HnlQ#I;>CZEn&_b?AV2KB{x#zM_1V;& zwp#H=ViA{Vn}l_lwW#m;(5FPZT*dkJ;2teW~sH|M@`L{yTtyxieFHj5~A>_m6{Q>B_WBG5s<3)^LJut0+bJI~gsG zdZ$Jy)RLjQm)1~MP3)L6(((-s80kttP$D7(})a`o)5QUy}od{V0?@=?o0x5g*BEs%Q!%FMYlhH$8x~zv| z`a|#EF{teA5h7#veYkFJY%B>qn;3>?N@#9^M#4ow+>QGEX4c4*Gk(*5%r*oif67KV_qiGnI2{l#D{s*n7JSIC4P`lcYbJ zkv!D77f-7d7Mcdazh3k0ZeRP1oi;QbPVCY+jqD9n9{e4d4e@upyNkyM_*U`YJ1!e+ z2qp~EbkK(nA80v8BNe~zp(Br+08|Q@NtHN_lzyxup`XVr%W;Ji#$sz9kiZd;hLKK8D>PAI=bLoy1yD0XRwj z(}cS5`JnjKZWkm|yTeV}?qH)oBG{kzzrsUr|?12L{52V^ddq z0-}-#CrC^w<4PEY)zs9`u(0S{7HR5k!qVD45)8jQ&6W+j_ucPbguaUEar1`V7=|H+ zA~@CIcd8?R3b8(xQt1#KQj-uMP~M)dw+7$y+zD3mW*@Lv*O_|L2&MB!f|`y#OY?Qx z2xcbvBw`^jwJ4-v3Q+RL*&Ch$EA2KHu_*^ZX&J1dSG2Vq9*lB-J@@OEeL^(!P*O4r zetLZ>dA-W7E+L|TVSwqvsgSF@J+5u+eV~4gh)eZ}WHCdaSnhv0=^rYhdy2T|=)a%x z>wjG9dkO7p%XuMP-$b{(gB!xPv>)T)H0!*q2z%8w4-rQP4`Er;)Ed-3Ksx$9pgf)j zUC>t1!&8w_-TsMI{f&-}9dbH1TI|2AjHWLwU1JlM%FbR7Ea+`MZ#6nv!w|a_O(){_ z(XFzw0ztQ-NU7*-YkkSrRWGOjeHczrvXnpj7^l#mx%5QMOnIWlTUC4xQwBq=VIkITVt+J9UbG-l$Ny3>gaZ^5T)r$2|pK)dYE zmZu5?oSOAPOSH)6dy_{CuXm}hD3*gr`?(0<-U_a)iX*5tt`g=_G)82#@niHth?B@&E&ADyoMWxPCn7^QbAXRW+D z-EL3{hLn}c)VK3OHJ8KsovaJdK0Oe+_604uoi-xWB6^p#*inr}-Tt;ND}!oHPmL*Q zDCbz#L?vRbOmmJ&hMwLbQwMt-&F`h$-Xebc1~el7*&?qXQC;|ymxTwg^HKR3UO zHZh16C5?oHM5_xZ-xMr4H90}1%?Ap1(Nbzy8RTpmfXaqApW_;~vbq}?7CR@rY-f9? zRLw?)Zkj+n4L;2KQ1&5KKgC07Aux*D=dPgqTqh zjs!`d=ne3$b#1X815E)}_Cl0hgHFZU!f8*tXq^%gZspM&d3rP9P1*@yV$Af94z?ILWSvVjjryvJNrTF{?;TW1b`$Di3&0Q%u0{#53W0X`?_xxll zV+>|j?8YbE=GK(votaWfm^oO082-oP4>gAi7G^Ey7ROyK8Fw%H0~d^H00-3rBHj?J zKb!I6s6u{bZ`Fv!;TL|!wZ&dW?HOuYXzQ9T{F>ty5zzR%|Lf78*-CtjFmWRJE%=ta zHTH&-l=gg3mIqDgq}gJM#Vq_4&X)E%yD6F)zl4-Ayl4BC%HoVplm9Vi)Eh^Kok>y2wnY2 zQG(O&&7Gs=HnN(u`^oOoN`l+nC|}4A$8)>tFX6q9l*_BsYdk*F=5^C1D{HNkF&vvY znyV*Ap7r4@1d}`sV!`ua4wt)@?8najc6gR!P~} z<)p@?#%V=T48t9s7*Kw_>+83#<5nA&YI>I;UyybPL$OJm-BfE?s8hAt@u@1bX-hTfgr1O)TPE$vN}rc zQ;2{NHHnNx=*y9A_0TYV(^V`p3F4>0&w&2&NYG_x+mq;1TC4{;RE)Rda_eSjXnL9> z@9blni$T2wW-j^#0U@P05D_ep*t&$m#!VQqS*pC)JDm@$ z{`{)fNqi_K#AWnp)W8zglz&rZU~h<9LrsG&*I}?X+q~O?$aKlFJMe5bK2yl`I?`?u z$&8~Rt0L8g^|@FbzxpBFs-eIX5tMH?S4AJSZaUbwdzD~eUqf=2=j7Mm9mD>IML=hqCc!ajerNeIu~Zy*{8k9A4uiqRs1ZOY zl$4a@sLb^B^(`!7J|`g}vqomD?p`J&^Aq8p;!mJVP#(P%NH_Wz+IJm?-i`nU%g;!@ z!rhi~z4u3kO3Kje!u(s5>T}g?HFB<34iZBxP080>{h0*g7@9%*Qo-#Q@Pt8XkGF&P4c(x@s5rBTl9<}kRM%9`NYAqZP8pst;_PCFOHzj_m_!Wy+PKSm{6{wH z=!io4=LmeBEsv7GV_hHx%A`N^xkld+!N6LE3!$AA_67E5ScU{cvap(_X4KFb<(UW0 z^)1Sy5#seAPk5L^1u2o_t%-+GW8dxZUw1ru=~hv$F!Qa>^zYmc2exhEpq3zxBDP?s_Pux)b-3SlII zulVTMy^2^xyo7>|;lx}H*MQp}pMsbQgX$2{nnC3!{RgeYb4tdA9v5A-B|mfKEnz8ThAw7p+c`JVkI zG1qEXxky}$hMz$QrI}rv9aEIYu1gEsThcPnfz-6Gr>6(V`)GVUS{i?#NQoIiGUH*6 zyv!}kil*hl$r@ESKahMC#=r?;@Q8e2vV6*PC<#D%JeE%+vZ1xUvEinVA9S)oB_tvO zu=S~e+@n#yx2MK%AYy#HZBN>?TwCP<@juVX&MIiP5&bVWjh>YT4Q9`)UI0ItD)|b? z=&bsC119Y6-gK40OdXSNY8W;cMX<-VxI!ZINCIa1Uncrr_W$V^1L)cKFfy-h8pEEC zs!Ntz9k3w`8SZv4ogz@$j`lVVldp%r97;k?n@5|DqD);JKgX&V8yf?f+)?kLfPrx? zmrCmB^W$RxTZn2KIyhbL4SF8AsWlj|aN4$(fHKca6e3qwHzFaaQMQQWLu6gmPMa%6 zH#s~ii$fodB=0jNX>EV?kdE*O@i8PL8ufulb9A*zTbn;8;u5Za8;2NVwtd+{k%kAt zHWP#?LgH$&AchHFsd74_#7$=cNUCZ{f=sF~l-Ugk$o=tL;ESoNqV!8VYTvv<*t-T@&wLQrhgFX5}#l3a@iK~UNhe?LimL;`I4SzH%-Zp1PvLXadm(6I%jmpgw31X`gm{MX* ziYZ8g%)k22ZOO)_hYpNxo26Y1m~VCsnK z`unI=wu%X7cM}}z_J=<#bIMW&@VU+L!%_>;M=VEENg!sN0pvK5+ZG@l1IQ3z=6JhL zfbjC^lU!XtpkE=Ay*tyxxP2Xbq^6MYMwvrjx+{yN3IuRuTzR^Ra-4m{m0b!>ch0;( z8=HA36gu@o1v%(1nhEV?+K~=JmEvHUB3-Y-?uj*IenGwDWT+)dbbuxJ&$y;F?(jD~ zgL%bsoR>0j5NNII1`zQADNS#i2VR6|VU=03oLt<8Z$nD^!@NOtjg8b_MgVW1nKe&R zvbw7ak36a7*cmE(iw8KQrd@V#+mD1Q=jU4lLw}>QxiQS*XYQC%`EM?igu+5n&e(Kt zBy49_Cl*+lX+F2q;BAF@q*3ul3|@76zaL>_N`n|4IfX?3cI%Z$^?o~{G6971K-vhQ zzlh@pJ8>~KjG(e`m_Tom)ierHQp62pL%4y1mY{j3w3vV$Uv#UQsHn&-(>Y>%tSh8V zeD13(X0iL-WBpogCnNIN99mpnA~GVD_4(hWiXA}W7T)#_FiJ*fb=ncJvYiPvu_m`cv|)Kr(Xj!5CdfnZaRO069pNd?E3rH^T7V{sd&&-64={ zUZ)ps9RrMIOswLks!H03%4Wo`^1;Y;8RDjvSzx!N6Q^DY8bYIV5v3NSB6pF52t*g$ zIXGJU<}~&p={gTy;><)P$jM>7yCX9jOP9y*p~Eq*4H@)~0Ycjuo0ymn;E@q)&G+dZT5IMYt%XZYvN z6w?lnJX97YM%&{=7QfE^>?1$)*;ZL<8c-L9-b`2)i3FgXq2!PYfc$@hi2)}F>nhi8 zYW$%`4B#~GOua4{(s6Oe;G2@tIht;ysQuzos)FHSU>1h)hFZRVO-V`m30d4y!yPK| z-~Nq=PNYS#H-PuC)M3xM9tiR_2X95`c;JGN1nL6g_pS0NgCEZ_nKXYcL4dr)i?!Cj z@l3@7F_L0pNpAZ7^TUIAG!J5K@7}ZvhW3T#Q6p&BDH#D*;Fns%#u!c+;=C_SkZ8H6 zHU)VZMgiVQ6CbN?JTjFEE`5?bn?MswAiI`BgprAbg-qgLoTey7|luBN(MBvE%)vk2L4@cc*uM7&Qb4P&VPOyCB-RV9|ezlxjf7N@`u| zG_;za4Qm$i^y>ld#w`Tpb&PE%eWr_LIS4P6_)mH>i=s>F(0fR~8} z5VE5qqg~yBCcknuNfsWI^WN6Mq)^sUT2sPOTBA>+xnK(s`PB`YL^q244C-oO`S1umVR~9bx;&JSBHb*5;dWredRB`;X6;C_B3dqDBSo*)rDN>o|b>m!3dg0mNHD?#k zogJS>Lj?r#JB?kMxgZuqq z_%u=Ey86*B6h&kC?J9?r8%pOS*JDNoUR`Jpo$rwMQln)D;61awTi|u|;G=N^BKfJ0 zZ9o?07y&vO+Pa88j;Xc%fvttbI*?7XDXmaEK_xnPiyMJci@AjcNm+aX07QEShbXKV zz(uptj8~t)3&eM(oyUbz-R^M-LsXwaND>$Y}EQNzfy;141TVbEkSXkK8^LLMEIS>HC8VpSri2~jkz(Qi!`#RrUDXD4>Pg>=q z$9d+e-Jjr$C?b_70N5haTA&tnl__kBSV70`1da_O;i2|EPYlCbkJ52 z7$h*>(6P#lk^>|+Gp9I(Bl?XVp4OJ8ZAS+QVPP&IAfv#<6n&=!X7cKAF7^2M z7?Ar8_FD};0lG&(ih19(cn;)1?=3ZMgyWFoQD7uGx|Pjf`S^Oshx&h4gxjb zO%}1%6K2+$vidHa+D-}iNi5bC4b3Mwb-AYlEPCE z#Qo(5Z{=!5&A*cU_`B|}@n*5^sV|EdtMO0N_LyFgx}?nT=DFtLb*egi3vf$(a`KeY zj8s~YWSF$wr`x<(Po=(@*!n??^orq<(Uws+T+WAwN1TP`Q@@L4Oj9K6VA#~7i5!lo zMfz(RG!NmpHGnu!Or>IHXP3{2GUtZ2yRCi9$Vftn9o2u2UTiUDVEunFb(T?4aDUgP zyL0I7?(RlX=^R2rKw1Imp&Jwgq(MY!knRR)kVYD5>8|(O|L4ogw_(j<4a0EGFZRB+ zF$7H)nim8|^8Ts&HYX=%NDX5cLP~PF9!W#8MG75|5VPm!5O5m*Cj}gxu+%Q`8#lOm z%57re!MWT1;9xV#Ln(qn@(>5GMNwf?; z&Ps3Os_TAWsLSsFdsu~W8@X5_d0l=)T)8O2?(A}yR9sYfTiXR6x)-jZv!?prYT_<^ z_Tc%<+}z5(+0-@NKT66b;x$avrYb7RG9mMR_IZlxV%Pn#omU8ytZN-YG`NyjdMU)# z*52mQb>BIegS9`$VXp0QQ9C4`oD?-I5)*u8Mo0PU$kDIu<>BR3R9(FXREzTpHnr5$ zWFZm zz(7JH@AK{*iEz6c>)>(jhkpw)cZH-f&$m4PwTv!cMNrI5Z1cP~ic!S2J6tq%eGQz` z_OD;V2>Yw7diuZR2L7GSy~PrK%)K4?R{crfuU%(Yo(7Or>FVkl8nOuQg7JFq8)cK| zWvZ7%*nQLeQ4^}cyjFcoeZIH8CkXSi1cY;;f}u;3<1g-A5%BNt_ZHCi#Mh0hJ}CSB zDy2+{tnI8oX_EM%lfIfU!9xY}VAJgE|9sWn{{r3U91tVAI_@*uJz>}SS_K^)9rg8p zr@&FlZ5}ER?xa8tZ;wr5wKh!z^Nfp*?zh8grzXU-e|-9I41~+=#r6F~5E34<=yd-p zcw93H^~-u^Y+QR055YVJO705e3W+kPwSPe!F`L0u69-jh?7oSSKx$7xavANXl%eCn~XMD#99s;{z%pc`^d z!KD&^__F#`zxGD%1L~i#$t5zczAc}0oik39oedMdn)Ws5)g``SXP-KY%}^NKCOti3 z+U)g4ERVG*zpKUHn;X$?Tm&O4U3`)t9k+=XVh+3xcgSe)W%CIncy|VTBVwQ zZWr=VYJ3{_4{)YE7hG9JQ-M!U9ERn}W95JR@E$~!4&SWNwC=(bKKToZOc!>x66^3V zX)0Df7My}UAx#JWT2WK+wQ~iKwpINoEZFNA1@?Hi z3IG0|fj5LbQ7{~}313mKKGEGU$@#xofz}TpsMKia=xK<&K43)LKhP(~H^J*Dnw^mF zPJ_xY4Ay8I@T0FXR{vL+MDxw*bNj22%`~Fv7*UVFg-8>ljy=|hJoIU3Lk05neD6)? z8ZBoid#Ey;y&K-MsI;O$3b*#ULb#Oe3+wOnZ_ll!V;}fgd0B;oj-pv|{r}zWSUw!u zcl^(~c(bW$dRy+NaS56n56p0-lbu1cJ&P3r_1=a1un00t9Q40md?5@ESPw(tn50!4 zYj5)_D?17v`azFZ@uTeG>`c*C&aTB~0LPZ7tRs*uGBSdy?INGbppYktjN)U0l8gfR z%ZJYsb?yOd`P5@dTieZ^Gsd@Wh@ABnif(QG=oJ!t@YUY0{Y?Cfj2io$8b774r>Cbc zhc{u8Y*~-P=I^Kz%Z2K)&>zhBUeeyo>SIuMm&_mgKg=9ts zaieN#>8#5eP2s2N9o?Tcw!vZ@ht0iFfMaybtMX`X# ze}OvN=)Ct5Nz&-o1l-ZLO0yw~yq1Uv?%wh?hKN-4>*Jl#^V4E``!?fNGhhq@66bo? z)p|Fpw>r?ghATMqdmB_?N@BL!oZctMem+ARRsUNJyOHb`Lg6+WRC=0vdfuw!3uAf9aBBGq-kTyfLKwF;ORk%cMM~t^CO=6diBd zYu`>#NGJeoT|``$d;Pwo7Y#(Zd9QtPe2QPIIoaRd6XLOXtMyK}m};^B=pIc&f#uY` zZ~nDy>X6uAF7R4ch3Rzi+h8HAb-oT2ghOt>seU*f*_gvsj@r|=8XBNA)v4O{D2J#* z(a`fFGod&t`>g$tv9MT@k z5}RI}WiP11alsRVU@rLRj=QM$v05RgdaG+`$?^6JCw_SeCK_1wOZDXv@0=}xTy@ov z!NjaXt78i85*mQ^zzbi-)OWW<`;)mdDJ3QCQ+ia_9V&`=a$0?zP2^q~B;XJKq$;6e z8S?oKOYZh@iLv>!T4dDA#yNZp7_4 zQMeD^RiVSTwzYn(hU(PPmsPw{9O~Raxbm+-MmFW%dGQ@K;~m3FW@Ofxqg|f|9rkWu zV>XCshUP)0HBk?~foF4KbpBHDvfBt#bR{|Tnc#zel|POGrPB_+Y3$P+Lr2F6QRp2#iT-J)nKyt7gr|F9yJ1W@54$JF)+eX|5F=Z zalm5|&m*;CX0Ul%&sTpozT`HTkj{;7x}!l~RDgNE&qZzOeG0dX{74QLTVBHdo)77D zm+hL3cQ(B`3JGb|&POiRd5`EJq+*xUzes(^Td7@+=fjMcwZZu`>;)B{MR|7y(e@-r zg#NJXj=uMMF!`N|)1bsx^bu?p*?D*h>qNy^1R0S|`Ptd0iqg@4rjCp%4X)2ni0qnf z;iul#a>Pg<3L24>0)N2^>2-`(!91PsC?g^zA?~r%JRc49$fy;4**>Ox^z`^U%n6>x z&YvPP!TN)SAawe z0diGgEvBg5=MPWQ5mX+ z_)~{R*~e%;6#3lh_eC`3Y+ept97gl)jSoYd6*}kx-Cpa_?sdhvw%BfbC_^}SJD0bq5_^KwwEbJ8h?w)#ey9r70TsSbV%`H zuLU-rfgwD{i&a@#__-K&L5{tDxEA(*A29H6Jx6DRF`C#uh;2PgMR`{QgDe%vDmx4b zl@8A{28qj%4^QHajrcgET%;OpkJwbR2;L1dF7#olXJCoKG$5=a9Mcp3rPR+aFrzG0 zf|%IY+ixE0EBLI11qH@3n0cfrXJI!;=_kAMtS@7)u5eUxZJgtzZ7l&?2<+UX`S90{ z$6fb(eDH-7?Xh*B3pKBu<|>pFE$ZIPj8RDlzn#Y$ltwKZgGfj`sAax;nhx_IHNlvy zWJ9z*aPOV<>os^2l@L8PG=`2tlAss9m}q@qMrIlbZYu)|T|Q~6sB$bFqg@Th0FuP= z*?$O4?THQKrUO_Ci#?s;F(n6I_Y~eG#hjiU1_yeryF&?zlUORbm?Os%IUS%>LNQ4Q zO1@oab*qfC@H1Ueu$5484IDP1N8XRhxmkGw3Nz_k63Zlg%6lzeDa6GknxcX`JHh79 znM)(4x;--(c60 zBUMfmR%a&<^k!;|M%rRH96fNEfUUx{Nc(C0@#7k*%*{Hk#X}+KXHE-wnR{f%kAx#q zb?4*xA|fJmSg#DzeAi@}hrdtDj+zN`?D4))(YY66>nB%>S|j+A+P6BlYN-F}&%y3? zyw$qZ_wQ^WA%k`$Gg^FRIHC?bS55oL$@q5}Y=;39cLmyug!=>; zqJfMK*cVF{`x(D*UeZYP*@n}2;bZ&`EGB!!9CJN`#41oMAJfbgLkFkwAJ$>Zd7)+- zEKlz5a-a5O9(rV+{;WR#$$h>Rd3U_>F((H{EGax)N|GPzebD}vno;hqGdgRJRx+`D z9wZ37zWjXmYOfbLGg)&G`0D!dLPQi%IoG2xU^3_N$HK+6H%zuvzZ#nVJ}Iu*x0_-t`;M2bI9P3pRX)a)uQ)E;+Qcd)r_L7nC^)oM zF~Db^o=8D>q`oYUs#lD9Wks5f?%^BVL`4*Q2VNHnoY72QoV#=*!cEZK<(Kb73WOeU zKqATKhY0^P%EHYp&CgEosG8;nm3<hK*Q>pq{g=xi#A>i$xaZy? zMG{kQT^;4NPs@gDGP!StSbF)aG99RXSbN0t)vOeF|MpuNO&851e$~n7NJQ6X!KZ%U z&a2A%>kInCq$82AO@)<#EMgRzaA4q*TolE_Km;$`J@vs;;2nZpGs<*mxiwB?;g28t zC&@j)A`(2x5OsBVNr(8)bHa5Pv5K%vY`3$N(k@(TH(GnEt6h3y`e5Gs;%Z`!=f^R7 zda%oTNC1NQ^4i?GNBRt_0%>B`r9L-pKooHn z(Z_u!HVl!HJ8}6YOK5ziiQw!Op={$V@{yjtA z4%Qg-!yKy@kvB?hcM)Vd{_zVsmNk-{ZK`t(lb84aR}&@!>t+^YYNbRsWa#4cY9t;N zRd!a^Co$I*u-5>*v6cFOrH|UuO&`YpDPfY*6ZePrWc3tOl9+j4i20NV!2Ee7Y6`-E zw5Z^_o-_^G$Gb0o%D#NxK{KW~Obm<cdWRR~MF2vcvOT(9`8n!zwp7 z_r`;0cz*u6uDho>{&*}od^MTCCW|z?O~hJi8(juEs@#-A#Cq?%3qp{L%$BShg#^x5Pr%<%R7S{+%LlhgvZv~8v&Pr5PhJoR(flO5rOfIe>+M6TP$MDAyzxdNPVlEa zdFe-)@Wj8zH7;HuE~-4Vu^Te34r0sopvL#2l5ude5t|xPSDfm zpxaefD*uDK%LALjBAMl7-sNuAw%ZA1n)(9Vq~L@TqVL}>BTjWg>S{)$xkN%O8VqW?2^>zHn!q3*F?>tHVQj(MG7Y4ATQz<%s9iTOK zrplX-;lw<5{06ahvMmy;7l*aBH16ItyzEz>T@6v$Cy5hx5OXIS1U*(B`|n6RpYc40D(=iz+o&>>Ad1KQ9wzwJ$+=+tY;GDCZ~Y4*>9QH` zCWZL;_>;iTug;6|U}9-}ZX;V0If*ygsml<-F7EqQ$j`F2!arjA$T#E)77+57^1|GT zVvCnru^g%^k@s$)qWe@_axp_w7f=J)FQNkGOz=Of_4JlFp*qgi9+cHT>cVA8Tu|92 zfi8fPh2uUNpdj{#v|U!~xwwVXw0(gd%U226<7HrNh5~zk=a_O<2oqM!o~+W7y%kD@ z+S1-$jBfG_3TmYI;^O_@=gq2^s4zJHwNa7kzg7;)n}oABzlJLxZdhc7hR0RlA};C9 zPxv1sF)%W%7dHlCD=RIH8rLZpiCAOs8$BLmP$!3`{XVEDsQ`~3kEp1Fmo3u2(!w@G ziI?sIan(JK-SloGfb2JzgqO(Bz4wam&~r=qWKwXjOAtb=X6OK+ffs74hw=Lewz))%RJO-bN;H_G9`%3#& zy)dWqkC9WflWSaD+}P-7^r;+qT_puRO%dq|%-!-8ixn%Y{7;I_hkTMq4HFT9D86Fv zx1)qQo*$2&_Hv)peBjsdAWtb6|LKk|H|H$c{P*ac%`ks?;ksM=9+r-jbEBEUDUi>;L4piL0nL zhLew@yo#}+9*r*+XHH6F-@U34RKY;dl6yRl@Vz<4q8UF#|tZBWS!r3SaYRSRVQFDu^se$9CZ5M z^)7RJnh0Q67%;Pjw}0$q?l&6RFJ;!ocqc&BmD@EG)4t2LZQ50a7;}g05m9G7_E47W zL3-yNl0z*O5aFYJhr;X|;L>R#H6Iy)w7GS2)3_X(na9zYaWn^kBhXc2x;w<8V$4Nu zK`-MV{)rF4B1Rk`5YiH$@=h&cSN0NU5r~4J=Q=w%wfLNNzkk}3=#V~fQfFG|q1V!3 ztl{fS$w>qYcvwP?%dySa|@qhsC!hNS9hev#(m0Lun-2r~U0U^9VMS1~A5 zIH^YTd$&_caZd@v=Cv6{HvDDT$Oz~PMfv!Wc~(IKLM7wgz3!$HUd@m%6ZFqtU!OS2 zXdaV<)8}GRg@9o9BU~0tO_)`V_!1`%N`wk;Fl|KCj55YG4pDj7QRH|B9}ofQ@R_7# zMS+^i#u=n#jcbL_~fd~$Zy`&OBF~3f|yeBYC>3v;@t-dk>E@F#Zd&e3tF-5y0Eo(4@)NJ+~nb zj(64Re#r+AR1!=m@1E4NyA(G*r(j5a@2A<%DvCqcS)QH_pZ`HFaDS5?RUZ1oYqC=r zv6LWu!92q165bHb<)LHfK`i;vSm8Xsw@V#`NwH6MGwA{Az3r(d9x7o)B1%+@{1@vF zy}sY5$Iv6JT*=P=j+ujvdfwF*YlXF;p&>waHJk~#OoyrQ4YF}?D9sKBnP8Rn{#2ZR zR~&xmM#4zDBgw_W`dj`-MMPeMH9(mpA=t1OeY7(SEzs4d!oxo4J%7EjqN4Mk8sx6~ z>H(S$l+QFD;vO^T91>;zW2ePkcwL!$5I9R;uvJr0fw!nJ@bNC0L1o47U~TER)pLEL z@9*Eg^NsWRr3QfJa}2O1RxrscFbb#yp76H!d{k9r&=rO0P<^7cU$eh|3knKfH3s&Z zuve}$+dFBr&0((XYn=c9PiW?XdQxT==B>|%9w#<|Vv=vDnwkrfUhNG?bBoZTJsjmw zyK;c{kdeyszSEPF3k;HZT>0pbj-fj_c_@+ZS#_)E(|KrPpYW&b4EYMBPY+vj(ORc$ zd~wml77p=_&}$!QuK*fQ^sd|BW-8CJT{2c)K+cinCkPV$#ZAf z*K@)CL);qqcR%>zAB0{?E}|b(Qf4bxlkjra4ixrq{14ZABFDjU(TohJ=_G4Kg z#H)ZKx092W7LhF`sQ7Y25Pcu6wTwSKJ-kjhrEZE;*R*S*Z+VquOhH>ng}iw98_Z9` zl+S+oJZ6+~T4!Ve>uJI4m(|_T7RkJ~ialzFJt|MKlFVP;)yVevO_IO;Xj@s+aeHfe z1K3y?iZ>s?jCSy8=wFiruiUreg<1-U6W%NH3==(qDONXQX@Ax9u{gOgB0~D|y3db{ zn6TIvjyaYjCYsg6?AkK*8?2&x3PaM;i}9%o-7|Yy`BPlMjM{vY6#(L*5t+rvkP9Jt zRvN-EF=XKlTruQ@q>!Vuj4c{9TLb<5f3R1R#5Fn77BOlgBg0AyrC&a=F<|Y!T2gX? zdy*I*tCDwieT|EeV#%-CYUIMu!$4^B6C<10Mjt_yx8jtq%&>;FWOs9uikv+#)g)wg z2A#RjsBh%^oS4Yp&}1{#2muUS+;6m_jd_r)gxrpx|8%oHNRJKhu2{I3n6oU3QLjVO zIW1~eFM+T3buyFnC(XeIh&Q#^eFs9mkc{k-&$+_`yTtYS1VTj7>Y-F{6Y=R_CrCYJN?)ZOLwdD`?k^0B)F;Mty zVrW~&$YblQP2w>Px4%y`i-(*}7yEr`kA?cXLGudRVE;-rwfS6m#)E@9kug0y|L&Zq zSVJQo5fLwh5(*M^u%I4W>U@=Aws5z%x4_vpHavVl^slcoPyZ&_B10B4FFr>%|3&3$ z+xf-G1z`Q*pp)1s>%{38WtUWsuOJz(lG8>_-V%I$g%EPk2hC5_2Kb){MzQdWAq)b0YTWP^wK?8i7& zr%lxIoVt3$wst=Z$*QzP0TzI%#^4TL{3k!kSHi~~7Is=p#WaSTKilvtrf^Wf2AE8V#hME4=rrCUYsc%R0N3o zTNeqWE~Xcs%Z!>r+e|BDudEQ}-`F7TdC8`7$-aqRzb%DU>BZ5@+al3qeh6$tma&ux zGwDNiu;|39$u+#};{V!Ydtli0>RO*NN!|LY>U~3OYO1T(_h-N^XsW*6KyEt!y>J?`q~zX<>867)Yv=i)_4WLf zl^niDk{a=>UdDjTr7oE=wc4Fyn&24jog!T9+`F+CVk9VkzNPgaLKXxhsc#AA#^9wdyOWN4jSbMv)_MMs( z!n3;+GD>Mti=W*|zN5yIQh&N&Atn(qW*-(~?2CmNOSqaDr|=d%HPtF*&)^ z>cxeSbU0$6r1m$Xon~>fV-y(~<6)J2i4fcv;|>h(8gX1O?#kAWGi8EhOxM(gn(D>j z?`8^!H^#q!X2y8`d`~I$4r_=tkrrJ1pvE$<@ljJ(j}du(4M8u*rGZs%YSSdkrIyRN zozZ77@<@0VB*aTio#%DZ(i}w|_4n_6^a%*S(f&gL`4c*6?jV=()-W=>XC~YOV=8qF z=PrVBZ&_v*`e{-3x%?WhYk9c+w!-+Uxw@hhhnP#Fng^1czVNVm=g93U50qdK+ z$sm^4w*91RW9OsI>tSB>K^M0T$$Ea2HiqfWMgy-BL1t6D8~Dlyt=#1ekvfEF{Sh%c z4fIU5LLc|v`R)^wO*3TV9VRbB4k9_-9`C#XdiE2tpO4q27byt|JscRao;S?g=tPW- zr3m7*<{7^7Bur6CCpkoki6^VrHSak!w$&yW6ERw|5tZCXI59o_+iy_wy)$ zH^>0i$sJs>Cfj1IYpW<8V<4e1=^UC^iR;V?CVao#h9gtz>bwWJbY>%Fpk;7CIpbaD z{pZgg)k@;N^szgWm%Y16cmI6NXy;{uN8n6jfxHyxhL0BOIJksHFIq?ESp!1aavGhw z>53{Uo^DPz@r2&q{9|Y@L8ck32|@g>_WJc}1%&|Iph6wpIGVU%%18e-{v>>BCa~)t z!EM|ZPtms6pqr6@e!x`bB4Zi$!p{q7`rkO>w;2I*6WOgi zr3&IbRa{E}v?I*ENl^JQHU z3Vd4t^;&17+rNZiR)4Eu7IJ=|Vk%pmGL=$)Rey7H17sWPuX6p~0A(5wh=t2gQj>Kx z0p>aYvfuwF-~ZRN)9`j7GmSa$okAq#3!1nK!Tldfj3>OpHM8tSPKZ)o2Uu>UBDmRk z(UY>oEP?U7g?*K2cJQ9|FVx5<)%jQm&_atp|KH<^UWvLrg3BpR=%I6Mw|TTk12zs; z_r_SZl%c61=FZyoc4}s3v(3O5GUi_uCFO2IG--jK6J?#Wi=qi*Z=6#7P-$FUF@7Z{ z4-Ph&LMW&d*r#Uu1F4sUm|2#VmVl}}sR4|)^FKH{J8L*|o_!FckEpM!7xT-O{5Bou zehs93bJNpO-7>DwU^~~O{of6Rg#aUsvfUrafd+pF7rvfm>>N+j&@8zt5HDH(Qa{oc zxaC9?=9UO9VD&0+DT`~Ga!de7AN9UDn*`bBMUQ|(tq!wn^hG$JuV z(k!iidT-@QNQKBh^N}HL$`Vr5J;gv4p3`Yr0lS4gwxg4PnAPd6b&UeC1vEp<<%7l@#MI~ z3r&p}_h9%hhEGb|c+`Yc*@`mFV}@ToT4TuOj>f4$&`4ssl5g+s#&Tt31Ox~_`0M0t z0Uwmr$KNHs?SDC z!+9i)%QRn2^j=@9pB}EOk@Dn~&7lxwBL@pK0Sh= z_I3MxTgUB}j@w$9`&v>Gl-tMQT`-wq_`*G_XGvtJ{GZ|;UVcz7q>78YsQZ`R7WfDYl!@CoZAxHQRFS!x1l`k@Op`VJnsu`p{@W`kU~&E@ z95;O)$>08(m7YaOkt^zdgNEQl9ojOl<-kxFS;5KHtF7)-%<_?qq>y=G0@i?!G{dS~ zDLYfLTk>`Ivx>?99yUeX?CeyEb&m9&HC9{nvd*fGx%sH;=AF+yBQrBy{mUQ)9utKc zmb^5wvf1=*FH){RW2^LbYkqQ2nVp%A_W!PFXiKDxTl6^>*=AQtI1f?K3cIuXCE^G;<&}b=et5{wck99|foWW6{9v?Xzh46iK5; zidLHG{o8ci^I zS);ByFi{G8(>ByMu-=|TWh1g8$BMDa0Q@8R>t>%*dS}Fg&C>xIg=GwAM>tM7)DHZ| zC=qCMB(813ezsSg_`R|rM8MtdLV{V-(tj%}E$s+A5--EC0|xw7kL@3tUxd$idYO2U zf#E{5azY(hgOJHez~*->CiE$uJgOV*ka%LN_BrYk&_tWITPu0#362n>fXocDSLX2# zIUdYirJ?_b=oRk%M;dO4;KJr7I1MC2jIgpH5Dj-?{JoKGOJjO?@Nukfd_aU?0j?$F zSNbgtJQd){0@=9oJkKyect9%+vO_oZR|ZR3tweKmP82h?e}4Te%xm~S1ulyCQ$9BY z9&6( zont4~M14mq2O?n7P^pao*sGP7(%%hup?ImhV-Dr?j&SvBNL?1m)YS2@n9-`4kr}gy zZFr5Cd~Slu`{^L*KE|6zal$Y9qJl@?>FTbhau@;~NwwMDN>dW_h`YbP|Nb5o57a|% z@b+J(eB9X?A?+|`UC6L@V*u8}GuRB<=2&8_6`w>yj^h<^}D~Lw0&`5%h9$L12_Lb z8`&v75cZLodoKM=xu`^BAud6q!R~Nb>PV_{>H|!dFA$-qIx4+LN?!?aXT6m&E@NMV zFMa@>Ib4W)>4l?#hOj!y8+$>qk~Q9tcsD15Atr}L8REiwG{xWht$Fc3#)SHLjb+uzS`F!gJ0j)jd4-*iak>49cETY}W8to5NEV29Sp zlj<;qflLp1Ac0!S_e@dEkuQveiAn0>L;<*g6XWB1-Wu>aV#LwHAk-V5@m@Hp9>U_! zZS-;##voHTwkZA|;)$ak5OHGD7+^mjou#U3VDCL!Zhj9i)31k8`ivOb0&q0uC|p~0 zS9NeX1hGLa5HgB&_M>6tuC3wo9Ecg<=jZR1?_nerj9femk<@d4`7=@&OAD6-P=_NO zJ6=u8Ojw$~>gjm!OX18c{`|Z)*9uDreonwudE`4llhC;%I5M3&2&|6!w zqwr+pjYJ8mk!VF6ahjCK%gfXl8mO&y$yymrD7ZtTolzuV+`wWB@8x zj?{<0Jn1xK--EQ#P@8K%sW$SOX(G{$AeN$|X{t*3*RnAE8)Z`M(U)K@;l3R`QvxvoIGCgwPrj<%vl{*z>@h)6-ueHbTw{hmr>94q z^bcb7%2~RF)&2OhT#za(h-6dL2mKBS{^OvhxAjB6^l2*=5bVjV@t8qfa5A0ysMjK< zVx|H2I1sH+3c663>m&6x7!!75hDWNT+r`cD4*&4AzpY37LAf7i^*s-rj^>`mtH|Hq zCu*$QM;m^->SW@lmtSFFMg7%(%RJm5kc)M5a`ETn=L#^y9kU}eTB@5P4(IgBtC5ce#1b}jfyCq zk%NQ7{J%dR+OO&=j~3e~*0G%b`&qw;3WbCLhBVN#AMs6G4;|Ez52q)|$e@QIin@oF zNiV~F@rcB;lO(Eu0AIti|MKUqCM^P*_=#zq3g*^XIXHrV zqdZB0)3n_gxb~CrFRC~*gXlAfY-ZJ$sEwR7U8u@Zh0vY)aynYRp|*8*cWZo3Ndes1{?`b6 zy{rL!*!NNrIQ9LZFyQe9Sfl67M45zjyhn;ve)x*%xQ2D*WlBY(W#!j>$0Iwn{K^c15^U%_=epZoD zEYpvQ<;%FGXkuF+Slr6sJGXIDBWSNHe@SRq$Oe;S}&2!jKx zQP}f&!R1X&$hVY|M8aB)#SR;*P7(2#5&hnZ)UfSH1e8A8x!=FR%XYgcEX>Zn5POkD z+v;mAj{v!wcTN0AzDQaQ*YJnkiU%0A09HD~*jSSO4X^jy58;>J^sq=P>g!1aV3?8T ziaDSdLyovi97ctXmbl(;EL&YS7Vn;Q-5=ZhUC;LP^rZ2-`EQqqx`(^&z~DO)5<T3L14Bz=48z$(NctuKKWPK}@=ACt(!)uPJn5vv=m<>%D%ANMaNeWSgb9bJ~OR zvu^Z_OzUv7Rxk9~_v;VHiU%NavfQkiA9N(nszV@mm{;k;#o% ztThqr%6vCnqBdKX^f%_-LCb`bx9uk0xXJ8-~lx z#8mR1KjMG4sPiF7D1HV+Q%)2l4ds9VPfzBk=vzZBDRkg9E9DTE>Z1wz3+3CGGNEv{y^y3F6>6lH!xQ&yM zQOP_VAT!aN*oqkNt`eC(J|ZB(SnJ=>)?dlfPKgv9panOC6Z4zq33(;ug1e9^9F)t7T%_vCroAIB5o@Y$~>ZuZ^{gNbe*2U-r9q=x3!qmq7_I zaeSKqETuk&sZZ%d2+cJB@e?Q^UfwA3M+&)LEie4HYt3$0t*H2p;y#>Kjw|&rVUs9L zPE4$M{QAShF{4d+u0*2XS@$-FVM5>qz8RdYb!v~oPu^-bEr8E)KHlw&iOfbtLH;2S zQO-kREGPGrG5w9rRLc8oIs7~zK{|^lJt@=B!0^>Yxe{KP$^cx@Gl1sz3QSsdB7P&I zA{^ChYium}+JtO@{*NF5P9WkZBzRq4?-M|xKFkd)iD-Mzg&#>Du9?s#h=4G*Xr-m;~fg|rXU$DuF0 z>z^c@H1#wxy&atIRM5k&il|EZ0T>m4pz^n$41>uQxFqQ*C*or;{2HwOEcU%1Irk2! z?GdvUfKlOGs63%Q9~{%9XJ>;D0oYO3fy}+Hqa)exz<*8lwY9bD^vVPMYc+|~wOA4h;h%Z2R-4PitPgr67>I zO|q>jpWe@qg&BM75zs_GT>p8$9B*o)Ocp2Ixyc*Yc*tbD`#pO>1GwhIzblA z#!bo1(LkI@0XoT4eT0t!)xQW?v}nu6N5%l$uSicrQ1rb$Q7Z)b1o1fUy80znzp3fK z)ZNv)FhK~y28IUed4$9E@eTzMB_#<7_ic6HqWB^%jWkw^^v$ds<1dgp`~mD*fW;%2 zcyKf~1Uu}r+8x*F?k;O@4##I6o5%{vjcg{G?;pqU{buufo$=WrJ3!d@nN<7J{zOJtOY7LtgX#=$a8QbN;hSw!bgcF7H z9=QG(xm6>5B{5}l;UG}j0`fE@6u+aoxiubnd4*ixyYB#_gI0= z{w-#bhpF8WI8FtxWXi(#SdGK=^oFVgP5`1bTy#j)(twzOzCK97k;6V@1tAm(jGOb- zg%E^?lV<1l_+!PUmNv^K`RfawJB@Wd&xf_9rt>8n+^^CW9r0 ze^c^_unGHXF7;>r>n2ilOmWA}tz6ruvaRK8-4kn~PTW@5%D|gbM1dOhz=_g=|Nq-N zAAzpq8iX`|dinWNr&^9!07_R0HD7oecDO9g7p3M%B@0VSl>Bst8eBY6 zUM}y{HR~0VcSu*)YvS#beNAl5`9kRQ#?ApLgeVLRaY%ngKg#PrDdajOo;!8WL-c>r zu}QKfyw5NP%=hrRbaY){z+A<%waxp|Ie>tW5TQyJ4WqXz3HKEUK@5r+CD3{RfpeDt z?ZGeRKPMNHTo<9^EEROc`Hp-(msYJ)Y|C~>*0eErF6hbA$jQfN-gCU$q;?HBD?>bG z6&ak`daVyeDSBWRCtNk8y|ZH#+*c#(=|OOh38*L_HKNlT>cxsGrR3}aF!%5oCk1E~ zgY0fD+BNfcV=c#C*IokyEFkamAX$ZaC1##n!xzWail`TDUOKk?b7FuO(N0C*?Bw5K zX3;mjzaskmvgGCE=?Ro^&7rsF)q^)* zG{@2*xh1Y8JGsC5SkatS$!rP=2{#B?V>7cl3tU}YRZf66czEPjcLj)MNuBQiOApdb zkGYVn_M*lMpi_@1mr3(}^-7=yiIY|^B(hzJPf#%Qt?mbqVJLmOMF^@Hp#XbI16yX3j3Io2u>sdVVA|MTBvjjrUQJsgRk*zaw5)-`49(3 zWiSuS(JC=43sD-0O#IKU<9`t!lp=nD1U{e?qyq%FOEL-y6^Dne>kgo!qub!{>U`LY zTibH`Vf3iVP*7;IW(>kv9=`Gf;=c-`L}31pS|utyZ|Z1F7Doe8Vr%}|*`BPngh-=} zCs+&sv^H2bl2A}!{#|{%dS4~T<9giWDUj66#LRrO+7UEe91lWZ%SjK09LD*plFyT z!-HrAr$^LG=^S(lkXb_95K@h_v^oACZ*Lh@)z|I~(_NCA?hXlQ>2B#p*mQ#+BHgiR zkp@XA0cntu+O$Xs8wn{9q(o_nck;jQ`les; zbX5q#kYA`g5dZx7ZF0LGVv>*g-d$Z@DJ!XLNRkJ^5=o{p2gAi z9m$}JDZ-w+$Oi8K2w+FN%zpE>4+GT|fk}siOYAJHe77lcy9t?MBjL z)x>S|VUYr?X0M>2$JeW%44+I1*7+(FA@ejl`j-0m!PzZuDCRqSv4aTm@9l*E9aYpb zWGxNcNZKXu85D@Uu1<33uYY0wYKUtGT6Cz98;k6MN9)CH^W6$pAU+6F{&v=G`prY8CIoVUI>2B<*eXa78>+;7LVf@f1sgZMl2z% zoQI`}3D$YsA;61=ZP!1UApPu7%*%9pbxIA=Es-X8>=@$JP((+snT-EYw?h3q?hnkX zQ6N}oic=AefQb>f23!9@O_BcXr1y+?5L&{~8j=E^zrCHG&qN-apKeh5t-;h<&Qf75 z0wO+VYIB`}j*uHF8XlS|I`c)z^^wySL}tya-^+5O zK?q%cPI)GIEgKFClHwMAu3~`)jp9RrUggCvuZYOr5@zC(Q%2DLcCInI(j!$KZgh2V zQ-r0^25CLVpXn^wC;FH_GY!xg6QjFN!qNBj`Rzsz?iThZgkD`g}5zEcJoN3D$7_OV=-9KmfG6h+yvLU*PcE<`J$`pYJF+4 z7#DW@AdP@4C%8L;YX*7|a(KgpHx!LMGUk(JqQ*h9YiNtK`SV8?Pmpo@~{ zS7l|r@Unj5LZvHkceT;`U4c-kl#q0c`ZK1M&e`#{r10jStqEZ*e zI-g0uEPNRd2ncuy^^EBHKCMCzm#z2RVYqTtNu(wxC(vL#m;bh@B8T~g#Jjq>vAV9O zt|`6eLXex=XK%h%)k`2JTY&Iv+C-Ks<{CZECjW8F+BD94QuDp2mP6wCv5y<`sCj-0 zZe+zt7Wmi1GzkxhU7qG4erg>V1F)q$(rAJMS6un_zKa?!?^0oWm$SOJX zQLjG{)q{+*L_a^@*G+8=sb$~;R9Gw^aEd|~Q#Yyc&)jPONcIsDtXBkb>nmQ2(bn%E zTeeyQ6ZKzHbKCm9eqCx97>G`RB_`^q%0^&43~Nb78Wl2Ti$LN;*bw3~ZMWEbQ^VEe zQ4%0J!SqKaK-rVz;KyR?HK!brwEnV@XuVV-6zMeIfvRei6 zzd!EHBm`)3c^3DbpS?^HLW)uh`5j{SgFxjWxubj#(~LdN z)<#7r`c%P&L?AbYW7u*>%iCy~5j5Qqd4yJhlf{FtA9Rf#jRL)dh!V+#{6dVc{6xtJ zS|Fa*NPkdTv2IvInf1)yt8zguFVK(aL^-LnE$eVWS&5xx5cn_-Q1munpkrP#QqL~4 zV%FJ$&Qw)Vq6>KY5~Y(p;s6-T%F245xm!z?0Se|Z zv9UH}rzcZ^P#}ZqB)`3~yeudt7WNjav{ze9gbib&eHrnL;kQ24@gJXt3uL@ljWDFJ z1jNitVn(Ef_|&(Qk;v!SnQsVWlGWhyDD2NL?atb#R-{(0gh@7>|6u=m7sI(JbA{o_ zAdWO&Mp5rn92ojEROex^Uj$x#EiJbX%98vRF8@aaqG(Ol?QwnnTpvU$g`2Q)8uGJirVqi!Xl5awW;y^ocuX>d1)E%GP0g3Qw?3P4#t|UXL^sF z)L{i`Bl!@xehO=8{OgnLgAgk`v%*Y#i@h>2CUlBj6Lo_Ma z`^+|tLBQJa{h-!+v!^6eL)3PC1UQkpJtT@v(TcXiGI;R%I-sqdKaDg7X_)}kOgJZxts>eekfs^U zZqb&LLky`nf2({~aO-Tcnulb z5jPFwXTybB^{`rB@^n&j%vcOYv>2XrG?wRmq~^O#0w8ucaZ)gWa6qy&euSa5ppB$5e9)$P(^4Etw&zzxghWucOoWT^c}o88Co>bXR) z7j3;D@F=aPKiEA`;`dpTI2WJl^>l$sF-il^DjVT}p)JEX{!<2%9RQYNnOm1d2A*Je zA~D7u4iQHpo7$fsVM0_?{gizfCj|He#kh+!JnVy)(?O2F`SvW$C*UcW4^~1y>z}jZ zKCcl@{@9;!Pw?EBPmpufwnUL*@UuzScC*^n;q?p8PQ02!ZH&OBb1W3@du8NZC%#2p)fgztohF<**YvAqNAg+=s;LdOz7S8(0nVr zI{f#M$VKpedfF`WnvJ`nV$^{C?66D=w=@Zy4HGjq)rvWYsT}&fSKQhOYkhr;P6(pd zn0saIZhO4eRsT|9JISa~stmCaDKIOIjp|SZ>9?`B{|=VKk+v!+t2H(EvYtKNf%L&A zX-=&Jjus9@xNNm`Jw46MAXR63kBRf$CDyc_E&ufGZ^e;=gFRCLaSfWKz+i|+?Jv{` zvq*lJOKml@DK9$58Y8lu%(neK>0c9mA^6%iM1lGhDULkjhv<6#3yJpVT}MiR zvebg$x6TFmGk(qF@<{_2CG?#~Eh0&W(%cafEDo}Mp2@l2lZ(>5ADAC)Yh0>vDvRdF z$t#_?AiJJA_=Wf%_ulr|6FSCwz?Wh18wOt7LtgBpf!{qZnoeKO&!(rnNP=$rwLzN< z@roZklsR&Jdh@mA-2w^v{R|<-L~_04pfiF(Oie|1N#A z>hc#jQ*Eou#?O}|s;SBZM_)6VsLkeGhN&&P!W#1QirR@H`Ec54u5$wGF(NqDWLedQ zdL!&2`Wbt_eMMS^aT?O%#Dr%?JV{Yu;f!w@G?cWvJ8nnxI}1bYtnixkp4aD1P_#B^ zs~7jSQDO#ZNE5W~n`>(%u9kamz?%KGlq1+E6m8y+vvJ1lmq*&85AzN!4oITh(B||T z_u^*jUH#^Gw7em&qfG#AZ2W2JbM1N})H>`Fn`J8iev$6Ey+vMK{aUf)sny_Y8v}h5 z-CT<9z%flAL|V#OM$5~u5bu{=4AEjda0;hX@6u|gAZ>~?7eHNxeIgZs9XHd_nR>4e zoxC!fai`nTlT$hMLhVgTZM^E8nW#XfCkG z@~^%8xY_c`?4DySa*e(ygd(L~I`(666@GB|>Gc2p)nC0awtpWW9a?NtEYNTg);Ua* za(sN8Cu{#*?C**_wo)Q8&@})SzR#ZnvOf11IAixcbgf}5>aJrg}zp}CVRJ=^YuzPO#-IuY}?U>LF@Xrgxt$IvVQBUY7U z2^l2K<%ZW`iH23{HJ%ckyopMiz|u>7{;*fC4o1d7YiBZ?wwAeCMBJ9>+L&W``rG1+%e zsSQ%eP&16*+U+sAk^MP6PD+XoUJJ)0-{ON%Qi=zh>>P!hcY+jEOG_)ZG8qh7TU!g9 zuB5%zdI5kab^i0ydh74ih6on_z`a6GAr1_Puys4G171C3qm|nM+^pv9WSzLA1BGc5 z5~^}8FDUr&Yvf*O9Y75@7ok{vC1KA~BjyhItf@>Q@h`3PCVq9F*2O3qy9htq5k|E% zN?hKqCUY~fIPv9nz^0H|ftmIzeeN_9D9$J7b|@N$slBQCiFcK;xUs<#b~jcNmGFi> z0ouyL7tlf0gcAHGB{r7*@5_bcGe4F+DXA48Qw`vMB%35B3Ni!CrFhm58i?qvnS%I@J<6VPRUkF~+3ARVY>ynj6>_7~A^ljLmzJ1ro zvQk${qM2CDPp0^Sd&nAU5M9O4VJ?6{Qp%-?KJA$R4O4H6bw=ydR%|m!1pT^>&@jyB z8c+5hY{9f%h~GJ%Ps}NrF*Nn_4a`=q-%~uv;Sv!M+4d3xc4+~>w?+q4l0j`6L6Aik%e+l3)9|0lgtwvVFr|qR3 zhf>I?4SFv)<1Ch6LENEHV&9_(OZJjZfLu+wZ-NILqREVS&UD}Ge|FJ^Ih%GK-fq?y~kWpi}PaJ2$)_n%PtJ z6{H43iYV5hK{V!J)3>+b^Q|H}gegTuMSzcpz2UVoVHSL1*V1hKTl^&s(&~y#8*Iu z_T3Ug)>Y5+H5FO2jPes}rKWInZsscAHYgX538mWGPBML)zA;snFa_W`Cf(0-!*z7FI?ZMxR(ILx|%?LyEFP`MNp6U)BA za;Pl)__3m5p}=^buRwsLnTX>jg$qaS72)Qzlc9H((I4ONYgx#tj->9e$!oTXk=tc zN@V(%gatc~zoo+Tq$u*k@Cv4lH(ecyjtd)eB?MkQmEv=$k;SM|G4bkGXDT@F;2j11lm z;<%a{>{n4*6x{c1QdgmT@~*~hIz!g(Kqu895k$vkp=*7Z^vlCzse>&a2Z#`X*W*{*ZW@c}1YiwE?aW;(A6sh#$Kc`{`1tu?|&!5H#45n@& zHh%RxlmBU3!@GaRGHS7}L=s%Ue>yi**Qktskn+F*GvP3?Y(^Jjj*FYRbL^jMolVQr zA@rZN?sK{R|93#n;%geRJ)3A8Vw_EB@M{n7gr;^ z&g*5VF3sI?(&9?!Uo%RyPAvtyg-54z4Kf3b1Xek4)v-aOlXv2JaP1uxj-9~>d+A`rbX`WYy_(! zYlG5&m+O#oW3NVToMc^gSdPBu+y|4Ej5<3?tGI_dD5LYvsUbC(Gl! zk2}uupj#E$6vT9j!?cEY*)2i;4uSe>5$x#yd=@aSr`msGG%>5NWbW0Wzb2BP3sD>> zV`yk&hTwy-*f&EADNW(KhozRLs!bI3f{d~p_Zufrj8xR0`n5b44Xt=P%9SF3!O4Lkko6O5c; zKB5AtV)e!ZZBV?)l|k8!UMulsn1I*|64ZFq!0*|50;u`1!UH)9dfV4Os6F$gp9g#a z&N4=IW*xqqrSakU!+*udntrlj=nW~PC4(15erJ66>*FV7rQluh!vo4-|Cn@l$0$*5 zw>;@Hmj@ha6r6KLi@MNo8HW5yK@aI|o{0226Arc%WsXEHG0OUXH)}>KksE^;GvEQf zSis9bkf9jN`$%hI`@}}6DROuVtuDsKTJ~VF3>)JNM^l0(7#RHl4F(XWRsO-if?^I$ zsF_9TZImE2U?{G5&70xMG(McC_@pS8_H$qME*i}U!;WloP&$pbZzzy z7veA#+DP~S!L4hrb_U`f)Ux8;n`PK^+JmF#@F`VAUGUlm%`q1U%MuquS5dycApLXx zM?rO^>!pu@?;}^^D6vQ?O4M{{tlHU2D4$cu+A_!ny=7&Uxx4%fs(6)2Wi5-5dnG0DU(e7t1qH0)ChS^`l_mqr(YC}9jv4bW{Cwx;=7KKPi(kEhD)Y-ult^b9 z5TWN6S0W;tkPC@B`A;TN!oHqucuo_u||6t?FDgMzCL*J*M&5YfXoB#3%hi} zZ-Yv}gPMoH<^Fd4>08(3cK8h_%q}(oiE4K!-Xj+k*@Jhw6DqFl58rAF(ATaTX;x&X z%zJT{>)(G#Hp{tPDh!67^v^Vv2VCs&%?!$KwS~k)j#KK%?*>Mohh7zH zMsDR^+#>qRS+H&(@rFt8#OxygNFV$*cJL(eP->9G`S1BhbNxR%W5TAHZ#bUCq)_S; z{4|>Q&oT|nQUA5i{d{(42}c59#{IPRdOmRE=>~j!YyZ@`8}tVzPw+G5294q8Nl3(e zAF&7gQ9BvQlcD00RG(08jAe9KeDa{z3r;rBHE^RM+tYC2h z+<(V-UJ6ZJ2k~KTc9YXUGf4iPhbU^FzJ zNSJIM8YhnF|LVB^NkwLPnal)MjI=V}fB8lH0XT(oq$-?arNFGe zs5XbzQUJvRj%6k!*#SjchCTS#f!oQLoj&dFz#e#UEB_ydzJH6T3e=gjIQYFze4}mo z2<5K~e0yuN(Y%+f;8PRp zJSxmV{X!TY*qp#nloNmnvJFaXfwbwv9aBo=DDVn{FYNdO*??|b6GRP_qW5AMw$3qV znpn0*PWmUisBNJZ31gK3mrsDik2ygL(_CDL61(2E@E(;ycXo18_7w4ezY#IgMmz7p z!pz3bJ~Ye@+*F2#hPyx@+11_M)qSuiE=>Suap?E3YuL5sc4T8l7P1j-%y!wQN=!^z z=d!*%reBb2_MWg~v1Z$kK$oyS0cyBUpFT}Yc|MXSp1@?ZYuUU#?M zf6qKtT30w!HuFYR!{URToGMF8OM%gBQ&YMp13zOI62Ee;0Ll&5S^mh#NPa$zX2Gfp z4Y|+K$_josnEr^~s*^z3*m}uHNYV=mYA5eBC&3dm+ZSK+z%Eith2&rD{kO|@DfWGn z5x!nbu4s$av(r&I_0*pcIwweB=LyQ=8sUxi6DF**|6;^ljjj=+a)njlM-aJ zT+2E;I|l}KG9WkJZP7qDHJ=}Ly~I8~=IG5-N=IgS5YkdyjQlJhFhJ_@XwDjXN!euz z^HEOzuT$VFfqk#*5g+eYoQ-=w1pi9|+4=|3lxA+jLna)&p44ZxWqndYjzZ!bcAz2q zuU5E8xDb7swP%O?ccX#3xK369gNajyPXu;Nf#@Qv(V4u23<5cIP-}f)hdmz*BM|vi z!~IZ8yZ^VOq-0R=O)Ar`mdZy>#s=k(VWj)*kQZ*i>w0F|QOjjouT<<<&rWnuSzFKLv6^zHN)9J`IE_p%{O~$K zAD~`GK|`NL=iiFM2%oHXcCf_f=huriT^_uMD*ZgYGD{1b#vzcMO^v@en^g5k=^jKo zczF&$Vh6Q!m1oo}eC7%jlP)N=XYEw4V9nb~(NE?GdKwX=`-}YQnUW$`U zmW7Hsk}O$at>gKgRlx4sqBUzT6D~FwN{rA{9`K5lMmIUAp{hwvRThH|&* zD|a;0i2sifSyWDC{a+5VvW)zIGXCQ3_S@ax-`~e8VGfJZ;=>CIn03FSDWtpImqZk` zKAqt|%ia=~l9D?5czz4Ouw!H6L5N`LZA~XnLKQ&~Z8~c=-$&q2h}#F$%73A%zi5K8 zAs+onGyGrM%cLO^kq?}sV+u?xEqQ5tUCeSn7Rqd!HgndeVK&A)SkG}c+A)t1YhIDk zy5*W0qv9n7C}p~VKC1oqRX2LwY~?3#COnTsEls_nISa+?#pI|FL6sP7S{Fjuek>;D ze|voi5(R)i%4gMl0sQ9@$TvVIWMot1UDS{t*-9TN)VJCvf8 zL_L-(Yikd7c4U77BPk?f2o*6gEeTN4ev^@bjSeVG-#^)QA{WH8t>2#%|IFAbB&VnC zw(sWe+2QPLKpt|z*5WV9>E-1h46(p77rDM(*--i=?_>T%tJm|J-v(*!knX|RZUcap zc>d*mh%lD~)ujZ9^?Xrh=ieE)hUdpWXMJtolt&mjb02y6`v)-0#m2-OAR0D-nY|fE zwu2nZjt8n`pz)7l6wqNVNh($`FvS1c5d4p8@PD_1S-SHL$mrBZ)6>$@LLmG5KhX+S zOY;Vf<^%g2K#TzZUx&Ybd3AT{@-XpO%vb4G+{47ZQt;lah}zPa4UrHL0k@5N3U@4B zkkd`fDIckADq00O_y2Kc{CBIyBsPBf`uV<*3O$S@l-}8QItO+8q=W%YAj=>WRKVl*E*{T=>=G*5Kjk@9~Fwc8d;n zg8#l74I1Ylin4G2{C0nWXY_c|BbC|I$=&r`T^%16SHN8);p)pD1wM|S0Sb@zX@ejT z+*0;n1cZJhsZT7{VDUY|mL|Pg)AjPWA3hLESRfflFdA$gNKH&(cLru0uuypW)}EI3 zplHfno&KmdO!l_ZcCOIMLBcjH8oKZB!$ju=A%?slix1m$4TXiAW68{cZsLGiDt;lp zFB=yn=|Fr+BA&6KAz*jji*k+7;o{Umw*?4I$go&WpP#<9w^zNQO}2WdNI*}|a>av_ zN>s7V+E)d~v4)O&qAh*6?z#reQV1V6<}1aa1@9Jc-@EL&jE{}w<>m$ibaZ!h1qBB; zEY1$MQBFDg|MPelGTk6TbiWK|xPnm|l?n`t|FAjBc;#k}#xD_qzesJs2aItOM}G>@hgp z?dzd>b@lfz2nb4;nDxP*p5CHWK-$NTh2OQZ_S?2vqJ6!7C7+f_n z8f49m4?r;bYs>X@1h+AtsK_HfKR@7a0i0BsfiUggKl%GLK%7&u7_qiSG<0>W6Z-5L z(Xg>ma?ySPGLeU?o$NkV4kjiLJ%EGdTv1W~vAc_Ie7fKCS^E0dy#j!=v~=5xA;hPY za3CuN#NXdrd=O+}S{@!YZl?5Juo_$B#4twpyiG5>-WpJ#C#T3*8w6C0v;9TM(A#Se z6=WUN_%li_5{92u0BuJ@MU6ygKkfE&|5BYnxw{K0Q*Lk*p zaDJ9~yqOnb$X4%bYomW$?(C=lb}fXk;p*a&DJJ9+Sc`YP6tbv%3k9owVCbZ}$5`Fc z@_pv*xXjJ&=hT3+Q*lAT?ZcH$Om7iEL1O8_h0hQ98DuYm3Zm*Dfh|UNx9zV7m=#8L z!L)#Zjt;I8O7SqQY~mqKXnbD_ehMZf>5rxfu|qnBtXYlok_H%+VdNQ8)RG ze{wF`_Q*C6KjWUlPDK?{5a}c&|M9h(IAvM!?}n%9@r#^BMn-3cokw&MzLh0i{j&oA zYs8xZXh6Bbt{}gkW~id52u{Pw#wvbAqk6pbb*Y{|)t+e+h-#-t3?hlt>*L|#QJes2 z8Gr_Pm_jER(-KP>Iso{YGPi>ON>0ve7G;k_3*fW$i#t0`A7B1qBj*iZw80<#Wnd&9WVLhxFKtr4H4nEWV#C) zv$6X{phP9Hy>lS-{O8==rOe$Az*&>}wTG&b90Y1r(X@}}YtEdhBhHS|k$sfrPG=q= zAI-|}r)FivYVi_FwwFdHkOMlv9bkRr6bjKxqieGZ2zVcKv=rW+I0C=S%=~=3k3Lr? zyFdgYSWD~E)Kn2s**ZBHH4T-Ehf9ywdjGDFqeN%N#jRX{fK@g+-i`0`lbI97dkY(& z0t2GThNR2y??a+-!!-)i)4PFk5ts*|>;2KH%V{c5pO$A|#wgx|hWtn_pakp$!$P3d z&>JqgUJKaYoE3K21yB>z_Hv+#c75#n-cl@-uHPH};^6Cz%EO*^uv!5KM~jpFn*Ahd zk)W$+3L@u-$Vec`36wVO_MYBRaY}!CiDN1Pj^f9EqF~?p3~BK>IjrG@kO(6M9s!R0 z4E`8^t=rlvn443Vzou&@d*W`)4(mg_sI&;Qvhq&Gnj6H*!1VU;Uw7t2YS z_r@BP;@*7gU*1S~*!WDsD6B!x&CJZ)ENFDRB_un65qXS>k+HGl4k-un^NY2jwdT2I zzlx{9~>GSgu|6oRBViUUm65ER6wlP9{Yvr-viS;EQg z`H=5htVD%UtTUY*y-Bl%;=aC(5+;@t@Gw1o8*M_W=tRJ2qEK<{v zuP!cP-!}c2+;|=ljL*a`38x_#PD@G7fBd`=n7IiNzCQ=@+z(9~Nf)b^O`sju*Ec|} zW4_KbVFjS>{arQ2zjJ53x9T)9Hl^x}uv0bVLzLkpaOWQy^X#AXUW5la%5^|r-XZ%j0mxxNoAjtLXTTeGAq1zO~ z?b;?VF!_KB@Y(_&cr*+^)!DD{o{l4-Q&aS zSv|b)#)^vA;QH*hQ6ezpnup!iR15FT+dLoIoaTPX6Y;z){oFGG5(rOit*0FQfQLZH z?2|-VUe;aO!$A0msu#a%wiLqahL(Rsx<*Qzw|IsHn(=$f>EtYwlGbH$hQvQ1MSsE41Hq zn0Y;Sa>4=;IP*fSIY3Bn*9Pqh5~v%s_=gW4u5T+Yx zf?AdU5Z5eauR zg?GeOs5qH${5CkQ#YNF8Q30}4CD92H5h&9Xa(i3@h-}q88MSw$n9{FvLSjiH;~jq3 zJ+$aj4avp-%TyLm@wxEG?Z`UHxwc_?TGwI>$a7?8BbtFMa~TW$)2Glcl4kuz0)ZSj zMU~^mJ9sh5uUlY6@7&4T9Z3f!z|vOq(W5vU-jmnFD?;UT7P9Ks19~9*kmThJ1~f%b z7|~K!XR)F4F*7sA!NCD>hOw2E!(Dwz*|^UdDX_sX9HgIn>*nsx`|zPkyPf=7MPpc> zOyJ8vM|(%+;=7H)>(L+5e-|-DJk>Nc71MXhUNjFj106qI*~Gr$Da!wHVeyjT7+Uof zKzW`Kg_jMSNgVtffip?&y)(%ogsS2t%Y3CRur85+L)@UISk&t*Zk z)7~5&=Kjo`tkd?SZ!de~m!9298ZnB*gn@wuXqq7WWS|id77-B^7QebuR@ue&XXlVd zAoMwv&qcrs`!|^UmzKoSNNwEt7{&2O?4-=ml$g?ih&?L%EpA873gxQ-BY~@l=F+yh zx;p%d{oS1WSFdt&VFh&GW=y%ZkA7g%xizGI0`kaUFePZZPez7oNWtvO!Naq^cceh6 zpsWPUgomQ*kHm<1&@7>2lS~Oki}2~=0Jf_MxMO025I)kqgIyp^*sr-!0z|<17zK{!$%I_0 zb8&xY@p;IdqF>jgJ5&;Y zzV29Bx2VjCzwnN}<~UnLO07hb1wVcG@iVWG=QbG;4_D?f>+$xg&u6Lg3Em(1lAf!H zZnik^nli%Y9QM@o5zvi3AW7qv2xMU%^kIy*Ue4C5zIG47g6)<@Q71j(A-1O$f^h~l z!|cl(A75@&0Lh~Vl$75$4-{H%!^6S4ra;WQq_#WQ-{0iVA_FT|!*+#gWg=>>+uFd9 z0O};~B97WOeK;FC+pzL5B5<=BR6JQfG3mAyuPwi-O+BIIWc%V(nk{L<@>7H~-@K9R z)$NMD+t2qJ2Bou3ljwE4&h6Y&pO!IvlO&%^yk#Yu>HMgrCh9{yB@7l$xqv8XZvM-? zr>Ez41xo`RG$0A-(!`@*TD}7SbG9?LV`5_Z`s8$|G@mv!Odsd|{7KEqnvp>k96Z~F zJ&c@!ztRFFu1}yk4@y2gI~5TX!r~1M4vsqgc`miFXZ)G>ffsPE1@|DJ=kQ0&*<(TE zEFZgbz|G8;;>JPQ*3N^RIYAT$5AV@YwP^7Lh(G$V4hH(Ou|XvoWcU;t^80(kGOdyP zbT=cdGGx=8oz0R~Y~f5y%zFBIfOuO{Qc4P3VK=W%gF2$6KYUM#N6tf(^fUQ6^~uSB zg|w!+`V9JP%yf)~IUUu<7HyGUK9^;sln;+~+HK+W!AeR>qT}OBb6R3= zjv2YP%jF2E{22mK_DhBmp>2^%`aBYB0iS*f0~X2CE+^fht_%-5|MtrE9U!9$u!BRZ z+A5K|oG$}mIs8$bk2Z=8xff9rNYECf3~EA)J~r2of_Dr7KEAHopaOx|f;VB`b4(be zm-C>)J0Tclwz_~f34y6v!=HGXq~A{~misDyqKv-(>4Nb=r~zAWyvX!B^)8{J0Jit{ zxVxxDz0|E{EJ5yf4w{f%b8h7=UDm=5ApwEigYUFd#6TXzjepUVlHm%tQ?Qq%)1=cL z97LmE4xSs~*JM<@hXh8JZoC>A1xDbT>F)9X0LtN1{Zv@5?D6L7QPUMm%jjrykXyuPB1x>~OT7ku z_1(O+yrBG5ttAs0dWW>6^Ze6TdC<13og!MmE9C>=d*}xRdgj#zvUA}DcM{(Tj21;y zLkx|Dg7RZu^}rHgW}SZSF6y}*v85kBz6ZeS^75F2+{<^UrM#lBFAJg;?OqM;#5?Hc3T8Wi?ujnq>ud1-*NvG0`yGzV+O!^~KhwUmV4cj;5up zgQOL`%$U^m5F^D{HQfn|l|hiA{9 zJVsKvO`Wh7wkdNA&}8F@sL81Pophp7p6&0^4Q)sZPqS4*;MVY0f0dEU*75_@7>4uqSZXLtAFlvd-ny|D%Ge2_S3 z_v3wEQL(hJ;0R<6HL_rgULBZ2l|0gjGXq28jI4~Ttb}jevr1sO0>s0N+VDDhD_tTL z8r~WE0Ae^|ZY~O5rUUYE!+B2|T^nFYanY~xm`_b= z(o}>=j)ZxGtkseS);d2Agn+KD0xkf`10;9)<>9DJ&H#;6+ozIm4g#ju>OiB!)D(iQ!U|(Wt{3Bs7=0;JDQ`bD;#5 zE4}l!Y)?wt+S(c#j+LFA)x6b0LP9(|Jmlo0xw{*5yFLi9u)O~M)WBeFnJ1*$>9RW& z5hoZZfE!ErG4T4r8}fwodz(A3*v>%5Tw&FmoLbu%*}1sLzHaE?r^s*H8RZLT>~3jE zN_Mfni;*LZ>5$Tt4#@XmwKO+QNQ**dWfUy(i`)#F@g?|VbM~bk(9(I?+1qMrESBFa zd>!+BHBfx;rnd0{<3%G7Eg&iQ3Qy3^%cT6izo+P+SHHTLBF87oBE8Q@?1Mxf zaJ|obk)&;l6%?G!);h|$Hu6ElJ%VXLFAtj8EL5>HM&4d%o4HKd(%sS7iHn0nMMY(T z1ysOQH8d1xHsRI{4HfB~ogI{NySp6#hEq~ns${I%WZldydzw5snUKZTC<5GN64WTN z{2xVHBCAX$U@Om=o0`U-j*pJoY?EfaHZWemBOnm;M7_T0b|12{==Ba? zg#9&-g?Uh`^V#&{at1~PD--vl|M=IrRwlj4rWF|Ag?aa=a&vRrN3VqjPA14r)9y`SRD$IT7L-lxx-Ews`%Hwfqxg7vp?a79FhE*t5amP8rz^yDAt z@;~NrE3V-eA-Llh>t$F-pX*1~rL-w1papkxcKPG3kh+T^oq9;KCW$8XCyz*vh2#|Y z)(c|^OE}H@(p;1?^%`b5FQS64DCvUlMILxucWI#aRX8Qj`L40pOTdJM$Lo8_V~%5r ztW?NIsHvIyuL8>vpq3iX$;~xbI*b~LVq9a=;6DnTPvrBffD|hPE1=>U-k2C!m=j=| zx4N0SxcsE$h#4JV0TS-kEUS{g={%5P%V5A1*{h+3tBcH)I5sxk`H1M8Emve3*_NZh z9tdDwEWV-^>xpB;h8Lb7_VWW@czUwzdNZ1mxAtjZ#t3g>YhVbNO<_ zHqmJH`Z6|!2^JjAdLomsvHj`y5L?NFw8)(z9SD1r-Faei^L^3NGhx7aOX}IyjednT zGqPjN*Zv6*HBK2vb5Kh&3d#8;7#*aY|B?8O?G5DIYcXGiONZfk2HVbzbWWloTn zk_tZCPYgr)J7B^F--nW0wmaeOJ+H#eCR9x2;WKJ(eEe*3t6_lMuBN8a4m;5Xe=A=% z5YN`@dxiQKodT)3;AF&s>C2atehe~q0djISFLT=cV`XTmXnvm^4=D)bgKcN>m;Ej$C>oFgH5ro(P_U#!i4?!oh<5d1!41~wbWx}Qq2 zmnF{n2mgFPZ?T@#3 z=_6R`0 z-wva37&S#Oer4)oh~MG``EiKdH%%J(Ony-g2L7q1GE)j84GRXa24WMk+jjD*Y<@%V zWR+ehSsP{7LD5#-22;91qmYoAP)KRF!P7&3y;c|*;U@a>FD4pLklFtH@fiPc6dNUM zbg<@k-uEA$3j&Y2nN5_>ehD-P2!O1Eu5LctP%;AD$mkXTbAS{|h0!B(aJ`D7y>_;kYs_8s!nk`e7fdy^<2vSID~co4^wX)6=fTCecvE0NOy;HcOxwVl2VdG zcXvt&LrD)U9U?8=jWj5sba!`tr_Zy#_kGu5Ef@I5z|1vsoyW2F{_WVt7?=xK{ENSj zuaL#oBCfpy_09bnIJ#>LR&GZNE`PW+pgA$A8-HHFECUtln0+)fpZj zINg9cjX2fFw4$K!gAHrv;VpXvILEe2+cnb^>gwReK>*#yCa!*NfBc8j_<<6vk}ddY zHkWXt(RC>^QqD?e=O0FSAm<@&gX+;=?W3>Ar^U);uaLLWTG*;1Nub@$f8gp+#Pf(Z zk65a?Lf(N9}_kqAC z@|o2zhX`@Vj>3%LXDk`z03Ew-4ML*S*XOH`jy)Pi+MkatH~UCn&^Q2?+pM$0#=*y#orBD zv?|1P=M~#0sv53m9iQ&BIUe5meWvMJDKiB#6{#z%jJ!^h#t$8&0uso3Z zQ;5Nzy8d?QU(wT6@EHK!hFs8B_{H#w=P9^Q5LMdtW?bCrjI015Nnw@rq zAybDpF510-aONVsZ%Ah5H?UbY*0UHJYkmH7k4YgqsAnp@Q$H{_Q-kbvJm_1jk_GuT zv&i-k?>F^FP-A#}mV=)?MK^T1%W!jZi%UUWLt{SY>hc<#>DRk-=@EXG<1u|`eU*Z- zx9W)r&VZjH<$5bU+(PdU4gs7NMv9d-4kGo24IWuHeDPfQ$q;GjkZrJ=^EkMR*1{M<;b9l`MQpxW-*sPaS?R+}Q$uN6c5w3Xqw zwYgcw{D%9b9U+p#0C;#nBtd9s_2Ur~?1TsVVKc+`N1ZFi#;TnQO|CsX-60{tsQbyh zKJI`B16XsKKsI)&I)odLisj>AtSiNVr~JJ^74@%fG57VqoqDasy;9KX?+0|Tdbc4Q zaV~{3f_Ma_4=O5PP*SthX81@V$_}aK(1QkPjnImwHnDL<%1Kcw-+>|s4x{!FEYNXf zLWUYgz+pIoRb_t7o7DI@ygwX}ue%9r+!VdMdc$K#x5jfghODK-$xxP9fO6($ zzlO%dP$O|WcE?ALNzczLd0af^e*o*lwl(_9i7yj#usM7dZCF<#hC@awOpl8;H;#P- z%MNOidiomRDTimY_hsW1*1)(>|ST>{SfT&hJ^m9Z> zSs|A#_RQ@XJI2p% zKH4f8_=^?yl$mXJ`t-I4{F=QUth{$zY8{#>G|cO$j3Ww@efJrxI+rf?Pa5j$alY5g z2j#E{FHZfT3Fz+9A59PWo1O>)boxu{e#N!}Cr9|n$pdjYUf|ORtal?aL1kSgD+@$+EJPMcLY2URniG?PfzbXsB zLYCAq7$`_)0`~KwBGNjt!u4%!A+Pg29P%hhNkl}1kw1q6;f`l&I_(oH2EWT2gT;c> z9fb|Lpc^mZA%zIVf_1mpo4m8O>$yDr@o`JCQ~-#uyFGgyMaTtEPlcI!y!}WdXPEBnFhed>5OO_N4hCCY4=9JU{GGiELxEFAI znY~WQEiEsD&^y&%P*2bK5cl=o%;{)otltC6$TfReHdtKeI%<8_|6w&Lm4}<&$q3@k z&P4}mYWQN?BWbn3yn1KiWmQt$9*>PbZ1Vf(uV1|T6T&^NX@7ANt>`W$!-#{=$r1zU zWzEHUT!|%%TTzR%lWR;{+VwD7=5WKqFfd+KeYCZ3MIlCSu~^l2buiW3@-;KdD#UZuJAhsg=grBiUJ>rVsXxAlaOa=q#v#68}0M z!LcJumBd$FTZ5DgX9VG^`^@4-Z^1##!>p0-<3_2*<)!=0GCqseiBRB@=#R&KJ#NL} zpYPJfIpd;ZL7=|BZy@UBuW$&c-L&dXGNqT7m1UtE^;um|_@b89k<&z7Ypd#v< zV}^-^_w}eNzfIn=*?0QL3e7%p@K~|?#z{U$+5PaRSy(E)Xv;!42T}RUVU^>fKT2G5 zv>EG{5qhm10mX&d&Z%~v%QBz-h8o8`s7PBEmho~)u%B?~X@{Cm$m7sz&oQLOI_kuK zH2uc~5lj5*A!9DI*L|-K{+s{A!wLrn7Y$FoIoD7ULQX&Vb|?QOPbj9%SqoeB&=0aK z7`eb|L?yi$6LLJ?4?gQ)8ijP}0O3vor7zJ;W-0sm$yo}RbPR{8ql|S5{Fr$rIL)ft zth|!(bfeS~S5mGt|?026y{t%1ycN$(zlQu;D zKBtWl<8B{!m13xoD5 zl@~@1McU4u?dZ&SYil#a`n}&Go58GNE}E(kE3$5W!wn66a04qM8WRbP%|P!; zG4Vv_8*j%pGf$GA;1u7m9MDozrfwkFm0h!HW(N~(*3B(?cgkShPzk%V0w34|?{Q`b zBdZJ-KUPLiZmGU{g+q=}v)C>6r4N;h{YUk<*#@wQ%upF7b3b9$=`cIe1~%?l(URIwVxYZcD);x7sNMq@zJ0wjM{5^NZ=O zi~iavOeH!|gm!8wsxS6D4tzqdiLXOGP}g_vBitc>#j;I9Svfbl5tSU8n|mv7DR29& z5f#}oazMYz$^^{)Gx>MHAH6wB7g)y}z(D~l9>5END;b17{UOf#7WoEOdR=u=-=9TU zM$xV<@Hv40KP7x`U2T~!71Gw3Ee~~3AGo>Z`KGqI??j1yHQg3 z#T48W{Wt@c9&Q@F+@-Kk!{W$<&cHSFWjy_lUi0;E$F*X3A=u z9Gk1fPS3aTxM~F+C+phY&v9{$J)pfN44XkwP)f5`E6gKhP=NX2z*52#jjOTaI(gZ5 zZ?|~D{yz3lW+RjyotGR~fMdGmtDIjL{uhv&6J&Z;D@z@Gd*s=nxD7Nv99J^0l}{4S z=Z<88PR7ga{v&XppLmUv6%{-1kD^h9_>STz{@qj!y-bDk43Xxa06&VOmBJYPRQEfdc# zwp;^7T?kl9ezUy8j>~%jX>8C;$Uxz9W5SBhV5p@B#WbjLqV9TuON699G-*2Uv}yDd z=A9g$eR?VJIL$y2n7M=4m%?Vy|7RfK=Js~I4Ti67m!H$I{D;pLE5hL&7hW$N_o$Oi zqdx&_JnvUoXat=2bJ+Omgzhdg=T~80k~7nbsVwm)*wWQ$)5M4yfBnH+#Cf z30d|3ljx~7euA&Zcv~c!(zDw0x#K+R7*GkWF0X)KEOtI`S*1rRU=O*kb34VkF@>0( z!h^e9_9BXfXW!4{gRe3~#upKv;$}A*R_gII zV1sHPO|i;mx8~rJynj_2tUHk3>D&Uny}Jb)C9udh**DG0KV@G_P%)+5qGw|}jAY2s z0UT@-fqFTbw2t0h1Ut9; zR^1N<)2x9O=~-DZ+h*fmXQ)hcA?gtKm>c_w*8Klkc%M%PC_c8kn9nS*x=V!bap6dQ zf&(x~YU*5|7dEy5m^6pq=}Q&y+kf6xVsba>*Thp18VGsmxMZ@ibi-GDgoceSn?F}p zIyF=z+I(l(;ms#2u&AC`s6^TL!cg+7OXE4ELNB9q$k&kg_31^>79=b~O)JVv?5rJ# ziSRr-u!y+O&A`!9i{5POa=WqSm8cj4R{x81w<-{gp(^Nc)`c1`-wKX--9GPMIY)^(2@3QKo z6mU>yA@cEj)@H@UL?P-rs&lH#oT9unpp&@ng7+J9XmPLQ;-bN$|D(*gYQ%wV_JzPO zFhd8+7UKc8Vy-Xfxaxg#yx77aZTNlm5G8^((A&F-qx}ZnRPs%9mI>}nsfs_;-o{KO z)X76ilJ(O~{_a`L)DgvLVn)dhBT_`2cDx5e^!2^cSFiA@Fg`8|N~m#27q zB|H4o3hv3-xjJ4=jg>aHSukV>U|E66yoLH5cWDBjb!fhp2R4NO*s~-_pi$JlJ~}F zGG7^dcJFKV-y34kz3-LUTk;PzrCRbkAN@BRe*J0;TGkx2X0|&{ysuELt#?5O=-Nv( z4(IBwzkffknkJ4~uf5v&43bv_`48z*yt^EM{ZM%afC|q@e5!Cs`01NRQX3WFMPEo@pT#+rrhbYPjs=OD>mC+>9(}QDPaylGY zei&e&D<~>ZHw#wM_Y<9YclzI{-1j2~n)O5m6)o)#_cwPqegHk6aVWB{DrAbd>l?g1 zp7RVU@v2m%d%E{*Y{7ZecViHHM!oVOvW-D$k`ztjdJeBM9~Ucv@e6x`^w*Zzb5(Vk zZfa9JC!9GdBq{SOC&llaVHZSOA%^BOSk>+x?hq$6CD%Dg$J*mP5Qh%O1f>d?k(P)% z3_{FG#RKA0#)d_m$i+k{{vM#3hL`)@vt1O7LqH%di`l<0pbLV?UY1vrm)kDR%Imh+ z{9}@9vis-Xt`!`gf5pw$OD&t5=0H)s5rV(_{gmAWr6K2o^psq} z4!lVW49JxV*beXm^00O@u(UvhqmGS@;hq3R>yunub|Ja7$U1Zm+Ss7(l4&H0fUVbi zy>rWAv@g|Br^5u8!BnF?`Y>A|ki0b6nGZwFJ*&Cn4~T1Ghpc9zr~daxw2dCa-w8IsRUYvh`inB3hWQ#-0 zw1)X1X^i4+u)(Kh7`&kT1Dogtev1|Vmq=99rHhRnE2BV4vB*wjibl!~b|3Yn+n&!m zLxqY2BSvp>7=_T$YS(tEO%GJ&LRKfM-|qdmicTuDr2n8&p<5dcgSkV$w>#$}B+6>a zyIvqkt0;ADP&4Md=4O`qA($ATKf~g%W^;I#Ko|j0HKEb6C)|C6Yt6TyI+vM+?eKU%DmE6P z;=a-e=mN*vtQ!?u?>P@Y2-(YxyB^dVTaUNN(CetXOo4*0nTn6!^b_t#KJPs2+{*)< z;=4%tr52TygQG3&8_~1&n^PjZ;CX;gaGY!80t-VO-D)P=Dy!A*(F}erZQ}gct1B>1 zZEqVV>f=Eg`h85!`x8J#BQ2Ty2Q4FWb9^K= zF7Z!r{uh(-ATiW~u8n=$+v{a-V6UuGs~@R*G25* zJeUJobgl2W0|9q>iP(RVvhK>4!07LCezs#`hn>}AIuLts;H@L;ns)DXPem#0LqlMx zr>Ersvcg+i7I*S>#WxNyz7n^^DPF12q4VOmNy4@T=VZJg1i3DIEGY8i*gu$eZazqc z!@pt|;muE`G?dpW&iuA7iacs;nxn_X5?x;FC!OG|+DP8lyD5AcT7)_$^Gz?G2|v*x z6f?mLRZFK$OOaYqOZ7tXA01B6Dsj!1WT^O+gKv3d17?T&=~~}6?Mg_2&JHlTj={u4 z7CZ)8BZt0zeKT{i_F8dkJY#!*UqeUdWNdXgv%?FHgJpO#kg(4!JH!GjaF6O)<+rIt z{~=kA`nM`W_lh0E`3CrGUnR^Sge;Empb|CCxw+zea0zjTM~~u!hnF{FW<-1nWu1+t zm(XhYTJp8H^0PHE;R+)mInKX;UQL{1D1`yLX5!bUX0dd&1+A zJZ~*%Jq3Udc%B@40Gn9>>FRCU>(_l3Ix3EFP9+J-4ZOoqqh{H>*I@fkDqt5K8H-)0 z`3rr`(af!Gqd$g4+x6@v8d!jx64=gEyykwdq=YgdpeTqJ6%joM%i>Bc5#x$4)X>yV zO3av^WjKOQ-As@F^a>qKv#Tnn!$?YfEwfx{O|zBi^iCR6>>_R4Z|kMe!&>0oPwi~K zwa6G!0UT~Ltx}?FYtX6?T3cocV*q7bc2-ty7h#11AmK5GP$RW%VNULK(j}y;+uPeb zf%F|F&gcbuP^w+Z&IW4S`?A8qrXPi}M3kc|#@DB(7_U$jloga!2(|mn>Itt31NII}=D8;63ho z<^nQznRuqD_#`+s;Z(3j*c=fJQoR+FCg|6YZr$(|JvX;{cKyv!Nl|@Dmy26a;lLcl z0%O~!!ZqHs4JPZ-Q2l1r;Q7HKM!wf!Sf5X=9IWN^hvukgvUwiwB|6$4(Ec&={V$NtV5BwJm3et< z4NCzT))T*9AI&F@ta(dIF+C}%>3u2baZnY#V`3-eGPsvkJ|S zte%xr=GR=V#g9#Xz)v4h|yD9=GOL}vO{6HL1kld_n zX zMJvb{VeoDyvwWVo_QebMeH&YqEW!D?U%cU#sfR-Ecq{tYS&HsfSsF6Mb9h%%#2$j?HTpQ)t9FRzs<($)P<_xpidKOAz`+olLN z`nO!3#jw7(A;~F=pJ>Rk1v-^;h)q`J4pN5yIW=pt(kezQ^-^05`W_2$s1|Z5yzY9`O6UuV#l&nf=uF|C@&f0?Q z$=9+-EaaLwtiq>qe2jJ1!l>mB{~SK&u@)WK@5aUyaR$x6M?^#gJ_Bhbd^(J2W{V=9l6_t4LURik+Z)$3K^S7;ZC}cu`Wy2leZ*+WgHhw;8 zI(Df7nd=Gg`&mS_5I*GAlA*Z%^8tZsJ&-V9*LkB7jwMji940FZB5Ahv$sHx9=RG7K z#PhRc)+BHg;f=AGS#Qne+KkCv;z_L7DqvvfrKf+llWJ_0ezR>k3XO{znCa{9#n$~J z1JyCqkrLKmKHw4OpIP3%AkSKnmv;W9W=Xg@4454qt^3@aMhm|AFg(>v+{lP%wAVFh zc$j#W-2%LPIM)$0r_%bwx2X8;_%H3CLz#zE>iqxzmAihi1w$lAu&5%J`578vM8<2& zMBBaB&sA+g5HJu`0pk;8J*s*hUG?P1?07Q(ZL);1=Q1$4iV+7BQFZsOtwHd!c=C00 zdl$s-!jOVh$Zy8a%nG(f(t5}`4XWM%p8*KN_X&uqlb{M!8ARjhcHezj!3q@eHE+V> zVPdDQwxnIcKtr>L0jlq%+x4&6Ssv6?yu=w74su*3Hntc}?dXOEff>`K*4v>WCW~c3Kflw52r}8%RILwg!dqBQmRyV)xz@yv~v38Vi0r2a-JJ z%FoXFh96lSPPw@i*|k~}+P`=@NqXD4Vqptx84a9RdHbx;E+;UB)oY#pl`Q~Z=%S*+ z>fmS!Ev(k0sl>=LIVvQGm6MJrU+wqr4aEah-{{GhVHj}8zcJ|64=-S$VFkn+UE)au z|NEpOF9^LTPIM2pE&T|kN=KBFns%R}9qIgus`1-ddoOZLiQ)J}xFVShRu56)=%IPL zyEe{^UIC#?qkABc@?L4VCfO>JW6Q6K%qEE_Xq zzPwl0a%{}_k#QV6X{o+^+ZMOV&crt}D=3qhs}%#P30zfW z%qYT4t9nChvRHjF{;MV?phxL%m5INmCLU5le%m@QAr=-2>=2)mh-UFj%xVL2fTpI5 znMz3iZ-_}gC@gug(H9_qq3bLHEzL|5h-2PGQ+As*g{K%K`M-~dptB(xMTmPj#SqPE z)*mTm30$0kMmZJP|x5Yvl z&iUm0QW5(a)*nyc89vCszfzBZh*%Kv>+j&#&Q8R0!j(w#_o583^Mm{$UYhz6@88c% z!r=0x*Ki<+zvNbrvX9pC^1%HiHa51}`BeHPE>T!Q0x6@)3EXoq;>(RfpZW3$O>Uvs zqZJ4B^@lkMtV$=3Ug^q?r#sNA>PGM+sSi83| z!gJyVn?O}9iAHCTe{)}yG7~r=URFCMum_krUDbKD7iSV7(Z?v7_Um@3Z1W&oy_J%Z zyNc#m6;#I6Ei+cbOFJBHdS?kR%{acO_WpkG?)rK7JZbZ5Shv;78oEdkIx%x9 zr1OaX_jS-zh-)l{>Sh&xMajDfd8aAl>(LKtlt39x4cK5n44a#ai?44^aX|y=hii>U zJr^{TM#lcI62S7YUpXan#3ds2JP{@jE?_WYK(WM3ik$z z5<*;Y2*W2r#{sFM9?PaEHYV=+@;a`%FbS$)_(rOTuWPVO(Ky`-j=_4D*B7ew>-l34 zyX^6ZkSmBo?8dO)M&|?jJ5b|>XD8p{Nde3T+Do+g8jGmtxzo@RRw%)a#`(U>VcnxwN+6PCBYj|u?@^ryt#^k^A>D3hT5OEsj zh_HY|P2-PcW+E%#5si-D!YjOb$Nm6&V}jV16C95vBKeJoxV~AF@My9L16BKd z+M`kktLE01RXdo(`a`NUDq+B+>79Bt!8jTI_3Ew9@;OB!&-=5zcPTyuPfP7fzyy4I zCe($6Pn?#J&TJ56<|2@EL)U5mkqVA;b0;c&cN-fG+6RWGlAVf)s@`1`z=B(Z=%>RW z=y19CayfN7TEeq?#bOsQGPuD!O$<1>w7RWd$*h-V8Cp8{v^x6DZu6jY8E|4^7Oib< zMSL#iN)wC05nhIqxmRiJ7f?k1k@jq7E5R9dd~{4JH8h?KiwKL5l8}s!gTIBhfYZP4 zD>z%w4CR2wg&x~{(A#S|Q<1LzFAx-q+I3$v3g%Jv{XFS4ash@`T{gse{pPX*z2&gCzCM0#} zdDX-$kh94waj~&i)z>PJzYguYBH-@NRz^ib>3CQ190s*Jb{l2j+ZdUf)VgQPcM}S4 z+;8oJGALXbxBg_d+?rS@4qB?G#t~;K)qd5LW zaa&uXYw5e^0N&XDdNK9zV&}tlZrw^fUM-$;@IevH;^Mt!a)}FYQet3W>`e)pz(vKP z(jHU|2=zxI7ZnRRe4&CA`RbO@_Vhpq7zY>A3x%AG2vWwzmrrqNSr8a<+ibK0G>T=x z`}G_cr7Wk}vtxEP!@|sZUuS5I9B^&K#6+f^B?KQZ94ky`{EjpJaJJ06#lHm$Vkr*& zkoO}SYn^ULwi;ZX{Ei@s3Agu6sQFuIDVKo2_Vd$w)MzT)b;hgzIakuppoPG+})CI7zdL z^fBz5FjVe*Ka8QsN5HB${nrZF5O^-I{QNo4>uTQexZ^p%<9nV!C{{gz*nzCA?Y@mo znMhw`#MT#4UQu3tt_nQdV1&1WbvK;v72Z%NvExEWM7Hu?c)aJDea%~p=diT{UHP&S z9en|;Fr2<>(MQZI92|_yWF)+Yr0z05rlv?Y1%|iBM#nOW9Bn8R3$|u&MIhgE`q`)kDHU0%8o76%CZ;ez)}V#m*Ycs{RY>U z`F!%hN;W^3+asscU%gUB}t^ z6xb-Q`$-*3sHVRJlwcLxxQ2dn9y|l+;)pj&1n4C)Hh}; zVy6e4VTAyVA;>k+9rp4bq)_!6Pu5;?v_6~-S8{(c3VZ}Y&utV(s~0$HO?>$RX6XKb zKI>X>Ar?+RNCkVyxJ03gtg61JaW-i@_g zpK`aL|GdRadBqsJpSP*>3z59d;S|({ZFoAI>dT8O<3GqqNSjVk*Z0|i&TFY151Y@+ zy&Wei585}AaRF{OC#zFa>aRoR0q;yun7J~)WuJ@Ei1IQCKdS>Dt5XOlZH|BHxP*mC zzH<`ureY(U_ZcNw$j)4y*<#!MOZ-mj8WhNY=@NMChyR#t;$T)+ z4h{_o`QKgm$}imm(}4fZ#PIVeWrtaR%{tP1h`+)BNqLS_XduUEg=up6gl9MyR? zQ7cj>1AKg*a^{VVIp0z-b=%zKRK0O63E}DO(}Wka3xhrhaTMWpwQV-w;v_M@U6hjU zJ)ivWbp>s7uf!xf?!}V$(ujJf%<#vOu%W}qm>kBEyB z7~iiq-bF}A$rSNo^kAfS5^=Rd(|PSDJ>H^59v zK!HF=chr9xv}$s?Cgp_`b5qk)h**3cW%MA$5x^3vc9Tl^e8aH!2@7h3P#O|qx^DW8 ztCj8!OCIttnVh$jZ7BW&x9)<-GzJ^=MfQHzf>6-Y(Q)FtS0i##vGKTGg=3I{_@02{ z(?j*?=~PY4^>W}dm~4EWZYiHnK1+aqw*#NfbJ`w$vVaM#EQOPH-K!22liY^#-3mKF z7TVE6N{l__mqxSBrOnYs>WIA$FeRa2nB# zmr{TLD}UdwKBd#;T2BA7_vjk#k-@r>Kd-AQt2^19y{sab?j4`+Dwpqp{(hd-@%Zsc zEf~X$Msk;(=b{k0$=PVOe`djVoA32POT-hv>*K8qqo(gXRg` z0$RfOHUyJT==+N;7%_h}l`>0PxQox_U$#cgO?X^K2&gGmHN(R{^!0ERk-ckug_Vo6 z`H+Jr_dP#f`ld`I-L$ubb@tf**mn!|(Xw+nKzkDbrFF^w+TgN)=WCA-r9HOHGTIAE z5p6a2E>)#JBzy>K2wc+WpDHU4wX_j4@ESPB&0J^jygYQ2xPCbQ@xxs)h1DC_D0DnnQ_D!Ou-@o!EN8BvT{ADF zKpt`+jC^L>FzOh=pU~`mKVyK00Ms22tBi@!kOlF?o1hE<$NKtu=Dw=`2*+|99js%c zBlMf?boG3i%S%^OKMBn*&4^D(a2Bn(+}_m#3`_Cy(^bRs#eSeoaKWI$&*$^!2MHxk z$bxY_VOQ5dqm!mZ0}YtYPbcQSo8yuFAnEElFxdyMJvu`~%DR18u@kkqs*+qP zws?ODa0-C-(hM#UX;raH7%tf%iXc-zz1i_nn~3LOx&Vg=H}}tR6?Tt003)g_kvX-!e-G=J2OE@$wmfupeS~Ozx^- zV&B@=if+dZ6VkbsL%tsuzr-@K79{z^*0oI&J|2$93S>Qs+RiL$ct;h8u6 zT5f~dBrC!ttrX(-Ir$pqEaOzKYv^vMtv_KOaCWu=SDpBLDq3^ujmf5Czrix)85102WSrk!nQN2Lzbn=Q=rmF7}uQXjpU{)XDA`w7l+x=*6MqA^cMyRi6! z^zw5!nQ1?|qrry{LvyLg$*Jc?ZwjNIYa%+z($iCBwA{1S380aX+F~KED**~TT&zpC zDGd5HCn((1Y1G07U4?V+rOOWkE{pAziB4D*YiCs2z}Z#(v){Y*EBr*>A=4Rm200Ty zJAFg48c|q+c=t!k1edR7ubI5_cTW+kck>PP&jIw*f~0 z##)BhDw|pS?K0bU1gZ87gJ48bSfI~0^f-q#p|ar;y{k)kDU$&`_KF15!9eR+}s|wzZ|FIGw!iAO&OlaI0JY z^z*k@OxDY|7~ncEQA=q&hGwk?k+(`JX6!^mrC4pgRKI$ zU9Vo;x0%K``uK^e>Jjy*33i_JjTxpr($eqkG2aYm^;TXS+0D2Kd<@mVKrNq8L$zmcU&eQprk+7o>EKc5T)J`8~5eH89r)bB(s6TsUBNF`b~l9jsl zhu`I6BT{v~At9Kl`X1i#U4HyqH8CO9a$O!`G$vIDWBK#<&v>@bJ;(C{$MQ{o&hz8) z^P}SDR|ZW!eE(=Z{`XHe9ghu;kG~t9j*g$7DBGVOKT`zEP4bcGaV6SiJ)oU^l1>R9 z-KYy!KRYowN$>v7m$xB8%rnKqIhJVwR(Jp~q-?LO?U@R!Rt`emYjiKE`Ple;mqgp7 zHNKFcTR9q4Ha_;FtT{~p1tsnH;c$7cx(0oId76AnRY5rGs$u!|uRMjnnS&Mqc-MCZ zl~%uZ!eUAkz1$$AY?uYix1UNwV|*j5t__K_Zgah6uQTMh#MM3X>G&HPB0Bq0iA2bAUeIuw&1b2E3TuBc2A<~&up?M`4;bEoC zVmo^m(h;q6G)N0Xj#;XK!YVX^f}9aQ%50!e>RfS`-MkS-F%fP%VatZjBU9C1C8fv3;O_?$4pQ&_G<05-^B4@~if&gb-M zI<_BKDDs+{)73yKK{wRTG^lI`=?ayYoV?9;mVM+A$X2%tvI?N<<*6Qo?GuniqIu~kYpe@PJu>WT%MczaTqpx0lelnK)7OLV&Y&ib;uF* zKHHhR28>lsxB2vki?cP^sMGi2?c#^zbL|mAX&WYepQVAhCE zI^s%mds!Q&qcPIf{O1qQy0?mp(qRzQ1vvTdhT93**|BiP$H($sAdd%nhu67<`Df;S z0k*R@Q()Kn zYl`;?uq3OPvhUD&<0-e`khjEvIA>_=wR#IijR8IF_eZ`&iWj}>I_Dt9!Q;;LVQ#ek z%A@GhiX7Z+yO{kSGMjfW$ZNB)_v)P1!d;RD(GsX}(z`)aA^|UYCpTQjggzt*i70dx z>>?n?b3f7Pdm!XX ze!9K_gfLda8X0|y6b_~qr&TFg*}j`zFH3oOWo36YXY8))vgB{@FZ%qMf`^h;ycyY8 z&B}#FKR-Lz+VAh~o}QnZj-PBKss!wRT)tbnZoket_S+tRI@mY5n@YV}4wNt{oEsY4 zBR?bu>kPGPlwHOD^q7(36NKhTo&l{=#$WpJ6n6lejGby*GmH4UE-4-dLh?~KSDApYAbx`}<01w3MCIus^B>TX$_j27;x7yJ>sKuQj|!&#o@Jeuaj8 zj{ME8Ek@bDM;H<7W=2ax>vVmVVON-J^?Q8wUw0#Q2zBRp$G6%jtIIG#qr2I_#|D8V zzx5xpM)#|60XGY-5Y$w`IOb-VLqP0z*lu0KeDPm|Kj0HyW?SZJm6;@ zZN?WYU|GACxK9nd{ZZ+ExcZsWupJ_+XQL+ryG;-rU{tW`1DBt?NS>x&shK9XE^tm% zZf#@=`KHK;^x7K}l+GZHpdsm_kmxL$E6$&=LY%uox|-ZhU1Vin+d5e}RRO!t_TKNg z9a!?PHZ&tXXdaq02yaQ)yYq!#5hR~$;rtn%*7!x+HS#{l`hNd+h_{w7cO$J z>9z9*a#1g*%XGdqdVSqjPrx;dB4kfV zNtraL<*^ta&gN(hM(%^}1NGXdM|~A4!6zz9Mt{c(KAcR+TcR{$=Deeh3fGW4Q?48k zl+4?{J>U8)FXI%OX<#A=XX5Yc>$~*BR)B>W#_3v917I@65D{Dl-w}L|nsO?9TWf3Y zr-AVfuzT#Cw+l+nFw;&;PX1x@yKJ$=6MN^m;rVJg;2HDD7^F^!1bniaenx*UtDyfB z$`r1?UqpoqAnigzLcJd^FE6)v3>P}__S)y*d_oF;mf>Kg#N(lJCsdSM?wRt_yEcR)Z;I}+?r05B zq*o=HhlzX`iS)GT+aX|O7?y8!^FD=KLO6=x7C)-1PyPAB?5%9o2S#mLS{g3GcAKq1 z2FdCL7>>=*-<2`;iHbys;5&ML<0t#&>h+gKH{Bp93e!g40ZRT@mKeb9;S*z51G`0K zz~wiihbhA2rX2-A{q+%&X`pm zeh!`B6*1s(3wjmTT(N~Z2Yo*=*~OID_l^eabNmiiJOvwqCI*`ESGb2Zze(;r)OYatL*a6IpuC7;v3ox+OFU;m5bNkmCGuz@j1$*;yj!<|6= zFY@{gCh3%`$XJHLdUp@Vnu^dUMNmgkT1p+&ml`%^WosV-w;ok5$Z!d7FFY|VeSxsR zT*Q?O@eJS9p^L#(;)*_d@IH4!_d*=u@$bv*HOKEUVs?wN4JDNKY8z!~U)VZFjd>P|R!5RG} z28L|)-X8M|eZV82v5kEBRmV#p>tX|~Tu$mJ_I$BlDi~rgO6u5pIwo?AM}Y5a1AQwm z8!8V{TK__*_g9B1VviR^20AjW+JTOlM4uqdDBM@@!sK zc_Tw4=Lf%VRWxae7AgaZxIstIT537Bcm`39)$z^_ui*&lLbgN*sAXrBCYXHnQJfxW zpB>P|TLNE>WDti9V681!)9+jrkqL?T&#=eC=#Did=79EUdS8U%c=FaR@!u5kn zZ7;G%%-_cQP2dpY&4!Z>iNiqln18%3hJJ!xATQmyw==*c_$0D&wIR2M3p%n;Sj^zOA({aTX>=41yC2Gc!}m%b$rMdjLkp4ii|`*$X~&@KO4LZn#nM{K_jbf}m=KIzK2bPTwdEftrnTv^Q)~su-^E{64@xt&u|JxUQg-QC{0pE3Njp4?E z`HBEn@&NJH{SIfYAWUzyWS%b8FM9sE6eJ7)Ww#UKECoVr7+Wb-uXDUNYkSE{U0?JR zzg{&forvFF~CD=d^;I)j7C;#9y-k&HW^Z4Fu*=K3i@IPKaT`# zMVV7`avs3?9O$b7nLU+%a&>NXaT5A#G8(s_zf$E>F%1OwRf_36w62c()|FhhY6+Fc z&V$+(2Ui>R1TXmg*x^D0;YcneHWBiV`FU##3t4;nm<2+IT_OgZd!~h!WKseO3E)E8FTG8?hC%Q8dj3ho37G!Lg`CzZjQ;#=&iPZ~ z*ZITqVT1EwBko}@PU3Q_6#2+LY?|fGiz#|N9&4g|cvW$RwSf#~jh+!@S1ouA6|!Gv zDs6NI^C}+#nITDHY#L_;VS{|driLaa>sS;*wPyX8@bXt)Nmt|rL&(l@Ahf^>AofBs zm8^Aibbz$zwd?t`c;CL6pyB)N6r(?9l3dGn&WKt{Fa+FE0YQEf4%31{a9IYf%s8Ip z)w>GE_dpz=g{6A)bM9LoW`>mDYFPf7x-$KiYa3unggYj->H(Rn{nD3=U+*I>XI%#+ zMMUIkC+5QO>OP5!2n;>kj_gl8hB+>TH{6YwPPEF&@l{c|1S!3GiWHPvnRSt<$GijY z*%2*hkjQMO@I1iZ<<-WW`$4VCp;P+(4F3#3mX~U;G|GljIXY7z{1=RIFHo5LxJWX*(x<60&BaT3 zyVYDIgTd?i5+$D%cu;bBo> zdhgxpY#`iQS=lI&R{he_GXJYero^-|NeMn4imIB_L_^aJ=4K)PZ!JdSRi>SIfKS{{ ze;li#45^8>^bfM{es4` z=|;YE_=iWMIq>&_d=x*B0S7s#Bwcm~ee}(KHRFacl&lWFTORR!zT^v1(#IYduEr(S z1y}`}kB;hpF`uyeqv?|QX3}z2=^EWO#=saVTtWc7ed2LMj98>GvAk3Mqrb}gKdCbBz*Jn{Md-5tv9MN zh>?A>Kg!NNcXlSS_+td^gDU!k6A(!2>yrqezTDnC*xWs4wEC1XfhLLzAybwqKBIm5 z(Dx%d*|d`IE{okW!1-k)##mS2ShrPu+ceG}0T3L+Z>wGLV`HIs%5i3fzfHHZak6q{ zpqteu`tj)*{ZKYgX+8kpi>aUugwA_kXM@sDh?#}mk!&Shq{sf=In z%3HQiF~Bzu|2;nt-UE9usKry{#v5aFjU<11l1rUW4J-zFwZ`9ab6esE+NPJp^>)Q%5doiRun3l-J8PL$blUlk+C1QlDuconeHKhkj;C`YS7 z2=O~WWXpxH#zX3;L4-)rz7v6*Vd57a-d($;&nUl-e{BZC7`B+cYKZW#eGs*(GCM&- z$G}KUOIdFL5l~&GyJX84)s0BCB~?x(qFTHr#RkM;6XHGk2wvqy`{`zzOJutWLzf}P zPr3yRib?cdGY03y@%#!%aF6F-efvUUQg%SYCmuhS#v2Wmz5z=0;h0}9{Qn*s{k_fg z-~8c!sT1z++EQI@=zzx`2QS6v;0Qb0J`{D1SEf~N`tnvy(gKDOjDTQY^~)>osM-M@ z^9li6qCb55V0b2e>$zYy|EX3TJ#A%yH=i4C#3cp)Kxu`QM~I6Em+Zv>G$%2u9w^O( zU3r|hRt#637Rth4rdT~6I+xXH2w3I*F0pYk#+by!sm+6Af)&McRF3z_%hShLTw%mCJP-)n};(N3-KTqUi$b%64*I~V`-<*Qz>HFk&d4e5svqB&JJY)7* zb`E~wk>WMj%-DF01s(E7kuxX!nZF?tZvvI%tm3>(_@%(xR#QMaV$}g?<=?-bas7>o zg4&eZ>LQL9juz$P_t@1!iMPj~&zkL1kLz ziAt8#XMH_A@4J!x+1VzrG6n9?O$hy5HfC{HLSy_7eS?gU`3h=p-t>}1IB_vCG8N>5 zVCf*UO;Z?#u*cJN0hXC>xD$se!!RD~#3`+?14#C98?W8)>UD-*>KF zJrQNljV?cnaDCJ4!4Bsc;&qp0#Aefv-SBL_{mEh6+jRLs^2wZuj7jx9Mx;7hfbkmA3oZ*=bfKgJpEtfC51p zn|r`dE>4ZHj7OI4TA?{hh$a~hx(T?KE8#@VH!QOzw%fo+^I4Bakmr27?yj zpZc?YAb`Mxk%dUBlHI@s959$Ua(8#v+Z(z;f7HHrd>m|@X3JL;x8bPy?dS30rESPr zBfq;$pG;dChmnZy(HkS9j-6&I78aY|W7%i~9G$)66Y~eaJ)D`FaiRCY6uzznuS_)xG3;(jgPAf+|AV(N!}khx}3YjvuvT>GRSP5f>52ijZifH znHgQCf?H5o06zrKTN_F;<*^EO=IGPt8c~E@l>FLo?b$54=;EESQc$?iqJwRQjma|P`M244Pvc@rSz^yeEXV>jJy@X9CynXiC z0(cn~7S7?}VN>WCVhandC?d4KYSPkzK5G)TB1uugawkyZWj)sBP+ZlrMSvM!wz7am zAAj?U(5DhP=jgU1Pso=d|$sSnB>vT{Qp2I|`LB%LjcMg)`yP*;5f|+Mcs^@?8fRTNxH%@qnLgb^7}NloSpu_Cdt8yN2_5wc1pdU(1jN7drtzcFAy z?t2HSY}mhM=4R4TQcW38Q`&T2piaJeyX8~&6)<0ZgSfMZ!@7!(=h(0`zK8*9f2XessP_U;O&re(R-X-^NVNivB za+T)6aWXcp75RM?d)0O)G8-|V3!yEucd(K8aQ~DPMK;wFE+Y2{H;OQ=M8;O7(&;?q zf*IVy0}4u{(0h8s9KhsNm$jibECQ5`K9OQmmsj=rJE%$kyUpE=()N;BE;V3?i1zYb z=g8nwn<6Xok+Ffiv}p%8ohasjh{&GmMIR|^T9mszdQm zlV}4S`}&%A=#^!YZ}2NCqlYcM6J*nN3HR!`2c8bao6s1`#t?a# z+J-l+F7%o1UX@VlKEqcH;;L2pO~QK7D$6_w)kPxU=R4_67hw zCyUoAR)~=ER3;*?^LZ*I0V+kR$npSlo^S=GaD9{?K&7^cw4a=Udb#iKU(Jy!&+dMo zMuE05L#0uR6LmIKBbTuTdRd0e%&LOHyVNWNBL6X`5@(ODF6wla)QeiL@6+>pH$;rF zt=HGDJu#7;UJXTb_+R{~ujh%LyT3iB^gVQ*l^n|S^}(F4sjeQ2A_QoQ4K!U;?vlbn zHw|Uw3n)HoeC52dF~NEDHW=$54Iv~n%<_9?Gw`Z`03d8XbtQL8a`qfy*Dyu*b4%gh z9r&y|M=24pu@gpPN|7b=SfBfsf^wKy*v!LI#XULdDofz?en3u5So-D>pFJbQ$FGOc ztXYON=r1TbEPj4BJX>Y6X%2O&AS(R1yNhM@;)Nf`RkE#ZsE9hHAtxXxhgS&;Rv}Ix zo(g_)I+QY8s+w(j0ZM+2zz42Xq0Rf8<>m=SObk)#eUKjk8g0}TFcxxhI$G$av%jD+ z5Ze@HH-=IK<2i;WSx#{Kh9iXwuL4Q5!*YE}Eq)bWA%Zq{a{#G!jh@i)oRL2{Yv9?4 z>t{2gE)*zdr7psmA=MaS69^aXIi_Hkr=iND1e=mD2O9)CB?;-fJmfek(B%kf)diL%_oU0vyxuyoQz|iWxNczA$r!Ghje@O`*o=r7^^tc zeDdvCzShW1W#KWD5Ra5Ik>VRgQ%5y5DHCe)sQgD8F<3yA<91h&3htQ)M6M;3fsnYr5DQA?7RB1S?TA!|#aH#ljEJp0wq^|E=?b)`MH(-H6uoD+^w zN;(In=S=jDYy@Q>+_=bTzF~9zV$k{3^x*-ng@w$=(a1=}9>XJttt6%H`A19m7Q0)s z%(ZxIJ0aKT%aw@NY+YWg zXplyDcZm<`{gVA&yA1+ zJ>>`(7ce^-cY>^15KjQ14aLTFL-R50_<+Ia3z87a2Ff1O%|M-;_Z8af&Vuxz^rr|P zB~<>I4L=-f7yH84Oun);)(spxkK8OU)z_E#V$j1HO&VZ|FsfHHCba`Km;*vKwY9Q+ zhYpAt4GASxMBmmg_FvP}3p)KpyuI!3sxt#c1)qpzi{HBDJA8N*-@aiQMDO?3+}!?- zyjIlHksy$l_!Oq-ceSLalEu&JdSyqW!&}+R(ig&znDosAmsU$hM_!sOeQS#@HOq@9 z`mioG7E}AC2IQ?C&W*3Fm20tHuXgzVZXyrKaamjrrZ9V7KQAJ(sCUx6taLqiKQ@xp zV^eDN;eL~HlMA46b8bhhdaq4sPSjt0EgRVAqBc=}spL2vX%H!*E1O0BM|yl|cCkPwDz=hIV*;|GU`x)%VwRJSW7_$E|3)AhpjA09}B2v@Vrcn}iIn zMjI#XbAm@h0emyz+A(E>@}IXcLGmz2Ixb(ALslo9nAl-mKLzccaqTh}Z!StDzkc|GB$u?7xp#Z-eY%O~lXxjx znO7}8nS`9rs1f-jVmw2G7S$>snxLwbH}cYweiC~E%Q8mG9|%eu$cQN{`zeSZdk4EZ zMh0nVX^-5VrYXLDYyeZt()v5zgT=1f5^yey%{ZXWvvJ6M1~wV*cSb%Ogid0lGw{u19Ku2Q~|$%GY->$f8O)LA`G z7Q=)<;b6xn{PU|bZOtYpvRsY0h=5bx?8XGpSUCjJQw89`(LR7bA z9ENUzyghLe{`a8}II9!~6?6X_?t1}ifoe0bn?b~%lM~cWrgG4zGr%FZgIYqUbzOyRp3yyeK#r!C zOlic<)`IR1(P*7?PgtS9lfp^PTi*!c`4A#kdCH|R?z@mRIvO5$1jE;FdoV-(aQp@e zWP&dOQ9<1k+@~DuO(H^i(WH&@ynd%qMq7tM&dfWTJh%4pf$gtGb~*o^aaJKMpz6C% z&Lbv&MCZtw#m!D-mS$wU4Prz7Xll6Y1iQfRk;AUWnFacDV1}(v)t@K9#4@`>Kym8FzSL!nw`iO+z!r@XH8ir7M(Tjvrh2=Op+A_-Z#)9>1V7?Wn+s`dU1|+E= zK*&s5nx^=*eo9}v z^O8|7XZ{0a<@|KWrpi5G*L`fXIXs@byPMm_d&eaveBS%%PuHuGFR-=a~S|NN1} zS!L8A!OXlc*WX<6+78*s|ChU5(tNgijKzuB$vup>NYA!6uhR1}u@bb>1(G&4azO*? zHPsW?Yr_^N9HX49tc#n?IKc5EU%gAg#}Aba?OkGwrR=xK7WYlX&g!IL7ypz03`@dk4X&Hq znS9QxdOO|k*L8dN>U&V2;`RhxDD>uQHctP~sK(wtSeO_%+h%=rbT895U;$<-IK#1s zJumhmt)wvAQO!2It$)er>w;FFQ;@(VKf}5F#o+#Hnh)dzX-OG$KMy0ITg6GnS!e}& zPX!b%=yJ;NWw^LRu>u1P#<(;1TsdA;(u@33fD?3$4$dF3*LygPLH9naqLCCSfQ5S5bG53h^7##bp#Av#Zgc6-&MTdyO9U@rh)ED zre*w97I*34aP0*4pB}@y_Hdu&4WB(`kNQ%Oye{atQ15$vBzuPVDr?~8hG=*hQ_ z0lCEJi}~r1xbI`aF}vmZJ8e;2Nfh0acx;=xC+UV5ml!}oO>_!!EWk4Q%hH#Boal%g zZ<{Wp~wdk{=Ez|4R_@gLbvVCqSWX#Ogvo6=g9 z|8xwU!<|grEIimDxo#&37dC9lExs%+9xe6Oo?QfQVQy}wp?I*pk7|oMXuka!7FlOV zmEl*C%<2OJs*-pjlAT1aj}(?Zrv)%kk0WErFh=dSR$Ay#D9^TIF%sYx5&voPIVD;< zn5#BR0BH`)pioT9=5;tBzo0Q5vteknkeW<=LVcZ%=VZxK`8_97T+r2Hr(eD<@ZrN3 z6ALZ+cLhC+xn3^Ya6*~0|jv3i)xw%6{>cKcRximHM#4GnI7)tB8E#6}RaFoF~Nrio$AuPtd~ zfdK{OG_t?}vWU$KoEuY5PifYXQD_uMhDJurS#Nsr)SPCO9c@3$->a~j#sX|b0xV#S za2&Pqrqebe{S^phL0GMKw{>zt?vt7CiN#b!6`wH5f`4FOMj;*MK+MoIH|UO>k}Q)^ z_So1O4C;pOmPzN9I=<3(6zLBh$X_^@e;Y&FxH9hik^qjgQYt40^s5wV#$wM47v`E5CY^PgG@GnEqYJ^kHUN zb5nk{($Mv!D>w=UA8AJTl=LXa`v_>0#DIXp0WD}U74PcwEH(l{$o=eDZ_U=%FJFbE zRFmF{pXchwNuCNxVOmM;Dnm6s0U&Ro<7d7p z1h?N{K?~e8U`5t3Y{vBlA0dY%_XW4kS$GpmU>>Q(My#UZQ;Hk$NN&_<7rCX;S=r7@ z0~FFXqyg~C1j_HFUn(E9X<+u7D*It7F{*ULRwcX zUWs5eY*IpsrS8RjN);Q7u8J#S|{L7!|5!`m3Q%WHn1!5?hn}^iYzyGmza*8nCn*z?^MEaLoQ?bihxv#jj z`^Qh5j2s<3J#}nf8nFJ|ddn1zSk1@H4cCl=OEM&85>}Y~am7aCGhcIU7QV)$JMU0V zS;)P8SqpFPs?qU0`AOyc`1m;J;XKM*gg7LQ9)4d--VK=Pxz;an4Qq>eezZkMT$O^L zSMK$62$K;I3}NyL(V5%1DOaYoiHyhsdZ@OBw>nO6uZ(=;bGpP!j!lGX=|MfbGgF%0 z>=yUSr*g=UIl}I49$qWF1>B=aQWm-bM(%Q=K@;zT)(~7;%mPviouM3bhMzQ9umL7a zw2O@L;Jd1-FHa&%OHV-pW)pzUAVob9=8$?*`dnYv8WiIiUY~}9U_Un)K~>FddqrBD z@(K-Ui?z5{7B2|5yrKG?swxu3Ao>Ndva+g@ZLnjcF@n?CbmZK&>mM%i-&aSV6DGAa zE_v4EI}>u#8=M!()1d?WFJ7kwZAi-Pt~=%*fK~r5K$#fT<5Tg?DY8C}<3hh7EtDgN z*!?1W0v^UFsZ>#pQxeSu-##Tg*hVgVuXTL8i0ZU*B(GkaSeXsi>9e#ZE$M-%q32F{%YHk66*!Q%lx%tWKA+#k=(D&*J<%#tK>SP9U zAErw^kCp}p^aW#FIQ9}!cssVCE$k0s#t&-&JXTf@ga4#|UxUhuu8Jw9TU4#qlKtf3 z5Jf=S!-t2PguQtpc-yPGi48=p4>#ml5NFA$Xa;K$X6B4hCuQZ&arfSljr~GKr(b1! z4PKkkzWi2Il|8B)(Bbt9{m08*Ty*9h`gZ>UfJnelh~yQN1+*iT7UbA*`keydrUkZ8NPYF-@q!2V=F4ADVvHz|+E*2T#>-kzVDe>l;iN8j{{_lHyR z;Tqn?=E4`BoGI<4R?~ZFyf^R^rg{DW1Gt3J;{mQ(lIt#=!O;^530?Wr<#-oP1c6dg z>n7ctNKcUljLrb&kK$)5>*Gtvkc(tp#${Ag;m1Ac!H$lNMtXV|uGEo}kdTm^MMefG zsy4R6Xm|(~4 zVZJnHg>TZ4L}l~(5yXtatp9tiq@aXAtfWD$Q{WdNHy!A@b;brcc>eV|I0OnJvDpSf?2cHqEHUqm zXMZo$KtiG2JCDP8XK+aZ2?dt*8AdZAaE;tX+uPgT-roIjlpSvSuk>1P-v1@+xPf&% zNcxi#6*bWV;^L5xc@BJYp|D%_1Wh97RnLGrmLnCHzkr(?54DL(9(z-u#PjyC8nTEJ5oEyV)l>nR>%^_#CR zgvJIQZgc8t#ulE3f4(+vfSR@ncDXbzj+TM|MF3>GrtvsVt@mY$98;r&U(at zj9Y*q%<08hOK3k5dW3v%*|MYm-_Dbhc%J1a>jb_QrYtarXU*Cp;=%nss)#(k!*XmV zG#l}AM;7`N0ip?=bfOl&utO8O8qhR-QQFPaYc&G}3ey8cwb6AC?vI${TIaXMm`bQn z>3e>$UI8fk>#)mbGP)hEyUKCGPIDlFD$2l(0cKm(`<7Ma`>T(}<|dDRX239+Z3jVW zj}6xE-yYoka$1_$(PXz*2PqH=-srd`Zsxz$U?P^FfST||_8I!E!zAwtC23w6efF9V z{B{}x+A<%%GuCyLjE%>d@xaO$t&U06$6o z{{DAcvL6Pkn`#HjNK?=o>hYj$!9`}%$|DvpaY3CG;e{@kzxW*idEJb0vJ1@hh&%^W zv?=ccf?w{~V}~{k>qB8f^id{U?_RAHiOI97OvD5$=utIb)>qoB*F#@nhjzF^BctIm zJjTtn(4w@GgP88^wa`bHb^@5byoAxcMUHpd%;QBeUzAGHVrSD&Ml3i zEE{LesNcrc7PNM=rNc3Cx{??cleE6}ZEvoh*X$A!K!CAAkkJ*B`|CGr#-IK!KFS04 z_#*T8d2AOS6?0qV^NZV_|#cuW@fgFv`6emR=;>5ZDj?W>$0KfLd=y$ zVTAP_%cZgdcO}GPqgnd>TXOQvtF)g3pRJX5G_~YsA=}^s_KRDVxXHaJA?MSZ={ChL zrb4xXxc1=#)Ee6Z&tql%IGU_U-0_4Qra zE|(Oh>u*HYkm&($c)$jQJ54CWkGq0bX2{u9QQL>zld^eO!lE5 zVi+0Zl)7AB_%jol1PLtUo*1T?acND*j}8@r{_7AdU4RFu1EK3?Ah_%5r|ofsr^Nlv zjE>RZ_YRJ7RcOBoh2)1XPWja2RESanpYdC>LSF|bSzn@O& zzE^vxkuCS{%O`Vlt2*ksU=c;7=TN2V?{731lQ=u84KHDOw`YAyNA_NE-gUn*3+*VAOMn zGuTE#m4Z01y&wOj&mU!YLcxXz;tbKMA_I@}LWP+&nErLTN~+Sg1!GeSllX!+GJ4=i z)^ppksLm6M8fd7;R#6jpi6NS^dH;HgUOTnmtQ)I~x$1Hi5^*u*2(#TpKpM!GH;y2$ zQO-N0c>nn%LX^uJc#CGJEVk-w@(*f5^3#`BSD0ACrDL(NPGqE{x$$bp9IULq*UO%f zGfj32i5VHh4&LdT$98dgChA#n4yVqqqXRg(xSW9f9UNo?A_swT`=I9Q!_j(AC?ewf zukYm$HKr7~ca-hzmqCcP|6{#*cNb*V*BCbXOcaE|!3D1DVCdskkCH%k3k^ol>A9H3 zGFYHFSS>*2=1)d1UM&9g)W03JN0F=75AZEe$U>0TTlar2R;NBqdN; z2?_v-^%N3*>3R0YIbQ*nD4`?Fty4vGj4t7C$mRTUXAF~7;()&p6sHtuFdF>PkkJp5 zI8#j-q9X+hBF6pP>>#xZz)TgYVCv-bxDTnS0+I0#pvC{x-w|9-KsZL!DbUpjI4sev z{E1fUu!U7RaSqAhXT-tO;Yqd3C2(OxdX$v8r*+&$Myp3hM_?Te8YQ>)wm4Z)qwQpR z60m`x{-)Y+$9L~Om6rp_#$>|vs@2SEoiF?M55EDjroxb>g0$szOO0b8bYw*R<3CSN zEZ5JAD!>XA#bC&e+dx_c3{)#N)Tbu*Z39 z>8mMAWiIQc4}3%h1#jNDXC)D4dt>7zFnJXg(t_Q)@6}OEL_}Fxnb&@C8o=T|=_v%r zO+W0H zV`+uGU!%LdH@)-o^8P%Tr)tVqTp$wp_LApy&PIgCM*{osf?qhHdR; zGl!v3kdm@8F}3(?E6G~Of^=6eJolF`<*lqbygF)()Ya8BHO)2MASSCyrnlRyAWs44 z@Z=)?2C`U&gLh^XHVOAValS1sPVLPXC+=f?Ls<(8*VlNYym^M2lvGAA5`1FC%G~7S z&q4WbTU~DJx6zxu#6!`J@=ecNEtw?ipx!EFH7I0xZ*ZdvY1b**yjVP}62*^8f&$PM zsL~NBSV+cUuj@pU4!s5OpS~GD>S8-lp9tW{fi7p5e{cUpwFZ*qEd#@$NN%T^hhucU zD=LU^g!NKfXkwatc~PaNo(v1;4lKwm@fbmRYxxCmZ^iK2c?WYmUrTj{+F_5tW8q`$ zZG4)~R=oN`e?4l|;k~yl{fxrP`0toH zjqRC20YVaDVqyXu1Ztd|3*BrtD#8wn&j0ssCKDB&!#voSz^lyqIbnPKaE*hH=4X)q z#>d7@^Fc;@WAoQ0BQ=HR-Z7_<3yWdS{=sgk!zet*D9O{g)Fo*`HQ14I{qC|Rwi7k! z(}qrIS%m-L%&I~CJH51cX<0vzIiep$kZ5<-f?r5^AVyk^%%yg-Ju*>Hsm&nj|K_y) zFYok!dfl1AU=a+abIM0T%v$8KNBR0ogEV#Q!oHhdI`a zO$Y_KC8TbS=mmZWvgUL0H@1RrX&-x7z~ZAsYqDe;LScJ>W(+c&ehI zJoDj$_b<9I%uFa==H+O}6Td5gU&4b- zEc1h%bR$e9aj1zJnzc!Ris>54l=yUoWyXvMNheZFNK-{ON(-pIsyt9s4<0TQUg=N& z{h=tD%C70m&rmw89H(-Uq6>nu(UrSL)PEKRnM3do&5d!vbSjVd-@IUp0ZdaDYhf~k z-ut>1twC_B^J33I?+Bx$GyuV)%^=k`c%OMKAp0nFd&SrXRmixs-J(@6JqI3he*b?x z%z)W=o+x;5%u#X0cAnJ5*vGAz?HXz7btjzYGW+n?t_z4$r>f_$%XcmeM6%kc<@zOF zWofu)hmVJ$PpSXwF!3I~|J`9ZMcID?p3YA(xc!&Od z=&C)8PAV;fEr6#&*WlkrC+oo$C&7}$f&ndWgk?7MU;hcIG_~JfMFhh55aYzl4^fbY zr4UzJ^&hi2__Ln*!so) z*L>_q{8TaKxeC)oh4_toqD_z1rUNj*BGNcD{$zl^Fdfkn1tks);(y&?p@lAFRq37G zRHqF0-S3}=JoD0NE1R8v*_K)QOyW5!_Tbf{ui`)Zq_2VQ=q^{HPv6wW}LN90%` z1B|OK?YQVM(N_$Xkk_>{w1wxf$&qp4rn;%jF;N(lC8n{{eBiyX^J9!KS-w<3cs$7> zl%z1e5wLq#!L!UJhLxZ+j4>K=gYDbQXkmpITtofEX;TQC-b9`?^Ij<~L8oa&={eV; zQZ#gDLMt&qZ~X`#p~=UvoY7=!jftD(qkMBB8NMZi_djnLBi}IL7dmq;HtTS^P?l08 zxnsbA6*PFWFJ9g*Yb(!WXrK?Yg#{49lt-8t@{8{YSQxr}3@+P4eZL-~U#oIIW_mcd zr)$`uK5lzkJVjbyZ&~H+-Tha|p{Gx;p(>?P*McyL80J983ti@r zpay%<%%zW3lfzeASy5)>z ze1?8T1#Xn!sSMQ>rH}jEaLZvqt}mNjfMNRo-ssoSp!E0i+Q$Sl3M##jnUQ@ZCX(Lj=#j#@5~pyg>`(C z=tOr8?(HTA#Pwb8+ln?~gd^Roe;pnRLwP(L^`ATZ#-VVm3kXs8waC@PFo;;KE?m^w zM=&b?br+Tbw=-U>Lsz8QmUZ%9k!?&lEm2MW!fH!wQM|(EU6t<`Gxt}iVF6n@?)>1l zf-9#*sPI8chxgutxn$_joL9VXzF(Kyo696ss$ocQlCsS7Ij`RcWNOAjj)5&`WC;2_ zBq2vb`9E$y$gm(CHlizhkay2WK#8I{v$Ux2qZKbqSJr)+AjoR4O$sIt^KP1mFM10s zs|x<+(8x?DNEGi<{G0V}<%qAjm&!xqI!rzK478HC$^p+Fz1ap_fUF+xepScJ>R$=z zu}Npxp;fo@@@i>lXecjdk^FlXind#0*s2fKn;IH$&VHs#UIyXnm8I?NR2{&1ouv}gl=2S5RK3FGhPZbN82cr$N1&9vc#4bS^ zW6EE5(e|*jlA?QX$RDLPmWIhAp*k?@^USxBwHnOkkWdgawG>+q8t=MnIq3P?c$w#| zr54Z!XAdW|Tm1U8o)8#h08RaW|FhRd+dmI>4WFU1UgymlW}*hIQHi)Jk0oOL4rG$) zv9CE+ExL#B$^T4sO5ss~39X$8I|HS-qa)`qLaU@0jDaB(zTR6lAw14DP6{&W7X&GU zyUTsoxmTe`6_vftvh9Iim;h)%fO^px@WjZ-=%Wh`vn1kZLL2>&Vcq`q{J+ZW;S^qL zoeyBC`fHK?6NNJtJ}D(7B{A{-@$tdlo}Ilty{@B;jh(G68Y(&_8d?-I_9HJNFS|H9 zSVjsl2~l8A+U(eNpC;_B5vO{W8u0;+gI?TCGU^13+ zbzpixtbn|W?*{}Vc{zE04Mlh)yf6_VAtD3l48wsUH~Mb?a|t7iC`C9?JJHiDDoGAg z!9+*@OoED7VTw!HPmy#JfnUhTJ?(dQb2phwFq=WqjtG8g$Onu|$@=S)E%?=;3@{Ki zF3Rm-^D>bDT<8TPB)EA*fYFnShlh-as5cQ48Ql%%T#AKZVs$lc83hC766@sp>U6@z zUHrWpV_(Wu;B`8Ee%w)S%O`e4{myI5O1n}wCm|RY06;Vs~QaW2Os0&u=v4FkPBXrDI_7# z^?w2#{-@6ua`yJwHE}o3LPATsw<=K%&w6j>=Y?j4_~|W1Kk@^e&@{h_a`ETP7fCPR z?_<&F$s-x<-@OaumXPQIr`A|5ZDC#RvlKPl2YH{7uunrvkpfI~oe=1Ltzi+Q3%@$0 zB&5+k<7B?62#!?mNd9wxZ&5n(W?NeuKwE;s?vEcoe0_YMJ-f?@1xfPx`6f6xI6%Fw zi2LEg2c9qO{ZO2U3%6@NK7r4Tjh-IvSJ#)91wCt2Chx6vb#=XT?Ua@M{QO*8>NNvM zHjWDqxG|EJ{}~wL0WtS=uk1`+3Tm3;gaO}UdT~}s|5s%?0{RPc86jL}=1Akv1ueRFmhI1vqfB(L!stR;Th5aAI5=2-L zIe}CULQIU0iyQshYHe+Q?~sU`7*sr9+yI$bUDk3llF`ud;d~UN&hb9lm441t=qiw!dlIR}9d%MYf8_4S|$9=vh70r8#SCej=ugHyi_s?Hr5D;SqA~b&Q0?ypoHfy@= zsm1c%!1KQWZA9q7aW$MfcOdNiXyL2XV0|&@l3BiI#1Ii}U-8L@HcS6HCyRSdr$_K&Rmwunplcs)CXw-V%t9 z{Iqd$;uO^S>qqnPQmZR4yvZ!M7;r*C(ZDVn2+%dwKmatr#=E;WBA6O+?;LEB;*loh zB-D9~egt&W!yoN}Vl>_8mz6izzUTu40ldo?9}FO*l%ySi6Y~2wO4#Xg2*`j^^Vdx@ z1Z=ex6ck?gEtQOBf(~<|)$zBG8!scuT;BpB(QsCsnr{~yQGf4h{toeFiu+#GTMTb( zY;^a~&Uf72nmsucFl`CV8R$e;K;bJ$G;CnNO-h`an%XtD0QMt)I_X;#+R9bV?z^{g zqGX7{V?VQkiuQvSI-!6LvT z!qRi+Z}}@Oroo*O)F~6cxv2kDMe_1qXGQ7lxSOdl)!?5%1mPkeLV*)hd42eIZFF?z z);a@FU2pRAHhdi^j|a;34i8&@G}#H?j7w(<*yp_94)mQcd(K29EU7Jx;-JGV_YCd6 z8;$c}E%)J5b4~aI$Z7;&|4lUsP&y6|3xTq#^NQ~bI78^NXM_xqlu6hc3QB=7wd3^(e75~3`t>?QyK!}W7P*4DT5y{xO*bp*c zzc&P+QI}1m1h*G2xc5K-!7 zWb}Ga=jVg;W&TEf;BQApM^#o-1yr_6Ai|riG2(RW_P|?e@A`}nD#L|>EETNbVPPPJ z76S#trK_?rd#w(NK4F zfh(t~sw%^wt)pYjr%xO#Y+32)fD)u%XSy9r{-fDp85aUkUVEPgb@%k7{C_BW3!tpp zzu%Yc?gl{`1f)SarIGG#q`SL8x*Mb$36XB3LqfV+>5g;xfA`+!-6!VEnR#Y>#u;$k zYu#(D>-v4;10ZiH8u~p$FtD&dxR8*N0%(h<%4@-xy0km^y!Yqv?(zqvCYeV}|BmeBBP6k}u}@)F*O%1=bpI<2bLs4+}thg?Yiva zncxCN3q17+J@tVU-X_N?gX9#rlgA~`uX%d4&+7nCrLwk`oQOn5S}uR9`Lj+@p~;r9 z2{!iD>@52hHkOOLd(@KAf3DvD`WOG_VY@?kNALnmEeaA!c2=ms+o$*&3~OfOzWF#T!vRt~Bt$KqvchFuGvt z=i}z4m)Z-92+lg|Qq)ih4-Xv^Bh#-fG>ELcD%(?tJ=i!bP@5!!P6 zV#Ubyfn#oI3AB+P5`X;)em#e2NBK4tiHu;Z5O=HhfVQ?acw-uP-s3Xyi)E*#HhYey z0+Ix1N16b7x+&;zl92ck`{mcKg%kjn(9rPq_T1zJdB)(N;M32`tfT`EkB`nZ`WSX6halaCj*c$17d~a8 zz~i|E)5+z%)(%qT85tRw42G3{ia5kXWQDbHB)k_h1!7G9!puUKW9$GaXTfMUp~=E> zF2;Scc7A@oRZ_CC@h8`Au%@;ptqvj#G&Q`_X^v?cM2o7bH15BO={?^bB8&rl)SZ4? zsY>ogJfEPtLX*}B|LYnRr9=Pk|Fcs;aGd#>YZQ+^DM!G4?dd*bwL1N8>K>qyajj{Z zi~8fS7}5D*E9PWo$}s0k5OfRn4-H`&ywhrc(c-zfxw)ySc{etC^vec~#AD;IG*7?L z3ss$(mzuZ#0Xchpq@bUTlY@gq$gQgKM|9oVkj4|92oBvl@6U*}xw*NQ`;(2^y}F~) z7EZPoGk#xHiqKkx`aBLro+%Qo#H-e$JTx63 z9U1(TyspU8dQyitC%4CqCydXdk=JP~^`+zWU*3CWcNC`S(8|i-;o`5r&E2;1d-gsm zDxjB8Qc})Hbbo_d7RiPMs|z@|2YeQN99-P5J5bb7!FF&5P&w?NKQKe^!~3UsovxQO z|Ccm?&uT;gk=D+Olvm-W0KZ@6$endsi2D6#mnVp|@- zXlqfCm6vNwr=+6tT#2tgJU*h;<>xEsf?}gsUx^gQ=gyP7p#Uo1?wk=YU{X|YNnHO( z*GH$l69mi>fFw245W|TOc|F+|1i^=ug9Ex=K{#r#;N6W%S?v%ASrqps^$56ea|-}% ze!WI3p~fA)z9+Oxs-V~sF){y0h9P{cKlc((rjPFb}8JMrspq%l*VhQ8-++3$d_r66W}SYDdj>nY2<9nXk%F*~`= zLeHC#OGrjUBU#GVpHgXS)KO_1!?GOkkA(piky$Oas7NSRx0gv~GVR0zezLS(PcB92 zA13JbkivBx2=O@@jxQ+E?{@-~oW3$WdC&SW;x0lyRrLMG5yhlD`USrDp zZa95Tpcdohq*Uni@Nl)k6&RYuuG1m^+mXJAFw*?JsvBW7dSeAA@7TwF!=72f`I-;yB$*Mce!w%C}=QU`sMm?m2tVxvO>pvdU6mG9lh+n-U(h5*AGnQ~m~eEy2pOV@i;Dw_C#Hzqax*h4MLyVt%zPcysMRg6D#N*TIZAb* zBKz$W&-nxF%m_&1oG)k}bFl>_+s5O{Ogam!u!-okXr0qy+%e&+iX70^&oaq;m%f=o_9p}3@Y zVmvcCiM8|l48V9B!u0j^rZQ8V|! zCQ;>{ic$C5kmkp=)RfK?QCT@d;u+4=>xFI%GXHh~Ej9n|dd#3?ZiQ)di_D*3k)`AQ zBcAg#D8Lc{wCfZOcRLhXgL&Fnch$e|PIrPU!&F^7M{r5&ChmX#2ys;^fnk7U$}xai z8xUNzMEyUnfa(9d0t)R+7QjA}o~{{l`Mb&Hmpxl}xD?oQp3ecunO&B*6yi5s5?@Pc zgsdm9j}W~N2?<$DC#b4yeVs06gGBy_{QrF{I(vbEfz3BJ^Ucj`xoeTNs5}!KhvZ5_7@88XplGtHvf!hg9D!(mZ_G|Nr|#BJWpy>?fHYT#;`E9O4rn{Iv$J}WKkZ2& zJ5Gk}K&6HGe;!>cz8L+6WCLX;ET26YByCn+US3+7hGQetC|C%%tiL=jEiEmQ+DF@- z`~bUENo%lRQ=Xm%duVQZb=`K4^0Knwa}{P-dd~-70g0~5RpO+f37c{r-5ck3vjyXp z{Tfj5eER7%r{4E5E)*FLCcNPoSx#PFViVlvw6xUskMf=>^Pd@L3NH7QsX0mLp~;_= zu#DJEf#0AC>f)sP5Ylx!wkR>{D2b^Ch~yLFxr}~Pqg$U0jJyVgUxjsSmWR)V;nz%3 z6|$mck+k@V2-5$@pLJh#GvtR0*YNYe>-3{a|>wZ1`go z>K`1cDuZSpLbT)VK4Aipf%8#bet_WR9EqnfDt zIpB>bzY9m$5$f}Ph6qhyuV%j6+VYC}$4{;LXjL*rYjNFPoT6LWU>E#igyO*^dBB3^{Z( z!g+}8+ovMC-CanHkP0bzU{pj^M(^Fl}0ybPOy6F1pgQ6cx@FWtL zbNtsw1M`_cp!R$kOIgxllNI1j6vB&o14kL{1$9;k0z`v4#C#avg~PZ97Nr~w_!iJX;u2WY5ifn&@H4O#OIh&(Yx3ZM78{O#!}=q)U~xNzbiBqwjVPDp>p z=c%(H4t#h3YdJr^Mq{2W_Op7xbHfmA6?)*qwjFNKG3fk~Aqaio^Wx!p_l}x3G=0sh zd=QCG2z=2vnPV0A6oI{lfP^Gj%y7U3mpI`I{=w-fDl)PTs8Rx4Bv4e*45~CGqD}AU zL0qZMP(;RBM#J6RTM8aa9h9;7E;oBFEnPUio9%JIb?zB5qkDvh1GQ^ot_$mm+3Uxe z!MV65KF`HpAaBBx_yDSaO>lZ{PFGWDae0=JuA&?IgY-kIq8~88FaaM8TK}r(){qn% z7|mDFRX%P6!{4K%vRwD^0JB9lpXU*n(_CnGAE-tZT(9=V8Y`SBJ)M)vY<(ipH8C+! zHZn5suO%c>fJYHAHQfQjDo1Oc+MS&pjAdwt?i@yQ#{1RWCx!Glc%{Un@y09r3{vEYHAwpE^c72WMOXpet)MAhPoCY z2{oeFsEkZ9<6`0rnLwXW#0bJ)jx5+&<*K%lwjD`CNF?TmyE_b(!6E99i2d(GU1N>G zr{Z#QE=mp<{D#)6?VgPd6;bJuj2novDltv`TwH6vf2V>T&^mn;=DKJ{cz1ykdOJ3O z0VZ%DoC{KuAP94CV5z8xzT7z9%!Q(4ZLQt*kdbUQADJw{M)`8}?J9kdfQdB0KunAZ zOA_?YmV$#pshwR~;srzjG3{?2%Hrb1@0^fT^Rj^g;l2AyVVM9n>iUoe~ z4}9pYqS*Bx3;#3-X9BJam^lKgWu{2ayK^yhIhB>(cRtc;cz;bTgjc%b?<@d^*u^;O*@tn37P&V26y1{P~j` z6&1B6_$Z@NS60LJ)%dDU`JACZ)Y&0 zX3h?FX2%1&ED*-r+{Ek@bUNnet^8JXVr_?poN=dfA>AsIEH*L``>biJTlJ;(OWLwQ z-^T%mSNrz+!2wzPfm>GW?Gjdaxy1i~x}J2{?myQ#So+xFva=PXEBrRvbQq-7U{isf z_b?RR0GLyBK^Im~$S@mGL_$W`<0Sa{bjd9vyLzxEp4d=EJL6uR9-x(vO(OoY_qCo( zrhTWfw$p3(CvH$kWF#U>rGo}(ek+#zlO2G1X!2yAW74}>aBuP;X27Ayug-^fJYubi zMwi#xmsQjd5fU0Ld3)c7z=XrVwtat;5M~$*udTKB;4$iWGTPdyx@mTcfj#ffp`Qna z=+$3TEF4kkiDhe(_D4E?13A`S1|m5h&uwduellRDR5XO-*lM??jw}mZfo9 z)MkiiU+;XCR#7f`_i$S^qN9s#RZ9yuH}@@Qk;}=+0kal(G?H|7iwS1j=54^^K*Ye+ z^Yvo20?%I?ICxkoDGAIKc8nNpkYCq1Rw-2gi@v%Z^FLOC?pTL(sftcc7r<2yXupfO z<;R{#fTT1Q67~=VhMOIi6ZSO*ljNkNDY8aBrkcVm(5y`JLHD?j$U%gtVnFuPaM$pb z;=imYudlCBXm{^ku~!OpQBhIR^A*U8p}{KQ`CJbtCCNjd4pcl|k%=pyXcQ9@6FrpN zWh&^qC_N~V`fBTF6J-%8mzI=BHZ%Uw3JS+I)mU1Y(`8gzSX?aY$b5DE*POwt?g1RHF|b6x_7HHc`g1Md(J~cHpegK($d0E@i)D-9W;H1dF5;v=k!ZK1g z7^tqUHiE0Iq|0O%7iz5VqSJj)?|4safQRY2>s9sH(sC+V`Y8B&_v+mITwO#>g+y}J zXl7xmjhIq?BN^{`!^})!q3FwYoR-V{I*oiF=*_c2Kfb)USo7TfOf;bTuYSTXygtAU z!P^oaf&JGZi5yZ71Z}811>C{W36@g~86NkCxGyTCzS8;4P*!wQMad{S_mF$?$#GHd z8}ah$KK^VydWR}YM5bzOZ(lllfE3gc6chv)%Wau_7gEIJLQ zjyLU|4H#rS=1(7oS&8;FJ~Pqo z5q-}~bDd;!8neQJg7cFMXJ+Q{JM)I~b4PJnaSz9O$IMyVff*Cw_*MEaHRA*miZ!pt zQ}=c6ma1So%&q!vP2PTZ>VW|bXD5J8aeun2 z{}-Jzd;jDuY*NX;C&^tB>mGsmInejG?UJvqZ!tH) z`o;Dzks3_t_DKZj2bX^Rnm0m*fH7CFlpb!szXTwIw_mLLt1JWmk1nmR)Y=$;nHnAj%bEZM)OS-TAj~-yT6fTY?lBB0Bml9w*Lv__PT_HFhd5 zh>U-H3iBXM@v`gqIt244$9ODzb29;(Hg4O#?u0-}7YFUv&=9wv;2X*hqPAYASQ6WV zN?X^E6Mo~rIklV{dqsQ4hI11>TiY3{bzTB$N0)!dS@NMw(^5tTF_&#X;C(F~lwAzR z`(J+-)K&s+DUU+s;aB)0rf7kZ!i*c_{{P>4BzB< z+j^K11Uolw(WoujH-dJZ8zzgN9NkOs@UZ9PuuP4r3xlWfathyCS~wjAKji@<2*-D2 zC+Gz-GCVS1VmLkyemy=tWlZ^V`fz=Wn}W;gY>iNit~{A!9G46GK6biW3yZBTaB>nq z7YkoO>Wzp%81Ai4QSrZJ7$JiwK%v?v`h zqcI6bF7w}eWm|Cz7_!U@GUDU^QPMK<{zK*>4>NXSaM)Y;FqqdLUPb^(*rR1)0&Q+I zG(oy3DH9Yt@Yt2H#>5w7vWW0olM{%}%9zUOy7f+{QJ8SuW1=R$r>iY2CO5X8_;<`W zCX*;#+6ABxN3BtC+NI4&b{t)eA=?+{n{am&my8IE!RC9aodwM(|(oM?zH<8U=uan zEhe+SJ6$s%V=s)^<-xwguzU)U)7UYj+odLZjlJjbyqM#+H$h)7Eo>#(;EY@X9{!v* zx^5!!c(??D?CInirCZGAN)XfjUjDtHv!Jbnh+onruw2CGzKrs`{|ymkx1psavI(QH zd+*anH#F=bs-nI=G3Z4qLJtb9^Pu@`Z21SO<$3oIfa4(WC(&p%Z)ppl#FLDPuPa(p?bJ=bYq7#LT3@A=3&d9)oi zqV@XH=kI?%^@j4X^W_CN?@PffQw-1_J1iz~9_Huga)B=JFL?%`_~_!nVxoQfzqE5EmuAejpqv%DKE3NujOX#q)McohcmnO{*TMNyc*}37->v; z4fcOKEpk1>@|EgW@nmF2EpyB!#cPwh#VaT&i%*xE2m1%3T17r7LGZ`t`d!a_>$&clDFS!a0;3gJ@`HvcHx+-w-d$y*$C zob^Wk+u}NI_I__}cANOao_CK@f6?jd4K3hn&u*ixV?*q`F@Ue{bDxqn0z{ITdxOW{ z3lWXD!O-pn>DYC?FmmA_EP60qbOKFy{ttb$RFwq)Befxw|b@zLAzp8O+*tDCF2 zUklj3B_$VLF@&Ov&M$0pbF7K46$bKY0Db|$6P zGy=ByCv)EV-fNqM-~4=2Azwps7meO%=>ISl5&{SiFz|8ODz~zF54G^S0D__8;$jq^ zMURp>Q2k+R{@;v%n9HvFi+)$`7a33;br9pQOXb)?7wm9N1B3b26KT(p z08I1`F*Yltq?Vk)PI)Yk8{OjLrES5$c3($3E83XRRgcFXF!2ZSu;m}Sy)}VAT3A7+ zfe*mG2FsPi(s|aq%c#-z!#mgah6U)!We5ESV`rcqR|7QN_kY7lt86!~1`hzBO@qqc zw2Z|geRb@+&ZwxY*Slx`51vPJ>o2G4cI%zs1*DMnJs@M!4pMO_YS0kKL53u(m`4m? z*TbE_m?Y$UbD~zMaVa!4fRsUy5*_h1g3|;O%(AYpueWi3?OK4_8DL2Vso!Ksgg_SH z1-|d0t7j=eTxfK^&AkipppH*6qeZ7BK6!ZH+cB)t+<2>bXkFi!GYARzG4E~utkA`L zSw-#ZdwIjc^7mp__9qEcLdo6jS~K)M})fA8h!*j9+W*Oo$Y1TQ;4u*ty`1{{Z zj@`W#(W_2NHy)|LOeKDs@jl;~t1ZKE%dPwb37tu0t{9<}Zcv|@g(VFm&~<xBT2f1~Ari5&(7&3kk#8uv_^?FCg%YhBG?)gQjMglWWT%W2)ZK5lHsG z8$6@y`?GBl-((6oUcBY2th_eb+?-~cu2ipe*ey*jvNYVPEJ@IVd0X{^s^O{LIgScILH*oLhVM7R_gFM z{A41weKr*j_K41gBU=NFARjBsR1?n`S)UHA>3o98;RBuO{@ixmFMO-S#z=q@_IQyp z`g&vkIzK&~E5Q8-=43O#uX4qy(6d=UlaIhdzc)@|v}P_>y~ooKHZ;_= z)z#D_u=`leDFYyzS1;2=_RkN@A1G@OGPc?ho~(&^hfQ?`u;>iucC{&F7eV?=@a>ei znAkIa*ZuftINB!KAw1L`@z;OTQ?MmHj0Zp$d;=d$S}77h>};=UCqZ1;Q4{DzE(~8> z)O2*q&LugnII7ql`qFj&a16Swoj%K>>XUz7vTBqyD*VUT;Rclzy$z>-j^d)?qN4lI zBcCG=s66?=l)394vF5aCLB=k5ikZiw0t5`5DFNiVh&N^t`1fKbu3fLif`jEe9KY5z zB&K-pUYO09gc`4aU>A?bwCn^lWr>-)B6=?F>+?}%Et%gft2`^6i}t^ES=aH`p*3%a z!32{1UhxUu{p^TtxgbNDFGC(X=MBaDt2r)-DZ$nI7G1APskuR)mtM@467x(yc3nv5 z8&AAVN5l&J&rjiXzpA+_u4ozdIP849t6Mx&($kw=Rnz0-=Z~%zWdTMfjQow8&j=p` z*>V#b2>O04FCg!eNy0rFQ=9m7D~+y^m}5C;(&6Q6GlwS5w(Jl(`?XaOj_I)eufIzk zC1mClN#hLmM215ifKsjes^paE#9Q>0=Aglx)xO8DKr_I)35O{>=WA;j#t}N_dV5CA zyfdZky8@$vvrTIo>wFcHlke9+emFZbEW!BEYv;^GVp*eG4W4J(y44m+uF<=wXp2yQ zDSW?|WuMFAh$RmP|IpFi0Sr^V&rkUS^0D&3&n3zGZE|hx9T1b3LQh?arC~D2lM&h= z_}zAfjVzBNv1vE7udc6)d;cNeK zyjefH8$8qS-UT%pA6pEc%E#B2l_LH|QUQ%G2=cqz>2F{ssQaSZ=7D+9C(wsbM4c%& zIaa09qR@FWJ-q~35;2d~>3jx|dHL<2%$I0Z72hOOO&--^FgcaTD&OmPAR6C(u{Dq}y#{tN;BN8U#NoJ}lM*=x1qDH~!z-3V zW6Y+XhF0G0kDcWY+rya{YS|6EnAk6UUGN_r9EPzUZ-GVD@$=qqHHIp!4n6?^v8dos zLkCbR#_)RgKrZxjhQWdTZsGUXSgqe~Xe-D7(kAaY1a)1g|g!A?_AtDT3BPiB9<5|)^h*v85(tQ;yn zR0sVQtw7I7=E4^Th1Zk8=#%|go9oR9ZB1N0XCWcK%*ERne{f3;aX_8me>OH1nlV=2cH{RB`YN%UEQBv1I#NnzqG6!LoP z0y`j=Sy9?+zp&_GQ10hWSGHwj=3ZP}fo=;BiBuCc4)Uq}P~o5enDtk`n+UGQfT&el z^7`vr@j{h?OmA`UB+6bdnBV-N=b>1!w)!kWk5oXv__l7YUL!Ol%x{l9@BHfGJ)kPP zyNcMh)#ZI}ZR@<7iT?LmTI=wB(|v)<2*y6p zoN}_VVh2z7MZU_b;pSd`>o4z&2p?s+_==w84i~iyAY8K2-Oo~jJ zT$>hEFj2N$FwBRsd-#=W*#fRBf3i<`7V0t*Q2bnagw}h4pi{t1c@JPwnqEFAq%DCRbAe{Bb6QkAVY9$Z+ZiK8EA! z)%vjbgm`d;#unjEBO@bq1dCH6WI6f)N*9qo@+0{H z`GKXqy{)xqUvaVc2@V8yh?v6WQ#|I9x4{zxIa`7uHN*_Wq;_=*(o%L%g3gyu-$f;i z*gg~Psiyu`{{DfEhiImJ^cPI(%zKbM>CZ*F=z@aq?>gW$Y8p&Rc-3Q5uA`7Z&||o11}<{aRJ|q35#mOO z^$6^d(_b-6DLP@iDPP@G?K%frbtcmg`;)-r4pNh$1;v?x_-@x_s5z&jD42?gU*K=z zY8n)UI5{C{sC^XguE9*Nw~dYt|LV@imQ1lo5>gUfJ>AU>hQz7Kk}39*eAsw$Mm%B& zT^&}D&(_vQw1Vd!PZ$@wwy`%JXtv1PAij!Wm-9Z0n;|sUrxWPtWTo!mwP9KqLs>BBB{fw|7ogBIT1)^N0}w00CW;hI zpjn~DeX$giS2!hpFf!n?gc)oqd@|bd+f*2ws7SE{^plTts{CAd%Uo_uCuxi6Z>rN; zxMxmJKOY_*ei3@%q5M?F{T3ayKuSi;{N&aFA2`}Ne0?aXs4&7kT7S&4vYm#sH%b$Uqc~s^VgtJ{|#1Qf%Tz(~(5^EG`in#|M#bmQct>$0h3-eZHvBY zJY}~azZgrM_=wWgb&t5=;mz%>(R%;d&XLTz!sgsq^hQ-(JP2W;3dqUL;RLF) z!yXJ-uLT8LH~z#VmHc#8(kXGv*}J>NjSaAh)U&|%%qu8(b5bKLl=!h5P5>wddAz<4 z&$sKrJ%QP0)WAyJWHzc!hs=QxkU~U8Cb9xWV+lQpE6A3uLF>lCql&0c4*?Ce%PF4$ z&bluf|KnV_3IX0p^*6S!C87fq1Q5rNe+hpuH)AbwqYw@2W{;eA^GJ({z`<|`3U*>* zCa@k@LS;cXN6^8}Y$pRyj$$tXO=&U0WWZ8i*@2~>NKW1xNkKX~j4+5Q!y-dx!&)UY zn=k?~w`1ke+CS%$*oO6(JUy)iNFQ!b*ITTqv*YIi0)#zP!aR5!A@s3Jp!*`ih`DWr zalQdd@VB|Svj~KArn$l)VqV@-h1?HrPaZnnKU&fjOqR(2nh76@Ra0ZQdkBUKLiX46 zM+25Hv4g$6s3ypwer_%Hji;TDJ5y$6O842(gFPTZqC03=PN-$ zxH37iF5GfSUJa6A8<9Ft&8%F z`eBHP!gSU%^Q7zqtn2GG@a&h{aQTbvK1pGMZLEOb}J;dtJ%zc7lM0R*yfy=Q^~7_rQU{pslR0 ztPX;fHS&rkDAV}u95mlCakWBgS!v~TF@SFnVr^2spemMX zeIiMd6iNTLEhZ*rI3gk=LjvLVy1?C^rN;gIy~T#xKdYDH_C8d+^oYw9ziEU&q>~Oq z%eQ-8s@vG;NJ;Te;OxVmnuLX{c$pSa773f%m_!RS1-_HI-nM;1jG~~fJ`YlQo1LxE zv~8c@(QeRQApLfC&0t|$*iw}=`MrNErfc3Y`Y>c*a2TIy3qEZG|D%P@)K>#x-S3}o zw#AN=ZkiJgMzpssK+NrC0MMTg2_Mi%WEPo60}<{3*c+tH5K3Y8MJ+4_h>E^J(T~P` zLQ-Dn( zU%|yD=BB=W?%Z_D4Ndk?%dCd^NaZX77dyM}?nMfiYvB(_4EXwXEYj$EY=+_+JmK)A z2r~BFC*IuOc@({+r7bNgGBI_5iK99Zi*ixUZj>mCT_t(vVP!>F9OMi#C;nE~N1TCy zkaFSq;&BMg3Bwbe-F`0i=EhD?oi7il#GtzgP})XrWAR&a1?%JZBw{EVpLkJxLS49HK)5>dtWq~RRK}(CjdzESUBMpU^ za2k?RQm8nNEbWJ+DWd*yA5a@HNO5tA@UR#%#OHN0WbRb!;Oa7J-qj>wW7i4g@#1fzKvnO0UbUah76|4Yxa*$r1O6U^PFr3SmLK8d z`F|Hg!^+C&c-|sJNrr`=o}O&9b*qb!NwV`td~x}m?1d3+kW`O1Cw(|3$I2v*sx!|l z!x2iNOSxMXtlZQu?ZCOsh#NumT$$O(fEX0o9N*V&VatwKz-05e{cfh9T<^nV4Q5vKp{=CDX=goBbq?8@D*FKjEbs6D0wPLnJI&6}P-6YV#dXq4m2QsaRO>(dd{a!1Xbr zs#6R8x>4B;mx|WosO_cw$r$U2A$=Q6ZTb>>O~)wH(dH3K_^>!)RD#d)- zjNtV?cTP~0%$HNJPYX&fa|K!@V z_oj!4$&X38l?gK;L9jEzIXSoBq_fkH?)K&;uy0yM@yYf`0^xI}i>oUla#5c1piiW7 zvvKUEfvbL%4A?M_T2XK+bHeUqJ2pju=LCtP1j+&3u(w%^0>4Du0TBbePR2#P z<40@T-Th<1%IK)KlM@!3r?WG%C{75ZU5(wM!=@b7&EC~wjF7T#DVfacf z7noOTu=jfm%**v-BIx)ZDWSO36_tK3O{Ks-1fKU43=h-YyfMnYn?e^Cw}7?*%;d&1 z1tVGK=<3+dpFYii%`=9OA*w?U59!9qNl-!vX&B?*os$^L{h6=PpFe*lFjdHppr^+9 zPB<4t?*m&5p`tlnYz&nfDwx&PnU|WAp?*Y!6jZ z+BV<56QJzb21F(5)K;liQXuag?<2E(cC=;)(q;|xkKAZzZ*TAFGT=5|aTmvZGW3`% zlp0H7)+30|{_+TMw!6ZVo2bruC)wiU9F2qw@@)msixo@w8$sDk=!Ee-EF6^YfP5IR z9-Koq4K@~SZG0j|A-tu4J0M4LJ(Xr-K6M0}zhw*!9fgfgf>KakFK(`cmRmOpcFh2a zW^HX3rZw~q3LaDa(+xNCW>0LogmehyPE)`m9f97slZz&3vC9?sk>_(U0-ztg5`a4i z?R%T^r#R~3_I6)rgo$X%L%~>fVq!uN&?>%JnR;lhnW4h4lbamFfOOKns4$zSAO!_0 z2=a2o2>uEk0~C3XC0PbVT`GzKK>5p!xuS-Afy98uM%ANZW;{JS4P5xalB=KyH`4Ro``w4J&ZV89en)arnOhnFI^ zC)dE&;O|F0sqEI%Th$CH)P}-)8b(-+nqO1M!#YD}-c0VE#K1vuQ666<9Yn>XSHLhw zy+PHv2G0G8_KptA#?m;L=VvJSuU|*l!UoE5h8{y;d-kI55#eO0jHRT)7h8EOe*z&p zI5?>F-1f80`1tq_zh^HswG`8id(m&LBnAK01AlSwdN=#to$T&PH&9h3r}syV9A^3 zFWS~&PA`n&ko^v(++$Q zEyEXraL%CV1PjRTwHQCqi}0>u5!AH1eadR_AS)#2n~U$mcD&G$cR@Y65LAv(o?&jch-PG?#jn zu&u4fzS<1&YWV!@tN;%WtAZkahNGL?78+lrs+S}#C6Ya;L{lLoBLivXotDL)zS>=b z5H|Q-A5>&gBw0fZZ_073NOnFI4?k+w%EERW5JCB->vS`bVF z904=*)BcJ-r>DO@4AsD5D$wC-nRAl7H&!0hTbJg{k zM-`PCH9-F;L_fJmkBE;q^xku|{ECqj=NsZrAjlgDNeD9Cdj^B?hzQB~^GNXDCm%cS zre*$Ulz&QENit+;SwpdfpG7Kyw>E=fmvN1iW~A>95W=;TjbSY{L~z4g_?f-I2Tch* zET4d36+`mGE%%Lp$P!I6V$`tv30ADX%l!K2`k330lWKKl#_3{b1Z<<5nyxNeD1PHHaZ)mWa(Od5GBS~> znzNS@tgK1IrdmnKUj?Z{ODk0cldvFm_$ehmzXsEaIuw$gk-562B8*guMesx)jS0)9 zqaL26P*M{rga@jThnMt?}Z8l#55&7#Sq;3J3z-hO{Q7kYUB zD?^(0rz%%1AaUt-f{^G zdbGE90=1s0j;8L1{phMLP6}|!q2W?@jive%?~M^~G00{UDaI&n7@5D8z8}?qL98mz z{5L}6VtufN4CeKhwnYB24yQADl{`(W98aD_o|H`_N*ZEP4F9Xw@Mm8*&BVl3a*80h zK-91Vc|1S&f*i$A=SVZ$-^4L6P{aDj!Lnyk1b+E$2;tb>W@d%E14aB$;vpmRUO>V6 z9;r${*~p~2vU;>5B`YTf*ofn>v@l2xzha@31L6@K{qqeJG}LxP1On268U@}7tQUCs zolLk0F_?tr)HF8QsJ1ak$?S;B^n*CSC%q)~yw)>5P12W-k=fZ}LgWxiDQ!I0BhQL2 zzYLy#tpjMV&uOKBx6kAD^p+#h$tC24y0=3EDJf~gVeo}@dF1kd zoLjwMl%f`H0ab2lGd4IkV`HoW4K?7aejHbdl!;IgDeK4S7azL2zkidc%z`^Sy*jJ1 zKE=u<2-kwg$y$1LVzi_*VDXV8WSBj@9KzpA8*>86WM+MVdun~sN3>ivXeKnEO|m!z zCqGvPRy`*De>-nellc*EiCLn9q**Cg85{bgl8NUta80h*&d zFeJWRf$TqMO9_)&+-;GF&L@b6FF>0NinnZHvi*EG8VBKCVg!gy+D4We?Llu!AyFQF ziOL5Y6gD;CCLX8<+$Ta1K9LbvzDuWi?5!k8S2ip~J0%#CLZOB*;5IcK8Bn%6(93nNTeWnQ+_OoSeAuQH0;5{JYGRU!j;d zJ{bxds)s;{2^Ox@O;p__;L3$B*+4==HB#abTwv~ox#C5`n%BajAS6>3xYJD~^vJ-& zz}1ZZ{9WfrWlR4-nrR~UPi|pvVP7~p*dr?_$j!{1n|n2trhMR&QDh+?AlOJzQJFpC z)X`Z^_b(UW^{%a~1kDs7`VRQe3f2Y&ESYCyb+YeCoy58)tqa7rbt5%9g6L=G&V~{C z#fW~CHX^Tv{(bwoA;70ZsXjeD9rU00UsoDD!~MuksDIlxvh=;Fy1KIl%^2i;_I7ty z+g%xjSZcq1&p-|%o8}KfT8(fV7V9l==0MFFuG3^xJ3tr~=i!x*ko@P2SYFN&P;)M9 zXsDG*iPZtV-TVK1jFJ6m1geEAKA6`0>JeqRP=Y9Fo}CX$^y@t=fP; zwKN^*xbYBu3rc+2aa_6h331X>FvY(c=9r$h_CIN{|si0#k1)CyQ7V+e=Iuojmr?RqgZXVg1Wq{Z=v^7YJ7h54h3q4lK1=ce9lMYD8X z{H)aBvJadwx3G8xdgIF)dgp5gxzFDp>(6T~FGo7B&zG-umX?}LUb|rBbb3l!D!0Yo zaCQR~3}xjkA-NuYAgpGaW2kMJ)dP%T(@Q*y{8M`EpYVC=jB`~C z?d_%Vuzp7&;}R%ZTDiCQ;MceNu*2*VZF64;)()VG#Z7E%_D_oI>8*SEK`EI1 zc^^4LtM3nBh=u}>#6D14odiQId8uO(0M6}-e>KcA%6%y1D8f}NL^(eiZeUruUfp4N zc~2nZ3)?rkv||{Yo;rczcM8utK#T!(Ew;bEjR>&@q)#&SrYfmxLyeBJ#3Nh6n&gw2 z@>Y?tgQaV30X42aOY#ApY*BM?eySvPT;g^AdN*jYkw! zX(a;HDh@O}v68H4#1FkBl&E%1s;t;@%T$x2&!XeOVxmychYDu4eh4XVgsSQ*qzZ>> zR#sMKWGD9;13N$kIubfMppyMU;9BRDq`vh&Z+wqqdB=o6L%~31)po$>&>zT7jX%G{`}S?WP&c`6Z}>?l7HT|J zy%*ZI;_!kd4o-|S}OC7xa$y!^bN;Q|C4vU&WTx_}=niRVhL%)91XMyA6a*v$VdxI&ZlnbPX*du6^S1)M11{Gro!PV5dq2;8 z-`DlK4B(NGNyqWCpstou5FJ_?$r0l!PWepXv3`XYX*;U5^wABWvvBoZZTxfJ5i4Oj zOhEF>rj0=S{=t6wNE%rRjM0&H*bP5aq30T@g{WQ}l5x0uCOj#o;An^3wWxiXt^^|SjYpa*~OtDxngdEuY6d!pWIW8E#qe4u#BTvEY_FRgX+YC(>-ir zVy`fy?4+qUvDoP392FGS)4AS#wfF(~8vG*2QGEp4Das5r<5Ob*+RR4h=Zy!C{7fbo zs)+u3&cwmz2;vHXrZMPP=}M^)IHtp&-(g|06D?c;njMdM4)(3k`yyBpAT?!e=Xqe~ zO4rp1xgNMy5e)P4QteRn^>M@w+Rwg}HP$r@yt`=>0VuKu@p`h9Le1+#YpMtfWJGQw zAk(~_xKT`gU$j?5EN0G7a=KoSUxku^r9(nUnWEXsMz*DCZ9BfO@Z7*0V$CQS_~=p7 z?>lAue1=ZDDo)HqBVBapXUr63m7UA;polhyn3xzA7PhXg?$Tn8=povto%!Q&Gj=8p#o5}tJ_@$B0p%IeF?P{NV;B}zY@OrGqgH|s2nLU(WZ6e>?`_gQAt zOlOJQ^*F3BpXP3xJSKFVd5Sol@CK=3y4KdNuCywyv~N9uK823u6eY_f>qlT9>ozM5 zv>FkT9BZKQXd$4%sU)9{8#`K`pI^Ma#R)U=HZJ%I6+ZxBltl4D$O;qseEhiu7@*MK zoe(_G#i(((oDb%JsS*gqCC^UBfvR}==Pki~mE*dyD7&?F0ZA%}13m-{DNbjoc5qgv z5-10b<*gA&#LrMQ<(C&&q%41u{(^cvnECP?wDQ=QFDmOH8l9+ z)o5R4+^|?@2mwzThI4GAL0$%VcxIrj8gLK$`S|o1DncW?aqt4mSi%U=+xn_=&~~-G zBkxOhc8DCYks4Ha-M;MawJNg7jh-Zk9x*MIcqVlbkXY!NEl$me3yQ{CdcF)-^FwUE zcEYz}5MRT%dwZ zxPtACH-rh{jyOvoSHu~hc}{`i!=%oM?4Rk?N0A=|f7+w=t$UKsPXEDnJmmw3P{)Ym zZ9}rzH;wBtaqm9e-`?M>%iOIK+#4r`T0Oy&J?fyp8!!Y|93Z9oMPbK`fc=^V>Jz6; zbqSNeUc3R{tHGVOZ;A61SudE1zJ2pV8~kAQVdf=h`hq0l>;Cj|)m1eJal$~41roE% zABR@&%U>fQcQt>&3h-be2jUeyQ&Sqkl~(JXb&K16!@Ijb_jHW61Fbg$K>9WNs!Ak* zyv2(Sl5!dEhSjWL)8H=qFC}xuRx;gz0RNW|1HNW^C+z6>UtD~A^6S_CPELA)ERCw- zrl+S*=r>U2<|Mw=)L05LF*1T#9Z~uA6ea6R2Y-(s`31$WcP$?lYeuB5BmRWar=DoJ zgv?0Zk_;uX=c0Y;r@uRjS-wXQ0H-F7pG9yW4{BMcjjS{Tat=H^`2jFtc0Bz6KJ^RksmAtX35g__% z;y1x9NuUASVc;h=dck4+Y-jG#zo*%fudn3~v7kp6UL)s!hRfs_#L*5Kz7k81nw!{Oxn@ z?S-&`W^*b<6UxfkDcnrL#YBGz>|gMRo5EtX8~AGIdc0| zWT9b3$3ILcb<1kmGr`&)7TT6I>0HHni+WQUWTyj2zG`YaZ#q=C`Y$8gD8={~%tenr zz%7`5XMEa^tEq`8j;SX={sXcxdmhcfQKObQ5p6u&k~twWh@OGIxDe>|+@$kEh}lT! zzZ!)Y>7e_FbG5jTvvOcUPfAK?cRES7ZZ9B^8`RKuK&q2+U)#_J;Kx?&^k`Tv})6gCief0fh>&1?@v&ns9jAg zoDS^*@hgB@+V`ZlN7WO1DXet@=A!gIEkpG)?<$s!&FA7G-mOnY0ND%ZHU&jR5Ci;R z5PbT3Yw_>diP?7-s_#mK;AVFztuGd_i%G{S!pA=?<;cb(Ga7!!f^3d)-qtZbzJ$=B zB19;lznxp7PR%1pFhBP@E(e!bp+5Y0PlH}e5Ka|QBqOzcd@z6RSQXl;+MA1VWw}}_ zxS!k1!#eUQ)MqgIFtf)K;WkvxjqD^aDg$M`ME+?0acrNh=+(caaH)}uTS?}bBIe@H zg~jVp{(=lpBvvF%I>FXYiyheDnnTehB3$YG>D4h8zb*w6CfC>3AN>NhGl1y_vnY1I zX=wV!g^^Dd6hO%!`ctx8wu@{4$7X%q`w2-cDVVYCtFcN$8{iHf!+uoVR`>jquJ)73 z-Zrjsou2|0J9(d13R+rU+uCGz-|ft8Q?3>191a+vbkb4Nq-DIugFI#xr#1+){qsot zhxqCg(?leU((EeTgU#NKiB5P>Q9F@bYgjz!9JhkXw=jqFI|vLJo1H~tVsPkIR8ds? zrS+|55yhDxfZ0q%B&Lf5fx^qns~lvar#CULLXei0=f?E(bG9h0g$9q+i(b|}qOL~; z1=~^fJeK{6^$QG0E6ctSJ7F<+81i?-m5)gy+?AQo3L==9{4BY{Afr>l!mO-9Ja`B- zAD^=wVATdGhr1i450uzexrLCB%;H)bX%`>0j1laa#7N;Shw&@mx8>bx

MiD*gIw~`LBbGnL(?EEM3&Jy98I205V4&-Ti!W7!S05u871p#+z z;+G6!GM%lkInBe@Tkx)hC{6D3MMFc^>Cv+v{jd9Vi?vdT0lX8G2f$$LPkUqm5D`BE zr`;S<{c|g+R>;8Y+U#f0PUrEu$d_dYSJwz`V9=SX2|U-;l4*I#bc-)8|MH^FBML8p z&R5n~2pJzTtN(BRg${bvG0Uhj$FTetx<|BJoZQVmd#n}tK@sId8{;CB7(y%4$ASM= za;--p5DXy5hnpmOxj4FZ4bMzW0B8Mon?B;EDhG%^sk!;m>Gh*isO~OKeirMq8DWpZ zpy-*W;;)T~9mAq~*IZM(wed2Pj1;_h^RNX06kK<4VR!2&f_RfSqDTgdwhrH|?Fm4v(OP=*}eH|5f%-k%$98Sn_dDKY~_>RYH zcXPGx2Odz<HpjgxK#7Z8 zDk)84!!*Fo_0*mNpuxU4tP3H{VNJkZ21VGBHXo+m$WBT6!rPY{6(tFN3}<;VC}l6y z$H-KiILSl=g-OZDfH@s>@!F7H1q3iE%fkg@Uhy8i&YOfP)I4Je?g{d6a6qz;q}j)r z7@VJv=e>SeZ!V}E#~3~nSD;*Vns9onbr^cN`HpYk)0^TY+!E2Fja0DLS6+$CaM=B= zBD4Qnkw``n5b>g65#E6;FMrdj1s~B=bWBXNji&f(&gN6iTupS95`NVGmHh$=hZVM0 zIO9IK@$>N;?`U)=)Zr_dpY3{Mw!ezrj2ahlS0c-pFXF_xi3Lx`Ho#QQZC-ebshG4R z7S}1~llB(nIaW*FVh}ni2*w16Sup?9=HUe2{yDLRM*)77X0_d>JBRE!FsRJX=3qB4 zR7eP58f;8;L`7*?=o<@(LQClR28q{4+RE6A)3(vPe0}9Lo{mg>t6Q&dNW{Z$udzQx z(clcRdA2iFzdou+KBN73KkP?L3~+6kH8LpA5$OhOxZ|e1^%6(ariiY_Qov1IzQmqf zUta+#>=nqnw7$O!CL&t(VEtm+gnM36S&6qw!gv7SNB8Rw2CgNkK={R1i}zT{Ov+Ef z{Nu6v2jnR=SOWP`;K*YV($~c_;FM&9BX_D>zAh6(k57yT zM85$LkgNco{V*#WudEzhURJ){ArhC+qKMDSpdn={e+Weyl>m38vSQ~%OW7OlB$P^+ z2b+^~*=i+N2=-?h*PSiy=a$$$V&daDy1D)IKmG;KLBN<&kY7+$cRRFvGX(s%N~2Xz z-j)I20${`U5A^ezHGy#v#;`~1>P5&}>Zh5yKtm&klJc5(4HtGw^BX4ZZJ!Wxx`r_& zk$(B@^b@NyS6q~)=qny&+!r|rDV=(nJ+!6&j0@N^zt*b;6hL#UbK50S2UU6 zmqsQr$7aF*GIHd8P;U!LBw~M3&y0e2-S3Y`fwrPKi63XgMtIdw6;IH$Y=8icvN9VEnlkq3=vN3 zKs2=t0!^R#1%uWheb71V=~EnR^eF7i;<+Yqc7oRE--lZt>)e8syNS2-$I*<%tkmP~ zR14HFx}yys_ZXj*W79#>Q%V@jH_QTL1DpBt>kI~K@Yfh-N$5t@bRa{w>sg9pYx$?Z()frZk}*YV&p#7!mb}%>@4V? zi3dnIDKWqI7PYjj1EmBo9;%u&Uht8{_Vg0iwI*T@o&7!a9=l`YcQ4va$jw%?K>!4p zH~dSQ)}Bhjl9DC?=bBV6!&A5r6&YC~W~$6S=83t9St6x*3RHFI^LOFXS?^b`#J+Qx zhi%dlk!#ZD&dyP56*8xg!FAxapNS`lp5zE|laW$QF^G!#gCIOD>B|j(V7LO~_shNI ziz~y{f0GX;5X>4K5HGKu^Dg_e(9#;Am_clyS@=9(TwM*hw39yy8wZa3JnqgRR^=JA zv5gu*h}v=SXQtZP)gU94Y0)N`1<&2c^V;7l4we7Auu%sfUIN?cO$8u60o=Jlvfv77 zj?rW+>US%D|BH#fRM6|>{mLGb{20fM|9w`r2>_amxr0Wwo!yo$27b_%KKq#A&%3j) zp_^P9aniTIMSh*}#3G5|JqHmSTc5rRbd~q&_NMdFq0hDjSy=;yvL*ri6mSADl{#4- zLr!s4`-W1sV(4|20I~mIcd~vdsJt{U&g~70wjU+_7)=J@!t9R)spzEnNzeei7_Odp z=RFbD!1tZoS~l{oDlaA~hR3)G?I$9wPY^0npSL#%4QRJjx#JzR-IrYcf8er*CU(?6`B$8Cj633zL=I%F?KKA(z*_ zm`FK|7A8n3pe42YDGw(-47t4#wRcSlG^U5LH15NYoa!8iAjQoUE;dHh6i!F{N5D5+ z^0nL^lIAw5rLGRwSw~YoIOM9Oy|}tkR93vWylN8tAzKBeOkak1H8Ku6Z4uhi(!xt) zOVXpu$&VwBjFf;5@9zgQ{tK0SC`%9?%qLH=#{g9c%Aa*K3Daf3dSWG04Lfoy;GRK^ z)WPuby+T4?pO&yAw;1%^4p)I2?2?+cKX@vQ8jfBtrKnBgrN4oBEAM|=O2Bl`fK4G$YT&{@wOZJ1y%0TqkgfoH zJ$eJvgAonLqNl%F5PUK}e-(>7C{Z=~mD-DV0fQS;*g_H)(QDOCD{%3*3Hyrr+Y)G& z13)FMq@AImNFDWnqcL=wqIs8vit1%`^~^;|RNU~$h`Y0MYGU%^72LMB^g!-@alC$p zho|r>;sVK^*33gZAYfHiAr454rz;1uPH=U|a&+Drk2WusLN)u@g+;cK)^Yz}iQ8b%g;rBqjeS9h^mX&LP!H$L6f1wMC3C z=>5sfLFa>zGLi`}a0>RqhU^~U?}gD>Vnswm2uy$Jl3+%@-`&kR`8{mW8bT}o#k@|O zn>*n)r$iL>AS`!=m7m`Uunf(YmNI!%jX;aKKz;dBEp8_Pv`oZ(@v7rbD4=RiPx6GQ zcD|te&}aZf9aQt6hfN?qV}nHV`o64sTH}Wig73n~&T+x;#7-r;H(rb8v=0051=OCx z-X#*mrh+{nLf+l3?Xy*fFk!;2D2wmtTvpc4C24y$wvuNKs<9CTs9lH`ZTBJ9m0$+@ z=k9P1a3>zH1$0sYq(owYD9Lm%f3Q)9&)0)>UgC#1h@Au(K9(GcLa5B|ZCVKoK`UO* zG{J|8nz{*;qZb#VcP@rl=Ym$+sFe6dBIcOyY#mfjT;*Z@-ZtJY6J3*Caf?IA(Ettx z>a$4uK{qRtiC)X_sa_tF(01QQcIuD#iKaUkm`Ka346mM0fo-QAPNdvJ8flf5Q@gUuhrue4sb z{0ZK4wz&Ote-cV3>0eb^8uz6DlZYD|LSo1NED>QyoA=x6Sl+kJoX?V z=4Kfkw=1$k>^pPl#^uxS-a%=rHdIq>!bcU2T#y|1&?B<0 z{a&Ebfr%LUy%roPLkF|Cn0N29GP?g%^<>~(M+{|&r$>pP3d4bsY`K33M8kC9 zmkUtr*V`Uv@!D%OzoGvgNWmm5E(}Q()f_p=wSzvJnKSYWfHkb_9t|KnH6o&|m_qnF z74+K0K_wwN{_Y26Rb+%hgm_>t5A$GAL`%zNY1*)gi4$f@TN;Qf09sGp%et}$UVsBpzNV`u*>PRJrRJf(3Ljbl3CVviuZmA{~=9(tZsL*c46>eZTe|0cdxAyi| zUz{4nN%06DLhqJcm%|)eaf`R;?_n7D_FLo$johMAm$>OqZ%(4iaP&RN2i1J);d15G zhtsx|@rj8_X6JnN&#DnEj49*~{dqEue^(fA5l2U{$@K(* zM>s-24;F5`&|r!Big}p#1MP<>r6|zG0o}#sJcw|-xVVINwnd7?fGL;gxI=^YEWeu1 zA5TsnS%s*93Kx$l^N;4hPpqz~*&e6xdwyO5CJN<%!xe}tfQW=hrh@G|(Zwuy$_@0Y z7AK3^Ry#Ir;}`*HS`0od2okudE1w2idC*?oG^uy9%>PY_t4!w%a|uEjkfk(w6hO(9 zd#EH!oKR>lHEEoe-i<9h2SJPFoM&B;!?9D4QHnv2dn4s@rRO8G_^H2NNYBap+}qlY z?+NX}fp&gZyzaDJrBL(t#FkMlpOIVOH&qDk7|m@M6y}rWgF;oEVV=Z+kRLHB<1GIi zU2H;P?BO7#d#(-{7XmYY12YaP%K)eKU`X*uP+?Vxaf&k{@1lQmF1x$L>Ndhw zN&EGm`l4(3ZtZA1E}4bvH3i5IkSZIUU43ri+s zPLXnPXp^UvQ-*L>x|G2g?H2f=-tdtmQ|I5lLPY&#m{lgW_}am?E_DYH`%kSBw( z2yzj(pbzTc4YqNeDT!w0r0s8PyI5P#&&{`V5A3kI{pJSs zyG!9FqpGN#U6tj(vomrsiVtF55OD&qM!5HU$w*CQDi41F{l>lT$EX8g0rN0CTukrP zWjD(wswf2CDk}C9MV8pXMqHf%8yI+It>?cZ3dwUQ3kS!M3=$}9jzA3A$;sv(rJO40 zH-c0bw6@ERvCb;*+PVVCHkq)T$K6=I%;MrsBVYn^zJGRn93G{l>h*UbZlT%K;cuGb z>leD(io7V@gpvgGVnG7GSs@t5+K@nXW%(dUNi-{alK2{M@XspC2NDF*4%7vVWv>hB5PFv~H~KBWjvX8=zUJF!@vm*mAMS+REH%w$!=LHieJYL zpOzL0ENIiu-f@F)a+nJf&HsVn9_YZ(v z??qEHLtq@V9U$+lhO19LVr1_e94ylH1;D4;TGGd8weEHSke7jhCV@bfp5X_8GTs@n zpUFVtc6hL1un#@o3wkMO=Y+{$LqFu@C-tnv(19Myv~D;3odrlZ!$Na&ap^PbNwnU`$Zpc0KWFC|)exWz(^veM!l@S;ObW)zDKxECbw)#aAvqLLJiv^V) z?WGL|j&@=uJ6}7^WY}OwthXE#wO2AhRmKWYW$IY@jq4O}mJ;z2NxvBC*VWc$yh{hv zKr6fg@&R0D%FgCDE1gMBACHJ;JJt=mdV0nSNpvb$iNc7Y^TRK^K3$sv^`|h-{vVGY zmZ2ATsjr;`e*3t1<3=;ed_~fX`kL&ntQ?@IDB5b&78rgQ867Q)h+JR+E$F!5YB zekvP<02_a_>_3|W?^c_|MMrz^DLGw?K5y=02)0qlgZ5Bduxqq57d{qNbm|cO>sYg& zpKCwYf2CMxBl+<-C_>YdtO!KlnKekI?Gqq5R%7*x)LAbnEAKoC$W$B-e|J)hWib_h|U0nzw6e=b`NOKyHE&To%2+|dLOifL@*;oN#+C233 z49NRufM!dYe+7wy0oV68h`IrrnDbL_YZDcd(9qC?Py}OR#anJa>ecx)>oFdOiJ=EGGnd%)2x`eX+RG3n|zY zB!g4K5NW{-f##BrhhIJ}nRAb}M6_7e!K!dZr5f%4e|2?r6`&X& z+?FZ1Dr56A30e$6F2VO8APD$G!3L!LHIO~D0{I(YX#k9FPR)(U3z**s69n7d-k#gx zVnGzgfoTC9*e)<5%vXljPKhQjt}Z0c7fyg-GHF;7o{ZN$3Luqu!d5mml&l5y#T2e8 zGj|6ous<6cv2U}os2ezXw&^;o0a6yTM7YA@zLVry*mbF$Zg~f$2BoQduP!d2EV3*F zX>%D%eq(ufwOxi<)G^<~28CkM$>cZ=Va)O2YIY@9{>B7l)3$YS^(>+f(s;v z2Q>kGs_lWw|3Lynq2IZ^U7jSBxEccEu%p1OS(u;q+WDnqL~o!XW7q82)xVLJ7JKB; zM5&N=%D>J;Cb>dnO@>=$`Y+05<|;C>GcxjGJCl;<(=`X>!d`TAG&nzgKE77ARuqUk zkRi4-F)=f~7=egU|5dE^9JL`I#J_mJlj)@XuExaVy3ME%#kehg2Q)|Ibv3VIGF+GH zY9QdXCcfN?lp^MJVF(=FuUs&prxVxHG0(`%ytu&`xxTo{e@se+tT3FIGml>X#Kxl8 zV^va++JvIPa=HCAd;~cf^F$l71I3JKv#`35LPid1UybJEGKThId}=BB8Bw4>*(i3! ziY%BpSpB&KPKH;PueSaA-r~;W2Vb9`&~GBq_a;c;ws#PQUo149%ya=o@HT3|qpQa} zC2Uh(UL?VU$!*cnre!7EoV-nMQUN_~7H4+$G_ac6X>Ayrl$>QIp_(+0I|Z#E>H{%e zIcK@UJRMzh$|$Y2l`r+~qwV_D-M!p126is4AG${V0JaGtA~qJ9XP2jA#=~6^5<@AI z&I!+mnF2b=@8K}wSWRhZOhgrH^)BEw_ySNd!12(CpRQIHs1W&BOIc6Dy^M8?jrGkE zi5&>PGlP||!f1)8&R)d}K{Lyf#8Oy@*pvpgge#hsc zKV*k7wez=dxyGcn8ddssVjP6!DAQ=1m#HJQ#MkV#wJ}%`vr`Y_ za84~wMoFcmVLIt)wH9HqpdfRMeUQ%)l?*o#amT~OmnUX_a`Idiibg!+I>5yVV}z

ro6NwqG0{4_rkto9bk(0~;9V&LM^O z>ftK>yuO|u`@W^2pQ=YmYb(7?11L-0FsX2sa{~1*U;`Sve8?4fuaOCNp8iTkMs7Cv z6O%-5Sv&cJDP-Rni&8Lwa+o?JvW1Bu!KJ0w)Yk%wqQ2hV6$_M) zu8EeBt2qr#`8XO>0i8PqdvgD-*GSfFVgS;CjqMq5Df_uCzXIhffFvnU@?D&IbikIn z&Z)RDi*{oowl~)I;fsrF(-8sxY z-XR`z;URs^so}J1)%gJfUlM&8%f*#Qd{66HcD=`%U6&q`Ef7s0@E6Bs}5J{w!NalE|SjDb$DE6&ooW(h5)?=#bR`EDA*&`O%NVw zM0|=B;YfT)kRWWzNXfC!2*{IPN=k6Cut5G)2e{HLO$m|T7M0AjpSM#ZrLL`6CD65d z0vzu|ZS7>aAt=)S4s_IDLJHz|cKbKEW(fS_S|Wn&w&rRl^k$4PyK%$@FI2%9m(y~J z-JR_{Q<`f|W2*o8IWi{zwVo~odjneln@6!uOw4bux)Gt4`1*Bc8w7G8A|zy4SXcL5 z?pagQ>XDzkYqeYT6N5Cvjo%auolOB}FC2}<+9!OBjkWgYW1husY2NAJ>uXWkG@QZE z$z;>IPODJ^1!@bbOLx`^pNe>XxxT)%uN-LK`n|CoyVGqKMoS_7+|(34L?FR;O8sZ!@~x2iW0w##?QPb|UKOt&iMTPycf%FA zDoQG2pVYfWMZKvbHY+#)bLHV2F~B~>J}9p&^gwZ@MSvLW{bEVkfqJ6~7Y|QjX8zAiBNMCmTvwO=vI9|Y zQ_=?%+0Id!(PVUReI}C)r;}nq5r?0=NJ7Qx-6_IO<|^tQT3)DOlnO2SZ6;yy#%5-T z7c?Ka^rD?qhFx(eNHI4PjsGH>QnUF@x3sWDJ$;JM&vkY|l6 zodQqj($5{Lxi@^I+D>Q?&>M)wX?xIrcJ-(4>^MT7IsEGQ_&|j;*4IZL$aw$0G3e6s zl9$4x`?B2t$-2OLCECCvXQim)2x#X4t_vN4R`v5F;n^{caJh*1cI7(SRCFAy@ppk-^(_TbJUn;?!Jred&nMwT zQc0mPzo$}t!6U0@!d%agiC2{K+Z%S;3@|v+QBEgc1S8e!OkKj?JT^KJqwby5M&;&r z3HQhaPeatmi=+9K)^>K-gQn36V`$(>SeD!*@FFAWd7qW(kFs!6e}GZ4Z*vC4PA~hP z%uRAdprV2a4Cwo_fgo*wi;BWCVWZ68PJ5UGC>SN1S3Q>_ry~jv0qH1N)I07TFhaUe zMa2uy#qR2%UnT-_umO29XRVZ%8PCHEs>I}K1q2os&A{HT_3l0-`0qvEl~?3Vrgejfosly5(n_fKOWSC#*c&RuT4VFDuJ?FT!_bKcol`xZ|Hqihy0lf z92xu`xLJOl96aoEC4j~|+P7`MrZAvti#mF%3LGWBo`Hc?$3=bUwFvjqscG^+iED)z z{El+oCr>)O8ycG07%?y)K7923dG~oxk9Ws|%I| z07Z2@C@{kOE8?>}kr^~wwhe!7diolCiB_0VZaBM~0z03K1R%#}<^3+=eVv?q-KQ0T zl6;^1_5OG_z1-t84l7>Q^}t0ga(D)oVmyC$v92X~-1+5$L^TO85ZGHZcmTRQC>DXv z!s-Yv58o_~f@e09kefZgfbXM^(eOwj@*NW9oxcW?DJxfR*3?1Msk zXQ+NDvh@DJ*y6J{-H}k`BsJPAC>FPZtRAp6K~-B;Ry1$`9j+oKjMj4*WAraS%Ju`$ zG5Zno5=e&Byi&Rs!p(EFJ*q$@nMU%0*PEsc+%jvcJBU!a^fU*%enGiMx?1i8v3ZIP z8sawgF_rc^-)ukK?%U56Rx5f$7+8Bam6ca%eGq-g_{V?_1t}0C5RBbbQT))4g>U}$ z_V!LXPc{GT=NcQ+`Fs(2u?~_vE!P-?|AEBM6;K@>7E)MX<6~JFJ}!Kj_1@9R?dJ!J zqXCOs;$xX+%YAjtqPB6GW zxPABzlo%Bi6(AJWXXjVp1p3`%0TWa}QquGG>dZZO&jeEp1qJ19(<0OAnusRa(cx^jSd>4}Ex?5Pc-JZryTrsgs3@yck*iHcz^$#U-foj8 zrK>{spyzSf;b`M2)IvbE(L)#XV@1>0(NXuQu7&%PH0<@2^>w`X)W!_DQpb=y9mv|s zza)Gka$LKoUVCi}!BaBg;>sU0fJ}x!(#E1eQTq-UQfH|7v8S*gM$$S1LeW*S_$K4p z7RkNLt+}~PO=T@DsLn`LHTA_NHEe9F{jx4Iqd<%Im=y#f{Kmt(L>z&ZwXmQtJ{~^e zd4ax_JmcbI$03m*#5(c}Y2@ypemUU0#V$JGRG zQq&A*Tubyzzn{0R4QD_Cw^Zl#Zf!~i36YhRg^i6Ja+1Bw@Ke4Gcc`5ZZ2ztLot&L@ z;wy2=@vkM*a023qA|#RuF_uNd#RDeG^p9V@G>URzKGXIaG5d9MgMvmpH1rG=HDdHx z1;%N7B~cS03GMp9K@>SVhArY?zN?F6+Ym{;|1|B@SZyk@@OR;Xcb3P@XpmocbrlM- zKK&XfF7*Jsdxq!jL%*bKXh@+KcN=n2`=j_rJ;iOem>!lDw>fU`spX?86qmvyq!qrl zDojgCf1W;mg=HE!;-=>HW7=2}ker^K?U96fL>Zgr>X@5iQ=BO&&I);C4p`10Zs|b6 zFNsbp2aFgOel-Qn{sm41S=xmKv&+93T9j`Ya;fR4qisvRe2JC>?j%tO%J9L#LC^>r z2iQ`d1aCfpili{hVh7PBaxLxMcZ|GhSy1989l`pmsN7g%QLPvg}G{> zOudc3*M9TDp@g?PA07cLBA0+b0?5*Auh9pbZOu9i9!NPUquNijcC3yn;Nd*YEx+Er z1=jax*&;DfQSApLKFWBO^i6>QyD)Djr$^b30s{k9vXYav+ESxQ2+*VQfMPD{n}YMc z%b8Ytp;i;%0FMKDT``!!4DC+tP*G_!Zu3X2c@qdqy@Ld(m=Ihy;V0m7=!o5MYGbl7 zdp+AK|MbcSJj8O?PTf2ls#+>rK+aa)7i5=fjH|IJL0hZoQ-J*Wzz7^GByyHSwYkl; zX!fQkBN*5CR)4Fips{a0W^^A`vhi(@&?7EEMB4@hLv*+fTnYXTMF$lX1!f4$!Z^b> zO%k7lpFKlR#N>4=u5@0KhErUO)r4lsg%c_G0h#4s_BT-x!it|i?^X~In7;}AB~SJR zj#`C8WJVxW=)DnLKS$?&J=Zr|1kRnQDToQih>fQwO6n&1quo6cYGUko?BAUO10-we ze~m~7DW~4zAZD&zpzCZD3+1qd${rl|UoomL7;9KP!;KS(NEy{v>7nk0ydqDR2@ttR zqZ)VVUKbdu3a?g@Fl1#EIx=`os7YuKIC6A^GLf)NWYfRPLyZ{yJ!jfi@jAjC+}sev ziqn`_D5yZzpSnr{8g*luT<;-;VueO3PKPMFo;9_$h@<2@hd;RkIk&;VRc=6q0;V?} z$ulFCgOK3_WlvaDO*u)1LvAQQLXHDx-Z2&=)l6EDq+1-JCnn1aE$4&FD{|bRZdGpI zy$60&#eXa;T}G(4x6t@?Xx&l%3Pn2v!P?Hy?i)`ISsXyO6H?ZWWseGN+tOV90NjUf z*NAa}Vr&9*?=9U|+!zZ`^>$Qbxmr(Xx2C|a+w1q2%8jX-zZeWgfX-TRGh1Wd-q8-W zMzt-djd>2}=R^|D0A=bfq-4YFbLfN zeFZqK0b>dSN2%bdGiydP5xGSZ=&0HtifMVcQ`N9#!@A^#$c#xuLLr!Oh=)9#N7; zR;C5xLy##KO~H|OiSs)={6f4CcH06NXt)oW@%Q7!An^_ao15RA7K4?RgodW`up|%v zvq64*^%x&zEl4M|vls+$E9U)2%EaoYhRat|7Pp%gj4nllvAvTY%JRTF%Amx5YRN97 zKoj`S2ZTzZ3ycA2(y4dHj?#tH#`X%544LepiyI?SEqpz2_mqQu44jRgo^Fygl9dlK zcNhOwRtPa}e^<*>8VR`ch`4W=Hlze^4N_%_3Puv&{%O5lwzyh*x4*wXK`^JBT|K5l z$?Jj$ZfQ}K9gvigd`!mZbU_ABLhi@xTXpIvy1d2^9ZjBkYOiL`jt2W<^Jazc;mq`H zZ(|0bQg)1v5(08Ss@B+f=AU zuVzp&qLS)TwVtinH!AROkM{{xpyKG6La`Z(HI8-(Gc^;EnKTr|$hicE#`^kz0}sTS z(uEwL61oIrh13&=nZ#}4JPrSnSH4Xx&C>4Bz(l_pYst=lC69xP33rVR_bM)tPvWxs zpuT?_JN@jG0YBBT-zJ$Pyw1y8u+_mbX%;<|IE-&n>I+|_(aj?iAn;*?l4fF3l4e3h z{6sV$v)V((3!w;@TXZz!F)D<9iP#r2BrxK!AX_ftmLj1LSKP+!Rt{XpHf~agFiqJn zmb6B>{G_-7C_+2dV@0j4GP`ln88lJ@QBrkE0WLV^0s^0#8GJn3Q6Ra)xu4#_U|l}Q zT*$77#6OlA!uiu4)&~_-d!I0TLJk(TETdhYvqW`r#Kk@A&K}YZ+`-z#-}G*)ZcwOvX9ovAX;4CBJB5pg<`fX)L2HtMnVp-vQ}eX- zZu;qGV>r)JSwx zsov@vLfk;H=F5j*@a5~Jb3#GTc09w7xd<^eZN51Wf4Tzq@$;F~GYtKMu`J`g4aIIf zih2@sySE&h`@?VHPzTCn)a78ASbFrEHB;XOdBEG?r5`#c}KHd@G`I z;fLQ7_y!oZH*8H|g029Vdp#)cKvnSOc1xrcOX_uO?5O#9<0FKTJZj+tHe#Ym!=5bW z6((yH!%Q=}uC(g6LGy`RJ`5COI-FiCJVFUdIS$)T{Z4ZnuY&Qwzfs}Ntc})gVwmZX zg)VK$VcUhNC_sbpj&!gg4o&Zj%b)Wn%n~UkE^Ostb}wGt-Gz_@=ZGGx?b8qwuXWR* zvemy=f&zy{XQ#~*t*fR->fJrvfX(|%_f&Q-kaQ3;U)fC{9u_H6Qz{5Ac{6`gic`dx z`hVZGn;M}S*VF{TfN1OsyaF-FpdWO6MyV|N19o(m`u45l?APJ&6ZSL*55fx3H)ses zH`heimbSX_u4Q7Tn0Fx#d=U_st~;28`DJ)Ey0@eJnAw=CqMygDpj`UPqo+8`#YtkG z3E>h)pd)Nz|L0$m^I*+G5u^$HgRe{XSRe$t;HyV;t{`wA4s(wcUJ<@dBPWhfc@D+E zh(QVs{b%dfL{M4Z`ZYHlZLJ2?`4}H8gZ~b}K3>gLv4-dW4Duc$8m$&{ShIqX0-Z zj^qX1A+bC(Fffo^$KT)I)HJ6&+u7^sKs8AZh`d~xRd^xrALP80+Ri3j`Uu2s+W4xJ3v%oDF52JUpr}wB&4X(~(p;Z}c~D32Zwl@d9-(1~?Gld}Aq&ILu_XTWDfI z&H+)G6)s;D*ooEw_w)5sH_N%YNa{gFLCK{6(JAhlAH|Jd7>G+t538{dws6nPTo~CZ zZI-4MKN#M?XJ1}lyDv3heU!R9{r-J-_`Xv)q4+|MnH#=M_3(Ml18?qYCoAP-uYbox3Bm zof>iRb&!?$mqHe(29-+DMoYzlxRn$7&o;K8MHjl{gWcV47GJNgt%2mg>G5$1C{!B+ zHX0kxPRz_KFE5Xe3y4BRB_$We)LP>~L(&H*x7KkVj6H5n>RMW0lYUJS_(}DdnafcP ze}EBB=J#zTT0YsnoxV4Q6g-%$xf`b&z2)(Dr)W$p`Ne8iKbo56X6Jl;{0Q*zCk&?b zWaF~3uCBIKa`Oy2I+(!y!yZly+(Ym6wmXk=a&o?Z{|7AW2mV1lz|bI@aImw(ftFGQ zO-E7J)Jke@+8)t{ZmNkYr$~I*Ov7am8W+q@XxBnDt1f!amquwk-gw(T-LC{(GIsTimVg+vt5>Qn$Cq|F4vTxK=iM6Y%BEV0?(NG z*>40#$(*yO6dWzlt5Hhd7ZKT#hEQ+678**(tF3|?g->XV$MR##;BBn^35p4^^_>RF zKRvB>K6tz8c#rA-_lM)hMHI<~f5~K5`h^6jwwLudD_=iJ1SZ{Ux7OGDfeq_(&$spO z>VITQ+>l*8E?do8`uVf0zwF_9<@)~pyZOhD$v~uJyEg^a)LB2*KQ%Di|Ng49#2C-Q zQOx*sUVmm`=c!T+qMwx^SJ*ULEQ)1hyN)AJI%r`Rn*Ou zH5{B9#(y|T)X)GYX<=~#kL!QH+Bp1CVt!#pP?8^oC7+&GLmlK}coxTS`~Z2!_;>^$ zP(0&Z$M3I^#IrRPF$;Ch=UYSBhF{HH|4pV{Gh{9#sSBcGdv{eF>}$U;lB+;2nD%BD zrR4iHYCQSw;q2p4wiGEK5J2TIT=w(-93nP8r?SUh@ugt^Rq5;2x8oVkVVrHxd2(4t zPu@p8K}EqYvmn&y<_@AFM;m{5rQ_3QSX)jV65FV5R{e$>z(`;5BqzaMNXj!6b@gaK zT`)U3I&M*Kfy(dIt5-@&U6qxtz?}=+`?t5ZOiWDH*6Y5$r!7W?B8F@#Y=CGD2u#2` zdwP1ByTTAE6AA)q{@u8|Ke#2*0PHS=={^~X)TSv91=_eSBY~0I4Zs@S(i|QgVV)NL zD88N=GGSpUbak!NE+5kYG@*48-+#WE+Kh(mZwh|IU@-m$zTDc{iQHV6g^Ub=pNNUc zi>G*Q8cFdr3THup}s}+!FS0TtqhszMuaYMRhL$7(sRG3 z++TU4jmsBV5Duyjvd)0Ae?suKHqctZ8gwFp-XMT{9)Tdbl56F|xWbe8tGY5C7!aVO z2p;sm1`r6HJ2@J%!(v#|M2qFaJIYnPLQ)r$lG4}Jou8SRn4A=o#TM*McW`kT92-N- z_Qi3$$p)N$-TYp#L)kGbq)UN$o?QN|9@Xv}dY6Y!elY?|4~!8WGogY3_F zhemXa+f_I+#f8`g8^Jm!G1!<}?g(?jcEbp!HPFh#RDQ4G*~wl5_A^hRvLEg*a3Hk& z?=}AU?n`Xy{VM^FBo8CPeQS=)D>cz>LJ=4Tg8{!t*~B;2K1%dIa(9PcUndp`g^zia z^y;ZGabtGpG3v4;RxwbC@Pv0OJ9U-b` zlcr~T=I;R?L+uqEQ-FW5pH$<FyGc?p6W!<@0}@_uXsly}!I`e?VC? z!^Ax^_jR4;c^tn(XoX^PObP1C(&&2h3N;fChxtEiePAG3`1QO15Am<$u^4HFf6M7g?b;0POP{;yvtNCZHZ#2)LDoVZgyOvQkltRE)Qd?;Il5k*_L9%!VT zJdo5(x_UKZz1^(%;4^R&oE#Iv;nt>I^1pDo`t>F>#PI*R;?D)~@N8833abS&;iKQ% z1r~QWC=;1GWW|&J`}VS4h!`zR0%KMl&dU*{j$3j_0ovGzE;LdLO}?ZUBmXVgqu-5i z+6S~SdxQrLJmc%5!+%cC}m9Y z3~IRcSZXy4cGYsjjGQx

JnjV3x!|!r1xqSlN5w*$5Q==n}mtR5fD*OMH2T818Y- z|D#KHBWr$OctxUNqR88X>2r{6;gZFOD;9xF>B(knkN@LKA^HDr_wfJwrMld9;K1d* z-S3r$gCmr#K!{ne@Jie!(D2~<{P%s%VMa{Sb8*J0VYLLcGI9(oHT{1_Ebq-2 zR)(#JQVJFc!%0nN;82F){b;sWppI89GjT=U+?Jy`QnII^T~=A9@< zMiQA2CKTyif=6XEh=Jh0*O>sXA<~qQSWHVz3A_q2_ej-sIgUs7aG3GHBc?D^aASIE z#PKm34K0ZWJA{e#slz;RWac@g0;eO?P9ahbaDoMo<)e&_J~5?(ty%ySe&&P2HbOO! zUD4O2H_ACL1QnL>y+%HVcBvO`ERPNetyE+(wi)K3(1HJ`&q9<<4(zXI%aV$`(w-m z>de7Ft_3HFA^r1M3I%?KT2vSU7IvxuG$uy-!Vq{We1v@sxgc8=rHn=1rMuJJ;TiE3 zN(!OSr0kDP87qQk)gYV;q?f;Yh3z8!Nc~0fVNBQs9ESbhw*iOM;lJ-HN<|B5e(Oe} z;m@pf29EaAY*{k+0{dLRgOuD{Q*kjE=M`(PVPF*;x1+4U4xF7G4~~zM5)v-YuH8I6 zNj<7Vqp>Ue-hGFx*;`q``H)niqh*Cb9WN~{{bq1(4&+7Yy_Z3`9R+i+QAvz{Q(VA? z09wtsNsLe(^pYJRQ8noE3L47!r;?H_r>Cb|TQ;D>(lTe%OyJhsSln3A8VDX{NbY@| zS=#5&>gwu*1YD2_(sHsZlV4R;RZ>#YR#{oqK|hq*N%jTw4BXY!bgXpr^a>fwI#Fas zLpKyyL5e*v>MNzFah(A-A5M^IcC(m(05+CMuiqr9P)qIa=EDTjfK9~4Irr42+(>9e8Kl_-z7k?+LC_vVn&Q3!OP zhXT+fpyL5G#QdAdsYw7gVxKW`iRD~JJpbv_e(^E@bUjqYJcy22EB3skMay8HDqV&{FIxMlTIV+eK>FOx(zRx zGANdlnp%?j7SCHmW3#rlR^}pOjG?{jeEcjcvMr*8C;_B!oIVS_Sz6oL{t3K|R)1)0 z;>pTc1q3$!W%d2qdKk$PDIc(lMtf^yT!8I+>NuQkla^Kj8aq>#|Nd8nN>uv@w-pzG zgz?OmiLkK$y4K0IS{6uj0G?8|$?Jg3rycn=(RU~D#~?_6Xg$5dF==!GzV4i1q?8_DcsW? zwO9L3K&HC79x}lTs0MbFo3DLI)z_~zr9`@rI^6KskMFy993D5kn75}Gq%;$4t{~!m zGdxNBqLW!H6=`OJ{!I+2zh;wZ#kAmVEfS9Ti=x>=9tD+`r9`Qp42BSmp{&TwvVpPXE*w@= zPqj7s_rVA47n*8)V`FDc^gKgSLd^W1o*ckNX>(o@kuM8Pm$paLk82w_DE_=*N~cO2 zY#7%b>2s2YqSMYe4Ifv*NJvOr55Pn^w~IE~ib+yRV0mUiSVks{hsFkqTs@p6;=Bk5 ztiW*`7yD2>XBz;uYpKzR{b*XaCvseDe!g=Ogr5Vjq{B&0n`2$= zG<<}kn(V(0`5m3guuc=2p+hBV>X-o(m*ctuhn%yOHhSX$+Q|jDnXF5`l$Ms2aq{t10mBj(-=_flQ{}2!0SS98ee+eo{<9>+xZonW z5wMz?nsUX=i^Ht?CA?=eHqkmr%%55=PC2=U{j;LTeF*xv21K7RQrP-AIaQRD?4JJ| z0+FWQ$Hu_9y#ISkbCbWH|Fba-W+a8_IWS1zv9YqEVZ$1w!JPhZL>~d8!IZ3F1NPu# zTFIz;Cr?j^3|AwsHjn&vk+nl9!K2})+`i#}I^PO7=`a9SkB?&lTmRE<&COO@Xdn429wmH`g){dJ(VHRi)ZkCBklvth3uj>n zCD`^{1nLDA`Mc?{z~0oV)hNCehT#CM%ij|q{`z%64n*$O1y=f1<{s;%k85sWlGTKK zws!Oqp5KZa(b3V&hsuGye>&{5RGZX-ckpw#u&^+#xcfgHrDV`=Au}3=@h{A2C?N)7 zr|n|&+UOm`bi=?6*Ks!T+JDLnBXl}NjPr=HutJA>qVAN+mS0rV#}x(x9by1@z)wo5 znB`iVWGg)_wgAExxeg4qLYjZ5e z>Kh>c2T2*XS{b^hD*9u*?J8hiQ_Q3ha}k4Kp0q`mB*8vBH#7J?aSljMyTK+2p8%M( zR^+&9p8xyfKVgpv#9GAMBHuD#36;ZMq^AA_(CchTAAHLkc4M3Hm(_k3#V3I~e_pLbwvAMA9k>3mlF(d^8#}!DqP6I za~O;iY1k-rlarI@=Wz{=f#nY@fRv3MkiOhD z`|z4*>*;E4KD1x> z_u|%FBu;I_zY(p4|6UPLYSj{m?_ek(STG+Zwew%TsdXTOfPh4Wk*iH63jI1idUk$3 zQeqAj+JrLUgn2vz<93}eF$b+@mLalb&AfF*jNja(@6eJiy6bURo*{eAj~r#~@mWzb;TP`@AiHDIvVB{ME;^ zGpSQ_J>X*cJr*Ad{yR2*WGQ}*9jy161$-BXE7L}&j8E<)`QW3tFER5HSstU4$NtqT zFwq&FubqQ zV?{-RM$=4+(<5PW?)rL2tT_&jv^un`?>epse|*j~o8}&<%1}^2P*H18;B93+1#d)g zDn&&Zb_r%?N#+<2Py^Yk*r~X=@q6+!Gn*|2*h)!BRTG<Q^;?fe38^>|3UWJn{)J(CHI_q{^AP;d-Yzr$Nj@CN=G%^d zTWz4p&D!4e%@T68-o;B}g+RhRv|9{r^H$%RFDtRJu|VAgHhe}O8t|!+CwGxn5TA2( zp>>QY437@V9w`&}_8iBLMAE|iu$yNyEY6D#}Sg1oql+9 zG}4y(&*>c(hi!igGLF82w2)#=>Q4m)t!=F!=(bwL)`olGPmeh%h^Pea;h$Su*-~EE z>VYtr7W6ID0x|z(N?b??(hb~tNk8%DSdc`bn4wxMEDXuyQn)b=){dLo+jK;9Nti4^ z=e`;RbAWJxEOOd#VQy~jVLtXd_#`;Y+b)O_zxQX&tg9bWbdjA zzfpKUwtm_N7$}X-OUi4o>oYfR_r56PPaTdoUwBMJ0DsB){rLqBKE1e(zJ64rO^q#L z1-mZ{4{K=i->~G1=_^2&r{|@9GO`htl+Mrc#Qn5Ei+tG!v2GXet;O0J9~(O^Db~%+ zP2LH&0c;)m4;cuzZK9y06(HTbriO^0N6dOM-?1V%CB7~`t2}G}{Eh~`f`f~eg-48h zt^NEtpCNII-5ZTx-J}T!;ww~Ar%4;&yX55JX$!uWxC{8PitLZTeF^2xrl02aWVRhP z(~V1DOm&;`lONegA=bbvhggqwz#FX&G&D2{Oit!8Jb|ohz7#nf{v)69nIjhO7hVw5 z0u&tp;2Vx-^tJ}#O}E4qd8~Zvo19)u3i<&-KgP$QxYjN%yoa1!*6BvtmXxl$U?%hF z(y5 z6H~!ZAzO0gq?Uwy932G~ndMf$cXf3njTpXRz)10>qJmV2c$h#q(kV(57_9io@$ZItSmmWW=Mxkpu4HwZl_pTKvDZva4M(p_cm-> znXGiRL|mjHN9>cYuyiIFb$)*SnD0&GNm`YKh4t0d_HSiem=G~f@MaZP%DD}_yfj}O z#R~BuA^p94swl7bitnArEYecF~ds&F^e7Y@Xc zND5(**jmQ^SW*T$K0>17k6|oa1NDE(;}nL`4nA$<3dA zlSJ5{sO9aaP}Z~%<5Is2vFM03V^1j+1@NaUDgk4 zX8un~R4F)ZEt@nIu@=q$IXXN-4M*WG10i8s)URH4V*LKMJ9eL&oVISL8ayIBo0YjfOZ9uCwQrp?w0JP za_RdA_$@8Yj}8wD2@Ah?VE|U+@f~W9B=QFG=M%aD);V(}P4_kfDHiR8#D-3J8#@6VSk^Abf{Yq0n&bf#bzGyQ}>d56H-; zW(@mfFUo-s51oEm4h5@u!w91Ag8q*gHH4>Nph6r`q1vw!#V%SQ$kk}uGyOklNxC%B zs9)O|I*>+bis!q#rP-mFXIYh@8!#)?>3WIRnh+f zg$B0V^`ncFa#={pJ8o73*rr&Ty*xd2LPAfql!poR{*yG6tOvd9ALQ5o5)jb0@bD}! z5pQW}$)6k7@=B0sfl;_dEC|mC+ouCJItlFv7U?_8-9?JCAA}&a$F}$8bc@pBI3)Q8XiT zb8~GO0V$>|3b{GO#}s|^Ige;kfhW4{v2~A}ac|p#dK+wraCP{2f#u6Fr(3h2ait z{xzSedE2dBS&l5o*J~@|a^=<3oPp+ywYf{q=ji^h$GOX`uReXGeMd3#TZXiTb(oDJ z{kf*5m$x_E&)~DWoBC2Vt>Of;Q0fLl+%_YHG#y}T=GP!Uc2Q5(Oo)lo`74qi1{;0$ zOglyU;o*Ve%XOm&cQ}Z54z9z9))>jG3un(DsetbWW zK-FtGpvlQzKp`ge1K$_0WP;q)+UJf{D{6JH%<#Ysm0;o8ci=SFe^1 zY4x{vFQ8J2i0OaXE86u8=@1Z^ieoa7h{I2->BQAZL zFCz)@@!_2plxXqwt{OvwgU8EFQ`6H@QcuRPv#B)zA5NVqti|4nQXgj)D6b}$aXoWoA(c>*NNix7XW`EhI&bIk$(=PFB1`^ z09&R>t8dMxPeo(AC*b~Uu`-8DZ-{2GqG%dj2?&xe>pg#!{=%H|a9IvDkyRMmLEC-< zP}qEY^v~p6wFt9OL5d`)v6J;j*z6D9%wc*0v+Cr)p8b6XQ0VIA&Qo~*C4|(G;lPdX z`XX0brKEv>V9wUoD!wNTJ3O`$&yhh?lsu>HY)1s;@Vz2?NJya$Qt*vkk6ehw%ep7f zo<6i+zlvB{fnYKw-Y}yHmp~qR049QNe2ocIe|=+B6FY3GW8^LR%;BGU(rM3>Q@6@% zpP<*ZbNtrFRHVM%fL(&*feW&VrY6conWUEzg4T9+2S1LVB?-SUCLLZ~U7eaD8I^un zY}YK&5*M$Y?l|h_Zpbx14sAssZ?pXd3#6oEIM0L!N~wW&#FUWqyW9^x$HNP6-)_Xj z#N1=#XsD^_uW_L)55+Jxf=Ut>cWr!N{QX@kCh{{YZi@2hq;$$-B`D>MWnxA?=+puz zw6DE=)N%4xH!r1u?ZI}}UIcNEoM%MH?_MJxpT~A~1L5!Xj}EvvdH47Bwmpd<(qpQJ z^B}QAJQ{}iYyV*Xd5#pQ&+CAl;qo#eR4&9s60`G5*QBgZp_0m7r-cArPt1r&Y7hEf z0u^XyZ|}>6$s(*XtX9j{7AJ{WqM4c0dkfR89Bm|ggr}$>Zl2x%!0o>P%;9ePRu&c( z{`K!!Fy!Ax$`5M&383Idu~rf{_Z?$a=7@cqQl4dhs*TgPR&vfvRg;}1u7Xbw=VJ;= z?>mT8+~`a$c&FmT`HT7mFJ>{HHQ%gh=+V?+qwiyt&zjVtM@xSq$d~9plaF*#f=%qN znW~45xHvT4MWD z`80fYb#(lc$+fUcuDS}ehAoVgl+H;tN^30PcdEYR&FFenypy^$4tM$KAGE21(+ZIC zAY32tnV7?hQUw}dO<&!s*1nmWnkMvu;^l2xPEJ}{+WTywco?S1!2$Ik7bn&Jfi_6J z2tShL<;`&+&+35T<6pN2KkV)8InLQeMMX}|d2R(aSR>zbl$P!R+s;>))ywO%1yJR0 zCZ7OCRNam&*HA3GrC*Qlv(`HI>twvDub)4I?&{$}U4IfC7dIyj4OP$EPRdG)ud6HF zD`2N2zzG$91^?q{XIIr^t1k9^aPJ;W#d4rN`ozh}-Rys4Y^hCTI}73=E5k0q6b~cdS~}>N z%1KW=Jvb9U|6rn@K8gMOk7NB@1LV1;f4kXi$MpVrp31C}G(D|n$8B^T`#g|IK%lm% z=;y$XPp&r;#EAa5M_d35)8iMGL$9ceqR#d5MhU8)C`)=F;1FIq+|CgE5~$G`*+i7z ztN-V1Sy;gl5!5v?iH~LH;28nZvcW-jZ#TdoX!R4sICv90YdQFyFqeXe?#J;lZ_{3n zy38rL6AkH)(W9lRjx%K^4X4>fFObE!A}wuLUrk`P60<;thKAnT&ss4ue0fTm+{&UA zz>FZ{p`xcg*xM_utW=;0KG?400)&&FJE^H@@~vTE^1gIh$e_mB037VIw*>z_3QClU zv{ZC1E-s~C%6PfCog5qh!%eBmyU`mE)yH*7nHYMWA}SFH+~yh`QSnjDZZF+833^@a zZ2kQMvZ%5c7;!fN6yo*rH)I*%24O&_8wXlB@?f6=Lb$YxeS}Qq{^8-Sle4qZ(qi)> zpj)!b^x$A(B8h8om6ZXntBA3&F#~lP@5-)y`L7jUBk02wIJVCU`XM^>>-^L0Y z5h9xArzkPAhR~*%7vQC~CM-%}qhB)lahMBEC*=cK)_UYMT*W+Tl z;b5-DpYgG80eK9PKNV|JSO!ch<;xddPoMqi(#`(o)3a8Hsm)YN9pDI;l&%{PdbQy% z1elkvGJ7)QB*ppOfM<3Ef}y;u_TuZk1m~%%=xS%*~LP!twWZ zH*TAz=2Y^voOHjdzqNJo_ov?^YUlWcrKMvz(RU>=AQbfUJH$-itiMhO_^-ySzKUy+ zXmMpa)o?M5zVV@LHZ|8@ot;RMMw%tL=qIL-+np0tv#-WM7ms= zD=L(L9Au8V%AcooM%p&jVJ^Tb{Q9&QG=SPN-i24%Te)}5j5q`HGLYwk%-aeb0KF3n z;Thp6svntVAh1AywGL0AyX*MLKfY>6h(CkBsw!rhn0{qD$B=a@kO*|z(8#*AmbW+p z94Ay_=mX!5jC9^f=IUO^C{g$lGD+0Y1sD{OkLHez3^_YGZoa6tuMQ2mzd!9g04x5P zg+cTqRwy=+1JYr zFcc}JlS{s;n!`gJ)?QYuSl5HipG&Z9v?3gQa9A1Bw`R#dq;>r;|Ijcxvw}w*XlY4w zjWs;|{yQlRDK1ZZ45nRHJ%2Tqr}ref_wIN;-hrsoN;401yaO!k1qH;86!Bz2ptKef zZZmm}jv4huQbM9Sj4^X$jE|j{laq(1vZNvuouAd--tjdx9bK2Vn6%*0mf}NO(|#6e z7JW;Fmc@$~kx+C=T{kzZqbW_zN}fvBsvjT1k02|W2L9WZl=FDsD=l!pu6F5Jk$(i? z*r-cOZ$t>rx4Y}AzI^HGe7i9>+f_rlar8TonRJ88Pbg+ii3}RJ7C9y1DXo+vx`x>3Z$L~+arU6ar>G3 zid#>yN<8$BGbBJ}4B?;&XL>ATXR zCZqJa=H{s4sL?Oa_@481Q#1T9=|t`tASGKxbi(Wh)zpd9EQdP3F-(GBFog&a<(rcQ zpt!h*E{W;8h%WwF;l!=M8bbauZ(?qhN2t>7<&_pB`~v%Hds71%?>aakeXsoddQnW5 z;)gzM|r~VZS%#8RIQ#vP>5JGN6__tbP|a-eBI7dS-H-p zSK5v*<;JvM)!k**?sveZfy#|a8Le|jP+hF_<%kz7P#$ zW#Z6zPg)z-&ats%w)ctYPB27k4bVayQBh@7qWIx)KU($&c+rKHJTXfL>>MmpqI5Bh z*^f(KQ_%T^%gTZE_2}S)nu-RV7-<<+`6f5Kkdh)COAl6kE6&b0c>HIBJUum)6+syG z^n5oN+t)gQakWHkkn6-@xbvJOlE%9_>TrPgvQ08)iio`#v4^Y=&)zNxoyx!w5kR5$ z!o-PpKRh$^^cksuTQYVf*6qm9!#iTJD!jPS3YtRT94G8q8T=U01; z|DMr@5N=bk#UahaAfRRg?XFt`mh2Ke_;^@Y`1tskxbW1lvL_dsy1K_MV21M&*zlak za@v5Jslyz4q>cPJE2xLmu%?d?)@cJ6RRz-v--*gY53B6KOG;B2jSBt=z}7R`cMxf_ zpS|ty)K1R5L{&e@QN?NPBjp zpP9om$YIEEOgZKmBF9Go5cZXoW#&%>R#w*4k$I+`Y@HI5WckCUP_d*BRi-lTx6tdZ zv)J#zgVu8tCNFf8+8qh<(3<)!{^gTM=!W>KfC+eq7!!|`kt)ZK-J#h$@u8# zFrf$n*MrT)x%=2h$pbJ6p?!1@LVJ&w8^9DX_!GvGjfu&h$cvr77qWjzKBEevDGWN5 zCPufkyqc^J`P*K%Gs+|ZPVkW_LYf(!l;~v4cfUGr?^YjQD=R6V1sQ9wj_6(W#*-7! z1%53rUm6`1kziwEU|?Wp$J8d2!u>X}D=H=B^e+Ug(dql}FzJ}PRwC$9|0AI!(@RFl zp?0G{`yk&?Ubmk00Zd_@h<){I%O941Z7GU~VrC*Tn z^L>SwJIdC7uF!t;x<58SmHrWe9YIhLgSEZ0(*g#`+i7IqI%q#0%72aDZRf^NiT;mr z2z+X={82X9ci4w4;Q4_z7{=6?Mg(+HF;Jv(d}P|L(84WJ^2a-0j=ywCMjC!MG~=I` zcupsFx_mJ<^*PeeSD9Hv{OMUAz}$g_FkDGkPFDOiY6oSD&gPNbV(DdRViMxk)?E_xnD_5IE~ZQ0 zX_>s?f0oV6!GJe6obdU>4rtr{JwACzQZXvoJ3fB0{P)`A_1f@vBK6^@rv&>M8AnU> z0fGHVA0@rjI#@7sS0Puje&;N$wCT*lv}HO|Q$az2PAki5YP(_%4Hejij%0C^jX=z~%u(I+iVsZ}`cFRakY!4<%J+xy7>?Y*$ zDLuCV2n{x{xg)C?=EuQV!Ew@aZ9%f67hxRU01B*k@7{tI7Q+Wt1h8*gvgHZhMVE|Y z?|%)xZ!RgZSMFqtS!nt7pFi$O!2E*5v;r`;AI1Cx1UTKzW}AURX=+Ylk3_TyxoxdC z#>>Zt0FOX^Z9S+v>qm<)+)S^_T2)=W`N9d@p4 z2wl|r-7lQf)E8mMVgF#Evy0s9TW=FsK`g-Kg?mbhE*nYImyV9tuCAC=m|y8oL9qOF z2@-3CmXhVO!l<96Hh)Ftt3k23u(}FjDWayLo1UAsQlJ~xNyq!R_1rRGbAlZVH@700 zGMROQh#(2`r~LPC`+y^Och}I!Z^7hsN94=cl(ny~Ep)7yn&o(&6oYCK7Z2}Kk!M4& z;A?IVffL=+7rN;rrTlX-HT6_*2B0#HaOrw#V{lMJz{}zuKQc|at>{1jB6{^q)J22y z4jN*_=DsMQf$`d#n24;*-KR72YBV&vK0SB$_l2RRd-3%7FRO3oKL-W2ioRaVe)~3o z7U!AsOC{D@RfB_YP{)r))|;rl`PV|CK4u5>BGU>ptOyf3! zuP^~3xqtx55B?`HIdq4M((|p^+1cT6xVYd)7>(-!Xudtm6%V@HodEO6t`3!wHx0aw z-BDK{s7&qY)39J*hhh*bEieCsv)bG1b#*na!T0>9gS7Scrb$VgzGvtSy`w>gyZjUi zm?RX0NEfxi_h0~}&&I~q+oKq*q6kuMtk@+Mm-_pN+Mac)cfxyeWJE-;mHLc)ef{Sb zmKwe`bO+H>7X_fVwzbK7A1{mhN`dV?z=ypfc_+PssTZ*B0YRTgwo`yLCv#m)nuyHb=km~Cj=Tj0Bm+xv`Tx^%QoJy`9nL^D;_#mYtW@UrU z9+3{_93T`F^oRQnt=-R#ch}!!zlB$0+(&tsM2Y^!8cz2*sD-11Q{eEYj-P>Uum-d8 zw$-SPa-i4H(Fx|MOodcs?xJ{Gi;1Ca*hEb8TM@7Nf9)Wqns-@i0cVcRh9#Zq9x zFKbq>e4j^1O)LCA7x>@8E%~dnT#ecK`g>>m%W7-t8o=Z~Cp$flu)d+P<26#&qguf! zLFkF$yUPLYOgDV$VTP3m59VmI$`BgeL(bP8WiAsqvp;~c4wlGg`VC2CVPwU5Xq#vJ zQn-AM1%wCpfpA$xg|evMzem6DioFj_{wkVQ&g1QzN*i9>c@ui%|L5b^u^e%ApH6)I z;zI5yeE0Y;X*4PfJ{r5Z`FTu*h>!l7wrtn>J-D#=C%aVMps+9iuw6K#Js=>g`XBK0 zP%CtIFEzTX)W?!JJM3@tL@3T9LntWTEH)c!!3F=`iVAVRmvMXx$r8{6X8+`bq^>ts zqPW=j@NxS{#wR=ghRv$Z#AHd$q?)XnxEr)k`x4ND*J(Pj8qtWmjGtv{%#XS{?Ba;n z?djB;qr40=A?S@D)C!sBJ&pcd@Cb5n5czR8JO$YV*Vfo!u`IQmLEJ78bczRuhAfr% z1=8^oM1I5D6$07ZSS8GW_M7ZfU}EvEeq;JR%(L?v-C&YCpHi& z_zNEb4Lx!e&+4zyL*c8)v!96UOX#LI3`pFn-x_h)Xr;b@r+m~=!MwqDovPkgM%IoC zXCS)Yr*co7`&T{IerSI ze1n&XbU!>Y1h$~+fR|P0AneUuQg05G$WxuE8raKYGOWjxsGD_h4m6c=!l>Vvui4bq z6@@Jlp8Wdt2PmkrG^qdh8ar5R9_(;}z4gOzqy4Xe@SfnQpVORn98 zQ|{GA*kLe7N;tojqnv9sdK#p=8X#b-SjKWC2`rpJ3q2MK3!FF=DK>@uK7J0|q&7HjsKoPrb>=`1NZn1pk2_(9X_<%p95ne+krA6c&^kZ_QCUpY8Qc>KQn!5r=3aRDo?4w3=7lJ@&QKP+nBB+Gb5pPqm_ zrheTTc8lHe&S@61mA#7;O?hYqvKb%#MbTts#cK-j2zvoaWL4WW70ZsBq_?qCpX+x1 z`p=@GH^^PlbxRqp%BPPfrvw=U$(;R^ddJrZvvI|w=hgTZUB`*o5GTQBz2soqNhl2b zy@*WB%wo`wIyl&85X9<&gn!20*}mKpTv#Btgb4~v0v#D^kM<}pZ(t&VN6sQoYI+P^aAME->EC--k^eM^4MC4~dI``HbF|AU&aQ zM)#?OC?~i7Jwesl!1ul5y(c#C#;Ty>hTRf-p=ia^0OdUwm~Mzg$Sb1-0K5S!&=ZAj z*f9etz0-=`s_;BgNoNyk0V#$&)9)G4buFUmn}Fzc`cYcKA~8(jiK=$w=(y0fHCi$9 zQTa=StOn_9soS$hKT|<&heEf)DP5L{F-T{Qm_f5kX`~AX@IY*3H^ELBerUDdUoYLo zW}IQ285tRkQ+->{$;n{|l}7k?&!VSByg*<_98m6_5TxeQXKV9^?}TcJKHk{|@v$E1 z93{lV5AQ%&* zu9R!VC>E9pI9mDS#iRXfk5AT@wd3voHtpni+_-+|a!1j_nm{8ykEv8F{BaQ9NJuw0 zIXf#OR2X7TbA6wlPNDL+fBxG%V0=SZfLgcv+YiM~Ms}#{MH&ys_n3a&o?gN21vhM z8yd>GW4Dz8^%Oo%_$q&$blasSE^t?b${C1;2V96FDFsQi^vRKJo;)&@&4)0g< zPoh0A6glwW5npDPhD+#bp3eO`(ZN3whh11|oQ+vvE24KZVseK4 z_qX%u6u~t)sIywl9?BZ5F?<%ykOtY12b65o!;~t(JUo_e0YYVdnS{4DwwqhK5CbIZ z$QYU&HAfRJhZ?T%$2ZT8gL=d&EUYh!GO}sriCkiU2&r9+H8RANQI%pEjv#P+<=lkI z?74#<#~_OiX_2`OR+gj&z1~WQOwU6uR>17XLzC{o9{OIGyY;x-do12<*Igb!; z;IGQ6UWcNd9jx6omz7Zs5zE{Ix8puvWLcH$DD}NiMrt z<>%wruaK|+&%OUAhKmhG-QW@S#f`K;Y;SIx=BVI>Mgswd;SDmD?g|8b*yia@26dJv`yNCDlIxaTJRtV1ABjy!%jQ4$L zNa@5-Jon*J9Z*t2-Q}H3uJL?<;H{zoqz%dc>0IcWCCd^n(2XHDp{eNs3zUGMpyk?l zkBxxk9srXz6&Cth1){LJR^&6hHBbokwwBAQtd@n!yg{}F%9*~Ak(rOdG4CJ>vd>2A zjR3v(ljLdG*(+z~AF}qSB$u%O*=kG>7D>i0caleR9`nyd_UpHmMCY22IGD17seSY| z=vty<5MG4RXtoBmPT-IVGC=bR3Q$M}t%E7PJP+I;QBSkU<1_eOCjHm^4^s)9@5Uwn zcC~s8rE6wPMGlYzR(KgP^wqm>Q{4Hi1)NOpO}#8CddH?~^`y&A_K%Sh=`OxC4$39m zr;w3gnb?Un9TVEmj^Kk!gv&+CQdSoBa{B)qCmbPI8uHr`H-4wnfkeq1^5Oq&@dF{l&-kb+a#Yt z?caZneoW>GgE6fB7!ey6UBDW*p?`e>+Cbbcl;aX55>8~Fk#TmB;Okl9;y@Z7wx~d< zL-x61#26^7k>S(pEP})mm;D ziHv%*pBZM6yjf@$kMD$Lb-+0= z)_>|w{1FD67OptZSi{44V<~B2g2Wej65?_^^IL^j?c1Pq9?Ow5F)@fY!jp%mF)H#9IKgLsmu_mGIu>F=?!@ z=wJkHA{Cr$9erM>Q&*hog>sDyWDqG#O-+4)gZ;&+P#mAK>%s1;qfdpn@T7VEp4KY7_T7;+tk+lJVl?B3~%sA<}gTk z0-Yq`as%eXx~SjX9P+0-JuVeHq0xxrk%Rs{pw8)5;^N^##qf*q8%KGXW@GcMhW^*_ z;jUbs$=W!QfihtjF5^3lUk=OWj3YiidI+Zg|H&fHfo@0S!bptHrK!~SZek(nDPU*N z=u_YFP0ZQ`s{88It94}yUPyJl^Y=$`HeGD|G&JeLE#}6?ajFUWgDQ2mUgILrzT7fc ztrDq9=-Y9ezepkMO19fnVj%-o2!_#!#vF;DviAI7o9R0{yLwPjr)N7kzv5{1*qQ8& zpU=$4uc@g~r_9?vw~f9+4~k%wzf`OFTBmMd5prBL%?8YEA` zJqoZe2(HLC16I9@lJg2ago5KULgeJ*-7%KoNYeg_;(`A2lrdrR)VTSeiBvhlGa{x^ zm@lvO!k*+L33Z4?^3twI1R9) zqa&!CUz6toa31CuH3o_|;&H2Kk1_Z-BqZDP*hXI-(eTifz@$pixP?)ME-yWgb&?Zs zcLcxY6hAHB8h}NQHo0}LbW8Kf;9q}y!hvQyYsl7W;>`b750BFo%#1;rrD6xrcZTU6 z9BiulOl2aQGf1eZsWCmC8L2F8ydMA24f@|<5r*oD2uN1JYwH^Tmc9ep3(Uis8hIa} z`>F#vu&bv7OycvBdHq0_Qfb;m+{?hosbtI{TnEsk46+>ze6k(2wb&^NuBxZM@ebY* zzhiiGJ|QSH?UIKa<^W#b&D`z!nH?yOu5T{pG+7f9Izlv@ zG<0+da;x~F&VYZw_25eWp?gMcMlX(-GQ+k$;!{F}o8gz!`VktcTpy9i0@HaCv>+H3_dlVGwM6o~;gqex~N%8UvS5 za%IvJR?TGn9Zr5N!H^@XVAj8)r1e!e}Z9i5lX))s0x8lLiD$q;OR2 zpVj@uht5Zq?X$LDH1j?a=?sCH-r=DWU0OPhh>QrjGaBIL0Urm26*cP@SZGjaO|!?& zGr@oEPDhIxch(roeXqmpg@%v_$f2^PzoNVMHJTxdrHOC!xjK#q;&viNzsr=lkDnR? zKO>rGFB?9wsg#J=&R8@lgw0Ii;PXfSUo@R%R1{p>w(0I1Kp_cMg8Gz8@o^F{RO(<~LtaCaWlSlSVd&{)KNO=HgEPcPC?u|IA#_BVMVhIT!%6S~A`q8F~!S8{C43suAF){Jx z=BBl|H9js{X&ib4gaSBtIPr;^P}Z$?^FmhZPJ@0h)Qj_LG{g)?o6Md;81Khpl<-ns zQ!tIH_s8?PR+bL~>CWkHa0m4?1H{JnqTy71c6fmW;5<6ynBm@%ZP@{l#Ffc$S%&3D%S0BD$5w zW#t|FU{j-|Qp#8BQXrT4!z_&`&n`X`p?Yh{LWXzw@cB}RmsgNgoRdkcX|bi2NT&PX zO0o{*nz4_9x1*C_5_HiyjVb!E?(e<`4okGnCc;-5a~3H^wFMk%xJvU3iw6usk!6vE zME1S?N-Qi+GpjyV9UmWcT81JbQmF9{_NVblr>E1pCbv(y3TK;uG%k1q$9YRJgP`*1 zvhiyCc{&teU!%p?**}>6qok$|mDT}OizScusMUoc451%ih$?4@GX@8Gg&@>+ z$th8)+OdB@%M4@KZ|&%y%(n~*l2Wt+5&%L%!rv#?PVT%WhZEUMA}ssjZ~Cx^gsf;V zs`zN&are85xtkO_01S`^uB^5WcCgLwbseJC*|{gbkDb6*3qZ6#f*eNlKrhcQOS6FG@ZeIQ0G}KG2T|*M%FEK?!9Y6gHsjdbu zPv@0-LiYOqY%<@dyxxTqtk?ib>wmHcA6bxAXxm-7JQB_l=V35QQS>?M|uPiMsE$Rt9C?d)9BMhK~4v&pt z7PS@7NEV`%qZ!lgArqTOf-W)`HS_Vs#N)qX73w^k<`4?G?_1u}JVOe#CDJ&+NQEtb zM!Y~R$k&Y_!Tj8Wh}rhJi!2h=9~Y%?Gaiolr7mTQrW&LpFP;AV%TaaNsS^ubcu7D+ zOhrrriJl7+e)IP2(${4`v|u~n;FEi!qQYi{$dZ|x>)_N=I5caC^J1ECi7iBuD}zEa z231;BOxjd>GNYt~p&Tu;tfIA|u2*yQ@F4taIE@gncy*J8&|+n-B`R{7*CTi~t6LU^ zxp9sby6g>&+8(1$c95bjVeB7n9lq?XrSHj^ez-bXMI9iia_$JF7Vi{K;ec)^KeL>a z=heNzzuX+}MxCJ+tM;TZ-2_)wJ-wRFfG4H6gxdq*scN0Sqqsf;WcYM%Y*$Q73={8}6-Q3cdvnOKHC5lL5SdFo@ zPiLDxR?tL3&(DASnnMr(*VJCOALB_$1nk-G7U#c%KYy*|{=smRJU6%Vac6j+8J%SW zD8(J{&sBL5&Ikb9SXlVm$_i~@wlp#iuQ>aMzp%!*%(?<+A0LPpPbrXcfr&B!L?%tW zDO9@(kcMAg?R?3_HLi&=jQgSbjuaw2hb_%}&0m@;Xs*9|+59Jc=@Ib^j`}h_I<60G zZ1)Wwzt?54qDF$o3W==D6!}zKT%4Decl^Tgx3~(TY3|7Nukk&hBWmy22P$#!@HV<^ z7fgZtLI--vxdpyTSi<=&FclfbEbMI zZ_o5erc_ZZ!Vp)c34cNN-mS)U<`}+w&nSVW`)X!|096e%f|kEq)yJUR{_UI_O{#{h z)J}6d)|=60GU*ekm%g7=<6z44wv^i}bWE1u?C($Yj}i@eG6)1U^~?C%z7aT_oIDTs_i(EuxfS(h?&~Vu zrY+jgjf=Opn_D5z&xSNa^(*i4;uSDiEaMW#b*=CA=?l}K zJoA11W`<6CREzYKaf+}raTN!OriZ0NOiJ1e&YJLX0$T@<)F8*C^=CYXjBv27s`~tS zXP0R8CUAW;PlgZD=%N#lMPd z23+X%-hbtJBZJ4}vn!S#47__F+e`PSM+@iP2`dhfnT%K+L9+}W^Ee?UZj@rQ##%Z9 zEYF#E<%Hzj3DAT7;dh|#2Swim2GZ61CSUdp5M;}rTb$v7l$42RR0xvJsxu9nfh8{h zd31IvZ4C1k);j$@8JkkIfAzs5o0?szHxk$1$^u!+2G1QJJHl2;QrYYGtIHH7!CS58 z;(D$3@v3gsV`7#Qvjr>2^K=V7k-_cl;ZaB-DlRH6M{-BWrOxtB^Y#0!C+k042tV6u zFI{7^vba`1GOd2(%Az3FaX?=yf3;BBq|#CL%PGh4X}x@H^LP5|Z%!2RXy1mn2PbI_ z->ak#O-|xy&Og1l*?^1uQTg&?Q04OOo%{B8_ZcHmUgwRtAwq^ali4KZp(Fh^SC{*t z&7}=5FdPDpxZJ;?$mr?J%=h=VD`V4T-}8y=%;HdYp^nJ& zhBY}ow6%BWx*TvdZW{YS{F{H9|0z>ZeF{nnu|@*krPGUf>d^&kr$f)5#>QU|L3#90wg;kQ(abMVmEJq3-}NZqE|o;&|Mv^=+Fb;aOTSCn+itB!vFx#*$6K_5RqIm|xe+RvZ;{?@cQ zlYBosK1nq;bZ;OS_wv5EoVzfIXaMa3f1sWH&uMAAH=mFr_;rMl2%wsuZ- z{?HJRD<#fEA)Oo^j)F+<)mOcstKi;yIDXKnGzfr62VIXm-AtHD-DLFc?d^>os7zOB zB)efwq9e)B@hr#n&{d+a?I5KwQNiy^OsSL{*Qbq-j}!P+I*EUwfD|fW zBA?2eTIE$P0X=)D! zh^stF|Mb66hm`84vM@|5ybB;t zBK!5N^Kc@x*{D`KS&PQ)?R(v??9g6WbhAIo%jB5X*Itk}_edy(Uc*y-=Af!z&cTn> z1~@tEySpd%1>fb?7UPm%C*`GG&8zVMX?5>zqa#iW$>VivZ$Yn1QB6&nh_|k3O+}qK z^P$LW>Kvk_94{vflejC`068hY{pvDbT5;HHun)(``m65psZuNewSV_NH0cl-OP71z zL-}U*dk?;M1(+?iS7JEJGaD$S~|D^ zM{u^@@}L6!4mPQ_e+}WFtfD&Oik-sIM32y&rh!H!z1~0tq-Ees0)m_K!#{sOM-oC! zz5P#I>;)Z8Qh2Hul~++zc1Le8fR3*ho!|a^e15@e1eL*Bl5B#CW zW$;U!HV_4j!hUD-L$H1%QJG@I=C^#a(Zzd{Lp>BsX4 zo{I(m6^;%r{SNRskPr$*_WV*51sCMq-A>}8mQWWXzIoD6I&C|!4|D1GoKJld7nY*;SHnOa!MG)Ys zcZWnE{G~D0-NOTighUWw-EMPrb#ZY~2|x4=FTeQw`a-;$4WtR=Kmmb$nBUzEW?1)} z@2hWrlgG`a?%Ove?S4PWjA1f^A3$06UpIc}62W2o@m`P56XX!V+(K!Qgd$>; zetu$NZ7wvZRFIf;zHws_l|A$SeX_cr8KbhD{8(S6_6L`RP!VN6|6nBAWL?Ey)m6s# zoTOEm&reMLW%cvj#3z2~EEMPuBzoM<^6u{Eu7snfBySwGT zbqLps*QYkM&f)q$ZyFPv_HSZ@ z!s`&EcU}07JN0|yr+1yJ2@vG6c$5?oZVP(mi4eSyAGV>e^SAg_C2Er5mM(L-+pCi3|AEG^;(^vc^ETF(-wvLW&&N-t*-V;pQ9Mt{5 zFwg`eWZ7DlH3!4F;>iYgIvdw(>}&$UEXgg*&92X8YxTr%}=Y*Q?+tUnn?F z6x%!hk5mK%jVQsNXm)7}D5>}m4A(X`roP5Y8>b?_jv*n3vAlt8o2sacan$u(KL!4k ze*D|}_%{)RhsIJW2)t_ynvau}sPAr^123Ya@6R-YuP>Z~E(|lZHqx70dWLV6Lc}Z{ zN@TboidIk?8A-6(r~wBakQG`Nq(z3{h6&09sNbUZjY?cC>VV{)l+@+^$y)adXtEWVj*b*3?=@ z3LqB{>2LFmlM(FnKeJ}?p)joJHM~514-)8;axMruV|Gc zFfnLqngEyMr$C^{d)doFQ!c^_xb`O--G4bu@6K-?FQn<_W`Z9t3vOK4QomB=1yhP*P}p$=&Ggc?-in#afUvkij&DeZ4$9Xm>tWRfXj<6|>!MTmhWa z>0mztJpi(SU?&9!#h%9HP2(ngBj@9Q`hNs2X;}JhiY$Q+^Ay!%{fuT1to`p?VvxsX z;7tR%KdUNE5*b7WQ)~crK#77+n;@eHIQ0{({YQ)r*R$tgP{t?Q2opZ+5U{s!) zXMA`Kxt3})3@aZeOb>U}WP-NJ@r3W(nt1Cx3tfxWJ)}->Ja5=yZ=e4?87 zuZkdu8L*P|S9-CtW-*eukfJhOFoFV9@7(XcpggCR@Noeq5%0}z|AU0*r=froHf>5K z%yM{m$Z1(u81)mOp$Pri$x-Zc?Wqm@xa3tu2KfUXv?#RD;ZV{Kgcit+dEKO&ns1i{ zLaZ38Wkk#coV*u&o-oTBl*mw!apQ*0Nhg*8%;3McaHGSwupgwPSrinjtM9m`rm91! zn}k;~g6MmpSmnXLvj2-R6vbGpg>qrFFqhK5jck@xR(S;gwJxsZ1*7gj4>!y*Xpz_1 zzHmX)+1bHu(&YlGhZhGkz{I@2w`T-+C3y^gjJjOFb%;jI6>PXb&-Xt{*>82rK4Ex* zQJc%-)v}4S>ki7buCZ})} zRK{r4R*sHb9g!C`_x!J5{YuMAZO9HZx3-`X2zsS1m;^ITt<9UG6*OPu(G%hm;rL_9 zno++Z&7(ADxc%%x&fxDGc%~4JNtggJ>ObGy#ULGvuN=FTt@=-TuZr}tqW#%LI*a)0 zCB9fZEBeghJT7-qA${tAV`y+2=11ZXenqR6BzZPVMWtQpFJ0UbV*`s$-`ZUN0}ZtH z@v=dEO-?zC?Xoz$y<|v=Mm!z$ZAxBd31N!aphh`e@+{rV1dNnC!>Gf952X6a%1~kO zH?WT%#kP6P_|2l+MTR~=_X^efF0`FE;bMNizGu-B%Di~m7ElCI)&e;` z_oo9(VD`zxWjM?u2rGzNB7DBdSSMb-xkaxLB!v`l$?{Bu-3 zKNkwbgf+ejU$BKV{`=#XP{Zm@Kuay)Ob*3?b7h{ zoc5ntjBM=yZYUEIll0YM%F{WIY2aS6($>@nx53GuKO->f=^O;bhXHs;%00uU<5ik= zBFy~Ss;X|6ZS%Kp-{MNX$fbUF7(=_6E=><(J^6J~xV!amcGlNcPqK>BkV4uggC z0NH5bcjP=H{q%6v^|L$%)25~S?{(l`pk%5DzOVQ%u*JfIkDVAY`DH8xK?9cMM^kyX zz#D6hBR&&*a(X%oE-m|ea;Rt^Q8q@>@d zdi^`DAgBg;uMNY5dn~MSxp+`A1?-Xbd-T2yqI&R@FC4)3IV zMw!$pNP<)AS)KEB!5<*-5MFvHT)5*Y3Ft@}|K-iNXoLsB3Uuq=5i zCfaiWvN)XvW{=eLQcnHA!1Z`45rWhKiU^aw`KVTu^}*gVgp8tXv$&bIRUr#_8sZCg zFjfmLEcko5(#l=ybV{nb{4@!KHv7!jEdjpgfKB?hQZrC>Qn>v2LL!@W?3Sx78%2$^;`RC-`Xned7gA#%8S zxM5*neQya|J9u-;ay=LFL;7r#1rQP9m~Em7!!{f3zOw5E;?XEZxD3sV=yjnk;4~89 z5bQb$KJarOCLfdrjD7maMCM+@y_hs6^ed_8fuzf;}XiSx`vZN%ym2%pf+}}cC221vR^ur>k@Hsovq!Xvj zt$j0==<2GcjS$MtcJp+#6qyqbrKTdXvvzSI;6pgD@*U(|x+J97H>gyaoWfn3!nQXN z{*_ePUgm4_J`1VT%t<`fpw?3u1CC>ZXx4zt z8-@~wsT!_&OXZ2hVc1xbYTHZw2M}saOG|Sx1jpt@T3x^ofbA%vqXVT}kRn%~83kSJ zL<5ND;f6e*yDosFHKWb@2_{+bR$#dM?Nq&|mcjjFZ$B<;`1!Nvz!xihc9sY-qdc6P zaj3a3KLM0IoyXkPEP?q+uD#gl^pIXyq>TI{9pYgF;*TGs5fKq-Z_;=RGc(|@x(lI(<)mcjy?GNqc=dBxZM6#7oSa8PLv^Rc&~60U*tY@S zm{?l?Lejb9jpd2hPJch~&W^SortgnK`2Uj*CjBQJjP+LI-ENv9>^ri`q!1oRReGst z?p|xyN|qn*$!XZa3HHo&$e=RGDj|VW%NU2x+!>W0TIlOjBUX=3xa8hSJ%M^=9w3L5 zYdCOWhO{}E)zaK7Bs~AOAi2fTSx@-kt+&CFIs&r3U9G}Xg zt%72tFnR$D%CU@HUMp__-hDyh{aiF19AdnI{Uen`;{#3YHlOXCW_vNPv&D?ToSVBu zXtOmdmyUn}*6Ha-uvJ|zUGsq+{iHg^?TJh8Lj|Z2N86&2bK3YH2S-1S4t~bchR*PB z{rELhus+a78!s2MA$BK{fJ3Bl18z$uB)($iOkw(@!gy>=U?PFs;0t>gI z9)D6VNoo2f2rcA!0F%D9urMU>s_008DbggQr^jSc*Pcq!3gz7jlBO_!{`{y6Rcb~? zm8n@dvh@fLeR^8jwo%6_akt?5cZo|R_sQ^frfmEUXkQ!(_UVl&fZT!mB{30kk+7qK zBd>kE>i$}KtEY#{U=SuA7R+7K7w`nOk}v*h*C0C~vrdew5(+4LI}@qzmVXoPpFMR^ zRmEDoEs~EqtQkH#1G{0fqN1}iwHAkUzth>GC~7~Ok?H4{m@!|35jw*epu3mcn& zWuV~f>f)7h^d`8?W}zMBxZq_%PZ)yMwL&CoNNei1oJmM>r2;=U*SzYUn?&+BHX?%t z1QgdaH&<3-rax!-M68~Xhq<*J5g7@F-{BEa+o^Ppj>e9juU;8DI(m6|fy?lvqlbrJ zfb^B`SbcM2#H*XDi!gVj8EPicPSDA<0f<`Ls{;~=XDIl%xVR^j1?{)2e4-Uux#djR zSxtF}RxCh|wQ3W~@bC32)VuFPb3`milsgQpDCEDj4UjSWYzE2wiJVM$KRLH~oMtw> zH{%4CQ0T^cEVu#(B;5hLWW4RR6Yu~2<%%&r+5Qc;xrA{MY-Y?D@K&>*5cK>6!JE81 zqm_9Ql1LbZ*%Ct}!=p+Wk{!JM7oV0yJYnAkHV%%m$~$=7n-W)hdo|m4Y!1>4e8T_) zd5L$;l9-d1`;5@&?k;R#O0$e&mVic2eFC&BCf!>Aw;b_$#9Z}p~X1k73rM%=t zM@RiOT^`U^B(`cgoDeyC=_R&9&2dOwG<0Ee7cSn3@y1=U5mzTA@OxYgmA7>UsGB6O zW@mwd{1H7jANQv=%O@AIdhrf0Pfs9R_|HB0SAO|eTaIQg&22muW#l^+a~&0FbUx`? zANAk+TW;fQ2*}&k{?-6L#J~g48|5nl$!c?WS9(mX6A!(e`9*2L_;plp?E$u)2sc~WSWEUuzvy88zK6xV_TLG3UwinOIQfQ z^}#Ig&3OzBJ^%2b7ucdLHCq2_a4R4zpp-2z{$&ecDv znBUy?q@gfO;adzW_%sZvmHGGPj}k&>6VG80X2O(zW} zH8qY3=IAiA6UC56J=4HnWf_lNyNXg|yjblL<(N9|I__X~qh6F);0*4Q|86#)hIoR` z{DF`-G5BE@?0)`k-tV{O`<=&xq2qzRsIQ-2?3+uR~HCS(uT}6F<)-wR zSHOyj&HPXMekq;7+4oH6wQ&Xd|32Cm6EL%_%Qqbo`w2Jf7uk5jB~w`Iiv`>!bMx+uX{fv$*!Nz?a{oU&Af>Cj8jG-5olO1 zwtYPY^O^rlV$c3Poh2|%(n%gbmHi&~k9nQTf|!ibYuVTvbU)-Vncf)b4)XZu6FHch zf9&zC{yZ4j(9j$z-vtbwWie`8n9RFg)qFN~Ht`_GX+x09kMucmSaGuMdN7S-NzpVo zIMDd{VsTy#mqY_Ne_8QBQz8%Q@(q9j{(F>M1Dt*De_D-vaZjw{oE24)QXdCLzK=KY4p9aJ7Z9uxzzGXDE+gO1O734yr{#t~WhwetFqJ z)=c>Nkk7{Hx6`S)1=-LkvFyq_fd7&m=t93mhdR9DlVyNBx(jz@orw|<=FS1H3|ILG z^Gc|^wY4>XU$t&p0lrI4!W5DjuYL5Io`9%wZ!fyBzRh7rvwZ{qY8kp8j-`t25pD3Z zsD4FcT~CiDVAZUw4joSWp)$DrUk0$rhwv?-pR=?5%=Glp;h|QKm)P|7iA!1@?jPDEUuWHK4WDx00B77Ve#meOHuds0k3iJ`& z+L5eryTc8xP*IzP+uGaeqn}^uU@Iyro^3Zj18gg;7K~}xu{+Y&sVbZ67NsuNh)(~2v?j}-1g)l_q*uWeKKaxS{znkVz6gA zDLN6TsG!59`grxT#jAyNgn;57tLb)|&0KMOjxaa}<%4o5yYSksE-jH#-boc z`jPzN)vexIc>`#LS5Ff!w_aW`o`D}z#X(qChjRCArIDr+o&}aWd~!qscjKs3AG*J});7y*~W;%hA!+*1;zH=bxS9 zFN{)B{QUFz`MFSzl#d_yvQ*X7OargJnu1Ze^xc@|<4y1rIk)jE&*tMLl3185j)Pk! ztM8ea=D1VS;$(G=Zc*5OeVc|ch7Fv2i+W%6GI0B6e`Fwf-w<()TnTPg^GWo zU7wz&?s3r8Ce%f{IhjHosDvK@?owrSwOqiT-}?!CgJcRWOssKc!!}k)*;&nL?1ig= z0RjJs4?ueasm;<}?glA%}wYBLY6^=Hm(JST9G&T^!u?NKbqNJ`<$wbjm@6#Rjq!TSEW9T zYSz#1`o1<1d%`5!q?JlPO!35M7#^Pc7Fl6q!^D2M7VLUpOv6q?>>WXpy*)jl>$7DA z%(DZCp$vwg`Kqh#B&p7Wv+~XJ=a$*0cyp-C)(29yvolOy=!#La*fxdW;&NC`;VhDW z3pm>aF<$s$q7086TV@(;{rb@ja2FWQD9Ju_fB(9!1I*+)hW1DC67T=KD*w2%172x# z^m5No@gV9N5rhMwe#s-~$RcdrYH%D@OHvP%!ZU+Do)1e>JWu^ePJQOw4b&0GK&9LFJ<8Y19C+0*}OuVWl4zzAZfTcSfPoNK1&r6 z7KpYw*N%LL7*)H1ltu~L3uJ+iAzVu_6NY#Vg`YPwx~3=a>!Rv&)>~r6#DJNLw7HuD z%3a4;s&??{JDqwuy=s6P9b}K-Vr63kh%=`@hkZ-LFWFCp(45b|x4UaS^5$)9Z0I|D zf$CST{JFl|&^dp%z-?Olxi%7go*mJ!r{;Nr3VQ#<@83?j3=+t`QO6-}nae7bWG2Yw zV5J&KG)u0CdEPWXVfYfW`!2j`oe@7?_ir?#XTA67`8jN6paPNKqrNldR%V_gF8+LT zaT~?*k13+QMcrqT$~(u}NSW|PC$4VIB+lyiR|=LtDi=tjw~0{Zc3btr%7Jt)`~;{nsjAUyt~KP)X(Z?{?TpAeqcR zi6!bWMD}TsfRT);9wDaDBejUDZ@f^rwUBPh2ie;mmoxenqLPXhenZa5;+>CFBL5YmwNTf)!S@y*cU{D@ zq+49Q_4I-suRvnps{k?%jfjB2h3YrbhDVLXb1a4EbtRYAp`31obw`bqK z8_B~9Q8t7AI=&oe77|J+k14gB_}%mOHyF5|FsI*G#RF`w!%Ca$yVpdW&*YX5YK>Iv z9SZe4l^H)k(@04{>JozTJ}=K$#ChY3)4KSJ7hlkb_$tK?MSUEcdoS>eM0}FCYPf7X ze}DJA!>WCmC=G_mFH!%NW7v^spv=!|U9v7UxVnjFIk3y2jk_wgS`H%o?_=ww(utYk z7ZlYpdTlUT>#O%x7ewu^RJrT2rPXacF6H_*HxoDQF#9Gnjk8ogP-$Tf>mamjpC&zM zcy?TQy?>wiH`y*^Whjd}srP4XC-vjt$TsWE)zyELRY`y0Uv88RVk{||n3s+@|~3%GYR)?nEGjcVs$FEDTVOL&;IlK<*2Xm3GYj@p1;M|*>Y1_L zebYj=ukNgPA;R+q1l}-sQa+|DC@8?ckHX+Z_<*Q}gY)un{A*S36G+jWhS5Ac97vNp zzkC8?;)jC+6Q9Ss-lt#AQKr5>Mw1yp4KaEJ{pe!~Ji5KJJt{JCAnl;l82V0FNa&mv z;IxS1AcNpVv~Pi^fUbm^I{QgdvitVu@je!5X!n@X zqM2Gv(>3uXbd;Rt&vvxib;gD+t6w>f5A}EGAOb((b z4uqNzE0eqCJ$r7LZFq>+VbU=$zL4Tnwcc(~krB|mq4?m|1m;Znh&wYNA^Snv-hS1a zGdCtBG11x7nTE#w)YaQPth&X4ys!Pn<)%*##)8YN|4?F4;zC@6QlEBm@{1r-_ABpn zmJ2aJmRHaACDzT`lQOWBW%Z~-qubaAq^g&Pdf zkHpmL<;;1$bb-)_6nzF4l-+jFc2CixGx( zgZkP`dCg#rR^t7zXl&72MCSY!6MGI(-V00Qc+3dQr!k5IREIl~U#K3*L09ZMSU&9E zhf5f8DaAivB(idHPWC2meqC=4xH|{E$XKqv2TU7Aeb?wvTv&UEF2p4cLA4JTs|J{c z!e)ZsDyu~pD~8&`I3ptxahUNcWEci=8U4}yj-@k8u#5{N-I;%llV0`&u6bSJ8NV8s zW}2;e&s4#++^3p`1O8u0I8LlpLdD)w;+{2eS#v{*MJMGf-!P@h_`VZs0exihh1yax zOt{$)vt?CnMP+4sYefc+Sj$ICMasufXh(yrVr0>E)Lq7L=6&by4(ts^Hm@`&g8tlu z-9tbFbAzx!LyJ;m!|=1`&+4iB@Yc<)i@^5x%zpxGV1HQJjW|2NHYB!((U3$M2G%NJ+tQcn38o` z(*OG9%a{DamrL%?3f*i|G+ynHXu(<@9?5RUZEZ6I`1xgn4`<#>dHD6KO@8j(9rn%$otE)-3K z%J_ujHV^^#>-{8K!NG-=fI2Ux@AuX(Uymq^(-F+Rg+^$FzK&+9F3Q|Vrono*$QYk5 zSL)m+jL4(&nw^rXA+?bkvP8_um&Tn5`!|gAxtevP6j;~He#(t4bmMtUc-qU#ZmaQh zV_d~6)PwuZa288W=FW?k_1s z33zL@o}uGWuhhGCH>L>eT5)FPHcF+T{6mz?%a;S8Rc=NrHW}JzhUe0V1z_aES*041XAMP$}qQxI#K|uxRWM91s zohT;62|k+8AFo6WOJnEYn3x>xGk`sL?+lJrpK#Xy_^NMp3N6~C<9!fgBp?qJP$${f zwsKcvP!!uGBv!#IF5!3k85_&kY7+FmG+lpu{R7m+5FAEm7QQDdb0E#k#>EjqgIf{* zSO3QkNDF@)CRtiVR7OPxdVuIK91WXD7-ucO#s?yM4s!p(PT!(e4;&Cro`_jANXSU` z4h{yo8d$Qe&)0-`2{3N?9(lW(J)5@@Jz-<|$68NMrtqmYuXF3|?~U%Yg|NxQ-%Z<}E`dQsaxaS7|D<6=kJA(n zZ?u0+6k9$sCl=vwzD!NO>0E!V^#LQ*&|u42rl75(eV%rf{Bm4(o`%XW4kE1Qgg|De#A#a zKqJvmQK9QujK}SbgBg5c@R5LEO)l;z#BLMx9r&C@ki!S3)_;}I{5u3(IGa3Wn5-_! zb&pif00RR6Pq?5O7#uCV5T$o1b>S}T7X$esGipBmJmcpp>xqHKAb7~J{e^%SX2t&F zdmNc`;dGT^94;@DE(w`;S$c+g2~)b;A8dF%HNk4WsPFmWn2yWgrqAww><>?`*__+0 zPw;!_)7v+1`f-Q-uFozaG}XxK75uZ}6?sQ-(eYy0iT?%`((G^5cK(5t4e%3?u$yy+ zgdhZ0YjWzLq=4O;z8XS0w=jcU(Q5+6K6ANx>BntN&t}iLIc%D{J(dP1GpsR6goniV znv4t)U6i-ZPYCOC8Y1^Vky~a)#s5{qul#cdrBtA+imQpq#t=4n-MlfqFT~HLwXhJH z$tCq$xi6wy+Xb16kJ5OBD=&{Vl<>dEavPnSjKt|T`?@@F&u?Fcgv7*rud=^tVZZVy z2ow>1PJgOqo1ru^3^LX0ZLStzSx!#!=5(m)GkYPEzQb(nTbCU^oBBlSnf%cGP$#2C zKin1~MFdp@xUZMjH2{besqs`8M{aJeDu~?5>i#z9d)1HEUw(0U4ztr5UUrBN#j!Bd z(vOzGGC=tZNGh*RD@(sxImVlDLk9sd92q%G|D|q37L2-&wq!iZ zfB(RRIf+Jgy+Z1W^%7r#h6C2U>CI$Zqt_~c9%x%u$@2CalItGrI||h15*vjky@q5e zWy`qyFw(QQ&k=+mlm$e7!6DKQ2%_(CjZDeK|D-n61HyI$A(=;x|}DNI!U z0M_AatfMm_=N%Aig=}7qH z$H=}4BHX}$z%8cm@T6i;;)n_cM1%f+;z186XarK+y%I-%XhIMJwnEXpetjctWJUX& zB7ME_5z6oMlM-}+hNlmRQA|r48?l2_z;x4?uCiJt2~Ga|TUDK$%JxaipOv7~KG{R^ zmmxOA#5l$P_=AIw>*>9KpIG=$7T|?iI{)-gjYkK{))C>*Fu)1SOnNmmkaIt0XB*fQ zH_Y+9xL%XOkwQSX^vR?aF?sV2)grQ#md-Nl)l#rU_zBZ4YiTy9S0m@?xtLyaVa+i#P*hUf)*U#8%AArPBp{AF zIyyMOB;_5*$jE@pdBhJHohtK9rsT@UUmz5@Qjci(+M`cPSO2!(wBW$>aGoEXqAn@yX|KjHDX*=4hVpkf#x6H+4iy2NW?ERC7A844bUMp>OG2I@6V-K*`Y zx+m2q>HB0pDKET#J&YkPGmoqd2Qls*fcotS{u{;=)}! z2D$ovag`b65mou77{`d)uKG{WKA}GrNs13!mX`?RRZ0Q1yV@3Vd6J0769`D`3!UM{2Wzq>VX@%ue&C{?sK7qKMY`*4Q}gAI374 z>uNHC5|2q60y#S?D+rqY!lpO z9b{Xyn|Wad^Or&JUsn*eJeb?gu)@TQ1h2KWaO>k?OXb_ ziyI%HMvmscXUVh=d%FLEZ328g_aia~g*~$%BMD#M;fjsFKYEvX0B+cahTBC zcW)v_U6zeIse^8}OG_DjGIkCY=cD7}6O3khgQ#Ep+F`oCwhhJAMJMA8nS%LHakK59 zU!t1djssL|68Zu50?rHsYkYkjxp@|cwvP>31e0RrO>&eWzE-fe2fZ)&j|tlf%{+0h z2Z$hxk^YILLpm4DD`5_yKp7yw51Zlb z3j#{I^S!aACXQ&8!jTp7Ke0B?)ivPpVy+K^_I14)B1%GneL_*nD@R%tTalb`oE^jM zGMMPMvCj3CFD@%6-KzO~-jy&gV4M&R`}_M!Ue3yc(Ol@bc`QC}4lOAD2nu1$T4#_G1VT8D!AOZ=S6u5hDu5PAxzmo6e_WHt$H83!ABPmGN(A}k!G)NAObV=usN{Q0at+aqhGk_q{ z-7TenCS~;At{z`PLreHXpsa#kfCmTb`&n}j5<&wtReJVPSvHoM@UlM>Q`iN{R%-5S&x499HRfZ0KZjy=+m+0qhMfuqgBDgwdy z_?7Yx-xy>K6DyWNO=)TAkU7-fSWNWW$;am}8}*fyKQD>60B1!jXknbsQr>(dYR8 zW5u%PWr0Mw(2uc=QOq&N1cZdDWFu@gyg}4y39y;NPlnti4z?-cZ^CNv-0<59negTt z7zI`(Q zg6j@MSF5UVg&1k#E6M~RfNV4#o$Isf=PNDW_&0) zDQP0966&MQ+l%zxnn565eBy=3e6m?{&OC-l$%)X1exrFs5*z}=B*r2u9GEr$8?y|2TiG%d#JH!gS$-Csz++Np!5qfba3z+DE>p z6>6&5)#KugIUbjAU@T@ z-MP0sBJTx-$RB`49Pz~7;F8yn*Yyz)_f;a0e_U9%)F#gxrtE`A ztZwh+@5|n*3wGGJr9Ngez9HHUt_*ep5o<=)d*9P?E&tUgRHZ6pixqotDowsr@N=k2 zI3}zU@1}b{O(RyLXO+n`CM8gNGs_@OjhkN2oH6aActFlQl}Q`n&nciJ^g1b{F|8yy z(CEnq;+{e8GZSq?jUFyK`m#Oa-U5)>%EQMOt3*VQ-0BbVwy&VLgpp>ktnn02?ISoZjc2YM(81@;?!>ILdS12QqOkP81c0+cCPBD%e{CFhtkmXwHOqel_^#qp2j z*C$LU6O}&U>dxSt5vEu>#cLYdD%ondaFYV$f&xn6IeIcg?29k66GAk7C7sbeg)M>$ zg#hND9;_{849v$wwvN3TJrO-!FLGWrAV~lHQ2Mjp)KCY=7vM{w?=y;9keIK%`yQ#Z zzC5qC-qGHsIFEw^DXWcMvY^D$-`rItjGl_ItoI`8l*Hjiw?&fp_?5%D-idBGk2Y=e zL3#0$FoQJQ7LW?7i#t(PZG${|;$EAG$O8w^dMc>1vF59@7 z6k-)SmE@>&-KQHWI?fXKSljDEHjV-U!UQ_K)RQEXgs%vn<6yDGpbksa2DRVUSN&f2 zP;90ef&T5=*Mi&}G*(*gPGM3VBGkSN>g4+Hz}++nU7nxqC2k{;#4kQ4j|z(jkqt)q zNem2I=m2X|Bb8hn@e9vKJJlaa*x2?(G50CNv5x5J-D=zxUfp2cz*|nTfJHJS^dQf@ zgr#Iw1T1hQPNbi+-shwY(AVUHjZ}CeZ?K>Q)|>3lpD?dxe72S|ZSRYI{z`9giMpN zqPj_HAtIb&1XX*l@+$p`M1{GEnb^KqF-M(3DE7jn{^`(z!|6$Z?{*UDq{PV0i0*oR zlT%NV)?jDCJVchuA%CSgaA}QkWJrp`9>f<}!n;HV7KGk!(1Y%>ZNbIQb8FU#a@?Y? zu=t+E7U=aF?dW3PsJP$Z!e2Btl#cccv@wL+^JFmk3+-&j&+y?Yp#+5ZK+J5}>b=t& z1KS%bhzdftce?*ktn2$(h1@C4Blw}cyHveMTYK9C7FT6B07{jPmivh(cyAu1|x5^B-c?pxpNy z`2S#{({lOk;tBa#>cc=eS>U6&P^DUIExSczrKiQdD;!B$d?QmTI$r9_+`Dd$T;j?qA7`{@st4%RE&U8nDu!Zy(oua^nY_OI`Vxjx!i^KRN%ESFxFpc)PdwxNc7R%oco>_G`@^TQ;n4iD4 znQHBXd5I4HY?*HfqT)T7JS9&Ol`%IgNHo#3&_i8d_`K&OH9Fpuw3@Kvxo^we;otH* z!K#X?%s&D#Lq5^+u4lqV?w?(w_so-;8=@V*2O3CjGnJ;W1r;x3S2HB`jg5HoLi&RF zCF~De#dEo{qcfL|{>b%62Nw6fq!BZLQkKAvZtLOI-acAgriEY=6skE1y}9E_>`s=$ z?0_}_nGT$WmdCtP9D3x6*7GFd+O-F6bLQiNPmUFF9>Ky~ThK5Ee-IU=WP5T{&gOL$ zPg`j~;3kJqX(8-E(a@nir1scNosJ(>h6@Nr-%XUjrc_jbTN6(Fx1;~}w=o^m`DA*i zW>)l>M>LDU32)!*E4B8pl}6#`ayKWMe;+%)efiRawnXXBxXFap^@ELDfQ^>kb6h7# z-;_wUW;oD)h5dfDo{>h*;=MNfJST_CibZVjazXrENNA|Vd9!Q4c_yDlZC%~qkKc1G zUB71Zt>jm<$12~jANSgzhy-}i8(}upCee}$W4W;}r;};#qmhhu6CI=<5r6-H8^+TaVK z_O0N~q0)p!9s8=BA~~P0UV(b~asB?>cuE!}_Ugg2UC4BAp_IjB2g3BfZrgH?dPQG3 z?jP09UiU4|=GO75|7|$X#epstW?4au3D&m0v2o_hm#5%fa0Z^__}x+$egm_*R3w&> z`1FesvdxLHbHWJUEsj(0Zz~Q&HNp3_jeVCPw)6LORGP0OKfi|FLeL%WdheSMd&U!@ zsSnYdA4Mvb#T4pIM;Sdxzzg-6gPAH#KWcGhvD8`@l zKmUiLMg3%hz`3Dk%Hv)TL3*%z3=~J(D8{fF`97V9ziCC8xw$;Id{7caf8)#tL3>sE zRJSS`lR104p8aU7PuR6s3rlw)WIW`GG*iX}*oItAxYg4b&fZo1#d=yq9FHwxB$}}1 z9;1u28rtZ-F2_l0s_msS#rWD3k+Z_pP-!rYscvd)O~@Ph#1vr~Mv9f5Z290T*GLg- zz4ovG*_~|lVaxP6!z?9YDD&4QI-w$6A%kh|zk9`sWP1D0CL&5t^XVVt!PAT1z+;(+ zmFFHyI4G7lRF)f0wc+_dF%<0bGHls|onxJYSZk`_asQV$aXom9x0S>(kq(AuH@6y= zK9&w6WUtOB*#YQ41N-phcYwD#CnN+hq=%c74lT#=8O6;xPgzHzRkg~>=hI9b??JIr zpO_|RPgK61Im^-en)tszdU}qfzH?sce?HQRDi02NT5)2akCBc0qKXDZ=LQqk=Z?ix zg$EC^a*9*1w4Mo`BA=EZ{Z-(v30S5WY0}c7iINfciN}4MSp>LjQxUN*1ixh?7@xhK znM@#UHTXQ5jIXZV8_Z7q5RZcs_Z0ac@Ylze7~rW6gr24BkJ5-2FFd6nKE9s#Cq#vN zf(=$VAU4Lq-oE***uEFxAyL!|o5J<*hrUfMR^t^dn!woG-qr?sIw00ULPGLDN-yer zwh`P&5yyz@$B$HY2sj{rTdq9_nXeCXR!y3bLZ3-wp>Ulb4=V0LVM9zTmlK>3mZ{1$bM+ zA*V=z5I9z2L*o-~Z*5J@j^D@am>3wqLzEwU-1@RY8!#GA2Y>6pSWtlYJp5_+VXpKq z0QPTq`(|o=-Q#OU4KRroSI8_O>zMSn%T*JN@8e23FJ|GY28flv`1@cC=AbMmggWdx z9TDnacutnVL_(ea3>&HV@Pm|5`qnkCQf;GZKNHCaj17?#ufUu|rP*_bBue?Di0lyf z-wy$Q#cm7eGFr9A2k=QzN2HoKtz-XeAWMnQgeNoGftZsg4|+pXgAl?X`ARzibD$CR zJUrNZ0ZjTJ*9};;W<_S7yZHJ>%N5z%VLi2ee|eUegF>yXb&ZWBFD)(g78f@)H8t*y zS#*UgE)Pqwvf6)J3w`~XQ$az2vS3V%8ztV*73tSc?6H!qFTtNhsa)+*NRlXnJLoFq z6zLo#xvi%J|D%6aB2~pZA~6ON<-;95odg%%BUK<_9lj)_7=}>1s zPm!ZAwinaZmhjj>6xax48LY~zX7XFehF+be+N#B3$I{W$gUdr-U*EXegoK)UA8fL@ zDFBBrOi!=QEoJ!2@Qd*S0%KcU3z7R)XB^?tdQ13T?O&Z6;kDbvos|v*#$o?n#ScuL ztSj_PN_c`cHI|Iyu&Me3TkXaje%p5hkj{HaT#rW{zq_^{c~?}JS*pvLBr%%Nowz7U ze)dB6O{qY|;*U&$d>~;O@ow|X6$?U$R+9c=z^!7> z3H|?XC-T&^Vj?1WV1#C2r>CDdoU)ItW8)HGpt7jsEWCt6cG7UOsvOe_0w^s&SNfntex*hE*J0p7Xpwu)|jk&r+|LhSig~Hmc&|}U_HXVVf;%cLfzy^F&Wj@-aZD93uAfz2< zqBPk^k+I(Tu#LutnwpVOY+HW9;`O6^)Q>Ue)^DWIBZS8$^0m=k;c&6`s zIq9zY%Z77v7hINj6^>IQca$p*>#(vl?_m+_-19!DjMhh*?K;Q%YjES%cC)4TbPHVOU& zOyl!(6(SFDMgY;1wznnmojLQk_Bf3R<7mb#SRsXs``1FH7G6HAF$g#-r;>ov9op+ zIAY6i`u?St*-eERIvKw9JTM9Qtbe2C{B}svPUeLJE0=D`FKxmy(5=Z(9D4j|Co#jc zKm-XP<>u8@X*R`Ut>DZQGIb7}gHqnFZc?V0b>>XVEjJ%?dj0beiwRT16se&>Rhf== zj<-Zf*_>k%BC=mytn=cHqM@q3bH;y;d5fv=o?*%F~>uqXSX* zK5}Zk7S*cPZU3pME(5{Y(s(nQANS&={*39^eX(n39LL4?q_^Ql}d;WXa6W5k*-H^GIZTe-yb_lR=R5j+*l zx=|G4u=6#%@?s-haDwn=>QCd9dw(58@C?#N{5>J1jOqhB3JT{~!6{?DAzD@b%2AGg z!PRRJPc)^qmtG3z6!{vx#qvugefB0LD67jBCxcm1q~ z?Pph=`T~!2zpV+4K7HQ|5ynMOSV9^K>yU%k68Rt=L-aD}XS{v# zS$F=|(?aB$aYSzsf-p8TJ;|Iv)J$RZ2og6UEqV7H6uV_D_ekr>Jq7mW-UJx|t6@`c zxNc>#u&m4xjFv|LHk)l@2^ZQAnzIG}tQet8GG=0Ojr!_!2I74BXC~~?6&%sOiJ?lt zH9P|6&*FnYC1GHY&V*p)LBQ8JjDZ}(kiA46c=YPF5b_s8kR+td1H=5 zf56dz8`fa-DcYJa8)kN|W9g%-cyqGO1d8CplB}N^So{G4`Ew1<$lF+h0WDsX4(;nl z9qhPPofp5730nY20tUN?Sucsy4NCbwezOkE&rG6Yd6(vdbfICe+DTjfxgpF&H7YzLb zyAaH@J0dcAs#>xe;HDQzQ>H+m_a(6lcb@WW-rV~233$t_-y}j&=26l2xj7M*aGB3{ z?kSr-KtDwu+?{8-JEe~I{v||cLyn(1;=gP`&h^CE63z>@CFf$buL`55(3?9HjY5xn zl)7Qdmd+tovNr)P2<&)op&&vFaB)Ta`&2kJL@0_wta|%HDe^vSvMf?c9Zs>U4Y%Lr z`A)JE`^4eHDH6SSrGBhBz!EN>Mmv{H5#9qSnF>TDTFW!#gi=E=d4%;4@)68jHyhCM zuyGoTQDf?l6K{1%;_(hN(00B;Wf%|6lv~RQb(~oX?Z83Gr@4GVD>K4S--WQmdu!1b z&Zx@|bs(^GYhPognW9fTM0IAucGVL1>^Pc9bp-jT75=9e;8?)94EN7Mz|TfZ!RUZG zv08`fNZxaL)rk45(x8Y8BDm&(eAJG+=TJy-Mp;M_MhFL2w*dJ29i3uCwW+}6b;PgN zxxBlOR}?+2mi3P|lPU1Cs9fK{$u+&i9RC@!F7)7Ls!6w(6M4UWs9~$%JJ=txh^r?q zjw)X2up+}KIv=g;<1@1~TQd@>K9sN&=U?bROp$PgRDwBnD9!Kq<5J7L`|x7>M2b0?7|Nr+cR_>4dWMZVA3@$_clm67*xxN;0yr@vx# zGBtCEIfZ}>P&RgUwOl}CBSafEi` zib}+w$_;yr&~C^mjEcUgfX#X3*Q3$7iC0hM{LcN}iJC;}bsD;7z>Sf*uNUJ(0TGN& z_WBb@{`;GJVLM1@B(1+6Orp7H1w^ugSHG`*@yYYHbCX2%l2iZDYzTK6MYuTb?SA>P zw-@)gWIz-Kf{8(dy^c!X#~gkAwOn+=%Y@B$jg3CQclX4nk8j&B*TF8Jw6g?6?b6W? zCAHR9KjiZDdIAD$ef%#b;)$4HE}HfEtY0@Z77PlamOo<{rg$@RW%8~XP4y9f>8U%PqmWa<4xKLf+SP|LIO@Y^rsZ( zOf$`Ob#-xZIFH=kbrVSC!nMu-{<8o`a2dqY0^$G!o7e@2LNh)d`j?!CoXzV zzwnJBIH=RZBFbO99^l-kE2XEW7nljrt9-`zc@D|>+Xa1qzStnXSO(3g^${ouB0l{w zjQ|JKsSk-VljFowD3;)Qep$s~vPNx3{S=8`9WnCa)8y+%`t)k~5R<1frn}5a&gI33 zKwCJ9jh$_9Z~%KBIS18jPk^;fcI?pMVb?2CKoHvfa1jYZ1M``Q1-PU%DF~dVqN=cY zz`M?k()nGh#oB{sNFE_UGFXEHg}pcxu`0f5??-p z)Eo|lOAAU%3gX4=Zys!J9VTudQ_*u7p0`cY{S&U*lN)dAfP8!x+Vy)xD9%cv!-H|< zs#D6()%d?`5rqqYEE%b(x&{UYR#qN39;*z;EuAv3R_oxHpAoZhU!4V8+gkawG&?RP zLhpN0g1TT3K)Y_vF)Q&d$_3oo*-a!8h`%}$xIE)F;(4g8ot$7+Oj%uCzPl6Nu`;z} zlLIdj_`RS2_ZAu0bj_lpqubiftTt(|nSC>Rowm08K@PBN=9YrK%p3?gj^Ptbt78M@ zOyLTgu;3POb3ko9sW}Nn>;@GC-?K2r1K<`YdWHdK-+CV-GVljO8dgvGPw@7?PlCBo zB*hyJG#}>V3&r~HUiuFojsqrYO=Z1~);%HbCVx*queI**+b<$j78d3YB!~lK?&u(4 zqHwt9uOBdtk(+(=dmPxpl6l z)f{xAxe%R^BFSzuN_@&rp#CT?f7jJjTT|0q*W%$6uplg(d^xq+*EcxG&df}=EakkZ zn6~itt67FXCK4SSO{YvJKVz80w;+b=tl)3$9w6VbSbIZ;S|IYE+}mMw1s$n1x$|oc zM8TO>M_vKkSl60mz)v7c2i-TF<26gm%@6`*Uf(C_1OtcGkLou!i{8CEfBWO@ShBWB z9iUHW%1FGf+{Fd^_xHbpdRMw1}p{& zn%L%lC<%d0*u;b`{hv2iHmgBvtqXPL=8b+UGj zjEno-_VX*~s5d)~GtAk>j5lDf#;xP(NwaS9#;H3LS9B(-0s7V zo!{r*%(}y5T*6>krzEeqR~S&5WMns?p};t!vsB~eMs2yk@AR>>)IO_(hGv3jF@6*s zNQGC0#zA6i0So#Wz0Yw3hl*Tr@MIlx;vEi~OqeIUGLN%9m?V?v?1GAt@~=R16oAXW z*0hZ0%Dl?X&h`N$^D|%d&!2t$FA56^d*rL{3r1HDFLPxjg8Iv_db6vx9ZGEP4zl5^-~L$YU=LpE&!4|VOg*2&iAoMEluqno4XkwM@K_} zf#_jAXw!dwaNql2>jTKnHWv^7^P_ASWP`eRc*H@FRbRHYFlZ`w5*;3^zE6MM;kl`( ztLx?JdI;+5z&?o;8M`_f1&dvL?CPq#Fb#4R=a<))mP{=yRsm)!niusKNf8b_wsXVN z!}IfEl9G}V5;O|pj=)l5X0F%kAEY64M?~+0El1DnWKf400U#RYO-{PX%2=cwyg2Xf zI^YO435%8Z3%fbFI=Q<8!+3-(`bF>B7#|N$h_0sQ$_w$i-lh205yi`IFSXdnuuI>S zzXQJFuYLh`YJ`ZNok2g-GxvF>eQnZ#6ZaNh$tZWvL^< z=W3{}Jx&r^3jhFA5FkL%39?{wvYtbm6VVcNANBnX0;Pgvio{U0nl3tNEqMgNl8=s1 zbHt;(GcDZM4>)^hT_L8XOG($X0N}IGQ)N_#2O|LfB^M7Del9+wL>%SG_wU;3>Py`o zw?Kk#zPfUFw6OwXo8F*Qb+z#(<9(+stj@}Dn=FPGrl$kHBYg#YYyetub7p z-(C(5Lzg#LkU+?n_Qdnw^;g(;UPeb3$jx*}m@k#EAl=QzXHeo%)w& z>;)mtqd6iA`Nbv)4Gmt=?eux{3xp@zn_JyCV^U9=o0XLMtgVXxMRK7txP`wdf*)k| zLWhV>4L~S}!gtVoMPabrV-sJHGC3P&6$MepYAK9SX18O@9dnCZ81h;E-Ok(FtPK=E`Q@lpQXmVb6rC&(B^lxw6t6WTjG=B0YG7I z@5YfDV&2%mfT?saA0r#c=A|RXLw1E45^Mv_*d;7qZ0zsHud%S~1B#`OvA>wGYJdqf z+gDT^!%|b=G`L2U6p=-A%9!*HB3M2GHt*hv5`v+>jhLE6R8kTN(0lJIyBV9Won=C4 zWgFL#u#p%9exs%BG+3e|Oz}igE{YI3z7v=L-Q~;9{LV`mOW5-teUFQpnv|vx6fA8T zX0*z^Kpj)gYW?HK`&Y7`G*v6LTu&$Jbxb7dF$%zhyfzt6Ahlk zWL5ve!6$QAjf728q9M0htZAxBp*K&-*g*n8Wb1HJLo9M zB76#Ra`0Y)$p%w+igSE6tQ=wb%-_GCTvJ1U3W?rGI-+?{C8-+HQ$mukK|ZB6|B`E% zvp=X=+N?S;HWM#-j$hE^@l7tSl$x zquU?Nb#BXTv&+L(MMawn-?zaWjApFBRI}F{7CR0^*yf#pGveaxjE#e%gDXqQ{gh1V zEqNbr;sStU+3HV&;WUL#0)vWDA*OQsd0>4?Eu&$EemskYzzP!KFl+izdSQLSp%h0L`p2ihtldw`$t3Gld$57Q3~098?o?T=hF+|K)+}nIKSwA&B&r-7OGn7BDbT%UKkKsI9{5{m2M|1NBI!$D);L}QnNfp` zVV737Kdrh?Vk$uNYl;Z&6;Q>2R*}r_mj&j-Ly=#|1xFU+U(cdffEu99MBY;@KlUsd zcLg{vISNq@9yh&ClWU}KwX-V)YH)V;J>Y3twO9q>I$%QsL1RBo&U`oI zzFK#ec!S1Zn^n8}s)hgR&cVUr+FV9KK|y|g^1Cyi2O1mnZ&Qj8S<|4g22`IfP*z92M&Q zFNw||ef`&5CM6Z@;o;#=M8sA^vi9JM?yRV1RDZ5T4=ES`9%aq#pmni$MBav z{sk}sr*?)j8xpe}Z~2n4C=fkqclABZuuf0TOu_70#}nSm`%kPZ%cnOrH9Pm_NQgI5 zZjSdq$Bz-4TYr&STArjU;o`t&!lD&RVnORUKRY=w=?Ktub*;XlBJ_z|7PK+xyN=8+ z?ss}q-seW*%J;XB`8|>(5#i{uw|UU|cw03D85L!2ZeEz7rZxx&f`5(l8mr^((v2AV z#7+pDU>sno=P)TTQ+6MZA4L^*(ju+Vz@p%%)rJ`)Rv>KX1#l^^`)q6+ueM(tt^S^f zBI31bpcAs+#Lj<3a##*GqhypvHF?-D$74`3*Q;jmMz@)kPsIsFh`Q^FzdcXe#^wE+ z(k4V+UDYlHyfdNQgK=;V~s)C@9-FIdNP|jA&R}qg&Jz zSve-z=DcF6sNH)UKRLqlQjp*A13k&{WDIWs$_HFZ2``Orqk|Ley7 z=flI^ZFEAO-?=Nf@6JV2=M{OWZMZb`)zs7uw^X1lD`^@(?@^afWI6QTtAyARLww}Y zg?Xy+s%iY!@=bq4Q#!0ZLteNhJ%E2TBJZe!V1nfn%z=X%{nMlay5{HJ{TL9au+$Z5 z=Hvve%5rvdi!AF3`l$9K6+Bg!ePqkKdyyB~hP| zM0*B5qJPZ>p&O;h2|mQs)UT0ODzp21?rnpOh@KXPXAcAi1*vPOgF)wr{;*+bqZVZ^ z*8Wuku5ft_ut}cQFJ_lD-+^o4=p6EKr!N)gEV<>V#9xo0sesK7 z@L2#Qn)B+Fo0}`R4uJYY`rw>)dvCdru9@VJs)>xO9Iz~|uG&yVcV9kuQc{FBjTcJ+ zEeJy(5WZ>o70FDeAmaJjKgoc%We@ii#H0)$I*G$3k_(Eh45E~PTIp(zWKPljapL1Q z6i!eP&V1c3t;!CPDiGC5VR*mrEM7gW>!IsWF<7Hh@$a6-Jla3};_3_nE?s*En#L*< zZZ1tizdv2M$~A9m9)P|@#FzKvTHTs;g+Pi!kJ8ykX`J+=OI{aXCwk^!3+)b8&V0#p z{CqCtaL@Yh6{gIGWZYtlW z_Hv6x>qZkE8kPNB|B{I=2Tbvtow;~;qF=ud8Pue<*4s}-DMW5sZ{EFIv?hz4!u(vo z427ok%u)EK5bBJ;Vc_9^+sE`ts{Tri<4evu|D)ddT{M_4p74)<;%54cyd@qwHA>@t z#Km?a)Y(^!RcmXP+|2%Yel95~-fIjaB#dO8QUNrbW&{(Zu6QGx2L6DuGa~wzSn-E zT7FkB74d*wjopdE`|ING;ha}yZEfv96GcOVYf70#0( z&|IdT*^wS?Cn)Is^GiAiE}os8Bk1K8*;AXK zP^UV7ecdOU&Ndz3@$jLAo7Uq;2WY|Wamqyw!*Y72W~bJ)0&b0cpr ze4LQ0Icj!idT1T#b?hA*Zz46ocxxXfh}-iiJ(?|;3@IWa0&XUWiOKR@0jJR8MWyO^ zOLwK2YI>@~o2@m>WP0ubq_MGy0d!o`CIOr#b{>lL=;tp_Th;@ESA;>p>R5C%7DySH zsOkt(tsza6MHY-uB6idjU(VuUuliq|WrIzWzH6N@wk8ZsO+9#DQm#iw~Y3E>Q93FZ){>R-gCnAa4&DtZ0+`Lsc8 zwmQYEId1GzQ|eB*sA#g~eZFGLSLf&NTqNd!1`H%c#!YQV3P|X#Pw43CM#j3=x+5SC zXR~TzHXYbbvERKIs;VTQOj}zm8{qC-ZP^T@d+X-)G%3^%PkC6~zs7&h5O#L0G||Y$ zl8+oo`kN5b63q2&grv_A^r=a>j^$DD7~Uj@hlja&dGFkpgEltME7hGK&)wNkmyEahAOJBa36 z7lP8Gw*gHn+^DeP)#LV8vE@+%1LeSYyx^S(T?rBs6Z`IJI*gQ9n3kcwHoJ#!3xJs5 zYWSe$ID(Nw2qw=$LP8|o(b3T>Pv$K^2=SS$Zs5`m4dxkg?9O%3L3496fa`(Ktv0`- zJJ@#K-rmU05pc!^JeTKR#)*ylt1U8w-H+sfIx9>s&o9p`#FGsT4LxXo0fhDWuU_Fe zR<^d%xK6$<>!Dk@qk>+k=R z8eYT&oxnx)<1*fMX^&M@JH01*A#&XKq`ReuykDR1w$?_ zT>iQONOTAe)V} zgm!iU;xGgPd9=9r*toXT(eCr^E)rMV*0`8T!5KRbk+!4a3Y%s;G8%YLBo&=Q&CJ8) zshZJ*juHCu=?}JF!T3r}l1&(Sh`#|b?_U#w&N=UzKI)Qhz^ZZ|{1{q*U#exUt}E7i z`SfXQ>;ULofy7SWgG-)1w?t`r*R_hQ9s;cKId< zB-^FfkPD5CEgWUacN#{cM_R(gb+V{^E``MDq2r9XqqVk^*$=g+`VJ@QV(ve$wU)$r zoCaisHqj_`U8xg|qH;|(^5XRBa`BswC(yGrRu|}<_l7_L4l(7dE46bHyc2)N2L&$yErFWq z${uIWCr^MX_1D|7VH>K!FM$m_{86dyPEI`om9@1Bl&KNz?NX+wTL*G6PU`WG$eWvQ zx4@-CZFJNX`djWtYD%xidoPyT{Zw0%P5>MAv=a4LY6|-4JSM*xuFn$dGguqN76f`F z+If3k!x#N+Jm!8)@b~Yqk`fPfIPImz1V5@ zd9W=kF0P}mA9{U>8a`HHl@3nmhjndJUY{8{=H?~=Bq$>F!81&B=l`n3^*WB47qaQ48u$koPp!{ohBnei=|`rj}eL!#^=p0RD9+= zmJu?w9CiE0$BHKL>D$N2I?B@~gSgoEL1y8mh711ULX6C#|TvvI~QrO)l|h-wVPNrb?Q~)(@6!m_s}g zSAutga&z7`whSJ#2cf5S{d#Su^NFWU;E8%Hi4dW#5I3qc5u+@+tVfG8o9d8|7=O7N z5I9?3(@5Ea6aa8*B*yn!9GWCC?W}5S>?&gDuRJ<*y7*akF#v?;QW6qCl?elt{=C#w z!jx-J{xW?J$Ga0@Y)Xr0ze@)`a4?713Hf^jN zMne2-1BfVyt)!>Vqsi8xJ(!TD;(u{#YN<6ajCp`1z~ z_a5sMlU|nJU3g&bh^A56NO{=O{p)D6FK$|Bsv(4AI(&i z5D?i28iJ9opdqu=?9zQ!#$RXF;-`%jRfiq^9lTyEQ02oIz0~>PYP;9AswQ>Nb+5h^ z0J4J;*~tY_z}10=^v}=w1D!NI#Rv!_#?xuT*}%w1AxcjBhH)%+I3rgoleCD0rkOpFolf?{kxD6|HHF7W%P^iL{&bNT%z zm+8hj80k4VIX`0fuTMca0WzD2?#I&C2OOGz?SbBr_;*n#jje5g18QrPJ+3TdScmVy zkK5njw<$=x+_4!XNDB=6b6T+c)}C8BSmDWVy`T*x{O9Vou#1yT-~<}47rVw6eBN+S6C|{eU~6C6y~U1z-LWz z@K0O*rX{?@-}gSD0%%STk+Ij4FE1?*?PGlI?TeWBMhSmYzaKAgz%{_D#JezpcM00lECF%J*jSedl0vAB$+@{%o0Pr1^~yJIklpcU%Y%bd zzwHp7Xzdi*jRkezdiR|;P651HQc9v~)%_=^#`ZDNk9`^$85-r~;{#wPWL;tnfe1#+ z?C5A7!$gbS(}XJ6_1?eO0whXHuTx9&ZLK;tdtH!g3$#3d*5 z70%!tyotU(`UZ4r#ScG!PWeN162bBUlx*D;6_MQq1+Fozh?A7lTC4GqPaQcKbMpD< zkwi?yG!)H(BD0gI$uY}HqkTLz_6j$%me3zBQ%*=dgLcx5i(YQ(CMHf8hi|i8_qFCQ z1nn0EA4?FEkPu?VZRNV0@&7gz4e>d#zKR`)wa_bE#`fF-p>G8NpHqQ~fR8bjN+{t3 zdyG`XItTAf`g9%Wg1(CH=Hsh1C(r%1zpxL^-iG^l?khdLXn))3Ea>jyA{@pXp8=V^ z=(+WD9`9|fG0sneF?=S-$ZJQG4O^BGyv?-kg-WrY&|RUZKh*)xK2Xmgn9%yPVA#Q+ ziM6~kWh0nf&)z^uO1f22O!>_DX`X3)WF#shWA{4bS!t>YxAHCRT-_jY0@?%TMs4tA zv1!_u*{dbfadL1(KyLckWl`Z{DXQ~zR&qgS9H09sV;-;f*Uqh9#Vb6ubF_+T7~CBU z>-oYiu)rF4Z{w`V-X5^Ak`w;WgHIpfP_zfn^sOI3UNAXH(Ozy}jK&n%nb z5`lLBP|;I7wHnPL#?4>%kuAFs=Z10h6)9^E%{8$BDqxO{QEh?!@p zuMczi6i$F`RDS_N{&wqbwra%d6+m@qJXgX81RQJ8ioNxRDi6KgjIh8|g7|k-R_-6Q ztjmU72dJuIyNa5i1XWa3K#@2laUvnN@$K6MvBR1*Sy_f-fKIR!mhI(kQBVVHP$;f; zuK4#|GY>FBQJRg8jh>p8W?^YS)IXxV^94l6G&a5^fp4d6PP6dY=Rf;E;^O4=9#uQX z5}}MsNo!8{%ULF8c7B##&g**S@rI_mJ3|O`viTZf)#C_b8g-R&be#W#yH5 z*oB}pGlrR7OX4IQx3mmPltoQ9?I-lw{8q%mD>&uf04Kk?&T}A)uourt{0;0^7&cC&fS+_y zS5w0oOUc1kTl*T6{Q(g*(ABjAP*rFtLlDXOS+fy;B3+@{+Ig~=6gar_^mKr*RZPX# zU*AKwytLHZ)Ff}XyR-Ae*H``#s<02*_bsyyx&arI%mKZe^gKu)_5mSdTMcBy>zHX{ zw+pg{mV5V@z9+%?F)j?I!gDWW;n(Tj!#rt25Y_SM5$>qDg?>yV(7wc5(7^^{m&IQW zrG>M|adW?9AlB3Il;P(W;)bb8uu}iU3;sY0vPFA3rc0s~c*^wA+Mz&Nx(g zq`0}+Iba)1?ct`RqK7)l%FLXk zfx=u4g@=Dqqtun^F82W3vonCQLDvkl2Ge$vQgFutw~al}=8c(3N_Jz|;tq(@5E&@^ zP?WtR*SHGl=8PjlgVEo=DB$oabai^!oBd8f0XPICr%%V6upWQ^L`| ztyXzsdc)6@nFjWRVuI8n=G!^JP0gn*jsUNNa{fG&wKw)FzqX9q@27oUk3<@jMv@RX#(35aVH|$Q{p?3jeev0dy3;h^c@a-0>ZvT9jpfbJn!DXMP_1EvTXM2 zU%nieNZ8*{7Oha1-)$9dh=m25HW_<9%LD|x0Ei}SB$tXZm262xMR=V!TiM%2>H)y` zc8N$U+ehugD52a&yWW0&pzJKMOqIpKu&iup**R=-5qp|{SNWkW*lmk)?PU!f>+M-D z9>f#4!jx6@!~H@(hyRqKg8ibap>ecp-Ql{YE?g!UMH7iPL#({Ec+z^YBlgnNR&Ec< zSzn${R+nn5Zo)BNCnbI1{8y@75sV|_p&JU3!KUy=t$>MU>w={W!LhZo4#X)h(RS#5 z-*m;3GKc6yw12Q)YFlE0BN4)j6i-JZ;(J8ez0Ye~H8PzhxcZm3&)HeYUU19tA1OD8 zxq5^`qYT908nTx|dl+F@?RKpkIZl!$l4fT3?EISzdd&Ct4}<*!U6`(+k1b-=Olz6_b4L??qYd%)mTFV9ur0b zIs6oRj8?QNx*E4lRV6kqw$QNsv4`>r0xT-!bp%2?&krXr6KU5&5DdPA(YPA?!DDF|d_lfZezMKGcT#6&ytQsnRJ}Mj$lOb8d^e~= z;k%m$CSM%J?ZND$m4@iXgl56vKxVmJTw02H4-mK8X^>toTsv$e);L3q14?o{Zcs_) z*qGBcfj+ozM)|NSgmg?&W*G;YJM*a4YJ!9F9-Td8!5|L{ij9wtm`lJKUT*-AU~1N&N;ozft_&wMNLV!C zZ-9Ct$nFC*mt)mx#k(~vMGwOn++q)V@4&4rf*3F|u>ccn=Vk9gZ9wfjUD%p8G+=8h z#c)||;4cawHDskSFf0^c)i`>SP{F-5CHVE_2Rug|Mm+;l*E6H-9Q2HZ#C*q8C#sfk zQ!nZ}f|L;Aq~LqlKKLJ+gF zDOfZ#0CoMBS-<<#M8M;6JGn!`<|I1w5%i*uW{F|h15_|H^ z(9^Tan>kz2;_e4*AiyvurRjIPbO$tA>M25x=UoK8(F2IeRSXO!oc$}_t{Pt)lo_-D zzjv2eIknTd0=rg13_ZLM+CT!N*f8WvB|W8RrzM`1*;$?Udhd002ONncSgd~}PiYFI zxmHfqijJyR83eW$fw!NPOq**)S6&{)I5S=C_Af*qMc}jKhM1t>^!WJv+}zZ}0$dAR z%kjoODLyem2Z`AL4{Xym@lMi)>FttG7Z^U{;C9A}cfwSX^66^I6Pr3x2msm?C_)8R zw$nGq^8r}ym_le+SpBjv`Gm66W1ybXr+OL602I!eno0{x%kF9H55ze@E!)VaNzZtG zhP_-IACIepH3+LX<7Z|@<0H6!<%6by)d9QCQ;$0ga31WkYdh8oK~xa=4_}G#$;_>k z;wNR~fWq*&`9|#S9q4_pj-Xtr@!+8AXC|1!@TFvItoxZsk$QK4m_ZctPl}az#!21@ z!ivMEWOrzq+_?m>Fk3r2X8l`RTP8&=if~r8DT2(lC8glXl?4#3$!U|{Sa8$WMV(I9 zN~TM}#0j5R`ZZY;N;sAgE#F&T6}xqC+R>J)?nxu*xP(=mLY$EWHmRNP~VnC(E&j4XvX)QLGbaS*K<;oUML7Fhl+fzI>0#$ ztN@spS8Z*Vh=`&?CN^kMIKk8~(1w`qGRH9TeoM!XADi6SUQ5Bw=gu^0!Ys`vBtUQP z7aMwZPjnmH$%EFuxphcb2TQ{3uOn* zdV3Eiz$C=u$qyBO|&<1g- zhrMbxrNt#L4kPGlRO(;$4iw=fl`IX;`+Db^N!~r0m^h9qfS!yu#>0&y&l4<>G*U6b zT{OD6vl^(LTWVUWQ##8@73S)#=8>65;`)1=Zf*`|ef={ks=`pJNggsHqEyW(^ChUG z2-oWg3etyZsrKOfXT|Fy}g&1b>vcR6F3U<2{9ADP;y0;tSH63u`&0qSBr zJyAwjmaF#<$*|Y{+g^<+jRm8^UmNPGjm?d9)^K45m?jnwaxx#nzI3td#E9wkfN0Er zBL&|*bt|hk+VaY-!$1M)H#FJnj*rdC@{=~-e8O77G7G0LQNdvbH-`EY|HM9l>KqFq z0z%0V;C`&K|L6czU4Tu*E4hoD7oG!VjWT6J#0OF`d<^gO3oykCOd+Ei0$_@LD9<6^ zm|4}Yx$koiajJ2Ew>@`)j78yl{^t#FrEx6zthRwWN+FKMWzyO(7C&#wAt($~3Bs5r zHB0!VErd_^2tu35PY|^2^*vZAq*?4m?6Z#Y*rVM6lw_C>4Zyr!T{?i5nN8&e2}Ah7 zOD^ftsY^BI4>By#(MnZ&x$fAIrJ4Y-VMaqG%fL_K-!W<1L9)Oa_0ZV!dT&ps(zrtv ziz^kO2bqlBxIH~Jb!K^5^erC}7D4;oU$hk`Wz{{D}qf@^zQb><2pt_;)XFA75mL8avs zoKB$X1~>$d3S+-v6I-vGba}%;w4HA92B~mWkr$9i!~GByI|bLq4l9-PSmCis>ZUTofxat0?uGtd9 zR5U@$@Z(j4p{Geerf8%bPbO#D%+Am6uGtx>uV+G=M>$#9*kNLE)gRV`G+v$G{fvSg z%oFzg9t*|zud5_`VGzOmxGrWhb-`57?;<$X>`iR!pR{(1e);@=elCk7ZrY|d9=`Z!bAumLfk^ss-j~b=^AOz%{>M4 zYZ4L?%uUHQWLrDm%q8!3pHJsbzfbefkUlGN5F5bFiMWcB++8m4=7vq_BYx(7&eb-J z4%O_+tIhmcQvTELnIoXhUlhw7WmzJtOU-_%G4XhH%uh%DuRuW)CFiUEY1WyHT9ejx11OEnaWFc zBH$X?NI+zb?7C;>x!qsPxC68$(=*U@dh8gdmaHEfge;T4CPJs@=Hv5!@_vpDetpWn z<~0=D1>Y6^d#3N$#oaxK5@YfYx$6v5*Yxk-tD_uTB5)(@Q<55Hv~NY*ME@~-i7r+0 z^h}TEe?o}#K?fanZK8gn%WaSPNVoiayly4!NSjVBE@9|H$J+VY0J!p-{?f=r57HFy zSJM>Nnu2)l{UA0S^WVr%bHV~uX*a?NP3DkCNm8pI9Nh;0<&8Prk+Sl(qwXK*-&KER z-{hhIn>E}Gd}r6KXVEU+{7D@YH*)s_>}jVQXL zj-$(d$sJrlC~Ih^U*TU)&tBt0Ec#&nIWaqp+VM~#v3r|3P1U8^s7o0Ej|e6z8Vriy z8;IZU#gQ*cNdYs^Ux)o9pSC-0!m5dtTV-lTJ?V zA7v8gi;=1}4f);IN5ge|c*x4eqVn!tWl4$TQF&JS)l6UAd)Zb0~ zZIv>Ng4)Vc*V9#*rwqmWXGw{Jqb(&V*`^XY0wC|_QWs?}Qy%W@oE*}yBM*vqf*hxu zSc64in5}I=|KVvFn&OUn)M#>gW#TxP5xuh8{MR36*yK%sGqmF811Q1`;5>$rT!j4O z9j`G$!OxvSHe=vC9BMi8UvB%;BBBO^_jSAur4}E1^~b~QZB z`lSKuo*dio?h%gry##z~FYd_R2S!)b4kKE5s z;@$5${~HLx_4zp{z~n{3{FtdE=hL53TMOJn{`5*?3W0nTKg)yW1k!*GABuondO{1M z_AT3=pb#$v$wBQTnux;`O-~95C5()MkX*&V4|sOnc$qf4sPhsW5iQXNVYu@$T%h9v zPd11N&LVKyK}b^E6!%>w8pCK3CCxKTZ=~VFDy1t`LBU1sDepU-&Ey$`9x^lAuJH~0 zfs8qHQUtjsdWlK3pyYqSCT-os#zRej{y5&5+sSJ?3rrI}K0YpJyy7aA{rKV&nH|L` z7tEiMlS_=KHzA8|BDVI-zz)0Of1vXCyO9bYW^gHUsFweju@cMry&uj84}Fr?@*5)j z6Fk^nEG#St5x+P$n8hY8(iulgT_jz64QKpe_3`t_ABuG4`-dveEI1XUbR&rWnip#l z=#t+V&EjBZ+S}g?r-+Y=TBtVbH;WggXiE^IHgXuC+Op&^ZEn@%!s|k@d8PQ%OA3j} zLl_`u{yWSvGB!w>oW`H)!j zys7Qy&*}_{M4rLd4fXZYQ&XKt5BK-oBgtkDL0V#rDS^9QJcn z*_esSB{uN#O#mG|sB2_~hVQL4WIzy8Vf6DN`F+YTdN`chKVe-+M#hIi9E=z{`=gDG zRA1ogRFaQusH08$GMx z67vKL3b#nh^+PYZKLD$SIC))NJ+N-NM1h#c$jC9M(6T0$J>1;b&nKoO(Qxh0N^9U> zHX2~gV<9CarQ`S@6|WH;8!J=nc(Mkg6%L`Mw~*m!laZz+UNXMDM49!<__&0C33-jR4Z}@`j0|czE!2pYwJP4+rGmIojAsqx3G@)YHYSN?@aN<}%U%Z=NV<@Uu*+#>g=X&7PaHXx*M9~X z$Ksl_^V_0g>tSN`3* za%{VD_kYGb>?FTjOs-q1rn2@LJk*7IE@o77Gh;vy#(71M!Tb?{fGE3`FXid!DMf1< z9{v*EtBlInI42V24BJ5|cpV`m82kwN7@{(s^8QvTav<-7F20voyHH*H3+&0>EHRwN zt*mdU8UGku0+}oL3sDo^yz?+RBU=DLjYZq+d;#R(&$KP_7-F?1uS2VOJggag{!g`7m~F4OxFED6kyUuN(etzVrge%opRi?gErQ0hSDuv5 zRD_KjCAYGeF#r??`d=1M0%hv%?!oWaB}cB87@HX7Xu!2V+6K0PE9G|BCKi^NOKSq< zBKTABfTjYiZxy0cF`0tc#!@ZVd<4cAyZk@e*bM&pBM7Et7}&NYA%$k1KIP?XC`g_& z)4%CySeJTwLL5In=N;JFrNNIe&#lc3Wl|jb82I#KFL^VhfB8}n5%H~n_HH%dQ#TLn z%>tBBd^lT3RFJxYqMIp#kgMYeIgnEy#0KQV?#Ey5Dqq6)Z{uHX2en*N_|?vlzss0HWcMUz zNq=}a1$Z<;XySt=f|$e`T|GUL5<)ipRwol4B)zj)61ic-%yWk8Brc=Fof9m0SS~(| zi5P{>GOtFT+xz>opfJLtgT1hGIReL#`N8!04IN$>O~n6sST4VA^_noo1C`0&Gz%`d zN+Dfjr*MbS&W+9KYJSMf!9uSHPu58>BZs~=^E<7dqfk{HSt{?}G@)TzR;86PLJ^7f zV-XI+_{t={AS5jP0;0=Bs#%A-yYkA)AKGlR4o&at-a=OrENu%RCwh}J`Otd`jN(li z3^-R6V`F35w$OldegM%3(Xc4~M65f?hhAmY=GW>418+DF^e~)24=#s%%Ip;ceSQ5X zB}MF(=nTt*n*ASY>gxH;Qxfs9MV-pd+f{J8?X1CdIJ76m`tZZ$9-NJgEbH4NDB?uK zWV@@t=<%Q678G)>52RU8wFD3$Aqc5Cv9U*gFNpfT!Ryk63cE;(zM4R)rl?=w^*ajGt;^L#z>RsJk!C?}ZhzTZ(dbWlxnZWcWfHkhE z?<)eMsd)#g*($4}&m{<#dTrv|&il8ww~2~^;9pisYN|U>L~E=@GC|bSm+H+yLN5&e zF%DkJYUXHMBNs(1rRyQaI69V6o=<#cjlkd z09wO;wEJHc=o|Lt>mtxm(|2u8*NX%x1e*d$K|7oIS**nFg!NWBRz$UEEV%|pCW^T< zw}nXT(X{VAj0_Lv=k!)ZNCvOpHvVj=bX4{hK)43pd={S1EYX~~;++9@b|3EQRd5mA z36;fRrlSn^fMxIG1nW+w4h>>%Vq$VIQ|_~w_|EtIOO6Nt!qbps65+oesmlbT5n#%C z9@c}~EUoxy8EXfng(%Uz42 zfXyR>v$waa$kE3Sxb5pQ^|rqJ$Uun2EGN z1wd3%XL=sS@vq+KE=xsh8o0M!8@(@2=V>n&tDOO7FE27LOdLU5F9#jZrx9X6Br2>4 z$yUV__*gk(CTzkx00&Aql7}REtVk`~udh`{RQFj5e?dzKC7q9g_HAu#YfOIB{8}^d z1!CLhD1FA&D|-Gyq%zdasb_QT@6$4!wX}scc`1>U$%7vYasNRCAahEv_8j#jl?@FZ z(AP0Y(uJD|h&{0EI8ZBON!j1^*zU`7#8_oARtxZsQ87VKaE!jcs`S4Kq4YKWYRh@H zef!tZzo4BDetA$*xVrn3x-OEhKU*xZ&Br`!Os}f3ni2MqLqDI%7-HI7F-zay?`0G^ zy$??)2L^`k|2hU}Xd7+sZt1MWbkbWo@L`~=M1bVobxrz_Xeie-cA8X%^(qrdXO(R8ptF8&FWri=L9 z^Uy`Wpm3{Zi-1W3CyQtwmy1YBxGhHd4=5ltT4K<_9Z6IKI-a+gh&K*8k;h~Wmm z%s;!1hN}RqgMniQ;$Ilb@m{0f@;^5E^SFwb+`oMwdgf|~=MnSWI(b=pn2VVkdZc}I z7$Ro;xWnu@yZPg|901O=TVA2y*=;5Gx?-s4rp2^5NFEvwJRi>uFAk!T`Mv5vmLSoQFm z!{7gEpCCU~z)AiMYux!=DHQ^qVEA59Qi!3XB_vyMMSzCJ^j{xl`{ggl@DCMmc~^B{ zUv8DA!o4LU_Ejc};e`tfLoaXx$`WwCx8R|9VT1?@2BE37-|v?S+>H8NbH|(c_llf- z#>KnII`Q2(UGF(M+Gx-n>$^Rz_0?8(W=It_e@N{-|o=Z%q(>;o(j5@>Y56kpTPJ?N~r+Yg8=)b3bLT@9FoC zeh|w?1~PviQ9i8tQiXf3OnT@is_PU!F~6bhjWXcP!Nm}NvyVsc(VgmT4=pxGm_#Q~ z3o&>rJmP}-r#$N2SXkfP_tVK_xl3zQi~Fwskd--7Syh8lCIdome{sPTl5@fkln62X z#p0qT{^|LV6axJtHGX+B{;jyF1a7Tpael!z9}Cr{3r6i%4x$FreeYNeKMbP@0o4Sl z11oJBRoBE7=GEhTr)l$iXpym2B`mCfjaEv^IRTNixch5@8JH|V19&?KTRd?pT5{Ou zWMO-{;kO3xhYRHyQ2i>J5NCMt7?2vEm0OXR($~`4`gc_0HMuQE`82it*FaKAGAm0) zpyWXAJFj6?%!lC6!c-|GZt^J&CUxAos`u2-r3cdbQX~KOv36?yB9cLGpr|HdsBO>7 ztNo6!i179Rv~?O~XM^#;d751?e>b;}FmNA!-!u;hIP3Eim;~Z|xqZ2{JXS8WvRWC+ zQ8|qo{wEl<3siBpBGlA4gRo~K`O9yi4T)^q-Q!Tk4>j2G(N zY^6N~Obxq&42_!I*&coq89##8@dETyw%u)io1gtvE&eGOh~n)#ok8(ng^c&zz>DP3 zJkX*|C*c`t{{H>;KdZ2c0Ac%E&@}nViFIP4!hBNdjG0bYad_%cT7MF8Xn8v1cG^*x={d_IADXczy^n z76TZB`bzQH?T^HbfSY7(DZ!))OE1D z?c;=eWMN~owYLv}0nv1@Ux&mwJGFz+%&M(V0ACT3VB?B8ci@VPw<|-5 zqN+C8Z4`}u#bR&-rdli?KMMQ>ARNZcwKb|`(gF@y?}xRLvmwXZ&PClin`tn3|Kmcp zPSLd4g-rRlS&#$PB!Ad1SHC&@J{{DTo2;8yGp3_eW!En2b^T@YAN9Z@!G@lM!iF77W&YX8Gp zdv`9jf1osU`VMom7z8~sK3Hwf!~=7G9?P_a#q#p9^~hBsrzOvPiD%Ngf_8$obW(%p zco;qm(^oNXgsG8KIrQ}iW#PPTOs6N0A_aKEQjjKaaZ|RF#^D3=>gPWEi*LnuwGAFy zoGf@13W&~zhU@F|T&bIgrX*wX``&7>XBf@!B%`L+Cd}9r#Apn3JOA(Zin=Fj-%NEj zSX%j^Daq2-tj2Es7q}GoJ+8;Up=Xmao@gAG4Avv1>~Sp)NQFE_eth`$6UrT=wZF(h zoSy}Xe&uAPp|(oAUj1VLt*T7{7!Z*9Mxw+U9oFYDD;tNTHXGUe5 zhFE<-B@Yu;fW&eLcm%_iX>QFQm}9f*@;;@Co&t=MUYqxS=(~^t_+g6VHyCF>HHy}R z701hBQxV%Rom?>-@_*41{$};w|5NmQWc;EsKaKYND7Njd`a7|w%Yt}++y#R>i#IJ8 z)$V^60QWqd8o*PZfzQIr%S#@50~^VI?tJm9(lA6A9`1Ha*!?(ESheGh*BRKCk&%#b zh%-U60tYx1ygY+bp64Cq9?9PFvf+4iJ}?zt%mV-kI4^M3V$p$}y~SEqO)o&4*VJ3B zVZr(Jec>mNNdg_41<1?vgY;uZ%RHG=ipueMhq%U!pv^ptbDUEmC`dr1k>AbD4Y=-z z3Dt5dXJ%5tRi*2i%^W+P*ksKXgNK&3VB(0MF>fdmSpFY~6sSuJm5ZUzI>};Bn2eiQ z!X8{<$_-7nU7tTRfpcONGBHFC(T{5zUa)lMm=|+txd*S#~{NT`+;S?XRST zbGS-PxEdm+6ddj5$3_9vvokQ9T;dYtt2C@(pneM*CtzmrZ~J(AZ$0P^NlZZ9DIUsO zj*c|6JUfde$(*IX25iq+;bZe3AaDn=4lF?2crGlIb(RutS!)vo%9io-MjA*%aXoK{ z4Sk+M=V*mFTN4GwRi`qX06YSmfW1=Vr!(Ooc6N5OG^YD=glF~^%a47TRKzr)eSO@q-{h6li!{`n<}x?Q z@IJS*C7!|)$!zqvU}MCQie{w$J=f-&hj~{ec|U|_3s%N@)<25|yV`&?$-%+VxSg(2 z)s5B}p_3;(j@jvBst(QMM2vLO{S8M%v;+JE{5m?aRQgWm-wYmgqZlT8e<-EBJno3C zHfEo!uQyq}w7(NM9{}*~U5jl#{GikNgztIndHFF$@NdUBD$Jcw+;2x^621R5E!MNl z>qP(m8Z4Icp{JkQ+S-Dpq-gTFE(|3qEH{3_)BsqEHW2J!U# z>P*2fL(u_{-9P%amX(QoIZhtxL&A84iW(nzdVW2H3Nq{QTA^)$JdS9cno>Q`A9^sQ z;%RSnZ&xl~3!HthGM$@T1}U2}B4f{Wu&pw4a74rf&rv?i^{n1+^8=&VXqO0w$_G;5 z#?WHGf;-W)IAEez`bolxU40m}#q#!UfEE}uZb6#n4j9Xw6?|LEv&e1MWLxj=ZMCMg zLLT2RZY1j(5FiNu*U!P9{jG-=iScI!lWv#R|I~Tp5n|-Vw3kC8UW)1e>-{)(>hdI1 zS2(7%kfsh%g@7DU?={%s!g7e#C<6&|Lz&o_nT5_r79st)8S1*I$5r^*Rrn>VYF+Ct z?w`WZ*Q3i>19}tr>XR)|9XWJ#yyerPPT+)*AF57IBM0QIQRSy6CtbD%r~h-ycRXKJ zu6kemoi*|~@&La;`Ftx^91Q4xx3{-`4>w11O|*Qf-We=-F>eHw88jBQhB(?TCycWn zlpGuY7ERmu+WZ zt9EF&wxx9O1B5)88mc@eSJOvEcJw9f4Vyu8^3eS3Y+7RWdp#{)L0;6=pVifS3w2~- z0p8vSv&|T28le4>Qhng?NpFf|vo0^X%0ZGkdJkZ(&wkQ{9j<@Gat!^OrVmNk)nu@W zkyQ?-Nl$8qcc*tbz#Oa_tItX$OGk~xVDo_$2xdv;h{$SrfhEu+Ni>fD3j{rz(#Fjc z9GKv2q>Zz-{;OuF{6$9$*9)5B_6ScA0UVK&lM^uh`Yyw9xuHIb^NX}g#$dY#sJCFa zkllKGZvx!-9>h6JNj|6KKRSgE4jG zV-{9MJ4eTcx*9i+o6fiE-A-`cy(?q6mwu6)jKQQNU1}hGXLx8G{S?mG>nb25K#E!z zOoK0>%D_Me3b1$DAC7%MFD@^OM0d!>ZRfJbYS!1U8wV^)-kxR>hh7b}@8;N^VQ^cu zgG!7;+2Nm_ei@t`uUA{2nOgfwb(M9dTSj3hdwbtExme-64PqM}1qYXPM{{$!ml<6o z?SFN)^E(_L7}?qPQYmb6k#~2bA)*K=QKG^V1J&aiTEtRHP*A3#PpYpJr#hzsYGfy3 zAg->i$;rv)7Up3201rr}GcG)0aYHKI!ZG`Li~Wg%*bIS44p_(NlDt^K&rAl%l&KM|7}*Ot^42hm_qeQTg7tj zi5dN(E%532s;E-=(KaiwenyC`U)g#})5crH;2@^9PPUfuA0;d;DO^3DZx>hwkAba= zQ)l^*sC15FZuikjXPCfz3dU@6V*|}4{)kzO6+Ilr2TwcW$fQ1=-kJ;H(D4l;@~L{X zJfW3m`Z5bwMshMRVfE$ac3#KD{ipi~x$OgBF916Nqoij&-&9Tu=BgZ_3%& zjAEyvKRf}1mo<Cskl`RGEmqJM33yn8`Q0 zuf)SxcQiIWK@shFCFmW#JP|6*aTNWr5lTa=&xOL*i)+gXGE5+sB{q60==)YK;76ta z%~i&z|22qo-GVAt63W-bNFE*yAk2&Qbu{3ZJLk?-Q4y^bt;~NsWEuyL1iq`+_y<`+ z$!(-b!)oKFg4R|toTl<}@>(QQy52X+a%x3t>V9p0c&_}xy-F_l!I+TK9OQ+0@jnyv zF2-WUhYZ>r5|h1Xr1i)ytNnw6G+J@_?DX^j|5f;1L_Bd+0%k<@&mWk#iVA_F+1T^U ztJtkq^>mwwu<0cT1a!5`sEIXC0ZG@$=c#V#z{|<#r)1UpNoV=2s$_M0RSv~X^+bMQ zE=DF;hIDy&QpLeyA>0HZ6Q&;vnMTP2KWH4?KVTDMH*#6f+fj2I9vqaG6^r=oYkGZT zDr5pdi6F9@1=M_!YV(#P3fB5B!Rs;bNPiSLCy4(EP()qJVpp3&0K zm@JJjR%po#$6Mzv*-PLm!GU3XW>iy+OdB?q(hT~$}{ zCtnc}y=%gP+REWT?sq!Szp(Yc)km3VeS{qdT|uwZUk?uTr>CdeFE+g4FjmDHF{M8p zXJMYtq6k!Eh9QxL1IpRR2z!-BD|Wk`ixRrN3QKykICEal?VPTb7ClUn>CJLW2N-Bl z3OG^G(KY5(pLPFGA|c5D5kYj?0%#5B4x9u&)y?eXmM0Ty))-xoH~plr2iBD}*!b9Z zsrR7~5j|dW4IY%Pq%TH>^vJy9F~rNpLV~~-q+yu#<;&#cr08!-v^V!uL3+VWmkX&V zQMqr>(a`}V=6?RdeL7e{N|G(v`Bf^B8yRCpu(7Hl2T1Acqh!klyoehaIk>q^iwC^K zzP_`txQs=U1ilM}5%U%;J3TZslJT$KT7;1#9zC7AG(FyVSm_W2e1{Ek`+l4uE~wpo zn~q+X_rK5Y|0#un6h#|LaVYLm)#bJNZYmT+?0zI>!A{=R3a7t4^+y$PbpQT^h@Q0S zHqir_g_n)EE&QFlyu7AnGPe)UL~khSgPzErlrJQxd_sKPMo5AP;Z@P#t_6ub-wJ?L zfbe}RN&GSgqicWqx!Q?;U@r3IU_L?}!Tm#r|8j{|DNO;5-XfC#X5@pJDIq6XH^8BR zdSa9Gc?CsLWqwmq`M;Vy2;)U_7jJnNiQb~MX{F837+N#{ek}@yyn;%Q+(`3x;|4I1 zc=d`#XoJj6F8^z0W^R%F>`X8b8a9R0!|mOj9*#1y#LrTiJvM02wlKCV>sMqXgkEVm z+A?Is*1K$nW=_Ss{T}OH<-_04hlNB@zW}9aBdzxzN69cEp0LioDlEr%1?S~Aclx7P z{?$hBt&)z8mk_MCC}Hg)f*IyB{0%`H#|I}7*`%*2r2+>}1aa*CLPbmi1w}bB+;!j{ zTj{9e+N#zGmVf5)Os=`3g!5)Jb7`T~qBz+{M@2`-$!dT9KBj!e+eyv;1tu#{Al4Y6 z+r|-;;aFQ++u8!qOmJSFGn?p;X_Q@05A7QLz(Q_Gb4hKPtFP~eJqck`G86|FXO{pF zN$rW>8Fdf*5uqpJ`B|Sa3NXK<;Gt1l-+WPGMt65nx&@zqCq{8TAr%5w6Ce&aw%;M; zM>Cy?AlI~O1xr-Zy`lfFId_@5Bq$5mJpK+3i+Js8g3Y=JSNt`+DnEZptEA#?e9TW! zQ&G!;s>ltxA|5)?WnX_q)5`SxOweU#2Ms=%?+93|FQ1!w9ZO z?SmnrxW=}*wOv;~c3eeAtO$h#(KTbAqq;OB?>*VB*otfi8na-N8UU6s3!q-#+46Z#rJYURGaj%HQO8pRaX=IB~b`qMMMi`(nspXJ(UiI@da1 zV`J2+EE*s7=O1HaC;&&w7h)TVn~9F^tmj37&-EUrjF!9;#$RkB-}rHZXlEq5yz)&L z>;CYb*XJ$XzAp$0pl-wZ?Dg11(jJ0F#mp!Y65Iha2=4a+sY0?~F!WUqCE%Fg<0GUE zm~(YG_ta3ne%;ebiWZJ4YrO)PAckmcYg=2W2Cs2RH|(y}Z&uphBCOBr&FcW&(86+N zdQwL}s%F3eE}R+l)hi=_dc%00q76R&oTcg9UB0bt zfcMSG!9KE4j!#^%y>01(904>GM@q_rV6ztLmF>4YvMn7Q@yj0k;XmTq`a0AmLSj-d zH-e^1bwb1lk!I9+%jESke0#FjBP9UTyR58C$H=d)xVSj2Eeg-s{rYXsI}eT&t?KCHfP+A}hMtq+EUWeIeb=WTVqGY3jP%D*l$Vs`D?KZQeB>1Ufry4*Y7--SIP)J)FK^2+R2X~(7S=L{ z+E>h4Zk6E^W7EG8SJv;{4szLVJ#MuF^>z4XlamRmqlp%)Z>GA-i_&x(>a82XyK~@I zB;8c5{(N~enj?mVwAqKFV zb!eGkL+Ywc7q5s!OP^XhgxQ9`=UG%|V9ZRJI-bOpA&6yj7(9DppSt44#)gJ>!cE?~ z#gp0N_C}B4>7SvGCY+bmtl7ERSgg+mYwY6q&hULXdgS;&=Zhx-Q)#EG!}V!+rQvzy z9_5%GMnoCC?#>euum9{7eeG1+U zK}F)g)F*!SmXkwH7H)YbOjbeRBV9Owl>{uBm4NmM&;_dx8$>U6dqp|^ThltEq^}z* z`y_guLw+LWiaB2nfDHfFZ(o7t?gtWUv9I}?eLSJb0BL=T-KR39*hAYhHZZ0Z3A?bk zkd>9WKGX8L<;q3O6wcCC*-!=bV=wC(A6od;XFqa6!edHos%wT)xzmiVNpMA!v6`5! z=}|FJ%JRxip9p2~DJlyJzEtK=GJJiFYgB>ssV0vj3}mf>jjD*KbltR6^ghlHM0y^T zu2=LD4h;?hW+1b#_b{u_Zw5(f9*jaV1V}N;f=Pz?!H*5eWM1C7)7PDW@nN0cFm)OF~*?HCIF#DPcZGZq_Ak=1UMWx@LLAIgMpO1nVgg&_IvFlHB};?x3d7vW;sYW|(!-Hjzj+ zaktjsQT2jHwfX__hliPd8&Xj-6Wl4J347hw+=xWxs0}%^5es+$n?I|5EAdnJxBkAN zkwHt3**(Ob8JSugV1?O=mO0$oYVx|+wopp@vz>Yq!rb@)ksmFNOz>-38uIN0rpIO3>!mjZMk zn_+$rQV61%vcpniUTXzxcQ>!CcBO7LjV`-c<9BGBE?rEg@WYKu;qB^dg|V>9{qUYf z(MLvn02q)12(SKl@_>uK{1@nGRd{8YI>vriz_|8j^=Wza$x7J&G$-IRgz|AY;I8H6 zdi8nn<>uvi73-~lu8vN`epdkRs_I7g871dQ)hC`LGGBN2*4aBdPQtEqxx?ejz4^(a zQSm$_1#zgkw6wQ=^QWPu$YA<6^zX8SQmA8NlI2nDi76=?tjB4FL;h_fgsVWVfBy$H z5dG!2-0UVHAz^=H-*E2G_HZoR;E*9EQb#L33|U446(j8R1W2D{)l5Do&bwvUi&Mn2WQR6B;WA0u z?F{Qn#(=|crBU72prmhJn}}MJ6pyD=pI9F;g^>FMQjpAhW4?EL?s2|mK;VvJ_gzOY z`)rzmhK3FTwkU7U^7N{=lPF{$*IWi>gPTl?lnd>4^Ap2m%H{0%;jwZla|lwURl*S6 z|Hd`7A2sGJ+}y5!&q>gAH(_bta#5}s@f*676NrLIQToN8edPlb*RntRwpvnE;PNbz zfN-T-@3J%cujUz;ZVrYxI+R(Tt_>VRo*r)g$@_xTBJhC3XtjB7p@si62q1C5Q-=4U zTV0F@x7jA&f6@-Wun#7Df`7Wg#7r*;4wm$b8WR`EZOmbaEqXw{XK7dT5! z)*R1d#=>Oh%1OdZVCt;kotiCB1HBwu+lWQbs^5Ki?zK?!Gpi;1uQg$?-e79P_b)Xw zvv(>NG9GGTvMz8rci?$}3G+(#13W{XYKo-4`SLPR2T5Sfb}Qq5)`(wP=bS z3t2mBYb%zBP)FET8q{Eev}PQ+nET~!_0l)~>SO?Sdt7iaHmLSR#A!8zr1S9enW7l` z-{}CT6NnS=nCoB*aTqkmyp#E{W&o)tSrj)Wb+ol-VPp9{F5+{|>UKVr(HZz-DD`ia z@Vo5ab8p^l;Xn26UpNW$@tDqe!6luaJKt~kj^o_&gNYg=7inGHANu{9)qu*TpI$p7 zSv8g;-FXqbQaE_zcm+nh#=5#=tm0jNLTEn8NYq|7Dp-e%<<9@(DgN@x<9UZBkn>@av}*QclBM4kW6Ew zPDJ>JU*;h7bxDsj$sPjxpcb3pr-FFrgp^nL|lg0=!8e3CE1(k$_f{ctdq%|N^2!%rjWA8RU* zdM`~^S7&E5(e2gd>E*?q;Qn8~G<21SarIPSgAQL^o%3>151+rT>`;X?ne^O)t&G!Q zOwGv95L^xHC9Odz@y3L@#{5Yab#J_>wH{P-zl(e~lz-I|o?5Sm5wqM%yFypNxQX8d z^-X?04cHUHs1Lzb@tSJN9JZ$aYWXb?bUTG;*f2;qL%;NYLPVf)anZno>-2I`YwzAa zI{E_&Y|t@GarJS7{1{_0DX@1K4a}3q5TJIp!-0H%X#eI1N7spOxps_%6K2ryz@}p> z@BDv1xlKl({d|1Xi*;nZBgT0&T{^qsx040F4pxSGVIgKA8j<{>hHqhiB?+oZ+|0gw zZWB``SZHsq5AP%>%Fwo(%UW!xS)1?L_13vQ36_~y$j}p2eSYc2~#p)L0 zt0v-LXYmQL&UF)s&WC<*!}jGCYPQ3 zU8tmHNJMU3oQrA<$?S^EO1VL!_$@)E0KG<$%3|%u$%2RLpU8%dym-2{F<+uSNA<1I zh)K;&(!QISMHB2%9~f-s&YrVAWP1K{P}u=&$c_F__kg@)@s2+^8+}GS8R3QZQTLIr z3&VG&MZM)p)rj30(Pv@cY@HQRJBW@aD3R+6O{AXrLD;l8LlAyT_`eZEGo7l^3^!kn zVRJt}QJY|u5%mOg%YCMiv0q|We!REr|A(}*Sh!nSZj2{%-*wS&wifgAHP7) z2QZsikXHd+{?99Zlw#Q7_a6XDCGpJS@1r$4um5a}nl<|85%1gTJCJFQ*aSZU>$C`k zJ*Fffy?ErcP#MFZs+DU-X@1j}k{Ud{=9dxz7iH-=Ir?B2U>*RD1l@e|qGcw=$8 zZcVb6;96Prf6GIMaq5;qgFb)$-GUo&3J7i`#l;(m@Wwyu5Uh zDX6GW7%6sBtio`4zfQil35v?0A-{woEear2w%vF$#7|$GP2$2#gK)18az_xP8e_zx(rDxxh#~UC?bEG~LGKA=js|rzxA8 z`Mvo}im{)BTtb{}U7TQuY-wqvOQj29tJZE>!|WWh)}vOxCTVhVES|`{=jQrvg4^Lc zW-|bsv9w$>d0NQjAMhnoJ+?^rTvuDyvse+!RxEl%T70$JCm!21^vV1qkVpUc@xx;# zB2TwGYxd3`4LiF>Bb(9dPdv5W+hhG{CF4xfKi1YWzDU2h?%_#ZwLZ$qoc&cC5)ZFId9`3Te8F}&)?aeIVuT9dHS zWq?zH3W6r4S1jMhSyDW=hm~@C` z0AoUFWq=7+hY&JIcJs(c5SLc%%-oBlrlplZ3{E{e;+@(<3Vqm9Z+(%e)@CEqPj7j@{rEPt{*rKYZ6oW6-zgBx{r&p4TqU8S4^(ZT z*b>#Dv#6)1hv{cU%VKFkX)F0g$~b@$F5v-fN-qiu>(QJvNEZe!h4^^~nwZxfK=lbC z>j`4WTChCJVIEXOPa{!Z1hH}X+mXc!(ci=9UaZCh5&%d2OX{)oViDy+ZtFv!FMZbm zzJX&bZ#@Zri4QeM7gx?g`HcRNeDDLHHYaSxnhK;U_%s?bKKNmdge*1V=BA6|1b};R zP>)M-Grpqc2?GwPX|&)WlQ?Nl9`$5+aXy)y+9|baZo6fF`iP zvza*DjnP5Vug%}5r`sKOf4rgh#Uc+8qc3bbu@Zx(amlw>!xQUH>(qtI z<3ZOnz0r4u0rLL-#{9DV zk$!85IyI^;`ypnxy%Gfn>({rPAtElz-JmJ${Fo>rfEYsd3=*6ew*T$hkGE=FVvH4f z*5dOALdlL5XtoL%63fM;GT0=7$<6_fuMBF5UwZ0C_ zwclodbWNrZdxi|{`iR@^MZEZ8OA!cH)ESMe1}0x0Vq=SxC|Kf)xg}fuTsB_Do1C6r zGF;)6Y_X$MR++W)Le7Y6qR?VW&PwmFi1sKqcA*_;AI=5C%1dagDdS6dUuN)|A!)1#P;VQjRQ#(j&3J z7F5#$d)|Jxn}S6yVQ=K;vk>RE zwdLek3?%hKl0fIrP>&BFO~zj1iM^)_@4c{~U@tE(md%5aMloBBq)2m45+4;u$A!uX z-kuny-X2eF^{GVQO(A zEG(Fq*Pq!MXaB28kiEZ&#i8>JjH?{f1OO|6rm;~N7+U%HzLJuY8{jmN_Lf68qB94u z4p4}A`_>Wg=xq1q8nxLyU=@|p=zlayNVc?S|8_iu|CNuXFyG=+PHmZ%c#ipupgK+}(GxoQC_c$^=2 z2dQ5G&(6vF`|Y=vcI7&HI&PPsqp(1XbxkHK0rU1BP0C?cw+f@Dc4{_(D( zL^rF&LSo#SC&iC;EGM9z}ZGNpK13M!x`R7brT^)z_P64su2+ak{h_jM{L( zsZ>O04!-M|byZbS%XW3ig|Z!=oUQa#^i^)n=v`lB0jON2xXZh}7rHNhGXt)Fg_pMt zs7YAVih4Hy1*oi!*mRZi7 zdDhgm*)^LSJ+I+NE>`5QN*#-ch(Bi&dbbC?boN}!@k%o4QM09Kj9|)Td?fic=Cc?= zGUERIH-<(=cRZOK=L228zn2HeuVO5yy1HDVHCpgvVhSBw=0V>7YNn-^7(JKqhM^h2 zl|MD+y*k_b#pSAuu(f{f&MTILAKPU4Q%Fc)o`<6)A<@myl69cruw+?geF^MmeT)zN3_K&kNCzIaUZN{h3D z;0tL8S>x3E4|;k=AKs+d}&3#60~^ip_eom*Crf^0jJE2KdGNsJFsjpw~<8 zPnCj5$T`2>)h+ko!@$4WW~}b!`VZ)->FIYEy#JKe2Z23-n`e$G)W}BLDiQ*eb%`#X zE5CJt0*y;7ZlW2X&c{NhDk}Cn9Z#i1NlkEW7cNT|41og}t6dsV^c=xbVKm=1-VUgB z;ZatiD_jB3RUnW1#N`TN*~v~T;d$H}lQ!x26OhM2SLLH%@wop`RlkDEA(2V}ZJwtq zzM_KcGk-D~B`-*TNVDs>*g&ZTYi*1%+8e?=rT9zcdm#g_Cn&!Zte$FY?!6o6ia z$*WfwE{`;${zlNS1~gvMC@>eAwes2rMn7Suh&KbFtALx8LA3N}uzg^k*Ga9uCvt<99cfcyJJz z_yP0ZGSf!o%eb4(xc6KpZ)YcTsN1}kr~nG6v8HV5x?IOSxR!$kW!aC||Lc>FDpP z&8M~jI{PQgkX$t+s8c`oYa!t`=%+7zzh7l&7_XW-h~DA=pfBkek9`KnxO2xfq3M7w ze!A1>HSe>rKAbkpJ^ZuI(WusT4dg2o#Jy`$d`GC08ct5?){54aT3U{djs$#XC$w;i zq_1E(2;4sl+>c_-nk->_@061Ekz-(xQ+{_cTbK<@FnJ_WHi{~LkJ&kaC{ zK<~wirytK5f#&NMgK8@`ijm^@E|59_$GnRRpBceM&+ImwU_32J2{9unjTeN17I^ps zrp=k5RLuQR(bRmSX6z*6Vtjl@k-s7FZN|OSH*U0(lW=)C@G2K};P7N9t zwvX0Mr5Opum3DWpmHzfRJCy@JtY-uTbxrvnVZBXFd4%T(@TmxKa`a z^qANgD3Q-9-q6sjmNnN+2|ct_xaYCh_&sCC#6U=#X?Ak5dz}>;85)8K#OJX#1A(ITcddIa-ziq!11L55#9}d1^!_X+o-6bhe0PM6B>Nv5ha~o}r}Ss@-yYUiEwWoM_b95U zv7FYiaJL}nUGX4! zn7xWt6p4by;}o0cBBX&)3c5H{JeDLX=AY;HtYT2i)+85;YiT|kqg#?wlkq6uiXIVq zmUVHwvQ%ZR2)qF;)zsQ*XCeej)z3*;=R-8C1m^toN9}eA)4af0AR@fKi;b3s+@Bim z(>Zctih#&UpA$gP--{OPuZN$**O{4~6yC5`EWJXfYQ7isV_%^{EFxnYiz%Piq6$+V zKXp;^3P)SC3=wcacL-Y%5RO(jT@jA2BwKnkQ zR4L}JH3wv{T%Dfs`zW5m^GEqin)2IkU=Z#k$-zt|FSqOfWHHPa7mv!%T;Bmb`$PQq z+Sy52Xk%Gk-6vaaQLyuXDD&FD45yErmMT|+-=q^P*$~Z0^wN~!xfT&%dFBk&}#k1q?KZ? zh8N%D&!1@@vb;b=4`7eNLGX-;fqv5ybg3S6@HZ$W9>TyuSm}(7DM2@z_f0oNT^Lz& z@JIkZ>vZCTmTxlN8*|GG11mbBTdX3gl*E$)l_s<@G!}E{jqgOp*C0x*B1iXojySU> z8L`-9Ba%|lS@MgseI_SgFzOeV^8zuJUOG@f6s`08D7@dF;~GqD#cD3wU$-LWmft6l zWf3tjm0M!fUL1E2eHCvy*?y0a$!ytCAZ~$&@mKM7?vc27y8hgB&KU=!+Z%ZG{Q^eV)vkC0OpK`eHV0e!Oz!<2f#Ssi`6&AE;bTC?k(A8r+4 zPt==Z!P^nTRXj9XTL4kOw$c^UGm84fMtBy#@ZE<;<`?l|_r87i-x$H#1+6~UT@)Z2S+E=6Hl<> z8hKO^Baxm99ZH-BFet?)aj2ApD^ExKEl)lPL3+s>8P8k>jI-Tkuh8g(H?UZbj*A)f zC@f_R4a}j>)n5mcIy39R*rYrMh<#$bnL$?c>MqKRR(~0&nE&|fpcERCi-XYB57`|# zyA(ZQD#@5a*S5K{MhgGu*Bd~4*MFjPuwY=JJMsumMV^{k<(}TIw)WXPamC z_K1^?P2%jIKm+rY)yn~zqQh^i8Bny->Fq#9#UX67HPc0KN9j#Xev z3eivmHWJ;849R7S#<9Xh<%JB6Ub+^r=;(2lfo6E=7^#Af_taGenk)eQ0$cpUq7UGd zhRU|-O@HX?^NK0~P5OCE41OTa)a0D|%6iO{t`9;5yvEjc3p7$XOE!*vg~L#be|KyD zSSo-$OpAzK3gArnP@c$D!IN?A-IMa{*)0G3kIV4_5_|2c@r#-N_+1SPbEit=@%)ef z+L*70&w4}<&Y>YYHsLXEv5~$1_2B&s1I_PoKEB!6Suj9jqoUY3IsJg~(a2zRz!y*y zlwj@P`~%FQfn5oBzU_MICy2;vOe$=aCSPk=T3Wz|7rxEKzz9U18BjDKtv&6VxwbBZD;@$C|rJy=9=V zB%0&B7pi#Nk3L}b%0t=d3W#N);dig#xoz!W%Oo1Y%r(C83(*i~Ou<)ZygEb8Jr~xg z2=3^pIHJqXcXyx}ONK{mG2TtyF4YY;I@CnUXNIIE^N1i3~$}fTxXi%8BG}g-~l* zP)?YRU_Rp{@Z~~l9XFq9}PyPK&gP)1des}u+o(!-1iHC=Ly%U3^ z`{v~D2})iQ6(zM)ai61f;IlrIA!gZ&0CX>KMI$34Gc)&MV@CiK^{0IOAKWA9@!g!G zsw0o>Dai*;whK{4S??Z}=ejQPp#LHK?{D(|=@VbTce$%k8DavC?k6cBQ^tS%~{oA7> z09IID{@K`AFTi8g=q|CL0LFm3`w&QzfFJr2DC%;VwTTN&9ln*I+|!1lk!t;hgOg}u zgJa+kYDf!Yf7`mZ6ULzl#hPSw9u#FvehcdkfxN$;+r)=n$C9LqWz`i1<9U|%FokGm z9@k2|K5*1@rST*yix}-xh!p@s-rn2$y|W|k zwtoEGP7kzmK2oPmrj>pKZnMoz&9X9ZriY!DD;D1eKWkEO8{dIgUp;@{&DyQlC-){I z!Ud=4In)$>(McJ=;h-22J&*fYlh{8HW2GHf-t7H~WsAUIC>5D8yzCpG^mqRx8PKK3 zNig!B9^g~V0=K9AP)6*DHr$T zH;tsB&s|4A>OT+S^&}JEFU$h)>jUGOu&s+Vwixz`V49NDoMs2(;g`qw45i|$2W$rn zl1(qN+Lm&Y-_ZV_zbWApah$6+aXga+PK9EdZ#X#yKzR_z?*Kta(TnZQy#2l3zX2o@ z8y`1$qf1e4dDc4k7;$`jycqw$hY%6ez>jQsq2bP;#!N)@A1AkG;{E#@Zp(`(y#M&% zXFT8nW0)4M%3RYmo;-y-c`Uh<@mACAg+R!vfWqoJZtT=e<&m2F?=YC;V#eEV*hv2l zG4ecc_hkm%{4J{=YT7G3!;Lj<@%l}$ul+FTYFf!TD+c0B-w_7ub&-K$gce;MqwLdZ zg6NFUdq4i$Uw!EHV?7^vZP;RWq`|>FV;(8|BKVBp%^J!FtK`4qC^~EmHHyBW(J$xp zama6X)Q|CAcww@0;0!}$juf8DXQxoR%jDmX&BYNE%3Q?flfqv&FwngSKVno}`V?hc zV&4#lp~b)h?!aHN$VW^99IsrRr9`uF)?}N`V<3D1DMScDN}4p-qOcJZR#Am~;8B@M zv=hyo@-=^v2+!JdK9CyX+>UJ}rh>I@@u!h=XwYr@m;P%JoK{Vd4&Pc*gV$!<>}SgR z!PANJ{JR4w97V@w%K3PH5?r~bI6^ zU1G&#N!I*jhsXsVsB{b=GHfyfV4tX^{&s5&xu zeQ)a?BvoA%dJs-AbOj$R{nZ`ma&C`a9YDFW37)}5f{$t0bN8T>gWiDoq4JUzH{Y?7 zuYZrej^}FScYHq@Dcr~6C9;>06dr>edDKIpGSI8D$a@tTBbE-oc!P~Zd|rUmBE8ve z|1(VB!(CSo#YXNlm|BaiHgc*ugE5dy*}w(sB{ z8ZP=RCmEAcufgk zuPp>QRCoeiLjQTHb%b|{9%^*)o%&&@<0IEI(RO{m4*NAdyMJD5qD{>-e%YI1*w{o{ zlp3vU`N(hqqQ$BAfl1I!Y@8rPuwP(Y||FNsS z5!Er1VD5;9#1xM}?~j3Oh9WAD*sV&>Pkd9lnAgvS3*EHiYH?#K>mF|^+A3t^`j(j3 zAZnAPr8N1sXun(T%2<|^;$0?u)YvGbx1*%Cba*uuH;E8cJkf6+gV=F~27b1heDbC5 zM|iKk(S@`WV+t5v`q^uXX;2*P$ZTq#7y8*FU+N0y%6-tR=a!cXXP&FErXOrhu^lKv zzvpQ9mT}{N??vpv$IVFngr3oAG+GDtD_msl{IwDI|(-JV}8T9W@QJc}8pIqw@q_9c9yQf!s_ zXLnkETJ{W=$-klhKBfG+-gKyL(5g6He#v}b*WGk!OTpzaBRjjZPBV;nD~!K5@#$LI z3><|r;qy88s#w9$4$T?QBeKzztMb&Y%a^I^a9(pEHEsCw}2$l%;dggS440H}* z#uRwcPm+-mHPqxZA{FTY2W)Fy){ub!1vpB^ltHrd6quJDfIR5gc8Rix-ChPvbR(?Q zxWGe~IbE>5AO5)St;gzrLw$bXL4Nc9_Fg`;xI-j)U-}OqI7`p`Be| zLk1HSd4d=vvd|gF>Q&gYS};nb<$BJs^3C(|{4KhNM5ECQUG+K>GKhvss-FdOcrnw? zf{F8g{#iJCLXf zF9S9GTdX)Nz{SE6fEWLD>+T5Pgn*xy;>~`(sA#Au%0#rZ_LDxy0@fLb%Pr37)gK_= zwq*yZva_{zXFzx@X4!>YWq;r~$PZe5d)PFy(V7zEU=Ki7XR3spQ!gwc0vI*NKrH}_ z3_$yUe9i$L4h{|;4jvxNBeINUIgU<5KyD&wbrnFiDY=XxHjW)GoeipMPj8>T(ph88 z^8W_BCEi$bfRJ`~n_+YG>(`l9KLAtp1dfK%4qc0jFd%jbxcPtp3P_UK)NmIvd+o^g z+uL@IudVnWGBVlY9|7?tpabaWxOag|x$3|A+4u7D0cGhO+79%?a7t-uyLs9YiHpCK zS#)pFY*Dd^3`Vk#{QmvB`D`b3&$8Qpae}6jZyA>j68*km4`4%pn65$s#zz8m3*KCG z01^edwk2Z~(7GCpZImHo>D*k^(NR;AXzeXpDE!5}e3BR0%@qgENgXXde*omss-`8* z*(u-E-ndn>8HY-t&dtpYH{706sJV8y58*;?FMjxhOhxxe?YpW%wu4r4g|L1lBusH; z>Ed1x>l_Aj$uzJ4?(!Bm2Lkaun;0NcJ5t6&z;+e+H4^fE^CLiPv(9E9HxD|8=JI<-);c%6aELAvoe#0lQWr$ z5Tvwc_aNxYY;l$kc;Fnizrnn`oE3SODgZd#YO^&y6L(Cd{=|aro*r;ZFa%v4E_G$i zwYUIn0aC44;Rg{CP-m?Cf%LA&j|5)cwD?Y0Q+9*=1mYA8y5^&Ut3o-L&dfVG#`EkT@JPzH(Tx26lv|kUEpj~EvW+o z17E&yU^)QA3{cn;IYV@MW3QtmCQ@X#mzUMGeZj%z=#uGTQJ04I>jy}Tcprko1_Q15 zxf5^880L>P2G;NmRnSnJ+P~WDlY09WfrE|TT20*Sd3|}u!@7d|*ApAHcpsYGd^amK z8jMu^dtC4hjfE8>^p|yIuQ<$A6FL*X0k3q#HVZnHy4kqE-S}iNF!ROrIy#_uCJg;e zMdtWDAb4b{V=2sj$^k*yy>se1-7&~fZ0aiHBoDTWBe^G+!4{$vg&hT8nm=p(rUB26 zHUAsD`5w#8nvJH#8qh>f!uy-9Y=sVh8T@0OtOGPEYB&nQX2--@7wSsTxl6`+SK)Ck zB`#Cb84;*xIH{Vi-bhBA(Y!h`$rA$lTfl2+2%u~LG3R?;xg_mW)6bz^)0?$k3?Fq}}s;Yzd&x>!f96(SG2-rNq%egV1Xmk_JXMvNeC9;$QlB2uXsMzmxZ#HkvS6Fi8 zA>_2VxnM&NxTb-75Sn}*-r6bwCLQkp*-%+~a~5JdzMz{cZXbBZ3cr3`{rtIhdwOrCa^*t>P=WFnHfyUeQef_g2?4p; z1n9g#pbDK+`_ae{2q*xgzq4}ToeHkmRY5x}q1nVH3{Xecfu5Wn5LkA0?Ck1#{Effu zZ|lCqK?jh+=(g2=Z+Q;}rx>D;6BXB3i1s-<+Kg}0EKNQ~J_C~I)uHG3|^$!k)Iso*q zV=H|n^YiytYi2iVO&)tp>-ZxCCQpQ==l*yJStxwt75Q!Q#7olgVl*6f-2kW>Qh#S} z#Q`!&A<^U8_&AcnN^Sh2MoaktY$9KkEyp_32UDlq+gln)Bml9~VxZS)+~}Iu+KNWd zL`$HYs?vFgh>gm~lnD6MR2#SRv);Tbf*3t9_pgt)g*y&w`f*vh7(@M4z(WY1zK81Y z9jWtMG%vs$LiyPH+0AY*rx^l{$AQ$)h0qB<30}im5L&_G&A$t`M#7q-o=r|lkXyxY zGdZD|O*+*8Ycd6LJiGC^Ie$Pjh$F|rjebF4V30aNzP!8)yiGVbIJdWK?d)v%(7Z!{ zMp}x`8ZIi0*8QLbDvak9`MteY@T)jN?2*hTKgVZ7%y9_`3vk8#Y9K-oCPmb144@(o zXv5hkn7I3pYM8fLK)^Nn6ws3d=m;#L$QZA9zn)DpwVBO;f#vWbOAeF!_s724B>ucB zmHD6N#z}To^K$Zb$)^c%`>hY9Ht=eUj|1;AL7newYve;>^a}3o0+}&KKkaGh08H*K z?TH#^Pp=pk`*=CR=5Gt9lW;u-U0YCO%M`SuXzq=PW1SEqMd)&khn;u(z$9-s-tF4# z!|b4OuDKDYEHAevi}a5R3)yCw2-X!aEtdZPPOUZgdHE91Muk>jb#=?^RxhmpMayNk zsTM3%rj`CZKt>mou7-y9qQ>RDIu-U+q4?_g;KsJ2uZ+^B3UCbwXx(*iNGixHaF}mN zbwk9(O(#*u#KZuxTOcsJ2#f^AxDoWsxD-6FF^kFigcar#LiCD#qQzW7DRI|TEYwM1 z0e~mtPHDeqO^xD?-VIZ^;2%axqCTuQvtVvKuJ; zL-^iv8c@jk`H5k(_)e^=YKbch-3M3d*WVGgIbRm%vGeM#C*e*K6z-m0ng> zEGXg}4>&oaxkryHBMdGgNH+I+o6YSM6?6YG#nh=4;vR)!V`G$SHH8!zwv0qYweL$;unCHj4K zHmbeKYWO24zE)lW$BzelTRV?(*f@FH!C!zXJyCEeaT&&ePlVS)h=!cCbsy-%xkU4S zn|RU(bVe!JcPm7fH!XOmgt77F0EgL2N`qn5W@~*tA8=}}%WqF^p8)G#04342n(89l z2Xv-UpklVtVCS|myuGu@#m@dDXvtsNTw2uu-_k?w!MR`00Xn&O+{9#egtg=1fpxyHTFf60`w(^4eZlTt#Z)WIs6m1Qu z9VJ-Ig2*jBH@2|vI|8aunvjD)`*0lpiWV(3(?U1FnYb4l{iW9pc{WBm;U&s zI8=4}!yNgEf>#CkQTNix%DyKRX#uInL0X{B(Ctl@aACR{%sp@CiaR&HF&At+ed(o#}di_e60 z+eh!WbElRMh($d|Y5ZPgeNNnS7}azN!SeeyioF3gcny?kv&6n6@BA1cVoB1HZtE&Q zWP^kG#ji?%Di}96_Zxt)_PcbKmJXSl5)hCZ>X})d25wki>F%#ErjYLSSb2tJhOG+Q zatNZTQUxc!h^N)Q!ru-h6ft5?IsP{FkVqpPQSyGog46E1SaW(GBTK4jf`md!eoUa3cw22A+$VF?FtdaSf38{-X`#|>qAD@f6HDlYXT~p7jyxD!l z$?BQ}M1b`zEpX@4>Gn&HAhU(o3^5RjG29|S^Epvn@?s3IT#mjnwO{{izora2qy(t0 zdH~G@Qdy6@D1-#)MGodiZ>C3Go#wkS7#4^@&HPJAiOBJx;{Ex6`nodH1&r0O>STC- zDxobteDoy;3P<4Wjo1AAt*5E9sf`W95oM*(X(87pNSohuuoL4?mLC|oLD$;=+tppr z=y`JaoVVTo>Kyx`Zm@r0C^in}`On2TFHsmGNHhf+o}hA%{Nm-w_~e&`KROdJ85u1x zRn*}+p_%G+gk~V4s4xc1@~$7 z+Bufh{q8X9aV#PVh1%E@q6b2t3C%Z7(qXHlBj+urYh`7xg3x$Wv6W%+OzrvV2UrP% z0%FZFHVh+lQSxW<6%{(D3s(ffW#N_<7Mhxxe88Y++*b)m?Y3X68#R0igI}Xrd{rRA z`_AVzk`9!|mfbsTf65XPADQ#YAevkD)&wzjsuH@Y#`ZSs=5!L}W+iz7t}{Bt*Pp1kdy4PO=Lw|J*sBe}@nh=dmPfi*)c_*Y))zpy1RJ>jR#2jH_BwE|-5BR3W#^CPYlc@z9kk=FW4nG>AP|}5+Ol2%&yuC#XfjIIjpa7P}Fr$(VXs?<& zIv&g2QQ%xE?uon#9WQt@>fP;cSpxqg*;1I|ckcrX*z2r~E4a8++P?>+0ZV>12B3Nu z(7XxG6>{=r%T{#<_p+X|+G=zl^L>o^6TpVO__IOUL9;*{hmv)zy^NAun^O|p9skt? zYO_9+(UqU_#7)7rAV8xk0#pcY_ZbJYqlcsgEC9m@(;dwL%|LQxK+C6+t@JEofX4dkuc)8$!U z{r{Ht901;#N3pO7al3f93>%=_+~m1&(W4&`kys!8wzFmjy8xtc?=JGiY4HLZ4S5^# zSyhpX)j{^->MCg8;CpVSVU-w@=2$dIKa5?ptSDH+iEg_Z%1}BE`VPdC+6S9F9rB(; z2kUnQ`Xg%HPMgJLyKg_W>U<0CSvkH$Vm&Q4Zgc&8l-JTCuDd%##ou-{^uc;Kor;`&9 zG6vGWux1$E@5v&qEZ?o7aNG@Gqy7GU(p^h$rZN{u53uyPPz*)=wdqc8ph52BW#W?$ z&7I@)o&xP4{q{gQ(l1Vip`Qy1-i#gReJ}+UE|rI#0yV)5L`5B*mIW&tsnZB4Yptj& zoDiN-?S;TaGO)zI-k##V6T}8lAn>$d@U__nk^sVY6RV9eSN$JP0e9rkuUT!NJ4vFw zKi_KI7yAZ0S?jS~=M=DQRIFPnbMJ(WJ|vnq0397212d|5ougLs?)$ohy9|UN-X(m$ zpH$5n6x!MI0acHa=~b~84s893Wa#||MCnTzD9%m{Mi+V@Qb{R_>o+%{BQ^nNgGWzrqebu1=i%LrKz%ZsqCu0-O&$oGUc{ zxrD8xDx8-Ii!K4Oh$vaw0{e%>IoTQh5|&dxW<+T2$?u0Wlaw?zUaS@+%FD}p&)BaV zBM^Wg)ZNqPhZC_5%2*HJK%$M1kP!HhHT(Z|9p8Oe)U1UBC~!{B;;NXRmy1IeEYjblA10Nqfy$?A@L>4>n+SYIatNLGU)aU+2!XubZ$NgZ(#BQC@FhFJkctLx6dr*mc8ynTH8(*;K zQ&I^4K&kxJDyffknjeRu0OGWxjeUb6eAb+S??&<`arKHLdLj#ts1dGH10@_dzf_4$ zm77U{VBu)T=5%_E6Vwujll`a(Jj%x0ggp?*{;uC;|9I=Vo1%gz}iH!`5gMh7*oVXSepruzNj9R{B!4P zU}xsH7jmCL4#|O%jvvgknAm3gE2bRwu96(j=);bKJuN;unRil59IURTwpW{a3me&j z)hi|517NA8hONFp^e^T0+c$3_z7%ut8Uxnr+>^?qkNS%y&{mI04JZ$M_K%ma#p%eL zm}gfjQAu0dC!nUeX5Sz(Bj)Bl1X<=<(h9hpG zfA=I+Sr69qy17BNM=-^EKXy(pvaZd7P*dAFzHW5?Z6Pm@;mO0u$S5Jf#BW#iC(|$y z7yug^(+*gG$`sIy{q;)%FjSsDSH?C?{xu0ngQ1h_=p=&%G|=%Z9p+}s0$h-K0Bbop zX%u|vw^%TeB^3k!m7lg8+mX^fzJ$Zim6frv1yZp`Gp|Vyq^})ck2D4XgSLLQqu}WX zHN?~9*+1th%ummeNMu#jh zjnI8DYAGZl*DIxYlv3QU%?yLzO}WThHx7kK_?TJW-@g+mje_V53D_6>pY#d1h_;u& zqEn!j`BJI+)dLzOsO+zc?hI@z;O^?jpUh$Dto5Z|3wn&5_E5}EbpC3-)vw-u_Oa7^ z%gl^^?&W+rU+Gv?fhv%z9R`A=vrQhH13(i+o2KGqCxx1cp9hW{)UV`06XDPs&6J8U zQA)Oiv~*N&@V3D)SNnUUi`a|oZ!-v`fGbC7yK7%25G+d<@mc;+YZuVkN?#xAeQdwl z>lWh!|1vtQZD9(!{f@tyzK@$r;LgC+ku{n90|P$*eH$o#o{(a_dq)yuOE?z-6Podx zN|{M!LIz^=EUt)e`abUB$tZLUrl#>)!9^|ZR)Hwez;Ch8{kyt`-W z(L&Kcor01#+KV&qs0!7@dc2AHc>>4Tq8+V665QpZ^5QEFl*^`qf`YQLvYMLD&CQ&Q zjDbs?;X_H{-7^pPVs(Wdu(SJYO@c{fsno%thq(vgUw;AkkR(G>zd#mOx7Yg|s;czq zd*=gZ`jSf*3N98F&%dX1Deh@_@EGy1pTK z+BNmdJ0|5mT4IM!#nv^1@7j!=j|Nd<^t*r~<=<08RY!_22B@hdCC-53bH(OjvApu_ zYVLaAa(d!J%@@Pl0>csI4chzzSYN&%eFu@Uyl8V10iCG(>Q`cfefcFyYXmPcxUqLn z8CqQVFrM(=uVv9RE~Qkg9lfh=IS)jWrtO&%^Rd-@mFFhRR-Gb0*f7qjVXn2AnttKJ zhRK!6&qQnm(*<&ozl2`vvz9DQ#U*$OXj2u3g(-uohMul=O>N!MLiH^uXjrUR)T-~} zdfx(y5|H&Dh}tOwd~6f{pXBYAOey##CP(uVpUi!-n12FpURz5`OU>tQDxzY~fzLgC zeXK0Z7$46vQT<;S&gy)pi-Uv=fUC!w-X3f{_iLgwQiY=)6H`0kgX@07pQ7V19do;2 zbu$f(kORcl*ci;)+uP9aW0REYBcg)-6#^OfeN0SIF)<+6iB+=-zdpyd3gtMOouNDP z?Y4g*FG<2_cJ>BnO5g7xm;TXl8r6F|Slve`N27t?ABC9$GyPRxoclP%~O@olH7KLBM z%-$V+&l+hQ`1!uv#M}6Y>`c0k=+vJPzIv%oT?u4_McyZvK};$@-5-o$e~Xr_j;9yN zDlZ?IW@}-FhHHSLGA(EOmjv7p{nXxwh%{lxEg-~(d%;+S^dLIZ3SuqH!;RP5tgR6c zbL?b%g%g`dU1V0C`;;%~=$MB$?$hU~UH{flx4vl5hB5C8ygKXy^tEkG!j7e#$>+!T zcwdBHKUYrEef=7HokaJ+6y+AmOQx+3Jx9F<(z9f`=bj_Sw9XHQ&fyriKy^hAgxa~MuVJ?xPaRBtHSg1l1gr~i#^=2j zsE{>N8UG;a9_Q%lLpo%<(OSVw_CaTUN(~;&px(Ltkinc|)~LoJ^lPzuQ!}>Kk~nl` zRESKWYdHhtGM?`4cVuy4VN1JNEimU`hM=4m^UV29b4^Ou@w*b@WeaZ-U_3LE_$9%U z8ZcnY{ca*azxw0$$ zYySSQki~it6}FNrA*Z0tTa1;dX|!n+y_b%)Rg3A$XjWs{57<}Q?|;HZUy*~zu1-_h zqy*%H-W9G-%VzxOOTDI(MRH4up)I5i3sheO*8xN^DD3ha{a^j^fybf{2=c5)Gbd{R ztNsNAHm-ye@BWAOt5?7kq3--k2FeEY#8ak*lUJdt(5a5#mYupdK^PkfpC_F}tG#I> zjP>{?2GZU8c8fe2)z|N(8I_$9S*-C*ZaU9onXLkOe0ay^SC*7zp&b@TRM{TS`E%0A z-bgt6H4AT22TR+@lo24Epk6%=V+_Sswi(H%5bWalE#DW}1e@lRnLgmqxZktz z;8lk>+OCIwz1nZLM2;@0gd{r8{Z32NBAG{ZtfBc5fN8DU8^(oJ?E5Lkh~Mp*;9hml z{+81YeAY~HjfZ&XbL4H)rxXu%=gs z@gI2j1j+aw55DI?c0E^pKE2aY#wYi%X0SCi`X``|r@VXjF*5-f9}yPuRD=iK_~RT> zIr{Q2(WRD(5E)A^;rhpFujEN}i0@!Ygx}9Ya)e2u8&g3;L&K*}E^7nHAm_||chcYV zN+-7#`1k5}6ke8<;UmNzreNuy%eNEYqjayGl9*3h%Fbj>t7MN;C~}n6NNM z0d)Eb4j@)xM}3NWVfsPb_Wx*|T2N7_E$U>mC7f53^0@ z_H@~Y_elWDyWGcb!KO(qBrLc#-{f&MQ%N`y9EV7)e(c zXGHsiV@*u;y9qrPMb^A8i2JRb&o(Nrol3#E)2pkwB%S+#9E^XM4`I113=#;fm9}n9Jvhhp(P_GX1DEbC$?nojERXO zXmnvJ$j+|Fse0F{pz~4=-41)(KwmrT9a6KpTJrLI1z1fI;NgL~Q#MLXTNOIZ<_EKd z$}hYoO=0Ac9$S;3?>bZQe-U+7VOd4%7M7ImZlpt6N=gur?yesYP>}9U=|;LFq#NlD zk?!v9?&eI-v-dfddV?<3nlZjH-T{));V|7D9Urm`_mkbB?;NmE-VcvvnF;X*JKIG6 zihPAJ2z0-t`>S19SiHJd8ZG(mB3=zR7}=Q;w@K7S;e^O`&xw!{^p)PAi z3v%OcYFcA(Ufxf&PPYih1Fh=eYf~08@|<8Fw{-$)EP@owoA%Sw(~+5V=NiH$2vwWO z^tYc;=X;Q~juACT`8h>(m-|+*oR3y{)cMzE4T!$h?xA5e5BF)+*1+k`r7;&X5k#R{ znO&R*h;W_{+*@N~?6$UNfPnZngo_^MP_DV7AkjpSIci2OSfRIfkh);DSt=tkGbxEa za1k!ctc7QCW@mGe*JBsMH?J&--MDAI=D;Rbz$ud~WJ zliR!Ps$6z>35nqD;OP6q!%ogblI|@|@6bsPH{|pY|0OXUzX=YV))-C2MZVhFG z*A7O%22zq9h{W}a`7aqr`*-m z=-^WXRZk!TC>c_68$*7Qe;?NGvXdQ730I;k@2&VJCt#0F-t)Us3Z zMfF#NsXPNZrtvzgKP8h$guO`oEb2EMJV;IX4$n3>aU^INImUlX)8xbV#LvQH`eO$n zW{>~&5kUK7XsGp7OUx67Ow834E^R7R&2bh3P+ zr8nAsqbDLaHy2=(CnITmX#56BHLNK$8$b8uMWhmBGHH~jfsw}ilm&=;gdtf|!AqoI zii`l@w|C_Jhyj-xxx4x~siI=E@MxoPC>!Dg{ec z5fl-!aa3Ikgy{fw#Y2koIq^DFQ>iVC3hi`Hb$-I46M9~PUuAAN z$;35h1`~Vy>k#!cJZ{SoLaAsY4`?IPth$ z3o37WCQA9SoabApQW=Aa8o^8di{{rC5{bKxw>rR)_cW=Zkj1m+eWQXn$^e=nKA!Fm zOc;6;_V&`d?i57#c~_&_M5qF`T75m{;o2*|=dxk>=ZeK5Hxw0y=(M>IIX2(1adlIh zXr$_hO~FW(K&M5O4pm>(BunZOTP`L`IbVc41{~ch2~HmKjkY}dNy4|5Cd+Wu6k1`Z z4-NpmS$}m~&K%NeI+sO2=2r*AATxy#c|;i#lhh-h+$CNl=19E2Ee=g%NB=he*R>Z0fDDSJ7xDq$W_Vkd$N|F#rQY%)6gM~*$K>-IChk=n#fi^w1Dzd|m ziT?cfOL5d{(paNySKB&mps^P?^rmJAii}(c(7#NF12)T0RR+mcLyucy(_H88Khqn2 ziowVkDJlI0wKX*zgbH5(6ed7zb^zSa-|97nYs;stF|smgu)+q5K09BxU0AJQ`z0XDvt~bX^BBG%FNOyfcEaG`km%2cp);&C;qjoz>Yy;*T5|u#X-=F)|0UZk) zb1h)4v-zdtAu0B7Z=&s~)LQUvGY<6MbwG6(>pZs03(uFqvT!q+{Bv+GLM&* z8&+L`m9epqGif;~QW6po#EN%VSlEit%ytQaXp zp-(jQUE#`8wqeJs&HBCz^D~yyw>dIJ1;a4O-rnyTM_De^f-8orL698V++Nzu`;%3o z=C0(Trmx`(ke`iqTa2lZzke%JVB!(ogXUdhK(}p#WeE~`zV&{LdZFY&>gN>yoO3V) zN^pML#0U)e368JK05@2J^NQ=u5)2@J7S?R*j`hFX-UdVva}TG!50We0wgALXU-f^J zYGA9uZF%G|`yK2Ba%_nT9To!BYieiLtc}!UOpq@ zUDmCVVL1KH8yz#mxz)`K{CyTY^z|Ds;T4SD!eFdp^~t@U1e;0#NEdMuzS{ zRaj`KZlw|2du++cRS;?E^eO6RoQBd#fp*e1QeFqX)7*HtHaKHW$cL`ZF2EyIo){mW zn3#P`;xew|4Vl9NKY4 z1WH!(Y)NnFn@IQp47$*#$x6Vc2H*M`%H9aD36|=&AZ?jcC=w8mP^^0HkUH%&B|Xlk z5D@^=n1Lr)#K;5s`s2BDTfY%DA|}g7%gk%*r0QtfoDqt+dXEz1kNZ>?<<)NARvOoX z`0=^JaN$H=nPvmDq%St1VMG?*+<3sr(2(8Nh>%fh9B$}l0B2dP320NWI3qso{L9<; zlP_Gaf=V)Kx!%9o797h~DxYvp9TwcGzg4874hMaYV2x8G@OE zfP#Td`RkDU@}d1zqYxJ}&du2Dm(aJ7KO42Z55TS$S$rj701tovaApuiCV0Ib#=5S! zKK@-Y;AF1)rjS*zW~<|MVi7JHLbdHlBY)Fs$PFPGUPfU?FBt*G7qi(FVMR4H@ZW#h zZ})}KJZODxb+z9C00evYo5Q*1QL%$58J%4;s<#HtYHAAU9FE|6saXO>iGe{unx{~{ zQ0H6YMe%@MHJWx+W7eSUeZ-jmZ7IN?2@<)QdwpFCtd=DuvQ-3}Kl*&!YM#NFCwO*_ z)ou6C0;T3(g|42*od&D1GzbM68*czBh|-%2y(TBa0pP}Zoe3BacVn({@2Hxso*G-+ z$-%6|@skZg%jEQwTsl9Tdx*};@>pbk*sE}Fi&Rh?+|KbH;86p7suKz^5p^v}va;5I zuzss>Z!UPDsidT&sM#BGxOi95e6+o$m&Ty(dX+LY`>iK|L8Oj~@mT1dk#@Sdbj*(k z-MHI|uWVYuHZsYvn~$EA3AC=voI2ZJ#CQy+%^A2}YvGXkw@>DXkHrEO_vOOmY;Q7$ zKS=0~jVaxlcXncjR>PP&v+QE6G%3@;4eNb{kW78o$zr*ag)??ss*mX+Q_?uNlH(Qa z+Bc%Cbnq7woh|w%5jwZ$QRTIcy&fWpODE>?cj`XnmkQ{`pOp3W zGty$i`+<4>-LkM*ka(9p&2qa8A{wICcCs0n>n5fPi%zY>Sm$?{1eU(uUIcXXa%BTE zH8l-TNi&Z08vf}sQlLKR{_(!3no)WpvlfS^8@C_W|BR{#VXA-^D&M2<79RSDd^Lhu zzp9&v-Er%^ot-+KuOu*?6QcqWONdJ4H^K!HZ-2~D1ETJpKiPJLCfs}C*qla}Rp0Ka zfY0^ka!z(O?#3(l2-HaUFJB7G0-B~y{Gu_?k%ld1N=)!H;d@68>+0$_^SfUGpAbu< zXX@D^nAvo7(vkTsS0i*G#WV$`Y?7b<)DSmrYUNg~Hcd|rWKp6r9cYT=XSf}7`c=lp zFqk9nW`E$>MSbeV$fAfE(3#$^Mn#dw9&mwHY(@PBE-XiW-$FhD6&2QAX-tVJAxvk) zA(A4g{z^@4cJ=Ym0?m)vs6(JAS-LwWMp|LMfi5?#VsvKFU9~O z-PJc9`dwzGJI~PYypcvjtW7d}c@O{TPk+WccW$JDhC)Q-e$y^o$e!^RTieOn_;hgf z&jv;b6BCmVw<;(#yS2`LiE4sc zn~s>4&7rBMzbB?UR%XL1ayroZ-6O}V&8GAP>h{v*Ysv4}b)&83erx`*CEgUxzo)?n zcp2Lp$J6BwO996CB`rA{>Q*c)OXUVnS4RtVS%%-e?~=`Iy1_wfM5}soXCyUqv7!`Mhl+ zrXzkoq-CuB^-tgWaQ5riSh>1oShL7wCZ@NZpfE(=`^gatm^wiL?Vr1LuI3f*cyE>Unv&tFnNZpQz+-FfhAYgvHnn%VsptGDa^rc@^**ZlR-d#{5!udojkiXTsgR725%3TyM= zYir)sye)mpX*T!~SzJdrk;67I%%EfL^dg645i%9=aZ`-V_F!w-ZSkHgQ3rj~WWe{Z zss8pB(5M3M;UC4fq;9Iy#+4^VRkJ85)$6ysup>3<^!0>|3Y#C#Wk8m~)@D}cvQR}56ncm^nE(aZ`e0uNQ#(ByXF zn&=;CB(&ur)R(au@L*GV`(c@lwEI-FC%MxQqy#`rN59VM36zUfb0DHKKM`UO;qm{p zYW>?F>28CRLjg#&-5*^$K zJ!Qr^MG1+I9PuvBF6wT)9&4NikFBdwko{#hwRIf<1)*3j=@wr*Nf>edZ?Mm`5>|Tr zeA4Iga8zzxB~_YpC}T=vNy^)?YM*LyeC5~%iFGDz4q#{j9Jo@c&T_%@0c+7`>@}iJ z7PdZ|{YPs&&D}5Az&M24mdw={l3w9Hb6mPmJDmJJs3i-2C}4#Oj|dMhzm+~Z)f)@j z8h?p}iK(=tWc@Q?P`Sqz(=M(6)}u>wp%7pw&54d@AqISi!mz`jT{8y)(Bsj{({;v@ zd!Afo&uuTRG#oP{YURyrTUFJ0Z0!1ZDAMguBS;uh1@blwRRqC>-R?%z029;v`}xB5 z5zPi8n$&~~yLXC@L0e~z{franx-e~74=q|m;owY}r17an z2*9mP+fNEFec6%WNl+j0Q0jya15Ho4Oz(;nu#dTpn8l z1?%yFuLFe?6G0B6-R8hjCFFwAs^z)wFjp!ZWqE<8_4x|8cTv2*bBdz$CkFs~;ou<3 zB#|3dBGL9ob+!N@ett#)flkYaIT%XkI{kg|6z;(68ZH`B%M z3(Fe;zmOoGY6R0M@ihplUaLc4OSQ3$NEzW;6&pgQJR}%`Eq2?4xD77}gWiGSawsiH z^P<+}-ohko(qUt%1Z`K-I^tBb{H=W&(qdQ-sJJF3xga#yVz zbXYYG=IS#1FlW}N^cx)z+X$bdgwJlP4LlQuf|0ZEvgo0l6mxmM8_tyJPoWP)g+v&N z52f*86TKx6DY`*xc0TR$FDZC#eFids_l~od8JG)wqfux6;bFuM0}V5hCL~8M!<0b3 zZ3iTWGh4*j`tM6;%&rP<^u1q4XQsRXG6nPdVeQ6K?V4AqH<#@%$o8K(7cBFE(N zv6+J@RPe8JJ7Yw$K!a6|ZwP9V^cx$2lTGRd?ee}^(#to_ukvy++E-&K1!NWRM?8-j zz4sYjJo$Mq^5BtH+<3{ggOtXtxp znWAvRea&75Guwd3MBZ)A7}7Hv!9b82z4YdRFM*U4n=G%5rM);Y-G6;T%}Ena6{gPT zD3lS?A&`?zgWA zZwI2hZX6)2253;9Ket4%Okie4SA3n=Mm^xk{gs!60Ure4FJ}=~Y&k&03=f~{{Gg-P=NpX?DSD@-U9gwc;!JWUVRC8Zb zttHGb65_a@XxAmy1vH25HPErv_&x&RN&^2HZRj29@Dms(p8236$x~9i3QYUSeeV!~ zY&H9|CN*m-jj}=^uSEZ|N!8f6`wKK-Njv|{FWmp-s9oagqNF@aw{hlPbjkqBz5Fx82FNjVE>NYiDL9DFTN)I?klKS`H% zKbt0q{?>A+fI6UE`fCME_!}PjiMLyLlB&7F+T(Q)nEk$?BF%P(Q2RGHqCdZGwfW)6 z{tA$f{DIO}&aMcmAHDqMe6gbrJg9bh!rDB5V-o?I8@J!+>E1Emu={3%->7!k(fH5D zeBhtNEiEl|c?(|pdRwa3zq*FCYCZTe3;4?Yz zzY%OWuhBPa*wKe*tYjJE6(VKL*m^|T?$ET~kK70~#S6Z+>CzgBu^7-yzt$YPVW(BK z0R@E93!aOyM}h6xl?xlm-(fs=&VF0qcGVy3)$$71@p6cPC!=d!_$<2Z3P&n!6Ur6Z z^`yVjOkG}ab?8jt&x91Eg+(ZmL~wg5wjQS@r;9+{AwhS>}NHz6Vh)1$B&KH{}0ZNe|C^FZXc z=x-O1XlayxsvO^)R-EE8sh6x&7y_O!X!meyO^y)@Lfg@8)7Q{>9dBj!7OotMRwo{^ zdcMU(us$4#X6g!lFt{xm5?2jTD$3@n%&#*Ty$(47K`}PjhJAKc8$}C|FBOL^f_BB4 zuHtZT-$3TjMOTMAtb!dguPg=olS(9Xhe>%^83;*qx*Eb{bJ3gK5H^VjJ{RZzby4E? ztoi*Lg!AX&U=Ba}K{?=jmFAycAVhV%C>s5ujJlvoWRlIa7|P|LK(mlWwzXy~;amKx zPXcy>nV_%cV0tL+UD!kxY}?~)EAc#f@Hd9M4ZM)G?!)PQSW@j7#%>%rfjNA`gU7gR6VW? z|5K%lQR6BaT->h>4#Y?z_kP(T^x7~1YBjsA^{EZ`ekN7b7KkovH4F>`dhUDM=ARWm zTUy?7aG2j;5(2{8eZNL)Y(mDixhZ=cmNT1?6S@?Sy6j*$cG0WEt@NjpAMuF;Nhq&B z=b8;>@~|@U_fHKPS4LxrdSKn0b)u;j zp#PJXAkAuP8?@f)uk>M)ki^Es_;#qj``7EzCzVW?tdcML=ctF3@kZ^Gjl>`4HSb0r{Hdn23a+-MJ%Z zB5H^`xcS2sO%-8hvg`IicSsyC#cz&2vRAT${V2**KUbe3y%=*stDCBT;<8f$1OE5# z->W&7`!l{emN6!!%h|Q1#)y7u&QVG%8J0<*&6KX#eEr;fLc5gY_ybEIb8BGRv=)Gy(0^GhBj8OL9XIN2HdXErOdN zf^WLE)-K1#_jS@S_ycw^t#B0mslvMEr>4HZY(75Y9;_Pgnvdz4kt0{Y-P9Z~JZgD(2 zH4o@3X1ScqMdM;AK2rBi9jB*ks(6Mv0Gh{SnU35AL8Z=W;`sORl}f00(h@`)2}{UA zV(1If(&G^SuOsL;V&0OQ+QlB^o8D3ugqd`@Zf}m$6FUAH^-7&DEL?6E=|{_|l_Ux- z5ZxU&ca{8xx3{-PD=L7peKgl%c92kd&!Xm!7XCN5Pb-4^l~p^?&AiJ#JoP7hv$N|* zx%vdrV>;ap{gBE5>J}JOF5$bX8)D+X66vQ+IJX{&VoJ%S>X1DA1|424zeNm@_Vf08 z{xyv50O@Z(k%g!{YFnawlwdgnZNr&%%T^BunmlBSYw>`bWHQtJr>9VgypyrFx}r?K zREd?}Cq5$eb+KW?wTh-uDd0nIZhqE7OdI!9zpk#bFs5R$ zKy6;alasptBVNWvXbrMzp+OZPPqI%(2NV$zp+fx`MshQ1Sk53u8i#dmpy>}A=U@yG zKeL0^oK~yMqXmcLLowKYGxJLOmvDbTScJkE^_$Lpn?p;k?G&RM4V|4_Gzm5qCnoHf zSj#IazI>*k@^tBc&&;v}LUSR?4j*J?x!C;+efh-dxVv^m?#4N|6DH^aCt1Zg7Vpo# z-#`&S8C%%|)n~#Q3+960_>h3y~eEImWgP!cl8nwQPiVASUh1MGf#?tikbjPdtQvBX*!q~)&eYlVSb3u2g zt$Dc_tz9jp{%;LY1Y8$8Lo1Dz2d$nD87_|@k~e~kBNx5H(>2+_Zf^5ip1nuR;#KOd zX3qEmj?>78PXu)DIgV`@yE;YlWrsyq0gNO-@*|rOXc(mV^G9uJigDkDLRk1k{kSwB z0Jfo@WrVuImDF!7Wq%*!zd8a?xCLow#BuB((J~%8uGG}jrly~>H3u)_fYUfMrFLC@C3mqf`*c_H^aW}Vew|0OeK@fF|9 z<*us2My=D&o?iV)0T!fXYf-y=Kdq0~n>O|`_WEAWlH{HacjqRxo^F6#gG$_bbJ7a% z3T_icb2^N-(e11qxgQgyV-5zmQ8mWn%};jg^>hdG`%&qryNw4G&0>|rS&~}VR==Ke zjX2n%Pojo_g>F~+lGK<9M_ooCt1wo310q7Rct56?GDshbyMGcz*QqE!%5;| z_?JJW)VEgFuHmYKDB`|PdA)%jC>d~&dd^<#IW1Q=O~}Zw8qo00`-HO0{F`hE)wkMR z8k5f@9BP}{uOd;}6*M$fWC`f3<0;6FWmG?_eqwueqoAW5Nw9x-3fT{Qsi*%mP&V-g z;B45>l?f!;r%L1Pa9zL4(ZW&Y54I3!h70U-Y=&JCg7Cv6#lKmWt<+ic9jw)q^5-dU zZeF`0Cj#$+#zyVqHKi0Vo+e6UVdPL&XbjJiPKws>$feHzC@w-_l(k4iOq66YG;ui2 zOJGAox~1MP!DusZPn5zQk)$eBYRk4N&EH@8BSLjG;Ry$pQ!YNHj$T*X{GEIT2i%Ak zpl#$b5EAVEy=VfVMBosy;5*RIg|2F#t2_-k*!;^@G#I>?Z9GY2XXWjy%Ofi-8yb_j z8H%IX*m!?$b#;Jtp0$rpJKGP6T&EG-ku;Q3pz<*Y7(S8`5l#Nl1Wo0kZ<($Qd3#k&Rkkr5kg^U(m05Y3^^LgD^U8skbAPe8g;i5N z$hFx56)h5$pYXqZjI<*r@o;l<6MnuOeRgss7xPP3UI9%@cK;OgFA`MJ!f>%Tm@^YACVTGONT;7_rbZF)N z{{A-$%da*1y|@%B$Cx``GyjD}TAVDdh zCZc2(cthRo(uE+KtSG2LRl@H3HUU}5`VsxqmVJDAob*5M(>#)8atwZ3L;s=8scna3 zr4M7_J2ZG*DV?mh_GW%cgB|ZB6$o;N@yc>bM-yzZ2hrXoO3cIOFf{!Gs5Chr=~sRJ zYObvqCAcDXkJ41v>XTndD44{l0CN0ycZrbpGabv12|=L6nPGu}@vCq%ay z@yfT$&TZf^K7*XP&?wK*D*^Wd#`jE_-;0hFM?S(`U0-s)<2Dp+>~`QA_ARB1(l58B z=*SC+jFcMqLW$YyBpMn<}ffYbaYH3@58B^2Nc3u`R$GRb3DtU9ZM<%d=HY8 z5D!_%J^Jlu8Sr(lwDLzoBi-LV?qWJ$?R<}|{VAX&x4py(KTVwUc6*<^@5wz7zPk-; zyAAVx7Jl&%+-WowKY7}}D{5?*tNzayJDGkY&3dZD{8QRI;y(y7Yz2c(x+) z#492SHVVkz_%EvC{uM#QsgG0?V_k<$As;*&Ld7G(t-)7X>0<+ zoy_OUeDCWWZx(D83lTJU>brE|yEx&yOn~D7%1@1y5tw2zd0Kjnvpv(eQ&UlidGF24 zjr9?A9ZB@fN`_O%h?tn*-utQ`Afx{C$@X)2&t>QSjtR5M3iS+1SUm)^HSh&&c;6*@ z-*upSoq`Wx$NSpM`VCB9tCyw+Fs=5BUbZTAHv z^6WWBod&kzjHv>?fx3lAtxM>!;abTR$myHTF2~0m#HMyovayA?8WlZLR;_asF@7N&d4pOWNmr=+T(Qc4QKvuSU?dyq)uz2A_@!8$I>Gq9Y*~y8YpZ}(gi?spm zJe>clE^>l^ly}!W8Q592FFsl9zItrq`U6Kk`MS?Pim#x#=6%SWuU5ZOHh(lvD|MTv zJr%GvfWBqCL47F@fSmNAxi_Q(V7>LNB>d#=+`tiRYrm&4HKRrLVwwiz& zB|$>N4R@BOM1_#p<6U*)0-{I!Ltx7vg4N>WmPPs1;ziV={**RMge^j8poMgY%d4Fb zXXjRC`SSg>u6tLo~a3Z4KkoRWdJ1v+0g$6+dePtST_fjsw)L8FJ3 zT%^TRP*Vo0~NpW!( zDy5SlL`M;Ja7^rP77M5kV#SXbi?QG3no3H9?_|RrRyN+xgUUkDPUWlowYTXb=4Iv1 zp4dd8Q@n6vT)uRQ&{MBpA@Q7}GeSUSfSI+&$d{VR-H4KQ>3UxZO3||EpkAJJX#s+i zvD!as9kc{0WiW1Pl+G3beOF#Q9<^ZxNXMTU9s3gqFs)Q$9UZspAPBk2nHdl~O(m)* zf~hRSEbubS)*P(u7SMM}<2KwG7|e>FHM{Jf#?vX}XM*7msi8UPSdik8JK5o=w})wF8)Dd0l|-+|RQAGFni zymiga=gv1X(Iv;DrO@>XzmgM_`RF`1!ot3~|UGef#=d-}L8~OS6SR|AkLX-489`(yT@{3W|Vjy=tV+ubh`;9FP;emj}o z&*Yjg)3we=-p2P4x%9r?_vkNc!X;WwfuGRPQY>6PcIOSHYLsieZCgi0XwUk0v6%fh z9qjA(=x3o(2HYss4j~ET^OdA-m1#Xy+^)%HQba;@@@cnoBVN~F^UL(QkIQU6KhQYU z$Hu}U19*P$`xJf#dt!U`i%r<< z;S@m&5DWjvdO0_$=>6bi`}M1qj770kkeK&nuTm!?$vx1$0pLW3igxPDl`quO15{sO zAqo=O{k}%#(^(XF(3y`PPn7LVKZ;+NiHyvGA0OrQm_wK868mM*Nv#t=J!!*RQE&Ah zJ#Gb!V%hs~OS*$A>R!bXu-Yfv0 zXz;mw7oc+uY1YOS$0RFbnN0qNx9FhcW8hv*Pg-0V*d!Wbgh7UC0Hd z`PmJGQ=HHQD;x*#gh+*d+yuz_v%ijIkGoc4yPv7hxRub=J&YAU|9JGNA?RJj?~=DM(GT&zDj)4qIxgJqhW!3ae!w9j!eimtl}Rp>kQq$naRwg6^Yd4NWA|+f znHeuMGI=HnV(vL?Y6nezdTe~GRE38B+k%82F3ko%>q_|41o`iuS5Y~5jxC^PUD?Y^ zK&kEGJ)p(u)UE$WOf+b9xVt^W?#W3IoDB#F>_@Gu4O8buKh*+0YW4@{ivn!^e2sQ2 z*FR8rNHS(NiW)JdV4iO=J(!e4(4U%`in+SvyyE$ARHpzi42QF}j#*DrfX)>V4DDHC z3%ExMwOO*^*J!<3MqXgf_`K|X(stg@bbel+on3Yeu%l)|Pg|^lPnQ!9*GK9iK2?8P2(6Hy=wZY*K%# zG(mSfnB|p~mB~q$t$y5OqOE*24UH@(1Uqn2!Xd}EMq`l0HAuS^;i}c$h$}hf5^04^ z5;j=oZ2!SV=jIh2p1}a8Rs}o!b?+-1p^{!bgpOmY;y;fs>2d?=J$U8OSc8FB|0_5WJ+C!K4jqn~P;!7zYJj`Iuh6vhsIyLdA!5wwmyOnKGwkw%yU;>yd@B>A zS4ujumbC`jR9cspW8k`ytt{i4R#Y1VqNI-PIKBNW@dwfB&M_szgPXIme50ShQ!Okm z9~sVQJ&BRb@Hp?ADn=M3javK=*!-xok6fdCRZ<+YO6vnRV&}*wMpwd!kEnCA84^ce z{RZh;M^!bq#C;*nP#jbCPJ&8q>*wMvOB?K@K2FJ-PO9|{Z07hK+9Y9%@Y)cm5T%&F z3C>Yg1u_w`^mkbV3$VuR3qwr-m{bf5?0kG7S?Uh@tLn#5kg_ytYU|?KpSvDWNu} zBHbN!0Ha_d0n36(UztJS!dtr*xT@*VjYo@2$aBj9xS|vZhloU5l+wW!NcO zm}9#&=aX$8yc%F@3a!J*fP{`LBPS>KNp@8iD=v2S9V{g;Iru!8UZZ;jw|{b9ZMiv( z0K^o)_JaJ4BrVn`Pe6{tqml}K#XZatyduc)aiDjXSj(5`tw%&|ySA~Xr)O|zEahL1 zJ-Vj>>c)2z8_ewGv_;CcuvgaJ{!@p@qqqc-y}h5_jn($y%~si(zw2eC>RK~K%rm4- z7gv|Zimg-AQFO>bOYtjh$ni}-+WEv5Z;uBx)LuX)&c+P4UCP|LlKVXOx5GKP`BG6%3aepp(A(~tPPd|gr!fIB<3hS=Fyh21uIfG4VCVkP} z4Vyp%MfZkMN=b=w`sJV7s^M?`%T&47)$sGvVGV(6!c0F9g{&7V*xj{jXE3|+Pxkjk zqgtNt53F17wn4)UhLV@!Z?loMmmBZPsd6EiPa@1I85!~c4Cn#2{_CBlV=Iv26B=EW zJ#I{^-Q(k)Bd~rBP8H7}$cHPdu%-T17fmYECRV9NV3P#*IPD5ZRzh`YDXMVmtrNR) zO>GU}b!=`gf24Y=Q#;rwZ4uP0&m%5IDt zB<>DX(Q|cQ)X-seP9Z~!<1Y}i1Mcn6CZQCzFxc4W=F)k;>R(e=Mrnq;?n^0cyTzafEZC2|%7>NVedh9x%AwIMWc-> zDhWBmj}X5Dww4iJ3NT4AUA?>jidO}KL8hEm<@AAoPj2Me%F;rmHD;<`k4?ThCr58t zCFdj70fDaq`3R)n^Jq14ngFWjcj0+WI!k+YjzKta88fE9G;mNK9Z7!=Da=4ZzEbwg zY6>gliWDJA^5`)>^M6ofyJ#ZA$3A61-1ZZuN=S)qbUaWO-P$`p$87K$h6aoP#S=l> z4JN6rX}Z+~!*7#_h@JqRcc&--cjDJ@e}z-hSQJ{{oYm^p7yHNiPQ&{yzTCrPtrPBB zCb-Iy2zk`!*25C}(>(hNKR&(OlD~9ujtFo9pOJQQNhyo!I1xLf7^;kj+|Tv?2pM{YirzUT@-*nY!V{EeFWEwt39Wi`upSMCwMBMlHyvs}kv-jq?P zJq@M)G1iV*IeK5vz`j0r@Min>&jQ7jd8>RpSXnG8Tzq^?Oe;5cJJO20ydD>?><`u! z)Z(T$LK5M6Dypiwst&17;QZC){rLCAYo*l_26R|eV+-Qr;4IeL=IlBt1$i-N$gvTZ7@Q7_rGE@X>7k_TK;C9e z6807{O_!S)TlNA&oP|H<(yJC4a^F;2 z=I^WhUHnhrsZ?O!CP{agRo$M5vemg`k+9)j^q%^6LwWC=(N8F=%w=Dkm8WYKJRefn z$;r#JdjQ5Ih$iL9CX)~`p7F$4E;0zcvB3t}%Em3pxpSkP&CSgQ`G(Na; zDtI%Gdyw^RzFBtH3D4%L%XP>yf#+xKwp?G<0-|tvx@; z(B@NbaCZzRhI%{oA)c< z%+$n)?PrHM);bVqT<5@#EFdN$Vqs+DcRl}nc4Tz$_nxR^WTEa)wwbBvv6~BEPYOw+ zM3J`vjFlRbM%4|t>)zdNM4c=(nE{3}Fy=>A3%~k{uiKK!P~6RK6d8^fGxLdmY<>wgUZPpi94^hm4WnKY)Du{>N|^Rpd;5i^eJ!S7yHHy zq1DI+E}VDrf0UF|NEY~GS29KrP$MT7X;AOx+h`pCX9G~cMMe887h{?}WCL11adDS` zqqYLv&0QZW|AHFb2vrO9a;Sej0xf3fDTctR1GFkrIJXwwQY8a}sP|}XBIse=)WI%ombjdA@(XN zpljMfrr4I@=oq6Qg96~j1dRh18(?=_SPD2urM+r2iA!tX$c^|+LDmUf9Rx^|wmhuMRPTt?cDw9hB~UwGdvBD|q`V>X-=6PtpSyL>3N``t)c z0p&*|Y7(OVOND^h&&m(W`wG#4)L$$~gd9RKBK{I_LU87K)Ds(!Pzbi*1+UPMa$G#% z;>JPPZ#ohOeP9TlHhs$GqYEWl${mQSdP_1>K#m%(6a?;Yq$#L*XP0}1N2M#~0YbPE z(gE%1EnrH^%8H(!_WQ$$T7}^p$KNQ@mz9?X?@WGIq=CT7F{SDuen z^g+N*r=dZgmAIh*HC(_5jbQ711v%Wv+K&)bGT?Ow=n}116+7c}HLt>iMNYyY#%{7c z5yC4y2#uXA%rXChk8%tqr$ANioB@^_ZS7N^kZDzUNX|5yIwMs30m!C@Fnf^;`h3y|*au0@B$QaU6gBm|M}E|HW@DJcPI&g=j0z0W!Oj6KHr z9ODxgYfh$9nD6sG&wXDvXYe+NU-|U!@g^e^F{1i`&*lpFc-%sYi;7o}ir0W{WMTs6 zU49rqM@0_|Yz-#2pT?7db^F3gsG(Z=lNU0AEjh=;xjXis*lCIqV{#!FF%8lHh2=Yo zBu(&4sRD2-`HYLJ^vujWk)Yd!Gs|lT2(*~~Bu7*{?~H)Jtp2{m#Z6Eg<*%l%7g#Tfz6CM3Y+RDfG+C7tjVRvw3^*_p$-t+1QtUzCpdcYdz`@UaCqr|U7ohw9>IeX9}y`k&uWlaNfLQKXm!k?)LY?y-~dQ>-?kT^2Rae{kHQJsP3e%)q#8Dv?kX* zN=z7<5x12V@W(pqhDao$GZ7g;EZ;^D6O*_(dnzgXGgtwY`|=KjOlUc5@94-5RCIB% zu>;{Gq-!;ml{*|q`qcck%8@tUw=Wh%%^uB&&OEB--rV`d3ra)y$cvdOr+gjq@L&oEnOyE`9Q2cQIaTI`& zfJ_c+Hy?osVddpIJq*3LD-%vHwsI(x|BJR3=wJ0u2yj*T8(QxD$=oIR=CAQa2`d^g zOX5YqP8>17cIcXScCC(y=rmy<^D4&1;!2)&fdqzEAS?v|@!-(ykZb*w-yX>zMK2zJ zq~zdNR#s|ves;Z1qG-yKqva7I+d1}XgFkD|;@f|`lIGrCpvR_sHBxz*g8L#C6C8bs4 zx|yt;T(gNR#Arjp0|WWyM))DId$xnL-y1{U*_M@r zz|p=5%13Wg-$BEe6DAvH%>MAb7O;J@^-c8Pz`Ud$1M7f}C*cKN4-1x^6gZ~(`HGn;))GQ8XGAoMwgBwE} zlHRJ{iqx>d_cP;@e@V9M0G7WGhJBY)&qKKW#sl&p7n6Y3_y+-?HnL)}M5+DU|25vQ z9wjQ8AR#e^;Bz_a=Zfm?@^y7C!?w4#3FJqjcS)9)>z2zS?M%tjPr%>z7;gqR0G(ji z!zv}Uc8E=XlmZfWE*=9=S1lz31o=UE*w6^VM<#P5WFY?cu)rbO3d_N5kt_M6K!69_ zZZuNoIBaopCUSiyDWA}gLK|N`MPl2XaJN0v@tSn6Y)0l|Tgb-Xz*22+Z@rarnQAr( z0hN}KcBOM|YxQSKKLnT7FJDyFB2m=?{W*4SFDb1ja;!9#*))QVysh7YNi3-Ck4yt^ zLG~_~9EkEl9UT((%gf)w*hN(NbwDBlJG=yxpfT~g0)sb8XudKM%_137)$dnI<4Sx90#dGX6}LaXes&#-sDK_Q*cJ=J zlkbzumJsg{`+YrM*sp%^;)zfdKs^fNx9_Xz|d3@`EpvFvPCI7s7< zeYHjHEE!#Sina}3b|;(ykC&TvjY(@}0K0zd^PXq+nwt1Un{tN|{g3Xy#jvkMUe{vM zWgKX|uQ|tXFr_%4tTAnmb4jG!7NI!>MBEPVho8Tn`C$l0m>8`&032oVtaQ^N@9O(k(k@2 zusg5kp6KDDdI)`l1tayT_%F?M0>?ntHMD_ki!=&~gZH*1Hp&jl`Zigli*4x9!%%2C z%it*P-meME7=l`IuhlN+{xUO=rXwE8BuPV>VwLZ6NHV%w>1IP*XTC@igG*ggRb{ck z#KiRTq^J-n&%DsQN>q@@`T_jRgUVLtd8qe&U9~KF!L#SjpU>!i!fCT9Zl^T(+w_Bx z;PkxJppmz(N65p2z4Fso8i;-CppRX`Z_b)kKce4={H8sX*e4}SnU+dv+zLpzt*wdL z))=gInt$sF9{f4ouW@m3YQK4TlSyo~IjxCBvoJ9;)_}S4$o8-bq4oQA@8hGzfdLeh zka3F3_$uM=%sm6pZ(kScfNHK=QiFud;FDUOcr1{=Po{a?D2S z_Ai-dLIjTpx0CMrC_zsyoi3}{CoM5+oZoBvzM+KOA|+KBe%dsD1nI*D#k(Sb&ytD9 z$()F)2z0$k!@G0FIk+;0hPwy)`U~4F!ItseyR>B_nR&A|S9qJ-&Hng@piSh*x%rMJ z^M_kTzt=gHzk)CQ8zO);>8n{=Xwm-h{_)WsK{B7XV|P!~fy6Y*7l`cr(e}gL-_D1t zB}c3_LjL~PcPyYE-6aNIYj~o5oI(BeaMJPTILrrk9X?0gi$FV0)TqJ#5~NKKQxMqS z6oG;{2jb+E8yv~Blx_ZA)ai}2b?NP@AO$8A}UGn=zQVtNv6t&|U?B=OMtUFn*VsnymR3_qB^ENJumE)y{_}<2IBR z10B8H{q^x%T_4tu#T4}o4cI1@MwWOv;(iF+>&@o?t`9<$I(Z!CRQ~uNe9#J-j%9;Q zkh2l~?cJOgVX)f#L6i_m7{MQKl>>ya>XUhoY-r4qK^}Z(e`2>-0O_RxFkaM0nfZ0i zn8=-oJP9uq->Y&{FML%jH~a~R5N<`jhnX*YUCto^TP!3f63Sp)k@+DmAkk~jva-^L z+p46@#>%?IbRMFFwz$Kd^>q2`DbCKU{_QXjT$GMbx~|)y%}xJQdfD>^$^?WK=`%#5ySSVTjgLold@1=-Tb=?% z$rt$LKVhY|en6a)251%*yl$^ST?U9i49|+mOi{*;Rf;Mz7i72%ApcfRm{ZirFW&Qdx?+@^1JqI9s7P46-A?LlK5@wLp0!$ zB;OU4=w8_OjrHHm$YRCcS)Kdc5Z zx3hzw2A>!?I@*JELg;tJ=y|#e{>X5*=~huu6f`xJe)|@M$3-t`KA4nikjP49m<>5P zJB32`V0!?$p6LuSebilWX`UZC?Iw`J#JxUn`XdC8T*c7R1pc0#2mNp%$A#L%jTkqQ zeiOZOh=&{8-tA_TvMsk-B;AeN1oi|nF&*XMfvz6!QWBGraq#sMmzpA1evuujG_O+tnNc&Qdkgg1ThBSx23bz|lkOU(oM>%nJ z)!$x;QPI(|@`H@b%$Ju}CY}C?`!8*LzW9JY+o#(PvC5ff19-a+1nj`!|mfH2;^E(ecce~SV zs#X_M4llt~koOruWwex1)!NF+>kkiI{!9r?B-qTI^+g1Ow|l7!ea#%kZC&y-en^u7 zD&a2i-G&ehM2I{BXs`&1(?(4|Ns$s)Z`LaNe zR|1&0{c2JmdFn@*`h1<3Oe8jr{wfMeeM7PK+TZYFh(JT)m;9BvIa3o|uPy6|4KNL* z5)SplLB|2`*fYROr~P>~^`+t<>m?{AH0&a}B8~L&Olb)y!oT+60iZcpOWgFx?5qiG zDVU?6n29$(9X^|M=E?NcyMFHh&Z(2-Z+wEBINd}UiPelNV)ZsUKNGuN9LBnt-jf`W zXLvKXj{0xnAdC6Swq7>$SLYY5?fzc3oGkxB83yij(S0-us+(MF=n4X{b;Ytqldcn*xxjZRvudP;06EUgzj zOHfhz3tjB&ob1zt68~OZn!D45QU;V2*5M-#1>bB>Z2(JyK8M+aCYCM5QzX^wD8$lvkAJL{$!?YB2vD(P*I`5l%qhbd}Z&OTkoQZ62K_l6Hcn?C` z?_&9+4V%NeYmuNP7Rm(hQV1?(T`}dva*7?V{j(iGgt=LaH|}S0eZNQ$uCL=T6+= zVuqbxp?Dq`Xp`$;NjX^Wj)=jb24rw01%dS|8G@s|p%oK|n6d4)1?d<~wUS3`@uVh&7?ry<`@O#n8QOMu> zs6V!sCSbz!v)K*EEBx6gez;I0m;5$V541n%@g{2i5wQM)B;oAsDQNzO{ZQtP{VC$P zH+A!ebRqWPf#XyX3y<{$n;rkL{X5e9!z&zExOC`Q&pGe>QR8Z!>9emungcbW{TT7G zGUPQC1qm%JE>9|@bg8&gMRkydqJX#^86puG5p=)L{N<|zYIdr3*fK<;V}^Vi5L%vk zFb#A(0F*qZWkWAp?nOO}*RQ`?84-`L3otz*32nPe%4MGBIa&F!aRjI1mT4I2v#hmZ zkBX`*szybp$e`(z$Kp%*Uy!lqKd3_%7|;cV*AS8oHN-vq0*hmM1(BJLIB_u-(0> zATQguT4=V6_?Y0F)AiZBcjRjbHa2la1~g_`Mg)W@Ec(u6qDy3mI*pTV$$0S7qzhYI zOr&+qTGnV%!+k{`jCzP?wt<0CeJIAgnU5dN>KqM+AmrmL%Nt0sSgEukJ4c}0# zoco;(g}PxbB<;Ta(qRT{{9=_U{UZaVIjTKM7EgE|04(Vyao)_PI66k&5ipWLiY!nh z>3#ns!_6;QiR$HXHq9g`g5zeZum`5aS**58rSJl+Stb{M%=Gulx<>+}qa}N3IJrV%`_;8007NBx3S%g+d-{ zVtgdp{%mBh>qSMyDhf8guSNQU{Iy~R4I7hbb=?>!W2X{)5mn^l+R&kXm^Ol~0ozt# zzQhaXfNX~?@ZtUY8_-w*>R_XK-&p^j`>=T!WgEt>?N)aWW=6@e_gU*k9tN}iq04fP z1nSpd63zTi0_)wg)WH~~bJK9E_aJ&q1Vl;}_QtFQJW2HQ2Vc@L=utD{W=CqP5Gh4w zrldfhSk@5iaA-7)S^5Y1YEi&IAc{R9yV>e+4md^SR3BhY#6@i;zns2Iw0j6BBJsO|_IzOLz|i z6!Cy%e_=~Q;Mjr`*_;AAhkO!M7|QP$sYE?;3L1+KI;^HKUrq-ll+qp8-M>fTZ*jQS z>`aMq4gp9WjEgzO-Lk(7|za z6}pry{_iiwh}hvPO8kAbZ1ho?{-tVqUQbbe?vyV77Pwds!d9&}dZM0(ULZ)3c2b*` zGhX^>kv?}Q^9bX0=|_RlksP3&gq(gKq-_X>$(H_`xK+!mOpFXZS>0{PS|orlHdj-g zRtC(0Hp`KSa2Yge!$^+HTrnWtbX$r=e?gWV&IAZk@_blA(ltLnHTJbkK?Yk}nVQ<% zcMek3liF?uD39j+Fn2?4M%97K|4oQV@i+Ks$G0S7iIgJLPQS^_Hf4;*P%fa6lne2t|7V z%m}Gpii-Y))jWUR^7-q@=|(SY@HPFPSMLUCLK4nWomQn>ua*~+rEXb&-Fme|yg=+1 z{FTlGsi}6dbDld{GUvuuN9iABL`S1XyVE3fbQKhn=3Nq5!b(&1HM5islWt}T^}zRf zquX!GCx%rS?82;6QCElFAO7W}W3V4}FxvYm)io;K;%d?|ie(d9ek#b+dHwj1d6+Jsa)fCmt$?BTZ0sg<7-FrTXTI})h4tyha-?>X2UmmiKk0m4klGLWM z+3ob4lTn$K`n$Ee4>{l&hw|@s_?cKHh)8<}8V7pH>L?qri`LO~7L=4kE+mk*`CpEl zZ4G{Jx)v;-0Qq624vA&T=OHIxujrPQ&1b>*rebGp0NRl-B3J69l+|kScaB09lS7(ie%J;0R3;OLTD}0 z2~|EZDz$k`baZT;rUu!`&`|lp0-3OO>;iy_VybjBuZ+LQ!Tc1BCnU^>R+b;8HPDI@ z;yL>%<8#OPNWcm85Em;D1Di?ZIlwexddjL3Yum6qC@Cmxj=Zgkizw7ng zpw7)@9RvPRot#pD!G;6|BDkp;SKYtCQC2(&wMImACq!uRgg{=#Jh(emg{;qlWa__N ztw%};4lW_IuLu?*HoECAn8V0#@q%6jqS;7TsH!GLZmO_{2mQ%jTWE4xs<#?7#PVGQ z!C~Uw_rg4Rk$xxmd+k{P>{%JLknZp@knPR|9vDD^ps1*dj*VVdN>EnTTq2unpvl9) ztVVx0NWt?8bD*%MDf<0Ft$D;39#W}FCPC)RhCER(dj(sx4Q$I%Pvd6aFauv^E8@I0QJz8M^Ln`fES>e^Tkz7C^pbxjY(LQ5EQ1-PW*>cbci5MC6)Zi$y`AfQ&S1$BHgVRp^c$NPY0(x4 z{GNUBB{Ycrx~8sowVD(bl#C=g?TY4U6Yk~Xv)1PK2h@9m$@%3K)dQV_BLlL7wHS-r zst4}+_Vy#-vw}c>2V7Q>=W@ziWF3GI+&IDFST}W)&!n6Q^7XQXe94;KwwQOH#@_#^ zaxWf2%_)0+a|(4`20Ws90?1yG8#xcsKuHk5WRZzqy`ZGofik^2bQ&H8Sz{mNFOrgM zuog-Q+BM!hUvq?v*2M$v3~SbEhh&wYng$=w2VEV<$}tkl`FJLlBI5@ogsHMjQ?dtx| zTFB+BK7hc=EVnu>&4Kh?oUPD$5>%;ch^qqUeJ$?}%fx||?O2t8>ZFF0ZL!-YrANc}C-*uJ7~I1$Xr98ADO= zj?oDio`I)3Y$u9>$BO&qjG3uv*lY7*5F0=Bb|B$BKntm9Cy>(( z)Kpg&YkOPi>ytj7fxKt`%~+O>^CNwTfsVoTrZU&;+^hv}-LWHkd&8IHajjoeAYvOx z^#2SoB)8p9E3=ATZ@q=X5^QYVIzab=poI|S`;KO!p8d2l)iVv=-(*?_nvl;MgkymI zg%IvR#rA<+Do@HT_DZA28&6@cGND{`L?6^2HYck#`9a=*(*1z=!1Z*n1K=3kx@fUj z)))L$x4)k7WWwNZoflu77N9t4sj6NAc@TOeG^FEx$A*`WZ|`uX;s@AJ4Np!Ee(oU! z>sUA6R&w`X!+W4aJeYOZ9e?M5=g-fiq}0wugV9wFjd*NZ^6V1aIY{S<39y*6!0Fy20Jt{U9jTUgmR@05cV!V zqvgi0VgLOGQNcc5SLSL@_mHr0wbjt$<}0Hyh7YU5+Yy?I;79|}xCB%d->^tf+AvX! zzVRGgu+9C}2lp8?4==M`YyAQ-L?RCBVD)$0*xaG(eNFMy!`78uW}Df8$N!hdIG`T(Vpz9S8k%!RiB=f z<_dZ}S6UyP4DLA3w3#427c+bjz`I5D@Tbt zXcCZeu-I5_Y@BjE=S{=@$cW5qLH+x80#^5*#GD)e;W^H8zQVW6Pf6)A4cJa?2Pw}A zist37iMJ$9LTsJ}V{lTf?ZYo0Es|!Od@1(#_p#3BUbuTr?hO+5zPm+5J^%CPpUlET z*NVydR&4EN0<1c(#_!G_j4caVTB1+0Q_VBUduxu5!ybeC;-Szk9!N(i=+SjTBp=~y z%pW_3gpLvzMomr^*cXyt|u!b(h*7l*d%q0$ACCj<-1;or4c)Cty$ z{w}>Sy7Rwtl>-}a=*s&O@XbT;s#x)hY*!ZK3SZm&qYq4{xc7VVqJps4|Kk+x2o<8O zqKhrf_@LkGNWaVwluFZTh4zmOLooJN?cQiSi!}^e?M+37)yuVNnxz)~rvo*FXD!8rd-ZPz;DB)K~p!kb2AiOTu*&gz= zr74Lmsp7TIwQ4xYqS!*i`8yh-PgnDvr^jOga#*@6t$53gDnOYo{ zVRg&PhbbhJ>gpGJLIQV&U;^rX<0A`yAL-K_S~+9FZG%XPg>dQj*Y!l+1NE;d_t$S8 z5wpn&ow-xE-9R7X+V}_V0_mm-e);0V0R@4>XTe;0dK8V`8@K57{y0a^pwHVhcCSiA+GY zuPT~=ZMeFW(;IICgYxruV+O%!loX0Oxk$rQO& zym`4(ZC%}!g$0F|6R=v#o2khr8bcb);|H?k-yb<+6MCWHH?x(r|G5h^;f9%A$bSbc z!`grE1!9rUl+l7{V5lUI<&nB|?hSKdMj9qJe(H5N*ud2th)~wV(kk2dFu>ZY%>s|# za7QCZg!|Ndo+JETpOs#=d81noAMhrbaeT)<$b~DS)Y1awM`AA;*{EW(%-7e^Nl8~f zTUwgt1l4Q`Lg?r;f)`6Wo8P`l9YNC>m|k4LEZrc@pNxf!REKzdJqJpNM6E>48rp>L zRw75ngcwLrP7SPoir_(U8_W0fc=GfJGJk+%2)IcY!=?~% z#k-EDa9X<977A`9%yPxqi~nu^LEkc3#=v%OOI`dCSg;~tlYfusR9tN7 zsSoZ6GUMCit<3^^V8I1geSpCv!=9|fW!OrRSHXOFQr;5$t&o*5t}r&??ej!rS6Z$| zF;a(D+?1{a28a^&_!n2h5x)%K9BpDMAr2BHGaumky8Z^Ph^{`Zfgo%fY%Pd=Tr)LXvE9HFL7a{8oKS+WJo z=9F<3&xC#U$&m#)(i%J(3$s2;CQxv75z20Pc@>?uXj<{przgh6=}q=t*#3H2@Q;|K zKtCH?a1h4z{Kedf`RIizG$5OdWjA0vnHBhP*AHVAax(Z?@_`ohiLKq-F`Q@TT(=UL zq%@U+F9-X#N)SW`!0n{?*nvMronHa* zg#!yJSLeOEzZ?p)Js|jkozN>lcCVq-l9MwUr_Mf%@v;v5F*NZ7#_` zDEDMMA?uFUQ6yL@Xx4)^^kmL%GM2r7b8SW#h=PPt8xNF_`etS>Iu6&z6-7n&?SEIn zPAA@docRG*J@-NWjPIh{CE3Q2jm2~M!3Pdl_3yp#iqXm|;Q{ZPFj#13Y607rlntD@ z%_p{mVkI_VO0pCeTor*M<*Q&%SYt0rNl#&I2iw+dfzp2kv zd{_zx1@*$g00Vf&e0+S0Wx{1-7PW_mhv!UeXxjZ=Y8!+|n(I{-ixmoWWBJpPeWWlD zm!lV`oc*4ADx|~>sUwe_snU~==bmCC5NYW8L;^}vd z?$=TT-{O^e6*oVIbwvzu)IJa7*Kz%xEPGru?V9FmM|Voci&=$1i%o2N!I0Wo&Y#0* zN`WR09Yd(>k(WUxZ4c3*P){{)Wva+RY;uH@j$%@59pi$Ph= z_vxW{+I9NYc3;zx#DG|m;<<*6&Yk?njiL1<%V+?=A|TiiI0rU_f5r6Z=;6^(&w~II z$(p^gae4Y@j3suEq2c@82z4o|k@USi*7%9V70t_dAb<@!2gb9*mQ>XcRRzklQM zyQhY~G;nEDJBz1I6C%IbvOFffX1zO3M^r#Vua&aoW+q2$!iPL{5~3`1I$gs>AfS1s zsgW|S@A%^EOFQe2m=G+v~0bEmukGsXN$Bj2$LR?eRyI5mIC4M)r`Okoc1_Hl<*7#{Bm?b zUS2v?#wG3fFTxkknaR=gEM6BdFAM>RV5*}=3}zA!vYB`aP13KqnFZggWf3g^>vWL4t!y5t=|e6J^tr8RdlM%KbD})AO%>bFsJ>l zaCk$-{CuufOAE=qhs^rlB|<&52#FmG*w_#R%(3{ME#`^JidI0$f|KH2tYZ~_iIW-j zcX`%pm;PIowQm*vUCgEJ8>AOKB6LM4j0XMbDmWHUajibOsmi@|IuzFT$EZBF8H+i~ zprbUyzcr~@AxJHNVq(K$Q#CFjanaoJ^XG?_7XNrFGSd#)Wsl##4$@T!>f+AhzyrSx zBrNIIn37XaylL^Ylam_&42r!<_mQu&GvO>B2Xb=urDvEv>Q;r{+U zTqgYY3>m+NhsWAt!!Mx0wzsu?Sq3*dTd5~6C&%p-lo`{+M%`CJ77+nM$?k(ACCy4o z@^%cWQyhR}d%<>gbp_HD(J(N=i`73__kpmMI$g=Y>r;R*G&I#CA;YV+9{=D)epsrO zJ3`a)y3_MQVGahm0;m>m*gj1&yd1k`Z{RJzsDsG#(h1tf3gd{EpbVg*^1R@d6kq5Y z7=kb?{=Z%qcqt{Hk^L@HO^VN9XU@TOhD^e6WjMAbq#=9D=*^IwGawf_+1WWb{02g! zgX125-1$x*>;zEO!orS{l5Mc_v{B0!@w(N~)62|mT>?!Hz=&@Oyr~EM!SnXvS^+GJ z;!NmPmyG>Oc;6o3l~-HG&g4b%mfe`}LbvF8x8zse3jQw}KjZdXU0nf*^udAs{!MwPA`vuDRSygAW|vKNRKgQJ^uxd!*oDrou)i=DJ2gmNz?+?Y4O`I4Y2)p2Z64* zlGlLC)>&OGAt>m*J4Vi~UlkXdh>nSgd5TL`kLBg<)x$S2Ixgn(7-;C{2V5DgF_dlF zW%>U0z0rV0c(z54Vyk3{Z|P369(rZ#r8|4$L3%~I5ORBAcYXZ$_=p~h4o;aP>Ga0; z?OVvp(AHKlZw3Ic)SVI!p%)VRT2$0CJ1fA%wDZj-|6eC`+DbV}LgF|Q23?IRMdD|| z*r2VQ_&DMhDibRTeZQ@>Bi>agE2Y|35T@$3d-DglE>>IrB4SmhYTnW}y^be^2Q15O z>25MxKz6Bis=mC$1~A4B_Z|1wuXnn-Lcf0f+b}87>M(D4$R|k0F$Vum8fz+@H8P}2 z^ncu{Jxk_qIwH8PtltCFR05paos{k4ILqK`BUGQ`Qg|6iUe2U@vI|hwR+p95A~@PE zGN3@LJn(+>N~?r_2#15zT-p+9FW*w%|0-{u8l#H&AFs_DC@U+271z)2wW+By7zFC; zXZ2g0ot~2QnA_U=`ogj{kB)f79rsU8a6tea0JDB<1*sI;+Rqq@OR~L@jd_d)F)3*YtxCIeaOtD0Xgaf6z6C{ zAK4raE7;KBcHiJw5X=xE!Fg22B*FSE?Cc#s)l{%?adiUoA?U#ZA!U4JLuK~iI-DvZ z3@HWI4?v@NrsU-1dwQM`5D;+RgOvpQ&cMKcom{E!D&L1hrD}(a$Wz=H6Sp9{;!pWp zp+Q?P-j)D=x?&;BNkX7Mj}4Uv-9Ao2`#)bfpp?eRVyrqO%cMHL+{i@+*)G{%y9Xz5 z6Nv6}a*jTHptz-P0}JT9cDM=jWTfgg}7Kbf#jzfP#?laN`)~^LDC> zlEcEBw)W9`cf5B6r3-wQDFl?=jNH7yVq{`qU|^&=+27M;@8mQn+4(g~aMIM&6o!O= za9>xKFX}}RO&sVy2IsnW@|;JOKNf9Y=cubG?}No;dISs!{7oyC=&aA#8=4BNcSST( zD5j)m8!&T88hX(y3eRK&cIX7v%1e)#c_4u|Oy%TMeFNwMy(($BGPs!CzP5QJKTfF1zpGQ0ro)Ti$d!J=|i^2hp9L z3NY<1X|_~Hb-ZDb{Yykx$#Z=%gizztnMvDG+P3D3m(5B;WZ{TI){RAH7G)KNij8AI z*pDckkV%5qt=#rq6J3QYjtK>yVpe&)fR(H39<$mrT0=U?-N{IAqsHk{B|W8zrgSSY>p;YR-I8PkUsh3vn- zO+*ThBcB*6gv#^ZU)ipBt=WBy&iSt_{_aFTTDd>o&~-^W7X9aT7+B!aQzeRP3PV+i zz|Dw?SdiVI69j+kt`^E<>aP=%&-ypxdQm z=08E^A+zac!>2xG;d#k6;jCD)NyiM9n9x_EVHp3ep>UtBRF=9A3xODyil^-Rcl>^u zzBKa}rCID`AD1HK7Jf^>F(}B3C_NQSbW6H%vnzy3))pWJ=+h0$rr>ZWT*2JV*3pE;7NBSstt}`Xpz1rF=*6)R|DWg7{c-P!XPId@B|RpMbs~Px#~(g^2u9xaPZM|MZ^t?;q`W2oHlE9!zpgtgJqQKp&L?T@0PrrXg8pDFcRrIZi2R z3DNTA z(GWM7;Ji+JPa-YKswJPuhD!2w-TqlD@_vB=t)~UiTs>RtJv0JO3@Uv^?@ zNKz8<%nMH&hhwN~7N~o0EHDO?6YN;0QL|v#*+vjZ7cdMz+~31gq7~Wv%Q56stC%Q| zwG9^KP|AM({F!rbq&`zPI3`6c2ANpUc001K^G?PRjr1 zoB!{_{{Mb-!4rFPb2FJObkaC)nk^Y5S`^oTU=jxRTVro%Rlz6=1BzwYdZ|~64$6|9 z9byoFq^YKsgtrJ+UyslnTQ|ZR^HzqJuKxmkpj?EpxNG6oI>k`|r35C~O(qcYmWa$~ z4J!?MIF#rI3t91QN&xA3vT8jJrF(bJNn!f$wf$a1gV?sSAk(egVUytGX=Pm9-Cf zu6BaoN+~2H1guYnhK3%>d;w!gaK9#eSRA?Nk&fU5I_5PB%h?NX#aSnq0(;FH={F!H z-;;u&u2^$uy<%><({?e@hz)>sZ4X%tAVLL*ZFmeTxQhWZcx26MY$iaagRUyN7sq zA07b@4l^M-j)gszJV9(Z)Q$VS!Zkm^-9O3`&@I$V8gzR9{<*`h$GQV8_HO>whn1ND z6ShaKM*HtkDpZXTdPwhLkx+RAn3HZ11AZyK+N3KT=+g{=oQNwbQ1#8ggb#3!a#_%0 zBVZJS@(*F{e;DcgLZN`h@U5lg+V`%xxkbx3-vl0G<0pq8NtbE|Ix0L{zT|)kAtpW_ zJbOSO^5~RRgO?ttC8+wCR2~_0%O2@5jUE`dpXuDp|9LqU^*!u&esOs3B<6Nh&vPks>^OuNy;|mC zx_-|%6qQh}81Ov-3ya_`BvtYS0H_zs5*C}!BSemQc^YqNzfgGK{rA^9DU4YTdpb3XXotW0^M3jy-*fUU<8w zlfFaVurBE_m_DpmYKwl!JUr$-*-RvQu147Z_NMh8a$|NxrJe@^Z9PvYy*>|-1GXDPqAyBSo*uy8DTB1?r)Xy8B{ zHt+Z|RB{V;(Bt4Fd{;K;nS?pMoCWvg{Nn@`n)t5vJ!iI7`H?{ z&rKpr!r|i3C8(~IyWTt%G7Ut$DWaj^L8(m9!F$PLj*9w7P&?;?hser&wBBWgFn3GH z!fe%~obarkGZ|g%-)V;`&=q1LKM|X2N}LyDmXD6b#&Q=R;}=1zMlE}AaPFDt-0cyj z=?m>&8|Wm9mopvkO05f&?%9dV9Q_~9aYQ$OsG=zHpYv6*FqyEQ@E(m|i~fb- zcKQW%A6(r2k?ruavXT=z6b%&{dF7_LkfB%+c60PJd_se=4@##Nv;^Fz&6lZ~c=YIM zYQ7@SVR;%xVW`{7@cFVhSYtf~q1a}5m=R2vrw@t?Jqv}`@+LH3d9QTpA8D_$evC&+ zO-)Tkbwo>6AWw+NN|M2VOF)xG(W_|4(c2yrB>WkFp9crwKgaAd0kv{@-J^WP01{Q7 ztg+ZRUAJ^Xgpn)W7I&Q`({@@+CX8@bgGS&Zi;UKKq|>MPw}kPx39xpzN5O(!L7rl` zKbJ#8L#IP%_8|J3%f@;#Pj#IJZ!3l9;;Nc1O_k$-Z`I18Tm@%_F-AeKu6)$@S6{i# zTn_6@|Dxgd1{*?G{*NUEUtN$>9W6BTzsD^&NZoG$Gm5w4S_jB^Nw_@p`w&Ym!HC=* z#IC_B@L(%%BX48FLdv_xYvFizeT#yGR1hOF*_P$R= zK#V*-c3xdw?FbHrNw9Wf6#346K}qdd9o{stS2_joQWs}u8mbbH4Kfy+Q1C$qP6KXZiHAUD4a;}JV z$Hz6G(-AD!1>pIS?d|P_g@ua4!!Y>kZ9YwlEBmo=21&`)`N6^Qm6Cx4vD9K8%IXRd zmJA0RMQN8cjAx5|MUq=(5o8pYPV@8g4)P{MTsTK2@V5z-mF#jz?OQu)cy|6O=`aGM zql$O+v9E&$+-AshPHo63UPY~Y9!>hn-C5IFu|*(^K=`txx3#jjIJrx|XDe;ed9}#!C^8;`uQ}U2u9_XP7jXx;jVu7iG&k zlh%HPW(V+QN!>ovyYIMbD-AYc9>DcvrcNHF$b|A4C+MF#P(GQ)DrcS5(s|k)V%`g9 z)@FMKs=%oi!&!|@<#?@uH|Ict0C=gWC@9?Y&CTmk$B~L;6UVG0^#&Y!CT?zSz`bkO z=#TBhFo>wP+3u(`qo`@V0aCPpAYgV0wT#py2zKU*0rq@m_nV|P;~$90$%nCr`dq_Z z-vX7ExVZSUXU{ay%U`~8cg}*1Q(;_x{=h#Y&=r#eWkled;1owc4gm9rs6W4OY3}hD z_jCLM3dDu^g&oO*fo1d`98R0CwPgjRj()~K6W_k7zFup_z|1U!cGke&{<*y)hX<~I3wa%Ja@#ibbcUfHnO7R!HI{&f5eG51}$<`FE4q08y_DbYbRiC zS683x3JnF3qgXrF*Uc&GcyES}EYG3)=6U7_*2m~Pvg^BFni}qP8}zyB0XEK)b< z#=2FlAnVUym&er=17wlh9s6{)dV)ObYozxJ>r)y&`lRmgfWKi%V@lQopd;#PY6GTd z8C{Oago3e)bv>W^)k+x8$hA zUXaoyTwoM5<;!=ru&w{c_-=RIK#-FdklaP8k`F}D2%Cj(l~h;9wW-sL#O32n$g(2a zqP&wgGwTcu4J|03t1_-&s{n939-cb*$HxiIt)+I%<$MYm`TlwU(|5a>X5tuG$dr36 zKc34+s!cnGB9GM`tS|ix9CnY8ePHpkb7#SIXsaDWw zSJ>Cp+m%7uAP{VmZ`_>X2O5WH4fXXSqa)m;U9{L3IPP8>w2#kKSdz(La3t}_JnzPP zsb|P=-Oh67VfX|*Z^_6@CrdFgFp{W5&L3C*t_A&F0UimoS*YRVMTIulwsrcRJ9h)IoLf_ zfN9UqFW~O(E}+?xz(>$YiDq-N^^GMQJCs*aLlwO?oONr3E?RDQd|Xu>7*UjgdD>#Q z$<3(GmLJ>b{10ZFvXXI5ZPC>Fr;5tzii&85g|R7(wW+xz(;u0cA1DYZD-*>kDZsOB zbbPpf+CU$bu+jIkc^683Ma8#<21{Glq45>aO=V_cVv-2@ z&m3U4e$8W zFv@^(LDyI(K~=#l#7tkGS<>Xa(oTEF2`MGYqojgh-kvGAooW3C&T?W`^AW@nc1w_MfV7enF&4OeAdD?I7NS663 zL%yI}&+7^pg0q#4zMf9cU2;Og#l?jzDlzjABiBI^v>SP!b}#0$DJ^|0ExcK1U`!-a{XSii)bKAFvkk)c$u(%KON`N8RUDU=J|c z(}dig0r&=&X*~cwV>N*OqpG>NxuP2zv#c+{g`H&UE^cV@FKh8ek(BGU`}-@;}n z5DlnUu75B)KfJ|51Z4*R=>K12opn@IQP=M2 z?(XjH4r%EQr4OajjUe46NXS7zQd&Bc?v@ldG$;)s-Eo)i``vGhJMNz_^svv4wdb1i zd43O=>a=@oseQ8~n}UsEpW_x#S{#f=uiW8Bvb|*PxyPQ6m-|Ea!aH zegSV;Sy`(=Jnq7@-R_gyfiC^?xP*k4jc(08S! zQA|?I`M!ngbi%U6>TFx{*viZ0!TBdFj@V6S{S24^yJS)rhQC@8Qc{u@Rr9|jcyV1N z@&%_n1i?%$B8^Tm=r+chAO;P05DLWYvp^y2f z^VH}tys0(e^W)dIetC9zId{re15NE0NWhOsr`Xv)IEasxzk3xXu zNtpO28I$lrJF)^1?9W1;z~D^8W%(QMHYvrESTotw4l=DyO~Gf>c67kQbHT{a>FMcv z`mU`r$XF<@N!Yf)BoR=U-^adp_x3JSAHISkEaQi#d~KMX4w@oB^V<(o23QbrPDYy* zFtMm583$-Adiu~{(ONK6YbYuzsKdaKezGM@E##xWnsO)XUB&w0yZc)KjKTU)xHvdG zF0;kK>pBqCW^?a6svU5Dgi2ND98N%*mCGCKpMviraU zP1X2dW_>p6`$ZQup+Z)H9q1$x{Q5nGNvNkzs0+vEcOWC-$7>{gsW;ADTb0V^q zYe1k`dGeDs0vns`0*bAdqEC=YP|I+d#b1M)D;*$WpTPRr4>Fv>Y|;)u{RuJ;*Y4V% zrWc0Ed$9vv8c43XlawX`1u2t~vSQWCuiq{RYK$jZppj*D1qB{yE_IAnI@(zx+(JTW zcO$-9V>mSjLoI$Mb3aUhL=nm{%uC+HWnSmBc>daLi$5_BU@~l28B zAE}4$_b455U6}Zs3!%dbKqXh@&9J&(CfFpUa<@M4t<&VH6bGzki1ZGHhemx|UWC z=5>V;;E|D$lgFwm?7uwaYtp`bpHI=Oi$QABc3h1@yt#!78VG2;UkCYK)cNrb@Q%m7 zCWp`cyw;zblbV_aUEev_DZgWB7q2q=4vZ)1ZTC_gg#%*!4e{R@goKbT#=POA*HEhl zh{R%E4_xHRc$$zVFsT^|lQlrKs+7+c2TB+AKEz@3a~lK1J*|w)xx13m_uSmS0D0c= zF9RCB>pZcMobwzYoh{#PrSE(W;1L$aZU^e^ z&%b`2pZ^OGUwc};k~zzqa9V2$1lXXwlYi9LfVI2TIp?Lxx?{NY)Ri{(-%oc>k7q+4 zdY%9LQBY7AO9-J@|3(Nwn0x)az`!tEE`D$GjbimzMOrOL@=5?CB)%d(qnVVX9)x~9 z!3Ce9EtL3}wByi9M4(%{<*mu^SB4!Q&sCXY%F;OAgxz2^IW3IH;HPw8%E&<&%1NBU zLjxhobg_EVWMn>vsj0mw*966#w&}!TF38^!o zwkNPx6yz7j1?b|96PrPgy83{Y*6+!3%U$x{awuk$#Fz}jV!#^4_p-gcEwHWK{XLU? zv#(!3Kp|^@pPw7`h+JkLe2ArmzP{%ntQJ&;K+A-SgY6+sCsYK7T3})EnN2l8O~m|J z*a~kHQ^xvQ++Rdv8w{$x>rjLgQ`a6n_!Kt7>im8$4`GHJY&kuF8om7H>YmqXhTa#z z+pr#MWH@E_+io-iyreMVsRsB~NPZnAkW=Nz(9v0Kk7a7hK6t%*M`hkL@uSu2MnIrP z*w!BDD4A^8|631;nOu>UJ{C|R;x$Iy%+qK|(9>WwX7qO!m)M}FM=xOq{f@V9Z%RJ` zDpL~(ZB!Wq*s z8X4RWFO_~+DfDY;G3l0zp}msB@A(cVCDs4>=P^HG60pI3HTw=KVZ>gaxx)ocqpEk8 z3l2MDIh2YPjft(Z7d~F#;NrqVNYWzInArHN`s20^<{f~O#$E)i(&PkCSwSWVuNV`V zC#L=sd_8tC>Dc;i@GS%jUpk^(CYpqZ-XAN)j4ie?h-a$-nUcfDgWqNdY^BNj9Cqv~a0z5oEaQXWg@~dckjxa9lGc!?RTTwpV){2IIT+V~Zz9NOgBW$(6N$M! zmQ(LI&y%o)=A%+u&?gv+$R{Qi^M#6#@jf8C@-U@zZWi3ZU>Pw@3jHK^C23W91pDr} z(vkp#Ok0R=6>yM6`jGzTgyxuGtCk}v{KOJ5INVhH@7ek}Jeypk#;5rIocaIxheUZ> z*n!Xfpy&nHus0{3yyhR0*5-L0#lg$X-tM)h=kCs*?d|IN&;A4H>q#0+p>ycNqM@bj zv>CkY>r=!s{}ys=#%ph`$dk{Hlc0+A(G)2Dmlhii<}hpn4-)K?J>f0|G)o8IUdVm) z_3^e2kN8wpRW;CrWSR%`ILu5;JvQrtEWK>o+P81@xILu?nn z#ii=%aB*`BVfTQ3WZ`=u%rfe%Fb)qJJ?A4R{M_vy&6PpyH2m*Zy84bUl-u7i6|l zccJva=`vzTNqS*JRs;gQ!0NFGh_l<=rhH+a{cp=aG7hBmX#1#YpHkrR>Z*5X@6R74 zm=AiChQ5w?O&bUf0^mzPra37CJN$ZoZxEK*8Xc{hE+^tpc#hNV)iemp6xkHjQ{9iJZuZb$1WU<|v6Ka&nJ=lRV`p z4b#k2jYS9Vk$22_!RQ?w9mjh>UaBB3zrJN`U}V`VEyrKFPjuiU`!0`_D+I!(?mp&su@=)O1z@}-X&W>~S zdl6^>R~A%OwpEtJb_kR{#nprqqpT*O7W;hz2syNtx*!qf-QgCK zOMeQzqc{2j|4z$jUz%u2QprGsxNuSd-6q!mUOkiN+?#SN_H9AEd>vr}sEDNPubJ)B z^B}g+AjY!tatxPOPhCL8V+E0yf9@7jQZmcS%x|R>S`jx+K};O$rf;LKYpn}}j_;bu zqs{URZ`8&(;H&Pty6A?|($f>)C(xyTa?zt-s^_qbeZdS1(H(}=HuyH|Z0(2&{VWUu zcNFM~Jv=_l9ivt7J_#0mgB!4nu3q=OUB=AaSCIC zj-6dxgy+3^kY{InUnLyEy-^ETD#VmSWVrETsninQUmF+P7ioNYo_iJoZ?(yfXsPbg zoR()%G{E-Eo&5#!4CP(It6oOC5-gL>+TN<_>guo6lyz9h(Gf*O#W&Y+NwZ>UTrcO2 zYuv6Yst&uw$OZuEDX_gg#g4eLD;6)@acOn+{a1OVx8J?uKl7c?{UnRFsKW1Ui_+Ax zGc+_cZOzK!y!ZZgG5%}DU5`#D1j{WnBZD+5P)7%k>fkmis^zxjJrr^3VAh> z;9+>m(u~FWx{62` zI%aAt8W{Y~MDEI%St)?Y7*D$DccS&5iqGNeO9*{H z4AagI$hS|xnQ^rxKE-dyDph*Td}Z?AMBHu8^F~QB$%8E1-lj1w= zm=_c@#k`zXm**UBHXT@>6crctTs@P6Xs|7zw4dBv-xA&9WNMBxe1R>~F* zxCG&+Z*QM34x?wk%6(zn42o}{-+oo}HTJ`6HRG*AbG>||{w~{}Wc3b2@*F#?yT8@O z=u!@!vxkthcJ>{88^D`&Y5U;5Bh13gK7#f8@4fAWnqQ}5!tWV5jpoqV6vKRHh)G_w z3T#3xm4w-vqT7F`OhymIZ^+Tf&F#1^mT)kMc5viXt%=YQE=2#74}oYtWtQLw3Oy}; z)>P7u#n3`h6KGXe|hdsFZYlFM4RMh!2E-meuCmjPUMM zcQ?FP9ccM7{Aq%dB{RjmK6e=Z3~*68&d%I-u~b;)`5mhr7RYEop=4c@n4nWmeQY^8 zc-aDwBA`$KRapj)c?)QJ2U%Fy*)fX<+L+_ylKmVYb$RH5^E}AWQD5}jb?)k)on1=; zeVbjP1|==6@raJdv5oB`5NJEhYq z`LDI8*uK#)7|Y<#Z<2j*6xX{b<2>W&=qI3x%a-(Y@$yQGkH;LKYsw%U&n?N#;NdlP zsT1u*+7U>Q8Ix-C_Eu6-ns+rDgn_2ouf#0T5w%er29$4;l&E}@d;xT%EQ!<8bv-== z)6;qpd!ro+3fV*>JyKmAnn9PlwKf1CH!?mR<@UV8+l}h}4)qpbC;8+lDJgXo0m5gb zhuvx?K@f8EgDm7Fu(;^kC;&U+1CF^WdNHF0n4!$UJ$cX+S7MS1Y-nTyK1e!fQDKVf z@z>&oipb^Fm8THCa(1p&=%U+-XO0q=N(Zi{(^CwSb&XFHlpq&yz>~p$$Xm3kP0TX8 zQ9``%0<0WiZ>y`Cno6={T#5WKbh;F8=i7S~w4DkxxvgKh0s69y&P&ymWi#NdtHp}_ zMg!GGxkY_x`m&sZ6Y$pfXr_+*CVq@^a`F!1(d-l?+=RLimR9j_v4M%(8~}FI*YQAb zy7LBvW>;nttI~6GlX%S6Ch2$`-kmo#H;Rf1+oTy98W%2umRRK?*$X$0pA?kj_vaPRSOuyN#Q&nU}ZHsK-{=}mXRjoNM8mXbfmYow8bMTEZ5*C&Kp<(YSQ z0CWlHDQtLI6YTCaN;fYJ6nQ@m*A`e$$1H@5g0xn|S&Ye=byTma2Pl}&RV7ka^ z&xVKzo#spA_!%Q!`Qi2U`QP`Q9A;+^L@A@`r|570$Psm3Yybnfs$%(CwJr~Y9pb{$ z&gwN{i?ZNnW@gLaB>Tft9HJ)f7WR@d(xWg6vlcgRn@iCHPtmWG}=V_bP&lp zzu4Jv|M&scxopv3nwb12BxDqCuLhe010w@S4&6jY;mS&{beAk0NPc^oPS(JZ2Fne0 zJcvXt0lp{U;BEvbJASD@ga`ZkRb^%UFDzT$?E$J4m<9Is#M*tU$O^*3L>!zM4an9U zMmL!MX+=LsZrxvCI@Qwp0aL?Gd9r&1`wle}5imuh{P;OBQ^8gOfp~Lom>c5V7Z$B_ zG?19Z#v~x%F}rVATkGyMqISdWwhMA|_YWM)9r-*VT_i*#d1hE9w_0JXt%4?HKOE); z*Xw&2d3iX-hkvxY|CUIw+8AX27T|YXt1@b{(*E|0MJg6_n>PNQX9~W3`yD7oy1Tof zjW3rLb%GQE%{3F1;j-J?1NqPczO_omI_$)IgaR1=8JBejW*^9Zfi=Vi*^!I}n+H<+ z$SpM2xq_Gx3nP?V8bYo`9=_xtcI{1LPP6b=YF`FUU6;RwrY7cDW|~u%Jo4}&O1fVz z9cc8#%8{q*=)H_f5E9Roh!jtK=rKknnuOQMJgogyPVNa~V2LM(H!Ylgt`P}QMq_no z$tz?L!AOHkU1NlhMVa_ch67&$-o^3p`Nf4PXmT2bp5XO{fK(hT6w;5b1e%#)?{5!1 zC&sgdM=5{L$B|`g9e$a5JvEn^ndvZ|Efa7_6@`15S`*?^0zdk>OlhAXORw$C;A@PJ z+~>h9RBkr{^`4i@H)sDih}2xga-pHZjg9xe=s*z~>+b9M+h@J3H`3Y3>6sp~bL<`m zTomrRjY&NJx%zzrI>r{ZCJZPakOm-0x@knx5fc#9z1tHw*A}BcJ|w@rVck5Rseku# zQlV-%R9V+b&rtWpOXYySfQ~ID0#(w*=;9>!dpxwkZ8akAs24xIa$gAb8&+{}!ENKx zz*qZ$H&jAP6(P*0g7eYN_LWskhoR^sE(MhbagS9X;)BOBcp}Gvg7?#dfscg?O?l63 zBuz7Q-hCVuYw_GY^(BAYuoPJ(5`spMWDc#4z(PcN4>ew)1gVZK3Jk9TU1VkuQy)=2 zhI)xN=)_aVQ`Z`w3A~E@9>4GK{T*awg3(7YQ;q(14LYNAisvV)HITZx_xzV2%`-iS z$pIIRN_jLkh6zMB)#b&q=YndAQ-$YQF?)OZ(o!`RkS-lVh*Vy1=W!1vz*r?^3OBo zj*Na8V@0WnpWgWLEXhB^$!5PY}l$1y1JNDsWFlb+Fa+VZXU8Wlt2k_@r5T+%% z>Str?WqY*zcJ1My)1t|Vye+sYgupWR;R0;#A@Bnxh+X7e?@mugc^zzR`vwLeKEFo% zo4g`%NAJ@|jcZQWI5-Xu_v^5*g^s{GpsVse{mFiaeQhW)-YwvCv%F)m`pp^UXv-Rx(%O=bmFBHG>eZ%nIgM*9HOXbA;@48Pj4r3v5?x~+cs?aCj0aG08 z?(wd=^JL(7=s0`9vjf~RJeD11U-=Q;irqqV*hq4Kv8R0G%{h;Trq}~;Cp_}Ubmm(6 zDf&Sm)BCd(J3n%hrl&*|gPs|8VEyMd_9IZF3eu(!(G(LGcYl)f z^tj-VyQS9jENJr>?ewu%_Fm!b+ZXEUoKiLG$yN!)AYw)ZypYmbu!(=p%*3xCN{Gza zaZQFRgu7I^9EaC(SQGWiDqFr!i0Q+FiaW9tf7;w6Vj`c@AX;3U_D_81(sFU(G4gR5 z4G#-1vjm0~gPtG#Ze1^|Qb1_yClO}~5`paaTQUhJrd9s~-`!?5A}Sbd%O;+Ysvptr zpCWMy@Hm+aC{T1cwsRq`f2sCi^MPK4Gq9UfNJ>4d7xcF7Rd?{%^|D_JSh0dkL zzj)CZ_#1n(=R5lr-bWtO+tVGH=r9Dtemni-(4BD4u;xVc&>-aytt=@mk6GPO#zKo# zufXG*ozGX7)}rTHnPE|g!+=<2WNgfc8Ddr>BY?nI+I4fbi+hI71oh@$IMo*9YquH= z&A}DXty!L$!bu5w4AT9etEw7%FlRRgAwoR|~nQ9OhGpWC(Pjyyii%4UYExtA|NCRFe40BRRtAw%h zb1%OZ)#2e0QTEIf;x~>5H6Lxftm*P8k&#d|azz6B zE3@0bedIKN_4oX(E-&xHKrP=QCWd`5HZ+_>*HWV=;Oy&hlkQ*p~EWqk+*leAMf9i4X$^` zT1|tX)s2L`8A3wBYa-;D@GACz0RR2{{f)OoB$L%oR#_1ba7KegMNDcUJvvp&ST@kW zZrL}WK2jZ4y&pb@%JGG~o_8D)wNnGkyF|)){@^=&iVf8!E0-h3tGkqavW(cR31UHbZc5c05Kj~r?@_M&_qW-7d@uP%0W?*(S%}x< z8(ch`wxS9)4$gpbb6r7Q4$soe4=a-ZKCF$Z?kxbSSJM7H0{1bosY&EI2DV=fBop}_ zjTTIplPTf&y2h3nIe`b^xR=!8?>3ij>W?+~y^BgT6G1aH_wVi@7dN+b@P_!gD)2WU5brw1<-Z=c%9=KDQ35 zuTQFW^)>dD-e+PhX+SEm_!O?=f`b4=q|iG5yW1Mv(7?)N6W?9(jNNy`LqT{&4>A7RW(1pSnHV~p1GL^ju@M@c+I)n3&7?Z|3!hs33=t1VCJQc zbrX0e6EcdE-tx@X^_YQVrkdZToSnY{C*{4mB}9l_7)2P%bBu=UVz*$I9tcNvrFP}ZC)Ra*jqeqFrZc( z;l|+!Q1jUz1amHa`?QA->&G8@K{cwQtSm(2n- zf#t(~&Xg44_h?IlWi4g}GhQBvy3>u(3kwgwf4J8@bDESM$)SB})*Rbvq-`6J2|JAaBe6H4-i?`lIfRW+9x)kn`uOs30_ln+Iv?>hk*&_#Qkw?9DqY%x<9*DoiNI_FiYp*bMw)R+kS81D((g z84W5OlZ;xI9UI9EZp#i^c9O>a_>-3ne%%F;F-nS7N0Twumhs+!Ymb4hAU`8NNp_$J zfH+S;Ewdq*`*8UF&r*KU2DY{@$n4uaf-1f#uZUMy<1bww|5aJ*mry_Ovy?e63GN(3e9TS69W}8sOjcFBS|$0VM58c)if9CJc<0ccX zbVI|M^z4*6uzBWkJv4|&#c-gGry8+#dEnTX<1|D?B_%kVj*i}|s}CWZ}01S6~aAE8qs|p z3#3M;v8;SAzKcmV^EJz`i`xM)IwmQXm!};P0m0sgohc_34&Ji>>*2wgNZN!Jf%Dq! zZ5A<&er9HvzFb%ig^v+XJD0*Hf*;R-GGXj!&=-`FmFCSpKNcIsUfg08mEw(K*gtnN zsF}85`H-b2t&^B;!aY|Mp+=)I;orrX%M-_Ph=>;7R z9k;X9PD{0cH+5SuQf?55v5@jb^M@wb*TEF#=0$}>gso?g9rrsR9ul3O$=q^_F`q5o ztl>h+O_LIZnA{Em1K0muf1en4%VXT&Ys9%1mHE3HLm&bz%;KNfOoT^-B%Yl$Y8-uw zQ3Vi_x3ho=(f##{%;u!49gD~1(cGu|_c@Xuxh()yXP#ep5aDP*t7Rkf(J;SvVD1875{_q}%4k#PV>eX#?a&preWs;Xq+wV{NJx;(ldCgI?L=~>+f8=ZFUwY+_Qo%> zklOV&po)$9RQPq^7~K@>St*y`zUhW8qt8B* z??HOS#Z?3>W_zxgt8ZVz^>canoC+xh7TT+*(Y57-O!x!Z?K+un7ga7m%Wtu2asP%; zAdlC2CCt_Lb_|T%T31XbiCquyfEYPfI8pbKk$ou zz(=;`>MiN(Nq~>X=2%T1HRyRM7u3C{U&05A$A||Mw++qHy9@#XLdMz^Tuej-U*G0m zzX%ez*c6qNA^Tm^XpU@XoBUt$nkTaP1x;?O;>63`4m|$_L3|9Oh7!9-N1qbyfBPn; z=Fzeu{T9TMLEY9#*jTH&VqFCKL{RQBJ$ELWn;Su3${zrO19`Y6`ux0+)APi; z0Oas#ipu11V?=SVk1J36#-2`tbd`Z|u0~Q%hX)@GHz_f`cXAtvFDbuWsCl(NegFBs zja!=Qimgi^xB1uTUieCrS_rtqD~zhtR5iQpWyn4U{G();gapHV`W&>`+W56LzqY!Q zR#4SX5sAuCNV>T+Y}SO_IpTWOzr5Cvu51>H^o=x^s(a1aiKtfA42YyJsh9Xi`}_L~ z1Nnb<*UO=j0efvW2!mXnk{ibpF$S$EFaD-dAS)e&G00-EExH5e=RV)mhhiGF{3W`AA^7Ks3V z|5&BLVf2+gd{{GA-TWqJE z>Ms98W{V?rHvE9_>}4|z3T@dlA+u>1ObiPTixAEn%_lD@vbv&`la&>+|#+LqMX6Z+B~YT(>VR0Q^+v$ExV<=CAmQqRZ{o%VoZlhTIlvP6oDfSc4XXQg;40L1Q#cCkPM(poLo{& zzTywpO2?O!m>By$cEGKowDj4;&gX~h@18Vk?E#PX$lw-~SNYx|=aL%D8c2ycBPL?c z$XIxs2Ot40c4ziNw4WFS1Tc0yZbr7WbsTf4LNzyEc3LAYmkB%0TggNSQ+S0!w-Nc0 zB_$=Nu=&1p5us4C*kUO&47vZ6l${6`mF(0^2#0PII}=t!v58>a+Y#$p+4UI2v!nA% zicM`R&DkhNsq7w5^pXG~BrBt3a`Zwg#^>}MpHB$E_;1cd1tbK-#Gb8D$e{$%h{q$b zq4PgVOSJ=zFW>z(q*umQ%fllj_!(TM6k>a6>2oKt?eTn};x0Z1t>-n@_{?z1U|MLB zvR1-+VmD_nZza)1^Ly6VvR{uBZ=IJ=!E(?fa3hkm$!UdvjL5{$9N1zqL3?;-hZJkd z!I_bR-&D9*zK$b=Ey2pAhk=!8m*HO7);F{oYt-T+V1Fy;;D7lQoPdpT{ z|HkP}k6KbA$r;5b0%94@ISr?Rp5ETFhp!sP(?1c=i$a3w?V}|bP>w4Znt2MkMj~QK z*w-y%7B;$Bl>cgkqTAL8QDf=4sQ=(rA~MP3E7!?1Q!QFwn;GR~k?`3|`QkWVxiyOZ zQHaZF7xY1Cc{sVL<(>>AzQgrr|0G;*`WDp>3Dtgk+|@l+S=n?cQn_ZLV(Gv41(Yi` zhW3uciA1Ev^XFxIxi^OnHND+vZ(hG{cYhcFaVqO=9_nLsvt;)_lVoqd6%@2JSChv7 z0((Iab`?`~u(tv4XhPvI@#*4RUmFD9wFo!>2mIl{k1Uf02n4eJ5PSkq_w~HNSATko+v^Jvy<>>4GD~tl zf07}7kETWb8)y7soLZ8U`{nMyk;v;eE*)+g@`2{kZ|tXflqRIFmghT9E=VokxeurG zL*08BdmQjW4e4rZPf|kQI8i@g^mndzKfa*VH|frOuA%nsK6WtI?^G2@2jjP9RYG;r zUr-NiINQ*~Xg`1T+F2p>pPD{#b!xTyZyZq+u_Kauw+8A9Oov40jf;c%t3ON8i6lNR z*u4I1m{YPE(kiTJC{l)&X%HlCkj-AmlZ{4 zdHJ7fjrwK4K)M~Dvtod4g2Us00i#j_`sxG1V6?8UdY^hCknotG{WUG+@A?CvJVC#POMGM>#iC3U6n+Du@6=UIchn%d z(Ik0}z)Kwyzl%j-uY`z*2#|_`f{N_8(*u_UqjFiSBbW36JeI>Ok)r(F8`SIGT8lbc z^cM29hWdADtti@_&85Mjdq-8Md0w=fpRj(0)p|PUK?qRLj4?5>d$rJ& z06P{E;X%LtL1h7FF^3enQ3f|=inSC zBV)La%n0enn%=?fH=`eaR2bynDs>_$#hY)Hh9 z1+}Qns{&&*2$7%FS0#+z>ix3nXJa9ToD=J3XBI?;s@Q0k)**&}COcqZaPi4Y{+K~d zpsQLQioTZ^q*&ImvHimoSaJKMe(n5~4VIA}W98z~@UqP37y~ecJO`Vf)_#T6peU!3 zIOktk%g$I@TH+KWK*gZv4dy3HqKJyxMc0Sz(`j79+}hqS>l63|6%Wc24YBVg2W9W1vpoy0d?d3j9=UD|&~boiF8M0G2+F1>$h3A{mEux|1yROy*K2^M zPF*uLF&-FW+1a_jC%?^aZ1nbn;<8P52YYL3y6^=4Cg}+4?4-@U7>Yr={OXUu)zTV( zg!Iq(8XXxazdAaU=7Qj$Skc1O6@=woDErieL38-_ zYWdoWyDmbt*I<(|#6OqjN#8rk%QJMc4Q(9$`t|!DTw2x4jOv~;o2a~^Bfq1yl`=g% zlS71sWK`;g%@)_y3l9EPIXT|N2R|bQ}_ep1i7v;AuDoc?lcQb#%v(h*AG)NGW?;!jx=q_t5NU7U+;lR=IZc()3 zB=K+H-+-s{q^IkwwfnzcMl;qQ1_uXi!0PK7d>|QoVVrxntPW$CCY2bbz$j3{(pPkG zIRfz`pmjL4;V}M5IB*~V_?2<@)L|U_e$>Fts)`=#7RfIGZp-&Gy}z`rMBhIm^4jGE z!-ZB=jepqKcz=0WJ~9F*>9HN9{NH$CFC!wO3o&m{t>&FAY=p?#+xdxWq?R{yx%l}U z&x^IKAczs=ADKj%*D9yY469) zhIY@H*LJ7JT4!FJpLapNzuG8RU&pH~1eK?WH(UZ_DXpMzx!28 z_i4`0^FIVOH_0)3(=Q_lYWW9rUe?=RG`!Z|fbTu%;m`w3-}H23SKNcxY4uEe91tTM zCF=`L&!mjExPC z54<1u(j#cNj*q_R+B0i|0;gWIU|2W}0o9nxv$#H*0iCB9>*)a;R&Hr-HZinDV?#sa ziDJ-d(u&ggM5jTPggrBmZ7UVhS3_mxmXFHttY$L)vwM7hVA^N7ot?k9u0c};N?<6r z(im{{yEPYf0jmOtj9Tq}?{*4v(!xhD5o7K@zwp)O)%M~@@W+zA&>|+^Mc=*u@Zkd( zWF^F){r&rQQ09Ih@c{VfH?M}_c7yI287t>Oph~OzABh&!sHSC6E7VH`1$hv8i%(7c zr{o>kE4ZJ_%VrB(_a}0W+}mdR*0X7!P>RV!LHvYMr?`+|YB7?b#*0zo$@-#KJ`i8Y zTuI;eYfp@6M9;#0e%k*O8v1yC-T+?dR_c`^@GN-#ZPvQ@%Cw8Po}-nSg1x;xX|3eK zlWm*7!$0MMnb`7e$EtdrH(}KqrOz(X=#dROV>mAzT$h0e@p^ zMN`g%ba_%e@_22^{7#2UjK047)6)@<$nRQfGM+1W1(5%ZLZajjm@d!R)sW33oDg9u z)|*s{DoT;jkxL9wdIg0xzkUiq%ch{e85(eXxU? zl~!s(z?GeS59=jdI25sSdsS0a)zKc9VEMNGR~5c~o-p%3C7OVE$+G<{hlO)6we!juY(^q)}DT^J)OydN&nNO zYw($9@Yy})#6-5Z;N-O-MqR|k!SvRsiQe5^Ej_K$m6o>pjEldn72Q7>q0)=MWE`ox znG&sTg)cIDd!gL4(l~1iU>W1=yuO*ZYP$=v-&QJu+@UghBmzg$M2?`Sw6HV-gWh7t zsXozflxLtF2<=ZG%=`eQh6*zWpg&hG#ZwTc8iQj*iMHLFW(JBw=uFqwjt&_?&Wg{P z$k~j7Dy}5)%)F$6jx@`k%l7oaV_Ruaj+(p$JFzjGon^yYm{dkTK|i0h{`$^5(b`xf zaPb`O>Djdh^dax1n;Dhul4VzIjRpOce4sZj{JJ7A)WKwhDAi2;?R)D~ z$&!#MUd>ajVI~1T8-M5L$c0Gdtp$rXjC9W2SmNh$NX`f|w3k=lJ4$)&@@1oFqzn%a zYXd`D{e%o9wWj6V#v2duFp1_WPH?#I2KxqLRkEN%L&S>5TKqB)1g0hi6kJ{wmVY6A zrlPLfrgo*EpKRx_LnRv&b`-$EM)H=tfC>KmY5U{HmRtWyg_r`HXr+iV-f{-?c%1g1 zaG0nyywld)(Kyl+1&xU^$~Me&lDFKq9A6~Fv6B)^U@Oi3a|m9Ip#cSj`exbY?_fzQ zHAGof%fvSKF}{z}dGUD3n!$5apJ`~^UUe-D50mc*_XVx07wyU2G4BaVjKPU%S|CzA z*HPd4VvVl{;fO#(ttc*{GE3LPjx~yjOX%4Q*_Z#APk;M5tnO4G+*F%nkD0u;rR1ft zEf^8co->9(6e8J4&+40#L>n8B8Xu&kmV0{{+u8$75`riQt0+bMr0%ZaT`-U_2+#Y- z6eIdPP&moXR^VwgAZ&dL3&`B>8?87LBpyp@Gr~5DHiu%KSAN~J0-Yvsb-s;s>Q}*= zf5`_0WO3BRo7*am;tx9hMJdvGu2#AO(_@9NuEN3)oZL4o3$P9`cDMO)lO98ZzI|oY zqPm-{egtE=KWmQ2j@PP?%Uf2HPR9+m)~KZ zRD!EmxWmPQ_pF)u;JwykZ|-^pRX_6wN<_hFQ6ZM(<<)$H9>wANW5w9-*c#6p*f zS-rBzEE8kVVl@R`@ol#vYQ&IbWxQQ+r(=^Rj56R0`_0E_$2Z6({=s5(wQ5AO;FT`c z5Wi+>^@s~CDqs1E^zz1d9V~}1bsvLllm^yg>g@E!K(;)bk${9`;K93$s*qko!%hF^ z-yvTwF9^vSSJ%O`Zsu*W3U*z5GO2gc${bH7;jF{YQq-_6O#(4&plr;|7NKd~R5tkG zvY{L;{(lxD$HoqTUrg`0hQ_~UBWQOSRa+#MDQ-Dc42;o(gEIlZ*D@-kL2Km^tM{nU zP_=M?>QUtrL?kDSpGe1VD(64%1-KVrXLMfcpr%HVCj8wFw7r#W_dw*Z`#i9{y{3oxVwpn`j@S$I;rX$arx`u zZdB5H8qC~|=8|X^N}YMBF9S8k_MLxMqdy>PYGA@R=t$Lt!iP!?Lmv%TundTn{dM}| z4vw}(qy!dGahp476||`jIZ#kgYQ5zMJT|Cq6gYmWKC5=_$3%G43#~EKFUMo|xifKd zbMrC~;=s1{vp=SBT8XfsJ;qwM?vm}5S!`R<^{ zXNYT)JxNH7>Rbw|;_s2BOh;MfgoLEl3*NgXTmg_V-?ss=7*Pp`p;C3%Zuo)fVpFX3 zSV4PD=3smh#1Xo(G!$I>M@qS2 z>{yRvfxp)XCHFz6!+O8#K9-!3mzP&oR@>)*pAFh-84^ouO6ufSvxI-O$1Xb#_7@R1 zQ4KlkTUR~p-_rv}#a3Z>eZfINGWXX(x69#tlWX&{%quq{s)0^D!Xm{3feZu7{!R|F z)L(sKbDa`Dwn^8WB)UH|#Cu z^ze1Y=NbBphx77S}sdv6`aTgBA@+(-eh{o zF)0CMp}?=5rzf{Y0m4nzVn@2=g(39z*^4iJ$v?k-{*Pm`?}Et+Ptxx zBc0(JqIvhb@;VT)S*(*e*vj1u1+pb|_xBI2KiVD~9OaE;X|{a6{0_wDfne_<@r@$A zyU)%0;o!s5B$(a-aVW3o;Ww4RIwp7wNc)A?n23aEEnZ+|hu`d1(>}ZCMMNDakLlM4 z54bRNvWON&s259!9Jx%gcqp@@(}CFEYGOxbyhy&)hzTkd7h<@O)`i%8PQ6wq;6~=R z7{hCt2!LZApVk=Tb?^eSrJJi|-|Ia!-z!(&zphW0AD*1)&k^q5zxjnHFsSr4$%0%T zs;WGquwi@!{asf5&ID_JwwDeWyT6&-BXj7-Gp}0d-N})WPWOYP_Bz{-9|IXQj-(5UNw14>7 z^tikG6zGjG8z01s= znaRAyQ0oCUN%GXFlxg@ic9)cL)X3K%8-bmwm|r^n@YbRO;Fzj3A&ZKrNxJy_l+k32 zpAyz(cI#y^EtXu(@5E>rHWUdPi}f4jB4Jgr+{T<*HJb`Nu?^RTftk7a@p{w0v@lkj z$3?A6lwuSjM~_q1iU|ERA?3@<+NNBm<)`42K+_xB;M7f%cRkswX&Rb!iDKIF~@@ zJ~um?tC`c}$WhA`#oSzr_<*RsL7;{ki;PKPquWI@H&$);uhraS>%Eg=@wlz_v_1Oa zk?(B=z~l#WG%X{*Dm7<{Ds@}pkwBsv$VZEtW(F!vi*ApJj@&{oPgL3!)o0MO^sw;I!X>xQzDGUJ#LZ^&$%Yitg2I z3Hg}Zf<*U>tz~gldHL}8_&<2>iSOS#wHTV&nqP8~7bcof@1yEn#+>6N7=Ge4-{{AJ4j|!v zj#52y_^Y0^iW!)!`BkNHyihiWtTKY)iplQBF9a zaEKg?)eaG<3oS0S7g-W0~og;gg!Vp_~myG zli}#jpa#@FP3OO0$ZqKNc=NB@>3iM;{snc-bTuEIxZw@id;Ox+bq2;^vl*a-)@|Zu z40;H{jxq@r^}ON~3qL;Q<^&X<$jFGv^p|=D+R=|ui&j9GWkiFA=SPUoj8soS$iw|S z9gShI8Od8&pnpKuwMHKLbokvTwxd4(0x*@>x!B-G)-u;BE4gpq>YFp)#{&Lol!vAG z&2|DC+sH+{NL_yFw^1owS*yDo>9>&n;iR)e^wei6zF+O?P-d}YlIYu$6X<>>57WO> z&l%<|;LTFjOcr%L{@}Y?^|W)hZo!3}UGYLzzi<8F=-+At0M7#;q5k@=CiY$V_xNml z%?9OJ`X7py?1NZaVikw12m(DyGQEMy%0X~!#i*RHC>R&T5h0}BP0v$wj)2|-Z!%u} zGMZcrq+QnoJmP;>9KmDcwW88a6N<6r-R;dEOlt>p z-qgp_Pzj?BQQu93xwmun;bbYl-WI@pco0~iA0%FEvq8;Z;!0Fdf6(?<(_6uS*&+2OGUqRf zMZmHK);N=?aQ|n_x{zOg+;!nmw!o=h@K5He6|B!mnlpaT&SuuNdgT@;+9e$o^(mg1 z?uVkB>_H}00A9BZos^=hpo?d?Cfy7H_BP1;eQQry2cBUf9Pz66S-0JGDh~OQMX&}iv zxW)ujc-!zVtJzVJQGmqtJbZ{&?e*(GBu2DMOF6k4AbsFAH#^hYO*{&R6GW7flB(a` zO^V+++&_izAC4)}oClCfR4zpEbq`ab>r^Luo` zgy&tY>1Yxc2xkp^Y)<_`he>QOp`Z{ItgCBBSICsxPKuWf%XGWsCs8KSWt^fKgYeHK z(})2Y@o@8~Ljne9fh{&=4=9*u_8Tf4RQd*t?OwjCt}MEl@anbhw; zK2lsk2y68>=yGcmI$>Y&kkbA!`%5_>A96s8tTj`H+Gx-WMv8DOybv`;GH#V5g&o4W z83e>^6kml6@!sqRbv>#*-K#yFojlXKzHgts;UkmGXO!&Y_8#+I>y&79n5&j~TMyA&%?&h=nc0+tnR^je8 z47C>|)i_O`D>cN{srXYnxT*Lx%-g%blw8P!8%)sA-GAPvL9UTuqe}{~GbI2(Eomme^n&{+73~qmy0M-QJ z16h7`VYdvGd$)}29&8gHbDL;Cyl1apIrxT!ThIkyeUcZFLHlNGYz!ElygzRf9vVer zV4{YG04Yf{PS@Sp>ggUM1B1;9D{J@bYWTMBuTcg4?Pm^!r|hQye%<7>_k*0@+~_mw zFpseNpZ=V_P}NK^_oJl-V3vo$EZx}KTwXT19Hm~n9a)$SqOQdVrv5;I+`(wcx}$Ph zFOz4aWn`WyNCoz^5)h}Js`CEK-bsu^d%k*kdDU~XQ8BiW;|v}K^!cv^O~>+K%K^5c zV#p^6+Oz$ql6d?a#=ZSh*1C!im!CL+F|*4vW%{kP=ois|7l~!}xPYTf0V7*jGIk8h z2Qmce7oYRX%U4DgUqB$ArgH}X%;_I6Z77DCOgQ#r?O{7X?RcpHGw>x}MCPLQ2b~XZ z-sppfyj3n5G?Sn?*Pn4m31(Abp6GyG2u7vfCknHcO%OWp>o`pk`3FXqE!I}tORTK! z-^o;PRivc61FhCmmhT+wr~l}hKvU+mwa?zEI|*+#MgxZuBLWNIl<|J>o;dUrZAG6$ zvV4hqLuxzJt82l>y}*kAQPV&q><;2j?pZ;rdi%V*`Hi#@M0>S#+U%vKRhz}U9-nWOX-mB1_VaH<4&uY!rE+4p~AQSa(cQ<~&2#l#8 zjQyeF#5I2LOs6tGz|0g2#Bq5F0GVi7TH5^V%5%@FL$DKTo0Ryw0yvPo`&Ig#pAWBV z{?vZP$^v^suS<>(4}(C+bI3ngn4f=ok5$f!fc$(}Fx$Eg@9`OwDo%&jb!l-i zJ|P1@aep8Dx(n9nIxXPwVFSRigMXk}1zK;f^Bpc5iJkGRzaWAAaeUqD={(EVZ10EJ z{m{p;uszduI4jQAQ$cU$HEN4jW`&V2yrb3$)o7PR;$4YBfkQ$wILgPR9%4;QZ-2G- zEFIa6MT}*ot#wJnrA8(vr{gOtE+E4a&dAL1KPybIT4W1)LbYx+%Eo&@n301rW#!pFx)7Z13KK~D}~lRL8R zw^>NJ^(`$eHx^g*S99S0B2t>WUHP6hR6W3kBs@0xdB!pYC>IqJ6soVmQ=qZF{xejm z<}d@5m=}6cNQ(FtL6XI>7uE^f%<|8#cHd(JpH3R`+K4&&s1t3oVtROb0>G>g7Z zab%sNo*tzOj&`EB%5T^oE&19p+&o__a zyxCukGx+1;X7L#eCJ&)TE51WK04dC_dVL z933C+)9-_BD-YG8wy_tKMTlibE?I#HmEoX%BtXQsU||_EtEjN0o}-D%B-`P8L}ny9 z+S;O^q7rdldXDwlJhsfrPcr_jRvU#VE}WQ%sQqc}4tOGiep8D!0;9d>cXxJvGJF6 zXQ-39azbr+;jo-!q{s`=w&qrDy+*86bc2k_{2#XVdEW!mXImL5|V44{ndapk<&Sr_j>&@mqv86wBJrkK$J% zbG}lpaH>#2ZoWTT7^$38ZGAab9rpcFb8~ZI*;}6-{;Zp&`Od2*kXHNzr2e=%j~{(+ z8veNwDCerwl#~Kudr7P^-chQAyGP6-nMIVeI9a27BsjdR*)J`Royrj$LVqyJEW+94nAwCEeL=S+k z9PDdrZ)B96U*Fsqvzpgyq*Pv3M%YnVp)FP>!b^uI6S68QBw|x@I*C$OS9f6j(cK-X z6+f#JZEJsPe{+X~im2ZBAq41ia)+QF{68O1QUEBUwjC#~=RCim;h~Dr zEFYHL#Q{0qAA~ry5(vu3yjC}|o6ZM@?MCks9c%q^~2+ zzgWyFx2mm^5}Sy;&IByfG<5H{Tru)tq* zoKEIZcOT9bu|Z2+>=*RlKutoaqZ_&mhXZ7rO0QoR>8oC-AFZ_OKN6PmVf8y;0N_D` zYyG(~B`KxQ#~sePHhUJ7#+PB(n7DthuHdz2-#9vsZqP-$=j5O^$~&|HE<|-t_u=;L z0Vxd$2{qxb0u$+#PlgU=c5ChKH$MOkvTA;I_M(P%X`6x%7!D{XDM9k1*D2l00;Gd8 z03HFfj0AD#(zZ}h5r||Z8RC1wq_Wb|>a7vHT6f`vc-fmamn0^0@ut=Pz zkctEI3ka9g1W;y!8mJr;nwyn%kzMrZd3b9145f~^BepOJu=TuLbsA+r5k>h0daW+U zD>s09>3v-AEz|pI5pcFaL&9z_Dy64~-XTO*aCz$If*T#5gNG^!rgu2GCShbMoR~&U zGM@Soz@9k`%&tp-uLd_aO+tk_UjVtq9oA)^HofELUawl9fDO8K8=DLh6cPdgyq1C% z?e{7wa6<*f&6ZF8hz?Mgbe@yv^T0RV!r2_=2sd`PxbzUYC`S8EQKpc$@=Ym%&ii1o zo+`kXQ($Lj?@xX9+-VBK(*DG6er@H4vT}OHMpCysHX53wnp9K2&GhO_Mp}Y_fk8Cu zB`qSv#e#IFV6n~u5KP?e+)V5!VMURC(mj5ViAcgc)B|{Z(%@ct2o^18vy4n2Z0)|c zrE_qbZ#We#2KjAh<>|8|9z7ZYf`}P8a`%=Nu%m2qI%C-B031tpArcB(1|IVr&`bpp z-RHQ<`v?1gc@6BK{%ks|De#wIQ1$oG^Q6Y&NhnV?p4U)0y9(yEz$n0$Yzkcxvs^BH zr6J1J%8_+83+GozK!26eGC=_XFG+qlyOT{{?lQXM%C5q)tqg)LSR#I&z?UADQ`d5*R#?ON9cAofhgK&AQ6~1dV<6;-}+U~ zO|SWLiQJnXKLlQF4ZPkEYHprBSq8?Hgk|-0x_Pp-{5Na?KY!o;EVHesh%A9{&4uhaU<14u!jcSQC-h-xw|_XXyUvQLajTdys$TMc%xz;9g0z%{{R8a8)xTnAY(SBO&|qf?(qJF0)_36>M7wn zvTXi>z*q5iWL2yJa0~WIzoY$wK^7(xif%|TA{N$TikLkABkl!YjMRIs>-VXpC6F%mgb&FPf;_LUz?6c>}dX6xEi zcorg;VXGi-ZC!f9??5-3@ z)u82b0pNf$;RTH>TPqpFe;!--${G1N$Ev=msi?ElaOKaCEDBbQ#h16>kCs-hy^)}* zlJfgzqs{t~8D6%Lexg@VTD;_HXgD~AZFaW6x>ZK$?gkPjbgB&H63*5kM!Yq;`ubkC zV<{i!E2R?FSRO4kZd|xATf4{6dl?f(>+b`LX1Dcwu`e4jMU9hG*AGwj zj)C~1q_n)hJ$O^?O_F?ESWaL6z`zX%T5D?w4nexBK6vDalM@B7Q`mA|%38KU=JUl(zo9nD13dpePM1~~ta;V7b@j}z_?H&M?d*LVHJ_H<> z$KQ^>7?BYO2#8?pjqUnj{wr3xuBq(yAa+^;LBgv3-m${Y+z0y;%OR)yMGN{Cw)4;D z03e1q9&_cA-mp->I&~3+$M#usi9w$C=>9O*4-RvrzxWH0=;tsQ3nkQezP)}MgEe0N zRPut;fZ1+a$#1y$_(LTy%>_iWnqzLg*4fyH(sw#KIzCc9B^PWhsqm%?eWg`7-;DI7 zGQ|a`H3gaNDy#SsZtHO4VuRX~EGIv^vhnIq!E1-x_@y5| z-s|f-{h1y4@Nhf-j~DuQM*DP@b(-tz@wDsvSoDu1^EjgB^XD88QvR;{(k2dC3k*-L zt1VDqwh~Iq_OrY-p|VCve<9&6;6OR`TSm5@Ru>9~tI}Or>Ot9GEp)tp7SS3jQc;(`AJob_D#(%M}GQreQF$av9Qn#01ap8U!<`*nUh4YyquO?*W7nq0ceI6 zw1UA%%ggO_Bb3(X8q{Od;!fAF>AZir+ra$?XkMkI?2tFjv~b1!vv5Or%oM+S*M?!R z?v3n$L1*#d8V-_`jP&XSle)1tQ35-gd*t|v66xWIe}>~3|M{l%>>upFmK;@rNJ~Q8 z36`KH{=(({x@4w^+n`sl5HEosdAPsaKb*obQkb#P5l%Ov(`{$s^~c4p5fK5 zu6B9@Lb^~5^ zG(4vpJp50LHD{9Jbm#6y;W>!eq-+MHT*48LYV$tIS)VwibU^%7CBBRTkiYA-n~ngb z94PGsg@x7MzKuBgHz2!V)<>T7vrG8)EmH1g@RCyZVl#qMx7rAFS~QDPgJW@!Cr}aV zTUws6u>1uW>IFpJ6q>_57ufPR7gwN+46Gh_lpO-Jp;WLk;ZITT?Y})!#Ks7 zm{2`*hxmJ`$a5>9ZWSuq$Q@1s)~Sa}^l-}db6 z6X*=9PD~gWWE|PrX3}KVKxz(KNPQY_ldH0L25km!u{^55zFWx$n%JE1{0YL zGI4j2izE)9BulKkth~&EC<#|?;$mNO-o)J{`!8JQjE07V#cG%os`D$8K)%fzdPeKe zrx~R@vz}e%AK_$k4}LMWsBAQp8}Emp9kWRIaB}N>_(LQlRAFNQ85P<1d9NaJGKsEc zY`;i^Hhc^t3d`WwmF;qt$1PjA-U5jl1_TTDdP~S|&8E0YAzULqUKbr$Dm&WSyQ=|l z<6vtb7T3ESIuKDXnj|OxBUIgJm?lrYi{YK7fx$Zse`9&-c`J-sll+>WXrA7wb+>n@ z*D@=yG@=+o^C_$J)#o(^0LrWiqR^X)=K6)BKGzin#RCb@erhTRkTs4R=<7oiHE(7n zW6Az*fx5lTkGT>9F5T+)33+KRuX~FR_lIAeZSDTn%3gxRcB{C9RG5u*T)?O~2zUb& z-+-Go`jQ4OKyHjr7f0g7pOH0OaX*uw!t%1J4(Ed%;6+rU3Qfq{V0u)QL`#3^n3^8G zwRN0n$Ln=lQlyT%5OKyat0T^6o_f}TgXX`KOXJ-LWwoNwbe%8Oo zQ2Er`d*KAAB&ZjxDhm+S_S;IfSeDS6HAgQs`!QVqS4`aTTeL=LZu_My5@CeD&40G80#Sji@6IG3Vso zS04bM?0HTh0qp3=%KoGo1a<)kK6v1RTzb&^{iLzUWkYI*ub$<8bAuf0)TE{oeXWkk z7*l2OgV$6Dz@Oj3hK8jF4-fTj4vR=?VpOwUASU1nF4u3z#%$$xS5$S`1K+_wPBxHA zbMA9bOgQdLsJsfp-Cjd{`9Tk;bXh$djOZjJaO>a~z|985;9}(r+6LuVc3N5jxX)09 zCf~uXVW7(|K|K8Isuj#3%4i;3j{p ztT-L)jBi1gx^n2JP^}NFd4C3l277wW@Yuw8w=zZ){*8%o8H)gjC3!=iHA!EIotg^0 z#?JdcqY%jS79!y%N+x(!l(HI|Su%_QiZp);%=5qJ3ei%%JT-Z18;gBJL=LyQ!siGPEsOILEDfXS_sQz;mcap)Wj;g&)g&KY~lO!$g0BbIAS zFB*5EP&$?ahsP zoSI$G0&9nSns)O9Bblbx_*S&4Os2P_(;gQ`}Y6@V0-}~Ej0NWil zl>_GP0P+c}%iuAP2XU7w-W(j1H^gh4sU{&M6?L5Bj6&w&A(9osD@BH%Q$ZhES{_2J zL-O8PpTppz^XrLZ`ve9^hd5N4Q&Z<>mvRqAFk%woO(I^Hhlhv3>PofdmQwor`flM zS00}1HkltS{R=_RZ&ts7F9c1EBmbsvq>WLB%(ShFaOJ!~Q=<4UuQz-6i_}0wCFrqV zrwWu!|5{A#=WA^X4GQuTY!x4b)5k8Zp;yN3>0f*YOG-{Xn6IP}^}sTrDLdSl+Q=P< zY_eHw_591-thrKQOx8B2OZ16`ctZtU31}}tZYQX42oWcc9pU|~RNrN#tB({EJOlN_ z3!i&8&^mnEuL6Wl3)T36bJZdKFGx-}K)%llM|r0eHcf&p!s^%$%|`S)XsTGh8cSNM0tLS?>!>A z8#;E*Y&11!-hI6g@kf7*{unCTrAw2lZroH|8iYlbv#-Uz#@zy zb&_aK92jtj!hAidl#!8M;|8be#B|3j5Hi5W`J9Nn2A#GMi@(Xo-{Ii0pH6D`@5O1q zVNCChCK9m{t|(;5jcxMwSO ztMRIl`--S!ZmzMlbqQd_F-jb?cMZaEbVnhg z{se~`ve!%Dw-@GWkDEb|q?+bl1m^zk@I z;sT;HS&NNF)QS3*lAGQe%wovwU_7IOhDk9)X${-3=e3iAS!{ZhL-P}ey~P8%D=w_M6N z9MmL)dSfv(k1nKTs{xZ?-qYzsc)L@>RyVxmjwu+lO3-5Ne@`r{md#b=l`>WZ!&$5^ zyq#dqSKgeTAL+eE$^&ktGu#vW= zNe&;FmpMt)g20?D?Oy?tKjYyy3j8pW z(jld_r#;;}J|3(@6ixW>w6C+Uy+LH?byf$0HuF3`X)_S+nY^K`Mj<#QppeF#`&s?s z@Die;dgdt`wc>HWB%^P}5L1}sM5ZT$+tEovNRP$qWac&klhI|?d!IVJ;AC6XgbL5u z4FYL`gOUG1rQNrXLS$tD)nN++zHz^=XJuv%!DSB-eHQW?PgCqFhOCuLf~;7#I3%Sg zGb=0f1=<5>NGyWRXYUn7Lh$gU4>6_;ejP3|0wyADG1(LLCH6qUv(sNS`eug1{rPVV z4L51=szGg~k|tR3t`4P)8l`lFzC4_5YP4dj+JDKxap)@O`r_&mDrWL~kjT#%%a52< z3WP}sw1)X?G3BzAuu%dde7ig5ovDgz2~GDx-=0ySUs?bgq8Ox+6d>xH7T>sCu?Abc z==p5uBQ7Q=44JZ!=4dVLW`}Q!xwyE9io)_So0T=ef?YNwPsh;vtc!MG$lPb*Gd76} zeKRO8D!ZI>!8%)}8>|}0eBo`r-ua+w1M_e(Q?f}tgTO4QiwW)8MLxm!4zjp<)(~w`Q5O2L znKyq(hIZ!8C?O5MHpi{hI7ZE;z1<+ighU<#ILXe~JL4SsQ^M*#|2jW+Vm-R+DTf(A zEQ_U;z{#RqZh7Ij0{}_utn9qzDQzO8b^C;e7r_FwJKp65=`fO&}v)W0Pry?v|Q z(l&!D9uo578Ncx`T8Dn*id4QpUjw|_d#XGFRY4KFw;WFGKwy>l zH7PrbN59&kF9bVTapT>O43_e#%}xBMggynFyrJL_@HZIP?@esL-EG_r)kFB3YOlpt z$ETJd@^f~9h?=^=eUyarI9X#a7f{$otAF1{ADndj<&Mfe=zT5k8tk1ex-BX!z&MQLU608+JweIsTIaIs1tCVK)vu}Jl6p_STuAz^7#vpbN?EI2k zz!>+ggwnsUkCU`tydTj$9T|n%Tw04_iIfm+AKn=u7U!-Y;?E!8JImdHoI;-3T2I#_ zH+WeJw`K&{_ZT(spTnyWd>E(r_7X+z!y%V2E3_|8%0?zq+`hM4`1AEC?fQ)g(CCLv zf~>c}s69~Ut-gGzd&XnX8nr2GW_pogk>w6DqyNPa{_SCSV#22+Z`9J6H@dt9k|q0c zc``WN*^I;?bK~5nL7`3vm<(Qs9cW70nmFXv(ExgJo2kpP2aC7g@GAylV>KQgn+74f zrHjM5$wH>0ppc;A$RrF+=-hxJ9(yVC_g4ARr(B zrRbHU2HBe`ita$s1xzN5rXz2(nBf>hC;}S*_Oo}Qgum!h04TS4fNs@9lr}OVW-!06 zfwv*&2Y~3>9(D>-=k|Pw;(gs6X9$Y0Z(aAlfn0>H^lNOMbO8EEbu2iDUsJPE(?e(Y z^dQyw(E)hwmmBTZ8=X1kP?!aShmHF(RU~QG7B;%OyBtT^Z-ty2Q#V-`!IFvb} zpOiE-6e0J^zzYs+U&8IWoabVqMrFco^}9Uj>s`K2_K$ys)}J2N|Ap+q!#~#2G9#{% ztqFQO0t%Fbm>XWC$Xik;w9w4q2MyF*yjbZBQL$>A2!$&}S0|-R# zftB)GQX&X~24ez%ocO{Ly)@KP%@f>LXK!b941)!gMSo^vlrd7@0GXUwU`FG3Q){NX z3mWpBApYCrFx$zYd+!%*8=b7ivtp9wapTQRfZ7=YnBWY1?_X&rop;=0CWCZl7PsmM zsWM|0QZaxp*UNU(OWK8I5in1-QV29UCl5v^U{c}H>RDaZ>;{Sf!>W@6<(+AiW(xkUr zq@BskKIm>r#>Vg-^FUyC>v8wE?tAZBq>>i0I&k9qbQRAS3jF^&+sdSj4_*(q9-f<3 z&7RF5&6`WNdZVN$)3D8@B8%2rCoy5u&(V*f4@;SrnNxL5#B+SM3x>_bQQ?d8@IN$pnmabmQSNUgg$T~ zBnc~r4@ZTX$lE|%_Lv=V?FdT`#ih=TFjE;CMDi~noQf%bn$e`(BsvBI@LiKwV;6!h zbPMh6Dh)eEXfDyLo$W5dGH4EP~zHd@jFu-7$7__rwU)$DNv3CMUR#U94KYjY%MzOjtxQ;d!= zI=>&JwDB`vgN)}Q<;^%F``tm_0MG$9$?kvyHv z2Q>y)X#^y^7BnIkX8?_$Vl!P-SoCyJBoWN$Ux-i9*u&Y^ZE5C?O!XJEHG!0L7k;dOMK>`cA-a)=y|-V5_Mlk1cq6PnC|YTs|3T+P5SZ&(cUYw3~f|ZR0I#jWn=_?&!@)!vgjo#6K!Xa z@#V`G5!fS^>m)vnP=s6cIK4V*H?B{`Wki5&$EC!Oq`p>B#p~6e|>uKUytnl zdnMezR6nuEjTz}da)F3Q>ME3##-YToY>CO7w6s$^k0h;FihLL|d6Aa#fB8`e(e>aT zuQ74u7VA99RUWGYo8vpEeCz7$rwLzKYSl?}t`xH)fm#{FCurLDyK_B6H zRA|vvBs*1fG{{~45bEe~J4TLmR9`=soN=o>+L@AnvCedMG4yHrlXun+NZiwl4y6e-aVw!zW9 zG7VRmK|ThuPxj+53VtdVY}K`}>nol$5Z+I~}yxeL^KXoO!w)a@|M*$!xfGezCExii(P6X4+sL)3TSR z$y+!T>h0wPi9TIq6yxh%R}*`L-+eB|7odIpW8k&0)GK}1%3jvxvc^^VI=;PqRWF*KBH4;DTo^Xdv=D7h0*&Ja~()P5mb?NA+gdSDo`b5o-AIQ1zJi$KI@uris#)S z-m;cnyzyc$@CWr8AG9R3d97m-2|Ln$VE0e$P6gJ$)>@qj%QPJMS8);luFlVsdctOB z>w)z&2i1gxrtdz3pl^i_%z;}<&^@(oO;<)oMa8+fd0FEs)?KjB&UNRf(`tg~M3Y=z zRqq6ch8pjgeap6d*TDt7p69TJ5F#QX1{O~q+T0SiF15bLVj06vZj@wXXU9kkcPG3I zM^^rBS8oE<30~&XQgIZS(C~w+HIq)(PG274z>%hx+S=N>5pSX)UuQCF zqG29M7wY^eFBn-4#yV)p+^CoWY&Oikx5<-oGEg7)7JnWccAx+9mQ&c54+J)50O zz$%hCK+woc&(;809{a+9#KJzm;x%%)O06q>ol*lrl9~%})ah*-W7?W%AfbFIOQZDQ zZ6$g-J*L6yo08KR6z!$+3yyC5@+VadI1evsct^#1X%+^=UGjY`e*Nr6C*%)qAjbP8 zdf{_*3O|Zxoj}7A>jQ=1DWjThOq}TJL11v=1SVD)WK7SH?`?v$_R%;ksb_LAo zv+^F6*B`G?@2;F(oZ7FqBLD5l!KiK1-LIl>NCqKW1jB;V5qUX?%Kf0C34BZQa&vwE z*h?$|=#E3&wN$t${h$n7S`zGIbFr5=qsGsf6_}0fZ@UW!gQTl3J~A&p(rNAV*X|B_ zc|5){ElLMGO;Zy>8NIyGcOf;bGj*9$zu_n@wZ3Sj64&_qOWhK*goY--=npeV3K09) zj9g#`Exj@sbPyblmj=-}qq(vSlgHH3;fI7=*MwVrQEjtd$>>2cb#;s}0#BH`WYf&o z=d|pSqG7E%yOZIBh~*b{p~*CJ%!_SttG-Y{3)W>iO_7iCGs?X|T4Bzm&M0zOzsV>q zO|Fmq{r!z|i~+y~WPM74*3K)3YMwhYyiFZF(h8#I@A}nALLfUbL)(9+#MI0*a9iz5rI(e;k@XD;OY z!@A&lyk`P$;S!!;wbD_TpVHHZ$Pxz0ZI%>)A{ij@S}7S?dClJ4-nzR_XV2`Y$@vm| zj53<#r7sLkd^PPW8J5#&DcIO2w-RNKG85(1*MqXRY!W0fz^pE%V>!-eHDgY|S{R3jPu*Mg6Ze&jEGE%`= zDXEJNe9rsRLx8ymS&+HKP6p0yGMN3xj{}YHTKHhh?FZNCKW}6n&j`L3418}|IEBoz zyL_vCCAAec8p9#Nx5)zK*j^&x=yV%&=6+W4+5vun$?%2b+UN+lY>?(lW&doQH_mdm ztc+{{RIfDn`H@A637*l#d|~z{55#K7P6}#HAbk4jpN$d}@R(gF8upG{o#+Bp;K2|N zk*a?-FJIAZILtVnRNg_|5e@l4N~MdXpViJxQe%pC_M%M=3k@Te$LY_>r(TnZ$w{C& z{PH>M&jo7y+WfqpzSb~pJEALjA=pJdAR^>%G1m=(=`DB`w70|JPc7e`j)Cn>0nagI zc+F?x_|N4P6=2v-O-9zO3a1yau#kKj=1|+8%?pu5rnxV4!mF$00EfM4hi@WPJBoyb z1HJ#Bk5^Mx*{jg%6&WJoOeWeap}7MdB_$4&FgS1liJrW0BT(kBrxe1{xsQbSibWSg{^+G{JqA(} zf$KNq*VKYw**73 zq-9tj*3aZrTV>&}@NR==D8gYc!cy=Y`KWGY;#&+Cx3xrzWAZCmw+dO12b6&c zJ`EL^%*;Rm5BT!qt1me?4*qsMy}Y7d2wJGBxw>kk6sqj%`ul(@ex03{$M}NHYIVu^ z;(*slvokZ0H-|JvZj4CU{!J#G%ul5*<74Z-*7RQfLULQfrIp4IRSrY`odAm4z?!0LuG z3C7uyU!S1;FF#gHEiS%$r{R8!CAK{?52~OKG?df{Niki|?@^JF?{03~J>9W!fp8b( zw7bmxoFgVBCPo;LLo?E;b{hEsVu;4FBqZn|Jt-1yh8r zEi&TnV0^`ljH|+cbZFrJ0@-noT8fX&&60rL=mcZzKR<^anFKU=PaPxG9(@mmIAsi) zR9UozHUvkEogbnBravNv^6^aUI#QmQa7Un{>!4n|aJsdYWf73JP}iQRB_lw(U}j@x z(x(P{@4Yhoj9Ih{DQ%Te=qtRbwEW~a2WQDFnW8Frr#FmFDB1#Ck@QlM_FtgVy+7f- zaWXn7rWK>7$hCgfbA}+ncPReH`)vU&_~@gQ>a*eLX4oGpxLe| zSPHLzvM!OBIPL}&NjXhWfSrA5a&mrVW^{nu&ijLotE--#Xz`rT?BA=Y*lFPFv017A zwD;xNp-z?nMuKcq2j%&J${XcZ%_7;8IWszpA|?3mbIS`85C-r6kHcpz+spTZbgeNB z1O=5L{@3X~`))15W;9kMqzIwk-1id?Rs9eR%a^wduT5>C$M(P<2tq=|`LAn0U?$)w zLvg_Xt^f|z|NI&|AdzY^$kAR%Rw)hyU?0vX-S#{>UcPP=4jG z@t@vpW7f2Qw zPR);giiS@JuA=SoobB@L?p&I6YPZNwErb=tXn3W9#hI_h&>>|6<#e)#QWW>2jFy%b z;EyXUEw#3`3prT>Nz6c?!oD4K&_{N83-6%@OJy3~E2d&F zjUoj2rP6Kf<4^Hf(IdZ!e#e;vq%6mkm7uHx2F2X1+@+<|%F1Ja1qQFWwr0o*2#;sG z=eqy21ZA zhbYCd{)#N3R|5-u!b;9~Gd)tuV5O4%q}Oj~V)uY^#!>gy?je7pF)U>Zo<79g*~v7& zrUYI5<-Lj92yhAlTtLS^4CKRvs;b@bMIf=mH~2>rdTs~SXn$YB;_itW8stz)-$P${m?F^|5ux}@urLL^TgoQa0WXb}s-HOm zIHiqrj@AerDafgRW0)jyu|*l{GNtLxTJ*>CdT6U>?+8NjLi4km?2+Sbpc+|cQp_j| z8-@SdZ>Ob{{a*>z6i;5C;w7x!MqM7b2ZWQqWJ2!n<_I$-jJ%DCmDTKBrlp|?(L1qm zd)1yl65!V&CCT*qzY+J=Z&i0)+b`YS-3cwRV<|SoC9-zw=nTmAYv6w?pw z1)^Mo3wHVlK8;4kQXk)Q6rAajmS-=M#iCz6N4c=foiTln@{DFch!ciqjr5 zl1Fhhl+k`bK^~{D^Lr<^Z*+&AO`7aQira7p61dO$Wi;Y{Pcw?IWTJDVT9z?hr6nQ= z!bG{NoC=VnwCHs!tq+|yE76)~8QPo(udgboFV`4+M57Tuuwo@6S={xkFY zy;198Zs6Fo(YnUKmbfw0FMC+~`VB?&Z|_|3n-BV)x1wty2=o}=`NRNH;(u)3H(X;DZ*-#9Ectv0(&A+n2N2L9!5##Y z#s4ng^*RPI{R5v`+}@^>;-?zL6EcW_DxR7==ex8Iy66xXOFEN86;%*Lw5sS@Hre-3 z7PV<-M@WHL!fsQ7t{_~eK8;v4{lo0IwL}}$gfn%ieO-w)J9{dJ!Kaczuh+uwW<``o zp$daqS}eLBEEN9xD6a9jy^*m6`On_zcSe#;exHuESfCIN!zGmzPf@H2z5|!-> z|Ieo~R7vRqa(-0*UoYj-^EuZ8E9;ZWA64L3@$rA}bd{COMa`_N}Ta_WtV+;Gn{Vm28UdP;`6i6w;r$D1sB)ERbUMpd8AW zhh^ZVQ^(qZ8}_b7gTni+QxT)EeI2t*ba9+8h+TxUpuT@@h~4FM02b$w`LQB&96fUi;>AI zq0Po;a0f+dI?h{^==$uKXj#Nq_3tR?kl#Zk(HJDft?3#b1jOz%vH!gxTqP`9IkMUj z7-?jm9ZN&XEBbP?!2=6odpiAC?}lMsd?kz}P} zCZR#@)aOp9AxlQ~DIfI4zh)F$4A_v!B6^Ld8juY;5TdP4DLz9Kv>}mq8u^sO4Iu_i zPaJSJ@WfUb(EcUcD=PX?#O$35858%v>5JL>OpjpwUi77KIs6p?^7$)Pdjj!j)qj5= z=XEmm3#Ir{DuH?b9C}W*F^`I%XnHrD!(GwK0)1v>* z18e`5x%~kzE}Mg-it$@{7a9uu`d6!=>>?5p5>f(E|C&WoE=MI=C`Fl6Hhvh(=5kWKnVwtA{Ru5Oq$sXt;_KTk?Y}CV$%{iFR1fU_60DG@`~a z!!|?t+EW5#kiOFTd*I(k%lM?3lry0Xf+nZ#`@C8O6AMbBo70!}hB zJ`bcPH%~59pCs-MK~`44pco~45mbO0=;#nx5H|idEn8m%X($y#WWa}r4Y}b}-T+U3 zCK&xcJOn#9ko%&MlLs`9u@DM2F^Bi}dl`)M(OvIsZEXQk@q3|)qq7rK2pTo2bk9I_ z?k`+}fVVN;US3l(Q+POdegOe&Y;5c1ECk2w5ZLG$dlB3jG}$`>FI~Xw6KHRN0dYq@ zul0#FZ9xI+;2_W#fc63aXJ}m+^+b`Db3()U508%tiHU)vNFE;_zff96<`JY`yx}6A z%QrtAQ(+my79|hDNuZ#orza-|RiDyJ6ea*B%g@M&A&Uyy^p^7>XV*wi$5#mQgHI2l zz91qZ0x)u=r_37K5%k={b+~pTw(Q=s7X-Agft1n>X=&)8q(=L#jo?RiQqw50tkJVLZiUz@rTC++U=i94(`eVkH;Dwo*1(ud&G-PUPVL8=V z!jDz8;sJ;7j2~HXu~^sfC}VWD5?8aQzX|C>y}VFzdPEr*Jb>2-Ko+rvB<%_XZq}mc z@6WQjX&P{>o+wrjy%^NWJJfZ9+6u9-_-%bK079dG(!3wo1f?(-?D6K)BNu3goScNI zoUE_!?{CX*CC2lAgyZ}1n6)~N?oS_xx)5B)>-^LRle4brfhtt9aqP8I^;ZJuy8lV1 zuME7Sg?M+r?@PEjBdAKUZn{!_EJ!nv}vN zdK!iGUQZrJCt?N*CjcUGrv0$RPA|G9S1nKQsfVjMsf6oLRd zC(_#txUIZ|W*B@5VCE^pqMStO=k+lq3>wTFmF3ONot@0QB4Dw>x){Pr^(BN+1fu`% zbG}{t$`TEp>;&U>cv<37sR6PvV>bU?w_ zZtc6}NV^|MNa8m7)GQ?I>+NH`*`MB#XX@zq%*5p84)qTx=rZ&3tE&&NzM%+unhx-z zjbD5+?+my+%-PS~2S)JiZL$%`ac^(WeitH2N{H{zMgN|=YmaA3OH1!3C$t7oe3dn5 z5Wlf?bIz^t5-0$x-^Fu1i>^0Y^V8cyY)zaHR6V`&@==f!xz|v}`JK~V^E;kz#n5;) zE-tQ0BF**O+dIjd={{8KuD?qsgM(iiy);))-X(V^X`q(ZTRQJbL5iUiUrUpeG0smSkhI-x|*N)P>cu zT$Gc2w$_Ues8IJxzS_RdrlvLu#F1S2fy4b(@xL%G&dzY~u(VWFfx@o)&GqZ;8Rr2I zD;s<>S!B^2+*#Y~1NFct(Aykzww;=uW(DpcnA{os!N=k2zyPS zwtpw_|G5Fr`tX_CJ&;9#2ImtpY@ZLb1+;*Zfx(Qc|LoPU<1-Hr9UX#lq;ppb2@!-$ zE9`Fg?DS;Bt0WfCIIFDO1lteRgsR*wx2 z2mBdrsdJ~Nq3L0>`}&iXulp{wh1^w(ErnvH^`p_JE|8Z9b_URjS+lYN`Qs1kz93iKJ4=CruO9olhlB7C))ZC)Z|bit=3WzZB<+E<64vdrd3*~SH3?}2 zHnI#maSqPMSD{u`YgKv`tB7XpZ`!`RTU_|T{V#*$h2OLm zFE4PrdS6@sH7|U_ghv7K0g(dj6r&9_a)AZx31&Jv9_v@XiP^P4v|&|aqq83zU=w2h z9v>e|6gLA&e0y6PC5?%RiIkMIPWxv3x_Q&f*cd`;ss=AFFMZ&+#gvwk(v9VaUIr62 zLc)K~j~F0lZ8eM3nTGNjDl0KGufMaa=oV!ge);l+iHR8mD^8?WicZ;>2bmifkbWSy z$nEa#HqaZ6$hBG@Kv7n?y}bdPKF_OfDZmbOd2tyL8R-UZC3MDAZ~oOXWITXSW`i(; zh{kPwV@vm+hg&48*JIb-+TJb)^YQX>AZl5{wPt4S=b)*fA*Ia7&PL(OH?Qhb{?yol zPkn76HWNqo!~{egErawEanR}>7*HH^C=d|i2PneA^n4O(YHBK~f4viP^FbNZ{gV^l zSFbdmX~64V^#dJ0a9RrjjkpVrPNoJagw3TfBwVW1w3`8*rPl@*E_6DOB z#-ue?BajBAGxG7BfOZl(9!-cTDtUQ*6@;H33gmpoaT$_YH3_>cXr(+{KjLrL>MU(= z@U3?o{Gc&yUoPjJnZ7|?rwQz&(_~+pD~4uZ>OG0&G^LzaP|5HLo^tMQ31bf2-AMYE zCz~%3M1|+&;xck{NK^*z34^ znhn$iC&mMy^_$n5X_gQBSzuM}ONV%FkFdsN)ta>lFft-8(`{2}NMCq+mjNtln?KOP z#>K`)`obmv^ni0z7JZV5a7M6B8%IzdAOn?@2HP4PUio-Pn48T#^j5kOP?WYmXA7f1 zI^pVZ7)CQmnDREXx%@=0RUjx^C>N=6% z%j~B6yOUPVuS}5?7R>$qM@O#zz|At^H>#%2A1k8BP5gm`-_g;Wvs~#lF_DYo5*~yy za@U+Sa>)oFp)!B!^W=Y5Kh!x-n@R@5ZL~bJ#16hd8XQ|KDF(_ ztKzVeg-szVB5Zm#s0u;}`l&2$fg9e)X6K97oIo!6O!eR~EjQ{+z+pY-^x$Cs@FgX42Zp~%`U)M z`QpNw2F!x`C=+60&>$co$Vy9?hY5@A84hz@R|zk-;GYE1<>=_>knXbT6*D^glk6C|RKvBh7Z<&83u5}2nXEDuWeNkY2g31u1Owjpv zIdBg3^zrA&VsoIcE(V$EtyR76aE{>4&k=FYpGzIS)VP2C@B@hh1YcUwt@9VvxGl?~ zRxex^*|4&X1SK~frSX!R{IKu(&-ApxNR2l5%(n&w6aeKy*w{=5xj|eWvE7f&(f7Hzxe}6+>=otlXvjY&zRzLC#`cVSpUaV` zQ_SF^tZ&T*pW3tqv*_ECZr{#I z4sPyAz&VgmafS&C1DAuI3g9$-VUm7w52_kG9ISH>U!&b@C{Fqsj)4lUqWb~AwYqvd z=8rh*(f_{KpE}-Cvgen31RD2)(WD?j0qJ7b)K;V3%to5Q_Nxh)fO)-qxi>I?vbYC6 z^%dWhAWmx0o9o+-_I5vie-%YV2Ct}v1TK91q|6zzaZnQ5^oJFVURRscm6i4OhW-H9 zPN2@NsF0KlBwjMRh1*E_96lR+rv2>MGj(mS7Y43|q8HCYSGxSSjAc)lbwnH_!ZP_yz3Rr4tA$mQyuk2V8J9{=_N}7&?`np2>98O9AB9 z2M@Q$JLH&f{Qw}-b6;xqetZZ5X3WqeFj0LC4j1p%nKZTzX#{0k%l3k`MGf2b8GSCO3O~@4~RLYTM?A&M?G2fb09QiEGfB`JPU(`ZH-b(n)&+Te{n5r z8km~+PI!P`ucD?FOMUC&@bV?$pJ)o|?5x9(5K4Tno!#B&Z-`G38^(Ww+L0;y{P%CU z3?Cexf{e1WX{b0||<;4SNxI0 zB*c0?m6@IhIh*cHEf-o}fshCw{H2%jas-=C9hz36R$3Zy69^;!TF(sn6`z7SK4S@% z?<1*8=Voq@^f5E(rRot8tur$LLwetHQ8x_@H7ra_-KW(e{fmb*>ty*h-rl4%?|~Uj zw->5fS9i(}SDn#C(Qs269s&~B@njueBNY5h6bo%*q7g0^SXIeN)m3yR7pnne36H|K z!~hFZDm{4v(>j5v%=a*niTTFhgDpQASMO?HCWuR2{4%$&aIn7L?t5b4((--{53ia! zV8itF>(^&sD<`3+mjOhesVRLk{WrjJcDT!690nbKY@TTbO0t$GPiinRRV}aX$mzs9 zdX|>@dnZyb{8n~ndl}h9|6*I-S=-yQ(IBPwB!Vk+1HS=~0oy5_+haNt;H2~qgdch} z%p9^}uxR}PtCC}ed><8xAhJzy;qYa1>N->Ia3LMsS?svO=jb(<4Hl`Pxbt;gG2J}? znc>q6BkWI1g^0aJ1UMllVq*LuM2k?aY0|-7adGDz~6I4AxJDlT;s?GE2s&q0G zBKEyXMDEXOjB-YGvX3E$fOHaq5V*I%34V|N+DtXBCcR=5$QjTSUEQiG>g$Y}!LqWd zy_bjnKxb`ZV^f_oWjLyUG$U*3?Cfhq9?1e^FAnO7)UL1P`Kx?amvhwuB`=?8N$#sh z?i!I)+Sm`TF{lt^mRnJBm+2 z!leC35z$8&sA2%%QdvofvA(qx4!8vRW>O+gyU==}7|OdHz6GEf4+{$e2XIi=bI9?r z9qFv@uM?4wD6Z_NYpal%_y1Au9~vqzq`NsTU=Z%7LP7q+i^k&DhBN8Y60#tg0a7IC zX(@ZptrFq-L&iC3t&UH-gfhSz4G@B*Ha0D){2G6Ot_^r*!Tfk}aj78R{QW2DT9Ovk zI@7OTwfNZ`97dj&KV@Qqz10qI^J%Uv2fYx@pp1Ex2B^nwr&On(0z#aFpWhX*LIYLs zmjSHRnORXG92~r%p@GP#2%sBb`dp0lv%r^uK|ue_Yz2|KZKhChZU=96xxQ^B`0<8^BcqHdkBQf$$pd-bJ$|fFK6AnG~6a4Hxbmp-+|skOHMQ0CC@Be` zu3TW93xmNR8PQe4KYkF-*I04Y$WcKkf^hbLu_!Pw5E642D#a01V6blULr1mYC#?Q+ z?&E&3Q}kvoicLa#WQ!$#ywqn-5s}O;ssqI&lf0s$uZQ3`tD&t;J(?vQ#RBi^gZ0WL zx$g{$(YyG8qWG-fhOGWGBB7so(EaHthP+y}wvkc5NP1-x%DLxk#dGeEZ=vh8*yV9{ zoG!2&=!;nGb|{YVs2Q~pOLkHcK8>|I{cj4hY*Y&W)(hk?o-dZ{y`OQxZQf$=1yoeD z?VXeG{(HDh($4nQL{`WXl#l=Sx zc(=D2sf@5?V`iIb2glhy81Ujy@l6)$J>&Z&t}CaSga0uzaof_; zV|)fiP?7aXGJ9j-aqkJs($lXwTqttVbt{GIgfa>W(83V)+90fU*Ht)Jp*5lIq5=Z* z%`;U(5zEojv$K}%URBM_WO5r0mI0h>Z1c+>peR2hJD*YMs;L^NS1~KI*%>lYsB>>} zVf|QDJXHD>{akJM4T(s+#xTbe6;IXEqYh@6T+I5$dRkg)n`w7ltC+a(8~{YXr=nYP zQy{wu6tL^|8;M%4_#>jl8(^P9Y`swYgg%6p`&3YRa%x;mSU4xG5mkN4jQ`b_o$}}X zsvuz=>o`TYoQbFoQ#o0zo>?7INyX7>>U^k$#a4VA)~>&0kpCGbE-ncQ56Swk)1Co` zlI8`p$oC^P-AcXh$yJ%vLP;^p-55NunIjXtJv>gq3Ib%I?nD#P4B2S;(Vd^~;V6v= zS_2mI!I|VE=iBJQpTC^fX*A))xcMiRqfDM7%r}EsLIB$2dTK?KiibyZTwI*Dh>pFC zPZMbh0@4ey8M3EuTi7UIP%(luVq&ip|5vYke8`UF)z#HaO&2~dPx}T2MgeK5%x^Ex z(5kAc-d@CL#xw2+rQUXl4qniuYbmTX{ezt<^uzv_bG_7{8e{znOqC~yns$M=Jq(&# z>wWJkqS(uSO?&55ou6H<>%Gh_qNk@mcwaTux!vy5OVFsPp#f;)mfb#27jHLHsuTFj)HSZ(o-jJg+; z`uUk#tuS7LLqojzW7`!aSZrD*^Bu=S1aXRkv2pQ|neBP8wQroxE0cd0(y!MGku7`o z?j4{7Ra7|G2Pg;DW)`o1=DEkB_yAvG`af55BjnOL=>08%$@b?xy}c2lc$I7|zaBFw zfl9QFwW@WMLhU+MrTZCswg>_2Y`y;X@BR7tk`l(+SYF;*fE_tE_v`swg5>LKgs<&; zcz^-j-rfOv`n8mUW>WJEn|*Y0)W{Vrx%1TUFZ6wUYVEk1#xc-}@I`*#fJ&d+ z&F$xMepZVx56|MT4LZx>P6EMOA zoS)I9rDZv@Ac|f39<(9%gp3}z>YF?ykt|KCH>nUK& z$c$T>TB7ePfBlMHQt(zbq;dxei(#p2Md(Cp5r1AdH<$B*B{@P1GChI8CN~PR7)Rxx z(UToQG5MAqA~@Tdkx0=~9>eN4Mx>AX%!Pxf^O>SWKNcoW#XBQmq5fD@y$lmm8x+Qt z|2)@h5&eF)?AQo1t9hM-KvRB1B3!;{QdLY2os25fejf~jKFP8dF+hveH3Q<-rjcY5 zNkeX#j$)LH>$6YgU^m8Takm?lJ~jE;#h`Q+fx>Qoxrd?sGmY1RA96;<{y zS$SNJ@0%=wczZeh+PlVNiJfBJ_;cs%9SS(I$G6ed;m&6jeU@+dj4;1(jOVNO1<0$Q zXsRH|^FJYGF{WE3t^D=*c{LWI_iCuXvq5JHY~o}o<+bEz%p!3@wu%`qkVO#7-{{A0 zVNFIl@d#!han<$+#1+M#E)i<{%)X<^AizN2OG(Y%4-MG95FnLwaHWojEw*jN`Ig;; z;D>m*_5--@ms%&5mJ(dRuxO?nSReJ@zJ2?LO~AxtAve$T3SUA@TpV;ql$Dj=SCrML z@$<-4*M&YjynDw~{e%R}s5dt^=_I_wB)G7SC7G45Coq0cOZaRICD?pTk`unZl3P9Z zy3y6x<9eV{!Fl=$EK!5l{lHgCARYg_TlqzK_o( z-mjC3T`kt1(SFS>21Z63D14Tjtw3?>t?BLTe6Tvs@Ws`k2a_g~P{YWwfVzi^dodJ&3OYa6JCzh|@xoeV->PN#F~6xM97h`d`ZQu_zzRA} zY^>JOjZS#_>IrUP(C962Ic_eldK=A&ljkLl$Rg_1*H^86lgfv*>QtdCfLaz9&|Vb0 zO$maLZf*h$6-bQ5d*ym3AQSLerIL_cusfXr+6x9sTavi|xRGK*0Y|S63?uGO9I06vc>VAl|`d z!y8vnVPBTrE|s*dO9K#qfwsn5=cCKRKx3B?TXUSKhCb^?9V*pf+|Bd|n)-U^Th96o$z zl@L!!G^T~{htgKo)^c%ogmz|Jk&uDg<)ovcqO2&3SIK!Tc6W;{`|wWj31*w&sBF6@ z<2|zO+W124Wo1qE^;PA~Zm(YtPcHoEMGS05K0)b_!2q8E^x)~uE;9vh9jt|hf+D%w zv!bO%)QjdP!dph6kegC+AG^qb@X7e?urTD#&fQ9EsMD-i;MZwSdoJR^t7Y|1U-ced1_-bi%mbqX36(QcS)e;^4i10YM}q! z(Hhdm?6TMj0aIhJFn|3TMM^LdQO86v)zn#vY$`)`16nmuHmW?THf?-heSK$HX{TVL zU>-#K25Hy9QyrUz>f6XmgbRK7CP3CNkpd$Dz9*ca3*m+U;#*+u1!=6wc!)%c8X6iZ z&Z)EE!+qyg*dVm@n>fuOX^=t3*bxIA2*;C&=!n7sS$N=sPZbV3U|oK z%KA7v`2jVoGnAhKz4gN5f?qERj~4a^U2kyl2JNGpv|Q3h|D1Bg@2BZ>*xbg9ZFD*R z^S|jkGAa={Ag`hQf-2i{HUiv0nbGqjKbykcy<(vjAst#}a{*{7$kyYZzP!w2wStE5 z?qrcDau)>=I5VCzOmI0SInK;%V3= z`vwvT3iUqdrmrP2hq?f2D`+<$xw}l?1CZdCdb9es{c4U#$e8eo+nWIQ-zPqfLR+If+hseqsXeDMxQ1 z1u^mcl%94yy$4Cl&MRoe!NJkTs+vv)UwluG&a)kKFFgWaBa)iSD`Jiy`!UUgCRiX?b_Y$Hx3~oMo1_(EkgI> z;+*IEcR29UYs4Ke+~3>Z?|Yk#WLOK*%6&GNklVxjZH;;WE4saBGGq^dJ0EG!H%R)| z_%V=*RF$$G4mynGD~Xa`Z7k_e&<`6@ER z#7$RAZH@$fI(!gkKEs4&l1n0X4uoCMvL$>dHmHbdK!c!yBU1831G4%^&WkzLd573 ztoMRHsiB3u=3VCK(65G6z<`0mkGmfqKwnBkgpJH%YGmYGMJ2HZfigka7yoaz@m!6AIUz^M zsbMjv%~W;x^Qn^$%JGT&!jaFbNMBQ})YdGA8`4p@R37?JTQ8=eS5|UVqa69>rj#G;Pkq-rtpi<$LjUcT z1U7;>`T6-amW|5EXjws^G~d=!EyCgBEf5dd9*7~%6LAHN33b)E%4Mlms4+e~ZTanE zCunwxe!4#vKCA``iq%MA9MrGJ24?zR+lO<%em$>rm6wMV70E2bOi;NGNB7?H@$lSj z0p#(5dw1CAv?G5&fdAF)ZGVyqMc4=Rp20Xhy~$`U=Dxj5{tW(DeFXCA#?rXj8SIwe z{=&|{_m(+Za)Zx7v=HChYjwx_6N|?s6_q3=r~6aTL+DwFqGw8=Tl3#^`Hor49$!xe zYovPppRcC`OqKIa{Y7SK-M}v?Z6Ta*4d+Ydcj?>y@2q4q%UogKQLxr-utmfnq28vZ zr9KCpfCKq(e(t5*Uj@FIr+f|L_HeALnNM9eTwfd>zO~lX)m8HZJeM@HE!R{WLk;`k zxAnT0+Wqd~Uo3aAKZgI#_U_-olBv^dXQvOJ_<0|UdiT{$CJo)nOma6 zfM&DXGEI1Bk#W z?`q&3K%^+e4;-PP|Kbn_lZ|OuU)!AcX_m}87gyH^?0+0Te3;Dml*5QHb+-;^w@q=R)O|ys7FP{`32`8kRtXD+lA3Gpa zo2hcl&CF!}A?IZp8a$Jy>rw)}VSt>hmg0sn{w#gc{2s-v6P$a_8KtFh>DpqI)n1T} z{QOB*%aTccj;PEil^>j%`;@E#B1&5iHtQc*pGe3^rlw|kRO(uMW&LpJ*H71?Ci2af zW?vgYT?ejqEFJNPlQT2_#YFCsJq$~k*R`l?kHMQ=O`V*$@|Q?3btrZz{GqF?5M^!@ zx;jmrXO86Zo?=a>hWKEryZUhJ>G`Jt`bR*p7u^uQ7kT7`wr@+XWB4Bw?|1n0;-$jc ztZf(MR+do86m2yUy_mUrfsE{%@*!n7?Oe^*?_gG>uEbns$Vq`l_Hnh33oSOaN3@5KRh7gy`YYqma8vDBzgE)|?pFw#;h5E$tfbZU1EDtOqUI1@x4^a(eYaqLekoHmt3R*IC@7y|E z&ju7CV-P&sMcBV5-`GWkrS!WrjQUPVs8UkhQsZkO7xZF&r z-v6D0lhgmGX{F$)XM0x{T|-G+MPb0}lfusEyUAa_QuTIAD-sib*4OL$xVq!qk}(l{ z>8Cm+413nuDeW*;5D1XTA3i!01i#rHB>#J|(jByLIWiKTK&_gxw!%k2PGFFzt#OWj zo)C{CDK7qz?sbKrH9^`rIn8$MGdMkt|a6Ou2u2#cJzb0m` z@Dyd|w?1~=()(|wfElPeQ1$A>#>bxnqz5?HuB};xck#2q{U>mR$VC*TtuJsdvUn{6 z9y|Y9xvp;zQ>5LB)@#2f2J}^8qI#t;e4$siwkSfU?5ks-AQfmS43Fx@rjA%5bHIwt z*?Y;sc^Qyw<=!`wG>XBDhNoOQ(cdo(xIVdYyR;A-A*w&?`nYVtS=$5=S{VFo zu(WI!W?aQy@p6B8i-RozMoVEieZiuFlE_&|+q7;(5~-1n{e7@kufgsUQM-l=?9RBq z+^;lVQOhs<9-0EU#KkXCaM=edBz{TtmdDSZKVSUqMfl6ye=>xL7m1&inU;q9d$m}5 zYy@imcsfI$NGok(@*FESfwO8%`th#o{uXkz_i`^;8szJFK$9g|l0ALgc%`I}Hu|6T zyqB|~eZEfId}UWH$3LnmrdH4Cmk?QnsUH-UNQ6~2rNvp2F6<_dYidHUd~tE1r8Ta1 z^sQ!$%uV{^4voeOZ(na=56k4X3;2(<2kVcfVNl0J;qc>DZs^&|Rt@w{`BlUu$`qk= z`cg#mglLSnV6$4An6PO)gs{KlZVuMdUz?O$=odN&;?&vp`aa_xG?GC*&`)l zwC^4t*Va_!?t<&p-mX zd_xuH|DmeN|MsXQDoTYv9)px0>8>0#{wV5@jpmSm3#c(gg}%C)+|gw2`6UP&{=h){ zMuuLTjwiZ3GkZ$fw-|t^CxQCKo)#sn-72i@g@uJrY5dY$TevX7tRM#mg*t8Q_h*=u zxp@Uo_`0t*JX8w~?Q51aKwnKpPC#Bb7YvTZWBaAkBDS2{l zdmAqT_VcxFualD#QJDYv?nKKkufU=V@c!#<JBqLU#s|vV%a>&{`bG@lxr*Pl%3=OHiL{C42*BXoQR);zUJR2>=Ou zzS_A-BSta-EfpvYmim!nHU17x@^&K%Z0_vzWAwaXbarsScSq?Uk|)VVZC#4Ki$X&$ ziNPQ(418z(a4X*+Naw^vl4BS&=Up!dSJ>S+11t*lB?eHHa$x}bs;73Go=^AlL9>?~|O zFIHOI>5)QO#SU+u9?>45qDFlBawovVeb^WM7Le@D2l;|h+&+VlMfc=}VmF@B z^t$ws1OzrBdT%UaGvkn2UW%96NaJzUX#(n=y&~}69iJ*`4)6n6m?kbradaACp*^{P z>)`g%&B9tc022d4%5T@h-jL1o;2e{-E|M_pgNmZ^`?9i~Z8^>}f^KUWA0H-s>Iu3- z)O3^%fqj&-vr~EF5fg5Z2jX|K^cTo?rWP01S2tVVK6bf-7%!b*8OwG%GcufVtge5N z%1VmZ7KO`CG@tBf75P6d{e_xUnXpoXmKlm!d+_jQ455}n8yc!ma-?*!)lkl}N4#^? z`~v^Q>H>be#uF_vhtUHT$I7jE9tv&GZ$!&8!sQW_5PC@Awy`q*91Q}G_b1Hl-QC@- zqX=^d8yjA12+<+IXu>G&#km|7Ga=1&@Z`kuQxOR&Dx%cPLc9)oA|lv*KI7%5 z*bi!Az0W?P=4EGBS5}5=he!(x36U&B#z523(m)9%>ACIo_HB_>@KZL4o5r{2bF|n0 zJjev8lR(@t^mXX%anb`v;3S(L6$p0%04zYCh_sWf;gR*fP5>sd2-E-_Wg~}K5HCcC zP#l|-otDPjynh5#G>c7wEIcHyybbIOUcR7o!47933t*09YQJPIB1&{hEyJ}awD8b| zg@wTrs(dgQ>4MHD{vj+M9{zUy9prnncDmM&aaM8*vyk<;vi$@>QlCT7!;Tci6}3H% zg>p5+jd3F*a`q@WnDxDhZe*jr|NdP+v9<=p%RrKaP0n|BGt2k5`}pwZ8k?Np-9|i9 zACu3?{5`qlqlC3NKECfog!tKB5>1<|<+8IZ+3zFE`)Oa_LpVrAOj?SWl;t-j%8tmg zxH5L0E{zNgKd4lduX)7tdkl|cL=ohP#Ew0EPUzarmvV@EU1t4ZhNEUigJb_dwqrvyA2YsM*BTRSauSRGUaQPqf<7Y zm_iqWr0OqXG(%1XhtDufCY)PE1V9&$k0? z@092iGc`SVRwpO*JShpq?xDs!2exuzdKNhi_LTyFyWu6`X^xJ1I08~QmM2ME-=xw zc9Ay!glmVJD0VRbK8=kXrhIAun&AcpFXrY{$E;IPk+rYT zIaDg^Al}SAnkoTk=`b)|^TPo(=apM*@#{|Zybw34PdooL^Reyyc!xB zUOrwx0IsQ76&$6GFOMfUGV;^M%M0vNcveY8MUP;F{ulJoq(R=j@%789Du9hj281Qk zqu-T`jTtKO6|-oXlD3Kuh30o6y*%>&K7UKmUJZVC{`jP%A}Q}P2at%={n&Bku=n;c z>7N7ygdl-3dq2;;3$v)Bwi(aD#>r%!7yxS59W27R+W<-7^pqbR{kIT>BmEo2!};iT zP-5evAuo<=zIf5rCVpx?J-hlU#G$HT2`@w~PMox^qS~(u9Rm38eS53)?k=QSFKcRkONcxn7 z?}_;a`Wwp9)k z3@$`QHG~=_4t!_|6?7kV0yb8^{o!QkzH7bC%$$K^t$HlZ@`$_ALJ7L_-=^7NMCO-lfA51 zLkDHLimoyv-9$TJrNE^}vFc||nBYQJM;%g4Rravro|RCEL2%F2lMA+b6?!}@&`_jj zmu!?o8ltQj8PU}GxwQ+Xy0xh-+t=``L3G)#w6T=f43NkPG;EBPbBgda8RX-j`G$NH zQQ`?xIv;xV8~E_Oy?s}zD_i~co@;9-ff#T@dqc2tFthtG?a33$A(L<3 zMPP%jT5WZ8e*XKw*VVGDA$!rf;Uc2g-Db7MNBZlwJt)Y*+viK3|8d8!0pL8!cr6lbBz}kYDfobWGI64kg9ySC-D6qv84}C9|3Fw@%|%n95iV` z!O66a3+jPC8>^6{#9vuLVs-p=+Fo8hs8J|UQ4v+AF&{8E8@^$2bl`mDIT zz5HWing)zTBiNP8yFZ|TwcCo5yzyyvv(OWW1%eedgYCa zi=7Y`my}SJL=O7D*x1+;Sb5SXxUaS1lg7qR=29@Dl+Q2z{!W^o?n&&h`;%E*%)mQ1 zeyZc?NsMiiNeQWX&f<|6Z2%Z!aq4kze;0MjVj%Wf1nf0hLXCErOWz%qB~f9tyyenl zAY9cX%P;0~sKaEFW9nI8x8%3F`u&sW6g5gEas_bhKx^n>Y-Pi;Pv#D2qfVn_?f^XT zW|*6gUOM1&SsUetDBR=m-mtg76Wrh2^F6HZITXdj$9j3{xh;fP$O0z_H*h74xMg~( zJBSv`Z%i2t*h2AP&eX)jAS{QRib&w8h!1dk#gX%+8c95DZf)gv&yGsMhQ94f#56@Y z2p3aybwFsnO@6{5CdSH&`n07J&f7DBmSl7ewsP6+{DmK#iEGal^7n#9^e!GMYAApS~OG6kB^IgZtQ zl!#T>sJhmH0(VGXQ5N%Q(^nJ0lbKj(w!7W%+61$hF@ez!1jdmXEVOaz8Okrqus)=& zlYl^fFe8<|*)0XjRX7IB0G1Q#X;J{)PdffQo~I@$sYq+|i3~_fDRI5jX^;*;)n8ZV zaRBQrQ8B~&3)>PA5&`7~2}4~oQ+5@?JYkrUXAgac_y~$&`EwhxtX0wpVXYi_jKQ9wQdM8b3Voty#!@>l1ID$L4WQe(x@r9>k*U!t0@hhCo#70YBu;V$ad zC{D84?iF)7v?9ZLcR@HRFdRP*|0>ZVp$MH>nB?|tgo4Kx#>2;T8y*2V+Y%?yl77k_r+llX?yDgi5_ADzW#nIAk{h*l7YUAVv5n;cqzG7kG&D95~I66`^ zRWz?7$T0Ir(R48Iv}ek!zrApjTO@hJ@=_Sz9CZbpsT6_x-55in8+M$-?8P zd$6F)TXgDo9sC(4j;K0U3n-1@+GS7<{R|uT`>yyCRlZg9mB*F0kAG#ZziU6NJl?(q zX~{{C+wKpbk7Nm?aevBG1P~52*O67ew6BzHn05QOdN>l?@-Z8&f`lJV zZfXrA%Hs_~iSn=lGoa~{AV25!Ci9ZCwyjiiM5cv)CS?8cm} zto5(Dxks@s z{5=#_ib6uHfM2P|noXH)KMm+X#C^`T!5x7xN7DNQ*pfvYmjNp?R04MvKN3`KaSF`sMWU(o5YZ^ z6~8$8@os_~P{eF#9hui4`}z47F)^>qYdm|n{2slrvq4Nshx!pc#SRLYJe)|pdy_o>QB~Tc>odvgjyPPRN(qCbs;Ll8dWNW-qe7v((-ARl73w z9%f{55|5Set*j9)Q;hq57u>b4k;?Lbk=j}y$4v#ygq$h;|{6*Jm zG!rIEWM`XER?g`>FZxe-MY|o+$1&tkx1=Ouz~!DpKfO4KPtZO(c_p)4-(UeNU@)|I ze-$cyYsp#)C$5Tv_}6S7D0%X@W$~*DYSy67l_uNdAlnP4K_7n+Ok?e1W$<@*_p@XY z5;_N&PSKH(us#&m@hSxYB~Ao4><^syYz`9PqjJd5CCBadQpd-RVh6u|aEVwaw z4S@#CP_^v}kjj5)Xs{gV-Dqj_Gwd}p#qw9NpaCEJG`cHMf_N|sQzd;55wvv&L&; zq3GdXuxXFCEicPlZRX#OBs}~wzdttziJga_X+Y!4vb(=Ma_3fD^%FZqys zS$r~>Ugr{%RB$lUhGkW-Q~TmB1$_gD+QfhKE>X~pjHYLrkskqVi~ z_0|?fu=rJ?yE)f*zH1fxP?+cNM$7C85J zQdcm_{S>{t3NDeAE5DQD@r$)2A1V$Un46m?ta}HnB3*;VWnfXf{-n=~lyP>>(g?B6PG$gHSsGz1RgL4L6lGefmTp9IfZ7)sJrV)Y{;= zttXhdy6X%2$3J=jGm`HWHqABFOSz>&ip=ne zp5Xp6IX|&!3R{#kRZPAd4@BaLj+$PVV>hwtJAPTQvyhD2XWeR#CiP4VWefCbx&}WO z4eOftdZc6(7o+~#U;oTU6^H8(h!*t}F&|A-%Y2G%+DEB?F4b7V+_Q+L@FDWsHORs^ z>^OAGryR5#YB;9kbM{)0uUmH?Xe$82D0QuQ z_s!pDQhqC|W2@uiGTgCw{J(cNczga{oTX=EBqU5~TYy-`#zvrj?LH?=z>4q~WLQ}b zqN9F8Pc0}VQ2$lMOep-``@@HE&--18wd<`f9p}|fKk_%0RF1zV0JAEg%xz*I zF$I)lB0VmNPU`yGKt>aPDCQAo4RfBj_a>+(J%89cygvX_0jK+cwcCV;bI*sp0Wd%K z9B}?|QT*bP1EZ7!<)mwnxxX%T>k7Ezrpw0LPKLSIv~%GR!5h?6^c?|r)Jm~hI#0(7 zEb(>XQVd)b;hGusT*5{Ew$?ri*5${5Q_jy z6yMG5pDZ_z%2?}2J~=v*%#-Fk#ic_`5ML;6^SzTZnP;N)Im#+v2whCf&hWh4h}c-T zxxD7(=B3{HU1nQayThp1=~8?Pn!-+P$Nl307l#i=2@jXUA3uZ8YYit5 zhdm)e4pgPoMBeLOo1#WV)Cs27cEIh26Kls-IIBb&*&!a&aTOK({F}JjWcmqlo*=Qk z@yoYwV;6t_u6%Xr8JYyM`6r^HDt9ZQRaC$k_w^=9HA-5#!{N~q_}S0tPoLV_*w_#q zfJzKdqyXS%rk^`%K{23qM-6eX{A|Rz-keGX;9llR8P5yucG9uUgw?UUkL6#*goUZ; z=+d&XvOxF<3AI{6s2&Fw1?e?lr}1!bh`rlA15<~;TQp7`=b$@Bd$kS148i>mOhV{# zb2o(_mE?;3BsNJd-=3e)2?XL1fR|}(5bQZdh!1cm)a>rQ4rM>FLQG6u`x%9um)60= zjhd#lKf)-E?a4=JxvXu%2uvPXnqHpO*So!}uwY%Uvg-VSmX7pf-`r38gIsW6^H;3H z9I2w$_Eu`cAchbq6|#W|H6i2pIQ%;SryZ?(GawsZUxLQl?bhtt?fv<8?Hti(Ap7r$ zWYMA~ntrmn>Kg$@tEY;kI@COCv{TN(Ma9Ly#CC^z%WsDT1M!P4yb$e7A;V4!7z}BZ zcomQkzBqov#m7$@M@N;8FL>?e7Z5-%!FBkhGY|>m7GO`i6Qe!TVHgx1bss-YuZ`!^ zcjspfMl>TP#YZt|IJqVN?4stQZK~f@*Zu}K|f{%Uv8Y|qf ztG%-BgiYou5GY)OjcsgRN#C6bnBVO_-w+oS7h9Pl)~hd7(r2lk&Kd^O-s`!sTUtU_ z(Rp&!iE?yQcQn*OseAUfnA)BJ^auF*&$sxf+3)N{hdFj*o6q+HID<-Ek#%__(sb^d z#rS^^(Ky~wmy(pea!fx^_4?EJeZ8xs^ew2-MVJP?VejnU&JF76{TaI7zu~uW3%n2o z;m_*_GM$%K`^N3a6@~rStmW;r`|!uJqqZ@Z{8!q|vpXwuM=#u2!Tn=q6q&Sw@bX zg=Kzr7CivuXnx22Okt>RcocCo)m&qm=boT{NWiCs7oBsDTYZn}^NSlJ5JDugD^IWFqSU0nVX^A6UldtsDjql1Gd z)}7c2p;PqjUmHZFqzuf=?qkevH>*X~T71qc&-(mdkWllB4?4A3nW?FAuy*0hSm&4_ zkEpQvF!vYQ7Y`3{SaSlu6A01;Jpw?GsTKNre%=Hc?v0*Z=C-M?*1%f4t>!BcIbCj! zMrXUGW;3I@`u_LNr3;a|$Pgf(cmUHWaI%O+^0pH3xU*&%9xl!Af8m;6`YAn@QVe$a znjK?KRw!%1RCe$lmd?v*63qP(jdTGi3MH55ye@H@Jc+d{;`I19snY?O98R5y`4ul3 zR)FZZ`g5uNJ%-RE_KDw6BGI-<&c9bT4ljG>F4gy z(E72pwxXi7wY9P24`2j5`~o5}C!fom&buXW!{_qyO~jAoPpEnE554homr&ZPv$(it zGi_!TODS>to3ev}&b)J`C(kp`iJVxAenmoqy=D4Qyp9Fpx0#rjcy#3ab!(Gg1pjQh z^4BksjRJ)cXmz>fgwObs+q+v=VJBF2y2|om->iMUo<4Os6orgXrjW5^(>y z{O8f5n(kKiOkQTrS7dJ}@ZPKVGIbiWBIBTl=)XGas;Eta?Y(McL#~1`)NmB}_}EZ~ zvnERw-z6#2-!K1`{yPg!^FI!Sx!$+w5sP)eDP@I1i&Qch604-@oP=Rno9| z)1R?nh?atc(smFJ)8Pdx6sQl2AMMLmX2=orTHgNts3e)@0D3AaH}qy!7S?G$UAmqK zyLv*?G!=e*oorcvwFB)%+t@HW>-9nAg{0>Y&b4LJoFZRRC29w4&y0-F$blaEW+cY` zQ*5k1zlNj{%&f{}$BB{lss+nJV@HuLuxxDH|<0 zA4g@`l_xAg)1Hh{mHXCX+Yq>6}Ce%-a>^mO|H?WP3Td7-~qxmD| z6S|ybNnd!u4*%?6$Aq4SzFAsb4cFx17IZ&cl`_8?&UgSa-?fK}z`GT5|KAek*P9u6 z0lPbYmON{m?k6Z)CTNF^baa9Y=SvORCnN2zDQ&r7k0CTOdOj?;M zg`SvrzvE8QP3fa8jx5rjsmy{#3SRGsiIb>1DvMu^J;KH4svQ{{yTAP{^FY2n0x(g} zJ7Q5w=98?wzde`!+bk0RXye`8y~VwzrlyuwR_1;i-b&hNz_J12v=LpEEhZ!So7Vol z5VYV6#_xNvkYjRH7#*5Iay36zM98u{ksYDy-CJUAc6KlIF^c;jG4A`QcDkgzKR}AQs7Q6Nm>L%?yRoz^njZ(t&ZHy1Jt8J*XV2s;l4ae!q7g&szapqHT31 zGUc%spn=tqdM9jt21^mVb6m~ee?YfE=a*2dEXgbUS^1( z6eA-N2JI?~6P5^|TEkbUx=(`E%ZX#xQf1UBcgm@6h|fmG*Va~6P-$3acJu$WeksUc zdl}e7a{~hdAT;o9Qkmfn1hpQAFx>vZd{kD70HiRW znX;e;^=;6(a5(_o)S8d(&3dyCjN$1X(vHxWVYVz-CscHxxg7t|Ru7_yOLTFuK&~$6sdcHf z*!Wqp1Apr@68w~GUK51X`t8neh!*ec>;UkAQNTTc==(@IO^gXUL9mUuky)RZ)o#Pqzo zhIkEObgF7Bk`kzw?`oUr)%qUNTJXN>ZI5iX*I6is&}fr5(K zNQpOxYQt>f?Rr)tzH1=cmznJO40_oiCMLG8rHNwrWbUeQ?>k`jk!=0|Da{;PKM|iO zj@+drrI?wE!H?$>MVLD7&mTIl^aX{{`+$J?KzBAW8bUl3n2rvJ6i;X1GTA*iu=!ph znD1%dRZ0?$o(kCI-!wI`nkXqV#Km{&cQCF6{fKe^@w-mgx@QAacwwDx+$$vZ%74## z<`A)wB-lTV@CeP@ea-8xkSTv~P(>v^CG2>)U7ng^!<9#x5N!pe#Z6X?zJysbVz$A|Ly-`xS+V6BTw;iJOn7gj;u;m=M^&tszE z`%6c0H@Fc5%!3;*)PtITc#>F_PxeCjMvIMWOuE$u=AUpU%=7%4aVX^|3?c%?lD=Zc zyQ4>!vEW1np;EJ@oubO=*kOt3kA6s{AEZ&&>gNqJC6WM)$XDiphs%;T6KXXx#10OA zfTRY|st##K?H-<=pNC!}DAVxdnW{*U&G3v!@B)r%iwA;+hbw_f80e0u9i{wy^s&Wf zBfpJ~#lMZwBpwS{{dsuK&GRhd^+s?>$XQA9wA(Flii(R&2kR#(V@Z->E$i`(U>To3tSX#V z@8;I4RfC2~N}&G3N-!;Q0-EON=*VBoZ?Umhfrf_bq4TYj3F0fyBv}uyjs zWz3kaXJb>KYqDi+V|^4s8iKr^5h&ZWmBZ6Up`u-uotJBxL;lFUj08rKMNx@fFK+o7 zOPtG?qd*`{vX2l29@gXxnmHO3R0kgboJ&s3q?eE3ln>9MxboAd;1+9Jr|{O#2f7~& z;1-x_n(D<7Q(aDGFSi-CL69OfEhH$sbnyA!H?*G3sMyHS)zm*g<40Y^+q)Zi^n0NX zU7b0+|L8~Uzyr|5?Jd;X0@o=(SiR4FuRb#DRlfgoJ2S13Lxhb@G&0acR>0EDt)3|M z(?E)BEFGz>hhtM`CxhWOV8qcB>R2SDsn3#hsoG%l4ULX2xBHHlYA!^MKJrk1vjmpH z{}RVP@}o>)FMks%CCr8~9aoTPm^`A!!lGD|7p&!k&}tf;d!d0SQx_XsTY$*~YKSUa zVQFbIJyR)3!O+*K*VmW*y}eVW6=yXzi*ALB2D7tRTkp_O+4%UzZw{6^!BCHNK{EwR zf;zv4ROvhor%A*{0IP)93uBg%MfYkZV_O~d#Ayke0v>|_JsNK2MU8#LlwMvw*jC*P z9b8Y~5B2A2Gxj<@VU6wC;>iYCc&0B+8M8_|S$%MnWo2c}937pZH+3m=cQxPfeKw)p zGEZ=fcv7p3jCmL3+_~>mUmNDJNgsb`X z$G&>D$e!JyTWVRz*?=M-U!I?kpe-*i4?2M#V{qFvM)%g&*GC(!=}DeKizg$yh?7Lj zltLZ>Vg#==1?@a4uR+xx;jZd7*OGN04DIv$*O~D@^z8%@*I?XX`|#N{yWmsD!B3EF zsg;|PF9N1X%n^k2i*?@h^(g}347l%u;^VfR=_UA!t}2Izfk>yK!k*9*XWKN#6hL)z za&o0g4hv+>w|;Mxevp_E!#nM-t#xt#_4w1n z@}=HwNmoOpv`DH@oI`GIaY#AJJ{_&d#NX;yIL_a*)da2KS!Bkc(uMX(1>KzskuTn> zVU*wjs#e2uyFtw*9FNP+xA11)uMuIBZ;$55X)k&B=Nl;EfDqlJ$>I3NcrNq}*Zjhy z+rpG^>Eu&Sl^%Mnh=sF@LghhaB}M1lDRS;d{1$)nR?bNEN3ref?d4$HGIZLQSb1e- zz%UH-I{@icdsmZy1uP1co@Sj`sH&?@e;EVjr{%_8Vx-i4^Qi) z47AHLB{dGT;TdqS@i#u$@&6MA8iYXt90TZ|wNK@v3I4o+0hmjRhpRgn_zTUS&yp~e zHDRZAM;@Ww8^D7Lvs+uUX>R%#!|`hfjxfPAdPYx73f0p-+~4DOk%*=4`!CRnXSV2y z#4X_)%k{q60D$}}BOTNtR=sa>L97=a-{+N94@?YnxQb^SpzqR(Ix`CM&H=2U?c%h$ z49gQWnZ9aq5di>kHsxSv=isG>&^o)g^wCD*AnUz&+IcDRBO0z}Ui=Sk{)fAA{d6AgXo z$Md8l_pEQ;HA6$-Ff-zbHLSw#9?ZB8Ufysxd4TROBVso zFj(!Avc+3TX=-UHhAN9nNLWZHZoI?(e$*2Fy%C_8DagojBzy^;Ivcf1N`-{LFMr<~ zGU8$kVoPz$i4oI|bc#yxi-ELA_;leYi9cc50}_pY+Q3M5tMpL_$i{PXbKA*y;^(*S zEGtD#Lk&%?_aW>JS_|r`Xs)QJ!gIXCDnhx`g~FFS9sVBI9@!D7zCMpaQZtrHTgaA_ zl(ggY^^vgS#5B;WI0|Mhs@Oj$tpGyy!?3~L@8j;A$UY~f7W8?;t%n_dhq*rA|K__t z{U?Uj%9DIyo)Bc_w_je0ncAR=?)p;BZHAHpzat-68XqT=kmA!1ISrv&XnAX*WP@Rea~7pTswJzZ$E>ey1_{c6 zOBYoZ)U0oP%Z@CneS69Vi)`$*vkS3(#>8Mcr+Wk%XVml^FP;T^nso<6hU9%64kRaF zO-#>|RKLjYs_aD8o~=M=<2$=xo`r?8wJd9`W8ZU10y3HQ&W7pXXca>>rI*^ zemc`!_9-}S^JrE&Q;*5FE+IHdAK$wxaTHsB>wb~+1tY95oXwZ5Op=wAkB{&$;6A{u z-fdo*dKcWGd{ZS1^x<+?>{jY-ZVPcV^VhW{;i2I+lM%4inT(bR3jRPnJyNDns^gz( zdO_s3&nTb!bWnJlCMN3e@%iW!GqE)Fus%WgFgAMdB+jsjr4d$x1hqqQLl=Q$S_!C* zPqGz|(`H5;yY$lJndR+&7ZB8OE4`3ZzvI%GQmNn)cEAFbD0Ac+)xVFH7A){KaPbN8 zF)=WTmd7)s4QHRq!n)?(nuxp|2Evc0OB;oSi!CjHw{d?j{Y#L1A|0<4^E(5<93X;J z)j%M_^b>LaoGlS-F$epc*FTm;f8C#(Z-j7Zs#3$<0+j%Vj|T z3B=Bv)C*DyJL6k)UN2W0PNR05dC6o+KKQ}*6;QcMFD+rdp{(~kwLxc+=f9iL-I!kc z?s+xUx0*-Kt>xgmLzRU|NZ-xGjIzm%*2Af+;(xHbP*M!1!cG9=3ggiTmuPo4EqdFN(Ubw>ZG9sx8ET690^Q=<8b-bU5~e zl~QaZJIvrkeBJ&O?vfgdG!ECKE(eeVDzVUc>wcPXF5V&`{+Rg0)kKJAyf#^a5%R(} zuP9?i-tlAUFEPV96hve=&W?G*hT>Ebn>VYWyu6>Et}cn^x1$2g&iSO%B*(&$A&(d9c;hRgR&d{HxIzLP_VY$w_1iRFCy9 zop(H&W{V`=3bT=NA&ZNPTKVGm3Jt8b>bkD3I?hl@Y;%S+Fh{trMUu3yn(C0YrzuW9 zBg{wFQZjk7S6i&Sw6y5GvAleH*-KUwc6HUfkz{f9>tO2u2;^pMq<9fKY==2_`V2R@ zBB=LvA*E`T!CLKpZN!knrB*^qnAG^#DE-xTG4RTjVQxry%8e=`70@1r65O)FwD{s6 z_fKiGz)6}4EsS0IavAmioCZzEa1C}pNvw+a$p>r&sy!x%c?m{HFgY$8aFrjuizk^3 z7f6ejwC~ozpv055b9Q!KovSv#+@!1*u?~3)G797@0A)6SJuqIgApOiKQv|5@fJeC= zYbGK*{O;E8a4B%D>CaM6H*;_OiqUhO-Jv1X30j!|zn~7$H=K}B^uF63X3e;`8WQJ5 zs~?tkmjX!o%uO|4gUW;Q*buS2!o}Vpa{I}&$uMY8@O>mV%H=Gt!vW7Xp1V8LHi~$} z!~{`Y3TaBgvCS7^PLx`0Zrk5BFm5A)6TY$WZ+yJmPo5x?#EyjP{?YgG_8sW&LkJDP zPTu^6j;IXu_OkS{0rh4L1&N|Mr?Z6| z(+vKhmxm*P7WH!SNw$c^tsWSsyL(JG;*5x5<#w`U#SDu~td$@v0yje6o1jcNHY z{&N|gla6kHfRB#Bp=u$GQJC4A3dNS>4?1AH;GB4sC^R&khbE<%Dk-FzQN({7c?3GG z&*IU_f|Y<3gvrPcAo~ zUhA?K4cM%G0-|C2NGjO02C7I;<|XEPoZa7f6ye4qory*J7e(yPetgbn+JS}nw<{PG z=p~PzD(-DZ7WV8|72Mw40d~oIMo8xS_u(UZFzx3=&u|~>*ym89WG5$20WKhL2Csv8 z!^!C>gYSMVs2i6v81ZwsqmlmC!Rr@&MuxoSz+?6wTi@R&Bh@s2HKX-QXY#xVRHjLf zX>6FJnC}WB2o9FMBm_=JMv7YXGiVUGn6`S{0UGPsx=ag83lW42LPy^2EwJMHjeSQm zSPdFGG_lTTD6gky^+x@Ty}dmm4L+4j5{tnWdJZg1w)K)k~4NSV;Z5K8};ja5M$%5R&mg=uAfuT$5#1Yi`Jn>kom(BPm3RHQdZOiT=NmI>(& z_YM_uY6N5$R%YjBg+zoDO!!`Y4H8ABg(}G*O&E1XM=*v9%ph$Kl{0yRZT~?i~U1sa_#vb#-+j8o#p~B5iCe9_ZOX z0FVqu`)Xa*@(YQRtwL)ytvocUMOV^b|KXv@q3`2_XgTD<)R$P_KbZm79Ud8N>qYz@ z3HkyP6I4dLSk*vtbL)5S-k9tGfM5o%S@&v$KM{UmGGkCPDyAZ%%7`y3($jD;E?(Z! z%ZS?zRvB}1sB$N$Qv>V#Q*(CzlPES2=7hj8ljsFq`PXmX28(@l-_g~4hrdi&11E>i zw=uUVI6QBWQ`u`DWPYv8;DdCQbkha1wPh{=->2k*Q_cZ_}G6(sR1>|iUQ4lalxB1_Ah|4Voo}-&!JVs03 zCf`!2X>k9kivAw2jzZaiD)WR`S&y47v*&NegFgpX#vUp)EAi3SE+#R9A8q>hEOs=} zK}z`vEsZo3ls6MN5_)cKxMx)Ffu|E647fZ0Uds-e{sau- zXv##vbTdJxN$5QX1doj-jK1lxIrm>=0oYb3S5CL?>_2UA=kldSlaX|-0g<|2nZ}bTF<8i1de#XLh&jW zp*KAZBzjsdE>WQRMSBc>V=X5M6DQ)pkXyg0)F)lHo z;z(Kx1K({ASN$W_FC{ODB=O3bZ2MrGkoM0GoX3`WVyhZ5M+>M{WYpA^dBagd*c!jG z1O(Fr1O%L~7xWMM&@R=87T#`q}CFa7L=!HceaN~F5bOSIm1*>!c>t9T#b$4?E6 zjp1$)S*?CoK(&-%VO`S?Sc?2lpw3e5Qh?VYwIT&lU`|glM2)nd(ET1F(sJ}^xa#AK zPhP!e94zJRjkn)qXWx+EIrc`od5+!*RZ}ki2j}3Rd#UYbMDMssg<1Q6#`wk zZ?!QFJ@l8Yd=Hw-%k50f4S7H!l!z~dR4P_Bt9w~z z{-#&Ua=Z#nKxaLv-*(fSVO7z;bu-XB&QB7X{)_hrMh=eO_uQ#{wy^XTOvd^@B^U?- zsI`E=UU2(N$U%IcZp4(qcm2-Ou_fm_3#pTnCQxYt1S$Z6D8_yzJL7+M{SK?n#Y#=r zQunRtA0R6oaaxuwn?GI8O&s*_fXyyUPJUmCF(k^@hxLR5{=JdpHdZV>;nSLK%!qJs zH?lk2?y6ywmAj@ip8i`>4NGwu z5nPdmf`S5I)^2FPQ>T-2a586zg{E`e$WMn)PS(z)Q*6_D@Y@x&e*750CIxlDhg*m! zw&BkL;F+V-VbDb|n_tL6mVI<6 z%@Xwq1fNZdHbR1cZXf`81S%vJwW=VmP*e78d>rBSlpUo#0H6XuZ6jP+X+5W_Y^}kb zbcR8rAa+(rNI8MNx~fVs0buUs&N^yfij+rnt*yQ_->nkNj9K~(%c!ZS6v)OS zqG6ATridn=z@MGxeph3fIuSuN_$&+cXv`yiabR?$L(Et)@B+o)6cv;CDbbMlGofzp za%IJlq-0J6G-g7!N}zlb5Rlg%3T!5Nwn}Xr?2kIvynoXfg>EEG-sVaWYsg&BTdAt5 z>KOM2AsP0@-PMu!nR9zqWhYG%D`J8AQ!v+Pz`|q#Zn!lVb@g7#%e)9N)fp^Au`NMA zM0RyLIy>pzTmsz&AaMOW5{YbdoJXHmgAU-Y0`&qq7@71A^K1*VaHPOMFA|{bz`_=G z=?!M}7?A%5Lf1fbpb%ZB{cPIm1Hx4RZv@^0nk&Y}CNFbL3$g-l2Lk<$)*r>jcFL@H zYb0mjY2;sn@hXxeS`V@xAr zk$z&hg~8D{11ytKP4QLl-QP9BVk$b)5WC<=(K9p!J|F%yg(l9CFasCJ6|VED%)u894ErRqq)iwH?h0MRh2ush(-vafAs2 zpK0~;XPN64I2c`IusA_ z5)B3QZs<035V6(x0v;j$DIr!6i;iqnpw})SqXB}FsQ>O+Qi8O+V9cqS_PEzZ-?+nS z9V-mIG(Bb z!=uSfE5=MkdDUzf7a1NGkm+}V>-xBKYwMy(_^Z1!6&>x)qk4Ct$kFB-*YRrC%M(=3?-91`*`mG;7BqStICCp9reA~CLcLd53=%m7>j)8SM zydNVI%ONcAtXW1JNP}`lf@FJlo4wc$y?{(u!w z+z@)ZYz?5b&$oN`NIKBv@=4%6;f6+yjj?}lwzPA8?bGtPv$LU!%vZb(1yY{t96=vQ z+Yy&d^EPZ7D|?^sVek37#&-bJ9eMi^LFxn-Sy*=xL*k7@U(Jop9PU4SnTE?sI1kvN(Qb%%y$s`lH4t(2I({3+Nm!b zMuh5TnE@Yp47-TmkjZU?ol?Gj{f6i>COSF@#;uBny7*ZZeJT6Cy2=Y>w*zaEqc^op zGt%wY{rv;Dyynf%0*XI%@Io1(@2qwK*k=8t?w1ObIu1y~0Nk2rjLGi<(?>)WiU*S! zNNZxOy^$v|I39+*>m~ZkJg3YE2zA(ByP*p80s?j$+uLMB>x9#%y`Sw_8!lvlx+UAaJzEO|3Y` ztvKIQf}Sk&&53^Z1dP*SX8rCktyK5V^d8J!!Cyh@th2NQg8;{muNM{i8St&Cf17AS zjrh6QuDR=)!ex#z2uQbodWSEAXV#T2$CKyw#r|*o5>Kg$o-R7Z1RWWtoV#D64#u{nVSJy zU%;LD134{iY|8b4XQ%q7KXq#ODsVvV5fK!Gz3G+E$CmgM?D)#O_hM^fBVLG>fgvL= zsl%7;Zjda8WX`AyR$$%$qhwYG0izr7)Aw;kE0c)6A#^T$TqvuUH-IhuWe^R@rJxb> zJKo&16hu5ZJ3fz#jrF_S=%EoQjZa9h_^lur^b~g-iS`J?(5Q$AV}v{?Oi?nN===D1 zXG;rCDPD+D!_<$w$jrOUhHQZAHWr6_U%NkB*V16MAg2{`fcrlIFpZqstImg;xD!`p zHntZ2)L{3N2RW$%R0r=9_Af!+t5Hg}@u64HG!K%m@_8iyT z`<$F*g2F>K6Xn`wmuUgshYnCJTkZS(^uw(+C@N<9?x4i?XKlhs-+d_lL2xxqN;`SEDpV*Ko6G`Rx;&^hH z{OkFmmQlROqz6yRGdL-u>Qkn&wb)2TvVv5Ti@e&+LV0F)@5WDH8QEB!ww4UoWMJH& zBd5Z)bq7WBynjkyA7r5%U`&%Nu>?G+ib(Y&p+d8Z*{)U{j z?3ox<%14h%U)q*qO$fhwrTd?+8;PH1x^WZ@FN%fcMjN{^xQ!)>hKbI+xMd#q&b^3G@Mpx^<&KJ~j~~k_9Nzx< zQ!EjZyPeVAzR~*1<`s-{BLl|Sw*$SxPF-h0O6``>WXUY_##r8xiPk_4hTZ!dV5{4zz@D;e~zn;pXPgbQvF7K}Z&I6n{ZbGKWYAX;G|CHQ3##D$c%oR_Ix z(zg1ze_*n$tjrS#0Jzo`hN!~1xS1qV`=($)TZ|aLCf140$o>Gu1L(@;=Hy<|btyG1 z6{B`IvLd6)A`!d_{rVgs`3T8Cv6w`o@KvIkL7U>(2TY8tSdtv1iP%i{nav+Hm*@^~ z)t^((V&0M9y|)(Z$~RFgw2YiJ)qQ{XvZ)(rElAyzBFNXz1VUvXD}~c-XGluxSf||qRY;8 zE2b+2EAzPk@3btnJ()fsvS^0ROoG>fha5?RU7n=Ft4LGFU3n9Il~b_V6#%C`#%@C~ z!h8Na1GEM%5qW0r38+3+XNm+0L3%$Vg`_qlbs{D4t6t%=JW(nnoUgrZ@d-h!Z|np+ z_l20!m|js^QKZ46cPcnyA4wvEnszO}j7&>3VgBm$G-)9*TAe4644#HjFbu6(86*A2 z9WNgwXydCuO#ZJkpTr?{1U8l-+O*qVMXk!J2@Ea=Q*=F2_Vx88rn8jjwd~#uVT*2u z0vXo(AHxT$6x9bv2dj~qnhM0FHl?ME@Z#c>&z}>rvuP?eae|UUp9_w3D8`_P7VvEP zdS0-blh(URbd{0V0OFLBgP(>}T3)6an4m&EeK-&C4&IUrApU|7im8w1UoedkHCx0n z1R!Uf2AHb<9$%QPhF4C2iu2SIe4AK~xhYPF?_HG{JHZ@J>L66xgnB@21~Z1iMAUw5 z=4^kNd&&+S-8}-Or8%q0dulrCg#&~0-OBQcA$nxt8pipRjPH-dbazYeQA1FnSi!-_V`J`1csVl*Sy`Yja3sf#ALrrru4grx4nLq7`{Ow^ zegq`Z-%=^{j#1!W;#aQ)tanh#AA?f+_Ie?#ev#C)R3O-Y)&usfHV3x$fcU%S zvq$K>M@TQ}#n62IHyReybg9P&VHEg+-6TJcX2RnDuci=27~*EbK8C45>3bfrnGRr% zN+^-f4wK=jY3cFWHq3C3ToXeNpE5lQ7D}Yb5|R7=_qH(qu5un5^e4=@k8?gZaj}+h zWC$3)PB-wZnvP-o&mrsxZp1a1a)@a*=S=F>bMGn3mQl(Tp}b)fn6mGtv2WFNeeWt( zT#{ZVjKKQ8e8h=Jzp)Ds8M2XMm+f38X|%4YKo_c;(dqQlT&W@fM0ReW89sA8k&kG` zI?U?$=Of=|zHtUq%na%(+?@!$t5+-de|@0GLXN`*{_`Zy36H*u(*(x@sv!9JrpH7E_QT%`LHe(#tvbCxI-j&xJsW}1a zd$&lgdmH;Ho#SwvceISQn#1VsUZjPUM$>~IUiz!c2$8DdD>iFF4IN2igR$PiD@duA zDG-rrrKuwZXlUxcP`*5c;{S9dMF9_m5u;e#X}JG7tE7X!UZbE3BOo(quFdadgEgTT zLcuRTJ=TGd#>#2JDwdy=_p!-BLC}mQ`7Q2*E*+zFTCXeg(T9d98TDEbPTRG>MDZfu z+q9}sUs-4yd&R_)d9;+Z^5w^n5bQ@KX=6sw?a!_TG@%{^ZP$ZXi8|A7NJkK%iBoXO zF5UgO;kSB2FnJaG5`lC}Cw;K%|2C=Fa`&y4`x(HIQ~&$r;5k-L%m3c~KOdhAQQ#$# z8WuVt>lp9Emi*K@utpeqkd9r;JY%Ba@6?3i)?hao`)L3oJ7bF6xO40DWoG=m zX($i@Zdx&Aa@vxPqWte4Z;Y=YRA_yUYculBg!4sFMCJ*LoZ9OcFD;hsF5Fj8vnu1? z4VuyH>(7MD!(iNHdWr>TzYJ#4vSFKX3Y<(j@RQ2da82lO|08l@b~$eYp^cPBnY!{X zQ;p~7iC8_&ph|2#k0B#(z!?Uw>>kjAl7du%c{EZdT3zB`lGNu0qz>>X5rT?HS?uAD zmDnFi@E$6+JoTX^0s&6#NHHlpT_@eslmpuJJr=Hi-eKlO>C9q zXb~eGLkhmBi{&zbBaqF`a20G`k`FUf z?M+)DMIpY=p+XF}M#v0diaisLGoP}vP>27cLMarzIzyipqA!*0vA!`)2XU1{MkEgC z;IE}mLCxWcLm)l~3qLBk7TboHnuOJgbd*VuMXeuvf}KigtR|@6B(i6Lf5LhJ)NNq~4KM#S0_j~psQ>pWk*&T! z9My3`-q}T{yf^!s3hQbYvkU^qrdH#c4HHI?0cCUIe58Cf42cVj;T{OV&WPC5Il>@cPufxh#r6NiAE5w(}yzm2KnDEkZqq3|I*F9eoQ+wD-s-L*(_gao3FA>!u)y?gV#9o zd7&atTUZmti)fsR)yJ7=G2BnX^dC5gHSlrY^3;)$>)x@wfZE?{MDjE=4(jTwoag@} zPJ!uK7FIt^FOskPg8dl5r2g#D?B~z0UHSk0mUc}j_W%6A&M|n!=KuM`|K1!h3ttd; zy&4(1&LQ++X@0g3M~ZQ1OxmC;=6R(=&yKy7j_f&h*pw2Pb9(BJuvCNR|D+sz1WFoW zW-2e<2}Ni^FE(MZ>;t$J)h+KqZq3;yYZGxwImd+u2!Ka7&H};U^KJE&tEEAige8C8h|}#{cv2{VG453z~Lc|MNO@8jsVwh@ZQf~|aiY*p!@uAyrkE$Z!!uc1l^b5kNo=Zr&}y(tyJEw{ zuwkSc!Bn_zBXLbaY&y2HeSTY+$ z3U$A3)3c+K+*?Bby*zcUlnUGCk7hX;Z_B?R*-nT?!d3xwNu#|I{Dm(mXIRWZurA{U zAI5aCShXXL*HNH;@Ew?l_C2uL@-hwt8dowLthXPtG{a=Bb1FfZ@Syzlee_vgN@ z;>U`GO0MkO&+NsRkMO|pKmX71Bj+SQzR(TjR*;sh1557zyC?>Jq(s+7<-siFYOiFWSDfy|Se&?M}=2U*BpL1ZvtrL3y;sDC%<%`_YPt^)i%QMHNd9o}e1_oL6}SkG5U@ z>WQR?|D5z>5fUH$#QPin6nxC``}E%S?@W=VjN6q4D`HYHQ?6pqgr6LeH)QiBu;-uO+QR!ysnemb*p^3Fo^)sfmgiM_JF2P>KO3QiwK_ z&X2;1BpnMcs#iQ@{vDh|-*q+hUVg8Xj44RLku^&WpZd-_$dvZnV{Prs8Ary#;e_F^{mF028N5$mQdc8%=4{kNE5KbIprqE$^)2o+I8*`>VeVPQ*G8)q>UF>`#4i}k>nCCMP#|NMQjO&I+`E*dR+3b&AS zAn^4p@#WF-BPU}hSPUvxH~=?44R>s=XbSOSc+Xh(_@J1 z?%zF-9`OE^#FgOhO~j|o_aIEnfP6_JTKE!ZnerSgMZjsGKGQgrfAJ+Qbb`$oN~VMh z+=m4_VF?2CkEnM8<-V~@6@B~(OVY9N3LEezsr>wn9#|2D9HxcM!DHJ0aWTG{B4DwS zrV<7}jOatjRc`*EQYW~*vzha0%Ydh}LCmMYB=f#j-~kQcH(z#+0%S7kbQq8mYTc@9 zyhP>vzrHaEL(2iYu1xH9r?K!9xtG1%I#mpa|Gcn(&k3OC4G26b=Ip3 zt(RZbd56wP?h^7s{*m+(W{i@(y}t-2vveX50u4!d8fAs{r;*tNC5pP*OY_d2iXZ+8 zSt!M1l5#hW!A4vC9r`{(Yc+#$s)Kmmv!i2m6-?9umOdP5BFXqeHS8o?i_K)OhN7Gzap#rN%Ak+I`3U#0o??QUX;`qH=Kqc93 zQBdIfwz7)75M*;>6NFW0X=#liG&D2{nfQ)BU>HHUH8obAo|eA8(i|KdLPA#7WqhDjyYOrFOe-wYTgYO1PF-#p`B*kTV1xZ9tp>h0|81o+9%Y4V+4-slM8 zaOM9!IB4@(cLCfx0PalTg^GyaR^Hy+93LG4{yWH2p_c?pFsIU`*xHc{f={-PY=t)v z)A#f!#$#HFS6AZfQ6Qc)w|u<0@wv^RyStMMkONVcU8Yp*lfD$&ZzUU)13c{Brg{)c z$}e9svGK6nz+{w%b48DFhaI{+o}~~~FR%l%vZ11&%rDGW-W$9%izFK_*MZ7v4heGY zMVp0Gds_|&O=%qu;z(HNF_zKI2&k;v?K<8H7$N<)Wh-9uIg)ksAhKgyT#?2Yw;(OQK} z@{Olk$+j<(qBEYNKrQldr=NGKQ+ShZSfvrOFc*D78iah2PwO`mPRxUH9ceW-G?;Pn z$JJSIVqRU_@9xCdn3YHNU$MY8)eDeqvRXevKj? z22g{&rbrk0iKJLBSwk1{ANy5tl>QZ9`boQj8mH$WuxXUmpHhW3j^?TN``%w2_}%v$ zfRcKSiehI+v)QnX(Q-|yAKvxZ+c|o_qkq+t)yp}{>y5;p&`^t!X;vd5A_$}}me1Sn zZ!a!H#m%+X2ACb3T?%C`Fag}x^rB-EobZ(yR}_qxicXE!DDQJSo%z^>`eJ)QSjBfNaG!Bk-fYFqekro*p9v&AL7ZvB> z=G;zKFd>WnaJ*kF9o@-ewZPk4SNHb?LQg?K0hkj(1Qjo*rJ8^jw+Gj$y%D=7*K)Gk zJKBwrh<8Hv$LxO$UH^{&_V#vg%7N$P?@W^jix|4E|I1?)xm9)! zeI!t(kVJm|bu^s`0T`LGL2DWjvK<#~Mt&`$qkvVC_rbTHL1XM>-xDJ z6VA0jll}D#B$72J63sb(nEc)Sn^;6lf|-|*me%<3`V43n^79>xdP_=6N~HbnZbt6^ zY?34hIdIxg#Inx zb9pyyk@QnqF$<3{Wf)!4(Sp7|V$jHjWJ9Q_0pU#+!MlUVXwO{& z{J~dzA6Y-R)<*JR{^WkE4K1zww)1W2W<%sh>(S0v7bo#wL}NSS6KiL^e{lCljDA z#*juLc8AO(6WEwhglwsQMW<)6m-+B710D!NjiTznb6)88v7o0495<*NWs~cYj~E8V zh2d@nB?DemK%%6}inzEy#N8d-^VDm=po5(#06_*=h@DjwQ+Nm}KuYlW_|dF zQ51-yc>P(Me4G{+9nH(l-5wO?L`6;ot_e36f8q{+w~kkO?1wf~J3v2%j+E);3O&@R zfOm8Ik@{bt%mDoMyWWwzysGaco3U8yz&mkQC37!$x02hTFZ*8y85|4x%_clIGb48` z1vOTV?)Y;vd2y0gf7@<^#a-UL6DEqb(x0upc>g~~e^3v@Uji~FeZ?KfsDNc|s!_hG z{WfW_ZGIAaXPYBeLk62ARf@IP9=yu63iNOv*hp)?63NKO07oI*+||Xk_U%GiMgk2D zspOLGcw@j;`(rZdydOX0c15`V((zCjZctS zQ_J39+k7f;XoMPs{6TJZ<#T;w<3HS?($KL1o@$kvhB>Cx+Ij9FmvOBWKex3!5;oQO zE+Cca>F(ZKbC{`(QL%D91i~tSwRY7c@oD*7AY%x(W>%yD74q{?D?Ox0aTVg@lw3q`5xAQ%!J@2Xnw1 zH_Hn9eGJZQMx*B2n7|rb_mz%IaFhU5-PM&}UoZNaw{BE;YD0$&G7Sv{jucl-cfhbu z=l=sHV-UZ=G9cO?9{%V9fL6U4-bh90eQU7JN@GA$Isq)%b zPl5V|M&Rg?KA(3zUjQL&keqaw`3c|=!080;RQ1=TnO%FaYM^j$4nq*F17mV$ZF_@~ z*y^J}EF2PI;_x$z)*gsw+8h0jd_@$sj_ARWk<$}5<|DYqJNI`z%Qjo2^RMBL=Utgu zSF*?lfBmAI^A_fA-x$)HJG3t<1fvRyF?$lLIbxtMT$JVOZEr${C7bfVkAF!Xv<{Q1 z_~`%E)b#$4@Z-0o-%FSfJjMEN0M5mUt@kuVme*RHB_KIE6(i8*lsVM3>&$JX13i_) zw*)ud=edoIfdOapTVPS-VP=HjF}vl0y;4)t+|&@6PSkcFzJe<&V(91yV3so_Jj$EC zfA9&sTb==^-uC7Ch6dNC`cM`gz2ZnptryF~F{uf{CGj~gQL=I1^@eKdu1`>ZR4Ss} zYaDUQDPf0@{yk*P&V*Ui$didK?Ck+_<7TBruitU{Qc_CF@W@C}L199u%w?B60quN7 zix?{_h7gu>RAl7r?A%J_GsS0sWh_tW_#M`R&g@1I-(&xyWqN9%rMeocK-Bpj89}jI zIxT5#^I#uGO#1Ba>3ev@ft!qy(kWYlj(4&>cOvx81I8Igzp1G&EFzMg*7y%x@6-T! zMxH<_xFlHVnNX%N*eL<PtR8J~e_7Lkc`P&S`>0B_$;yNjy9}fb0f4n|3i9 z2Rn!5;@<3})dP*z+}w9=Zi6$wIHaUdU0kvTVj)K^PhM?f72*!Kxd7u0m;^Y3Y)rFt zo&!4y+~tQ$j1}?ZHg@PO;4DdT3EB^A@Q8UeAjVcEERbOnF3!$+2DAPJfiU0eGunUH z|H^sG1u&nKVgblC7-Tygo^$#=IcdIg>9H$I1NiZ8ug}`9z8`?uH~*Vpm2~GcI=X%Q zSXG-sXH@&;VO17k7d>G-+&yd|+QJQxz+q`(*`F>dD(LPkQ<7Nz)7;}`_9fOXT9H{Y zD_w*OEK#Xwh*x)aH@h}o^(+u8r;mc_I@uc4%Xa#Z*FzxNLIuY3n52Xxg+^tNoXALv zK^EeALgspwqV0s`;*en=P{-186>CWvRT3j55jf#+P zd3(ELHK#&gkQ(%N0R$anu|t%CJNd%kMmiN>Se{F_TuWPbL|HA*&36$(N7rhrNiN>u zI1ugzyF_zC6YOn_OU3)I*ChKfJn6LTQ`%EUCKgdX3^AVf(M&IG>noczIy3}CP*T|? zwdW~CX-|%0L>7bju*kYsLB{{w3xT_zop?{)?|ig3AATl|3m|;Vi_4f5ektZ-Lg+f zXhD3tfFV<3JE5s2bKNlV(Gds)*}J~^A3NV{Rl2?z0car3^Hcs}$QRiJCDr*7B3BRB zV`mSFj2UVN2Dhc|5E(XEXLVd*DZz=Eh4&kKU%*S1Q&&V`a`zI=)%8948|l=&=#=?+ zFrf6*$k_Nj`k&E?aoNfFOQJuc<0XuC(o&#s=-9&2*MhWjG7As3XfN4v2HV8alJZs% zO$QX4`FS5jYu5Rzp>&bXnxmr=Hy4*sRy4E=r}@-}P`POM-5qlH0nrgT8HLD`Cn}oI zMpkY%#2_G_UrrRMb+&}I_|N6qeT98g!gIHC@WEq4%ufmlNH$mG%ri9`%qN$WmX&pD z>1dmAZUWvShZeah!B|h5zc911_RP(tFZs~Z)3;e2Z#2(Kil%v3cj<)Bi6tYcm4zInp}W3w z@4*P-kBbg}uAcLL^Fk7WxYwVO zGS;@Y;bJiJN-Kjagg06HOazHhp0o=rX$`y|2nm?|k@azR=Qt2N4?+a0m4T*zTUP+H+KFK7M2xfDlDUClHeW zsUA>nhgDZa;nr>smk$R9c7Rnz$Hfo3rb)8Bvlz%QKd-c}U=slpfVri49j^hp;^)uc zy0SoniiS(E4BZbOl-P_7g<1yRU?YB4e9mRwdj~3FfH*xgJdFS7(R)`{K?;X;bzFB$ zMThl^6D&muN;I>d&rwR`G01dAasNCXBf`~bUsTTBUQ|p_wTqT zb#F$pz~)(3M8rn)n-_KYxbu*S&q{ajg(o-grfejvuG;^`>FrUBn0QO*0B}K-xhp3n znop*lD0CJVN3saLJ%Nk9aGU%@Rw1IAWU(|{GR@m6liDYmsb&({j!%*`AMeX5=X`;Lzqs3Vpm0j7g?+CD1!7m=z z{gxaIA|tjS-Iqci&7p%pnxPLzdcuVZ%h<1naUuQ5CyuV4XMqR5$y=>^Ji`c|4ul>0 z3(n}eG39-goZl9H=a39WIsgSoRZWf0_+z42U)eznQIKKwm*mrBu#Av&bKV@jd23h) zOn%4bOMYz)hCf2he0?oF!RAqC4PB2Q1%2STn#{#0kOnA$v)nMcKtqC& zNbs5y;eDbynigFoVa6!#r<6VogqIabJc6{?DCk~k#|LtUil$Y)ZWqJGF^A)LmRLOi z|G9v7^8K^!Zm>1wz()Oc%fwJ zO8&|fGc$9<8u{Mx$_f#nTu>4b0Rw1B*CjaxStrMvjA?d=BFx;!$I+2aXRlzyXM?Zp z_U{An%Jg~yOr;N)ULJjJyI~uTTGZQlWqNfK#n&1R9iN%$?gWuC{%tU#2G%7%+d0GO z*6{e23sNd?!YjFtJe)Yk+_3eY@_<)ckF26_IUjQwI*(kP7^Tt9ur$|9&OBP!H1!m+rY!Ya<*=9)~-H`LB$H! z8qH9kkaz-&+jQ`L*u|sB?ymrN%4L`rCs>aDmQ03#Y2t==XW{LGgUX`2*Whwl_2GOt zQ{wpe*ki99*C}Zg(VDsV^y$_+5sW-W0Ra>hP#CoMYH>2}P3?$^n8nAz>F^DjTK&5o zVkN}SKen)7Y-lJUD%2I8(tC3wsiSId{|cbe6+@4V-%!$%(2g%pG@}935f~!@TP<(I zXAWDa1Lq|+=Ei3eE?sRvV*nek%jui$XWp?oK-K`tl6(y!W=>8AySq`eI3LEqibkZc z(7-R@2#hfT;1Te;E|@;<*Fkez`}-Hj5@O2;3;~{#io2}1YUK}J{b}K}dU7vQE>aM_ zO9MxP*z*m7~~?%3_?l!pwbkJQVZAhTV|F|R>H+QTkU>DvE+4b%$*Br z+#?_NUBU9uhWEK!MHX{ms7{51L^5o+F;ReOUI$)$nt*kv0fu9ln8k<+^A7D8$%)zX zH>T0jGctfeVQXi{K+mYJe=s^Cru7-T+KLA3Zzx-yqei!&^*bvT0;|fq`39m+$=H}U zU0rQ6)shtfddH<8&0l6D%If8^P~X3ai;y>GtN{WU@i?Fs+}zwrmKi&&y0@?) zRdUp|Wg%$pU_nbo)%e=oA}2e9%Np?kfdGS)LFT)PXamg&1-SQ zIyezovp-Q#G6T^SS-W>my1En|#(PH_E*rWFo_UCf$oToac|)OS^%@E|(ic%@_-D>O zMc`dwXb3(ouXzEOURqw`$y|J&l^yVx5CMKZT zgR5|J^Lj}}kJj1ANsiIiqFOi03f@$3U+}a+K*3ndi9)ge;xk&gH(giPn7k&<&bPBQ z@Bn1rZE0{l&s-?6Mc26ZY?>mns1GZ25j!LYVygh`I%G3?A#wYO!r(3ilOX5YtD412F$_|9Q%50QnwePHG99Yy6%)#QfV zKxAU68Y}eRIYzx_-9unppuH&j%a_VQlK=(TxBAE{norD$*Z&*euO|X8PEFLKhfY9AUnhLX{&^Xiy;+P@q9YZq{t7K$u@UM3ti=$Rj(YAIC?=yC&t*zHoh;@ z*l78Oyr5VJOMO$5muLNi_EbRuFrC$RxV=^is=*CiuK!-OyD=0Q7#Qe}bPve7-90_t z-d^8&rf^WT^xyp8gEUP_p-%DeaD4#j-Z=xqZDhY!Zc;Psw|%w9bX>4})4xPA^+UP8 z8L>v4y{*&kA8R@}sew|9sVV(9J3J@8GaoLlZ1wi--@{SDO}wzhfq}W#*TuH3^`NpZ zb)f~y2_hnOZtmspILG)TuK@!I%+M-6Q~U`MBYeIJ_FK4&T|m=5Jv}Wu38-gl8yk_? z!la{bzx9;Grs5B|3_(uPzg0xTtl#gT=tFsu^{J(vtMEMKg1DThvgl!eS%wJgh&>&V z52XcwdK7zh21fC{a$nBZ7(;30f_2o@!@UOko>LHr{?_2ZjDb~u!V3jBKk!Kp2ng8E zqHE5PkeBZSsN~{=XR8&DQ^hI{!5u=ds%lwKQWEbD=-KolM{VSgM=O@I+mNIb@if}p zboom$f1l75ZjYV^1js4O!eUh^lhKZ{7%&zpLv=(|umq*0G0X^67zegKlT$<>X|tof zxuQjy`f-*P4e{qB^k>|<#>DXU{$Q2}K4*-?qMd|rnqNaDsPDAQY=g#RWmsQUd9C-C zBo;a2G?V3Pf00A^If!Q`Mko}R8*gXn-PG8`FP*BH@p-sUkK6(MQ<_2Wc6dppgGGew zE31|mlwG$vxeDzdp7+gT>)v0c1Om;FfzsS%!3+>cQ(L8_Z)#}>D|&D+FCYv(-tBgv z!r!r)bgsbt+MGq|?Tdwe8eH5c00gUe-PtLBdwVNYL7=BARb6i5l$otW;cQzkT=Ev( z4d**Ptz3G}#j?L|n35uFU71{PTyIUU0NlC2V!Xv|TR@L!D3pa+3l95+tHEd9^(ix3 z{%9UeQ5>2J`)iypJ1fTOg2ndnNO}PpC@6BAurT6q951K> zgk9QZURqgICHE!a4stU@f+UM8_*7@0lz%sd1!Y$&1=f=M1irOdtUf|6^&ydQoe;~0 z3(Dw%9jiPbM5<@NJ+hdjw9TdPH6VjxHKKVicJ{rSn^C>+9=2oPSnV0o1UdpwP@6(B&|1>S}5R>i$TGjdcz%F*8^Fgw}p1$3sQYmA10z z2U;Ic2q`b;y@4}DD>9-%Yb!WF@5CF_D=K`KM`f<}ssLyiLZ}ZtD-=oo)?rA)pQ3?< ztufpmURh^ItW27VRPm=xz>wvZ21M@}iqZ1ty|FR4;=GDX@5{;;TR--KRSuC@CzVl) zH`z7TQt2x3Dl;?Fa-l`pSE)bvsm?`MWqXP<-`g%#0O=4EZU7VvBMf7gdguGMEpOy4 z`KN*J>?CRr4v%#1v7%aGeHI+%Rkn6^UFM;ZdQ)Ie@jyPN%|sZ1&SS-Rg$~P$6ZAya z9U^&4X@35h#YKEa5yvFpNa#qft@CJSLMwb@4UBbaS)u{(fB*ie0&&!yj( zo*}oAXmi+a0!S5VtE#HXYskp%bz*7vBfV}Osy}g~) z9S{R(tQIy0G5|?(FpgxMe++M-AdIVhCZqMK68^E&08W zW(XK??rbJ1ug@d-cpeuA=^w*w>@dO0izIPyumPV@xyLJ;o4c?$Uz*DqxOY2MyJ3!J z*5xsKAZv$MuXC=CJBF0z-r8E1Qm8*SCn(y>$-Yh1bb^iSlK#KG&#oVd;wiu@DA1 zHpw>_Z;4#K%2vY;f@{y*_tF5L!bq?((F*VoSlG;xne99D$njp~HWW~%^G*|TOU&z+NoOs9DTkX?5tswSd`T{)g@bKaG`&pz4xh>o(>;Xd^ zgIbH;Gq7L($5xr6L#`a)m6bey6|NtKz3`W056D3P$nn>#>6aQ5k{){!yefZf&Zbk) zI1d-7lwL7aRaQRyZiI|{hjlZ4l)AIbrphpt z(L2lWev|VbULJ3PL1&C?)U5Nv!%;9iG{3}(1#0lq(~)G-A|eDH`YtFb$YA0VuYrX< zid!(9Y1Y*6z>Yvr8zmzrPf1Chp8EY~p5N4lKsR+btsC2%Q^WzXbC+24c|+sSo7CB0WU_#%YhFO-L=} ze(uJ+(ZE;=n;D8shX~m;o-i1kYK`}~z4ssk6VA^X-7bkIX%xx+0OfmVY{h~sr?i00 z`d^hen87be6jp_;sp>CYCPaf7RHNjKY&Z(IXRVUTTROauUSlFWE`>kSRfMDl8Ckir zhVQR(nMz|KBh!H=1KFB<1BIo681z5Xr2jo`lKnHtj&8kaZ8&G}D)N-p*pP7Y zEx_>hqcLr&ApXg_;Fe6OYV5!DoXfPf?5`9oA2*|q!n$C$i(p%)*PW0+ta0E{xJ;I; zn8zqAJPqg^-O2YSQ^Ys!4l}=hP{0itUa9MZUZ9mBK`@(-vmJUPlzO{FU+5B>$)=@I z@tM>k#i7T@%9m|*MUD}L=c-h6Iv}ho4!f`fJO8 zNes>GFXsbfTDtezox?fN&FDMk?2Feb5#r3WqOBv$L~HGX`WG>~16D zBF5*VJ@BXohq78eWc%%lnaY@g(besrwM>v8w|oKF;j}ed&doX zZ>%_pbn6=%j-<$n@UH85H96MblgpS3Ivn)I(TB0EZSS|fId`l-y>T_9mEK9wDkjIf zUuDNfYY5OGoVa;A^|GKPGG<;D3OlgNLHi-W1{s@Zv+;jINJpNP-B#5`Z(=UF50=4^tZ(_WCWH(3xPv(b@6UKkKw4v@t4CWh`PZZy>x5`;82AtBvhV@n`;*nT|H;?Dz02xI->W-s`7KT*eI zo+j&>bemw~{(<{y5zjrw`+e94&467Lj`jjy0G%PN0y0;`9C1`V2OB=x%7mJV3Lwec zp4GMSaB>FL?SOeuS@9=4kA~$8?YU~V0FgjkRJ2E-_n{hgrqsN<8OFIK?Vt)z=90PF z^b2jQj2rni+g^2g`tO~Ki|>BJFTpn>&DZ-)pS)ZG%Ri%@#0OSQJjeq0JiY51*czVx z_yT*3{WZR)Cy`B6mNuGhlDN5^9ZPZ!>321q;7XU zp{n80>kctM|cz$1hHSm-wll0rE(}-t)IIOXhILzgDT7Dx4gXDjUk*1Wj(gTg4T;}J`4;rbIbYzD=W@`_eM9wx&L_y(ca#j z*%jCZQ z5)lD$0q>f_oohfWTkB-jdp;Txd~s0>4htnS)7V+u(9p2bv4XCGP5O9HkiowYG4L?~ z$z4x(^e32B1@M>as0|Kk5y$@7we`O>ebRT&lw&<1*u`XNAbrOS_IDUBGX_E*IeXoI z;aJ$4mmEZK3*+zE=3YDK1IC>0r`?p`)&d&+Vc~kq+v5?k6zo)N!i3Aox~4001wxNs z9bz7N>>(1;gUT}EAfh)Hz4skir^*zw`bubSE%v`1>FG_`IcgMsotyx>&9X0zls74| z%x(NQzqiZNzspW&XlM@*Ux{On#usYSVIN!F|6ch4g;Rl*RVuCt7R=!tPMj1Vi^Rz& z(%;OE@yJ(T>;5qQcpS52+GY}+`Fo+$b#A)s#fu1aMLdeQ7xN1X{1;0XJtFv*bb$im zqMU6m^33fC8q=iHzag-3!g$CD~3q(qNRaNo%`vzVCjhbcZzF&8tgoGff6b6@jrYv)6G#Tj6Z@i-5gV|kZ zfrQDwlKeNxI0Bg^!2n-&O;bnMUWI}~7Tnn?oh3pTq(#3@33AzSq9 zoV-snkhHYs6>`$6ST+UuT2AI&M;M_9+`XA5*G*Lr_)AIIn4N9>NiBkbi7`4k*NaJ# z04{wDQWFN`5ZS}I`T3(+kPkUuyas3$gv!e3{jcnsU(5tDKkYYF>nl#=9U23#3Ik~-&)2D$%gYRU-#i;TA5lxbK(kW9`gbj|DC&N~Ub~5kNq5n&+j`ZGiV4lr zPyZ?W#;Jz`gcMKS9@R242$IbpMbN-uKr67;q+LaEa zy}YdW1T`Owj%S>&l%kJbiiI7C|?Lp%4c#(^qev;vcqJRVwF7H?1>fhmYfBAd@AgY;3r04tI=Nh{vm_zUvAGJwIGmF2ig* zTby?(q7fe?=UM9L>eq=n$Kgz&B5^!Gs{Sb5#>r`9tB-vR`2ds7^APx-LQwLHii%tu z=2IK_S)@(ozc3)?-a=@p-`Y8NgS&Ms*f?LWZytmlUd_D8?yi72Gco5?G<4|8DbtWs zMSk=KqH*%~2_K0tskSz7m@&8t|{h+0#b+Up<4`LALVQ3REsrvdLG&~8mk9Jxgyg+B5 zB?zZZzXEr21T0ONzbQN>r=SSa2vOL~>EOW%ZOBP?7IM7Bz*NHYAUI$BY91Vphy>ku zBCR)8)}TmW!Hgytku3^T7%Q=DpuC2l*q`$=RkRlOgI4WL9~)lh7;)B_C_xd~0Ko3K z_?g!@FbsJ;&2AEcx=D`j9lgp`2b5&X-;Z7bVrgEE!dAu?QQS);3`+bq4yI>H}07p0nb zhoB0ncVQ8}IJCg?SQL$=wN+ZGrDe2rra}M8VJJ3(N6$h_>Uz)B#AI<9i6t`?(wh_@ z*3X#iz_ncXIVs5p{BY0SBt``}1~h&`dVrdi#lu1sF$W&X!q&PX%<}fbL-nUVPxbWJ zdxnN%rQe|gmWia4q*=K0G}HyUmqSBEm6e?x_T#uKQLSUm+G#c^Ev2W7VG!o>QeYlm z*Zofb-ry@_#SH>K_C{aY%%{ZBc#|~pq_iq+E?BQ16!e&;mNw2^h;M)#+E3izj7gQaWM5ySB;HS-DMu3SIpxJsXvLDh%rAtN^E7e zQ-EQ6+X$h|j*n~9pLTb%j8a|vjE|33*Y2uD)DV?2^`ncp1t!nWkNcbe+uY6JbD*s! z9|s`aY_BuQ*;c{v%G4F{M4jF)1;uA7Dyjf_{aa)*k3x@*o6MP2#*nHK+%;*X-0`xI zw2mTrvwfD~m;!>^L|%G}P>Gygl%U6oc|>y_7Md1XmX-ppyOnhsA0)h^(YCEE^NYfI zFCcIKsXv*7iESPrkfkSSn>J!p5|z*^275wg*-4?)!r=e!rxSo!+DO+bVRkj6X#2^SP`7*MhB zX~oe5Lyi*$wcI>C(F8S7V;((%TDcyFg4;VVWdEER7hh32sSH#jz7A&8VQMj9(_^stAIrUk-0aNzMX*b-MUX+IF+ux1PjB2mNxUC^?JWM z>T_Cp`U)Pr{o}FW5=ao9o)^)tBwh!V1PcBO;qzUIV9Nq9Y6n}#r;m^Ct`B}sO?|;) z?HmvPf<*3V?M@y~F!J=+mQ(*RSLGxnKPimUE4I*u&imtcOA~r^O9OB?(Jpej900oe{1!nr zfc>y@QoH z!*u2Ds;c|IC;b%wAJUbX6dfB@f*%-!6eAb z^Dm#JNwNv!M3IC(A${99IJjR%CGfqTTk3J7rJ)(b&_M5BG1b)5(YXq%TP*#qq$j-% z;KCsE0TfV>+86FbnMjzlyuX47h+t+Qo3yNL+U!|bUP~S;^pc60$-`j@nc@Zjt7lp* zK3Hl!jyXFaE$s!Kkazppw|O!hCb8Rx&gYLk==BVa&X2>^0|vQY-QV7Rbj~B9po~$h zUp_s34}gq4(lO%Fqv5^FGs}~;4!;5h&~>S$_4V~B*8-%8>4nW9JE@4R($c|Zqeird zC(D0!UuAb!NeJ?r14LZFhxocDpFhH0lE3&cwVlX-XF`{FX2**fR3cuuB;JAhVFw{ z4WIkLOw_^<+@!&_wyy5HFP?dGI6JH=b`SJJmTvbwDylFquH`c+v9UMySCILR3&2|H z=6D1h;dDr8ajHs`&V4zP_z-GIxl(+iMzH znu~L_$;0F0Al%kBBXl=3`sYg6)U*VaOSEcEZTmgu5 z_r!3B8P@jc?z|v7a)Ik?Nn5P^kr(NJ2gv|*CuoBDQ)|Nm;(HBHl5kf<<~^RD&U`j` ziiD@R%qq1`ne}V&;|CZ$abm(n48KnobQr>q_8b)E6r2g4F^}<&nciRhZu>{E! zh|%l$b1XD4L=kKs(1#PW@pt{UkC}j8{6bw;*59XwlvhXAe+gWQe>yEmvu_|SJS{9b zXR0>ShVWVqoa1YM_Mq*zbn`iX4=kZbDRJ)8B)U_fcCmgOHLl3_EGHv$lxh%*C~9PQ znBy!HIOo2zz#+*<3oSSd^^-rzxvN9SM`xz=4Rj2&jDi;^=8)W<==o^V8(W#<`-g@#@_6urHD zj3fhHBtHCG_g(~{Bq@kOa9B~HWAK%ixA*(^?wO*#tK;hfk76E8ObGsj4ajb=BfCOz z>r5g?M_JNY-my*>X_V(jCRDCr*wML`NtXlpj=+{OcKidW zCcwe#GRaC$++E*Z-&zaSBxCN$qFP!1OGZLc_2wJ^8yz_Ml4Zr1*2Fv|rly{NXbm7c z2ey$w2tNg>NJ-IBLqlVY_m+d#+7uNP+R-E8)chx+y9vaITI7W%J2pV&t^*ztad>?C z-orJI-_Yo(*v)ouR~J|eIV`^T^#U|Ny>I^YRxY(2-W&s80D}~>aWNi=gPmPtRTVBy zNHG$a=?unB%M76;VhH-P+L0Z#zOwy7$J{!$mHGE#KsAH8Q$gl76Y+W!pBup_q@`tKV94$21l0Y%VpeXq@|RZ^eM5QhlPZJP7B-P zu8H-*2yDH(v^0ZgJVpP+3J>(YstN7scsx>{mqQ^Kh0g+U?zxDfkay0J&QKxodY<3a^TJyL|mkf*+3;w=?bo&DJXXJ^qSQ~(dBD)yL4*=-#_}O0Oj*r zdzM^1tRGnJFe^{jI*5E|x!KLh$mv0rn)V#?5?MMhq@@M*0P9*poH#W8RcA38f-YtZ zi9c8l4WFwT^v{a%e$Z1y z66)t@N5&@zl81{a6r|CqkDmcDz>?967B@WR? ziE!B$WHD(7JRJEaUlLL{p##wV&5`UPdnmPVeo+DAQ2=dj6rlox0sEsT>i_GP14fzl zdcpvPpR(UcnOWX&6S{`KB$FDNB341=QrF)4rkFDq(cGV8kiU%k^n75zshuJtH3N*e^bZXM*};~Q zjTB{t;K+uhb?5gZiyx4B-WhrPQ2?Ei#pj>Ua1kF!qP#yhtr08j$7*IEVri~j&3h{| z_#*!JaewBEwfJt3PxT_6^aHva>DQpGmUC~UyEYNQCW)px52WXxzOG%bI7_S#rPm1_ zFE-cJ)oq4V_-+5RI`js$RRGpUS|}+kUfUPw?dx*}=(8_^Z;r~1U~YkbLH=MLOxh*E=?;U$H*NKMfrs+EUb#bVe*`N^`O+}2lhtG6Mk#V zYHt@B$;zQIRpYpL0?2yUxC1FQyyhMwVJ^cu?~pUjJrG7$!T$1K8>doEU1Nu9@> z7y86HaIXHM#H0|jx;nRmie4G+Y2SLbjE#qnXHN0qRY$s0%jwzN0gbc|TH$qna`SAO z!6@@fqbBR27R>$I$q6;TwLJQT8hc&fs=P5A{4t5<0L4!V>t4Q>R z1dnhB`Ubmj6sTC5aTc6soSomfEBfQy2I74+2=(nMg>$;q*!7HJaM2G--H&6v&#zAU zHOcLhby#r-Is)*l!?;nyG(*7fof{itlyrCjO*%O{0qsMAxah*70#Fgc=51nIa8#%X z$K*9`*3&SEtn46Uv@`%wH3tWp4!l)nWD{R?b%t-Svs=^~FUe8hauk-vXp6-yjIhDI zBC3-6&ZQ$L94@B*;&e4fc7Terl%Eamrf$1ODCmkYJ&yjGB}4-~S~iLOHS+*eZ)_rj zl{4ROEEH9VqeN$?{9+(viPLvhH7 z6I-h<4aSL_?_|!Y|FYe?OHok?gkpJ3Ta7d|cQ-aLdiezfHTTXZHG0FWAZXNOFgQ91 zA;*`LO}$@#$)jgEb?fy*#-G0ZK1R&m`*MQ`Vxsl@zEo=^CNF6%`A|SJK@+yRVrnk( zQ`z9k8#J4#`nmcsF)(F23}Hh#-%2XCXKMntQd7J2qbjA;(f=V4eHb&aq&@N&qu^s? zm|B=R-EUF?S~^>z;lbcwG(OW-ybozaY^7ZWu6J`@uw%f(3<%Ln>dxoUM?-A)(P zJKwus5idY)j7mf(ej1{zZ{RJSq5FThdhcks+puj{8GZCNNOYnbUG&~-2%?S_H6eO0 zqelzTf`}5mgosXbk`TQN(WAE@y5PH?Z?AXnckO>4&x(ba-`w|go#%0wsEMBfyArtR zt-X5sKv?Bt<4QDUPzo?Y_SP40T{7_TeGRz-EwK647r&wta|)S@P?rE2}+_*D~&)Zz@S6e<_$T0L>paalRNgyi)|Dvv>8YK!Nyzox|(Qp*K7Ln zyQL+tUaz=tvA$(}^eBa{U=I?h0Eg1{2*JAE?a-)A&iA=WA){)T}a8m2> zQclQnDw6U6)Idi6szGf-=@^H1S17%ZSqXKmOC!$Tu%2Tq|x#2 z0uFKRw{Y$+mhaA%?+=zkPX7H3y{LARy_zzZi_c`N$ZUDlT^ncqeWH2+tb2Vxeyg}Lb z7hsx?&eH2QRZ9VPAh&pkR2ZDbaN8m$Xav=Hlx7h;k+_~K zNi{B-2;x$nanjdwAIolV`AxnyCua2C^w&H{$VN8f*0i8X;?nM{Lo_vqerODl9Cw*- zZPpy0jpwlgAoZ(%eQ_XepV$9@$q=F6ArBAn!pFr0(PjKo;=VorJU%@=_3`%6*3l|M zt`>jM`}JA_{YM?y2Bg7R=-SNuA2atZWo(+(kY|4*v(mAGOth zVzIx!cTv&e8qFx#S-=(Di~`FefoPcIOe3cis!q$vSyWm77i3yyKUsaq%0hi{ntYwk z4L&nC6EX^1dcB6b?2TYMY)&6PVpRSW+iu4O0r+ZX|`l z)Q$yiIF0O9PcqWdx~g%+DnM2o|HM#Y()Rasc_dH0E^E$95q2C&;m)1%scz>!cci_& zJuh!Hs%6Jg?mYeB*^?hq2v;U`7Pc2XhlWdJ2@hDocNKwO3!^t~{`m5fSAOGL+ehC9 zT%n#%AD`PjPaP5w5_&8!H#HTh-D>RbCj^&~Swf-4Kp9I|I5#aTEjydbBIW7h30gZW zQTdB6X=#lOjUKkhn$_K_8@kSFdpQ#m697f%eCO>PP*KttegB3$S#7+et&Jd_5X19@ z0_;s*$|~WO8QGJF?Fg#QAga{;3JRfKMa8F2)8D^8oh12oeSKw3tin3_8CpdtR_Ny+ z;NPz_2+GaqeRTANkGc@2uyV9>jwQ;a+o0Pg22U=91jcwvFb7BuiF9Ztfi1GtpK zd|CAMlM&#pH~6epZ_~ynKs~<&ZpGMb=fM*KBEiE|JbiC|rG;W=%(Z&|&G<<-<7VPFL<;3|;U3fNaMvn*SqIB148U%#S5{Vb->U<<85@fb zMQUN(4Y0@#KJJ%oKk6a)&zwp`A9M>k_@}s^uCGCKsdfymM&N7noopjXL{8Rb!a0vJ ze`6gPktkpkpQ1M*@gzN&J{3{xgrc(6FOXF0?Hx#Z)*I6Q!Rql->vw>2l{Pgy3z9mfzA0JESS5ie`e7ZUvI%+k zaT6`))ESFRBYV_n3$^_aP)|V7fp|5t2y-nvq=d9h|wX>28 z+Tq^hA5_L|4R+o>i;K%(<(u5B3wJ%=H+-iuQe4-8-OY*3r?v6TrHBwewcf#5gYQhd!B>78^^%XF0z+ zCeEi3t|JCc_;D}weIG7je#%wS?Y{ z(o^%QmxEI#e)KWQEvJo|LDEPVLOfr2%j>lUob7_Bfn~&-{eLZN>L!>K(vJ{G0aQr6RR_ws^Tm7xwy%}hyc z85Q*SQN8g|>fuFk!e7vnyiJ|CW*S*@()}KkO-l%BK)q?fCgsJ8-o`;q&_F;&M3B-< z8WZ6C3yg;RfD)RrKU!Uxu=glQcN}5h@6FL%VgA|mD*5$mI~D{+AsV$4S8p%N%GaP( zg3-GbhWle2*~`J?pmmmbAtAsdR#n|`2tYg~Nd*dBW22|jv$K;8?q5o9o>&j%8M05Z ze6OZyLl2 zuyLg7^z)%a_FC%<(uz+NAE8}?=K|(w0oZIPH&d5D~+2y<4Aq`wulc- zbT%Bd;u@FpK9W644Ng)_DMFgBS3;i83{6d>_gc}m_{Q*8M@QYV)wTT7r_r>25E?Nz zGP2ayFOZnak7UZug7I^9EX~ifN;&wO2jym-cq*b{huXo8LK?N-d`Cw-I@d>`EilyZ`!RLT$fk>ybS#l-JcPy41 zSm@h+4R3{l{eCu?RBYl9saR{mIkpn%MEw2z!H6_`K<20mQ$Ho;jZ*PjT6bK36Xb-T zYWtM4i=K$AJN(HF3wyJ=V%dZ`Ays0sE);s&%TGg3zxo^d_x8@}4triV)YP;4vY0fX zb9X+qVfP>+V{yUoN#y26zwEZ0G?wE$v2`pq_y_g4blH@83{P+qE3U#L^cQjw9A4S) zTJ$}Cn_8nw@w!4mMa*(dtX2s#j+5=o)r%wzU&O)vEpmqzcEm)T5Uw=N#oAqq9`E+D z4kNM(3k&Pu#S5=@@2WYPtNo2X_4u0Cvjb~FE ze~o7kuqk~c5y7N9w)XN&+Jh)Hhe4d8djpH* ztb+E;mamUx@Be~v&JEEyw{1J2B^Moct;9G@_$P9v8k$;q(5z5ZNl$t91(#s+&xe~E z{@|UV(J~f{Ak&}Hf2Ti%94z1c=>&(+#ETxEJkBiMkLfR~3zD)lgyIp%Ck30(2b&7d z6`d?&C<66$3O2Jc5x`C~wi~h^r+BLUGObHpuI&3F6ss`2kHT;SC1wptyFsd3b>Riz z$beCC$Nk;S>Re^!Uv%6V(1oxx0=5oyo}19y+0fgO<;4}6-6KIhJ| zLCw~5MOH(M9jT}#T1Jj(Z0I$q?ZGL;GzRKSNXGe{(`BYg-Vc+^bq%E9XFpByPgOv0 z{lL;Fhc*Xp4$@6FzG8U)WgbCZwLzDknpXk$^u1f?&FF{V47xH0v<{=YX{-Bbu)^>> zT329l&B|6W`|%w)7bZ?l!XcbC_2B~%@`*Frf`w_hFj^Is(9Q6LPgl}MpYV?Hp&_%5 z9V{0Nd8Q@*87iJw=DFZ?HCuyZBzK@w;*;LkcDQ<&owJaf)Ui6*SG= z&(F^=;B|jH+Dpr&o@$)@3^?R9rZu^6%7kH0ZzTVy2b#``M>5~68 zHm29BoMzU8p}o;#`x04>ttdp-ME4ruiX)Z+Ot7+n>OMh1Qn|`il?B}e0CjWSdJUGm z+qA+&W=^0LF?D*{>g@su1kHgj2&<=tGi(}I7^5F{;jgoeVF6juqa7OmlCBzlFV!7t zBZ5HLPW+^PDRE)Y7Zw#|KNRXtjdsv|EoxQvsH+dmI0Ol?ah$}jgE3?EI8^j4(|RRi z1)??UGY^*<=uG6Bh+>}chP=q#uIFiWeXfX8-3?K66KOa_`w8TxTPxiWpE~cZ>wJ?f zIszJMYUnLVSx>=u>+e}_ew}EQFuB8bK~C(So3}GCk8Pf15TgcrLaITr8h73#rsoINrGoI z0W*p5Bh_N)!?@C`Sk6B?SqB;ed6>|&*2veys;oLgm+z|0n)oa~vr6&gE2-!)tMz%y;YeXaM$CkL zLLux_Z&D-P{>SoYsJ{*oP5EM5Ca)PSEp4Ia?(_72MrfO2KksizT#4wuC%n`aVDB4l zo-jO2W5f{YN0%m1#)dn*{qZ#EqZ5*3>CpnuiM;-b(w)Qu`#M@z0&H(AnhUHQbt05# z9R`OgBsb%Z2IR{{6CCfh+f;!OG&eOhH6xpflpek03kn;1F5_EQ6TqdJ;Cscq2>|Nx zHW968QxVY3rJwmK$MXD}C%#i36d+D^c6SH-zI9Cc8qa0A`P)h&Q?OV}nY;095WG}F z+B(JD%)*;9MO|?rE##i8Yu+8WRp_r2IDKrI=YzPIu!D~TN6T4Jl+c-V6>V)>TLWER z;t}BL<&HOWFoQpYJj(m;hkNCToa=o^op317O9h`DUaxDs^$!R^jE1-%(#bSSrn#o(BOkW zM^4{Cn&{QoBPd;iM%-<5*F`j+hdRcD7l2fF{yXQyXg)-Z4jqOkP`KLD^Xb1QZ$CfxhdfqfEync-1@E-E9osGZSKBqx0uI z31?N=oRbap+4zxOa^d6%e`d>C{IFX*JbUeuBr6_^8p`&hU|ahDVTrUBsQnZ5mbgN+ z0A}9ii%uy)3Zr?&Ea0eX_@I==gL0*ykRcLF{d*kn1J_&K{mA?fbn<<_STh1+&UdfQ zlrjQc5-uq9#6<7X>i*1%zw>mWUo-QIn~NHYigYids zkVQaoBAi~iuwHH#1=0mzmId#GQ;4&OA0O@0?b6}k^l6I#KN!$+Mzq8yCl3vOdn5Zb zU(OL0?QAGwu+kDdc+POUtvaUsbi>to1DwxJ!MEPgmF^G@K z<(U5iPXJH%y|eeV50(-vT(HtsAk4+A(?#^IoI5|9yyGy$e8qSkwyGeJG}i$l4;)u# z_WbJ}EN!c)1o>sXwPrx_o?l!zh~&zBO#2ux6}HJ+UH$Oj05CB?GmF3T-^s<-i;gYe zaFh(ae~7Vk7S|g?Z2R_k=I$fF=d=tyd)lz8D*JEs%JY=fqT4iTo{g;;_y2x>h;5!c zZQbGFp=KuE#@5zy^DEmR*9WA$3eFDH)ZQ}%I<-oAkIkfGF-)r{ifbiT%F!B!2WMmM zS@WI=aS3J&8SD&{Oent7I1gH$EA>#4O_!Jd`(6WS(G9o*J5=A7=(QLi5xJmpzSdKa zM?FOIm~;w5!yO~#N$RdXaT{_jA}?|yAs5#folQJkjZ^)sEQS>(Ml+x)fI{ZI-Z0c5 z`=9?E+U`c91y{<>$_Jo;jmMAok4J^Z+MeWBQS9O46HqV5+_u`8KUkdkPWNNwaXWcn z3qg9q?RHU2%p=dAk5{O4z$j%{OMCB~z&93AA2*JGL8y}m4Uo^ zqNp`#MH(j2hNZf?pM(0@ z!s$>#Uen}xH2se~7{MtxQ><)9qgHF3b#=!-#g_bb`ZJe8{#Iva&x23p z;qSk}>iXSi$YyzI-h7>{>d46kDC(!^>w_dqP3pVPI5ygdKG!iAM`?a}`4wm!g2SVB zqBaZ%>?VJzUuW54cjMiTJ$HS;K%jt;is#1^x0Ly7Gm~2ou5E82*nJ1sN>VTZK znsPWziS9x{t8;f`^&+5AaDXmP8)!vfl`%i z^!>BMrui8Yb6ac*gn4Usx=Lk(cMXk=se>K6{N5$N@S$ARY*|K(1{K9R@yqqP~j9zj$bBWo`)c zn=Rrlb9Xsifk9BqVkXx4H%~$1q$!Tm>5MjKYDz$N4ihB%vNNT27~2| zjhkX)V-W#*MK4V7u-O=BXa;n`HVCx&I5}67zuD_0fl+t6|Itb}aF{_3yoP3>i|mFV zHiio*xQo8aQ8Ciuj9>diWliv&69yk^`5MpuSE*Xxc>2^hIWgJ4IdFwyrJ}+#(wc^j z&R(|7g}BxNcA!ph^D%+%*Cf9^h^+hlbsPF=1<(Fb>kgC8!}$v)O3gx2E(8<>gm_I$ z)BPgM%z}1#22O+#2otX9r%!`B*5=;7v^%A23PBeL?e@YF&E`Q{4;c<5E!HSr=rVeX zg=T?dbm^a|e#Q?Rnw3U1k!=YLggL-Z{S;uiZa)`(F8opj)uHnVXS|Z1!nY&fKnyU* z2rjN;TIr2Hync<^#tptKnaB}|gqtiKOdd%H4X2~uEC6U7eMFP785D05)xb?ZbI zQim2P5#Y2i&~6{F-=gs;kDtcqWkmnNvpt)@*6dG1z2Wo+WsGgE=t4o4b9_E{7d$Z2Z2xQJLG}(hnfr zWj~am-$o-IHRjp*UeYJz&@(i;(JvUBLCiqP>O*JeRGm(wKVC_X(JQOa&{x*_{?DEn z*phoetpya!_V*~}1-pL1VB5x>9jb8h|7bRCZ8?Ybg$qy$ye%xFG430r04^DxaQaa% zMq2p;2D+lH-C@ymxW9Ybm0|0+A$xz{K!s9(bMdS{zNnP2*KZZ=P%Bw#XvX~D%8UU^ zu(7F*an1A7DIUqt?(JehL7+t1X`Aq9^$;m4eg14FIZT~jnB&^UDF44NUG4tQm)L9P z^biw6S_(n`PI4baW@qv2e+K&o!ZX4Kkp`?Qtm*V=z)o0G9kek(}Om(>;Q* zY2u9v^;^B{Q_^)~cyV7L^&DwEPIP+lw~`puvNCyd10EN$PddnN2LizgN8#nt77BF< zvR^ACn| z^rQTF)aKulPxLY#&7doLj??Hkxv34t1?3wVJ>PI2VXi*YbQ!``Q8_@ZpH@SP z7Ay+VFK4OivAI~@vbU#v<>oErHWmtS&al75%{paPW3Byvzrr?1i+OEYDP>Rj1gXxC zgoK$9+n=7Cdb}cST9kWA>Z$PJnGS}?L@RRb@75AyVl;}gmhL~&kr|ARAr!RgLr&g) z$nA9h+EMg=vJKg_%n&#;@9pxZ?fxr&=+)5jZOj(Q7<0BVuV_QTYQg+G?a|awWmMh* z?wXZuK6yf!pN5=+xc)S13Pi6BpFN8sv`9N)m-uSOcbQIsg;c_D>2h@cF_gitsi_@h zi#C0DaM0ngp<%0N>*i*4*YK~^^!gyP3WW5kcv^XwyI>NJt;be08Fh?aGUs!<07%FD z3;oZC06f?}o(deilFBKd|MT+tPb&7`dkaBmsKT!8_y4`{G>piG4^>|amL-?lO6)lcC5@}^j_XXR^nF;k7tH-OG-aw z*0?1m*|2~=y}TE=xl)tTbkl*3(e(865G|iPIrPD{BKC&5|J~gkh!`X6aldX6m3cUu zI_uSDX+&BA(p@XgfPNi28V)4vg1=;9l7OXLW@d~6M%WuRjIR_X(jXFi8yuu(9p3?c z+3^m6@0z|$y6~)fv-{N@a?Y-1+1U=EJuuJ*Ft&i#Y(24x0T3m3$7iyi9aa*+q7721 z{HCJzQ5Nap%a`tZZ^_7~B`a=lt}81m4U21|0Esv{8XHohCMo$i1`-3f%YgyzZaE}m zw66(?2NE3$a48~x{X^5n1@48!8@Lxa2H@^gd~iHFKTS(ZJH3d<@tVgFR~!PJkPZ-f z1_VP+YqSWMz+!$}rK_k)YG#i{W_o&hMw*Y8S3+Xas$G43W|c{u4d@}A(zM>uVE_JY zs~8a>RhuF^Nl#A`t$4qgi6(S5-@Y8f^4c&GiP`}S7MsxzYGvSX-*kI#hHgsZ@M z?Ly)@;O6xwt3L;mA$vf>OrYs^Jyrg9Ys5N9OG?(|4I+4XgJfEtT|O zH7>SDH+^C-D;L*%f4U)A4m-unK;map<0F|XgS?bzLz4-_+SXS5QJ3K3Ilu?%_z3B? zb8#Uk9n6dRTI%RayJyFCsyXK{o(}}>Rfql0X~X#)Ea70FsRJ| zp-`Wbua^`p|4&kC7>yYtCK4P~#Osqrl2}xeEWZZP{4V*6=@2DsV+7}KQts$#CPb!~ zC9}y@hGBthre1xt2YO;tHnV~V3l=9toucvZqefJxz9|LR#g%+4j*O0GxNriAMgIS`5`{(K#u%o{xBKHKY=^5F^76tb7HekxQs{Qzig`8`9whIaplpCN=KrAV4*)zqKt{0>UWriC1U&oN|gqfWfDPuS=%hHlgkMQ?1=Ky5<_&BI;c2?}) zd1#1PPzSDy3^(`Nys+|d7d&iE&U{H_yL^81aCGpfOH3k7VQpVuD`dWm=TUv2h2`Sn z@(H9FJ%`^Z4fgf*4IF72WqgCy zm|IV;#F74l#kDn-qoT6%aeRJ$m-pU`H9s*fZX};U%D}Rdqa#c~XJYmk>+&oBzs1Gb zGW6ElbzRTho2kn-iN3!uJ^PR&r zW3kxE9Ya%|jK-OnOv`{B&~p^0KKHYtsDxlR&*lDAI)N@$ql^Y4tX7=EbvQ62t27>h}!@6G9*s z9Oe?lAD8>?95;tx{P<<2g%w-7*sxr9k^`m&Zv})0ei1eiZlR%}UUEzJlKRTZx6&tb zC%Nz|3cWwOm$}&*4f##Cd^!5z{?VFp zbA%^Ff&nKaZPjV!!Q&qz=ZN#^KYAAcI8`79bdu1$QGtP8-o^@!Or)R&y9_h^_T{DEM>w|2vUQ%cdiPw261Iw%d%YoT>cIX z4Go{#Pk#7<-8X+QIA;I{0HAK7<|nFTJTzC`D4v>$D&qt+kr_x5nyUq?8eq zQtJENvo(|eNFt~oJK)s^2n(y@M9B$VH>XElgM43K{Z{eyz2>FVL6ZfWA6e{If&(4p zb#?9SuI`Ag5o7IIv8KjGZyz7)txdLnd(F(4wG_f$zeI6!V9 z6xtrFMPLiC`x~E-oOcnfK}wK|&HBN+r#qFiCz7oaLH~jl7Es?7M%DG2^0AA@?4{pTvv^Ba^`|lpH)m%B%5foD zkphfksj1GQqKI=P>i^DnfCa!WD5yaK&UbDdmQN=1mfw~u|U8m&6ekA)$RyAg&2DUv`xKj)%+Tx_CT9j|Zj z!SYC~U#<3}{TWAP024NN-Ggrx4S5Ta~ z4Gy*|F=^UQlt?N4T=nI2e@6%xZAA(JO(&L>MT=+1kJS34JB*FVWZy7iqHzF0#xee> z!I~l-aa4J}`2!??f`SJI2V1wdbX>rW!JefCRNqLVvqEd59x?%{FXMEuC?<<x8~!#x`i9{(OQP=NBnIzN>O7{otgNhL(i^Cw=~e8Vo))V; z`Y|+A_YQO~9e6F<1I{WyXxEtY0UO1`k~5^7NugVR(BET?|*$2*Tyhz_dS)(E8KRPD>7)` zGt4wW%U&6)P*sN|B5@dXw#Vi$lG_aj{enFbf=f>-qG4=PA%pAEoL)Ek6*e(Kp5nB1 z3ZCc&ml-8xWovZACr(aY>&$blmvy~1jsULA%NwN|_kw^9(pJRoFzsxriHr?aFKH>K zkcuZV3cY`SL+R``{lRo;9@@(r zF`Cr-@K$lpD;TdPQczI!nADZV;t5ickd?ag%HID-9}-tJdAvt=^*}HDg)U43E#mut zK^nq+wn#{Ff-3qo8AA1mF~prk zi`w5L*5#U$rRgIge$rDh@$k5g=1JFv>FcMs%e&&SCt);}dVEh!%n`$aU?aE&AF-nh zGn}4BF`!6G0R+p5zSEiu1b{!g{gK(PDoYn9hi`TScYqZ-P;gg+25WaXlhQp%L*&VL zs@%?nVo7v&;mQz-x^Y=!zRrxVjF$}d+UD^sVm(uKP9jUotiapy`Q&?O-~ zp6s-41-YXlptwAUtd(kOq^I2bfzc4)ZI30fH=|w*Bjl-_(&(clCbADxxBoVEkxYr>Q zWNgV&C)=3BQn9@F7PjwMm^%W_xcm4*R9MB#a)G=ydbZKkNL^4IJvKb#}h z$|T~T=iB~#!`@D*Eae9hoaE9^p8&5kxyNy=T0|j88=mC_Auv8U8Of8x5wrik#s;o} z6}C!`v{dDFF^6d291ZNs5Dh)c3U;_ zm8*xx+C;G?U>ossaYZU%VFQU?i|t~o_qhHzoK&F_^}^$569`oD-Auw~kn*l&WHXfQ zCOogUL!LYlM240t7WT)zr53O+$R(FfPrBWW8d=^zcE2OS!yAZKZFhWXW~}*3LVtwO zJp7CMYXrA~g2Kw2kh+OMo{hi}>jLGEI8t`$LeuN54QLfQrVH^{;)~i2JiIuN#v9qM ztaESZ?dknZPX6Rc>S`qkWxg<@o(=Y~kD=FT2dH7*UH&G48Z6Au1Z*cpJX(?r|Be+t zL(`2%PgDpl{-d_8;4dOn|Cxk{Q=l;^gJ2-l)6~}V|9M9wP#4*9Mj+O3^-}MOHziDs z_%vQNA^3oUBUi0QT^P6L#5peYjT$T*?ZxM`*$RJj`I34ZPl-nXyY=;NCs$U`eApcc zT&2$wnww2boH;1nkhdk()wla|_5a<&3WWAY-iiRx&*=5p9*78=oA(X=h@`nb)Ks)( z@sac?hhd6FU}e8~6Lu*nBJ%W&`Wvj?!kGE4cV8`oI@${#kg_&j0b7o!s3;f202Nsq zE+Qg2GdtV#<%>-6Jo=nbq7hHD=`mgg!U zupe$3#1%x`E(VTD(}~(}1rr+JdNO#w+sl)>%B8_E&woX(1~snF=F<7geb2z6|mYX&-zkrF-Tiysw47K--8g+_pKX zq;T~xv zQbH7o=koIMK7alU#yagGM`xhe29rDS2z#e&yWjY>AY~O~e^OSh8P12rw*djUoib<*JVR1T@ZX6^|QIT8RlX0#=48t zrJH4tbMmdQ168-$+CJh%tyu)x3{ZkpR(Cu!fHGOTpPbZCP*7+kBrB$fxuUvMN!+}g zfBy!Zh!r#&EynFt>#ij43oiy~4+_5dF1dTKwSm4J;b-#*gBrxe^}|J{W_vBVYHjT< z8=i{!29Urj5DM0zV1&@`ay9GjL%ej~HK3hiW78)_)eLR@`xNq9&zX&^I2O@(N%_sI zzAN$&^FJ~rfaSsL%D9%kzm<7a2!4@Pw<8zB%x?Vru3A5TYM&7j2Hp60zpB4S7*T#k z10&Wb6Wdsl@S6XtKa&5bl>WpL=8xd6ObQA9$4dyl zXvdGkaYw49PJAs>kH-4OhCDV0 zDelT}U;luDz+U>NoQS(|ReE(D_2ZLM1wS-_{Mi*^ft3z9oGWVVE}EbIssI_1z0J&!O!$rcfM3t=`F8ui6U9T3pV6E#!>R?)Y!zlkf6+B!I?OICK)HXo zQh2>05iW~b?8*n*)Atho_#<-9oSf7gzp*4sr2@uyGrtw~(9Ua!z8MO~&x%6J+{-xIP*waSyakLxI4#Q>rYLwOL@_Qcuh(msIULh&Pe(c}MuD!-v&8V(Ll@4K#v(hei&CKSr>gDIjd zhmND}VdIxZBBD1KiXKqL2LxG$eUAVGy2XQycvyf!ve9k1BanFU(O_tJC{qd9NCIfU zgY%IT)9^ef#L5PqiZ>sZN3!)B_ADT{1U`bJ2+lbJs`eG;g4bTTQWN|KOD{|M|D_}M zu0&Ak2yt_}^uMMABgEQQ$R|iW3jqn8n=?5pfZhKr(&F#?rsZzQphNJi>JE?2vk|RhU2zr@ z5$i5>b9OyBIY*8rIwr9%IF6iQ>4$-h6r=fH2Nn< zTw(Mfh`ZmexBFi!ZY!~F{`prUE+gN+>x8>YbLZbtX`ybRO9Cl2p>$hs?hyUV2TPi zLh*xSdTEJuQvUu5w6h%y!RqQrv5!Da`DmWho6#c#(3>VEx6L4LA_vK$+z$xw;WixM zUF%x9S_n%C3Ca9+v6oX_ABdpPup(&pr9UZ(H3Bs>8R!=)L#+%3Q3bv5v3BwC7s{~S zlh+>2FSl`tAVJq)P|Aepz3e3lqZhzquPW+zNZn`Y~ zu|>0{BL)nVzj<#+LYHqZ{;Ilowv2(xog7*rk(O9A#yF!2b`V_91bfk9QC!|nL0E7w zsn@Xk4KTDuJbUM5@O8x&X=d@SFbs9{B?Dtg%=484*ibM4<{k@iGPxwrzQ46Kskw@w zye_&HTM6AEzi5)FNkj=d5Y{Nw?(1av6JXniKRi}Y+S`e<4|@u+57%L0jMN4cv@j2A z-AHAL;Ok*953yz@nFmEw@6khPGf}rV3gXP7zuLpWib3!82jJKx8OOu!2%JZc*gsS8mwZA895b~s z(yHa|h?soyv6nDK;dj}23aT0E1QI>sat}$kZTCJV4;}!xow<@cxBy|z)>xDD^z@94 zXD^7rU62ZL7V2SYD}Ccwh1qp=<1>w-!#p}PK5><@Vb7vpwRv3O2UU{~>H<$})pG4B zfQ%rk72!uAJRx#LgS5SEDfc%;>0v5=BE4DM9t%D)$RaVJ+__F={PE({nq%|s-8aUh zCaoTve)_Pi%lEy1zBKtlz_Qd$Q+HHOPD)VXwe;`#=}J9s*s1ize!-yT;T+w=hZ{v9 zWUP46>5Eef|MskI@vYH}L>CSLLNWNCEkn@<)wo1!Ls}@(y1}B|ef21Xg}?Jeu#M^0 zcfs!=0ny7LKhzc%7V0DwbjPR&ZruQQyl=xK%@D^VF^nq39s1yZOMncwE7@jqS1UqZImI`~I2ivzEv&$MGpyv1S_R`YUo$MF# z6|3rxJI2excAeI11m(p)%b|?i+~i!579_)11lTU!cCgpgB@=?evE}W4r{Bgwz!!&z zute~Y1C|t%7MrMP+PW>5iwkf`UF;9o9dTm677U650`b78d-eE6%=?dJU8A5L;OIAQJ5O)uXsUDP!a zFT}q&UjhcV7IKau->-jPyaA1eqZb}fnT|5ZADZTLud8LOJBCFJqD`x-AI9WlfPli-{lC!1)tWxDxw)v z&jtrx-1dvzVbpOfP{^cH>?I`tWnH(TG6Fk(e10BZzd#8fx{k0BZ9L@U-vG-CSc5}{ zW_ZW-_1!baNo=|X?ru77>0B3uZ;I)aXtzh=Iwaeg5mX2gIe*0cU8&5;6gU|)zcMH# zTQQwOp&-Va;L6bEcdX!~&e`tMXKP(xJ$&;j3Tf-1sJM#1(B`tmhwBN%sLS_v#Ouyp z-d8vX*tRCFZs_jL!ooCMDM0{zc(wcOtjG2k!~NwTfUH)LbMWYpJRRG3DCsM8z0K0n z;)3`Um)G#5)Wgf}ROKgO!f@at-IEWH9-8sy+CQrT{4X#RN$IGQgCPbq{VLepgCmBf zz2Fb8Mx_wU7VT|X2J@vvg-1J~jPn_e!eJgonV zfu75--4oB>;r9>q%4_%F04umpPFu$`Iwpob__Xfku+#0uA+2m^>oT#~KRUPe;{&%) z2O#*{iqif7<)I^Qw>5!()gRZdG~SXq-!6ig?W)Mygh}LasKSoUf4TkF_a(;`6%jcA z#jfso?>)nz@@_Z|6qg=wrhqJpM6$c4M@f!Gpc+k@JadAnV~TdpdRlYs)mx4;O)ux5&8@mdm{&V%MPVMGr)e`9<5zqR6cd;8N4@A-nD z;JPMj-@c{E<=JFyBI~u*vpu64lXt+v#5F#FkNOBKQr(2Bj1>HjIh_u&8<+~1;LAvb zaC!K)RAWafm?^JY$eTyM=t{Tv2z<&U^q2&dk-loUW@y$Z>ZP9}K}OqbXn*eR!U4?4 zb8BQ;Yzjb*h?Aj36m?2|ewUx^HNodn|1I9Q95Fq_*wAncCMwD(QxczaT5li}OZe~h z76TKrZoEgd+Pp=Ol@*51Zfg45sN{1?OJU)^o+u!tu+P$%uwh_`{NrAMGMt!QEVL<{ ztu89>n|bNL^%(RuYA7iTmz%@2r8(dvObq+{3G4?X_*I~g@Gwf?zA5y+DLQ%pc+;|y zaSl80fyi795~$XhZ-DsiwH09o6Oe4KMh0KBErV4==EWa}m$yFe&1AX3+Ed{tpsw0R zL~f3$uBf;bnl{0DR8Fn^*V`F0KdZd@2WABS;FkUR0JL?z zheJAv#G}Z#ae%Nh$>lr}6`OcQa5o_&=yNb1#Yp~RXcw!Cq1E#?K>g`cds|zU&nw^E z`n!$r9i%wKW5232y3zy%>{l%e+1;WPeT@Nij%C3LmQgamew6z~%Vy;Whv+DR^gTe& z_0sY2a^LhaSbBL!*e0swb}eUats{^~WJK`kW<1`)0Hnsb%uOyMMhg+Y@el?hAthB8 zW2iAn$ z?+C20hXXs{25R2wRSw)iZ87^WR8MR-)aGXSi<7OIS{ZMfKx~TjtPM9e_uk&lRU=DL zQHFX#0-XvwW0$Oy6f;=SI9z$a7;5{!4cl|s^Mo1AhlT%*QK?-`NujAUA6`-gQ5JNO*D1+qZACvSNdAxPg$PksSR|_!Mrap0Vqvm52kp zy6}Kv;*+k!b&Hmh0XjG4M6xlKFm|Tt`uBM%ou}Ke3kwOuTH|jB0a!0s^&gOc&EnUH zh=>rMUL+XZ?^M+t9sdj%ejQhyjC>lsksUhu^^sqY4pIUTu ztQAw`6Xh;$?Fq?gPkBesj-b>@J%NL=%)ad;y z>EYUZvbrR?e!*0z-z>~?&x*Y%WO=FM#%CYZO<<4l(3PT+QsWjUu+NV%981yn_vuBq zFO&dC!V;t2;wLNBZ6;XS+9_g`!)~6r>GCtj9OfO~g@IkYDc0q@Qd?Ysz?H zRQ!4`PM>FH26M#up?aS$Xg*|o$*>*6@{1_^=H_OF0W5S>2bFs789SXsyH82L_sms+ zT8e+6>*#%VxK|YT++F1jlb|5ka~v}feX=2Cp~-k~vjI6RYXvP2TXhlTDX5$85v2w5~YyBItJAE!}00*oui)I zTZ>ZT!#a!{wYv~SCe?bof8HS6V`{Nm+XDZ?3?rF`2?&UL1JG8;>(3asDfuc8LQzr5 zCTc?&yx{S!swDVWU>vL-$56N*DCf5}cGP7xs7Xo56q9S`=j2q-22ecC!qCI6 zj*pa7r)GI^OZJ}a=t-lgrJ&hxfez=kkAzHmt$Zy3Dr=Q>F}z%97HD;XZ*O5Lr*z=V zPS5wUla#Dd6=Tb`$ZGt1jB}zu(;emiA?>ZhqI%!8Z(`_9>6ESkq&uV}1xbMcq(MTY zbLbWU8EHhi21)4wBqT)2kxr#VR6r!3+wb1{xA%Vcv5(_@pZBjB7Hih5HEZ2V z{aeCUNzajaW{KErPpE13GGKaKQDz%QQ4FGi`Q{xDPq>9Lg(roln1QP}@QY>LDdT>n z_6=i%=`M~OoQIlHwOf1oBjdi~;45=47xDa~<7B?9=b?BisyCxwv|YvM{MX>g~h$t^1B+@0A}nt|!Fsa4=sz4OLFCSM3D)jZlhrSKsNCyyx^*kO9R6;WhGg1J^fR>G zgLZ;TLN@gw zhhj&lK}rAXE(iE=ZUvcy<|nn^r>ZUMKFxf_bdHKvL&nmM2bSXa#?k7SGNI@nKDgfC z8c2#I;U`bD_xJ9Hn-S6->(;hcTlj40s=H5WI=-`e*N;n+pe`yW4Vi&O6RN*LFw?3- z%UXm>Bb%Plwt-J3fKTF=H#Vx^U>S{*K7?{JMiD;pt{2OymG-r9bLRs)dh3??Zt2~1 zx7NUP_Q}EL{z;r4s|MX3$xE7d)7YYyCW?o>&yb?2n@brH_ogL9WpR4(Th`ELIIjsZ z!TB^-Oqxx_IX?7RgaXs5-$|l${CdjNaB-0-M{4sQqK2*ybpbX|xeWTo-i6Q_d`XlV zRKc(ADLoD;>UgSU-jO<#7l-PnH!UIOwhL=M!4Ig@Kc6$|9?4_o#ff~+j_6~i(cPkF zg722N*Ey*dg5Q&+Jn(1wq79Gc2Zqf3K~G2>wv0w!+Wcf9!5$cbUGIwWad^l%ho;4jTdNm_xH zpODcCb|My=+d4P>Uq5ClVqEEJB}B4aen-;EO+q?Xist|4ZX~lYm~pCRw-$% z;VUSYJq!SP49S0YIu9P*=S}ETgEFcU|DsH}f9$n3(iE`){~wWf>Y(7`K{PmiHual0A8;mp_hO0#~zD_=lQ57YlC=G8M??N%IbiiJ*d*=|8gC`dA zKK2u7h`92<_AMdQa8(JXdUjs&8n!_`F8Ml~mk%KgX(Fj&)gk0&RYoDKzHh0E=uF)! z%g=;#shvI#E_wZ4b2zaeFLG8Hd$jhMGz46^kK_T@iJEqHdfH692~=OWv590du6s5v zKjS&>ZT(Z6XcO^c*P@XX1vqBF*96Qb>81;nzZ~tfYN8L`7?E8$&nSJ)0pNct;3=ZSAeffZ0!bVyU zVjK_q6|08))6b3|ICw6jac~uVJ5>!SgJMUAu9JK8oU!5i2iUFSSh1zCLQ(l#UaV^$ zqn>X~8Sg|%tHx07rCxAvO=l}A=U@_(@KUqen5yeUS=zZ&Myo-$vankErwsApVIzDv zZlE5OG(rrn!q0PFpbBl`xKB7ss1VB%A;yWjWQ6i7BSkU6UA0No)R>vz+Jdu$;Ekd> z{3F*Rg~Srj6De<;N0Fz5?>vN);~NI?;gnD9aQW7(NbqA(nPR$RG`V4FsYed=v(s%e z!Rd>QD45_?d}&sc#EJAj2#VApE`m&)8ZzMKyO==YVQxtS?1(5;vQ!(60DSH=r@zOF zhi$mvf(g|Ie2Q7{r*@ zc|CdWGv5~sMiX9t-7-K^EkUy*{^tvVDDL-vIg}#r6MQF9#!y3lGs2gQ82-`q`XMm3s7rT-T|_U`*yCz85L#QS14?HjdfqSk_ad9-USQ z(Y;@lLY-yXUdln5;_7wnPE{yVI!|i#W9#cMT|62V7=qoxG#S2_KGxv?&!U>`e|bHs z;72q*&#s9bvZVh$oKPiEej6*G4%R0)hr3f{p~;Q3s-H(ZcR`dbU?@oJk3js#<`|4A zNt#R;iz}R%U-mtIYgx+E=mvX_;;u!!lxzdL?`YRDAbgPo0#4-2sbX?cUBIlQ&fSLR8?Ks@~Q4dn-YZ0zE z3wqM`iC;zgsioVA%t|1P8n$;?jt2UEGDH|vaAsi0DmYu~gXbHkc;?Cc_8n=6@xM0V zlK;rTHI`kwViondvw_WlAdZK9X?MrTbR)h^it;#b3Dl- zJ4)Rr`%mFJY;I1oF@xrMOf27Cem;% zJE_BWx)EslViFi=*mb7cEiV>p&7h1tA{q8#36U#G$E zj7WzCJG__Xy4C zVZEDUUTvRHD#1vSpIOXCTN|0P5NCt|rZ67=%!*%PfBQ-Top_keJUiV*&iez~x=$T>-I@f13MQogZJo5cI#jI2k}Y+E`9f z)D3uiO}{-g%w33CTGEoS+EjXqG8e2E@JMBb)AKpIACQm#-TGSvxx4F{{7y_#QBq!B zURqiju?)HSL>Ik*4&!5rdY z8t*?dfL{3iw4OAe+;mkL`Y!zT!qGCtsjbT3854*VKW@P!m0;g9cfh4~(VfjwgZ|Gy za2Tj0w#jw%5@hGiqj(2YT>pgQOUlYFfT)F~rT^jO+qTv4i?bh_Uq9IL3JYtj&t~m? z&V+#!A)xs78d)nqp=><_#Yi9BGOYhR&XBsE48)k~Rhoopv8a(TD?ci0sJ3b-GkQB) zH6AvbJ&%x>3-m>H-QOWk>6m6{DrYbtePKrUjey(wPzP@phubqfeQ6-c!m# z9-sCwrg!=J2M1$-L##mb;m3uc@Mig^;!>!-2wz`H(!m|H%OmyIfb|!S}iYQY|U&EOYy+V0!dL$0#n;Szz*E86IM!2IJ~f3`Y#NX<WGsk`h>MD}tueFzhQ-9BS=O->|Hf>G) zkD=z_IV+DSp%WgF09`Z<9!VvZ$J`#YhRGC1uz@<994FdJDb-S^(Voiu1l-8TlKWiF z1gV25sTr6d`u#9ZjVUw>kcCPKObs zGW=zus93v$F#+^*WgoaaFs15aM-X$`;$}arqQUv+H18sTb$QX{Sg-QFjIn!hen^3D z!w!~(l$n{w1O)|!k&zL|!l0`%p9714=kx^Y*mvw_jAy)efPJti8!+(%Mre=gn;G8( zQ>8Kez5ciN1qjbDJ6XnEf%M+Mz#ugAp|UcDt{~@aXyf}L$XLifk?3Q$d@UdNjeAFy^WcHfEogj$lL=Mpg4`n2+QETBpUFm@FyoHH9YM3*_a*yrfTRi zT2rWd=t%Q@*~-6x1Qkj{94hGPCb_Od^lhjnYVF#qaDX zOlq4j5Ev0kz*6wmtp#c}tWe|g*8%w$nQ0@en7yE9Ar1uo+6yi2!0ct9zh7D8x10z{ zeG)Q+dn&r0U}v^>xcfHz>RisNdv10qMM#W8%zo@e-EWrmPct(E4?2xun2>?OLU$?veThe86)12r_xzX(~G0zqFd z`QEpUjZgtN2)$baDQ!;g<#r+!4?G&av9U=>MHO~+*)6ZIyf)j}A=BBOK&z{}moQeB zKqiohc-HRsc^XJd+`ekG|DjO3Llzs)s+-f&9fp`0t-)tas5 zUG8fi>gG$BCc)7RYFGvw?rE7vRy}eQ#ExGPBj`nzl&l}STHc#`kiAKj$s4~rd~rOR zl9_Dm;-clI!w)fUadT7+#e#Uh3A(yIO{4pugGU34q%?h0yJ3!j>bYR*v;+?c2zR%B zN2i5Hg4}9d>gXuEzyB}TYpO&IcrPf+ce&1#10Cu1moETAc7}K6@MEAZ9@uA_dhbqi zjj!#XD~pP}fRNB2;KS6~T7}|CReI=wLyc$W$;{3>`zSKZcbFtAjhE`(Bq)#dXo>7W zdgvGRi1X+qvIJOUJuR55?wmiqMLf9;sCanNEwssw-rkj^rKMe6#NXA_)Yx7vaugJR z$_*z+#~)-SK@NxW1Ki4`ogE!8G$vDMSNGnF3X_sGg3ax(FWk|z~{v^ zIJAL--oo$ReOi^docs`R+5|kW^K*)NZ;TBTPjXhzG|U6({6jPdcOcQ9^K%Q~N|8Ql z=;(skQF>>|WEkC7hvBrV17{_74-a+et?#TyQ)*<_%d1zO=7H@+4Xj4y1!52Pkj7&|8BI2>Qnwek4(3A2*V#+;cgpRh0}=07<-wQPIL zyb<5tE`3_^Xg{O$yXgbdG-5L6M^5%aVW&++smZA`^>$02DX6sjFQC~=b*mqi&Y9&} zlcyIs(OHhw4ZXix%xo`)BhGmarodQ`u5gM@W0o_mf0&3QG`bV(@9}GZA5PnRr>*N` z-s(Gxod4+oz3zV2J9stlgFi2=w({aepPdEXC`Z_-l*D&lRL|9bxgbUH;;oeJBQmYn zR+xUJ^I5nq2ufjr4TvWnQTc`+robrmL{&kJ5v~#hk}+V$jwq5fHZ%L(3n~&{&VX|M ztl}3vCtHW7-4SOiR0i^(BUY7baM8CRUg-BDBP9jW%>p1fM*na~xCGO;(9keY!+hBN zyJxx6zs|B{?+YZ;J4BP%>Dyl-%hk!J)$n~GmT{PKFSx}$$L~ahM<+?s6QDHXV!%m6 z_P$AIcSA3$zlbz1qP6-n1gH@{O;H^1_$vpd(XA+S{tmrzw=Ml}x3m;Tl;TYQ2`<6P zSBlJHXK6f?U$zq;ycp}BN37C0@B-&a(Ba#!>eJPv?D#b6wjW5=#to}!^2+eD26}s@ zXvYbv@Ix+tY!0V0$%L-=-*pjL`V4G#?Kg)~fke@#v5~z5j52mWivO&#wbdVnF;r5- zVXf4QK)Br1Rd5HsPqr?xz%euVmN0M)Z*6V$b;eReq0w{?3DYP9M($R|TlU*oH#zBP zIN^58oQvP1;Ej(6D}kVqlarH|?w@SJcgvowJ$t?NsK%>fAbj~IK|LF|a_uA>%Z`!MgW)n+u>T-Q)1d~L!;DryLq`0}i zn3g|x0F3Iox^HWY@#J;Z0FBhpAjPf-l(ekNJz;n$;g*(`poaPt5s;dXn3`GwGvkCH zzo$MwPJbk(q(I{3lus&A5#rHY*B^WL35aUu!rUAChMA#xWY0p^O28n@qx4m08IqQx^rhl zIL=!_W73Z3NLl33D<2#EcJG5yIjNHwPdz4~yX1n$f1gno!H$~d`*CVek}oks93YB4 zPLO)H9In!^drc1U_2D9z4Q zCVzh%`NEVR*^`%>3q0gvc$wG%O7rZCP@d9tVtRvBuc9nJ!#(Jon8)bAwd)ItPr@HY zqg()f{V%NKXT1$G3ky8r1A13>I#@J{ZBWTH)XGXgFgjUa37>2yTckhY2Ukem(a}+{ z+#ht=`4Q4v`Xo6=(4vw8o7@H(^hlwqU>7K_(h`WlG&TUdv!TJ*pzwQ%iiWw2?D0e&9a~^z zsrQ%hmt9@*>MPY@FvFmI*=Zd;Hhjn6zit=0Di8*l;cr$B9PX7+9152$5Ck}g!oTC2 z_S+V!rTq7w%Yt-p&-PvPlef>jhu1qhJ3}gqo-xwN$vLE-_MbL_McpthaRT>LpN zD=VuT8MSEgp8(1zNpFuOB!!49;gLG1KsLeIKxr;DIUDFtChb)6&T~fZ+!H9iuKasu z93;iJKW9+rXWEL%-?<~MFd_ic6+BR#f3$ROHgm% zxH+T;JUZu%U%tpqs?ycg25NLWHYFK%6{&y%360QQ7#3>mL1${kAkHRXqSJKPh%mA4Je8sD97Nc>oamRkir9 zMCu~{?FTGo0|$HL@dav+#liJ4=|%09zX8`9@|4WPU>uIJkNiRwqg{}^m-MWx4Rv*Z zwKX)ve2Wp#wFbWzJEqbxHcqk{Ns`8++lfn3|YaBCwRavwsKhu!DBXasYF^e9pGH{X&CSMGMrI zD#o4cOVv(VUu{tt94xg6aBxtPrnBKxa=A~O0T;dFlheLH-$`Nyuh+UbW0R9BodK)Y zVHayHpeS;$ahSCtnbUi}yQ_I<_H>|UsCK971>tT{wp-WS-1| zGR5Pmo~w(^&CTWIW$b9IC#GA<51vy}wfnpjKOm4)5MTbdl7_F@?dx$#wvc`%;`0NpXQ;86nY$fRM0UvVHB*kggtRnVE(X;|0W;y>0_+?4 zJ~f>Fi%>HZjC;gh3wKM>F4Ti~U=et}fic-b8K!LLO@1>w#*&|3T*y~dg(UFt@tHjM z5^}+r`oLt>P)Sxc={WSuqk2wm?@w-JAX428BNF+3!HH%X(St;P#0OP`23mbzDA!o~ zh!z(XfB-T#FYj%TsC^-P0+Sp58Jks_v%ewQa;TQ>w$TH z#`<5L$J~dPby7yanJl-UdkffFdc#;En3$J)-M0C?M7+Ye?heF@oFfjkmZlab?DQig$Btt`SFhP8X&-}(a z;M!R)e6BD`xKrO$)AZ_9sJDwD!FupP4=Trr+ZPspgTZt0r0D9P>4Rbj@GE<6++6X!hFq6kQ~Ef;9O$8* z8K2%KQBPDAKs|hzUkZXJ^8*ooxrFTi=GokAVg=vLTLAo*`sI9_Ohz%ui0b4UCmiFR zXs3RaSdF?V!|4%Ic(F;P3>3pH6@#|83-^R6=v|hh8wh>Y)zK_Si^?RPfjP$V>T0^@ zsU!|jdP1aJLUB`D+pR*Tm0@&_Dx^$x!tNdt@b6G1CD+%O&9PoNxi6|iu?>_z#6@yH zc<`Y2?45{?jt(#xSNfTeUTf7k`Lgh>{^iNnis&7i4^OG9I*)|fu3Dkb&l(7{jX%G*;9Ni0S^}h`na`g;%1FwVD=9In z{|*M;DfW?tsl*?Z?R7@Unqiy{$1}dP+oE%bsuwS4CERVHkZ{*3FxPfHP?I;R#FL1O z)3*==Iz$kdJlL2AGQ3Ai)^I)&pzI(;-6q6#x|K5BMapNYB2$G4<45Fmc7h)3lr(#B z@OGGXLur#Sa5|u4W6;*+t9tV$t~iSUBLFs7E;s|ESYSN!^Y<^Fv{Y58l7xBJHj*{M z4u-JhJZK?n5l^hA($mwP0s&QXK%YdLuEizxB?vR@u80KPsUsikxm@4alNA%2{yg`2 zVWE1(rXkuIHB!gQ#6-uGUsy;=M0QV0%iFBi`tdxuzCUOab}H*uUcC~svbo*2LjW{x z*L8Q&FCbpQRS#wbJ!^3+b3EExKTZgNIHDi7L)%@i4+0*!^2^Bv2Zzj7y>3wZT<~65 zFSXrM#?8Ypr)kU*!;FxuDE1KCM9Kdnu231;w7TXkqgpn z4(L&4^%Op`nAk%aSN$VI%bH)&i`WAukueq1JZ{kUXkrJX0-s z?8^|jJ=}M-Z;gyWW3;tZl2w&jA6Jv|Iv?~}Od$B1oO>MG3zAM7w2-F9dykOatvJzo z#R6iJxhj#d^bAZ)jvvN2mf*0afmT?P!z9W2(>sz9rlugUHGAyfU|%YJZ(oiBJ<$gQ z0CsB7FY}A5pLSmL;ts_i=ozb)_*5WnN!UKAyke2>7)ntO1}bf6V^pG7HvF(+dN@AZi-<=~RM7`4m&?n!HB|n=u^$k{ zkvDdiGOuHbt)lyjA+eUkwkULcVAv%KiqYm-VIq#K>cj62In@j zOyuq`SbTs#t*WL*G2XdwP2#g*k^KL$w$F%xz^m|5|jFq061O9GR^7ev5qZf4~p)2K#fKC<=I+a zU)DK_yVzfwU?p42M|vI|Zw~$Q_C&Jyd(8Hc(}ATxF@%SlkE@F1B+@X>clW0!aPI;> z5kKp{_&5W&uPd0F0tq((DXHXq5e2eLQ+_0;8$fsL&Qmo84*!(S6A0z=l33FIsX{Vn3)`vs+C&2mPpEf z!+SrxBY$UUe&L1fvxwuJkD!zqW`5SqyFXuN)fFhJLCnIV6PcJuFqVaLnjEH6jQ8~& z#yOC912E!3E--zc24!UcY9>9A5D|QFK1FNOP{SDdSQx8?`o_;NJ$T%cA80~Fv+3r_ z?&a9?ucy)nHs-Gl0$xxpaYY;|B`GB(EfLtHn&2mBT+XN{>;a2}-U|H!Hy4++PZvNl z4ekZB3E++L-$V41CySIKuFg+DRYMhDa(sML?;`{2H1?u)|07rFcjZ7aBdGp)aUTSW-mg<@*B zu-~VJ1+moiq1D-0=mjm9!xhEjU3~Ln68k_$mvtC@nEVx_5xr%ysDd1tn*ttEM)HqY1u!-2$)13aSb3UIsi2PP)UR*i8PvHE|`&+Q#z{hu)W_%M=P zip%>B5QX25y+@t}X?q(^U1Q_D5VF?EOQR9Yd_i%F5mQ{r!w{PEKKNFA;Eq4Xo zGla2S>O7tTC@*iDN?$uE>?fkbJVSVBvVKst@@VS?BvU(DD4OMq)jRY{k|Idkbkwk+09cB?D-cM zoVRZ|_;5#Hdt~%B5&plik)8MU_gCb6u=qcIzMK0Jq^&>|L}4KdHT58$E~aB-8=(@7 zTl5?)`C8F4L_46u8hMh4qmTz{GXwF_`ze)upJP`!KCnv_*I=clk|5a{u6{^Vz8@lC zBx90}JWOHyr3Z_X$KYl3>nuhdp&J7X3T1=7ElBWEHpJ)9Q!*@kS|uC98OCbGz{VlN zr6uoY)X2o1oQ7U}3p*Qw%EsQk3p4kw!{~_dWK_db_*$)H3UL}g797_Y#{iMGHvlHI zqE`DZ6`)dn66!i?#9dXz@Wo_o8xvSyVPS!3{LV0zC#n@DEzy30%w8%3sK&wO#|zD( z!osGdO|m(^zKXyeod<{5X@ly{O?!v+8D~dF?PR;hU=Sk=Yh3Dc%EamOfTKRd&AceY zZ7A$K0Rm$WFXZ_xVEn!>uam~9uwGJKO(^-C<<|ZlmM!ZAgc~b4vlYilVQzB0w&U$v zkZQF5q}lgnTbq%cw{ZbQE(vLhI6yaoyso_!jsk;*y87*k*DwXYfPl>N<~9eP{;1&| z8ggoUtg~bDK<_kBEOdp}Qe}O0Z9hXjZ$o8|Q7RWTGjnQPM}1FyCE~cUwz;{niohB3 z9qO87xun3HK@`eF&k~hn_keS}Z~pFrnPFeFo1l@$>G9eE{lcx<7P5-ynTGmmegP3p z>L~69*&xqJlMr(6o=*P&=UPK?GAJ6ZwDR$xxN6q3peLh4{@{GxrmNpyG2A*Ky_m1l zL-i!SaCq)hax$v!&711_9u`y5Mfop8-(f_oIEU}5#PM_Wi{wIBcw${q=zhobRn6%W z2M5$nvL|6{-(LyQk_zf}TMw>9K>JB}&tkygcsXlSBisghS@I18yh~h;B8}pdWu9NT zJq2qH4+}SvJ9V{GmWd=3Nd$F|N<6TeDfjxCpEu+A$F)enz2=MK$MFe}K5UhJA=(62 zT_#VA#lvdmT#X()odY9M^5K+}JQW?GB0q0bK@_pn$h1kRwuQ`b2Q@z{4GoT1cmb9j zwjiC`2hj0vjbs2OZHXr3N)dsYmb7>gTJ9G+A6?rm6e3>JI9O;fucA-fAL0sq>(@+3nq{x8-pUB$?E=`*E_dx5o(F5y)AnVz@E% zquQn$ID-yT-^Rv_TZlv@b*ex+^kTVEH|SJaf(ic}Iqfh{%zYd9{GO%XoYDJlxFvmZ zK0R2unl(1~w)9q9zq?;2^_aw&wm>G}6u38>&51;Oo?A}cc>@3ez&ujANG~er^=9cHgo8}YkE#>{EpqBv ztyOQQkDs4>1+D`VwmnB!5U>)TwCFkb!Bcql-mLe1BJnc%*1^y1dmof;F1PRH*zKr* z_*VMVzR1l_5dcAfRctHW>=Z>@EUxy)M~B3>G(R1C5ziX5^|GR9o$UUd<0>cOOOGZq zyXe92d)0HsE;80{b3Yn0HaQ{w90CaD&#{Js)!vBjE8TMb2Zl-CT3=f##J-rxuA#qO zeDA2*HgG+*Z6%yYjy4H~Y7_(sb6_0~0y=AOY`~?(Z*|y}lU&(59S{{&RFsz9THlTG zWF+~>WYzytyaHhSZr{PTqA)I2JbfYrIotM=>#3;;eoAo;fA3TWbVl? zH*;*m0mwBPZCOrXuKQ7`np`sC`d5)A#?4TP)MSBDd>DS-D@QlNtG|mq-19*mrI(qR z0}(F~efl(5${7ZQ@7HMl{AkPVRFMhv~#-(LJRs549g$ z(-`nN8#M@re`B&A!5D4pJ^AKo)y9q-9xap&3odT>FgHQ6CG#Fn~=DDJJ4s|zTJX~D$_fX4a39N zK@IzcV+P##k_AKW7`W2`2~x$rmuqg1uQ|W|;lxf=s)ab3t#S3a+X?l*qs516={=sI zy|n*ZBaqZOXahF|XRM{U834)tsd@&n{#V3fA{=5rK{eeqRl3sSHRo{--h$lVKiOtI zSKqt_vY8lOJKLbdC#}2B7gzs~Hs4QvVR28;)n&UXlV?>fh%)3A(Tf0YEkhVN(^8>L zV4d}m-p3FyxYDn^934{qvxn7;`Re0z9jm{&AZ?Bk~7Cj`9#$gCbFO zL~>8}j(==^2aKuT{lzE02L!!I(IqgZ-6XjiNF*jM$>Y)0&|i5VCD^sK?C|}1M(Jv1 zt&fc%NzpvQs?9Ux^s_S%?4T>?@7#ffC#?et7BpDe@v_P46?6!48!85TTd()bdgCDO zcZ`jVLjb&3EuQovz+$^#lCfM5&DWvtws|bJk~Bq9qRWWBe)x;NaDw>s&yM@)+!tHo z@%ywijdg>UrnH6H1rbiF{rUQn(;rT&IY_KLoje$Pm-m0agM!7q1jB}WY9_n?a2VskEQ(v^9Cd0;1I4F_fIoblN#yYIC2j}JF3B>*Bg|n zier$}Z1_YZBqT(?fWqwf7%sl4a!tI}=>N^~Y&)L-?^RGUKY%xevnco;_x~Z1a&rSJ zlEzLE+g5o{w+fU-8sZ@1L5rCtGQ<=mvBceuh2+j+)&*7ix+8W`q$XMcp(Pu zb%5#*YZ?|F0sLDItn}vQ;}b^7$brGFt*I$Cct>3D`Jdo}!>3PMK#pii2SV(f0irwP zG0F;!WF@cL+H&0Y`_|ZMF|nQlx0AgLS6i?&0C_Q(z>$rG5d~|J@Y?RF`3&98IPM|7bSN6T{ z>!gAEh2$a+8OTW3|H&m+G(z&T-z&Z^mbsDq#+{md>fz31ZaW2vU_!}iEHOw40< z_JkuUN=onhSJ+obGNFkHps^sQi7v>^ZFSr?MUWz@hRQX7c#jyr--$fBq_CS0bV06s z)yMz6Q~H0sMgQOyN`U`;?c@G+vwf1wSwU)&#<1|~xy|7;lwQ24ea67325+a=_mu}V zW}JwxSr5T8C-9(7P(UC#Io;|_AOTZ=i=&&RM;t+7X}0jl%_s$+(-h|50LA8X!KgodSvc`Ax4C#4K*_M|n9Lo?JE|DM zO2-{dRCeJ3wzeYjCv$J#CfwLn1!^|S1^D#|#>B++kv@AeuGlwBj!Nm9L=pQ&<3>jK z`5niRFq$-gI`8dZZGupI7xyPmsLWAuY}1h?kt8abbj}((5IKNcfZ~4&2@Y0y_`rI3 z3IjX#jfS++G4orDo2*$Ai2P2ngfEuBlx%QC87XM&Ew zyrnIUgz`e@mL=48fBgWPTJHxW1aG$X`BdASZwDM;t8)^=$>!rbXS&LN*?Y{Uf^s1QkJiE|ixZ_As%mTGg7$7VTNk|F_Taa3SN2?a zrngN3{9%;qg@pmeH~E$``;yt7o<<4^koOhQEMO66X|-s0@O7UEyV3R6m$R5a#q7xU zDii%pZ~gvI2FLHJKg5*6nI!SYe^i7wKK%d>FEf_;z7mGG+E_7i%17kW5fBekCJ zbCHwoK;jfc`Z_L1!}*zlZIV&(!VV&XZ@NqkyyiFKv7vlH*s`oPBGW{0*uROj5%4h$Jq*DNI( ziLMLw@HkEf#+du7mvIr-Y0SsJBCfw0DE%4-)2!kqs5`j>02>@(@66{`R|9-q3Py}N z!KtbioMJ%km?DogONvV($k!f=9YPjvh$F>7bOMZxx%xA~JT>h4SH$T^X}YRKtLG}| zU3YiSZ-<9NxJ0q=3asQPA*#jKcEDfx=wf~2a+53^i1fkBctv+{=M^<%6v=-<}sL+eSK*FzW3_KmE3v+s?T z{33&Hlm( z@>kK#rFhZxon}g0yP!$m`s|~R>km~C({Jt{^sc=GE6J}F3I+5()hx)@dwq5cVajXQ zR~Nvs(ct@Pn~1nLkrP$k@^sl}v=y-3Tp>xdZz~-f8U{hD2Ai_CCtA08czAAe2L^?x zAdJq-nPm0>q1yYsnyT9Re5n!-&)2?UHgD^_U5B|C)7RUtvF=Vgd zJ#L`@lEtMbAb?@cq{%glT( zdhM|3P+(o~g71eb&rZO%g%+O~r+fxM$}sifJJEXO7f;X6y*WJg{Z3APS#@}Pu4k6} zR6F|43BHC20pvVzX}|FMU^&n;Ah5W~>;1D2=Eo{d<3IQ2-X4A5cXMB#8EDd!hkS6p zt52$7lU6lI`KEWMHmCf>rxrtkZ^Ge%5|V$22@BNw+1`I|hk5Vcu*{mEOtOrM)6&kq zlFSZzK*{f09!;0INUP`6;@{M2l)@rQp28JbmBN|W#Uvf5RY-hah!|*Tt@%_;PvM`z z(U$c9pKsRpndYK~>>&`Qwb>fWb)%mZ*4B3P zEzFiwJ}jK3R>r?peo%e;#tci~Fpr_};Kz1)`Q9l7T25I9lL!qBUE}dwtzRPSXK*d} zOhcSp(%TE%IT&ymg3fjdZ3^)Rpuxo)!ETiw4GcccZM1D$h(}iI1ZAH8$3|5@n?wkU_Ms_t0A)S>a`ska; z@Nyzh*iP#|hKsbcwcnB6nwZ7=E*%rEc|_#kl4gimBg`R2xerN-6r#5gG2NWaa(oo{ z$lllfSGk^HzvI1}xj8#*)niLM6s&l@);hXR0!%A6A?y^F0Lc7$%@Wg1%5&*#T>L|y zLqby8P`&p3=Y6jao{<;gN!Bq+xlN4$?>_z|>?cv^=pX*MFAL*TTs%Bt>;^|5xOjj57@6N=-QTaE6uubECC{V(@N8j~hC@-FjHI6t> z(kpmxv|{ZGT$x2QQqh}~uunfLC+F5J#=OE8J;5zs=A$c=E-uNVP$1!3+`!7H@cx!~ zTVa={Qx+@(Em1YKvr~ygLJtlS8W$IKqCTO|LC}B#7^^Of(imdY9sm9vedz16W686R z&m$qB5If`Q<*rGyL3TLbRCA)9{AAb=0>Ra|n~53YZewkciutvdE}@+nC11;%PCm%< zdOSIjPq}wVr*AbOHB|+9yoOD-p$;Oke;m&MB#%ipaA$9>1`sNwONUuQJihmY(NU2Z z7#xpjra+XXMI{LVRN5Y-WljNO1|V-aKm6zs4Bs}P=QYqwg|CNEjUPm(EE3?uu(EQ^ zkb%K|#P{-@|Hvn^zaimpz+hKJYZHY{=+A!c3&q)V@pOIXCcrPuKu@o6l$TK$Ri=9- z%!FQUj4~WMgU}@fdK4Mboq9i3RaRCe_Mn-=SfB`zgR7Rdvg{f&4~wFV4v zl<8AYPhb)B8LZB1!@jiuJJZd}Kfjp2F`GNVQ+x)(qq!y|u=5)Q+B=h_=f{Xb4E!E4 z@sVN?=wrh^twVNZ2bMVn?+9{n;rw`HYD#;0`#>43(&&MdTsy0`ZhJhD+u{QE^a6?r zV3_tU`BpUDO@>j1xOlRLhUVIL*6^=KE$%pgJPicAN0DR)N*KWhGkZUAi^JBi=N7wy z#5s69il8FjyMB@SE2>MIhp-L3NSuk1r=vfPE0xNh9drVGAsiQaKFp z{pM=ylGhH|kSc2=0RUzuFDMu~S3O6jct*YficEZG$*wT3HZptzoF06R`e~9j?v|>Th|n^EQ*(tAdODKiNOR0rWcqL*T6ZMJmYY+_ogrEik|-E zl*n94U)QHkbEt~pdEC2^D^X`FA>Z$wB|%q;vlGJC(}A9kW=}~`QN=Ro4C?o~riRFp zzzU*SR?>(`h~ESRvlvp5Se7`Uus$lCEHM4uopz+Y-5vtXt4?KjN032b=!wWUcz18j zCYex=7A|%1jz;=D(gbNOt%uMQ7V)FHe(d2P2uiRFM_8By*LJt*ff4rwHWk(!DVdq| zBb+2dI$;DwJL@xkP_hQ3W-kP7m?#CuIn$3&OtjjqA3O%JQ1o&A%gdbdf}yUb(^nU# z-$CUUNS~6E`2sP*!_iLoPEBbkm0AWOtJ!Wd4g`1<6?^c#0&ms`_Pd?*4&P_jK<%NL zAg+r%1<+HrR6A#r0P1t$vZV{QWK!Q71cB#hF?=qOk~mlXvCe(l*I#&5f~s=+0!3wC zOv`fe$}sV1|A?Q>Pa@Z`_bMd|lO~B(O3{5~{M?eF)P7c7hm=bQ%ZN{TDM;d8qZEx! z+K)b^Qsa`3wA8drN+f=Y<>R&^CwTlk00&+%ulJ+t>lFoB_*YuDDTe(ud_B(DmquhjqirL<&pHj11wGylUr!KLl!H27>izW21H;jjH> zv=RevSZ6fkRSpLM-`VjF@KpG1W*Y>=uEqa{tg{TODr~(Nr%)fp#sBX8>r;F^ zj$f+2?Cb7ocYpBt;rmPtG}K;qUOdJvM6GPmuf;1BvGN_I0|T@O>YT7;HRN#y)U&*f z+peObqW}RJ3nmkQPu97ZV|Lcu+|vDi4aiRoD4tAW`Q%3|B4Q(pt4JWlg_)j|dvkgw zuRsJrL3r4dy53ru49v7hej?cOg)}U+l(fMk*}|lRQ#-;xbK#>0pc2h!I$-S@?`a0+ zJ>>C#{Gp&vAZ8*QiljW%F=M1SJoF;69?EI0B@adS8UYrGj+@b{j_YC`1h2yR)b{J` zst-4ROrMt49)P>%B-j7?v*`oH>g9DW(g*$CPixox!v7}Ix1cwbH#a9RvWumy1Kzx% zqVp}^<5RlgKJ562>N(}_O}Zd6xw|hWCPvyB$34u1gp?Tj{7O#yUjh;;no?l{ zIO!c6k~6+dzgC3TMew7iQBzmH!j+zgrl?4MUi2mUGo}z5h!r;(f1BplYpKDTNLG=~ zq%)?yfZEmu5|MT_#h+_%J-pgho7jzr7zBq76BCP8@pQq?rycE5^`3Tp%rN|ZG_39k zEbNlvQm5qxYJQkkqrLW|R8&J_ZS7#&7tY_z9&VG9bruM@$$S~1Jkm2kXh@7C z>&I*J%f65I-g>1kFU18E3Z@A35?RyzdXpIt{+m$3qfkm3BQvD=f2S5qAw!OsqOgJ` ztNxSt(clkKRM;(_`$CF;iIGsEe}X#)Q&f%unL?R76eUPi&esM5nejoPFMI3D*jPA5 zJk2=cPF^-5EJ9&^^Gt&;eXL@Vk}`&39PN5%G@+%>#wO7obY$Os-T7_YmVw#`XD(My z!ZQ{X8yS>aW9iidz={A5`S5V=dj}igw)98P>7|xeb<3W2LY?|?9u~*_ zFZ07`mYQs}6|AhB(Lnw}T^`58xj=tX(w`16i{~+FnwVW=E8qcMvEWQpa#zBbAI1K? z0)&*5tsib&9z$I~NaAf5HJG#ve9aaEDKDhtDg+8gM>;&8vnG8-6wh~8vm_CMH=6Ons~p1!f}uhXZmzI|FmEAh~fWa5ib>{O5W}z z4d=I)CGf_%z^|yf`UEVxB-+4ab>TebJf_LZwbD{_O4()(1Yd0=f7Hc^2W(o9mWM;b zF4Ec}+nh&uZYvG)OP(H&kK?E$wRCi1^itPos}OvG@`N+}n1Lxj#P-t)J-j}6Fh~1g znV%8=NL$t^$Y`nQLQJriM*T7W)i4u}_IOjaXJ&560}S9V<2)QvVM-fu^c58q zC{R0S|NK|uVExW@=dS0^pQ~jT9S<6?JadkNW+o+VR!Mf70xnn)5;Cf_)!Q3Xq(I8B zy3e0$-vk`P1^uWHBj%1mU>TVBpDU`r7ZeuMbXjZ+eHh96Gl*8NP&hS7 ziA+dX!BYqP^u6`=H+_9CCIs{poScr`Jp43uFn6CLOEI zWT7w5WRkz_rtKoNWE-zkTc#;HzPbSjI%Kf^i&%J(jqv3jd=trp+uy>-#-gnJ1xKJB zz!bUu<3xN03bhXaka9@D1oQ6tS_N5FA^f@(coT zlqaBke-J(KzGuVR8}CU0Uk5a$5BG$$Yt63DjI8^N_*r3Hx<)+Q?SQRHc30yOQsvB1 z6IrXA2{Q{AxWp%5ulrVB4nCroKwq!KXo7=LHpwpoaO#CxC&ykm zc5O^DVklQyoD@fRjRiS<8irsn7nM+`pO(T~JV5IpK~Yj1Z6$iqi-(bwoQ#zj!S{XQ zdrL*eifPEa6)ch{xLe^FnP2tp;povxp^H$;bg$AHiAEEF*N6UBkQ8UeYaIlgGNBi+ zVrycoF#o?hqd@ziq&}XOl{V7hbJ2VH3uHm{!<{Oe^Z-H5n#g&7>p)!o@3b^My$=h1 z0Lf237WCfQV$7s~(SpYS{#jNqG-R=aKw9pOk)=gPD+4_-CP zzrDGuxlIT0%-|iElViel-P_U5HfO2ftYkyxw`iQadsEAT^!?-Io|D=(8?LA4L7v{> zN=j}7ET*9@5KnyA#vlbyVcnrNprp)ch_=x22FPzTgloOq!Y+ zc_Q0E2Zc7!_AT!G5HR7^)d`e!ZWR@mw*KDw@lopOX51|A@yKxPaRWEtJQHMmo^14h z1Fv&{=`$p}9!BOnHZ z#1$@Za8t zBhLj%+W>z646Tqp%rJqB_E@+-G7qdg@COpkH4NQ7ZPx>}{Lx{1lvA5_5@=-_L0L6| z<~|?L>ZiQO`xj(5;h&Xv|>I{!8m*un3 z?cH?Ycs|TYe{xxUHiLb^Qmp|iU&qdO(4gOi`%cw9M#n^@oloD;b-4#e#-P%l?&J)eRe zD1{uHT|IfYIQ&94E~Fk$fl`A9+}d;JI?uJk<3l;Pgsfzwnj5-K$os~e+Hawmgd;eP zE&1@mY-EkvY4D$$4V=63egc>MeL)o`SwHPxoIkYq_=yP#3BXxUYu*Q>bsnIi0&y@0 ztM!>V!UK+95W*=11(A`FK@@8Rel_A3u0+1zMRdFKg^l&R&+khFLoR^>{OYQFDZI9m zWdPj)UK|nOzGkWUVjxiZ4n%W@Eov8mu?R^QBW|+)pGgXVqM@%A8WJY^-8skj1VB4a zhBh>*d3(W;1-l5XiG2CWQ(f2>fz1yMt{%v111p7yv8rE7a{RjrK=_MpRfT*pA|>@< z#U{zb^{oj&mXy@sV2#VZ7>BP6N$kp5m{&B#P((*S36S!c6MI&TT#^D`p{u466D(I% zkaA+$_^woJFki;`9RJ4~-Pb0q9)~N7wZKz;xntj{p)e+Hr50#({ zx3KYQ0$l1H6hF%raDeFD`r&TRn_2JrYCJq3R$Kr2xQRHMk&)53`r+@>L&wwA6TbhW z>-}`%_U`pxQqvEoRDR73!P7ldv2n4d&4zGkv2m67wfsq#@tMRbZR$kTyoI;s$L^#gO{>0J142B%hnt!%H%9X=*Bzad#nw02-eJqL@e<%V~LUS1-R!nJ5($}e8r{0r|RdX{$_4KH3t zO$g&9Xk|oEI_newwPH0hc7%|Y#O3$*S(pvgW;V3ZyuIP!Q`&4;ey2NnwtBxc$R*cz zy@zBwHgTS1&SrMmCN{JTuG za&bY>67U{1oHaDu1RknW={C~-QfLPzh3emP*26`c!t=VIu}pPl6T}2x#TcAS>$!}W zLKa+KaD>0EWTKT>)pvV{-cjLLyi!<*J>K>3v7?A-(%t!L;s=_0P#fBT|uvDVtu`yvIHnXK2Iq}IZ7eU4TZ8ybWh%D+LqBJm5E9<O&H@uYW&7>2NCd)8BaibK!u$!luaWVNyOd0bx~s7rr2N1EgF$f#RR8 z1mv)}xofI^eINVMoC8l5eRup7m7bj%qXOiTzT!M}3GxVLC98az}ga;X_S-bZpLv_RHH^NSBZMAewFsG}!l%IlzU zO}_;H=$vt1>u809Wd(UW{q=&;^K*A{vIx8NbHtn0YK? zKw;7G{eEhAg70OTz5*wg;9+7ojoK^qVAE*i=xjv$u(coT zO45~XoHAAnz4^j9Q?L0>Hl|vNKYQkE;tzB3EZGo&V6E)zUl#WTMD}rryTwjv3*@|0 zTBK7_pRAXJZ6_}}^B@}5;ZV9pm*haX2kUe-0&pH{{~aygsw^ zIRM4vnff?6(NauPGVSEZ6psu1}iYHDg01Gdu|Ml##tI^QHUHG>KI`-iQfUeJ{+@&s%TtNU-2 z7ax$)zka+&n-<^`*V5CtHhlt?epCOOsp4q7u-Axr39r*kRpsEbh1^P zi_(VjbVr*9e||?lH*)2zpBexs8gp z1!2JYZE_!yWaze9Xlcd0x-0D9xdFQ$eq)L`d+TodjH*tr4&9|YWvfLO6#*8bO$10USSctl`A#s+2@$zMp>Ubuc?q2kMJRG4OR-!X&CShig??@hGd{gr z;@#rH+dXel3ZZ(99|=F+-@-6LBBCxA5oR%nU!zT;`~5O{7<~LxlGLemV)X@ymx z=CG$lOG{gHcZWKbCFy#5z6X4@?0GFMWo5gd?EI%C4n4iN=xb;LD4!G#UAjC5$41Tt z)vhi19YBr!+m}t^Fm`WEsA5yR8VxnDwddcYYggeY##zw*m6x)MC>Gk7DlEH+2(m^2 zVB>1l6J!JU=2NhONNW(QZLL0j-dVD;GUWpLze2@$AgpkN2Ij=GHN8x`vyr9Hr~4BI zW+w+%6-#cpbsT~G7f(#7ZuWr9_BDyn=69{dB$8j<_046u51E)Usr_Xj(kvWoT93O56S$)RRYy$Yx z?)JuzF$dql>(R^hwf3X2A--Yeh;zU$Pb@r3>e5&GJd8q&2JqleDd=gevLeO-6dA6 zRvaBLOksr2x)-|e#fbmIA2(x`*4ikpt9^-#(5#oJ%-$IQ96gs%z1XNTm+M{{nj`0u zS)Phb>N!k>QS)?j)pr;u?%5^+!PS8|OJmB=w)^{gydEW;kY-h8KYa)Qu}#Zm3?+)H zZlB~i|1pyWu4qzccFpyDWn97#ZM3_)&W9_hvy+~?%Ok^&tt{f=-Lrjf?S`i2=jT=7 z34Wl%!-C}y5Q5A8Lq@N029S26x2*q%mENVlQUp~IDwan1%`W#NiqT1~G6k#6(wRgB zGQy{e4C$6Mr$qM0ht*OC@82P z#rS^e70=Uw6gXz95K;e0!GS`3Sa|J&t1}eB#r1A2=t0cmXmDhRNFBwfy03~_APx%v zQ6mGOls z=tEo0deI7$shr1v?n*`dl?6<6qj!9A{8orT1T2Z)**I{vn@|x_Hd?+E5>o97uW6C9+L z)R&;yssCLn+SK+RJU*y4Ef_kL@ysw9K`{ zz;4h{PEeHj+2t}iNG>ieyLi}|O@N36BFVe4w?|Aww)--^0q-3b$#Ca-=K|SJ&S6s| z<1h%X+7k73<{)7 zVhW`kypUSn164h6iV^lM(mTqKMap`4RR<#?o>vFxnRz|!?d@qMYF5A0{X)c91XXsy z`44G-B?>A_GbU?h**8J-ze)RDbLjEkD=S~$c^TC4iD_V@1@U7D6Ro#~Mt}YsAPqTVd2$*{AtS9~d>$}_c{$h%Y)!oFeF?S8$f@G- zJ99*Gieg4R%zI|Se+axK!HCLuzM3G$Q^~Ia z&->qfa^@u+A^A_F04DdsN}he?Fe^Y6hJO{5iilC&&2WzRz8ItxEiS&Yhw#zkj>@=# zl8ScgIgFza{T3I<9a1u72hMCBqI#Tl)Fa*!{x&U+Oc&y*DIC3swDW3u_(5 zra`HcmOt8hZwy6CRf{rj@A4R?3FVPMCkmc`495EJa~o{lRvmKXxDN zRmR5DcG1v&{_3?pvt^-cw%=x96 zsIB@<0%gG(<*cxD;OZo4cjWBnH;M``mI5LsR543BV|o?X{wMRn`7g}uw!Y6QL|@JX z+!hCiE}+Xr6Wb7z4b`-ro9RrP($hZ4*|X3m6STHISozSpO~g0zS)A&=A`_!b#nsjI zo$5PRS4<(w&-ikRx0fwcXm00vHSq8eJP7#HF3Q7OmTx?-0%wIy_4$hru^u>4II)n{ zk%7carmG8-peC#5?;9>6%By)blb}MZaBA>(a}ye-hKA7>xtXoEA9L?}A8^I1&HFHH zj;1TGoGv0U`<_DRy=~eh$~4w->k) z=M$w;54L3^Q7IggNMn10gAflp2i~llHcXq}tXOf5oNll^Xqup`qT&FECdf-hgbwCA^%H{T4U4DWJ?Kp+xaTx`7f zfOJe4_;7x92Ghhs$H|XBO7{$c2KuL_a(kS#pEybazG`9hc!W9xvs$MhP0kkjzi$B$ zdgTk{g&5^aGp|p4WEHIq`>p{pDYX8jYJmGOgApU*7bWZcR@QwuTqgZpWOs%Vyoc)9 zk`Bh^S1s*VmomsQ&&fp2IMH{0AE)Ldl28%EuwuVB(O+I(9!MUaOR+kLrPU`GPCeqx z&FD@#yF61)t% zzbC(4Pj=pz1}6{!;uTpz>B$)*J*O$Kn@qDj+hN zD?;?LJlFiLXxr~_15QcTuE*A-Jojhz#=fdu99f4l!awY68|R1H)l7lk-tX=*G(7xI z#CbI%87b6+k%gVy5`*}^c^plGU0$+9%pS-!lw!j4#UOL4L&{o;!46pS7v5ry`b-OtPoau$<@rC1$L4t=iDyr z@)Pd3Jy(xW?;K)l{7y)2V&r1?V<)gd;KGeagDZeghXGp}OWHDxNL#}e z(>UGSTek?ECFn4lq4KkAhRICw?~|PatZ_+hAt3>sD=vrX+&64y(v91FS z>f7{p>ZgGYw7bwcC$%Q9hAYtn)CKhn3s_iYCBEg@x#uHukV{a&h_n&h|6`)#}>gWh20ezH@XW zrzXaI+lb6MlH7;Di1RJ3XcS>N>4(Nr>z5C9#MHd%e@dm1msWJ92qJ7C%`X0&E=|ybBvAeg&%;n~xruxdT!%R*( zupxRl?XON)Utixqe=kFOIF7J@z{vBIY9D7lXRY&S;>k&%axY1R!fTj(_d4BvWAZp# z74Xoy_HYbdaX!92TvI)6qM+7^qm{y`It4Rg5G2~{c53eKE_h2YiK*|qbRRDo{ zncsRAb!NqZ+8wyMx(b6K+)iZqT_y-MLMi&01$_l6Fi$Sgj_kvw2e>+3 z5eNcYGPj^0@#6!4gQRkqHh7(yTbjMePZANEbdao;N(n57dcysit&6dw=`EFfAHg_u z!>A0gv*ytUa`)gtT7yUlqB~h_?T>lY@CUk~p`jK3)HaTb-i_`3|ag*GMG~%L&F$!-|sD5z>y!3ozV@4by6;gFD5g+D_o2I06 z_57H#UVdR_ofQLDt{jW>g`=Sllzirf;UN%Gi2grNou(%KrKcCB*~XIkFLJnW|K+(# zXOvy^B{j9JIZ~4Ii;L(5Io$f`{*sc~`+t zU2L;{;~dddGl8T%-b*Er!tKDWT}#5FTT0NTfoE>bzENIN9&)Gzlum!IgjJY>3TD!m zmX_vCd=J5qNRR_z7hP<9b2C3wQT4Wfg4$gXdOJg46KJ zSP1-02OoyBq3YFhM@SZ#)14C&y<12hbRE=;AP9raUzCI3zBM2tPFRecZ3DSDPTsSX z)-L1zmx2O9=H8zto8a{h(Hy=Sx1yjTtRm{roNj^9jqROI(K@V#REkgOCBpbV@~^Yn z0HJu!VYbCg6b)TnU7)}xpN1Dh^prtXh(WZ5x5ZZu(j$op{Qh1gS^W5i9!J+#s4J?| zE}p~DI`*+_7n1xhLt-qu`VWiWR%Sl~Ark&p&mcg62nh%*%q#CQO3c^S2HP`lE`#Iq zg}gi(hR3jtt?18aJ^^vdbUq`^DWu?s$f&rpv&*nh@Sg5d8^*Bw zw48K>LAT3;#i=Q+YpfIIy0k83$ftB+FS$7mW@Orr_|r(*lxe^G2x6Kq>ge=xCe!hj z;g5s<8xoa(#a+)spLV^^+EMR$19u zwW*fJ%dI>DOgekvExl4RRWZf_Hsxdhm%L?1tzBYVn??vQ`dW|C1+5$m4 zI&ySI*gX?(Rb^#haCr#32)MKkKzSANx6f8q0szjbufN3b1T)MI4h}ZETJwrHSAyoG z)A~5acW!G(K|#UWi>yPIPI@!C2!&F+8N6BLS<;kuoi*Rn*Uii%$u{tpj@Q*s={y$| z1@FhUfVIbyYDh8dep2a1)FhW2^E_}&tNN=ugXP2O>}N3ZC=pTRA>-sjAm)S3tfH&s zROQk(MtW(owHkQe_r8yTGso32>)g%OyRV;*UeB-Al!N$STO@4DCHhMxqO@6q)AEsvJIZ)&~E$ryd7zPN+ zEmESq=;497RoGq5y*@oO4UUIPV0ke;oXRthp?L6q|BG88VBOO_i1+@z)ANE zb>-sVV64`=&Myht7Z$P>>D+cDBGv9neUTI3lce|G3X;}gczL&ZE-;3PKo=CYux~ah zZ>aF&2R$SVJS-~o>vO===Lt9mfy(ElQrozlH-IK_0W_kwjZY8DYfs0=08g+D)~1-s zQT*nnA$T##lJGAGP`G-0`PLr{?j2f*6DU9sl7hx_grj6A2$8TTv^Z#0pNZfB6WUiL z+%DvYtR@@2zjs7BArVM`|`CwKRY6VUhMZWR@+ z=h5{9k^ugA=kWBOoPh^jwn^v83dj8qfY%xnr{kXQJGUjTQbYitvZem!6kci3ID4wSB7yT@p3iQ~NH-j{ zD>wXEK*B$*M6ogA zuY^Ax!V zCpFa6d=FwgF6r4d;{i7`CdJ2yz+mIop#>{?r{>|GL}h!u5TO&pZ}pW@ZME4pc?>NyuZ$AsyFaMwf~mU-*!$X8$e07A7rD=*QMtJ)J%nQRzlJq^9TrC;Y-p z$TUEe7K=4EyYrn{|3c}<35AA{>-fn4U5elenW<^+dfxiNUQIc_)}Bs!1fc&xUtJw8 zrzR%Kl-l`LR#e#8Iha3~eE+aFmc1+}xLIOk6u_CkkM=p*jDWg1SGn2#j+B&mHnKIR z@0Dv!%k>IqbNe13RV8B5k_WULT{NR;X2J=mpBJXNax8&Ugc(7!%C_5@lGt>q5X)f^ z2vI~lRE%u?nUlt_@Axh!vZ0>njUz>;d?$F7%JZ(h7>S`liuk?sp)V+lLOgornG;*do5*Sfk2;tvnB zA9AHdxgBpoY3OmV5@Zo>SFouYR;Ky(?e-+&z(U2W_qSjxD=SXp1}s$L$tI#NpFd}+ z#+fYq*5Re;1hVJp>8bY!N5c^>4T6!R7}@!5r?!W)IBP`0;1Ux=#l>N~H$VXxx@UWQ z@Zmmkpz+=E{xMHLHA87q*y;Pz>#GFbu!FfQ1l^doJzBVE=hmv5b4D#6_SW-*Md}aM z&jD~8MSKY?`abkyZCuBJl(?SsLHu7fTvqIfAq0Xc3$R3d-jqQ&B5a2D9-x(e03w66 zi3NzC&w-j~%Bxha3(pK?h`0bJ?H})7y+1x0B+d&QEPeL|aBst~^lD`dZNmW;OqKP3RXa)yA^BFCP7>~fb@;_rtr zGmM3ng`z5xwy2B^>>jG0YHDh|-C3U!&5Yk27W73+-EKyMU<$X%xjBE1I}**K3;X#S zao0;uU;bs>6$sv!LkVk+A1nqit6MmCDoz~Sj}9v zhf)BErtM}fQ=Zzb#_^|t(60fSfDgJ$oK&RObhwElz*+}P$*zBQDhZ#()h^dJG?ZVl zufsr_xGLg%dC(P%3OE;0(}6Z8U4MVeLlC?OZ2UFw9#zUB zUY2-+7GRxYy~!08!jZ6H@mhyZlz5_6h`e(%iQ#fdtl9JHT9X=`+wBN>3_)q|%YNj^ zl{nmvGfXceL|l1@(0d}{i+*1glRh+BsrN8t2q&cz&7{!!cBYU zPgo2!D2sUURFWzpevkJzjDRO1-}__w`|aKBVwHX*@LPe|44HyORqsqf$v$wh`T1== z<8>(Cz{el#H+d<4-UC!YNt>J3*VjNb^x_M{q*y~iQPcSe{___14TAPF{37$Vp4cNG zwy$|+Y@FRACl|v}()rw+#0I&Lu~1Lb!}S2`SD1U>F>py`KOiL7Q}?XPZ%DlupnE!8 z79Abs>ZKpqo0xzCkobFi9ct=qq*qSBuKQ1EM=DomGg+YScRRf)Y4X0OTMw2_tVTp4 z4%tTa3DVq-*K+bVQ9zYhtqUV_9-ZU+IYyJ|M^(V@DPRA*gxg%5fXESvPVpUUA;AoB2t=SwJ7=3107 z6A`IoY?My+R(j^Glv`VVeh&0uW^XzTaftS3z5VbG7r*tlu)YhFVv?+H@m28=7)(Xu zGnlAYG<|!OTU9xBkNDBj;)`hoKCe1@a9@i5az{qel z^W!5Z);UK&mKF6vz42S)=AET57SFAEWEp+kQd?y(6Us7CsPU!c!_(fs; zE$E|seIg4uvP%YruZESK)|&k`Rzm-oti?QHT%WG|>Lq?A@5R)o-rIOX#16(%n3D-{(T%-;U@ z;$1PXBkjq_@yV$OU=+2?_%6|}y-mI-Hz4XVOLBZ0&5^jP8K7CNwLS))fXdHW_nVG3 zClg(AoKy`zkuga|vc($9o6$2n+heR@HP7E~GOgYNiqd;6eKEjld1gK^wBc-#2<>iR zta#cR_s_{qjhCRmx7yPT&6kiPM6-ZB!*=qcn~I8vNB!Vvub%}^ zsJb*))Gy;fz+PtVt8x54oCU??pZMQ@%-!1FAt6nPP<3^Vh)Wn+9&T-{YAkLJ zZQn&Rwds!`H&EP%cC+Fk)YaF6p)q=JLR!N0IsZ7P@i!#b{8>!tFO!+0Tf+*w$$LFT zPz%8JC$qeNzL~zteU9&DG@`x$oPn!1>uVJ^uz zbY!{GE1{d$h1iw2P4F;T4@ZpOqnV9XhfBs{p2bB>wYmd%4uDevg`NNkHYZ9l!Rt&> zdloggBb=}Mh-ADxP8->^t7I5hc%Kt%%RX23;3W^yqHyYe+v+1VWg0=l5ju9@M=B)t zU=kH2{{be-$=X^bCb|jZ9kBiV3NUPOc(!^1PQo0&%S8}$V_v%ZLO8<_xt4fYi7H5{ zR|kOM84+cO!zh23)EB3ee<`mtV|QBp{zJ#SJ8dYt)q^)BQ^;|qn~TtjRz)5N#Y*L1 zvvJFHP?=93?5~!}23eOM-k41Hl8SF^^t$LJl=QQxkhSA`$lojcU8;YT$_-pH1&E-{ zS!{M4I0gxHK=&|Mj=;ph!k^N~IivNFoR_0SXCP45Ch8YcS_`_O$rn%OKku46yC!~v zmcjo;2* zDY^}aY90T;7KWkQrD0K$RIFU2EI+QR{LdPEddLaTvVzQhNM5NPW>{_JhLO0LX{DPVJBN;V$ers4i z%6k*!(0v&yuZ@GvTI*6EK1i8uw41Hax3%4;WbX@#{g`0r7Xa)2712A;N6)`3P7B%{ zB@lv(h5gyj5CgOmZqb>uwxhVb5X{y*A|h}Ox(cVKtkN-tGKr6C`TU; z@X2yPb8vOE`;?wkT{6(y^c;oC>yI<5D-RjO#+cUyJswJ71pZ2efxd`F+zT(4=BL7M zM1)`sCS9sm3N}qMhIKf1Sn$y}xWrO?Y@+F^%9V+&cq*03KAj!%v5TY>`Y9YlY>q^9MI;rw{SB zo~eYTXOd^VVHcEErQ=q@^J!SPYd=OMy!U6;*8{7(a(%E~#q>poV~^TvJG648f-WnMo9!35dJDeo<3% zaVtc`5fE6E4pi8z3@krm;Da$sg>}8@q?Zv=InQ1Z11%?6RB4Vs1!l=DA9O4ldy@eZ z=iz*>hRkwmP{9&mArTWJDk{1+1+zdTWPpWGo3|m&(-UP5zN7y06sE-7ehgjr*mw@2 zLXdVWN18lCU%>jxkik)M1De9f(5k7vW@2it=R?1$cn4r`BfR|tzpUpaZ|UQ+l++hJ zJ3Xp7!CMmGY*SWW9O}OCbN2A~n3RBof|BshF|G7qnI@VDM$g&d!M^`Py=ktftI(Ai z_f8=5?L8(>b@+z9GM|jKlw4tFc|WlVL*k~CvqK+(!hD~w?&fn(RlveMMOpSRSmGr4 zpnQfkwLd3dubpDCU1opJNplH}?2p4a{XPZ^eb*xQAtG6bM!8_cB}%t+n-u~5hEwKJ zTK88+S9j<4wsD7dZEk*djRa zG8Dg}^FL?5M1-XS0P4z$IHyQ}YV2s6UmGK1w^NU2SE*?=RMHq|ctHk}!3Uq&6hU4R z@T*TDCFJVr4QEf`c2(Rjfi&W?eGZXD;Hh71@N3oer$y>19Z0$F3wU5)7Tx~mH+Rz^ z(xfn8??|s48y=N21O&4?AKzk12{L?q8cH#0o)l_fMn>2Em}HxqC_)d4uCX?#4O*O& zoE#&4*13G<;xOVp;=;OxE}imB<}MkMJb+@7Ank?P&e z-7#cooEzE+5^d>{=H_%dl4u!exn{c}o8Di{HW0ojd+x7;;fi=Vpk=s^6<%d!9i+|P zxk!8_`ORVg=d^AjkM6-!aMRK@lu6{Z#7_ybT#h$YMj+D^AUw%PjJUrC{quz8-W*s9 zcJ)peD)wO5H*4S0Yxv*nC10ZL6r|Lzuu1TCfr10Uz zy;J%!)F~}>S0PWMyPe3WsFwz|o&%y*h<1*4Un`l(q1+cPAts3m)WMw$>yDX zUmpFBFZ#94Y7o_kUImt>n3%fy2Kovg!{`IWKWJ7{ficy4uI+$Cg;n{*nTnU|8R1F! z*NS%MQ`rF1089C;C3kyKnV&{_yDNx)X26aNczcDny zJKJxUC$>xNyNI${gfX)0jJlYnw73m5(Xbjill*}&tkI+!o5Qz;K^NJPqNzvzN2Rfn zh!W)aP`e3F$F-v!iG5W--rD>?YAotohFxH$XVf&W>}pCYf`WKdkU#c;Tyx;hUP zT8Ieawp`|`pX7uRxVwR&GpiF>LsMEYY|qTIhk(`%82LV(KBOs6EG-$Bt_4!V11W<% zkzU(G!o+pR^;Ys$QAjTyZz)b8)D1G3BcKAJA#Ca0rzgr6Skr9ODOjW*>#N%Chd8<` z*V=r?JvQcEt)O=GdMd`oHaf0aj)Nf)^)x)|z%CHP>ArqV7=!-<#BgJs`9ymDS)!PEnn;L>(P;iZti`h z9!Nbp*I@YYVJ6jr@bG0%8+w?y2&z-t#oQIJ6@k-tJ=MWBXgYa&h zvil|Z+BKSx{2Y}6^hCsew@+2B)VvTXE0Hcw$bdQlk6E4>rq-v>72?Ae$s&)Fhe)F3 zD_6t5oimuDTs9sBRqv&?HXD+_uU&6>MzP5XuDztF2mo7aKG;UfShxm_gA8R5HR-i$ z;3Z;+_4$XbFSQ~B5&XoUbqEA9D1@Lx)wy&b;o)S*3wR zfzW#Z87H3A+hv*g$Us3w7DD`pb;h68Mc+k68zv?FI3~k53!(1{1XrLXenH{Tml#$w{h_|k3l%)p!}c3>A^2NYmydsep4s%i z&lC$A8-(g@1l-3<0q@s)Ev;{JL6nZl)k9HHATsP}4GG~5 z4U2A&kPZpySTslr(jkj(=|u@hh=g=^hoB%G(jZEANSx^#<9ql1_BiA0Kj)8Q$@8o= zpO|sa`@SMx`o4%e;JPT?G?SV_#d|eF8O0l^wyPwOsww{j)h1YzUd&Z?3vU$RpKS;! zK~6uUDE&q)hk_ag@yuj9oI-zxn)JWk$uJD&lgpCK@d^z`=Y z9TDJhu(7=wUN4%M;E8SlE*ZdH7y3fHa9Cf0{Z1G`oj5D0X&RMPDIo2GZ3L1zL!q6J2r3*P)o;gz@ z^~z9mBUTj)sQX3@JikSi)i8oOeIx+ltp=8?>E3W;cgC!VE_!&8aSyn%oVPg9W8^B$ zeJC98#_k?1E}r*LU2z?Hn=l2)?GX^PQjnAL_KR7W1{4p zlM6Gy0ilKj_fc8KCqBdw7();R6FXeow^%FWDXvdEyQ8yMG78r--OQWV4ct4C_|13aIuq2T{gSEg^?cQ3EN}wbDfAG zP$(z}qvfs1GQyt=Ds&GdX}g`E7BljDBl(pe75oBt|Eg4WZ+X?;2qVanTiX$+qBt!! z_N(QZY8o8J>@;PEpWgc2)97{|2>tU77GuB1bC1Kx zf&#hnj=(_o?XN#NT~EZ0v0sD4ww3xocr8+DLOh@ z%5^QC6fBrGYZe~=Vj@bFCIZWMUSK4X`@|vYVz#Xe1j3UrEe{#_mmrN*@ zGTLd(Sk_@JJlAOFtbtl?0E<4t!iaBn+^}iwC$VUI1DpNd@vvwXdtX@GTtw{!b7 z1Et=-enet$7_AuUuuX1=A#}SW^Re;#DX%lB2;pL8bNEaTmQ>^TFDHq}SPFUU{stS* zGY_wg@?7yZCw)=LgYh&p)a2M07-}jiMj#{s&(Ffbf{vbER#wK(H_R5t+S!>)JqWP4 z0M=Ro*aCtlx4?SO%*+@T9<8??!iuLF@qe}OIltbu*M&oI`@h|;5HW+h5f0r(c%p1| zMTUbN=h6`cMpE;CdjfID!%H(ELrvzJFC71MO9L<~=l}M6Ev0!I&-1Jut;s2`TIt;0 z&h+H3$vw?j^d0AI;KjneHAxhH=CC&IO80KmNy3gyWq!_CqN+ZZ!T4Ol`YMia6!b2F zkohJ0xju+Ux3T2vcP#1>XmYSZRg{IDT}hoz$Kd7m7z}osnQ3?tIaE>t9G7X1@oi}& zBf|5+6i=CQnBj7Kc^Q*-h-py$x*tRZynK9Ht=EA@@~ROERl_~>|C}YRoCq-+1Lb~1 zAL2faogaDhvdg3bHnEiW%{vZFSgr`HGaCXR$Q!b48=&r{ycQN}XgyyPr{8`iV!DA- z1f^ep(;y3+G@AqOe3g{!0f0Y54uBofeL1}pAsvCL9;z}j>p*QEK+Re}b}p~$snqd0 zTi72uxa43W`i!20>(U0Chw|9e5}Cr9Xl zrr;Yix0k5@`jFcMFEv115F{6zMueP$(Io_F+scc z-47A2eR2czb65Y_I*o649WQp*rx~K`rdXr@dL8SJ(;2SaQT9Iv5-_n>lr3WBsPP#DI_!tUx2gK;zN0$8XDo!8dq zqdbLCCrbryBm!5x1N6VAr)p4IzIHXT)M;`!`0T$W{p(oS!cF z27H^zD{2o-B`D|jlv5B*^_)T@jMO}P{bn3$ZXOnv@%}Xe(TpgkL<5xW7oKWJ+PxFr zs3|I9GB^O6Nx3TYSGm&3(s17msjLvVzu@{D$IeL~tz#k}DcNSp)+3$oY zKoX!eaVmDV9(MNsub+PX;fBYQoj>8%wd`SVRbU$#v@SsGK^s>O9r@q?m$^sD!XlI) zpBHT@G5RFRH3?3-CRd`0;8pm+pDvrhLuT{~DI8TSxr^!(OD-yNR21I7oB8KAH?+*F z)c$d{vAQUeyf9a)0t6*i1w@CBH?$;Jx+!A@tbgLEiv1={&ryST;Sz4V{=SwuUTtUW z+4%{k)JRQz+q@xLE&uesEaa9?1{1j=?Md{rZp9{;yj>BBjjjradh_rMe+6euYf*P& z+J)-+LT&0(z{E+OFMYVRwZFf?H)dp8{?h*l#tJv!1P#Ca*EiMVAg8N%p!*|}=ciJG zW9Q@O+fS&wJ>Uir=qRc$Ahhw|p@(#Nf&^uu5f09^gD{riNRI)&9pjljA&c-tjG-pW z{THp|#>5nbVR>7-E(e`Xj*{u!aV=uQiXx6`zU%5*AP=GZJPvn{SrTv?F1Tc?7B z@WJ}i@S@^Kfz<|{>h%BOFitMi@<*t<8C3b|UH8A29anTh3nsQk7)@;7yC{3w+Z=`HC4WU{~Begqg|rFL5yCTZ$%$~{Bip? zJE{tbXf`WjIi=Hn_RezwFi#U!&kX(Z)EzukJcl@re;(+Rh5>n!1}~4Z^Gh6z!(}vL zWp@7Jq=IgWG85-?Vaio~KEg7%W)BXiAvahMnTUCXK1eXyWIkh(&{a4it@U#a{evMD2lP=aIaYR?co3FnynI+r z91(~b3t*b&ww7V6aCQ15>h3+qaVF4pXQ)hLU2A zIg0bcMErBJOI{kBKJrSHN@%!+30X^lHiWLV{(waDW=Eq_V`z2bU&4C`Fmdy%~9Ahcbp6Vrf zxcX-rsx|%lBeY`GffCz3kJooQsDrP;HsHUWd23GWNLMqjWc4*M`E5nlXk^Mizj%PB z$~>D8@5=EohOgQKj!~$8(Erz8@{muHyvEoR%($6t88c+`|F})Zm|#QVp{SM57F5Jd z|2Wg^S?&*hB7vqO+9A`^)1MveZ>b%Attfs3Hhs4qKdfH4t{_pQT8`*M)3#$QRX~*! zzGS7W6`?J7a*;WJGG=2a8&PvB!AnHIi4mLJ6 zCgzd-Xlug<9reR7*7eD6-?)W^;m8^b-VP3KA@TO+CLsw?lvC`(E0>E4+Ae&n@!=n~-rn#rKTqGA==km`76jgI2C8T9^5rpuYSZAL8*LNcgOO_B9o?80;{l_E$iI9Xa3u&%VnKo|R z9@f}DueqLs3fK(Q*EM*0dJbqLV4&sG2h6%V=J%>qKlvZth@n_mMr|qunOME$|8V=z z9_RMA|GEi8sffRKT1`mLneR_kQt47sdAQeAc>uQh(j>>f=z)!prR7HPAR`lF5^+{j z*cu_Kpy&ufNoASKE9V}(UkASdyp@!c6y$i&z!l=)3}*KA4>B_`*kOk%bW*K$FoL|n zg07B^zNSG`ltH8OkI@W1GQFJTneRiwNABO2-zveluyC+uXQtUqenUKl7qf8j?xNzO zq7q_&+j4Alw8uCjJB34YqT9PZ+J8Uq|Lob2A2$+UNVZBj|J@OU#gKdj5{4TCSPf)u zTY;`Gn%3~gBj?Gf&Vi!X=_L*-s($n9Es~C->zy4^zBAsZA~oXXZ+3vrRs?p`VL+eX z>;C85NhcI!Zss_Wf9b%=T; zr+s+^co0DeqszvC7>7OaYamJl%J!-rXR%XL|DZ4luuDpE@iQP%)W^VM*%>B0{~DK0Foc5r7sL`b7qO2J)3D30y8~n z0!aE&12?_(A{C!&AHXRGJ;0mRgOG$IJuNM~@vjvPsFBwo@Q8B#sj_^9#0O0gJ4ODw zb+9(tWnI8ZP+m|=@aKf);hu(sD|?Xn&tFwP1)2a4kRrOlBzLu0eU=C5fI1=qf=fgK zwRF0AuINh>?H|iC>U^b;SCbp-#K8N>XR??|%vDrpL*N2>wDO!W3>S@c)f$DfBSY*wH`2Smom6WKAR_Adr}*H$=F` zpT>zHCCW7NZ8pI>2fq#0-5m^s0yFsq1u-!(OMj^qS2CoFHddK)5w*%UE z%R&N+i?3N5ex=OM%lGCGj;V)&F2SC_VS;eUo?f{cYSJE9@wvg-&MtD5my=V1iHZE7 zyrV->NT{)*0xQ=MQ0#zZ^p9#w=3O(>2=`zmw3*3Cc8LUS;3ot?l)AvGSl^B%&>ti> zorY}-;c)9`fP99Q-v$Ri-ZQbc{}oHds-!gRtKb_l zoW0n`L-rY)(08T>!ScuK;_SkVp^=f^U(Q*&*UzsxSwhY;Gt<1*fR7tgZTsy#K<-3g zu391Y4)5+Bwg&Et;w?-&%)Tlui--u{9?i&-6q67YMgMffdbqh=^C?dyhM3#5)n+W7 zN^Fh+0TEF^kf7HJc`^yX*OQlnDSp_s-ne3=)(_~RUCKgcz`Iookd<|JR|zts8F9TB zoi_sT1`p-Rd3)e`+~Pa-TfkxF1_guJ88w^RPw$Yzn+v zP$S;2aCB4z`fBnaM8LhK28ae5)Y{;;@l=#Q9q!{~a&N&V6zndh#HoPN!#~~Mhlf8I zo!XlxJ3e+h*k3~=8r>9?3`&3^;HW|b!$3W#I@R)nLC;kVpaX!!=;xC1w;_#)Djmni!OJw-1jjoVQ#3XsQ$l)6a2T>&6HGZ{i0`f_TDW| zJoE7p`HY%n1M+QRAvQ#NbH|pzE8#2P5629IKM`IX-dk+FOz6CsK07-D%mLDCoQ-9CUx1l46x6giW^F40M9q+YxgmIXF0Yd9^IpkqT;gkTzC! zh7`>;C%`-&bhm2;JZ0ba1NTLlLou3p0AUq14xO)^4DfHuBF_R=7|K99kBzPGhp?NQ zW%=i7p3hLgv;b-E2y7}aUjVFDA;}$uQqGK{rG3CRi1&|k9c*kYeBZ6DpFCNyuhhTp z1EJzXbVic`PK?$6CtN@_Z&1G0(eD}!sB ztKXgYm>cN3oZZYiJbZt@P%nz1+O3ZVQuln?wp?(j6{#*72iHFrPQLju60Mh%!miMV z`#Z3hsjKCf-w6ge>TBrH&?67x)xJdEG1#|r0gu5)LKTLU5L@R}xAOI?&%<4aoA9}t zZsUCjAtt;{Tw8<(-nN8h!$fs6UAy4M(G8r0fRPGFvQ{Hv5OX~Bb+L0SDXZ*7)n*S| zrN+Pgr4e)!_R|b5=EY@2cAF08vpu*)KIQp=QCqWKJcw7~<>A@T*hoODqpJgW5MYC9 z*=~LiSn1Cq?`UOp)zcpX)Ib3GpkJGYDhDtNBV{`s=XuL56cr=oZBbJ8O2NF*`{J8o z4o|~|xrgVkldYI^F5m@+|L~5Ak~}jpGg^v(fQo>aeETUp^!;=^PJg5lxY4UckiWb8 zVwfapU46_)q=QcCoVq;v-5B3aM3dtr?NAlzjHytrxqf8So@l)@tTnK3+`;hW%kzYw z+YNdJY!YH(z>)jA!(lhO4goOf{=q>MWR!vfH@8WEJEI{a)G;=WjgDD7r1*WjcYKxl z%!`?H?c~`**SCjVl9h*UoY&4P2mAZoGyVtexqwV#OTulMosvx{CP6$X%7`3cE^lfY z`24xGgM*5h84cFYuUX8q`CHjm5r*o7F}GI8A$*>{_cHh%E)E~mKN=Wd06DYGF;`+k zr_B1K2wOIz#f8tNtvBZn=biAezcL4N)s{dsoEi6(lM@vPM9InN1ToOimh0>Z1`M0d zODilO&tduGe|^NTJA&R_1I^Ke8tX6Voo7Yh-+pEWBovg0@bJC?^;|wLE?RASdsaz_ zuhz1bma3{}fHkHXUL(sX^c;pJSTiaP!|`Qv+XeF@Uxb=Y)A_GbtANed7yE?bkljbO+!%y1G`i6#oX5t%nPj zhX%W2I!b}j6pRFAhW;Q7uRGMhEO}KI8D)lwmp1?Y5(*>fI6LQ(Q+{atoB)JB~_F60wAPdOE~s+*=85GC(g&0{&wYyeDI3BLaDp6`p>PC= zgUeQM%qj;uAlDifCj}VpQl9vJH?`WV3oV)nO?9Sh$~(=})icTp*qs4!J^)pTBmgqM z<5H9K5+VTseaExQV^ANlonT^Q#GjJ9zuG`ULsJ_Yo2@kI1k>>TVk3xq4-Bh7ac+Y- z-mJwN52v8L0%(r>0^0co4IZrFAv-iA5Mh?cRbfU(>)|9u5Hs{%|2jNmwv!CH_m`G_ zte#(i;SgciQ}jqzRAKcBn78l?3JCD?0|WMrEeE0}R@z2>Vp09f$5LOsB`-_N)MI_FW8i-Bd zb0JrKk3%H!s2S3A{`rx4|GB)nivBA#{a*t}@`?+z6!oLRY5M>1P)UMCHxdYPGevv# zBoRIY<#iU;6@IAs(E2fAPGjOR$-Z?WTRP7de%Nh8gRU-C)=Y!bqRp5p7KV1h_=J)B zRI+c+kdb*21q#=WRbs``R}GDYnAq&Js;SKX=`t9rRQ8>y0Ou>T4@A^lqbXGJ`@tMF zsmaxw=Y{P`~gk7bXV;r|U1OMB*Pk!F;`u}>i!*oW?Il1ra61_Ky|70e> zEk%qz*Hb{qq@Ot{MpiBF&QuyTzhVOtv|YWO@`GJmijhyr)#gzu%Kv+ z@ZDEHWEiJHMM+6ZGi`n?!Yx!;)Ql|T`{Sm*Ot%6ZlmGJ_Y9zb6WXIJFFkwW>1v+6b zU%mw1m!00nGJbxoPhWU+?Q|0ksy>#5P)34s^k3g9-~o_BMMdA++eF@axd$X&Y@m-O zs^~~iv9Z;al^3eq?!H^Aw70jv0H$1+oItJtV zaa1dw>K9U1fmGF%*p!qUF;DU9P3>=;N4K_;rx}1>^5ri_`vSN|;gbVc)cZm@l$m(N zr84N&))o+M|2p=?!TA-a&FjwQ8Yox&rrsvZk4bJ-Mcsx3L3pC{CBSG@PtMU=!^cwxeYM8jGO-utLi``oQk_5?AVa0Q=omLP8Ciz zq>ko0WIPE_Y=2{Oo%DV}TNn%(2`O^XyN0+*dt>WMw5I3g<%(ZrL$SOuG7Sb3jSy&m zyl@IyG4b67Jyyb^iT|%oJs2|Y+x;4y7sK0qw}06-I4NFYu&Lo$i`Sg>Ha=A`U7-G=8T-vAd=T&WOw<_tMK{#7wT=3z; zcbg)R$r0Tfixvfw7TD(sNAgtj2)`2E0*uOfN6uv2*msTj`S+mX0#_ym8Qh}fWw{3f z0|W0TZ1o+Fnc#V1z<~D7CQnCm)jE@gRFq_)iCQYp{S4H6RUJ>W_@5I50(irF|oVb zJNh2_sy{%7^VNtdt99?Y)pr?u6GdeDq6|PTs?GZs{$!~pY6Ff%-&=u=ac~`=2`$Jx zI=LG+SOPEuKrD99^E_tLhUw<{{_d+++@?+AOG_MJVcgN~$$M8>f;q7<&an@HJusg?S4<2HfBnrm11>rPj$_Q00Hr#6R3u5J%K(!4qRM6fS2bc! z>t_iz`iD`LcRFlant{h3|9P2&ifpMh=-b})%LA*_tMT8gu4~gl8X!e4Wg`yYuoXfh zK7NIFV{^W@J3zmhxmt>fib6X^<46GM*|xT}nVE)s>HU~LQ5b@}K&L{};KjQHjg{%? zt=$a@YHGm%Uq=fWx`{A(t6-2K#-EV4_y7v)EsXISfIxA~{N(0Of4aqnISiK1jv3iB zUsdPft=M#aNkKqU9rZR54HI2iNnKNtn3_-f*V&>1JmFhl4U7jvHYCLRXNerx!|8kL zgSmvVg)sUN7kR#lxw$!-zNC-W3rkB&Q)g!f6?RpAbRl>-6bI9b70x5<*~=H^%KGS7 z0g-%AB`eEOt>7aIfi_mMF%F$S@}_0C7@(bt$FTPdsmBt#fPm}0uQ zfsA2E$vb2kaS+!Vh*QFvA)*9?91IMA<}mN=$$3GOQ(j)$lT?<(I+zkm`UIUXH4Sj> zQtMqO=mbASMxs`HB@(U#ARYkdDV8@UH6gc8NAULZ;gPGg`D*yC9tsjudqbAuW}A}c z%JO^C>$0?PZ>g9xk4F2&7|yu*XiZHy!$7LFBoxgU0arIl(u$F<27W9%U`?miH*s=$ z^M>ev&~!Ch#ND+)uA-gW;j{_R`uLU~{RZHoVDiZAeR+lqoA28L_&^5|n~M zEGISZVbr)zfV`UAfJjqQGx)^15v--5bg8LCK+K@!q2ioTL6veVs{ zEVMV5dXU#}Wfgj=iw+JX!~S+uru>)lA}e7~Sm@DY2^_yW)ZlQR{yV+;?%`oVRD6bz zi>bFRug@i(U-f#PKl?rHLZZ2a1Q2i?x74FW4PG3=@|RP0Rn< z-=HES%Gi=@uTELJ_yPL%d^Fr<4lZ(^v2t93Ow@Sa>w9R)J;S0rSe{Z}!{`^kFTu*atM4D*g9+#N8mXu; zYB+niQ9`m>U|vw3PV+fB0dXw07?7(J6`Q*C@$myXXGWEit)aP{X5MnbxrO#~3k$lM z2J?%vehKt~5J=YxTw3EckK>BQ<JH4!MHpn;uClhYD9xyy1X#f1*Rqdqh`f+KF*ULRhPZ#_^cdq9YO%oN3W-UPmfeY zAp5Fk8*6F7(y(!|zV%L+TlS=VE$#Hb#;;{sj*$!s)bW^_gGqxLDR(+7VKPHG*na^fW)Db z2^D{KnBjXnys=*?_3|(oWOb|;*eH?}BTSjGm^fOjxlhUr(U@dqag)a*o#-Dg#dXqC zy+sr(Y;VsYU}fj-WrC7D3k(eO@iEYL=c5CX*ygZT4zEPqDl+=Io&^~>IDp(L;I%GG zc~^b@?5wCx@IjfKkt5|M6kk%c+l6F@ydeEQt*&8)1G!`N(B$l_7!wYHKHec@I zxYXqyBZOnfV$&3-PBy#$#7;Ic)O|wJA}h#a_gOyHLO%7=-~~SA>zVWOH+7}u(KjPtNG3(85%kbR8&^)X{#C(U%UaG4?W?tx} zThnI=j?E4V0ckZl;~$gjLvkh2OST4W`lRNMH{TE455f6PIE3S-s0yJa?4tB%6*c&~ z`O9@f%;7Oa!4@SIZ7nTNtZk6XiXUm7Gmd|bjcU@!FO9A<=3rvPhHA`%`}h+xsg=l~NHRVfz*Cf) zQqza%90BC0h)AP>I13|fpo~lp$l>UIHe@xjiyKWrx&wUYCoUbWttj$JN>RhCtdUfB zWUNC=9;^?ebhf1pGY!B$u2%uO6A*@h!ioinri07$$jiUtDLl1F1|<^h?G|Me)Ij%! z7NOb`;jCP^rnM$CI!2|Y*2P3PXzlFN_||aBfKnvYF^Z7V}x( z%vrqIE%`pZTT&-)qZ|QpewQrp#zrrFJJR-*ra;+P-0wa92 zNiv4@ltg-K6uvv>QxdSqG4mB^LCKFVI^h%P*a-J44fyvM-ecC7&YQ&-@xby z*o(<=-fez!I+yG_n44W>UWRMy#n9-QYHAv5jev5lPM>;Ia~_%lfgaA!)thsQ>C~6N zv(EhF#~z1|JR+?C@J#N8U?nQh_`Y zm6J&vRo|0m79Z+Grxhe4=XIt2L?|>~`Eio5i zD841?fHC9;;LKlzl~U&3XV|_ssI$`q6_MYHsbz%skTo-a`V}mFecbbF(iY&_6`%>W zO8ha%s4_2a?~vUKG9LHKpvTXJ7Jy@ye!tZ0FpJhTvLLq5OW%X`2Zu^D z78@{@78i;bEA8n>?X2+ltH#;b%SMz{RX*lcVGGZXxf_rU)=)~7H^h20}szKCPTkk zc>y(NcThfcpZ)w-q6z^~S6cnOIFKiCxjT{ynp^r#iH~1nagA;m0Gt}%r3%K9-|76Rrp@TBoeb&RdkmLUOIhK`Pg<&(OD<%L5 z=OvLFmr-UB3r@~4AD?Ru=u~@Q%G=JuwsPYc)N-R%=i{V)miFr7+C-!$NPALML1UQ$ zrG1ZcOiUR2`x|Rq*5qRxB6zWFq-!qv80+$BxoHkl3OE0P3$nzx9n5ttwCHwU)FWHQ z!m$X7CXcuuP5_&&pBs$UndxaV3W`4<(PQg(dBA9amu8Vfzl{x&P!G$O9TCo(+uKP$ zz`PC2pc=vOK0BL_?qZxH1(JO~Xzo{09QR{Sfpd7S&-O3i8nrUmqn-*SXA-f{6-MVR z0;Hp@bTgl=)OO$vvD_XZ@sd4<^gt7`mi*@Oc0=l(o?v$Admj_+`(1IDWkBY=-z*D~ ziL@?hN1S`*nhC#26-V52_0z}qJw%hG`>?7OP)!4AphWjSp5~h7Abp*N z=aP^UP7Pu~85!AQYulnRx@=1WCwPdl>x0mf$D4kQMrsw+`y(tUCH3?D|`W~?t->(4c zcqtxe?WL!tUq@GHipwZFW}d+2K7i3=!vw05&nNKL6??G0T1>3>JMsY0bX3hoAWKAY@|C1jb4FC(&DX6KKPOcX_?~E)Q#q~!37X=ip{`y^Y>Q)#M zS^4mbbs4X|*xs~SX>m&)PpQb2kf7*gSugZG(n@JFE5l4egMm_YA)0z&A=I=C()?EPbt~M zGDZyFAq$zehKHlBx-7LRRjDZ^Tw|dTdx=?oZ)t6<64#e%R-c?HH%ZP&jCzh=HYa&S z5K+*es#?J;&-jZPp?j1fCMTZhEbW85&M%+SN%T4+dG54ey_^0B78(J}k7zjsy7@KF zjCnzxNa5J(>zCPY+%MXwwOY{>Tm~kXNdI^}%ggrjc^vz!wz4tdtPqKwijcG`ca{Dz z`*l(2j`}850z!EZ-efdX>8S5nq|5lbm8ZOlSh1}7Mn+;WM|UA81`Mb}FRJEou!k!* z<@+Vdk;B3)rgxyOky$)sSAgdANb8NKC)j8KNYUBdCC+;>KVrT_I6Shx$7&p1s-UIe zNzjh|pNW)|lzNAmn%^)P7+nwj(NjVkSx92Ws7^GF$y1c>M~F;_s>dtV+7t)MgX4^< zPl~m+04xasF{EwUXF^eMJb|f-d)?warTLSpkF8l_rY}X3V5~0#kMl7KY1DScd_2rB2)Bz{`#`Jw2UC{{R{wcfI z@cygZ`5d$7$ptfnUwrT9&&$LFe+F@m^1`|^zzPDcb=2Q$J_qYh;qT?`C7#vWPZlds z&pS7r=TPPJhduu*)bvUFW8dZL*JD)Xxyq2-hFlZrJ zIce&uL_}l;+IlJs@`~YDeN7dHwc&G7e9^d44VqqC!;57%zLlU*J;L5;Wx7)hoW=Dh zwsk5^Ykh$>na}n0Ai(nYA3gm@K#dp7+0QJS1DsdzlF0l|=rurQSc->7dJb2Q-O*}6 z(M!YYr8SZNUuD~rv?EqJI&oS_Y9;cl%*6#m6i|G+Y{$b>_3(KvBH9T;UM5tOy68F9 zKf122&|y zBU6&97kDB$6PjW<_!$`mnl1xmuP+c)3!&cc=ZT4qUTAgUE_-v|c8w|ZrLa2xvBSl} zZl&!{t4ZWtkN%UbPe4R7@Sd@s&Q8SdfHLuMOpIYmvPKo^JM_HVd~)geMo|Q(7jIa) zuW+|?(NRQ?x>=-hZ&FynM~HcMpPFz|p2(O2CWCT-skJR-9^4%}Yw&&l(ojd=W2@AAN&=5>##dT* zCR~kznQ`uD9Ks{CD6T@@o=#5IZZ-UUx-6`fV__%ztl-h&cd^5^9}5f0RqBGGZ0NgH zAbdG3d&LZjSfNcj{4Mcu`t`4fBqMHrmnCSF3OUX-1wC}sJIt>4Ra)$yG)C{+^n-Z) zc&Y;ChE9s_9|_C{I>}yxds8WqB$5CVU~2d-_=p;GU7^sY|1CLmZ zz?0-}lBc7^V_7@`D(M{7_Epzy)qS>0|gI5r}tXV-%aJ_(HhyOPYIGYJGN5v%XgT)A{iNdBEs==)uDYzTl%#x z>2HBPV{J{1UA)in@wr;0hJF?Fu`UZQ9X|c^TC&5I$-WPiY+k~?y)6b`D-}`KPNnN*+ihi}bJ|U8Uy<88eip!`dFJ&;bxX8e( zuC=2dh#>h{MBN$A_hV{FoQ~@0?=(&``EQ+9*W8gyq`_cgME9xzxCK@KEj!bi$bgS! zwaLM+?Ch+#p4$8wM|?uSBDJCY&g>ui86b8H82=V*)tqM6BYMD`&&>xbP)rkrz(mjN zTX8sIo$ppDh?UksBrV4#F6&6%l9-s${Cc`{bJI#7_1Wm>G=5r@fx>Z~Fi)UgosD3a zNLAB^9Og-&?o3S#=e@{Vg}4!XmDymT)Pq&C9C-mh*Ov_Raya znCA?#3Hk6Lt;X!J{N7AOmI5{n?PmD-&6{1Ri|T~Kl|~v2UN0alTT_mVpsM=;{jg|@qMU=jkVzAI#gTnKVZSF_PH1C%E-cL7my`#DW&!Wl+X-!W|b!Bj(*|RK8nH%kTdrOFwmQD zUm1Pn7Z^J8;Dr2^;^L|*T)kMvP|2{+a0{P_Hzaq$#2NT_?0NtXudB1Qz4hTtncINE z4pPshKitmA%=|M>$nNU7crO%T3#tHH^+EMZ0Vj=XOUx_Ec^CW;LO+A z^V#APY%Elua4A#8$Srf6;vc3qa5hr$k?8oPogL`~ z2FXZ~5zc`OBt36VZOo(xS!j?hQRvHA%E8PRzun32ES`>DF0S2UrhOeSeA8Cn`sPm= zR0z`?c-vVsYK=YHSQnvNYfB zcfn!M!cWVCcW$Z4z{H4+h2`b-#u9VR@X=ij9qwBvOuY~!qrK6o3{WxeJN6aVFKzBkD%<8v17H=y~K|zP^ zfRmHm68DI8w!(-e7ng>NOo_yw?aw234%!%m%FNmUHBDy;7&0=-;NV~ZZLA>IYbP}< z#2zxu^SR(b&wbw%DsqxRe(hR5)bJFIkgjZ901*=>4%LWNv9;EBhK zA9Ag=Bc-Au060gB=OSFZR_InWc0D^Q-gbymGE;j(3iAbzn+`f{Tta=;2W)$0&D6 zS(!B?F_dSe#>ZXGia|C)2P~nze)O5q@zLMm>d3|=v6hKLS=L-Yj^B(Ao4-*~qv_lV zEg;L`@M=4z$qhuhkS}$vj8OQimQ(1|_X%S&P&!)S& zlSq$*5A2DdA>Jp$A77v`;aR`XrU7_Z8XBPhU&?}s<>hW4o@S8Y@1NCEd4&5%E&baz zlh*#hfkli$;7Eo=8+Isokr)sTam=wn<%P+dC$lve!#Vyr9rwpzPQ`$-9uy^? zHjI++8j{2*_&cxZYGHlyrhyWFaT&ARV+@ZJ%#t%wT)A}=G8lfUMFQD4SBRPn#DkwF z(K@M*?E@|a-G$>X)mBQL3wZG3J z?;|gp4mEi+%lTi%c=w3_e0HHOemMg_v-CKQO21itY3c9T%66uP{Uoil%bAMBjx^yiTGiT%R8hpM8Y-)JXAq*RNKlV{UDkr#m~*FMLzUf4Kt}9Pq9)$wNfs73kt3uU(fV+;xtr zr+`DL-Rh24+|>tnX)K+1{N1P@hr;dC)2JY|KMM{=Y6Yk1*oM#Rzg>}b@0BJaH{BAg zx-PzTvK;(MDpk+IGp+T9%S;2;eQ7JvVaNq8?qzyEAl zg9eHCuAFf{Y+8lSdezx+;0s3`gwte4Y4U~eZ6Bp#fRG=|?%zREYV&yaVac~Lm?#F!6p*jamt}qoNauNwh zJQW?n*u^p%8#R_??T-jYh05kH@R(k%?T#v;a_8GJ80DYhWys!%){0`>M&0|2QDzq2%&%W2NE`;@#kp(;aq{7;doFmI*hrA;dhv;g~mRdQHw z-LzX9MDBpc9+)IxH>7)}0(N?PWqG?`ptKpq)rrvSTxN}w3^&(BgXL2B+%(^#iF=wF zbkHRo&B8w_3!s?zhf|R?={;!_iaA8!6EmYJ_(R!Cmk}B0o6%Dx^}hTJTOzwA$t?H+ z!HFZTWY3iD&B)7=Y%i`PAq0ynXF$l1RtU^3+`7=YN+ZFWa1wXrr2d>z7L0s?{&1_~;o9VRme zm0#IHQ(@lK={d~5QY4%m{5#OPNp3D{!LUA1|8WulwIp-|5@g6fB)F*R1cGb!vvfsFgT5$E#zv{ zAjInH;{8DqK}5s<(#fYaJ!vP#^$r^0hT**OXy^+@C1=vboG5-}>;;M#(u5jKPEFYx z*?XSTko!E@Lubi*K5b@zzMc%vi$7qoKu8_xW%3P3)+$=c5%%3fELsf^uoBb3#5*Ew zqWzS_ZrBH;BE2Pm0RnM3K#$XD_ioKo@o)+A#T}j-!#EYYXN7=<_|VAEg*s;@ft*6r zaW-fPar63{^&o5?7iX8yxT#lEDaI{-+)C-1PY8;Nu?6yT-gAhVy(H8hzR1aSW*L#q z@=k+TBj#*ap`uGbs5s-uFQ~!AH4(}NY#DZkeuQsmtPJ_%Kg}^C`HXi6%AcimpC%LS zumThRE2P{H@2TnG@p&Qed5LU)?8ERm>;9Wqj*5!TQF<4`_Ixg_`+T4#a&sP4>D`-W zqYdHN>&vGjJqImIiHV8-1#am1%9-s}3TmKKdc?qZfvmX_3EhdA=JJXvyZ!i5G}TBKznsK&_wUOk9rqJI97D{iS+oWF|#((6!b zCBIeC**WmJium|Qv95nG!b0T^mzV5lCvZ`RcHOx8qx4;j(Gre&8I*`E`hz8aX1!IX z0U{@@$EP2lr`+?hFEVy=^2f^$A_mUca@}BV>Z7m4I(E?+*;9AlQ5n(+sb^;w-A|Sq z0so(J-FP4VfZSQ;wVDf8%GI-G{SA1-6z;D@q(x(#`Xx?P8n12iFjqL4Q|Shk;r0#^ z^*^A+{#B}iCJ<}3Rqi+mTYx0!eXpM?kk3eC7i3~Wi9-%<6F&brnVn5_{JRxyK#FDE zL&uvOn#4v(0GWcjI<8aQPlJ;2yrB=4Tt;7i9qdmW933n9_=u7!uCBQ1xN4>OJC^=x zK0%DdkwLB^=uYub?j-(i;=-|j0CUtIa-|BSE;NiVV=F-<^}-c)Jl&TN`csR0_TZ5| z(E?o3Tn_VlBz@0Ly1+kcSrE5QI$?ubScy*ck6HTqC3|L*GDD zB@iCu^ngsxZ*Alx{$&U(Wam*+je)^rk{K>G7p_{2G4ZZ1t$5tNy?qyFc!XA+6XHAIS6}$)MtSYQPf${(lZZz6EJse9)s|1yGxw%GD1opx+p+7FW z>?X(_XZPEoY?Mq6o1HD9lCV6)?IxIQj5 z!!cb9b~mD35TC5)GFZJGFV=>~7`+3*OlEP#D2ub$a$SO~Z=!}d85yt3!$7SY?$qXa zPeb+_0_ivR)dv+&z#I3~egf1sgWiJjf8Dll=$NgJ4~*fT=n816xz|GC0@Li>hu;bX z4WV?WLO%>z-7KcP?@$Q01?@se|KJgV38ir3?`XJ`+sj2A0!T~=2q=P)V|wiaQuOAR zm;{mg(~A+PkSyrc;hK5X=Vjpfn=w(Jjdn{*v0Ojn6KpOrR4hvarzw$mLT-JOtHnVC zIE+-xBIagz-0)v3@VVF(qw95>yFB-yz4!POnAy<*ce!h7Vg!LJ(KqcR)Pa`$WdyeP zdzARpU{E~3bLstSZC#o=G!UXL>|3h{T9$5xlUrImTj285wInC`yAXO!)Y97Zgu{aM z?fLC3;`rPf4kR78>+()Z3dH%`B{xSJ8NQx!KK7dpCNeE6NU7siCyRgFY?W|4QX@{il_n zqUP%Q(OcMrLbgID%Q4tq!pfkcBH8`tE%cn9+frlP6iUR|h@3ux*td7=MNGd?91bEB z^>>d!*G>R5ijGO8jnoXjz70D%8VjZxK|z+OUzc64R&*3S@EgewMG#TAT@1>cfB#bX zX2EPMO(cqP+)NB-0vQdMG1}bkEpAG!io>d{GsEX~SuoCpekRRkCFHtKyY;}z2;9V@ z?6PS!Iv7j#k(8v~U+z{1D3_v3bQ%~MB!DakPmVhSBdf5-iI#_E^TLR>Ox_#*)(4##k_c~=G$8oVe*KphUN>;4pkCH2IY0$|Ese;1RlVt zDbwnBMr~!GKd0k%Ixz{1%&6p|&dw^YzIXOT-654^2Bz3k>QyTC(KJzmf`GMNnUD`{67iZRD$Wzdhp6Za>tXj z(o-gRF$IeV5>B-Y{OfGTtYtbS)G@e>R;f4)J{5@rZc>}8In#z|?Ozhja8Gs0=mRC)j1gyz>HYu|X; zli62CX=x7$iSqAoo$q>5|3uZ7cZyvxaCTKAp(v>dKrLfpqj8B3n`Mcz*a%gcJ;~^ezdW@^@wiPgu%}+N;vKam-r#Q2W!xT>Hzl&(rAZ{itjEC1`1W z90OG`89py=2F}MCk;qMY>KHs?*ZB0a1b->!IBEHftvbc*SWg_omBJKMbzBan2lIDK z=mtbSw7j8|{MR6FbXWfRP~Pr-t(M5DldY=dS`nr0qme^_i+ zhRq-!J$k^+1h(jFxv)8d6Ndd~qsAoV0|W1@oE7vcR3L{TpMxYuGXyErkZpj6uoU=Z zM_6EBx>y(7@y1bbErr(MDIzZX9~qOj2ScD^BV&{+l;-s(qdwaxGN^Ned>ozGXP}bd ziK$Wa+Bb*{qt8zkI3ZR*oD0V-VB9nW@!0;sH+B{5l}4cIFkdz*)cA6~LBBiuGm1tn zP{@D-$YcfdaAxacPQ)}^B*tAnkd!AT#80Y;i^D(AH--oedZ%?9P3~Da`0;m|+0b)n zfM_^SBG#xNz?%x~ul`BSl`iS(0F#_NJ(;0QXCSo!jh&56{=K#Aa*E9dODf44PY&vQl$}kMvid>6s9rdQt8N8aBove!ZXu~OC9-VkLaJz+04ZDA zIYoFGMmTA4f?=XMd{uk^x#~iX`}fHk!!Jg`2c4ya`F}rfc~3l8D(@{v$y?H9z!z9| zBPsqSzaCk1;@I-GKJUm1XNLp_#D$RyQCY;{fUu(!M_w_WGxFX;0{O0 z{=_C0Qv&g&q#DPAHQE|;{{8#+Ot~T4^x9qyYy}MPgtAYti`Vb{2X`BJUjwpqhWkqwvfZ{wwvl|qv+t& zDMA=c6t`-GkCL9A&?b?YRDyz!fWLkR3{JPl;AjXsgI}MIOhp90pS^X7s_ZQt9vEJ3 z^LhkPyQyvYLcG)hMOIeOE;jc3%OGEnoq++_BM%v}zrg?D(=K50{^#`axdpY{>)>n+4#jDLu0Qc)Q{Q_%TuG3-8G$3PG(MXN zBlijR=t@zq;mMVV8_G5V+CF+ZvOZA z7i1kL;awNG&&F^k3J1fr!$PYB8J%T)16 z#z3_MVrIj_0|^SxCr#wCzD%TnPCE=NXVkEMjbbbx0eHA&`i5AM~0y*{;5Ja#%xL5_DHLO^Ut$1t3S zMo%!`mpKY!Y;zv-5(s&UhLEsTK$#+rF)R%wg&{X#!D2wMA zJfcb%dz5@gMzVlo&{JmuGfq47*x)GL^e+*Ad_6Y+FHluc&AI_JlfJ|F5o=T^O>~Rl zKA;TmBv`nid{J_YyHjnK^sX-4;}M+8SIPo=?{KHVpcmfWoxjrqUX<1>Z8?5MR3Rd^u(Gh2J|)*DFX#_lN(C41 z23~;B5gOikhG;Dwdpj&xUCO^+$%E(X>f^$g z_sh-FX{xZ-gUhHjRo`b6f>4Bk;S}3Dc*9R{9yV~CYlRiiqn}-b4VGs5i3)R5yr+$4 zudbX%ac7Ksudi+4q;QlaJrpW%q94wYKR zSBK=&E!!T?VHa0bcaQ06WwAJQDz3dJIuO-0P%`8yd_O2(qT8Onc)RNJO7XJ(`ZTioH1gl{ z(*APT{?aXS*Ztr6SnL?wpn4xAUW0nbD*fa`JS8&QoC<7uN~9>WtZ3d&B`gD`ysU|Y zhljj;6e0ezK~x5zVw~KKseert6tkfrH&DK6|Mqtbx@1$Q=rQI*B?V+o#4=isn6rpU z$53++SbvW3%jPCr(r21VCQ3xnM(O)g;m@e;rw|abao#jpJxBbzMOoTGF@88Q;m@z? zeS;nvD`SCbdsroyx0C|Y|NBun>cLW`kh*Twe9n|iJt}>IZ5Ygmz|`oZ3h(2G{mRNB z%vQQGR)7PWJ_#W2C26*M@wC=vvA+iMrs+s3Ed!irv7QzE$cXI9iZ-)~O4m)q>(Hl{ z=~M47pU7%Z@0NiD_7(`UATq3Q^@%Cydi6=t&A2P|3qE?fnO((2>$}wPki7g+U_kJS zcq!@gdwK%?-%1A+eBhSY*uxpq8&@sY;gk;7%!MV+X`Zeu94PeixUpGnOB<)6p;51i z;|4J>ZtfX?I{>EAH3X5nKHj$T0-pzZk=KQ>Do2N3yoNs(I3W)ZfH8hK>M~>C9FY_c zkO+V+HpN*W-ou2G$%8l^9}^bF=<7fA(xTdbG`0H6b~Qv{`EE6nfz=&ctB!eeMW{4*sY{9v~Gf{@YaXoYige)7bQOz zm$I5}uua^$XV-Q&T6fnc<2>=Ayi)#pKd3l4WlM9W|1L?TbA(7-X)VgRDY&>+XiiB^ z@P@q|v`!{*I1xf$-ys)GuCNq{3n0C8Nk#wn{~^$IpUeP&=9;%uPIPK*YJtJqq0VIF zH>eP`0?;;CZKJQWS+Y4f4Rw5NNk4U;0QP81K%|jeQ zqo(WO?KR(H_aJG^zQK7p$-l@w;qhhjgoF|htxGtRDwmVx`>QGW*0ZO}Z~``TG?dSR z8kMkz(MCo_NA6B@eP|>LW(&tgTa4})cxs2o7^%smT1a&Cog*@Qli@3$TF{zZC7VCG z;Nt8YhF1%ZmK(k84ht=nYq`_-1vxsK$XMC`0{JnR&>ZkKov#*03uTRE^}XIiUJTT6 zYr3H`Hy;-lq|l3ut>pEti3?r}g=g^M@drEHIFoby)L#l%D>C5dDbs9cb$M{gBP%(t ztD9Y_w*~yK=w3dMO4W(AjsKFCj7*ioTtD+|d~R-amQJV3Kph*`FhMLVi0B~$KJ~xz zhs{cnP=v#3n-?&3ZIqt!yfg2mm!?-=E-E8$kqq4yW0pb?1KFN5L4v^<9Lj^kgD_;2 z;-cc7$Z2c5=r2b>#^ibj_#`bYEma(O#|7~u5}^T+n%M3TtPwR_zx_iy zn}Ik5SX^Kc{VtlsFRT$X3zGZ9gxx;a*X+{vZ44X2kHR*-PN%9CjaCw6H=g;B1{x`W z<=@ZWpJ*3Azn1u2L8^)inIAyfMrdh!!5RGSCl^?AjDjN@fV8Hy`2@{V4c|Gepe)*WJ4kx2NG7U%l zWb|LtlYS+EIQkhQRex$ji^Z9B@YyZZH&Xj61bM39O8h*!3rD^fVJS(A(I8!;; zwZ6Ov8~bU5ZEVyum^jM&1qKDNYSul08mldE7mQ2b>Et$T8xkb^GswU_p4?i}jHH0leMha|{- zp>v#g!$B82$CqJ7Jv>xSx)<0V4SLdIKT|whm5}=8*h%OGvEpxe4E7ZD6e`Le!c<$3 zgg_7A}Nk{{}sPUiMpl{DE?SW(lN@leqk3*e-12E%`aIfGZ!N)vsp8r7X6R!d= zGajUUIi#?YlXQT<*+A;F)6=VH%Q|1YJ`}UL+#QR;*ZE_9Tk5Az)+Er}Q%mJV1UBH8 zQ7?NKuP3K3C#SS+3@>fxx2s$7CN=&8m$xIfUWa)i-sV7$3*8`dgx92vxx<*hgMoo5 z#maOOcTtA}FI`SX#voW)N=`p?V+6Q(ws*JJM;!g$NWAu(8%he9%9$t{7?>5d1hE90 z8Ym%UR)=O2cTLTWxvn(Tf(MPy!|Lnf?#V6Rn{3x29AH1m4CqPA{RIdCA#a!^d z$?CppM6<5Ka@<+omW^^MzE~}Ii<2BS2r$`)%C)f8aZaeiT5VPySTyT5{&BG8USz%)G*d1u)>Pn)YrI zbO?8-C>;|w`lw%}0|58+s#RW8eUXug_#U^Xj0n$rU3@P~!h5n>e@abpKVTRo)CN}K zS5Efwj5y<a!(mz+G`>tp$vA_V7WRbvjP<+75m2PwOc zNc&#lK;~O#C}&*F;X6HGvfQ&e1MFTL-NV1l4@q7%>{L{fzr;3#8AR+POs6GPZT{p- zLf9X_DF#amAeHU_iuI(D$ov;sDdY0ofMZH}`etB~`osJN^ydf(ahi^NYcu#9^33vA zoW24X6*+cJuvbZ9y0KCXV7@lAE5Gi4(8%s(SKNUWOBacdG7I@0$5gc>E`uIRYwO?a zP^_0*`CU4JSvxvDQ1T3bAVhp#py@-hK|m%!O?kO74&WdfJQo};Pb?-zyL5BuN)3}# zJ<~=<I1P960B?CAIxoYuDG z6Of{F5v)?aNJjk3O{Ox%D#_2^xjWw^7}b5ph|Bh%V05AM!PFqIRz|uQOUb+k9R(v% zer;BupSW8CQa{Ns(DD_U<;KoV;Tdf85RuS3tq#5&e1QyhB7MUmv)C-B`5GudQhWhC zUj=z1VUeL9>nGL^dCS^w4t1ZWT-zTHfJgj#M|1V{<@WU$>@*VFJp&tT@;wJnsH5Ij zeLpu4(&B+n@YITl3xO>qF}eB2h6om7-3(ucCAw za@t?PT>O}J`ZU)5P(0@Iaw#u#Jw0jsHzzx%mMJ19M~zjN-+n_($uI{MvK)~Verbmt zk+0Yfi*l@&@}(sEj(aWdFSEc`s-^uI=M&))$|w21MX zH0C5dJ!~i}H8u6uFCukp{QS)E1w9@Ojd^*>tRu`I?>1q8kOip5p$_7Xt1yvn=(rHf z9fII-J`or>IQSakLuFzJY)a|{%7QfwegpY`??S#-g?*c|15%ENp6sfSUiP`Y5dk4? zQc|>UjEcr=`rSicq_hR%)YKC7vO74kgkj_0^b*{L`F>u-~+ zafawlsNw#$CS2nc#V5lP60&i(Dme~qRDu}%B(~lhfNuVNz5!I`FJa;FniQ1eOC>_E z#F)odS2yTG5;jrn@!j2`T&7CO-60ai>illfa^rW)y>4HS@+^?|pk+Hlq+ns;X?pre zE-+Bhv!(rclun@ees-18i~X{FCz`mi!KMA1vGYW~M<#+j-W5Ya7(I-aQYK692=fS$ zD47T(DOH={;DKkV2oQOinjXMzkng7OklC#};{5M7)3r|k7@j@0QIyhC_!P=$8KC+$ zMC7ITmkZ>gVd`Uv8F=DbSov1t(0`Yw4_z4;`j)A~8s6sYFF)Y%Rpki9w&?prxtTH_?6mJT3#;VdP1sWrQw$BRB&QGKF%Z}axOsM*8_3- zE~gIJ=Zws&KcWlD%0V(ooqtmw21HoN^v)PU!V+;PT10}n*D8# zP#XiMo}Se+ZMeHqT=~XNLj}&HFxbaeA$|?h9s}>^(E^A;SX!*HQ5ZKLhk_pTE|f8m z$6?O9D?nxH0bAHQ+a(~$zrWs04!a0j7HlMB4NiPd9Bp%oo7vDnn7F2T!-Ait%Efv_ zy@M*VUX>?pe^~hym0G9&9%Yw_shCiF6wzNsci-F`;6QypSW;NDw8J-Q(6W|Ul3mPiOEfx ztiz-<7ppj_d2lTm7N1XSn7@XoFbxeCix3Oddo8WEu~A2WzJo)c#|$AR?7G^Rb9H6# z`4yO$o(`giT(y3KpjVCGpwI-y%!(AZJ&&Z*E0xzrXR(BfIpq8b4?;_wpBc9R3t|n; z&WCh@HXupV=Aod62?d$JDwa+Uzgzz(;Sv0RZx!*!NW{vx)!aHqA$gbv}uWqjsz~Z<&`tj5IsFRZuKm-GBS{^PQAUWn0Httegt1_=S$DUvQx>PVA}Bntk8g83Etr-;3Yw)AbNKuX-^gLq)1P zd`r`#jBn!r|Y8)>al>7=m60 z%0LXVvO3BE@r`%@+mqIP!0w!hm?qkk%X|Mb&#;3rLb@{|LSR5q0$fVynB9TSk_qs} zpMHWci3nv?HZXMpr&zY(JdQt7f%4$MxSgqlMAVcf-H%RWeRu=}FpA9+sZgRs&$9^# zFw)Q@?VZo4=|0cax64*AwwN*yHsRuvrzfPhf%OCo0=nluu;nl6zFwoSwN#i*P|afz z0l!kE=bHI`zl%VE@fxBMWaS`R^j|UJMwye$N87@BZw0?l{q48=*W&0;S|RJ`VR5q`HmPJ% z(p_NEI%2{+zpJa8^raT=nX%nF;#)c8+~m!u`+*y4OS zc?r(Z1SitJ?^yJzu>Fe++#+SU z?P1DqZf>5Qo^H^ujTX#fzQzn*xFs6Clu7Q@;f~Q!+cCG>3ee3(atcx=HH@dkbpDG{ zRiLp=ESj^f=^NC5XtgFJs4lyIgM)`1P37lg&}dPcMB>`Abx`^P8wdMS`RDenbQJpwE| zBS4}s5~_ePWq-d~$#m4{tAanr*1yJ_*EiFpdUhXilT_~O>kHU`A$I4I67ORR(%mh_^ble=s_-*g?gG!Jy`+rDb7}g?kTbTJZ4jF8W|1Q~J7u z4b=YvTFj2gacz})C^+FakXdWcev#MvvDbh9l}mtjWsui7q8C07{SRWj(&P+k>p{uE%g)rd61(39{14yU9TZZz z{&3?fLi$zRw4ua*NFaej>OMoNuwYJtdZPvA3 z`p1t4t}zePJ<*~*sYZ&TPcM-UE@I4{Vc|-fkx50d8R*J&F-FdI4}Un72w1+65@8KG z^kuQJGBmnhFD6f!E`3|VXCC+>_XX58x>j^|EG^Lk#J;q_`-||%J3tmeEf-C6K~x%Z z@CJL9pA>?CVOJ)k`~8cPjQ@radWJxu;;mhlAvQ&lUPObqMF)GiD3hz2*KLI(mm^j0 z&d3)%59%Lu?B^xP>FMNInF1w#?3c>5bu~PLiP+VYzH^)dpbvoF%c0>75p+nk@7D+*z2$a4Isq%N_dVWJg zJ#hsHH3%za;3NTP1oM|ty2nL)3{%$ zxPn5nXKML`CbvIf)@(l1IJnLzMPaBzu9D9jK&8z*ERVFxfQ|dpJo}Twj^%aHOpmsK z-|{dP_Sf}Of{M46ovDqE6^xj!F3!fgTgqx`hth-G4+uSK>cLT@-kaCF$S5dR86n9P zE>epjfhBfxKfa!9v)DA6oXX35$&QZulov%R?65z%-PZO3Xpe@PJ!6907gAl?x7gnS z5b&RJ)FrQYm(@Bg>{64nB`D*td8a?~;q?vA!gqx2r5>QxT&px%B~GqUIYBK_t3s6Tz`#OB=h7<30r)^x3_ zx0vbwx|5R+E^g!JpIjugOZX5h8u=HiIjVupZzZp7>Fqt|-*>w}D4d@VgWcmUEpKnntcc!b z3x(A}4(g7Mi=!@clcr0`1QxuzL(C}DaKVOoO?&x3qRJydRlO?UNCNxCu&vzOwY9gZ zP)iCvufE-(hXn^4zsTUaX{zS8jBR~UMY~03wJ|C%-y|q$j}ardNRd_x@Og>cqn86x zz*?GPTaw>X%TpY^Jg8vT*VD5D>?!;6bH)yrH`a!R1z_^VFYx0s)zDOPJ)D&_bv$^( za|oIbGG3nufTUt{YBF1cEQq90?Kkh2_^&;KDwk0I-6 zoRY&mkPN;x;6Yd_ZyF=3tBZq!V|pb2h!<3e1G~WYo9Ut;)lR!@k0y^IOLdKz+|VfY z5WDD)jk1u0DS&@!yNp`Bf7%s!os?#K{`>mqL+CnNS~&N1?`s3d+?@iiq0`Fzcv4D= z>&+2=Z3Wu+<#>mlhvs9cW<3xLG`@l8Gmv)E)6!XO?vpw~&Q~#qeFx4~Re8{MIhdKd z)Sj37rL|19V$XE+s`% zFL35<-9Nz3MK0GyremK~{-!?|j&E=~R~DFDI&zw-^+8!mF|Mtq%SPnm9xvGYYJnwx8g!ZhUywW^Q*@%Q~Mf~A70Y^;L! z$ol9dZUUd)T7LIjDcFFC8iM+2ZH(+HVo;Q&dLnreu}a#R)Soo3UMJq7sWQDZ2XHf! zA`p~Lty=(IF#6_wtfg-re^ogi2dMJDKd zKe;^=hWwl?Nr&r`W0*{9h$Yq)OF+Xa!EEEc3{3fPaj`RU5t=?%dlSEZ9{@sQsb(GE z#fJP8qsIBxrtVupK!=Y0>?huhDb|J1v( zv$LzJ9Jn)fg3;smkM??OzzQ5$boW@u!=*1yUPy?VdxmDFDTicpjL5HtF^Lc6b77cP zH;NYt5q`NkGZRxcg+XGLGPUc(0i}BUPG=ax+oVCA{9)#C(2)zbDMsVe8S(~%X__o% zEO?;lTI&sWOG0!y3?HwiIutHqX3 z2dO=1)WuPIa*FVx+DoMr0*u9M_YrbfARyjgVL$TVDv2hbd|y<`Z;o ze|#tMIhh zs7CK2(2#=Q=0==@@Ko=ySF!8S_kc6v-(6kV zDcG!=n?HVdtL|JM&e{HJLh`v8pal{fFoVDN-S5n}(|6*MhW*!lOie^;kOQPG)_>Ww ztdIfXdPtHX%31s6<;6eG%}B%kD0VDZtCCmCxpG$*i*|9pc}?xyWI@yGgPBxZ9YI4C zWi4e@ofAkFwhkHDabu%v58iXS4LmOkix)7z4gZI*zm5Qh} z)vRxX-)ysk8t0kK;yi+M46qp)&;5yz?Dt*uFhw}{Y5A!+m0mo%kR!w6 zDO8O?YT)P)wwMM!7+yo7Bm^86Yinxw0^K$|ND_n-b^+(3bD*cEXJbyl(~XuQhBCbw zdd(MFiOO=hGf)qiGK&)UwW}vhDqq)y0JaAh8bWPbm6S~L^6c}2^cE+4VW^Q1z<|!R zmZ+?v`mZToTU{ZfeSaL&PKRR|um1jPzXE+hE-bvo4&pm^ad;m%Y02MoBO@bxq89Ok zGmD@zZFYKD#tsjQC^RN9vZl^pk5IyEPh3JGgndtWhs!<{PN}1>xBt35f5g!*{F2ij8O;!3OZT&T z7O;^O^%A1Cy|TocM3d>H`(WiSC(fUSK6SwoMu4NO zyBeLC;`;o+y+r#dEk+=)?Zq3PxZsCrMrP^nfuu!kFRX?$rCtgYKMv_!NSr7o%d?$ON74)gE4rSf}) zY%o(3yTcNhRF`y@aaDW{y(M6*|JT2SKwtzsR{y07K^MY+OSjE`5C0pCAWO+_QbFj5 z_}$%i55N~F?EN$k*m(e8JQ+oR->B_4+oE$aY{B#NC0VjU7fBa1W zc)&Rbb%(~Ylhf6~9^C^E{2)g5rB(RM^VOypIYkp8j`j)tzTb?9JAvOEiN!Ul7@IJH zlwpNib);|_=}7t82{{~RN)!t)2v7f>v7E<>#0;-Z27D(bu*BBWbcGiY6x}m4FbHuL zc@1P^)^6&V>klps^x8HRdE_sK>8;))L1swz>32y_^EzB{UF{6lu5t=>FA?P0SP1zP z6RaNe-0I~J5U@12GV}SvJ3P+;b>rBq0Fq8zbu(~gzsncPg1R_w1Dz>A-FMsx$?SD- z_ROZ)@X)&LaaaS5s@9f??n?( zcRRtt!xbSFmHnaoZh|^vhs8I;JI$HimD<z34Rc~@qA`0nuU>iOM4KuG3(Zc zCN4PWJ0iYqHh>3QbUw6O2^j?U@25q}^7vo4Q>wQ81rVpMUkOGS#=!({zjQHU6^zh(-CTpm7E_Y?cAI8CE+dA4VVMj@(!SfBqk{=?>+dce( zDHw$HPiQ2!GRQI+k-gc7q(tS|e8xMfsjW2>s1vF38d>E2G8>kJDA$L<6`ie5X(ra0Ie{A^k=^{e9DQ8!2{s_YeJRDBda znawG+!???hUZ($+-B5PM3i$0CjCMXjpjdW4^)rvBG{IYs>|lJjX90ih8mAd^5b$=TZCTEIT>hA~5ahr4jlvQ}ktF~b}gTFc5xNE9^m z^3VplaUZeaR~I!M0RGc|SJb|oq5p%(!(I+>5cMD>2nI6{${89PU&l~O93Ir@4q~2- zrl+-8EjZLEw(9->Abp^BGzC43{*=p}Boice+X#&c>19?PLW$Ws1nWe%$K(1?>aYEI ze-pePrZN^a(Wp%Bsk=v~QqUPp;``-{rqezRTIv(Af z^R9Yc?nI^tt!V#EU|jeG08Dlq@?brN`pRK@Le`_l>kR7yxjyKHGMeuE`?QCEllbhp_rPuL4!fJwZzCm*{*Dc&sSXS0&sCNzGkO)Kc<_yGys&mR2fOi8TmkcYMb6~uhzusfb<~GZH^C3M> z1rtis`^zs~6X(4~56$>EoTIHlFnTWccL)OLAjg(WDq!k!Ead> zoICM?0vfkXI%u`$NJDIQl0?7zy9dyZSILz$bx?G0^K%q*`CP@#{K(w+%;EiFRSlqB zfOhxJZ-yW4KJ?DS_j;nZ}l!LOFp_jx}sjswTA{Y~_GkaPyNHvb~Tbrq%ycpXIYuC@TrqopOv z`6Sq8QFuJrXG1&3$JqJ3rDtQi-N*}b=Z9iv|srgox@!c1O$a1uF424on`qW z0K_BI=1bd4e!fYUz(Yt>l-koivA-|d`3b;9y}mrw+pK7T(d5Q@iPv_aB!N)oj265L z9)c1rp*I6D)NpWtPV`22@)c&5+qxctU7;zf%<`vbn7s7$I&DtL6V%urI=en~&%dl` zC~7?&>bAN+_eEBWkDF$A@dyb;{^*kb5CMeJt>w{=^%xYw5qK&DcUbC9)00C7CTu2{ zc0482bV`iHKPW%p*~cN$L*i5a_C@|z6bpJ5-=pMNSwyr3eO2bAQGYV*U>ahYkKxzl z@ly3mtXEUedm956=<47I0L6Fyr?0-OeC5D0MV^8~Hd0qM--tgv;HCa+brLhW!J{)k zvmCk4H?kVVJoVkcA#_NDA&cEtnylLB47zbct~dQCy}dHU9*15nUh@W({$@1iW^Qgo znrwZzam3{0Kb-&7yHa=)PULDSBmdR|HQ+T(47R&|^kMM=oX((yv&Nu)){M5$xRraF zx2C2pARwR%jpFw+d$AI5hFvu8w}Bx!>+613PZ_+2Q1d>Aphw^^nkbOl&`q zA!t3QY9c2mm#W9QnwnpUiH2;9#YG|Up{5C}+KjH~Xc7AA-}%Tb^z`0J2kvFq8<`qx zTArGjQZul!>XYm^b)*S4qAvQCz|EI~4H}@_a4y7_Woh-Q{(+_}8JZk5 z1qI)UTwND286-hgR(x&FF7?WU1QTX5KRi7AYm6(L4eB6o=N{6^ujkzL-+w`QFp`ri zRxN=8C}Abi;ld_uD_v4XMtM77z#A(}d{}1#u8OriY{yck&|~F&Y%DoRJIGX%>#0s^ zQcaD<9o)}?t<*U<93ldkHD#LpenR#{yUb>`V#Ub}Oq*x2l~VbsqUB8}#J)ugWOT*^ zUWLjWh^rY~)={4<38-sKmW>=mH|>1d@;^fg4c%8qIqJ6)WvGA{_?uf%H8C+WHaT1) zKlnC>`ZQZy9{?0lRl^<@5IZ%|Yherde9*eQ2-3IrY9>_wNCQ_opS41tm_%?mJ&&L_ z20A!)(K5r941wy#c@S4LNC(kdWdSM{=yW%X6Z^=$6#UanviW?6Fq50L+NWjE#I-U(HD;06(@Q5UWa-gY=g|6APcbuYuCS z%L}FwHaty-kAXCVWX@Kr$rFo!kzRBDczAetB&8lRyF|NM;Nx?I{DVbkN z65}YD;mq8e1dBGJCguB55Yz3W7ZOTyAay6TIil~A)e4Oc3UnZ4@Pi`l8TxjAe2k#CB^YSJ6c@+uAvkn2z zJ)`Bv*GSg}32i*%%x^v0BKRIC?za^n#*svllvU!1^t&UWeI8+4c+DIi|FONqNd|Cj zc<7N6KyLbcbEV`Gj{cpAW8Eh>$B%{<4`p@t$a{<7nTDA0v6RI{Jt<#Hk>$!4ZA1W@Oo26JNt)RHDemMB_+a}%n*Az*A1F$qyN znv^AEkn;O|Lhq1fA7A=u5xCAS=L)tN8KqV=JzW=z_FUN@F*fisIRob}@X5@i45ULu zBUJ3kT+{KzRwWYCzM%QUC+I>?Cxct1L-bjl$j?r{I+WX%2^%kSYcICSNj~?1X9oI_ zmhXLv1;#4xsTy_0IrbkvM7a6;mN{=gF-6nU-#YOdoY+Ht>uTz};yR4NL+o;L?z1H; zM^oZIU7S3e0xV{i6Xfebs5v6SkBVRiYrB(otapQx5)0Pt1yfu!7V_fdqm#9rp0yx( z1OWIy!P!ni44@!>)H>?wCkH(1lz>x1)Cm_%K>ltqTrc>QC%&DPfHwysy+NW>zh)3i z)YGzkl^U`Vpd{U7yWFdA*`&F0@3t{=(qY6hb`6NAtO9pF9@Ge@JexYOKU^D5h>1x@ zRbOn5@r;e#Lv-{ogt!8K)rR`C+@~4ni4baPl<*};c{#9#IeK{=fcPQEb%E18Zsi9! z!4c7d_|1m;&G}}f)t7-U9DdpNTpU2v@HX(9%ch`M|B>SZ3O5-5Z)wS zGpm;(i|63Aq0qitSD@z}25s+f2$T*u+Bj{yc^-@9fYXNgB$Yv3O&$0?9G~A@`_B?~ z5RIX_iqDd>cL)xdmvhM`sT$`lSOt%lq*oSg(!|57Y?e_Rxj|k!4(~7OwL;E^03IL) zm^QpE5eQiw0GHgvVz&g$D;Al@{`m%7`C0J^342jzc!ohX4L)C{=K_5gB|Mmnt}`Dj z^N=CfzAppLru=oEF3{}t;0ovekL#k zKmVbH)yme(ex6EVHZY%Z{C)C)C;=Kt$k;&!W<27Pu?25g+KzXg2rZYZe4LQ#piswp zi(buHQ=7mjje5(;#RY_zC#Q$_ckpZvAq>&wT#E zAvhQM>>ifjR-qt!TJ^k`BYjD^! zzW|)6y`Y(K4k)icnEQh~qcCP-Yy46MB?U#>;chb!&k;qr1q22_L{Vhw5nX&Ho|JF-BLm*3i;;T`&KMML2` zFBQ+4pIpwhUCp$eUqtt4vb?O??6}|e+#sG&(hzLkmAj_bfo|~S>u-)jz-tB8`i`l< z6(cIbjf|t?CW*v>n9rzfBX4E!=QqHQyj(4-1hsC$9ozIEs^*uG2qPj%B2!FGOIriZ z>e{a*q^TbXZku%IhFpjMx5N&v*)}8G_nJKx?L#E#NBGuf9gCfjlF}c;-g4V!VPR$? z&~K+N9@`p5juc~HGt2;``H*FE9YKGW3KnbE_7zA4N5geA2SuBAbWm9+Fax zqOlU^CjNoB8e*j@2Q|||oLu*L@!)Xz%W(O28hbvA-U}ox>LX`mG4yspLBW{vlZW@) zjhnsuk^v>6HmHlwXNl*z&eOUO=z^pC)s*$sn03|Wiw>sT@BBKsinqK|vQlF2v>i$d z$ko6iH)#~w8%X%T?_NIOwAFWi@3Ct6ThR=Hqi=1$0dPM+*kzHW@R9e?mUY_+hxOI# z>#$&-piE@}Y5l7xPgre1!Me3yPBncX_hX$Ejg8-9>DLX7g)c-dP~z7N%2W&$)(^tf zf~CY#*pGV70Y%m7_57%1b1?nkfUv!ZVHF-)-K$p`lkEHNCO&Slu&_qx3UtwE36hm^ zJc1|-rrsjbKL6mchJVMa)tJY_fi(pc)=S`BTJm!C%A)oeWx3T4&ETsGpx(BCKl9Xm ziOGRnvSWP}6_q9FvIeM1dg#k&DE=_%K=se-g{4hWGBQDb<2(dQw&$Z2aBn+Ovbp3G z%W_B;6@Ijb=H>F)6nDZlaL#K1r=Y&mu55&g4;eIe+*D~ zdh&u^xA(`gXJ`APHG_oj8p?bV5n&Y-B_{*I;vgjO#q{Pn)p0j{%q0{t!WJT5Z}2wi z^Y!Pdswz_vM^LdxuJy%9dnI|&PKayO7c1Mj)P`bvHNDWh?a6%3T=OTl`RiXe#ugUd ziyf+BwL|fQ##dCqd#6BDIFPpBexKa}|1PDfR!qxWenYbA=&Xw1FpawSXkl^heM&=p zFE2HVHwsvZ3VA1I7+VAyPny8`>p9EsjkzwfpV!_~ z!Vf!^-fot19}~n1PAi8qGv^~n$}POT4FTByCBK+Y0HP%yy_lqP?Ff*H9xYn6#YeKe zQ(}^A^DbG@V`dDm3LJJHRMqkEQMFgqdKx2vHl-BT@*R!9yJy6HFek3h9wXp%&UZLh zx`#o9d4}@i;?nVp1AgJT;f^m`TU$SOcTu&Dzj;W-S5}_+#t7nm@Y`)%|5Mr6WbC5p zrdm<5OHcM)h|C?6)!lz@?$qQ3iw{L-k>XgtZexYYAZsv#VoI8%dQc2PF0g)JmxB|5 zv;F1`55T6(Y-Vo0N8R@#VuM-lXm5u5|2rltTBjuqVz zpwn6nhIVI1+IhY3co}`D#FC1O@3ZI+-q-Yswjq#UMHDwbAE8{)$K$XFEWBNu8PsF1 zZ~OIax2=5gPMrbm2II!|CQwa{XG<^bXY#Vtym6V^@6!aDF($Vkf6w5CB~ws*L? zI&t!Hcl-ekY;JEW1j7sS@}PqPG2~P{T#{Taij?|&9^EfBej+ZjG__L?28K(*@IUow$HI~3OF5~ZL9bD$=dc9i9iGBzdLuypiw1ZF{TTN6AyJRU;<0Rf)# z8Ns5#yDg0XB-m|do;Auvd`DH?UQ08Y2RPzPv6PlhMZUa^ZL-&u^mKjr&1*@=_dy@y zoOxcPGM@T&snOEXcy7JPd}ERnrnuB?J}NYdwuD9wZx{2R(MFndLMq48#!+`Y#R=CT zWMpwSB($_V?s2J)RPMr?b2P8=m^4&g@g_@Zedr+9E=(0^8peTYx)U=Q8QQ{|0|PFD zt|s$^SOBI+F}>;~5~&C@Cwc2CJ=`vmkWe)Cn)^?nJ>)ni_vSv#w+0T^@5~$pZ<9X8 z#voD>Y^msvj<&u&NX^ej0s$|$|0b+(NcXz^liA8jG}5TLKe@#JTQ7_Mg5A>eZJ}2c71ad zqMd;wNynDi0)^=oVlb>k$wH6_s+O2~<9zO&9XFsY;|+RzYw3A+rEu1%$^$_;oN!Z> z!}TwnMUMPk>9-Cd{k6#$xCv#$6txGvvkcF7#IxvB^*p!`!Ga66T@oi-ZAoq}ZpWuY zQP~XAJP&4d_qJB>q!$>9NZaV{F)+|9iN11%rx4D(*@C!m3;m2`4xj(}RSBJkgepB$ zx8rRCBdbG?30!hH-#B=#44bg^l^NkuSY5@`E43}0$Z*DZ~4X%c%j5i+0 zfvK&|%Jh=Z(h>Vc5JmTFzB<*dE+*DM_?kbRFep(=CZi@N@+J;z&Xu4K*=JGyQq&fR z#1!&)_sr=UxdkZ_$nhMV>T3~B>||yAu_W#OB*dEw#}dz88)6bS9nq@whzm`6Od^z6 z;;WSC%`G+U#^b>5v4F*KmqMa2Xjh>t%rC}C*hVHW^ir)m|9l10AO^kc?Hzn}FV(Z( z7w4tjd?hH1?NHX8cUaPayO+Qs?DRFL-rnzFyy<^*&BQN9D81aPzA{_mff>=BWGuRF z2TUTSu2qQ#N@`Mj*KeRu6INmyX!nHak{soJj&!Dz>)_CiZB*7ca32XC7Qas;r>NMW zJq2c?4}&wSL|U-vY14dbnQq0?ICr{6KR!OC3d=OQ~O=l)Ap8l7&X9xEIhZ17o}0j}unX{s)+yXVnSML8$D; zI%zr~epf?K%Ow!wpW~8ih75J#7i+j%C&HGQdK%Qvrzhh~^ukg9?7NZbmc9#216%_* ztZS82qp;%qq>38CG@J0IPc4_Wp#II}&ILBMaDd?_&SR6n#2Ka@!M81-VAE!&`eJ#y zj!s7D>gR-TGt7R!saHlm()4}0K@<0WDT)6#zIwPKEAoE7{bn5}(`_>1*iHzmLm6O6 zj1>QCYg%sLajWAlrjfQ}N)ojwwx=@-?u#U@H4XCcMmIT6iK>xWcgaA^r_g-IIj@`m z5OTZOF>`MYbt%AEs$x^!r|9Px$HK6bJU&CJHJR6w03%S;Osx=^Rv(@(bq90TWN<^B!gJ3%1M9vW<~s$*K;eZ*NPNlmyN9X;Jb4(2Dp||x6Nj6sc72A zM$kGP6WTc#Yx!e}fm6EpbDsd{ z!@TPcqrgQs<17(ht!o^l!U0Qzjj>R-E-f(;P=DkUk#J=tVG&_l7)-_2>f7zx7eMKG z`(jmOXzxMQ{AEeXsj`zP-zv#qsG3vZDb9%vxpvdBp_ZPg6PFgNMqcVjkzU?{O65d! zu#r;GBy)^i>(EH(L@|Grab+hfg5{D4)8KJ<2c9V#Zb&DV$axex7Dqs#HkA!@!)lb z)EX-8sWGtACO}J#$)j%^O5i`@WHiNya-k=IE$@i~7>Vd-aZkeVx52OE7mk<_pdWLq zUSYFbMm_~KB#VoSnVHi-4Gs#-54o%tJen&i;ulKV+S=Z}T>_E!*49>_2+>O82li24 zGvi|BXGxl^{TAShUm{<;0P1yz{`CN$X9ahQAZX(PV9y6}rLg?gR!iBrhIj9}=I29D zvA_zVr1~2SV=(>c9Eac9lRukb>WBG;7fj)EO1E%&I2FRxxSTc2rX@#XobisMx|M9i zQd}oH>>`$Kol`^+!7ARr(ha{x^4F%szSXJ5;cmJ`yOcI@T z85ro-$&uI(XS`eh;X-C+W|#5uKC_0AiQ(aa#YYHVb_503*kMC%+y5Nkuf3FobN#cx zLk2ncX;8{j@YcuTI^slfnb~_JW1CPk3?@blJFeB0)pHl1ZB9-T#`eRkedMf;EoS_0 zZ{GMUt@MGql)=71^5Mwwd0`hv*bB$5?bPYfFoGFmvERO_WwxL6^2kGP?>fI=dnMaI z^BHj2^1T?$$eeCcXMFAr0MG!Z6uhapCIw}0n3DW4LGtaf%0W1d5Wd_Id~r&o2v9SL z@a`O(p0Xx_%1Z$NjRKD7oRv;nPQYJx2V~!NcYzsfMM()4Pu+-nP28#Lv7 zg~u?p-y3#?4I)95Wb_}-q>pTopl9h=yieo|$ZbLHS$(iKoy8tn`!gH}?=2gQ?RP#6 z6|`k9D5OHBP7xl(r#NEn_z6%v2Bf!kBb1}iJeSMr?Q3SM@FnVMPjhVrK{{z`>$ahx zcsLyWD@hWGDLxe;A>rEUD$u(DL+`NsA0Z3vpyp$&^SI7|e}6{E)+cBK3mD+(=;*`) zfDQoxJp|(9=GI+QN&aNGc<<*f^N+H1YfE~DAb|bMo|UE&u#^ej_H(y#HxCR{3c4J3 zGe6y%X#;6V1db0;UzFn7!#xt$ZAu2@9Y4%(o(XV&QwEQpw|z|Qhf=F-p>H>-O>c5)Xn1NNHi#1tg z!E~+TX^!kn{gd>uU1k#(4W_3R0fN0MN+h9uxbGL`;t^7zB~*7hW5}%atUULZUTCEY zkVya)T5N3m?c11aY+VB8^+Bfv3GWMwdQd25xz@W0Nh9xwB`uk*oO+)0M`esief_)7 zx(GE^FR8}hx@9!H@wvINAEQ5JzXoj?pM0Se_gn>%oZr|N-wQ9UuY;d>TF#40a8Az4 zw}T(L4{96GIr+^Rh@Z&u^Yioa4lcf-n?STch4V+FvUDmKcYbLXrU9~}4#z}-4>(Sw zG;zH@S1v{g6QE{F1tgN-068~Ee+t%iA}6G8>^Y;GYiFIb+qa<_EFK}HYsYNz9`KZz zq;0Z?89Lz-LeVXoRwWp=3Fc~qxa%;n1;hCH=&Z-*0z4kMxAH(J%-|Rv4_v~{? zM)+t8l(al!}Xi8lRjr0j{%v9cpBBPgIl+0!d6x7Jjn(hd+9bjfvQ^@vnm8 z{xg)qu9Wa9<+4FTSZltynA(f9g44?{4egt0a4nSH-}KySz6kgY zjI2Pw7Osq`q^t}|Cmr9tAJTq6fQNUG4KlZTnu7kfa!S01QGa$TR9*1YH5QK#iROp- z^zWv26FAo=tAf|L@r^fatxpHywtA6O)9A5Dj}iyD?D7RoGsyQ-Z3{29!YuIH{EP%B^9HMB9nLemCJew(3A{Mk_#*13^U z^8iz9huki98od9Lb!3c>?sX@{PKdozBQEUW-Jw>zKs^U zdwcuyi>ExB(x8LbZvMZY}l&hkVwha)|Il&YK_Y35d{$^See-aYZ?yh^~7Rj$pJo0oNk~Ce&|0 zdy5+Ej9A09(_onK;sKw?Q8Fj{d5%YBh6` z)X$mifqchpf2QKM7@7CQc^Yfac`AxCjA*pN`LW9Ky6|1;M6t5R_IE@KxQ zWvF8-Gib`8`ebsi{A+lc-80RJ!zIeHmqr02$>lmf1FU9k$Eq}m%#z2rEQe#v%V~^% zDr(h86>j-^#u#;S%Q|To7kSGHxK}%y6k_xBZKhPLck>w&lpW=<|2^jaI0#})ULC8F zbHOE0FMTvH5N-C^DzQUqdE_nSdu?x$a?PSSVX`XylfAe6(vOLuCaAm02%{PX^gFAU zHaDz- z6@}})bOE3pYkq>rZAd4e!^G0l6~jJeb6mM7+y={IEl^U$9FnZ*)r6b>@zK8)J>|dT zsU2>=kYB*!f;l#t!l;k4Wd^1vf1mC#GB7Og$b8`Vsjk3H{M*aHA*5MGR&F0t(n$$div=UNOQ;o_*sacnAv8<#|NjP+ zi0ez`Jv0?sHv~3Qk$y*VZzv;)9_nteiVF3cGZGSLc?eEXdS%kRb6emr!Ru&yz5VqL z%=G~^MnB?RtdM}i9nF3d>enek?_>SrV|VmWL;9$p17Vc0JT8Zw;qqYs#XC$R%O%~j z;o{ohzQnwyQ#CB3Z<^HjIHm7Xg(-;*AMn`oG8JbU|3Ce~cv)@1M({hHLZUHFQ8Fx-8mhfl^PQ+2o2Q{v{@jmLfz#|rzT{r&vpbSJb)c$^bv z@0$DHTcCGx#^sZHU$zMCl2h=-`!@wT3z&E5uF?_sy$UWZ%9vEn<03A3+Tr#VuvzR~ z>t97v_OxigLbvVND-% Date: Mon, 6 Sep 2021 19:19:27 +0000 Subject: [PATCH 08/55] Set right figure paths Added correlate() function --- Module 3/Notebooks/Module3_Nb2.Rmd | 18 +- Module 3/Notebooks/Module3_Nb2.nb.html | 726 +++++++++++++++++++++++++ 2 files changed, 738 insertions(+), 6 deletions(-) create mode 100644 Module 3/Notebooks/Module3_Nb2.nb.html diff --git a/Module 3/Notebooks/Module3_Nb2.Rmd b/Module 3/Notebooks/Module3_Nb2.Rmd index 508c8cee..5d850e5b 100644 --- a/Module 3/Notebooks/Module3_Nb2.Rmd +++ b/Module 3/Notebooks/Module3_Nb2.Rmd @@ -65,8 +65,6 @@ _Reference: Chapter 5, Winter B._ So far we have focused entirely on how to construct descriptive statistics for a single variable. We haven’t talked about how to describe the relationships between variables in the data. To do that, we want to talk mostly about the correlation between variables. ```{r} -setwd("/Users/lenovo1/Desktop/mtech/courses/stats/Datasets/data/") - #Let's load some data load( "parenthood.Rdata" ) who(TRUE) @@ -132,7 +130,7 @@ The correlation coefficient (or Pearson's correlation coefficient) between two v Look at the plots for different _r_ values: -![Correlation plots](/Users/lenovo1/Desktop/mtech/courses/stats/Images/fig4.png) +![Correlation plots](fig 4.png) ##### Covariance @@ -170,7 +168,7 @@ What did you find? It really depends on what you want to use the data for, and on how strong the correlations in your field tend to be. -![Correlation coefficient interpretation table](/Users/lenovo1/Desktop/mtech/courses/stats/Images/fig5.png) +![Correlation coefficient interpretation table](fig 5.png) Now let's take a look at this data called "Anscombe's Quartet" @@ -187,7 +185,12 @@ Were the correlation coefficients same? Now try plotting them. ```{r} -scatterplot() +scatterplot(x = X1, y = Y1,regLine = FALSE, smooth = FALSE) +scatterplot(x = X2, y = Y2,regLine = FALSE, smooth = FALSE) +scatterplot(x = X3, y = Y3,regLine = FALSE, smooth = FALSE) +scatterplot(x = X4, y = Y4,regLine = FALSE, smooth = FALSE) + + ``` Therefore, remember to always look at the scatterplot before attaching any interpretation to the data! @@ -199,7 +202,6 @@ If we have to properly define the role of Pearson's coefficient, we can say that But let's take a look at another dataset and find correlation between its variables. ```{r} -setwd("/Users/lenovo1/Desktop/mtech/courses/stats/Datasets/data/") load( "effort.Rdata" ) effort cor( effort$hours, effort$grade ) @@ -230,6 +232,10 @@ Now the correlation coefficient we get is different from the Perason's correlati cor( effort$hours, effort$grade, method = "spearman") ``` +##### the correlate() function +Try using this function to find the relationship between several variables in a dataframe at once. + + ##### Handling missing values We've seen in earlier lectures that there could be missing values in data which are represented by `NA` in R. One easy way to remove them is using `na.rm = TRUE` as argument in many functions. diff --git a/Module 3/Notebooks/Module3_Nb2.nb.html b/Module 3/Notebooks/Module3_Nb2.nb.html new file mode 100644 index 00000000..01b7fc3f --- /dev/null +++ b/Module 3/Notebooks/Module3_Nb2.nb.html @@ -0,0 +1,726 @@ + + + + + + + + + + + + + +Descriptive Statistics: Scaling and Correlations + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

+ + + + + + + + +

After taking a first look at our data in the last notebook, now we want to start looking at it more closely as per our needs and requirements.

+
+

Scaling

+

In simple terms, scaling refers to changing size of an object without affecting its shape.

+
+
Linear Transformation:
+

A linear transformation involves addition, subtraction, multiplication, or division with a constant value. For example, if you add 1 to the numbers 2, 4, and 6, the resulting numbers (3, 5, and 7) are a linear transformation of the original numbers. Linear transformations are useful, because they allow you to represent your data in a metric that is suitable to you and your audience.

+

Centering:

+

‘Centering’ is a particularly common linear transformation. This linear transfor- mation is frequently applied to continuous predictor variables. To center a predictor variable, subtract the mean of that predictor variable from each data point. As a result, each data point is expressed in terms of how much it is above the mean (positive score) or below the mean (negative score). Thus, subtracting the mean out of the variable expresses each data point as a mean-deviation score. The value zero now has a new meaning for this variable: it is at the ‘center’ of the variable’s distribution, namely, the mean.

+

Standardizing:

+

A second common linear transformation is ‘standardizing’ or ‘z–scoring’. For standardizing, the centered variable is divided by the standard deviation of the sample.

+

Let’s look at an example:

+

The following are response durations from a psycholinguistic experiment:

+

460ms 480ms 500ms 520ms 540ms

+

The mean of these five numbers is 500ms.

+

Centering these numbers results in the following:

+

− 40ms − 20ms 0ms +20ms + 40ms

+

The standard deviation (learnt in last notebook) for these numbers is ~32ms.

+

To ‘standardize’, we have to divide the centered data by the standard deviation. For example, the first point, –40ms, divided by 32ms, yields –1.3. Since each data point is divided by the same number, this change qualifies as a linear transformation.

+

As a result of standardization, you get the following numbers (rounded to one digit):

+

−1.3z − 0.6z 0z + 0.6z +1.3z

+

The raw response duration 460ms is –40ms (after centering), which corresponds to being 1.3 standard deviations below the mean. Thus, standardization involves re-expressing the data in terms of how many standard deviations they are away from the mean.

+
+
+
But why this extra effort?
+

Standardizing is a way of getting rid of a variable’s metric. In a situation with multiple variables, each variable may have a different standard deviation, but by dividing each variable by the respective standard deviation, it is possible to convert all variables into a scale of standard units. This sometimes may help in making variables comparable, for example, when assessing the relative impact of multiple predictors. For example, if you can imagine we have two questionnaires - one for extraversion where you scored 2 out of 10 and the other for grumpiness where you scored 35 out of 50, then it doesn’t make a lot of sense to try to compare your raw score of 2 on the extraversion questionnaire to your raw score of 35 on the grumpiness questionnaire. The raw scores for the two variables are “about” fundamentally different things, so this would be like comparing apples to oranges. But if you standardize them, they will still become comparable in some sense.

+

Let’s also examine the score of 35 out of 50 for grumpiness. Would this mean that you’re 70% grumpy? Instead of interpreting raw data this way, it would make more sense if we describe your grumpiness in terms of the overall distribution of the grumpiness of humans which is possible through standardisation i.e. where do you lie on the grumpiness spectrum of the all humans? ;)

+ + + +
#Try it out yourself
+#Define a vector with Grumpiness scores of you and your friends and find the z score for your self
+X =                        
+z = (X - mean(X)) / sd(X)
+ + + +

Reference: Chapter 5, Winter B.

+
+
+
+

Correlation

+

So far we have focused entirely on how to construct descriptive statistics for a single variable. We haven’t talked about how to describe the relationships between variables in the data. To do that, we want to talk mostly about the correlation between variables.

+ + + +
#Let's load some data
+load( "parenthood.Rdata" )
+who(TRUE)
+ + +
   -- Name --     -- Class --   -- Size --
+   parenthood     data.frame    100 x 4   
+    $dan.sleep    numeric       100       
+    $baby.sleep   numeric       100       
+    $dan.grump    numeric       100       
+    $day          integer       100       
+ + + + + + +
#Try describe() for the above dataframe
+ + + + + + +
#Let's also take a graphical look at the data 
+hist(parenthood$dan.sleep)
+ + +

+ + +

+#Try plotting for the other 2 variables
+
+ + + +

But we now want to take a look at the relationship between two variables. n order to visualize that, it is better to plot a scatter plot. (Plotting graphs will be covered in detail a separate notebook).

+

Brief note on Scatterplots:

+

In this kind of plot, each observation corresponds to one dot: the horizontal location of the dot plots the value of the observation on one variable, and the vertical location displays its value on the other variable. In many situations you don’t really have a clear opinion about what the causal relationship is (e.g., does A cause B, or does B cause A, or does some other variable C controls both A and B). If that’s the case, it doesn’t really matter which variable you plot on the x-axis and which one you plot on the y-axis. However, in many situations you do have a pretty strong idea which variable you think is most likely to be causal, or at least you have some suspicions in that direction. If so, then it’s conventional to plot the cause variable on the x-axis, and the effect variable on the y-axis.

+

Suppose our goal is to draw a scatterplot displaying the relationship between the amount of sleep that Dan gets (dan.sleep) and how grumpy she is the next day (dan.grump). Do you suspect a causal relationship here?

+

A simple way to plot these scatter plots is to use the scatterplot() function in the car package.

+

Let’s load the package and get started.

+ + + +
install.packages("car")
+ + +
Installing package into ‘/cloud/lib/x86_64-pc-linux-gnu-library/4.1’
+(as ‘lib’ is unspecified)
+trying URL 'http://package-proxy/focal/src/contrib/car_3.0-11.tar.gz'
+Content type 'application/x-tar' length 1569269 bytes (1.5 MB)
+==================================================
+downloaded 1.5 MB
+
+* installing *binary* package ‘car’ ...
+* DONE (car)
+
+The downloaded source packages are in
+    ‘/tmp/Rtmpj4OOz7/downloaded_packages’
+ + +
install.packages("Rcpp")
+ + +
Installing package into ‘/cloud/lib/x86_64-pc-linux-gnu-library/4.1’
+(as ‘lib’ is unspecified)
+trying URL 'http://package-proxy/focal/src/contrib/Rcpp_1.0.7.tar.gz'
+Content type 'application/x-tar' length 4189703 bytes (4.0 MB)
+==================================================
+downloaded 4.0 MB
+
+* installing *binary* package ‘Rcpp’ ...
+* DONE (Rcpp)
+
+The downloaded source packages are in
+    ‘/tmp/Rtmpj4OOz7/downloaded_packages’
+ + + + + + +
library(car)
+ + +
Loading required package: carData
+Registered S3 method overwritten by 'data.table':
+  method           from
+  print.data.table     
+
+Attaching package: ‘car’
+
+The following object is masked from ‘package:psych’:
+
+    logit
+ + +
scatterplot( dan.grump ~ dan.sleep, data = parenthood, regLine = FALSE, smooth = FALSE)
+ + +

+ + +
scatterplot
+ + +
function (x, ...) 
+{
+    UseMethod("scatterplot")
+}
+<bytecode: 0x5578de5c2560>
+<environment: namespace:car>
+ + + + + + +
#Plot a scatter plot for baby.sleep and dan.grump variables
+ + + +

Just by plain observation and comparison, you can see that the relationship is qualitatively the same in both cases: more sleep equals less grump! However, it’s also pretty obvious that the relationship between dan.sleep and dan.grump is stronger than the relationship between baby.sleep and dan.grump.

+

But what about the plot between baby.sleep and dan.sleep?

+ + + +
#Plot baby sleep and dan sleep here
+ + + +

Is the direction of this plot same as the earlier plots? What about strength?

+
+
Correlation coefficient
+

In order to to quantitatively represent the relationships of strength and direction we discussed above, we can use correlation coefficient.

+

The correlation coefficient (or Pearson’s correlation coefficient) between two variables X and Y (sometimes denoted rXY ) is a measure that varies from -1 to 1. When r = -1 it means that we have a perfect negative relationship, and when r = 1 it means we have a perfect positive relationship. When r = 0, there’s no relationship at all.

+

Look at the plots for different r values:

+
+ +

Correlation plots

+
+
+
+
Covariance
+

The covariance between two variables X and Y is a generalisation of the notion of the variance; it’s a mathematically simple way of describing the relationship between two variables:

+

\[\begin{align*} + + Cov (X, Y) = \frac{1}{N-1}\sum_{i=1}^{N} (X- \overline{X} ) (Y- \overline{Y} ) \\ + + \end{align*}\]

+

Covariance can be understood as an “average cross product” between X and Y . The covariance has the nice property that, if X and Y are entirely unrelated, then the covariance is exactly zero. If it is positive, then the covariance is also positive; and if the relationship is negative then the covariance is also negative. But as it has weird units (try seeing for yourself), it si difficult to interpret and therefore we standardise the covariance, the exact same way that the z-score standardises a raw score: by dividing by the standard deviation. However, because we have two variables that contribute to the covariance, the standardisation only works if we divide by both standard deviations.

+

This is what we call as the correlation coefficent, r:

+

\[\begin{align*} + + r~XY~ = \frac{Cov(X,Y)}{\sigma_{X} \sigma_{Y}} + +\end{align*}\]

+

This way, covariance properties are retained and it also becomes interpretable.

+

Now let’s check out how to code this using cor().

+ + + +
cor(x = parenthood$dan.sleep, y = parenthood$dan.grump)
+
+#Try giving the entire dataframe 'parenthood' as input in cor()
+ + + +

What did you find?

+
+
+
What does r = 0.4 mean?
+

It really depends on what you want to use the data for, and on how strong the correlations in your field tend to be.

+
+ +

Correlation coefficient interpretation table

+
+

Now let’s take a look at this data called “Anscombe’s Quartet”

+ + + +
load( "anscombesquartet.Rdata" )
+cor( X1, Y1 )
+ + +
[1] 0.8164205
+ + +
cor( X2, Y2 )
+ + +
[1] 0.8162365
+ + +
cor (X3, Y3)
+ + +
[1] 0.8162867
+ + +
cor (X4, Y4)
+ + +
[1] 0.8165214
+ + + +

Were the correlation coefficients same?

+

Now try plotting them.

+ + + +
scatterplot(x = X1, y = Y1,regLine = FALSE, smooth = FALSE)
+ + +

+ + +
scatterplot(x = X2, y = Y2,regLine = FALSE, smooth = FALSE)
+ + +

+ + +
scatterplot(x = X3, y = Y3,regLine = FALSE, smooth = FALSE)
+ + +

+ + +
scatterplot(x = X4, y = Y4,regLine = FALSE, smooth = FALSE)
+ + +

+ + +
NA
+NA
+ + + +

Therefore, remember to always look at the scatterplot before attaching any interpretation to the data!

+

If we have to properly define the role of Pearson’s coefficient, we can say that it actually measures the strength of the linear relationship between two variables. In other words, it gives a measure of the extent to which the data all tend to fall on a single, perfectly straight line.

+
+
+
Spearman’s Rank Order Correlation Coefficient
+

But let’s take a look at another dataset and find correlation between its variables.

+ + + +
load( "effort.Rdata" )
+effort
+ + +
+ +
+ + +
cor( effort$hours, effort$grade )
+ + +
[1] 0.909402
+ + + +

If you plot this -

+ + + +
scatterplot(effort$hours, effort$grade, regLine = TRUE, smooth = FALSE)
+ + +

+ + + +

The correlation r = 0.91 we get above doe snot represent the actual relationship the plot is depicting. What we’re looking for is something that captures the fact that there is a perfect ordinal relationship here. That is, if student 1 works more hours than student 2, then we can guarantee that student 1 will get the better grade.

+

If we’re looking for ordinal relationships, all we have to do is treat the data as if it were ordinal scale! So, instead of measuring effort in terms of “hours worked”, let’s rank all 10 of the students in order of hours worked. That is, student 1 did the least work out of anyone (2 hours) so they get the lowest rank (rank = 1). Student 4 was the next laziest, putting in only 6 hours of work in over the whole semester, so they get the next lowest rank (rank = 2).

+ + + +
hours.rank <- rank( effort$hours )   # rank students by hours worked
+grade.rank <- rank( effort$grade )   # rank students by grade received
+
+#Now try cor() function for these
+cor( hours.rank, grade.rank )
+ + + +

Now the correlation coefficient we get is different from the Perason’s correlation coefficient r we got earlier. This new correlation coefficient that we got is called ‘Spearman’s Correlation Coefficient’, denoted by \(\rho\).

+ + + +
#Execute this and compare with the correlation coefficient we got above
+cor( effort$hours, effort$grade, method = "spearman")
+ + + +
+
+
the correlate() function
+

Try using this function to find the relationship between several variables in a dataframe at once.

+
+
+
Handling missing values
+

We’ve seen in earlier lectures that there could be missing values in data which are represented by NA in R. One easy way to remove them is using na.rm = TRUE as argument in many functions.

+

But what if we have missing values in a dataframe where we have to find correlations across variables.

+

Let’s look at such a dataset.

+ + + +
load( "parenthood2.Rdata" )
+print( parenthood2 )
+ + +
+ +
+ + +
describe( parenthood2 ) 
+ + +
+ +
+ + +
#Check how many missing values are there for each variable - compare the values in 'n' with the number of days.
+ + + +

Now, let’s try finding correlations for this dataframe.

+ + + +
cor(parenthood2)
+ + +
           dan.sleep baby.sleep dan.grump day
+dan.sleep          1         NA        NA  NA
+baby.sleep        NA          1        NA  NA
+dan.grump         NA         NA         1  NA
+day               NA         NA        NA   1
+ + + +

In order top overcome this problem, we can use use as an argument in the cor() function. Try out the following.

+ + + +
cor(parenthood2, use = "complete.obs")
+ + +
             dan.sleep baby.sleep   dan.grump         day
+dan.sleep   1.00000000  0.6394985 -0.89951468  0.06132891
+baby.sleep  0.63949845  1.0000000 -0.58656066  0.14555814
+dan.grump  -0.89951468 -0.5865607  1.00000000 -0.06816586
+day         0.06132891  0.1455581 -0.06816586  1.00000000
+ + +
cor(parenthood2, use = "pairwise.complete.obs")
+ + +
             dan.sleep  baby.sleep    dan.grump          day
+dan.sleep   1.00000000  0.61472303 -0.903442442 -0.076796665
+baby.sleep  0.61472303  1.00000000 -0.567802669  0.058309485
+dan.grump  -0.90344244 -0.56780267  1.000000000  0.005833399
+day        -0.07679667  0.05830949  0.005833399  1.000000000
+ + + +

When we choose use = "complete.obs", R will completely ignore all cases (i.e., all rows in our parenthood2 data frame) that have any missing values at all. For eg., if you choose use = “complete.obs” R will ignore that row completely: that is, even when it’s trying to calculate the correlation between dan.sleep and dan.grump, observation 1 will be ignored, because the value of baby.sleep is missing for that observation.

+

Whereas when we set use = "pairwise.complete.obs" R only looks at the variables that it’s trying to correlate when determining what to drop. So, for instance, since the only missing value for observation 1 of parenthood2 is for baby.sleep R will only drop observation 1 when baby.sleep is one of the variables involved: and so R keeps observation 1 when trying to correlate dan.sleep and dan.grump.

+

The above operation can also be performed by another function called correlate() in lsr package.

+

Try it out.

+ + + +
#Try correlate() for parenthood2 here
+ + + +

Reference : Chapter 5, D. Navarro

+

That’s all folks!

+ +
+
+ +
LS0tCnRpdGxlOiAiRGVzY3JpcHRpdmUgU3RhdGlzdGljczogU2NhbGluZyBhbmQgQ29ycmVsYXRpb25zIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgpBZnRlciB0YWtpbmcgYSBmaXJzdCBsb29rIGF0IG91ciBkYXRhIGluIHRoZSBsYXN0IG5vdGVib29rLCBub3cgd2Ugd2FudCB0byBzdGFydCBsb29raW5nIGF0IGl0IG1vcmUgY2xvc2VseSBhcyBwZXIgb3VyIG5lZWRzIGFuZCByZXF1aXJlbWVudHMuIAoKIyMjIyBTY2FsaW5nCgpJbiBzaW1wbGUgdGVybXMsIHNjYWxpbmcgcmVmZXJzIHRvIGNoYW5naW5nIHNpemUgb2YgYW4gb2JqZWN0IHdpdGhvdXQgYWZmZWN0aW5nIGl0cyBzaGFwZS4KCiMjIyMjIExpbmVhciBUcmFuc2Zvcm1hdGlvbjoKCkEgbGluZWFyIHRyYW5zZm9ybWF0aW9uIGludm9sdmVzIGFkZGl0aW9uLCBzdWJ0cmFjdGlvbiwgbXVsdGlwbGljYXRpb24sIG9yIGRpdmlzaW9uIHdpdGggYSBjb25zdGFudCB2YWx1ZS4gRm9yIGV4YW1wbGUsIGlmIHlvdSBhZGQgMSB0byB0aGUgbnVtYmVycyAyLCA0LCBhbmQgNiwgdGhlIHJlc3VsdGluZyBudW1iZXJzICgzLCA1LCBhbmQgNykgYXJlIGEgbGluZWFyIHRyYW5zZm9ybWF0aW9uIG9mIHRoZSBvcmlnaW5hbCBudW1iZXJzLiAKTGluZWFyIHRyYW5zZm9ybWF0aW9ucyBhcmUgdXNlZnVsLCBiZWNhdXNlIHRoZXkgYWxsb3cgeW91IHRvIHJlcHJlc2VudCB5b3VyIGRhdGEgaW4gYSBtZXRyaWMgdGhhdCBpcyBzdWl0YWJsZSB0byB5b3UgYW5kIHlvdXIgYXVkaWVuY2UuCgoqKkNlbnRlcmluZzoqKgoK4oCYQ2VudGVyaW5n4oCZIGlzIGEgcGFydGljdWxhcmx5IGNvbW1vbiBsaW5lYXIgdHJhbnNmb3JtYXRpb24uIFRoaXMgbGluZWFyIHRyYW5zZm9yLSBtYXRpb24gaXMgZnJlcXVlbnRseSBhcHBsaWVkIHRvIGNvbnRpbnVvdXMgcHJlZGljdG9yIHZhcmlhYmxlcy4gClRvIGNlbnRlciBhIHByZWRpY3RvciB2YXJpYWJsZSwgc3VidHJhY3QgdGhlIG1lYW4gb2YgdGhhdCBwcmVkaWN0b3IgdmFyaWFibGUgZnJvbSBlYWNoIGRhdGEgcG9pbnQuIEFzIGEgcmVzdWx0LCBlYWNoIGRhdGEgcG9pbnQgaXMgZXhwcmVzc2VkIGluIHRlcm1zIG9mIGhvdyBtdWNoIGl0IGlzIGFib3ZlIHRoZSBtZWFuIChwb3NpdGl2ZSBzY29yZSkgb3IgYmVsb3cgdGhlIG1lYW4gKG5lZ2F0aXZlIHNjb3JlKS4gVGh1cywgc3VidHJhY3RpbmcgdGhlIG1lYW4gb3V0IG9mIHRoZSB2YXJpYWJsZSBleHByZXNzZXMgZWFjaCBkYXRhIHBvaW50IGFzIGEgbWVhbi1kZXZpYXRpb24gc2NvcmUuIFRoZSB2YWx1ZSB6ZXJvIG5vdyBoYXMgYSBuZXcgbWVhbmluZyBmb3IgdGhpcyB2YXJpYWJsZTogaXQgaXMgYXQgdGhlIOKAmGNlbnRlcuKAmSBvZiB0aGUgdmFyaWFibGXigJlzIGRpc3RyaWJ1dGlvbiwgbmFtZWx5LCB0aGUgbWVhbi4KCioqU3RhbmRhcmRpemluZzoqKgoKQSBzZWNvbmQgY29tbW9uIGxpbmVhciB0cmFuc2Zvcm1hdGlvbiBpcyDigJhzdGFuZGFyZGl6aW5n4oCZIG9yIOKAmHrigJNzY29yaW5n4oCZLiBGb3Igc3RhbmRhcmRpemluZywgdGhlIGNlbnRlcmVkIHZhcmlhYmxlIGlzIGRpdmlkZWQgYnkgdGhlIHN0YW5kYXJkIGRldmlhdGlvbiBvZiB0aGUgc2FtcGxlLgoKTGV0J3MgbG9vayBhdCBhbiBleGFtcGxlOiAKClRoZSBmb2xsb3dpbmcgYXJlIHJlc3BvbnNlIGR1cmF0aW9ucyBmcm9tIGEgcHN5Y2hvbGluZ3Vpc3RpYyBleHBlcmltZW50OgoKYDQ2MG1zIDQ4MG1zIDUwMG1zIDUyMG1zIDU0MG1zYAoKVGhlIG1lYW4gb2YgdGhlc2UgZml2ZSBudW1iZXJzIGlzIGA1MDBtc2AuIAoKQ2VudGVyaW5nIHRoZXNlIG51bWJlcnMgcmVzdWx0cyBpbiB0aGUgZm9sbG93aW5nOgoKYOKIkiA0MG1zIOKIkiAyMG1zIDBtcyArMjBtcyArIDQwbXNgCgpUaGUgc3RhbmRhcmQgZGV2aWF0aW9uIChsZWFybnQgaW4gbGFzdCBub3RlYm9vaykgZm9yIHRoZXNlIG51bWJlcnMgaXMgYH4zMm1zYC4gCgpUbyDigJhzdGFuZGFyZGl6ZeKAmSwgd2UgaGF2ZSB0byBkaXZpZGUgdGhlIGNlbnRlcmVkIGRhdGEgYnkgdGhlIHN0YW5kYXJkIGRldmlhdGlvbi4gRm9yIGV4YW1wbGUsIHRoZSBmaXJzdCBwb2ludCwgYOKAkzQwbXNgLCBkaXZpZGVkIGJ5IGAzMm1zYCwgeWllbGRzIGDigJMxLjNgLiBTaW5jZSBlYWNoIGRhdGEgcG9pbnQgaXMgZGl2aWRlZCBieSB0aGUgc2FtZSBudW1iZXIsIHRoaXMgY2hhbmdlIHF1YWxpZmllcyBhcyBhIGxpbmVhciB0cmFuc2Zvcm1hdGlvbi4KCkFzIGEgcmVzdWx0IG9mIHN0YW5kYXJkaXphdGlvbiwgeW91IGdldCB0aGUgZm9sbG93aW5nIG51bWJlcnMgKHJvdW5kZWQgdG8gb25lIGRpZ2l0KToKCmDiiJIxLjN6IOKIkiAwLjZ6IDB6ICsgMC42eiArMS4zemAKClRoZSByYXcgcmVzcG9uc2UgZHVyYXRpb24gYDQ2MG1zYCBpcyBg4oCTNDBtc2AgKGFmdGVyIGNlbnRlcmluZyksIHdoaWNoIGNvcnJlc3BvbmRzIHRvIGJlaW5nIGAxLjNgIHN0YW5kYXJkIGRldmlhdGlvbnMgYmVsb3cgdGhlIG1lYW4uIFRodXMsIHN0YW5kYXJkaXphdGlvbiBpbnZvbHZlcyByZS1leHByZXNzaW5nIHRoZSBkYXRhIGluIHRlcm1zIG9mICoqaG93IG1hbnkgc3RhbmRhcmQgZGV2aWF0aW9ucyB0aGV5IGFyZSBhd2F5IGZyb20gdGhlIG1lYW4qKi4KCiMjIyMjIEJ1dCB3aHkgdGhpcyBleHRyYSBlZmZvcnQ/CgpTdGFuZGFyZGl6aW5nIGlzIGEgd2F5IG9mIGdldHRpbmcgcmlkIG9mIGEgdmFyaWFibGXigJlzIG1ldHJpYy4gSW4gYSBzaXR1YXRpb24gd2l0aCBtdWx0aXBsZSB2YXJpYWJsZXMsIGVhY2ggdmFyaWFibGUgbWF5IGhhdmUgYSBkaWZmZXJlbnQgc3RhbmRhcmQgZGV2aWF0aW9uLCBidXQgYnkgZGl2aWRpbmcgZWFjaCB2YXJpYWJsZSBieSB0aGUgcmVzcGVjdGl2ZSBzdGFuZGFyZCBkZXZpYXRpb24sIGl0IGlzIHBvc3NpYmxlIHRvIGNvbnZlcnQgYWxsIHZhcmlhYmxlcyBpbnRvIGEgc2NhbGUgb2YgKipzdGFuZGFyZCB1bml0cyoqLiBUaGlzIHNvbWV0aW1lcyBtYXkgaGVscCBpbiBtYWtpbmcgdmFyaWFibGVzIGNvbXBhcmFibGUsIGZvciBleGFtcGxlLCB3aGVuIGFzc2Vzc2luZyB0aGUgcmVsYXRpdmUgaW1wYWN0IG9mIG11bHRpcGxlIHByZWRpY3RvcnMuIEZvciBleGFtcGxlLCBpZiB5b3UgY2FuIGltYWdpbmUgd2UgaGF2ZSB0d28gcXVlc3Rpb25uYWlyZXMgLSBvbmUgZm9yIGV4dHJhdmVyc2lvbiB3aGVyZSB5b3Ugc2NvcmVkIDIgb3V0IG9mIDEwIGFuZCB0aGUgb3RoZXIgZm9yIGdydW1waW5lc3Mgd2hlcmUgeW91IHNjb3JlZCAzNSBvdXQgb2YgNTAsIHRoZW4gaXQgZG9lc27igJl0IG1ha2UgYSBsb3Qgb2Ygc2Vuc2UgdG8gdHJ5IHRvIGNvbXBhcmUgeW91ciByYXcgc2NvcmUgb2YgMiBvbiB0aGUgZXh0cmF2ZXJzaW9uIHF1ZXN0aW9ubmFpcmUgdG8geW91ciByYXcgc2NvcmUgb2YgMzUgb24gdGhlIGdydW1waW5lc3MgcXVlc3Rpb25uYWlyZS4gVGhlIHJhdyBzY29yZXMgZm9yIHRoZSB0d28gdmFyaWFibGVzIGFyZSDigJxhYm91dOKAnSBmdW5kYW1lbnRhbGx5IGRpZmZlcmVudCB0aGluZ3MsIHNvIHRoaXMgd291bGQgYmUgbGlrZSBjb21wYXJpbmcgYXBwbGVzIHRvIG9yYW5nZXMuIEJ1dCBpZiB5b3Ugc3RhbmRhcmRpemUgdGhlbSwgdGhleSB3aWxsIHN0aWxsIGJlY29tZSBjb21wYXJhYmxlIGluIHNvbWUgc2Vuc2UuCgpMZXQncyBhbHNvIGV4YW1pbmUgdGhlIHNjb3JlIG9mIDM1IG91dCBvZiA1MCBmb3IgZ3J1bXBpbmVzcy4gV291bGQgdGhpcyBtZWFuIHRoYXQgeW91J3JlIDcwJSBncnVtcHk/IEluc3RlYWQgb2YgaW50ZXJwcmV0aW5nIHJhdyBkYXRhIHRoaXMgd2F5LCBpdCB3b3VsZCBtYWtlIG1vcmUgc2Vuc2UgaWYgd2UgZGVzY3JpYmUgeW91ciBncnVtcGluZXNzIGluIHRlcm1zIG9mIHRoZSBvdmVyYWxsIGRpc3RyaWJ1dGlvbiBvZiB0aGUgZ3J1bXBpbmVzcyBvZiBodW1hbnMgd2hpY2ggaXMgcG9zc2libGUgdGhyb3VnaCAgc3RhbmRhcmRpc2F0aW9uIGkuZS4gd2hlcmUgZG8geW91IGxpZSBvbiB0aGUgZ3J1bXBpbmVzcyBzcGVjdHJ1bSBvZiB0aGUgYWxsIGh1bWFucz8gOykKCmBgYHtyfQojVHJ5IGl0IG91dCB5b3Vyc2VsZgojRGVmaW5lIGEgdmVjdG9yIHdpdGggR3J1bXBpbmVzcyBzY29yZXMgb2YgeW91IGFuZCB5b3VyIGZyaWVuZHMgYW5kIGZpbmQgdGhlIHogc2NvcmUgZm9yIHlvdXIgc2VsZgpYID0gICAgICAgICAgICAgICAgICAgICAgICAKeiA9IChYIC0gbWVhbihYKSkgLyBzZChYKQpgYGAKCl9SZWZlcmVuY2U6IENoYXB0ZXIgNSwgV2ludGVyIEIuXwoKIyMjIyBDb3JyZWxhdGlvbgoKU28gZmFyIHdlIGhhdmUgZm9jdXNlZCBlbnRpcmVseSBvbiBob3cgdG8gY29uc3RydWN0IGRlc2NyaXB0aXZlIHN0YXRpc3RpY3MgZm9yIGEgc2luZ2xlIHZhcmlhYmxlLiBXZSBoYXZlbuKAmXQgdGFsa2VkIGFib3V0IGhvdyB0byBkZXNjcmliZSB0aGUgcmVsYXRpb25zaGlwcyBiZXR3ZWVuIHZhcmlhYmxlcyBpbiB0aGUgZGF0YS4gVG8gZG8gdGhhdCwgd2Ugd2FudCB0byB0YWxrIG1vc3RseSBhYm91dCB0aGUgY29ycmVsYXRpb24gYmV0d2VlbiB2YXJpYWJsZXMuCgpgYGB7cn0KI0xldCdzIGxvYWQgc29tZSBkYXRhCmxvYWQoICJwYXJlbnRob29kLlJkYXRhIiApCndobyhUUlVFKQpgYGAKCmBgYHtyfQojVHJ5IGRlc2NyaWJlKCkgZm9yIHRoZSBhYm92ZSBkYXRhZnJhbWUKYGBgCgoKYGBge3J9CiNMZXQncyBhbHNvIHRha2UgYSBncmFwaGljYWwgbG9vayBhdCB0aGUgZGF0YSAKaGlzdChwYXJlbnRob29kJGRhbi5zbGVlcCkKCiNUcnkgcGxvdHRpbmcgZm9yIHRoZSBvdGhlciAyIHZhcmlhYmxlcwoKYGBgCgpCdXQgd2Ugbm93IHdhbnQgdG8gdGFrZSBhIGxvb2sgYXQgdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHR3byB2YXJpYWJsZXMuIG4gb3JkZXIgdG8gdmlzdWFsaXplIHRoYXQsIGl0IGlzIGJldHRlciB0byBwbG90IGEgKipzY2F0dGVyIHBsb3QuKiogKFBsb3R0aW5nIGdyYXBocyB3aWxsIGJlIGNvdmVyZWQgaW4gZGV0YWlsIGEgc2VwYXJhdGUgbm90ZWJvb2spLgoKX0JyaWVmIG5vdGUgb24gU2NhdHRlcnBsb3RzOl8KCkluIHRoaXMga2luZCBvZiBwbG90LCBlYWNoIG9ic2VydmF0aW9uIGNvcnJlc3BvbmRzIHRvIG9uZSBkb3Q6IHRoZSBob3Jpem9udGFsIGxvY2F0aW9uIG9mIHRoZSBkb3QgcGxvdHMgdGhlIHZhbHVlIG9mIHRoZSBvYnNlcnZhdGlvbiBvbiBvbmUgdmFyaWFibGUsIGFuZCB0aGUgdmVydGljYWwgbG9jYXRpb24gZGlzcGxheXMgaXRzIHZhbHVlIG9uIHRoZSBvdGhlciB2YXJpYWJsZS4gSW4gbWFueSBzaXR1YXRpb25zIHlvdSBkb27igJl0IHJlYWxseSBoYXZlIGEgY2xlYXIgb3BpbmlvbiBhYm91dCB3aGF0IHRoZSBjYXVzYWwgcmVsYXRpb25zaGlwIGlzIChlLmcuLCBkb2VzIEEgY2F1c2UgQiwgb3IgZG9lcyBCIGNhdXNlIEEsIG9yIGRvZXMgc29tZSBvdGhlciB2YXJpYWJsZSBDIGNvbnRyb2xzIGJvdGggQSBhbmQgQikuIElmIHRoYXTigJlzIHRoZSBjYXNlLCBpdCBkb2VzbuKAmXQgcmVhbGx5IG1hdHRlciB3aGljaCB2YXJpYWJsZSB5b3UgcGxvdCBvbiB0aGUgeC1heGlzIGFuZCB3aGljaCBvbmUgeW91IHBsb3Qgb24gdGhlIHktYXhpcy4gSG93ZXZlciwgaW4gbWFueSBzaXR1YXRpb25zIHlvdSBkbyBoYXZlIGEgcHJldHR5IHN0cm9uZyBpZGVhIHdoaWNoIHZhcmlhYmxlIHlvdSB0aGluayBpcyBtb3N0IGxpa2VseSB0byBiZSBjYXVzYWwsIG9yIGF0IGxlYXN0IHlvdSBoYXZlIHNvbWUgc3VzcGljaW9ucyBpbiB0aGF0IGRpcmVjdGlvbi4gSWYgc28sIHRoZW4gaXTigJlzIGNvbnZlbnRpb25hbCB0byBwbG90IHRoZSAqKmNhdXNlKiogdmFyaWFibGUgb24gdGhlICoqeC1heGlzKiosIGFuZCB0aGUgKiplZmZlY3QqKiB2YXJpYWJsZSBvbiB0aGUgKip5LWF4aXMqKi4gCgpTdXBwb3NlIG91ciBnb2FsIGlzIHRvIGRyYXcgYSBzY2F0dGVycGxvdCBkaXNwbGF5aW5nIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiB0aGUgYW1vdW50IG9mIHNsZWVwIHRoYXQgRGFuIGdldHMgKGRhbi5zbGVlcCkgYW5kIGhvdyBncnVtcHkgc2hlIGlzIHRoZSBuZXh0IGRheSAoZGFuLmdydW1wKS4gX0RvIHlvdSBzdXNwZWN0IGEgY2F1c2FsIHJlbGF0aW9uc2hpcCBoZXJlP18KCkEgc2ltcGxlIHdheSB0byBwbG90IHRoZXNlIHNjYXR0ZXIgcGxvdHMgaXMgdG8gdXNlIHRoZSBzY2F0dGVycGxvdCgpIGZ1bmN0aW9uIGluIHRoZSBjYXIgcGFja2FnZS4gCgpMZXQncyBsb2FkIHRoZSBwYWNrYWdlIGFuZCBnZXQgc3RhcnRlZC4KCmBgYHtyfQppbnN0YWxsLnBhY2thZ2VzKCJjYXIiKQppbnN0YWxsLnBhY2thZ2VzKCJSY3BwIikKYGBgCgoKYGBge3J9CmxpYnJhcnkoY2FyKQpzY2F0dGVycGxvdCggZGFuLmdydW1wIH4gZGFuLnNsZWVwLCBkYXRhID0gcGFyZW50aG9vZCwgcmVnTGluZSA9IEZBTFNFLCBzbW9vdGggPSBGQUxTRSkKc2NhdHRlcnBsb3QKYGBgCgpgYGB7cn0KI1Bsb3QgYSBzY2F0dGVyIHBsb3QgZm9yIGJhYnkuc2xlZXAgYW5kIGRhbi5ncnVtcCB2YXJpYWJsZXMKYGBgCgoKSnVzdCBieSBwbGFpbiBvYnNlcnZhdGlvbiBhbmQgY29tcGFyaXNvbiwgeW91IGNhbiBzZWUgdGhhdCB0aGUgcmVsYXRpb25zaGlwIGlzIHF1YWxpdGF0aXZlbHkgdGhlIHNhbWUgaW4gYm90aCBjYXNlczogbW9yZSBzbGVlcCBlcXVhbHMgbGVzcyBncnVtcCEgSG93ZXZlciwgaXTigJlzIGFsc28gcHJldHR5IG9idmlvdXMgdGhhdCB0aGUgcmVsYXRpb25zaGlwIGJldHdlZW4gZGFuLnNsZWVwIGFuZCBkYW4uZ3J1bXAgaXMgc3Ryb25nZXIgdGhhbiB0aGUgcmVsYXRpb25zaGlwIGJldHdlZW4gYmFieS5zbGVlcCBhbmQgZGFuLmdydW1wLiAKCkJ1dCB3aGF0IGFib3V0IHRoZSBwbG90IGJldHdlZW4gYmFieS5zbGVlcCBhbmQgZGFuLnNsZWVwPwoKYGBge3J9CiNQbG90IGJhYnkgc2xlZXAgYW5kIGRhbiBzbGVlcCBoZXJlCmBgYAoKSXMgdGhlIGRpcmVjdGlvbiBvZiB0aGlzIHBsb3Qgc2FtZSBhcyB0aGUgZWFybGllciBwbG90cz8gV2hhdCBhYm91dCBzdHJlbmd0aD8KCiMjIyMjIENvcnJlbGF0aW9uIGNvZWZmaWNpZW50CgpJbiBvcmRlciB0byB0byBxdWFudGl0YXRpdmVseSByZXByZXNlbnQgdGhlIHJlbGF0aW9uc2hpcHMgb2Ygc3RyZW5ndGggYW5kIGRpcmVjdGlvbiB3ZSBkaXNjdXNzZWQgYWJvdmUsIHdlIGNhbiB1c2UgY29ycmVsYXRpb24gY29lZmZpY2llbnQuCgpUaGUgY29ycmVsYXRpb24gY29lZmZpY2llbnQgKG9yIFBlYXJzb24ncyBjb3JyZWxhdGlvbiBjb2VmZmljaWVudCkgYmV0d2VlbiB0d28gdmFyaWFibGVzIFggYW5kIFkgKHNvbWV0aW1lcyBkZW5vdGVkIF9yflhZfl8gKSBpcyBhIG1lYXN1cmUgdGhhdCB2YXJpZXMgZnJvbSAtMSB0byAxLiBXaGVuIF9yXyA9IC0xIGl0IG1lYW5zIHRoYXQgd2UgaGF2ZSBhIHBlcmZlY3QgbmVnYXRpdmUgcmVsYXRpb25zaGlwLCBhbmQgd2hlbiBfcl8gPSAxIGl0IG1lYW5zIHdlIGhhdmUgYSBwZXJmZWN0IHBvc2l0aXZlIHJlbGF0aW9uc2hpcC4gV2hlbiBfcl8gPSAwLCB0aGVyZeKAmXMgbm8gcmVsYXRpb25zaGlwIGF0IGFsbC4KCkxvb2sgYXQgdGhlIHBsb3RzIGZvciBkaWZmZXJlbnQgX3JfIHZhbHVlczoKCiFbQ29ycmVsYXRpb24gcGxvdHNdKGZpZyA0LnBuZykKCiMjIyMjIENvdmFyaWFuY2UKClRoZSBjb3ZhcmlhbmNlIGJldHdlZW4gdHdvIHZhcmlhYmxlcyBYIGFuZCBZIGlzIGEgZ2VuZXJhbGlzYXRpb24gb2YgdGhlIG5vdGlvbiBvZiB0aGUgdmFyaWFuY2U7IGl04oCZcyBhIG1hdGhlbWF0aWNhbGx5IHNpbXBsZSB3YXkgb2YgZGVzY3JpYmluZyB0aGUgcmVsYXRpb25zaGlwIGJldHdlZW4gdHdvIHZhcmlhYmxlczoKCiBcYmVnaW57YWxpZ24qfQogCiBDb3YgKFgsIFkpID0gXGZyYWN7MX17Ti0xfVxzdW1fe2k9MX1ee059IChYLSBcb3ZlcmxpbmV7WH0gKSAoWS0gXG92ZXJsaW5le1l9ICkgIFxcCiAKIFxlbmR7YWxpZ24qfQogCkNvdmFyaWFuY2UgY2FuIGJlIHVuZGVyc3Rvb2QgYXMgYW4g4oCcYXZlcmFnZSBjcm9zcyBwcm9kdWN04oCdIGJldHdlZW4gWCBhbmQgWSAuIFRoZSBjb3ZhcmlhbmNlIGhhcyB0aGUgbmljZSBwcm9wZXJ0eSB0aGF0LCBpZiBYIGFuZCBZIGFyZSBlbnRpcmVseSB1bnJlbGF0ZWQsIHRoZW4gdGhlIGNvdmFyaWFuY2UgaXMgZXhhY3RseSB6ZXJvLiBJZiBpdCBpcyBwb3NpdGl2ZSwgdGhlbiB0aGUgY292YXJpYW5jZSBpcyBhbHNvIHBvc2l0aXZlOyBhbmQgaWYgdGhlIHJlbGF0aW9uc2hpcCBpcyBuZWdhdGl2ZSB0aGVuIHRoZSBjb3ZhcmlhbmNlIGlzIGFsc28gbmVnYXRpdmUuIEJ1dCBhcyBpdCBoYXMgd2VpcmQgdW5pdHMgKHRyeSBzZWVpbmcgZm9yIHlvdXJzZWxmKSwgaXQgc2kgZGlmZmljdWx0IHRvIGludGVycHJldCBhbmQgdGhlcmVmb3JlIHdlIHN0YW5kYXJkaXNlIHRoZSBjb3ZhcmlhbmNlLCB0aGUgZXhhY3Qgc2FtZSB3YXkgdGhhdCB0aGUgei1zY29yZSBzdGFuZGFyZGlzZXMgYSByYXcgc2NvcmU6IGJ5IGRpdmlkaW5nIGJ5IHRoZSBzdGFuZGFyZCBkZXZpYXRpb24uIEhvd2V2ZXIsIGJlY2F1c2Ugd2UgaGF2ZSB0d28gdmFyaWFibGVzIHRoYXQgY29udHJpYnV0ZSB0byB0aGUgY292YXJpYW5jZSwgdGhlIHN0YW5kYXJkaXNhdGlvbiBvbmx5IHdvcmtzIGlmIHdlIGRpdmlkZSBieSBib3RoIHN0YW5kYXJkIGRldmlhdGlvbnMuIAoKVGhpcyBpcyB3aGF0IHdlIGNhbGwgYXMgdGhlIGNvcnJlbGF0aW9uIGNvZWZmaWNlbnQsIF9yXzoKClxiZWdpbnthbGlnbip9Cgogcn5YWX4gPSBcZnJhY3tDb3YoWCxZKX17XHNpZ21hX3tYfSBcc2lnbWFfe1l9fQoKXGVuZHthbGlnbip9CgpUaGlzIHdheSwgY292YXJpYW5jZSBwcm9wZXJ0aWVzIGFyZSByZXRhaW5lZCBhbmQgaXQgYWxzbyBiZWNvbWVzIGludGVycHJldGFibGUuCgpOb3cgbGV0J3MgY2hlY2sgb3V0IGhvdyB0byBjb2RlIHRoaXMgdXNpbmcgY29yKCkuCgpgYGB7cn0KY29yKHggPSBwYXJlbnRob29kJGRhbi5zbGVlcCwgeSA9IHBhcmVudGhvb2QkZGFuLmdydW1wKQoKI1RyeSBnaXZpbmcgdGhlIGVudGlyZSBkYXRhZnJhbWUgJ3BhcmVudGhvb2QnIGFzIGlucHV0IGluIGNvcigpCmBgYAoKV2hhdCBkaWQgeW91IGZpbmQ/CgojIyMjIyBXaGF0IGRvZXMgciA9IDAuNCBtZWFuPwoKSXQgcmVhbGx5IGRlcGVuZHMgb24gd2hhdCB5b3Ugd2FudCB0byB1c2UgdGhlIGRhdGEgZm9yLCBhbmQgb24gaG93IHN0cm9uZyB0aGUgY29ycmVsYXRpb25zIGluIHlvdXIgZmllbGQgdGVuZCB0byBiZS4KCiFbQ29ycmVsYXRpb24gY29lZmZpY2llbnQgaW50ZXJwcmV0YXRpb24gdGFibGVdKGZpZyA1LnBuZykKIApOb3cgbGV0J3MgdGFrZSBhIGxvb2sgYXQgdGhpcyBkYXRhIGNhbGxlZCAiQW5zY29tYmUncyBRdWFydGV0IgogCmBgYHtyfQpsb2FkKCAiYW5zY29tYmVzcXVhcnRldC5SZGF0YSIgKQpjb3IoIFgxLCBZMSApCmNvciggWDIsIFkyICkKY29yIChYMywgWTMpCmNvciAoWDQsIFk0KQpgYGAKCldlcmUgdGhlIGNvcnJlbGF0aW9uIGNvZWZmaWNpZW50cyBzYW1lPwoKTm93IHRyeSBwbG90dGluZyB0aGVtLgoKYGBge3J9CnNjYXR0ZXJwbG90KHggPSBYMSwgeSA9IFkxLHJlZ0xpbmUgPSBGQUxTRSwgc21vb3RoID0gRkFMU0UpCnNjYXR0ZXJwbG90KHggPSBYMiwgeSA9IFkyLHJlZ0xpbmUgPSBGQUxTRSwgc21vb3RoID0gRkFMU0UpCnNjYXR0ZXJwbG90KHggPSBYMywgeSA9IFkzLHJlZ0xpbmUgPSBGQUxTRSwgc21vb3RoID0gRkFMU0UpCnNjYXR0ZXJwbG90KHggPSBYNCwgeSA9IFk0LHJlZ0xpbmUgPSBGQUxTRSwgc21vb3RoID0gRkFMU0UpCgoKYGBgCgpUaGVyZWZvcmUsIHJlbWVtYmVyIHRvIGFsd2F5cyBsb29rIGF0IHRoZSBzY2F0dGVycGxvdCBiZWZvcmUgYXR0YWNoaW5nIGFueSBpbnRlcnByZXRhdGlvbiB0byB0aGUgZGF0YSEKCklmIHdlIGhhdmUgdG8gcHJvcGVybHkgZGVmaW5lIHRoZSByb2xlIG9mIFBlYXJzb24ncyBjb2VmZmljaWVudCwgd2UgY2FuIHNheSB0aGF0IGl0IGFjdHVhbGx5IG1lYXN1cmVzIHRoZSBzdHJlbmd0aCBvZiB0aGUgbGluZWFyIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHR3byB2YXJpYWJsZXMuIEluIG90aGVyIHdvcmRzLCBpdCBnaXZlcyBhIG1lYXN1cmUgb2YgdGhlIGV4dGVudCB0byB3aGljaCB0aGUgZGF0YSBhbGwgdGVuZCB0byBmYWxsIG9uIGEgc2luZ2xlLCBwZXJmZWN0bHkgc3RyYWlnaHQgbGluZS4KCiMjIyMjIFNwZWFybWFuJ3MgUmFuayBPcmRlciBDb3JyZWxhdGlvbiBDb2VmZmljaWVudAogCkJ1dCBsZXQncyB0YWtlIGEgbG9vayBhdCBhbm90aGVyIGRhdGFzZXQgYW5kIGZpbmQgY29ycmVsYXRpb24gYmV0d2VlbiBpdHMgdmFyaWFibGVzLgoKYGBge3J9CmxvYWQoICJlZmZvcnQuUmRhdGEiICkKZWZmb3J0CmNvciggZWZmb3J0JGhvdXJzLCBlZmZvcnQkZ3JhZGUgKQpgYGAKCklmIHlvdSBwbG90IHRoaXMgLSAKCmBgYHtyfQpzY2F0dGVycGxvdChlZmZvcnQkaG91cnMsIGVmZm9ydCRncmFkZSwgcmVnTGluZSA9IFRSVUUsIHNtb290aCA9IEZBTFNFKQpgYGAKClRoZSBjb3JyZWxhdGlvbiBfcl8gPSAwLjkxIHdlIGdldCBhYm92ZSBkb2Ugc25vdCByZXByZXNlbnQgdGhlIGFjdHVhbCByZWxhdGlvbnNoaXAgdGhlIHBsb3QgaXMgZGVwaWN0aW5nLiBXaGF0IHdl4oCZcmUgbG9va2luZyBmb3IgaXMgc29tZXRoaW5nIHRoYXQgY2FwdHVyZXMgdGhlIGZhY3QgdGhhdCB0aGVyZSBpcyBhIHBlcmZlY3QgKipvcmRpbmFsIHJlbGF0aW9uc2hpcCoqIGhlcmUuIFRoYXQgaXMsIGlmIHN0dWRlbnQgMSB3b3JrcyBtb3JlIGhvdXJzIHRoYW4gc3R1ZGVudCAyLCB0aGVuIHdlIGNhbiBndWFyYW50ZWUgdGhhdCBzdHVkZW50IDEgd2lsbCBnZXQgdGhlIGJldHRlciBncmFkZS4KCklmIHdl4oCZcmUgbG9va2luZyBmb3Igb3JkaW5hbCByZWxhdGlvbnNoaXBzLCBhbGwgd2UgaGF2ZSB0byBkbyBpcyB0cmVhdCB0aGUgZGF0YSBhcyBpZiBpdCB3ZXJlIG9yZGluYWwgc2NhbGUhIFNvLCBpbnN0ZWFkIG9mIG1lYXN1cmluZyBlZmZvcnQgaW4gdGVybXMgb2Yg4oCcaG91cnMgd29ya2Vk4oCdLCBsZXQncyByYW5rIGFsbCAxMCBvZiB0aGUgc3R1ZGVudHMgaW4gb3JkZXIgb2YgaG91cnMgd29ya2VkLiBUaGF0IGlzLCBzdHVkZW50IDEgZGlkIHRoZSBsZWFzdCB3b3JrIG91dCBvZiBhbnlvbmUgKDIgaG91cnMpIHNvIHRoZXkgZ2V0IHRoZSBsb3dlc3QgcmFuayAocmFuayA9IDEpLiBTdHVkZW50IDQgd2FzIHRoZSBuZXh0IGxhemllc3QsIHB1dHRpbmcgaW4gb25seSA2IGhvdXJzIG9mIHdvcmsgaW4gb3ZlciB0aGUgd2hvbGUgc2VtZXN0ZXIsIHNvIHRoZXkgZ2V0IHRoZSBuZXh0IGxvd2VzdCByYW5rIChyYW5rID0gMikuCgpgYGB7cn0KaG91cnMucmFuayA8LSByYW5rKCBlZmZvcnQkaG91cnMgKSAgICMgcmFuayBzdHVkZW50cyBieSBob3VycyB3b3JrZWQKZ3JhZGUucmFuayA8LSByYW5rKCBlZmZvcnQkZ3JhZGUgKSAgICMgcmFuayBzdHVkZW50cyBieSBncmFkZSByZWNlaXZlZAoKI05vdyB0cnkgY29yKCkgZnVuY3Rpb24gZm9yIHRoZXNlCmNvciggaG91cnMucmFuaywgZ3JhZGUucmFuayApCmBgYAoKTm93IHRoZSBjb3JyZWxhdGlvbiBjb2VmZmljaWVudCB3ZSBnZXQgaXMgZGlmZmVyZW50IGZyb20gdGhlIFBlcmFzb24ncyBjb3JyZWxhdGlvbiBjb2VmZmljaWVudCBfcl8gd2UgZ290IGVhcmxpZXIuIFRoaXMgbmV3IGNvcnJlbGF0aW9uIGNvZWZmaWNpZW50IHRoYXQgd2UgZ290IGlzIGNhbGxlZCAnKipTcGVhcm1hbidzIENvcnJlbGF0aW9uIENvZWZmaWNpZW50KionLCBkZW5vdGVkIGJ5ICRccmhvJC4KCmBgYHtyfQojRXhlY3V0ZSB0aGlzIGFuZCBjb21wYXJlIHdpdGggdGhlIGNvcnJlbGF0aW9uIGNvZWZmaWNpZW50IHdlIGdvdCBhYm92ZQpjb3IoIGVmZm9ydCRob3VycywgZWZmb3J0JGdyYWRlLCBtZXRob2QgPSAic3BlYXJtYW4iKQpgYGAKCiMjIyMjIHRoZSBjb3JyZWxhdGUoKSBmdW5jdGlvbgpUcnkgdXNpbmcgdGhpcyBmdW5jdGlvbiB0byBmaW5kIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBzZXZlcmFsIHZhcmlhYmxlcyBpbiBhIGRhdGFmcmFtZSBhdCBvbmNlLgoKCiMjIyMjIEhhbmRsaW5nIG1pc3NpbmcgdmFsdWVzCgpXZSd2ZSBzZWVuIGluIGVhcmxpZXIgbGVjdHVyZXMgdGhhdCB0aGVyZSBjb3VsZCBiZSBtaXNzaW5nIHZhbHVlcyBpbiBkYXRhIHdoaWNoIGFyZSByZXByZXNlbnRlZCBieSBgTkFgIGluIFIuIE9uZSBlYXN5IHdheSB0byByZW1vdmUgdGhlbSBpcyB1c2luZyBgbmEucm0gPSBUUlVFYCBhcyBhcmd1bWVudCBpbiBtYW55IGZ1bmN0aW9ucy4KCkJ1dCB3aGF0IGlmIHdlIGhhdmUgbWlzc2luZyB2YWx1ZXMgaW4gYSBkYXRhZnJhbWUgd2hlcmUgd2UgaGF2ZSB0byBmaW5kIGNvcnJlbGF0aW9ucyBhY3Jvc3MgdmFyaWFibGVzLgoKTGV0J3MgbG9vayBhdCBzdWNoIGEgZGF0YXNldC4KCmBgYHtyfQpsb2FkKCAicGFyZW50aG9vZDIuUmRhdGEiICkKcHJpbnQoIHBhcmVudGhvb2QyICkKZGVzY3JpYmUoIHBhcmVudGhvb2QyICkgCiNDaGVjayBob3cgbWFueSBtaXNzaW5nIHZhbHVlcyBhcmUgdGhlcmUgZm9yIGVhY2ggdmFyaWFibGUgLSBjb21wYXJlIHRoZSB2YWx1ZXMgaW4gJ24nIHdpdGggdGhlIG51bWJlciBvZiBkYXlzLgpgYGAKCk5vdywgbGV0J3MgdHJ5IGZpbmRpbmcgY29ycmVsYXRpb25zIGZvciB0aGlzIGRhdGFmcmFtZS4KCmBgYHtyfQpjb3IocGFyZW50aG9vZDIpCmBgYAoKSW4gb3JkZXIgdG9wIG92ZXJjb21lIHRoaXMgcHJvYmxlbSwgd2UgY2FuIHVzZSBgdXNlYCBhcyBhbiBhcmd1bWVudCBpbiB0aGUgY29yKCkgZnVuY3Rpb24uIFRyeSBvdXQgdGhlIGZvbGxvd2luZy4KCmBgYHtyfQpjb3IocGFyZW50aG9vZDIsIHVzZSA9ICJjb21wbGV0ZS5vYnMiKQpjb3IocGFyZW50aG9vZDIsIHVzZSA9ICJwYWlyd2lzZS5jb21wbGV0ZS5vYnMiKQpgYGAKCldoZW4gd2UgY2hvb3NlIGB1c2UgPSAiY29tcGxldGUub2JzImAsIFIgd2lsbCBjb21wbGV0ZWx5IGlnbm9yZSBhbGwgY2FzZXMgKGkuZS4sIGFsbCByb3dzIGluIG91ciBwYXJlbnRob29kMiBkYXRhIGZyYW1lKSB0aGF0IGhhdmUgYW55IG1pc3NpbmcgdmFsdWVzIGF0IGFsbC4gRm9yIGVnLiwgaWYgeW91IGNob29zZSB1c2UgPSAiY29tcGxldGUub2JzIiBSIHdpbGwgaWdub3JlIHRoYXQgcm93IGNvbXBsZXRlbHk6IHRoYXQgaXMsIGV2ZW4gd2hlbiBpdOKAmXMgdHJ5aW5nIHRvIGNhbGN1bGF0ZSB0aGUgY29ycmVsYXRpb24gYmV0d2VlbiBkYW4uc2xlZXAgYW5kIGRhbi5ncnVtcCwgb2JzZXJ2YXRpb24gMSB3aWxsIGJlIGlnbm9yZWQsIGJlY2F1c2UgdGhlIHZhbHVlIG9mIGJhYnkuc2xlZXAgaXMgbWlzc2luZyBmb3IgdGhhdCBvYnNlcnZhdGlvbi4KCldoZXJlYXMgd2hlbiB3ZSBzZXQgYHVzZSA9ICJwYWlyd2lzZS5jb21wbGV0ZS5vYnMiYCBSIG9ubHkgbG9va3MgYXQgdGhlIHZhcmlhYmxlcyB0aGF0IGl04oCZcyB0cnlpbmcgdG8gY29ycmVsYXRlIHdoZW4gZGV0ZXJtaW5pbmcgd2hhdCB0byBkcm9wLiBTbywgZm9yIGluc3RhbmNlLCBzaW5jZSB0aGUgb25seSBtaXNzaW5nIHZhbHVlIGZvciBvYnNlcnZhdGlvbiAxIG9mIHBhcmVudGhvb2QyIGlzIGZvciBiYWJ5LnNsZWVwIFIgd2lsbCBvbmx5IGRyb3Agb2JzZXJ2YXRpb24gMSB3aGVuIGJhYnkuc2xlZXAgaXMgb25lIG9mIHRoZSB2YXJpYWJsZXMgaW52b2x2ZWQ6IGFuZCBzbyBSIGtlZXBzIG9ic2VydmF0aW9uIDEgd2hlbiB0cnlpbmcgdG8gY29ycmVsYXRlIGRhbi5zbGVlcCBhbmQgZGFuLmdydW1wLgoKVGhlIGFib3ZlIG9wZXJhdGlvbiBjYW4gYWxzbyBiZSBwZXJmb3JtZWQgYnkgYW5vdGhlciBmdW5jdGlvbiBjYWxsZWQgYGNvcnJlbGF0ZSgpYCBpbiBgbHNyYCBwYWNrYWdlLgoKVHJ5IGl0IG91dC4KYGBge3J9CiNUcnkgY29ycmVsYXRlKCkgZm9yIHBhcmVudGhvb2QyIGhlcmUKYGBgCgpfUmVmZXJlbmNlIDogQ2hhcHRlciA1LCBELiBOYXZhcnJvXwoKVGhhdCdzIGFsbCBmb2xrcyEK
+ + + +
+ + + + + + + + + + + + + + + + From b03352e621ceb7fb49f13e5e8d39626cf043d2d5 Mon Sep 17 00:00:00 2001 From: Arjun Date: Tue, 7 Sep 2021 04:13:10 +0000 Subject: [PATCH 09/55] Added scale() and associated histograms --- Module 3/Notebooks/Module3_Nb2.Rmd | 16 ++++++++++++ Module 3/Notebooks/Module3_Nb2.nb.html | 34 +++++++++++++++++++++++++- 2 files changed, 49 insertions(+), 1 deletion(-) diff --git a/Module 3/Notebooks/Module3_Nb2.Rmd b/Module 3/Notebooks/Module3_Nb2.Rmd index 5d850e5b..879883c4 100644 --- a/Module 3/Notebooks/Module3_Nb2.Rmd +++ b/Module 3/Notebooks/Module3_Nb2.Rmd @@ -58,6 +58,22 @@ X = z = (X - mean(X)) / sd(X) ``` +Using scale() to center and normalize +```{r} +load("aflsmall.Rdata") +afl.margins_c <- scale(afl.margins, scale = FALSE) +afl.margins_z <- scale(afl.margins) +``` + +Plotting the histogram +```{r} +hist(afl.margins) +hist(afl.margins_c) +hist(afl.margins_z) +``` + + + _Reference: Chapter 5, Winter B._ #### Correlation diff --git a/Module 3/Notebooks/Module3_Nb2.nb.html b/Module 3/Notebooks/Module3_Nb2.nb.html index 01b7fc3f..25dd7025 100644 --- a/Module 3/Notebooks/Module3_Nb2.nb.html +++ b/Module 3/Notebooks/Module3_Nb2.nb.html @@ -252,6 +252,38 @@
But why this extra effort?
+

Using scale() to center and normalize

+ + + +
load("aflsmall.Rdata")
+
+ + + +

Plotting the histogram

+ + + +
hist(afl.margins)
+ + +

+ + +
hist(afl.margins_c)
+ + +

+ + +
hist(afl.margins_z)
+ + +

+ + +

Reference: Chapter 5, Winter B.

@@ -659,7 +691,7 @@
Handling missing values
-
LS0tCnRpdGxlOiAiRGVzY3JpcHRpdmUgU3RhdGlzdGljczogU2NhbGluZyBhbmQgQ29ycmVsYXRpb25zIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgpBZnRlciB0YWtpbmcgYSBmaXJzdCBsb29rIGF0IG91ciBkYXRhIGluIHRoZSBsYXN0IG5vdGVib29rLCBub3cgd2Ugd2FudCB0byBzdGFydCBsb29raW5nIGF0IGl0IG1vcmUgY2xvc2VseSBhcyBwZXIgb3VyIG5lZWRzIGFuZCByZXF1aXJlbWVudHMuIAoKIyMjIyBTY2FsaW5nCgpJbiBzaW1wbGUgdGVybXMsIHNjYWxpbmcgcmVmZXJzIHRvIGNoYW5naW5nIHNpemUgb2YgYW4gb2JqZWN0IHdpdGhvdXQgYWZmZWN0aW5nIGl0cyBzaGFwZS4KCiMjIyMjIExpbmVhciBUcmFuc2Zvcm1hdGlvbjoKCkEgbGluZWFyIHRyYW5zZm9ybWF0aW9uIGludm9sdmVzIGFkZGl0aW9uLCBzdWJ0cmFjdGlvbiwgbXVsdGlwbGljYXRpb24sIG9yIGRpdmlzaW9uIHdpdGggYSBjb25zdGFudCB2YWx1ZS4gRm9yIGV4YW1wbGUsIGlmIHlvdSBhZGQgMSB0byB0aGUgbnVtYmVycyAyLCA0LCBhbmQgNiwgdGhlIHJlc3VsdGluZyBudW1iZXJzICgzLCA1LCBhbmQgNykgYXJlIGEgbGluZWFyIHRyYW5zZm9ybWF0aW9uIG9mIHRoZSBvcmlnaW5hbCBudW1iZXJzLiAKTGluZWFyIHRyYW5zZm9ybWF0aW9ucyBhcmUgdXNlZnVsLCBiZWNhdXNlIHRoZXkgYWxsb3cgeW91IHRvIHJlcHJlc2VudCB5b3VyIGRhdGEgaW4gYSBtZXRyaWMgdGhhdCBpcyBzdWl0YWJsZSB0byB5b3UgYW5kIHlvdXIgYXVkaWVuY2UuCgoqKkNlbnRlcmluZzoqKgoK4oCYQ2VudGVyaW5n4oCZIGlzIGEgcGFydGljdWxhcmx5IGNvbW1vbiBsaW5lYXIgdHJhbnNmb3JtYXRpb24uIFRoaXMgbGluZWFyIHRyYW5zZm9yLSBtYXRpb24gaXMgZnJlcXVlbnRseSBhcHBsaWVkIHRvIGNvbnRpbnVvdXMgcHJlZGljdG9yIHZhcmlhYmxlcy4gClRvIGNlbnRlciBhIHByZWRpY3RvciB2YXJpYWJsZSwgc3VidHJhY3QgdGhlIG1lYW4gb2YgdGhhdCBwcmVkaWN0b3IgdmFyaWFibGUgZnJvbSBlYWNoIGRhdGEgcG9pbnQuIEFzIGEgcmVzdWx0LCBlYWNoIGRhdGEgcG9pbnQgaXMgZXhwcmVzc2VkIGluIHRlcm1zIG9mIGhvdyBtdWNoIGl0IGlzIGFib3ZlIHRoZSBtZWFuIChwb3NpdGl2ZSBzY29yZSkgb3IgYmVsb3cgdGhlIG1lYW4gKG5lZ2F0aXZlIHNjb3JlKS4gVGh1cywgc3VidHJhY3RpbmcgdGhlIG1lYW4gb3V0IG9mIHRoZSB2YXJpYWJsZSBleHByZXNzZXMgZWFjaCBkYXRhIHBvaW50IGFzIGEgbWVhbi1kZXZpYXRpb24gc2NvcmUuIFRoZSB2YWx1ZSB6ZXJvIG5vdyBoYXMgYSBuZXcgbWVhbmluZyBmb3IgdGhpcyB2YXJpYWJsZTogaXQgaXMgYXQgdGhlIOKAmGNlbnRlcuKAmSBvZiB0aGUgdmFyaWFibGXigJlzIGRpc3RyaWJ1dGlvbiwgbmFtZWx5LCB0aGUgbWVhbi4KCioqU3RhbmRhcmRpemluZzoqKgoKQSBzZWNvbmQgY29tbW9uIGxpbmVhciB0cmFuc2Zvcm1hdGlvbiBpcyDigJhzdGFuZGFyZGl6aW5n4oCZIG9yIOKAmHrigJNzY29yaW5n4oCZLiBGb3Igc3RhbmRhcmRpemluZywgdGhlIGNlbnRlcmVkIHZhcmlhYmxlIGlzIGRpdmlkZWQgYnkgdGhlIHN0YW5kYXJkIGRldmlhdGlvbiBvZiB0aGUgc2FtcGxlLgoKTGV0J3MgbG9vayBhdCBhbiBleGFtcGxlOiAKClRoZSBmb2xsb3dpbmcgYXJlIHJlc3BvbnNlIGR1cmF0aW9ucyBmcm9tIGEgcHN5Y2hvbGluZ3Vpc3RpYyBleHBlcmltZW50OgoKYDQ2MG1zIDQ4MG1zIDUwMG1zIDUyMG1zIDU0MG1zYAoKVGhlIG1lYW4gb2YgdGhlc2UgZml2ZSBudW1iZXJzIGlzIGA1MDBtc2AuIAoKQ2VudGVyaW5nIHRoZXNlIG51bWJlcnMgcmVzdWx0cyBpbiB0aGUgZm9sbG93aW5nOgoKYOKIkiA0MG1zIOKIkiAyMG1zIDBtcyArMjBtcyArIDQwbXNgCgpUaGUgc3RhbmRhcmQgZGV2aWF0aW9uIChsZWFybnQgaW4gbGFzdCBub3RlYm9vaykgZm9yIHRoZXNlIG51bWJlcnMgaXMgYH4zMm1zYC4gCgpUbyDigJhzdGFuZGFyZGl6ZeKAmSwgd2UgaGF2ZSB0byBkaXZpZGUgdGhlIGNlbnRlcmVkIGRhdGEgYnkgdGhlIHN0YW5kYXJkIGRldmlhdGlvbi4gRm9yIGV4YW1wbGUsIHRoZSBmaXJzdCBwb2ludCwgYOKAkzQwbXNgLCBkaXZpZGVkIGJ5IGAzMm1zYCwgeWllbGRzIGDigJMxLjNgLiBTaW5jZSBlYWNoIGRhdGEgcG9pbnQgaXMgZGl2aWRlZCBieSB0aGUgc2FtZSBudW1iZXIsIHRoaXMgY2hhbmdlIHF1YWxpZmllcyBhcyBhIGxpbmVhciB0cmFuc2Zvcm1hdGlvbi4KCkFzIGEgcmVzdWx0IG9mIHN0YW5kYXJkaXphdGlvbiwgeW91IGdldCB0aGUgZm9sbG93aW5nIG51bWJlcnMgKHJvdW5kZWQgdG8gb25lIGRpZ2l0KToKCmDiiJIxLjN6IOKIkiAwLjZ6IDB6ICsgMC42eiArMS4zemAKClRoZSByYXcgcmVzcG9uc2UgZHVyYXRpb24gYDQ2MG1zYCBpcyBg4oCTNDBtc2AgKGFmdGVyIGNlbnRlcmluZyksIHdoaWNoIGNvcnJlc3BvbmRzIHRvIGJlaW5nIGAxLjNgIHN0YW5kYXJkIGRldmlhdGlvbnMgYmVsb3cgdGhlIG1lYW4uIFRodXMsIHN0YW5kYXJkaXphdGlvbiBpbnZvbHZlcyByZS1leHByZXNzaW5nIHRoZSBkYXRhIGluIHRlcm1zIG9mICoqaG93IG1hbnkgc3RhbmRhcmQgZGV2aWF0aW9ucyB0aGV5IGFyZSBhd2F5IGZyb20gdGhlIG1lYW4qKi4KCiMjIyMjIEJ1dCB3aHkgdGhpcyBleHRyYSBlZmZvcnQ/CgpTdGFuZGFyZGl6aW5nIGlzIGEgd2F5IG9mIGdldHRpbmcgcmlkIG9mIGEgdmFyaWFibGXigJlzIG1ldHJpYy4gSW4gYSBzaXR1YXRpb24gd2l0aCBtdWx0aXBsZSB2YXJpYWJsZXMsIGVhY2ggdmFyaWFibGUgbWF5IGhhdmUgYSBkaWZmZXJlbnQgc3RhbmRhcmQgZGV2aWF0aW9uLCBidXQgYnkgZGl2aWRpbmcgZWFjaCB2YXJpYWJsZSBieSB0aGUgcmVzcGVjdGl2ZSBzdGFuZGFyZCBkZXZpYXRpb24sIGl0IGlzIHBvc3NpYmxlIHRvIGNvbnZlcnQgYWxsIHZhcmlhYmxlcyBpbnRvIGEgc2NhbGUgb2YgKipzdGFuZGFyZCB1bml0cyoqLiBUaGlzIHNvbWV0aW1lcyBtYXkgaGVscCBpbiBtYWtpbmcgdmFyaWFibGVzIGNvbXBhcmFibGUsIGZvciBleGFtcGxlLCB3aGVuIGFzc2Vzc2luZyB0aGUgcmVsYXRpdmUgaW1wYWN0IG9mIG11bHRpcGxlIHByZWRpY3RvcnMuIEZvciBleGFtcGxlLCBpZiB5b3UgY2FuIGltYWdpbmUgd2UgaGF2ZSB0d28gcXVlc3Rpb25uYWlyZXMgLSBvbmUgZm9yIGV4dHJhdmVyc2lvbiB3aGVyZSB5b3Ugc2NvcmVkIDIgb3V0IG9mIDEwIGFuZCB0aGUgb3RoZXIgZm9yIGdydW1waW5lc3Mgd2hlcmUgeW91IHNjb3JlZCAzNSBvdXQgb2YgNTAsIHRoZW4gaXQgZG9lc27igJl0IG1ha2UgYSBsb3Qgb2Ygc2Vuc2UgdG8gdHJ5IHRvIGNvbXBhcmUgeW91ciByYXcgc2NvcmUgb2YgMiBvbiB0aGUgZXh0cmF2ZXJzaW9uIHF1ZXN0aW9ubmFpcmUgdG8geW91ciByYXcgc2NvcmUgb2YgMzUgb24gdGhlIGdydW1waW5lc3MgcXVlc3Rpb25uYWlyZS4gVGhlIHJhdyBzY29yZXMgZm9yIHRoZSB0d28gdmFyaWFibGVzIGFyZSDigJxhYm91dOKAnSBmdW5kYW1lbnRhbGx5IGRpZmZlcmVudCB0aGluZ3MsIHNvIHRoaXMgd291bGQgYmUgbGlrZSBjb21wYXJpbmcgYXBwbGVzIHRvIG9yYW5nZXMuIEJ1dCBpZiB5b3Ugc3RhbmRhcmRpemUgdGhlbSwgdGhleSB3aWxsIHN0aWxsIGJlY29tZSBjb21wYXJhYmxlIGluIHNvbWUgc2Vuc2UuCgpMZXQncyBhbHNvIGV4YW1pbmUgdGhlIHNjb3JlIG9mIDM1IG91dCBvZiA1MCBmb3IgZ3J1bXBpbmVzcy4gV291bGQgdGhpcyBtZWFuIHRoYXQgeW91J3JlIDcwJSBncnVtcHk/IEluc3RlYWQgb2YgaW50ZXJwcmV0aW5nIHJhdyBkYXRhIHRoaXMgd2F5LCBpdCB3b3VsZCBtYWtlIG1vcmUgc2Vuc2UgaWYgd2UgZGVzY3JpYmUgeW91ciBncnVtcGluZXNzIGluIHRlcm1zIG9mIHRoZSBvdmVyYWxsIGRpc3RyaWJ1dGlvbiBvZiB0aGUgZ3J1bXBpbmVzcyBvZiBodW1hbnMgd2hpY2ggaXMgcG9zc2libGUgdGhyb3VnaCAgc3RhbmRhcmRpc2F0aW9uIGkuZS4gd2hlcmUgZG8geW91IGxpZSBvbiB0aGUgZ3J1bXBpbmVzcyBzcGVjdHJ1bSBvZiB0aGUgYWxsIGh1bWFucz8gOykKCmBgYHtyfQojVHJ5IGl0IG91dCB5b3Vyc2VsZgojRGVmaW5lIGEgdmVjdG9yIHdpdGggR3J1bXBpbmVzcyBzY29yZXMgb2YgeW91IGFuZCB5b3VyIGZyaWVuZHMgYW5kIGZpbmQgdGhlIHogc2NvcmUgZm9yIHlvdXIgc2VsZgpYID0gICAgICAgICAgICAgICAgICAgICAgICAKeiA9IChYIC0gbWVhbihYKSkgLyBzZChYKQpgYGAKCl9SZWZlcmVuY2U6IENoYXB0ZXIgNSwgV2ludGVyIEIuXwoKIyMjIyBDb3JyZWxhdGlvbgoKU28gZmFyIHdlIGhhdmUgZm9jdXNlZCBlbnRpcmVseSBvbiBob3cgdG8gY29uc3RydWN0IGRlc2NyaXB0aXZlIHN0YXRpc3RpY3MgZm9yIGEgc2luZ2xlIHZhcmlhYmxlLiBXZSBoYXZlbuKAmXQgdGFsa2VkIGFib3V0IGhvdyB0byBkZXNjcmliZSB0aGUgcmVsYXRpb25zaGlwcyBiZXR3ZWVuIHZhcmlhYmxlcyBpbiB0aGUgZGF0YS4gVG8gZG8gdGhhdCwgd2Ugd2FudCB0byB0YWxrIG1vc3RseSBhYm91dCB0aGUgY29ycmVsYXRpb24gYmV0d2VlbiB2YXJpYWJsZXMuCgpgYGB7cn0KI0xldCdzIGxvYWQgc29tZSBkYXRhCmxvYWQoICJwYXJlbnRob29kLlJkYXRhIiApCndobyhUUlVFKQpgYGAKCmBgYHtyfQojVHJ5IGRlc2NyaWJlKCkgZm9yIHRoZSBhYm92ZSBkYXRhZnJhbWUKYGBgCgoKYGBge3J9CiNMZXQncyBhbHNvIHRha2UgYSBncmFwaGljYWwgbG9vayBhdCB0aGUgZGF0YSAKaGlzdChwYXJlbnRob29kJGRhbi5zbGVlcCkKCiNUcnkgcGxvdHRpbmcgZm9yIHRoZSBvdGhlciAyIHZhcmlhYmxlcwoKYGBgCgpCdXQgd2Ugbm93IHdhbnQgdG8gdGFrZSBhIGxvb2sgYXQgdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHR3byB2YXJpYWJsZXMuIG4gb3JkZXIgdG8gdmlzdWFsaXplIHRoYXQsIGl0IGlzIGJldHRlciB0byBwbG90IGEgKipzY2F0dGVyIHBsb3QuKiogKFBsb3R0aW5nIGdyYXBocyB3aWxsIGJlIGNvdmVyZWQgaW4gZGV0YWlsIGEgc2VwYXJhdGUgbm90ZWJvb2spLgoKX0JyaWVmIG5vdGUgb24gU2NhdHRlcnBsb3RzOl8KCkluIHRoaXMga2luZCBvZiBwbG90LCBlYWNoIG9ic2VydmF0aW9uIGNvcnJlc3BvbmRzIHRvIG9uZSBkb3Q6IHRoZSBob3Jpem9udGFsIGxvY2F0aW9uIG9mIHRoZSBkb3QgcGxvdHMgdGhlIHZhbHVlIG9mIHRoZSBvYnNlcnZhdGlvbiBvbiBvbmUgdmFyaWFibGUsIGFuZCB0aGUgdmVydGljYWwgbG9jYXRpb24gZGlzcGxheXMgaXRzIHZhbHVlIG9uIHRoZSBvdGhlciB2YXJpYWJsZS4gSW4gbWFueSBzaXR1YXRpb25zIHlvdSBkb27igJl0IHJlYWxseSBoYXZlIGEgY2xlYXIgb3BpbmlvbiBhYm91dCB3aGF0IHRoZSBjYXVzYWwgcmVsYXRpb25zaGlwIGlzIChlLmcuLCBkb2VzIEEgY2F1c2UgQiwgb3IgZG9lcyBCIGNhdXNlIEEsIG9yIGRvZXMgc29tZSBvdGhlciB2YXJpYWJsZSBDIGNvbnRyb2xzIGJvdGggQSBhbmQgQikuIElmIHRoYXTigJlzIHRoZSBjYXNlLCBpdCBkb2VzbuKAmXQgcmVhbGx5IG1hdHRlciB3aGljaCB2YXJpYWJsZSB5b3UgcGxvdCBvbiB0aGUgeC1heGlzIGFuZCB3aGljaCBvbmUgeW91IHBsb3Qgb24gdGhlIHktYXhpcy4gSG93ZXZlciwgaW4gbWFueSBzaXR1YXRpb25zIHlvdSBkbyBoYXZlIGEgcHJldHR5IHN0cm9uZyBpZGVhIHdoaWNoIHZhcmlhYmxlIHlvdSB0aGluayBpcyBtb3N0IGxpa2VseSB0byBiZSBjYXVzYWwsIG9yIGF0IGxlYXN0IHlvdSBoYXZlIHNvbWUgc3VzcGljaW9ucyBpbiB0aGF0IGRpcmVjdGlvbi4gSWYgc28sIHRoZW4gaXTigJlzIGNvbnZlbnRpb25hbCB0byBwbG90IHRoZSAqKmNhdXNlKiogdmFyaWFibGUgb24gdGhlICoqeC1heGlzKiosIGFuZCB0aGUgKiplZmZlY3QqKiB2YXJpYWJsZSBvbiB0aGUgKip5LWF4aXMqKi4gCgpTdXBwb3NlIG91ciBnb2FsIGlzIHRvIGRyYXcgYSBzY2F0dGVycGxvdCBkaXNwbGF5aW5nIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiB0aGUgYW1vdW50IG9mIHNsZWVwIHRoYXQgRGFuIGdldHMgKGRhbi5zbGVlcCkgYW5kIGhvdyBncnVtcHkgc2hlIGlzIHRoZSBuZXh0IGRheSAoZGFuLmdydW1wKS4gX0RvIHlvdSBzdXNwZWN0IGEgY2F1c2FsIHJlbGF0aW9uc2hpcCBoZXJlP18KCkEgc2ltcGxlIHdheSB0byBwbG90IHRoZXNlIHNjYXR0ZXIgcGxvdHMgaXMgdG8gdXNlIHRoZSBzY2F0dGVycGxvdCgpIGZ1bmN0aW9uIGluIHRoZSBjYXIgcGFja2FnZS4gCgpMZXQncyBsb2FkIHRoZSBwYWNrYWdlIGFuZCBnZXQgc3RhcnRlZC4KCmBgYHtyfQppbnN0YWxsLnBhY2thZ2VzKCJjYXIiKQppbnN0YWxsLnBhY2thZ2VzKCJSY3BwIikKYGBgCgoKYGBge3J9CmxpYnJhcnkoY2FyKQpzY2F0dGVycGxvdCggZGFuLmdydW1wIH4gZGFuLnNsZWVwLCBkYXRhID0gcGFyZW50aG9vZCwgcmVnTGluZSA9IEZBTFNFLCBzbW9vdGggPSBGQUxTRSkKc2NhdHRlcnBsb3QKYGBgCgpgYGB7cn0KI1Bsb3QgYSBzY2F0dGVyIHBsb3QgZm9yIGJhYnkuc2xlZXAgYW5kIGRhbi5ncnVtcCB2YXJpYWJsZXMKYGBgCgoKSnVzdCBieSBwbGFpbiBvYnNlcnZhdGlvbiBhbmQgY29tcGFyaXNvbiwgeW91IGNhbiBzZWUgdGhhdCB0aGUgcmVsYXRpb25zaGlwIGlzIHF1YWxpdGF0aXZlbHkgdGhlIHNhbWUgaW4gYm90aCBjYXNlczogbW9yZSBzbGVlcCBlcXVhbHMgbGVzcyBncnVtcCEgSG93ZXZlciwgaXTigJlzIGFsc28gcHJldHR5IG9idmlvdXMgdGhhdCB0aGUgcmVsYXRpb25zaGlwIGJldHdlZW4gZGFuLnNsZWVwIGFuZCBkYW4uZ3J1bXAgaXMgc3Ryb25nZXIgdGhhbiB0aGUgcmVsYXRpb25zaGlwIGJldHdlZW4gYmFieS5zbGVlcCBhbmQgZGFuLmdydW1wLiAKCkJ1dCB3aGF0IGFib3V0IHRoZSBwbG90IGJldHdlZW4gYmFieS5zbGVlcCBhbmQgZGFuLnNsZWVwPwoKYGBge3J9CiNQbG90IGJhYnkgc2xlZXAgYW5kIGRhbiBzbGVlcCBoZXJlCmBgYAoKSXMgdGhlIGRpcmVjdGlvbiBvZiB0aGlzIHBsb3Qgc2FtZSBhcyB0aGUgZWFybGllciBwbG90cz8gV2hhdCBhYm91dCBzdHJlbmd0aD8KCiMjIyMjIENvcnJlbGF0aW9uIGNvZWZmaWNpZW50CgpJbiBvcmRlciB0byB0byBxdWFudGl0YXRpdmVseSByZXByZXNlbnQgdGhlIHJlbGF0aW9uc2hpcHMgb2Ygc3RyZW5ndGggYW5kIGRpcmVjdGlvbiB3ZSBkaXNjdXNzZWQgYWJvdmUsIHdlIGNhbiB1c2UgY29ycmVsYXRpb24gY29lZmZpY2llbnQuCgpUaGUgY29ycmVsYXRpb24gY29lZmZpY2llbnQgKG9yIFBlYXJzb24ncyBjb3JyZWxhdGlvbiBjb2VmZmljaWVudCkgYmV0d2VlbiB0d28gdmFyaWFibGVzIFggYW5kIFkgKHNvbWV0aW1lcyBkZW5vdGVkIF9yflhZfl8gKSBpcyBhIG1lYXN1cmUgdGhhdCB2YXJpZXMgZnJvbSAtMSB0byAxLiBXaGVuIF9yXyA9IC0xIGl0IG1lYW5zIHRoYXQgd2UgaGF2ZSBhIHBlcmZlY3QgbmVnYXRpdmUgcmVsYXRpb25zaGlwLCBhbmQgd2hlbiBfcl8gPSAxIGl0IG1lYW5zIHdlIGhhdmUgYSBwZXJmZWN0IHBvc2l0aXZlIHJlbGF0aW9uc2hpcC4gV2hlbiBfcl8gPSAwLCB0aGVyZeKAmXMgbm8gcmVsYXRpb25zaGlwIGF0IGFsbC4KCkxvb2sgYXQgdGhlIHBsb3RzIGZvciBkaWZmZXJlbnQgX3JfIHZhbHVlczoKCiFbQ29ycmVsYXRpb24gcGxvdHNdKGZpZyA0LnBuZykKCiMjIyMjIENvdmFyaWFuY2UKClRoZSBjb3ZhcmlhbmNlIGJldHdlZW4gdHdvIHZhcmlhYmxlcyBYIGFuZCBZIGlzIGEgZ2VuZXJhbGlzYXRpb24gb2YgdGhlIG5vdGlvbiBvZiB0aGUgdmFyaWFuY2U7IGl04oCZcyBhIG1hdGhlbWF0aWNhbGx5IHNpbXBsZSB3YXkgb2YgZGVzY3JpYmluZyB0aGUgcmVsYXRpb25zaGlwIGJldHdlZW4gdHdvIHZhcmlhYmxlczoKCiBcYmVnaW57YWxpZ24qfQogCiBDb3YgKFgsIFkpID0gXGZyYWN7MX17Ti0xfVxzdW1fe2k9MX1ee059IChYLSBcb3ZlcmxpbmV7WH0gKSAoWS0gXG92ZXJsaW5le1l9ICkgIFxcCiAKIFxlbmR7YWxpZ24qfQogCkNvdmFyaWFuY2UgY2FuIGJlIHVuZGVyc3Rvb2QgYXMgYW4g4oCcYXZlcmFnZSBjcm9zcyBwcm9kdWN04oCdIGJldHdlZW4gWCBhbmQgWSAuIFRoZSBjb3ZhcmlhbmNlIGhhcyB0aGUgbmljZSBwcm9wZXJ0eSB0aGF0LCBpZiBYIGFuZCBZIGFyZSBlbnRpcmVseSB1bnJlbGF0ZWQsIHRoZW4gdGhlIGNvdmFyaWFuY2UgaXMgZXhhY3RseSB6ZXJvLiBJZiBpdCBpcyBwb3NpdGl2ZSwgdGhlbiB0aGUgY292YXJpYW5jZSBpcyBhbHNvIHBvc2l0aXZlOyBhbmQgaWYgdGhlIHJlbGF0aW9uc2hpcCBpcyBuZWdhdGl2ZSB0aGVuIHRoZSBjb3ZhcmlhbmNlIGlzIGFsc28gbmVnYXRpdmUuIEJ1dCBhcyBpdCBoYXMgd2VpcmQgdW5pdHMgKHRyeSBzZWVpbmcgZm9yIHlvdXJzZWxmKSwgaXQgc2kgZGlmZmljdWx0IHRvIGludGVycHJldCBhbmQgdGhlcmVmb3JlIHdlIHN0YW5kYXJkaXNlIHRoZSBjb3ZhcmlhbmNlLCB0aGUgZXhhY3Qgc2FtZSB3YXkgdGhhdCB0aGUgei1zY29yZSBzdGFuZGFyZGlzZXMgYSByYXcgc2NvcmU6IGJ5IGRpdmlkaW5nIGJ5IHRoZSBzdGFuZGFyZCBkZXZpYXRpb24uIEhvd2V2ZXIsIGJlY2F1c2Ugd2UgaGF2ZSB0d28gdmFyaWFibGVzIHRoYXQgY29udHJpYnV0ZSB0byB0aGUgY292YXJpYW5jZSwgdGhlIHN0YW5kYXJkaXNhdGlvbiBvbmx5IHdvcmtzIGlmIHdlIGRpdmlkZSBieSBib3RoIHN0YW5kYXJkIGRldmlhdGlvbnMuIAoKVGhpcyBpcyB3aGF0IHdlIGNhbGwgYXMgdGhlIGNvcnJlbGF0aW9uIGNvZWZmaWNlbnQsIF9yXzoKClxiZWdpbnthbGlnbip9Cgogcn5YWX4gPSBcZnJhY3tDb3YoWCxZKX17XHNpZ21hX3tYfSBcc2lnbWFfe1l9fQoKXGVuZHthbGlnbip9CgpUaGlzIHdheSwgY292YXJpYW5jZSBwcm9wZXJ0aWVzIGFyZSByZXRhaW5lZCBhbmQgaXQgYWxzbyBiZWNvbWVzIGludGVycHJldGFibGUuCgpOb3cgbGV0J3MgY2hlY2sgb3V0IGhvdyB0byBjb2RlIHRoaXMgdXNpbmcgY29yKCkuCgpgYGB7cn0KY29yKHggPSBwYXJlbnRob29kJGRhbi5zbGVlcCwgeSA9IHBhcmVudGhvb2QkZGFuLmdydW1wKQoKI1RyeSBnaXZpbmcgdGhlIGVudGlyZSBkYXRhZnJhbWUgJ3BhcmVudGhvb2QnIGFzIGlucHV0IGluIGNvcigpCmBgYAoKV2hhdCBkaWQgeW91IGZpbmQ/CgojIyMjIyBXaGF0IGRvZXMgciA9IDAuNCBtZWFuPwoKSXQgcmVhbGx5IGRlcGVuZHMgb24gd2hhdCB5b3Ugd2FudCB0byB1c2UgdGhlIGRhdGEgZm9yLCBhbmQgb24gaG93IHN0cm9uZyB0aGUgY29ycmVsYXRpb25zIGluIHlvdXIgZmllbGQgdGVuZCB0byBiZS4KCiFbQ29ycmVsYXRpb24gY29lZmZpY2llbnQgaW50ZXJwcmV0YXRpb24gdGFibGVdKGZpZyA1LnBuZykKIApOb3cgbGV0J3MgdGFrZSBhIGxvb2sgYXQgdGhpcyBkYXRhIGNhbGxlZCAiQW5zY29tYmUncyBRdWFydGV0IgogCmBgYHtyfQpsb2FkKCAiYW5zY29tYmVzcXVhcnRldC5SZGF0YSIgKQpjb3IoIFgxLCBZMSApCmNvciggWDIsIFkyICkKY29yIChYMywgWTMpCmNvciAoWDQsIFk0KQpgYGAKCldlcmUgdGhlIGNvcnJlbGF0aW9uIGNvZWZmaWNpZW50cyBzYW1lPwoKTm93IHRyeSBwbG90dGluZyB0aGVtLgoKYGBge3J9CnNjYXR0ZXJwbG90KHggPSBYMSwgeSA9IFkxLHJlZ0xpbmUgPSBGQUxTRSwgc21vb3RoID0gRkFMU0UpCnNjYXR0ZXJwbG90KHggPSBYMiwgeSA9IFkyLHJlZ0xpbmUgPSBGQUxTRSwgc21vb3RoID0gRkFMU0UpCnNjYXR0ZXJwbG90KHggPSBYMywgeSA9IFkzLHJlZ0xpbmUgPSBGQUxTRSwgc21vb3RoID0gRkFMU0UpCnNjYXR0ZXJwbG90KHggPSBYNCwgeSA9IFk0LHJlZ0xpbmUgPSBGQUxTRSwgc21vb3RoID0gRkFMU0UpCgoKYGBgCgpUaGVyZWZvcmUsIHJlbWVtYmVyIHRvIGFsd2F5cyBsb29rIGF0IHRoZSBzY2F0dGVycGxvdCBiZWZvcmUgYXR0YWNoaW5nIGFueSBpbnRlcnByZXRhdGlvbiB0byB0aGUgZGF0YSEKCklmIHdlIGhhdmUgdG8gcHJvcGVybHkgZGVmaW5lIHRoZSByb2xlIG9mIFBlYXJzb24ncyBjb2VmZmljaWVudCwgd2UgY2FuIHNheSB0aGF0IGl0IGFjdHVhbGx5IG1lYXN1cmVzIHRoZSBzdHJlbmd0aCBvZiB0aGUgbGluZWFyIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHR3byB2YXJpYWJsZXMuIEluIG90aGVyIHdvcmRzLCBpdCBnaXZlcyBhIG1lYXN1cmUgb2YgdGhlIGV4dGVudCB0byB3aGljaCB0aGUgZGF0YSBhbGwgdGVuZCB0byBmYWxsIG9uIGEgc2luZ2xlLCBwZXJmZWN0bHkgc3RyYWlnaHQgbGluZS4KCiMjIyMjIFNwZWFybWFuJ3MgUmFuayBPcmRlciBDb3JyZWxhdGlvbiBDb2VmZmljaWVudAogCkJ1dCBsZXQncyB0YWtlIGEgbG9vayBhdCBhbm90aGVyIGRhdGFzZXQgYW5kIGZpbmQgY29ycmVsYXRpb24gYmV0d2VlbiBpdHMgdmFyaWFibGVzLgoKYGBge3J9CmxvYWQoICJlZmZvcnQuUmRhdGEiICkKZWZmb3J0CmNvciggZWZmb3J0JGhvdXJzLCBlZmZvcnQkZ3JhZGUgKQpgYGAKCklmIHlvdSBwbG90IHRoaXMgLSAKCmBgYHtyfQpzY2F0dGVycGxvdChlZmZvcnQkaG91cnMsIGVmZm9ydCRncmFkZSwgcmVnTGluZSA9IFRSVUUsIHNtb290aCA9IEZBTFNFKQpgYGAKClRoZSBjb3JyZWxhdGlvbiBfcl8gPSAwLjkxIHdlIGdldCBhYm92ZSBkb2Ugc25vdCByZXByZXNlbnQgdGhlIGFjdHVhbCByZWxhdGlvbnNoaXAgdGhlIHBsb3QgaXMgZGVwaWN0aW5nLiBXaGF0IHdl4oCZcmUgbG9va2luZyBmb3IgaXMgc29tZXRoaW5nIHRoYXQgY2FwdHVyZXMgdGhlIGZhY3QgdGhhdCB0aGVyZSBpcyBhIHBlcmZlY3QgKipvcmRpbmFsIHJlbGF0aW9uc2hpcCoqIGhlcmUuIFRoYXQgaXMsIGlmIHN0dWRlbnQgMSB3b3JrcyBtb3JlIGhvdXJzIHRoYW4gc3R1ZGVudCAyLCB0aGVuIHdlIGNhbiBndWFyYW50ZWUgdGhhdCBzdHVkZW50IDEgd2lsbCBnZXQgdGhlIGJldHRlciBncmFkZS4KCklmIHdl4oCZcmUgbG9va2luZyBmb3Igb3JkaW5hbCByZWxhdGlvbnNoaXBzLCBhbGwgd2UgaGF2ZSB0byBkbyBpcyB0cmVhdCB0aGUgZGF0YSBhcyBpZiBpdCB3ZXJlIG9yZGluYWwgc2NhbGUhIFNvLCBpbnN0ZWFkIG9mIG1lYXN1cmluZyBlZmZvcnQgaW4gdGVybXMgb2Yg4oCcaG91cnMgd29ya2Vk4oCdLCBsZXQncyByYW5rIGFsbCAxMCBvZiB0aGUgc3R1ZGVudHMgaW4gb3JkZXIgb2YgaG91cnMgd29ya2VkLiBUaGF0IGlzLCBzdHVkZW50IDEgZGlkIHRoZSBsZWFzdCB3b3JrIG91dCBvZiBhbnlvbmUgKDIgaG91cnMpIHNvIHRoZXkgZ2V0IHRoZSBsb3dlc3QgcmFuayAocmFuayA9IDEpLiBTdHVkZW50IDQgd2FzIHRoZSBuZXh0IGxhemllc3QsIHB1dHRpbmcgaW4gb25seSA2IGhvdXJzIG9mIHdvcmsgaW4gb3ZlciB0aGUgd2hvbGUgc2VtZXN0ZXIsIHNvIHRoZXkgZ2V0IHRoZSBuZXh0IGxvd2VzdCByYW5rIChyYW5rID0gMikuCgpgYGB7cn0KaG91cnMucmFuayA8LSByYW5rKCBlZmZvcnQkaG91cnMgKSAgICMgcmFuayBzdHVkZW50cyBieSBob3VycyB3b3JrZWQKZ3JhZGUucmFuayA8LSByYW5rKCBlZmZvcnQkZ3JhZGUgKSAgICMgcmFuayBzdHVkZW50cyBieSBncmFkZSByZWNlaXZlZAoKI05vdyB0cnkgY29yKCkgZnVuY3Rpb24gZm9yIHRoZXNlCmNvciggaG91cnMucmFuaywgZ3JhZGUucmFuayApCmBgYAoKTm93IHRoZSBjb3JyZWxhdGlvbiBjb2VmZmljaWVudCB3ZSBnZXQgaXMgZGlmZmVyZW50IGZyb20gdGhlIFBlcmFzb24ncyBjb3JyZWxhdGlvbiBjb2VmZmljaWVudCBfcl8gd2UgZ290IGVhcmxpZXIuIFRoaXMgbmV3IGNvcnJlbGF0aW9uIGNvZWZmaWNpZW50IHRoYXQgd2UgZ290IGlzIGNhbGxlZCAnKipTcGVhcm1hbidzIENvcnJlbGF0aW9uIENvZWZmaWNpZW50KionLCBkZW5vdGVkIGJ5ICRccmhvJC4KCmBgYHtyfQojRXhlY3V0ZSB0aGlzIGFuZCBjb21wYXJlIHdpdGggdGhlIGNvcnJlbGF0aW9uIGNvZWZmaWNpZW50IHdlIGdvdCBhYm92ZQpjb3IoIGVmZm9ydCRob3VycywgZWZmb3J0JGdyYWRlLCBtZXRob2QgPSAic3BlYXJtYW4iKQpgYGAKCiMjIyMjIHRoZSBjb3JyZWxhdGUoKSBmdW5jdGlvbgpUcnkgdXNpbmcgdGhpcyBmdW5jdGlvbiB0byBmaW5kIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBzZXZlcmFsIHZhcmlhYmxlcyBpbiBhIGRhdGFmcmFtZSBhdCBvbmNlLgoKCiMjIyMjIEhhbmRsaW5nIG1pc3NpbmcgdmFsdWVzCgpXZSd2ZSBzZWVuIGluIGVhcmxpZXIgbGVjdHVyZXMgdGhhdCB0aGVyZSBjb3VsZCBiZSBtaXNzaW5nIHZhbHVlcyBpbiBkYXRhIHdoaWNoIGFyZSByZXByZXNlbnRlZCBieSBgTkFgIGluIFIuIE9uZSBlYXN5IHdheSB0byByZW1vdmUgdGhlbSBpcyB1c2luZyBgbmEucm0gPSBUUlVFYCBhcyBhcmd1bWVudCBpbiBtYW55IGZ1bmN0aW9ucy4KCkJ1dCB3aGF0IGlmIHdlIGhhdmUgbWlzc2luZyB2YWx1ZXMgaW4gYSBkYXRhZnJhbWUgd2hlcmUgd2UgaGF2ZSB0byBmaW5kIGNvcnJlbGF0aW9ucyBhY3Jvc3MgdmFyaWFibGVzLgoKTGV0J3MgbG9vayBhdCBzdWNoIGEgZGF0YXNldC4KCmBgYHtyfQpsb2FkKCAicGFyZW50aG9vZDIuUmRhdGEiICkKcHJpbnQoIHBhcmVudGhvb2QyICkKZGVzY3JpYmUoIHBhcmVudGhvb2QyICkgCiNDaGVjayBob3cgbWFueSBtaXNzaW5nIHZhbHVlcyBhcmUgdGhlcmUgZm9yIGVhY2ggdmFyaWFibGUgLSBjb21wYXJlIHRoZSB2YWx1ZXMgaW4gJ24nIHdpdGggdGhlIG51bWJlciBvZiBkYXlzLgpgYGAKCk5vdywgbGV0J3MgdHJ5IGZpbmRpbmcgY29ycmVsYXRpb25zIGZvciB0aGlzIGRhdGFmcmFtZS4KCmBgYHtyfQpjb3IocGFyZW50aG9vZDIpCmBgYAoKSW4gb3JkZXIgdG9wIG92ZXJjb21lIHRoaXMgcHJvYmxlbSwgd2UgY2FuIHVzZSBgdXNlYCBhcyBhbiBhcmd1bWVudCBpbiB0aGUgY29yKCkgZnVuY3Rpb24uIFRyeSBvdXQgdGhlIGZvbGxvd2luZy4KCmBgYHtyfQpjb3IocGFyZW50aG9vZDIsIHVzZSA9ICJjb21wbGV0ZS5vYnMiKQpjb3IocGFyZW50aG9vZDIsIHVzZSA9ICJwYWlyd2lzZS5jb21wbGV0ZS5vYnMiKQpgYGAKCldoZW4gd2UgY2hvb3NlIGB1c2UgPSAiY29tcGxldGUub2JzImAsIFIgd2lsbCBjb21wbGV0ZWx5IGlnbm9yZSBhbGwgY2FzZXMgKGkuZS4sIGFsbCByb3dzIGluIG91ciBwYXJlbnRob29kMiBkYXRhIGZyYW1lKSB0aGF0IGhhdmUgYW55IG1pc3NpbmcgdmFsdWVzIGF0IGFsbC4gRm9yIGVnLiwgaWYgeW91IGNob29zZSB1c2UgPSAiY29tcGxldGUub2JzIiBSIHdpbGwgaWdub3JlIHRoYXQgcm93IGNvbXBsZXRlbHk6IHRoYXQgaXMsIGV2ZW4gd2hlbiBpdOKAmXMgdHJ5aW5nIHRvIGNhbGN1bGF0ZSB0aGUgY29ycmVsYXRpb24gYmV0d2VlbiBkYW4uc2xlZXAgYW5kIGRhbi5ncnVtcCwgb2JzZXJ2YXRpb24gMSB3aWxsIGJlIGlnbm9yZWQsIGJlY2F1c2UgdGhlIHZhbHVlIG9mIGJhYnkuc2xlZXAgaXMgbWlzc2luZyBmb3IgdGhhdCBvYnNlcnZhdGlvbi4KCldoZXJlYXMgd2hlbiB3ZSBzZXQgYHVzZSA9ICJwYWlyd2lzZS5jb21wbGV0ZS5vYnMiYCBSIG9ubHkgbG9va3MgYXQgdGhlIHZhcmlhYmxlcyB0aGF0IGl04oCZcyB0cnlpbmcgdG8gY29ycmVsYXRlIHdoZW4gZGV0ZXJtaW5pbmcgd2hhdCB0byBkcm9wLiBTbywgZm9yIGluc3RhbmNlLCBzaW5jZSB0aGUgb25seSBtaXNzaW5nIHZhbHVlIGZvciBvYnNlcnZhdGlvbiAxIG9mIHBhcmVudGhvb2QyIGlzIGZvciBiYWJ5LnNsZWVwIFIgd2lsbCBvbmx5IGRyb3Agb2JzZXJ2YXRpb24gMSB3aGVuIGJhYnkuc2xlZXAgaXMgb25lIG9mIHRoZSB2YXJpYWJsZXMgaW52b2x2ZWQ6IGFuZCBzbyBSIGtlZXBzIG9ic2VydmF0aW9uIDEgd2hlbiB0cnlpbmcgdG8gY29ycmVsYXRlIGRhbi5zbGVlcCBhbmQgZGFuLmdydW1wLgoKVGhlIGFib3ZlIG9wZXJhdGlvbiBjYW4gYWxzbyBiZSBwZXJmb3JtZWQgYnkgYW5vdGhlciBmdW5jdGlvbiBjYWxsZWQgYGNvcnJlbGF0ZSgpYCBpbiBgbHNyYCBwYWNrYWdlLgoKVHJ5IGl0IG91dC4KYGBge3J9CiNUcnkgY29ycmVsYXRlKCkgZm9yIHBhcmVudGhvb2QyIGhlcmUKYGBgCgpfUmVmZXJlbmNlIDogQ2hhcHRlciA1LCBELiBOYXZhcnJvXwoKVGhhdCdzIGFsbCBmb2xrcyEK
+
LS0tCnRpdGxlOiAiRGVzY3JpcHRpdmUgU3RhdGlzdGljczogU2NhbGluZyBhbmQgQ29ycmVsYXRpb25zIgpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgpBZnRlciB0YWtpbmcgYSBmaXJzdCBsb29rIGF0IG91ciBkYXRhIGluIHRoZSBsYXN0IG5vdGVib29rLCBub3cgd2Ugd2FudCB0byBzdGFydCBsb29raW5nIGF0IGl0IG1vcmUgY2xvc2VseSBhcyBwZXIgb3VyIG5lZWRzIGFuZCByZXF1aXJlbWVudHMuIAoKIyMjIyBTY2FsaW5nCgpJbiBzaW1wbGUgdGVybXMsIHNjYWxpbmcgcmVmZXJzIHRvIGNoYW5naW5nIHNpemUgb2YgYW4gb2JqZWN0IHdpdGhvdXQgYWZmZWN0aW5nIGl0cyBzaGFwZS4KCiMjIyMjIExpbmVhciBUcmFuc2Zvcm1hdGlvbjoKCkEgbGluZWFyIHRyYW5zZm9ybWF0aW9uIGludm9sdmVzIGFkZGl0aW9uLCBzdWJ0cmFjdGlvbiwgbXVsdGlwbGljYXRpb24sIG9yIGRpdmlzaW9uIHdpdGggYSBjb25zdGFudCB2YWx1ZS4gRm9yIGV4YW1wbGUsIGlmIHlvdSBhZGQgMSB0byB0aGUgbnVtYmVycyAyLCA0LCBhbmQgNiwgdGhlIHJlc3VsdGluZyBudW1iZXJzICgzLCA1LCBhbmQgNykgYXJlIGEgbGluZWFyIHRyYW5zZm9ybWF0aW9uIG9mIHRoZSBvcmlnaW5hbCBudW1iZXJzLiAKTGluZWFyIHRyYW5zZm9ybWF0aW9ucyBhcmUgdXNlZnVsLCBiZWNhdXNlIHRoZXkgYWxsb3cgeW91IHRvIHJlcHJlc2VudCB5b3VyIGRhdGEgaW4gYSBtZXRyaWMgdGhhdCBpcyBzdWl0YWJsZSB0byB5b3UgYW5kIHlvdXIgYXVkaWVuY2UuCgoqKkNlbnRlcmluZzoqKgoK4oCYQ2VudGVyaW5n4oCZIGlzIGEgcGFydGljdWxhcmx5IGNvbW1vbiBsaW5lYXIgdHJhbnNmb3JtYXRpb24uIFRoaXMgbGluZWFyIHRyYW5zZm9yLSBtYXRpb24gaXMgZnJlcXVlbnRseSBhcHBsaWVkIHRvIGNvbnRpbnVvdXMgcHJlZGljdG9yIHZhcmlhYmxlcy4gClRvIGNlbnRlciBhIHByZWRpY3RvciB2YXJpYWJsZSwgc3VidHJhY3QgdGhlIG1lYW4gb2YgdGhhdCBwcmVkaWN0b3IgdmFyaWFibGUgZnJvbSBlYWNoIGRhdGEgcG9pbnQuIEFzIGEgcmVzdWx0LCBlYWNoIGRhdGEgcG9pbnQgaXMgZXhwcmVzc2VkIGluIHRlcm1zIG9mIGhvdyBtdWNoIGl0IGlzIGFib3ZlIHRoZSBtZWFuIChwb3NpdGl2ZSBzY29yZSkgb3IgYmVsb3cgdGhlIG1lYW4gKG5lZ2F0aXZlIHNjb3JlKS4gVGh1cywgc3VidHJhY3RpbmcgdGhlIG1lYW4gb3V0IG9mIHRoZSB2YXJpYWJsZSBleHByZXNzZXMgZWFjaCBkYXRhIHBvaW50IGFzIGEgbWVhbi1kZXZpYXRpb24gc2NvcmUuIFRoZSB2YWx1ZSB6ZXJvIG5vdyBoYXMgYSBuZXcgbWVhbmluZyBmb3IgdGhpcyB2YXJpYWJsZTogaXQgaXMgYXQgdGhlIOKAmGNlbnRlcuKAmSBvZiB0aGUgdmFyaWFibGXigJlzIGRpc3RyaWJ1dGlvbiwgbmFtZWx5LCB0aGUgbWVhbi4KCioqU3RhbmRhcmRpemluZzoqKgoKQSBzZWNvbmQgY29tbW9uIGxpbmVhciB0cmFuc2Zvcm1hdGlvbiBpcyDigJhzdGFuZGFyZGl6aW5n4oCZIG9yIOKAmHrigJNzY29yaW5n4oCZLiBGb3Igc3RhbmRhcmRpemluZywgdGhlIGNlbnRlcmVkIHZhcmlhYmxlIGlzIGRpdmlkZWQgYnkgdGhlIHN0YW5kYXJkIGRldmlhdGlvbiBvZiB0aGUgc2FtcGxlLgoKTGV0J3MgbG9vayBhdCBhbiBleGFtcGxlOiAKClRoZSBmb2xsb3dpbmcgYXJlIHJlc3BvbnNlIGR1cmF0aW9ucyBmcm9tIGEgcHN5Y2hvbGluZ3Vpc3RpYyBleHBlcmltZW50OgoKYDQ2MG1zIDQ4MG1zIDUwMG1zIDUyMG1zIDU0MG1zYAoKVGhlIG1lYW4gb2YgdGhlc2UgZml2ZSBudW1iZXJzIGlzIGA1MDBtc2AuIAoKQ2VudGVyaW5nIHRoZXNlIG51bWJlcnMgcmVzdWx0cyBpbiB0aGUgZm9sbG93aW5nOgoKYOKIkiA0MG1zIOKIkiAyMG1zIDBtcyArMjBtcyArIDQwbXNgCgpUaGUgc3RhbmRhcmQgZGV2aWF0aW9uIChsZWFybnQgaW4gbGFzdCBub3RlYm9vaykgZm9yIHRoZXNlIG51bWJlcnMgaXMgYH4zMm1zYC4gCgpUbyDigJhzdGFuZGFyZGl6ZeKAmSwgd2UgaGF2ZSB0byBkaXZpZGUgdGhlIGNlbnRlcmVkIGRhdGEgYnkgdGhlIHN0YW5kYXJkIGRldmlhdGlvbi4gRm9yIGV4YW1wbGUsIHRoZSBmaXJzdCBwb2ludCwgYOKAkzQwbXNgLCBkaXZpZGVkIGJ5IGAzMm1zYCwgeWllbGRzIGDigJMxLjNgLiBTaW5jZSBlYWNoIGRhdGEgcG9pbnQgaXMgZGl2aWRlZCBieSB0aGUgc2FtZSBudW1iZXIsIHRoaXMgY2hhbmdlIHF1YWxpZmllcyBhcyBhIGxpbmVhciB0cmFuc2Zvcm1hdGlvbi4KCkFzIGEgcmVzdWx0IG9mIHN0YW5kYXJkaXphdGlvbiwgeW91IGdldCB0aGUgZm9sbG93aW5nIG51bWJlcnMgKHJvdW5kZWQgdG8gb25lIGRpZ2l0KToKCmDiiJIxLjN6IOKIkiAwLjZ6IDB6ICsgMC42eiArMS4zemAKClRoZSByYXcgcmVzcG9uc2UgZHVyYXRpb24gYDQ2MG1zYCBpcyBg4oCTNDBtc2AgKGFmdGVyIGNlbnRlcmluZyksIHdoaWNoIGNvcnJlc3BvbmRzIHRvIGJlaW5nIGAxLjNgIHN0YW5kYXJkIGRldmlhdGlvbnMgYmVsb3cgdGhlIG1lYW4uIFRodXMsIHN0YW5kYXJkaXphdGlvbiBpbnZvbHZlcyByZS1leHByZXNzaW5nIHRoZSBkYXRhIGluIHRlcm1zIG9mICoqaG93IG1hbnkgc3RhbmRhcmQgZGV2aWF0aW9ucyB0aGV5IGFyZSBhd2F5IGZyb20gdGhlIG1lYW4qKi4KCiMjIyMjIEJ1dCB3aHkgdGhpcyBleHRyYSBlZmZvcnQ/CgpTdGFuZGFyZGl6aW5nIGlzIGEgd2F5IG9mIGdldHRpbmcgcmlkIG9mIGEgdmFyaWFibGXigJlzIG1ldHJpYy4gSW4gYSBzaXR1YXRpb24gd2l0aCBtdWx0aXBsZSB2YXJpYWJsZXMsIGVhY2ggdmFyaWFibGUgbWF5IGhhdmUgYSBkaWZmZXJlbnQgc3RhbmRhcmQgZGV2aWF0aW9uLCBidXQgYnkgZGl2aWRpbmcgZWFjaCB2YXJpYWJsZSBieSB0aGUgcmVzcGVjdGl2ZSBzdGFuZGFyZCBkZXZpYXRpb24sIGl0IGlzIHBvc3NpYmxlIHRvIGNvbnZlcnQgYWxsIHZhcmlhYmxlcyBpbnRvIGEgc2NhbGUgb2YgKipzdGFuZGFyZCB1bml0cyoqLiBUaGlzIHNvbWV0aW1lcyBtYXkgaGVscCBpbiBtYWtpbmcgdmFyaWFibGVzIGNvbXBhcmFibGUsIGZvciBleGFtcGxlLCB3aGVuIGFzc2Vzc2luZyB0aGUgcmVsYXRpdmUgaW1wYWN0IG9mIG11bHRpcGxlIHByZWRpY3RvcnMuIEZvciBleGFtcGxlLCBpZiB5b3UgY2FuIGltYWdpbmUgd2UgaGF2ZSB0d28gcXVlc3Rpb25uYWlyZXMgLSBvbmUgZm9yIGV4dHJhdmVyc2lvbiB3aGVyZSB5b3Ugc2NvcmVkIDIgb3V0IG9mIDEwIGFuZCB0aGUgb3RoZXIgZm9yIGdydW1waW5lc3Mgd2hlcmUgeW91IHNjb3JlZCAzNSBvdXQgb2YgNTAsIHRoZW4gaXQgZG9lc27igJl0IG1ha2UgYSBsb3Qgb2Ygc2Vuc2UgdG8gdHJ5IHRvIGNvbXBhcmUgeW91ciByYXcgc2NvcmUgb2YgMiBvbiB0aGUgZXh0cmF2ZXJzaW9uIHF1ZXN0aW9ubmFpcmUgdG8geW91ciByYXcgc2NvcmUgb2YgMzUgb24gdGhlIGdydW1waW5lc3MgcXVlc3Rpb25uYWlyZS4gVGhlIHJhdyBzY29yZXMgZm9yIHRoZSB0d28gdmFyaWFibGVzIGFyZSDigJxhYm91dOKAnSBmdW5kYW1lbnRhbGx5IGRpZmZlcmVudCB0aGluZ3MsIHNvIHRoaXMgd291bGQgYmUgbGlrZSBjb21wYXJpbmcgYXBwbGVzIHRvIG9yYW5nZXMuIEJ1dCBpZiB5b3Ugc3RhbmRhcmRpemUgdGhlbSwgdGhleSB3aWxsIHN0aWxsIGJlY29tZSBjb21wYXJhYmxlIGluIHNvbWUgc2Vuc2UuCgpMZXQncyBhbHNvIGV4YW1pbmUgdGhlIHNjb3JlIG9mIDM1IG91dCBvZiA1MCBmb3IgZ3J1bXBpbmVzcy4gV291bGQgdGhpcyBtZWFuIHRoYXQgeW91J3JlIDcwJSBncnVtcHk/IEluc3RlYWQgb2YgaW50ZXJwcmV0aW5nIHJhdyBkYXRhIHRoaXMgd2F5LCBpdCB3b3VsZCBtYWtlIG1vcmUgc2Vuc2UgaWYgd2UgZGVzY3JpYmUgeW91ciBncnVtcGluZXNzIGluIHRlcm1zIG9mIHRoZSBvdmVyYWxsIGRpc3RyaWJ1dGlvbiBvZiB0aGUgZ3J1bXBpbmVzcyBvZiBodW1hbnMgd2hpY2ggaXMgcG9zc2libGUgdGhyb3VnaCAgc3RhbmRhcmRpc2F0aW9uIGkuZS4gd2hlcmUgZG8geW91IGxpZSBvbiB0aGUgZ3J1bXBpbmVzcyBzcGVjdHJ1bSBvZiB0aGUgYWxsIGh1bWFucz8gOykKCmBgYHtyfQojVHJ5IGl0IG91dCB5b3Vyc2VsZgojRGVmaW5lIGEgdmVjdG9yIHdpdGggR3J1bXBpbmVzcyBzY29yZXMgb2YgeW91IGFuZCB5b3VyIGZyaWVuZHMgYW5kIGZpbmQgdGhlIHogc2NvcmUgZm9yIHlvdXIgc2VsZgpYID0gICAgICAgICAgICAgICAgICAgICAgICAKeiA9IChYIC0gbWVhbihYKSkgLyBzZChYKQpgYGAKClVzaW5nIHNjYWxlKCkgdG8gY2VudGVyIGFuZCBub3JtYWxpemUKYGBge3J9CmxvYWQoImFmbHNtYWxsLlJkYXRhIikKYWZsLm1hcmdpbnNfYyA8LSBzY2FsZShhZmwubWFyZ2lucywgc2NhbGUgPSBGQUxTRSkKYWZsLm1hcmdpbnNfeiA8LSBzY2FsZShhZmwubWFyZ2lucykKYGBgCgpQbG90dGluZyB0aGUgaGlzdG9ncmFtCmBgYHtyfQpoaXN0KGFmbC5tYXJnaW5zKQpoaXN0KGFmbC5tYXJnaW5zX2MpCmhpc3QoYWZsLm1hcmdpbnNfeikKYGBgCgoKCl9SZWZlcmVuY2U6IENoYXB0ZXIgNSwgV2ludGVyIEIuXwoKIyMjIyBDb3JyZWxhdGlvbgoKU28gZmFyIHdlIGhhdmUgZm9jdXNlZCBlbnRpcmVseSBvbiBob3cgdG8gY29uc3RydWN0IGRlc2NyaXB0aXZlIHN0YXRpc3RpY3MgZm9yIGEgc2luZ2xlIHZhcmlhYmxlLiBXZSBoYXZlbuKAmXQgdGFsa2VkIGFib3V0IGhvdyB0byBkZXNjcmliZSB0aGUgcmVsYXRpb25zaGlwcyBiZXR3ZWVuIHZhcmlhYmxlcyBpbiB0aGUgZGF0YS4gVG8gZG8gdGhhdCwgd2Ugd2FudCB0byB0YWxrIG1vc3RseSBhYm91dCB0aGUgY29ycmVsYXRpb24gYmV0d2VlbiB2YXJpYWJsZXMuCgpgYGB7cn0KI0xldCdzIGxvYWQgc29tZSBkYXRhCmxvYWQoICJwYXJlbnRob29kLlJkYXRhIiApCndobyhUUlVFKQpgYGAKCmBgYHtyfQojVHJ5IGRlc2NyaWJlKCkgZm9yIHRoZSBhYm92ZSBkYXRhZnJhbWUKYGBgCgoKYGBge3J9CiNMZXQncyBhbHNvIHRha2UgYSBncmFwaGljYWwgbG9vayBhdCB0aGUgZGF0YSAKaGlzdChwYXJlbnRob29kJGRhbi5zbGVlcCkKCiNUcnkgcGxvdHRpbmcgZm9yIHRoZSBvdGhlciAyIHZhcmlhYmxlcwoKYGBgCgpCdXQgd2Ugbm93IHdhbnQgdG8gdGFrZSBhIGxvb2sgYXQgdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHR3byB2YXJpYWJsZXMuIG4gb3JkZXIgdG8gdmlzdWFsaXplIHRoYXQsIGl0IGlzIGJldHRlciB0byBwbG90IGEgKipzY2F0dGVyIHBsb3QuKiogKFBsb3R0aW5nIGdyYXBocyB3aWxsIGJlIGNvdmVyZWQgaW4gZGV0YWlsIGEgc2VwYXJhdGUgbm90ZWJvb2spLgoKX0JyaWVmIG5vdGUgb24gU2NhdHRlcnBsb3RzOl8KCkluIHRoaXMga2luZCBvZiBwbG90LCBlYWNoIG9ic2VydmF0aW9uIGNvcnJlc3BvbmRzIHRvIG9uZSBkb3Q6IHRoZSBob3Jpem9udGFsIGxvY2F0aW9uIG9mIHRoZSBkb3QgcGxvdHMgdGhlIHZhbHVlIG9mIHRoZSBvYnNlcnZhdGlvbiBvbiBvbmUgdmFyaWFibGUsIGFuZCB0aGUgdmVydGljYWwgbG9jYXRpb24gZGlzcGxheXMgaXRzIHZhbHVlIG9uIHRoZSBvdGhlciB2YXJpYWJsZS4gSW4gbWFueSBzaXR1YXRpb25zIHlvdSBkb27igJl0IHJlYWxseSBoYXZlIGEgY2xlYXIgb3BpbmlvbiBhYm91dCB3aGF0IHRoZSBjYXVzYWwgcmVsYXRpb25zaGlwIGlzIChlLmcuLCBkb2VzIEEgY2F1c2UgQiwgb3IgZG9lcyBCIGNhdXNlIEEsIG9yIGRvZXMgc29tZSBvdGhlciB2YXJpYWJsZSBDIGNvbnRyb2xzIGJvdGggQSBhbmQgQikuIElmIHRoYXTigJlzIHRoZSBjYXNlLCBpdCBkb2VzbuKAmXQgcmVhbGx5IG1hdHRlciB3aGljaCB2YXJpYWJsZSB5b3UgcGxvdCBvbiB0aGUgeC1heGlzIGFuZCB3aGljaCBvbmUgeW91IHBsb3Qgb24gdGhlIHktYXhpcy4gSG93ZXZlciwgaW4gbWFueSBzaXR1YXRpb25zIHlvdSBkbyBoYXZlIGEgcHJldHR5IHN0cm9uZyBpZGVhIHdoaWNoIHZhcmlhYmxlIHlvdSB0aGluayBpcyBtb3N0IGxpa2VseSB0byBiZSBjYXVzYWwsIG9yIGF0IGxlYXN0IHlvdSBoYXZlIHNvbWUgc3VzcGljaW9ucyBpbiB0aGF0IGRpcmVjdGlvbi4gSWYgc28sIHRoZW4gaXTigJlzIGNvbnZlbnRpb25hbCB0byBwbG90IHRoZSAqKmNhdXNlKiogdmFyaWFibGUgb24gdGhlICoqeC1heGlzKiosIGFuZCB0aGUgKiplZmZlY3QqKiB2YXJpYWJsZSBvbiB0aGUgKip5LWF4aXMqKi4gCgpTdXBwb3NlIG91ciBnb2FsIGlzIHRvIGRyYXcgYSBzY2F0dGVycGxvdCBkaXNwbGF5aW5nIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiB0aGUgYW1vdW50IG9mIHNsZWVwIHRoYXQgRGFuIGdldHMgKGRhbi5zbGVlcCkgYW5kIGhvdyBncnVtcHkgc2hlIGlzIHRoZSBuZXh0IGRheSAoZGFuLmdydW1wKS4gX0RvIHlvdSBzdXNwZWN0IGEgY2F1c2FsIHJlbGF0aW9uc2hpcCBoZXJlP18KCkEgc2ltcGxlIHdheSB0byBwbG90IHRoZXNlIHNjYXR0ZXIgcGxvdHMgaXMgdG8gdXNlIHRoZSBzY2F0dGVycGxvdCgpIGZ1bmN0aW9uIGluIHRoZSBjYXIgcGFja2FnZS4gCgpMZXQncyBsb2FkIHRoZSBwYWNrYWdlIGFuZCBnZXQgc3RhcnRlZC4KCmBgYHtyfQppbnN0YWxsLnBhY2thZ2VzKCJjYXIiKQppbnN0YWxsLnBhY2thZ2VzKCJSY3BwIikKYGBgCgoKYGBge3J9CmxpYnJhcnkoY2FyKQpzY2F0dGVycGxvdCggZGFuLmdydW1wIH4gZGFuLnNsZWVwLCBkYXRhID0gcGFyZW50aG9vZCwgcmVnTGluZSA9IEZBTFNFLCBzbW9vdGggPSBGQUxTRSkKc2NhdHRlcnBsb3QKYGBgCgpgYGB7cn0KI1Bsb3QgYSBzY2F0dGVyIHBsb3QgZm9yIGJhYnkuc2xlZXAgYW5kIGRhbi5ncnVtcCB2YXJpYWJsZXMKYGBgCgoKSnVzdCBieSBwbGFpbiBvYnNlcnZhdGlvbiBhbmQgY29tcGFyaXNvbiwgeW91IGNhbiBzZWUgdGhhdCB0aGUgcmVsYXRpb25zaGlwIGlzIHF1YWxpdGF0aXZlbHkgdGhlIHNhbWUgaW4gYm90aCBjYXNlczogbW9yZSBzbGVlcCBlcXVhbHMgbGVzcyBncnVtcCEgSG93ZXZlciwgaXTigJlzIGFsc28gcHJldHR5IG9idmlvdXMgdGhhdCB0aGUgcmVsYXRpb25zaGlwIGJldHdlZW4gZGFuLnNsZWVwIGFuZCBkYW4uZ3J1bXAgaXMgc3Ryb25nZXIgdGhhbiB0aGUgcmVsYXRpb25zaGlwIGJldHdlZW4gYmFieS5zbGVlcCBhbmQgZGFuLmdydW1wLiAKCkJ1dCB3aGF0IGFib3V0IHRoZSBwbG90IGJldHdlZW4gYmFieS5zbGVlcCBhbmQgZGFuLnNsZWVwPwoKYGBge3J9CiNQbG90IGJhYnkgc2xlZXAgYW5kIGRhbiBzbGVlcCBoZXJlCmBgYAoKSXMgdGhlIGRpcmVjdGlvbiBvZiB0aGlzIHBsb3Qgc2FtZSBhcyB0aGUgZWFybGllciBwbG90cz8gV2hhdCBhYm91dCBzdHJlbmd0aD8KCiMjIyMjIENvcnJlbGF0aW9uIGNvZWZmaWNpZW50CgpJbiBvcmRlciB0byB0byBxdWFudGl0YXRpdmVseSByZXByZXNlbnQgdGhlIHJlbGF0aW9uc2hpcHMgb2Ygc3RyZW5ndGggYW5kIGRpcmVjdGlvbiB3ZSBkaXNjdXNzZWQgYWJvdmUsIHdlIGNhbiB1c2UgY29ycmVsYXRpb24gY29lZmZpY2llbnQuCgpUaGUgY29ycmVsYXRpb24gY29lZmZpY2llbnQgKG9yIFBlYXJzb24ncyBjb3JyZWxhdGlvbiBjb2VmZmljaWVudCkgYmV0d2VlbiB0d28gdmFyaWFibGVzIFggYW5kIFkgKHNvbWV0aW1lcyBkZW5vdGVkIF9yflhZfl8gKSBpcyBhIG1lYXN1cmUgdGhhdCB2YXJpZXMgZnJvbSAtMSB0byAxLiBXaGVuIF9yXyA9IC0xIGl0IG1lYW5zIHRoYXQgd2UgaGF2ZSBhIHBlcmZlY3QgbmVnYXRpdmUgcmVsYXRpb25zaGlwLCBhbmQgd2hlbiBfcl8gPSAxIGl0IG1lYW5zIHdlIGhhdmUgYSBwZXJmZWN0IHBvc2l0aXZlIHJlbGF0aW9uc2hpcC4gV2hlbiBfcl8gPSAwLCB0aGVyZeKAmXMgbm8gcmVsYXRpb25zaGlwIGF0IGFsbC4KCkxvb2sgYXQgdGhlIHBsb3RzIGZvciBkaWZmZXJlbnQgX3JfIHZhbHVlczoKCiFbQ29ycmVsYXRpb24gcGxvdHNdKGZpZyA0LnBuZykKCiMjIyMjIENvdmFyaWFuY2UKClRoZSBjb3ZhcmlhbmNlIGJldHdlZW4gdHdvIHZhcmlhYmxlcyBYIGFuZCBZIGlzIGEgZ2VuZXJhbGlzYXRpb24gb2YgdGhlIG5vdGlvbiBvZiB0aGUgdmFyaWFuY2U7IGl04oCZcyBhIG1hdGhlbWF0aWNhbGx5IHNpbXBsZSB3YXkgb2YgZGVzY3JpYmluZyB0aGUgcmVsYXRpb25zaGlwIGJldHdlZW4gdHdvIHZhcmlhYmxlczoKCiBcYmVnaW57YWxpZ24qfQogCiBDb3YgKFgsIFkpID0gXGZyYWN7MX17Ti0xfVxzdW1fe2k9MX1ee059IChYLSBcb3ZlcmxpbmV7WH0gKSAoWS0gXG92ZXJsaW5le1l9ICkgIFxcCiAKIFxlbmR7YWxpZ24qfQogCkNvdmFyaWFuY2UgY2FuIGJlIHVuZGVyc3Rvb2QgYXMgYW4g4oCcYXZlcmFnZSBjcm9zcyBwcm9kdWN04oCdIGJldHdlZW4gWCBhbmQgWSAuIFRoZSBjb3ZhcmlhbmNlIGhhcyB0aGUgbmljZSBwcm9wZXJ0eSB0aGF0LCBpZiBYIGFuZCBZIGFyZSBlbnRpcmVseSB1bnJlbGF0ZWQsIHRoZW4gdGhlIGNvdmFyaWFuY2UgaXMgZXhhY3RseSB6ZXJvLiBJZiBpdCBpcyBwb3NpdGl2ZSwgdGhlbiB0aGUgY292YXJpYW5jZSBpcyBhbHNvIHBvc2l0aXZlOyBhbmQgaWYgdGhlIHJlbGF0aW9uc2hpcCBpcyBuZWdhdGl2ZSB0aGVuIHRoZSBjb3ZhcmlhbmNlIGlzIGFsc28gbmVnYXRpdmUuIEJ1dCBhcyBpdCBoYXMgd2VpcmQgdW5pdHMgKHRyeSBzZWVpbmcgZm9yIHlvdXJzZWxmKSwgaXQgc2kgZGlmZmljdWx0IHRvIGludGVycHJldCBhbmQgdGhlcmVmb3JlIHdlIHN0YW5kYXJkaXNlIHRoZSBjb3ZhcmlhbmNlLCB0aGUgZXhhY3Qgc2FtZSB3YXkgdGhhdCB0aGUgei1zY29yZSBzdGFuZGFyZGlzZXMgYSByYXcgc2NvcmU6IGJ5IGRpdmlkaW5nIGJ5IHRoZSBzdGFuZGFyZCBkZXZpYXRpb24uIEhvd2V2ZXIsIGJlY2F1c2Ugd2UgaGF2ZSB0d28gdmFyaWFibGVzIHRoYXQgY29udHJpYnV0ZSB0byB0aGUgY292YXJpYW5jZSwgdGhlIHN0YW5kYXJkaXNhdGlvbiBvbmx5IHdvcmtzIGlmIHdlIGRpdmlkZSBieSBib3RoIHN0YW5kYXJkIGRldmlhdGlvbnMuIAoKVGhpcyBpcyB3aGF0IHdlIGNhbGwgYXMgdGhlIGNvcnJlbGF0aW9uIGNvZWZmaWNlbnQsIF9yXzoKClxiZWdpbnthbGlnbip9Cgogcn5YWX4gPSBcZnJhY3tDb3YoWCxZKX17XHNpZ21hX3tYfSBcc2lnbWFfe1l9fQoKXGVuZHthbGlnbip9CgpUaGlzIHdheSwgY292YXJpYW5jZSBwcm9wZXJ0aWVzIGFyZSByZXRhaW5lZCBhbmQgaXQgYWxzbyBiZWNvbWVzIGludGVycHJldGFibGUuCgpOb3cgbGV0J3MgY2hlY2sgb3V0IGhvdyB0byBjb2RlIHRoaXMgdXNpbmcgY29yKCkuCgpgYGB7cn0KY29yKHggPSBwYXJlbnRob29kJGRhbi5zbGVlcCwgeSA9IHBhcmVudGhvb2QkZGFuLmdydW1wKQoKI1RyeSBnaXZpbmcgdGhlIGVudGlyZSBkYXRhZnJhbWUgJ3BhcmVudGhvb2QnIGFzIGlucHV0IGluIGNvcigpCmBgYAoKV2hhdCBkaWQgeW91IGZpbmQ/CgojIyMjIyBXaGF0IGRvZXMgciA9IDAuNCBtZWFuPwoKSXQgcmVhbGx5IGRlcGVuZHMgb24gd2hhdCB5b3Ugd2FudCB0byB1c2UgdGhlIGRhdGEgZm9yLCBhbmQgb24gaG93IHN0cm9uZyB0aGUgY29ycmVsYXRpb25zIGluIHlvdXIgZmllbGQgdGVuZCB0byBiZS4KCiFbQ29ycmVsYXRpb24gY29lZmZpY2llbnQgaW50ZXJwcmV0YXRpb24gdGFibGVdKGZpZyA1LnBuZykKIApOb3cgbGV0J3MgdGFrZSBhIGxvb2sgYXQgdGhpcyBkYXRhIGNhbGxlZCAiQW5zY29tYmUncyBRdWFydGV0IgogCmBgYHtyfQpsb2FkKCAiYW5zY29tYmVzcXVhcnRldC5SZGF0YSIgKQpjb3IoIFgxLCBZMSApCmNvciggWDIsIFkyICkKY29yIChYMywgWTMpCmNvciAoWDQsIFk0KQpgYGAKCldlcmUgdGhlIGNvcnJlbGF0aW9uIGNvZWZmaWNpZW50cyBzYW1lPwoKTm93IHRyeSBwbG90dGluZyB0aGVtLgoKYGBge3J9CnNjYXR0ZXJwbG90KHggPSBYMSwgeSA9IFkxLHJlZ0xpbmUgPSBGQUxTRSwgc21vb3RoID0gRkFMU0UpCnNjYXR0ZXJwbG90KHggPSBYMiwgeSA9IFkyLHJlZ0xpbmUgPSBGQUxTRSwgc21vb3RoID0gRkFMU0UpCnNjYXR0ZXJwbG90KHggPSBYMywgeSA9IFkzLHJlZ0xpbmUgPSBGQUxTRSwgc21vb3RoID0gRkFMU0UpCnNjYXR0ZXJwbG90KHggPSBYNCwgeSA9IFk0LHJlZ0xpbmUgPSBGQUxTRSwgc21vb3RoID0gRkFMU0UpCgoKYGBgCgpUaGVyZWZvcmUsIHJlbWVtYmVyIHRvIGFsd2F5cyBsb29rIGF0IHRoZSBzY2F0dGVycGxvdCBiZWZvcmUgYXR0YWNoaW5nIGFueSBpbnRlcnByZXRhdGlvbiB0byB0aGUgZGF0YSEKCklmIHdlIGhhdmUgdG8gcHJvcGVybHkgZGVmaW5lIHRoZSByb2xlIG9mIFBlYXJzb24ncyBjb2VmZmljaWVudCwgd2UgY2FuIHNheSB0aGF0IGl0IGFjdHVhbGx5IG1lYXN1cmVzIHRoZSBzdHJlbmd0aCBvZiB0aGUgbGluZWFyIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHR3byB2YXJpYWJsZXMuIEluIG90aGVyIHdvcmRzLCBpdCBnaXZlcyBhIG1lYXN1cmUgb2YgdGhlIGV4dGVudCB0byB3aGljaCB0aGUgZGF0YSBhbGwgdGVuZCB0byBmYWxsIG9uIGEgc2luZ2xlLCBwZXJmZWN0bHkgc3RyYWlnaHQgbGluZS4KCiMjIyMjIFNwZWFybWFuJ3MgUmFuayBPcmRlciBDb3JyZWxhdGlvbiBDb2VmZmljaWVudAogCkJ1dCBsZXQncyB0YWtlIGEgbG9vayBhdCBhbm90aGVyIGRhdGFzZXQgYW5kIGZpbmQgY29ycmVsYXRpb24gYmV0d2VlbiBpdHMgdmFyaWFibGVzLgoKYGBge3J9CmxvYWQoICJlZmZvcnQuUmRhdGEiICkKZWZmb3J0CmNvciggZWZmb3J0JGhvdXJzLCBlZmZvcnQkZ3JhZGUgKQpgYGAKCklmIHlvdSBwbG90IHRoaXMgLSAKCmBgYHtyfQpzY2F0dGVycGxvdChlZmZvcnQkaG91cnMsIGVmZm9ydCRncmFkZSwgcmVnTGluZSA9IFRSVUUsIHNtb290aCA9IEZBTFNFKQpgYGAKClRoZSBjb3JyZWxhdGlvbiBfcl8gPSAwLjkxIHdlIGdldCBhYm92ZSBkb2Ugc25vdCByZXByZXNlbnQgdGhlIGFjdHVhbCByZWxhdGlvbnNoaXAgdGhlIHBsb3QgaXMgZGVwaWN0aW5nLiBXaGF0IHdl4oCZcmUgbG9va2luZyBmb3IgaXMgc29tZXRoaW5nIHRoYXQgY2FwdHVyZXMgdGhlIGZhY3QgdGhhdCB0aGVyZSBpcyBhIHBlcmZlY3QgKipvcmRpbmFsIHJlbGF0aW9uc2hpcCoqIGhlcmUuIFRoYXQgaXMsIGlmIHN0dWRlbnQgMSB3b3JrcyBtb3JlIGhvdXJzIHRoYW4gc3R1ZGVudCAyLCB0aGVuIHdlIGNhbiBndWFyYW50ZWUgdGhhdCBzdHVkZW50IDEgd2lsbCBnZXQgdGhlIGJldHRlciBncmFkZS4KCklmIHdl4oCZcmUgbG9va2luZyBmb3Igb3JkaW5hbCByZWxhdGlvbnNoaXBzLCBhbGwgd2UgaGF2ZSB0byBkbyBpcyB0cmVhdCB0aGUgZGF0YSBhcyBpZiBpdCB3ZXJlIG9yZGluYWwgc2NhbGUhIFNvLCBpbnN0ZWFkIG9mIG1lYXN1cmluZyBlZmZvcnQgaW4gdGVybXMgb2Yg4oCcaG91cnMgd29ya2Vk4oCdLCBsZXQncyByYW5rIGFsbCAxMCBvZiB0aGUgc3R1ZGVudHMgaW4gb3JkZXIgb2YgaG91cnMgd29ya2VkLiBUaGF0IGlzLCBzdHVkZW50IDEgZGlkIHRoZSBsZWFzdCB3b3JrIG91dCBvZiBhbnlvbmUgKDIgaG91cnMpIHNvIHRoZXkgZ2V0IHRoZSBsb3dlc3QgcmFuayAocmFuayA9IDEpLiBTdHVkZW50IDQgd2FzIHRoZSBuZXh0IGxhemllc3QsIHB1dHRpbmcgaW4gb25seSA2IGhvdXJzIG9mIHdvcmsgaW4gb3ZlciB0aGUgd2hvbGUgc2VtZXN0ZXIsIHNvIHRoZXkgZ2V0IHRoZSBuZXh0IGxvd2VzdCByYW5rIChyYW5rID0gMikuCgpgYGB7cn0KaG91cnMucmFuayA8LSByYW5rKCBlZmZvcnQkaG91cnMgKSAgICMgcmFuayBzdHVkZW50cyBieSBob3VycyB3b3JrZWQKZ3JhZGUucmFuayA8LSByYW5rKCBlZmZvcnQkZ3JhZGUgKSAgICMgcmFuayBzdHVkZW50cyBieSBncmFkZSByZWNlaXZlZAoKI05vdyB0cnkgY29yKCkgZnVuY3Rpb24gZm9yIHRoZXNlCmNvciggaG91cnMucmFuaywgZ3JhZGUucmFuayApCmBgYAoKTm93IHRoZSBjb3JyZWxhdGlvbiBjb2VmZmljaWVudCB3ZSBnZXQgaXMgZGlmZmVyZW50IGZyb20gdGhlIFBlcmFzb24ncyBjb3JyZWxhdGlvbiBjb2VmZmljaWVudCBfcl8gd2UgZ290IGVhcmxpZXIuIFRoaXMgbmV3IGNvcnJlbGF0aW9uIGNvZWZmaWNpZW50IHRoYXQgd2UgZ290IGlzIGNhbGxlZCAnKipTcGVhcm1hbidzIENvcnJlbGF0aW9uIENvZWZmaWNpZW50KionLCBkZW5vdGVkIGJ5ICRccmhvJC4KCmBgYHtyfQojRXhlY3V0ZSB0aGlzIGFuZCBjb21wYXJlIHdpdGggdGhlIGNvcnJlbGF0aW9uIGNvZWZmaWNpZW50IHdlIGdvdCBhYm92ZQpjb3IoIGVmZm9ydCRob3VycywgZWZmb3J0JGdyYWRlLCBtZXRob2QgPSAic3BlYXJtYW4iKQpgYGAKCiMjIyMjIHRoZSBjb3JyZWxhdGUoKSBmdW5jdGlvbgpUcnkgdXNpbmcgdGhpcyBmdW5jdGlvbiB0byBmaW5kIHRoZSByZWxhdGlvbnNoaXAgYmV0d2VlbiBzZXZlcmFsIHZhcmlhYmxlcyBpbiBhIGRhdGFmcmFtZSBhdCBvbmNlLgoKCiMjIyMjIEhhbmRsaW5nIG1pc3NpbmcgdmFsdWVzCgpXZSd2ZSBzZWVuIGluIGVhcmxpZXIgbGVjdHVyZXMgdGhhdCB0aGVyZSBjb3VsZCBiZSBtaXNzaW5nIHZhbHVlcyBpbiBkYXRhIHdoaWNoIGFyZSByZXByZXNlbnRlZCBieSBgTkFgIGluIFIuIE9uZSBlYXN5IHdheSB0byByZW1vdmUgdGhlbSBpcyB1c2luZyBgbmEucm0gPSBUUlVFYCBhcyBhcmd1bWVudCBpbiBtYW55IGZ1bmN0aW9ucy4KCkJ1dCB3aGF0IGlmIHdlIGhhdmUgbWlzc2luZyB2YWx1ZXMgaW4gYSBkYXRhZnJhbWUgd2hlcmUgd2UgaGF2ZSB0byBmaW5kIGNvcnJlbGF0aW9ucyBhY3Jvc3MgdmFyaWFibGVzLgoKTGV0J3MgbG9vayBhdCBzdWNoIGEgZGF0YXNldC4KCmBgYHtyfQpsb2FkKCAicGFyZW50aG9vZDIuUmRhdGEiICkKcHJpbnQoIHBhcmVudGhvb2QyICkKZGVzY3JpYmUoIHBhcmVudGhvb2QyICkgCiNDaGVjayBob3cgbWFueSBtaXNzaW5nIHZhbHVlcyBhcmUgdGhlcmUgZm9yIGVhY2ggdmFyaWFibGUgLSBjb21wYXJlIHRoZSB2YWx1ZXMgaW4gJ24nIHdpdGggdGhlIG51bWJlciBvZiBkYXlzLgpgYGAKCk5vdywgbGV0J3MgdHJ5IGZpbmRpbmcgY29ycmVsYXRpb25zIGZvciB0aGlzIGRhdGFmcmFtZS4KCmBgYHtyfQpjb3IocGFyZW50aG9vZDIpCmBgYAoKSW4gb3JkZXIgdG9wIG92ZXJjb21lIHRoaXMgcHJvYmxlbSwgd2UgY2FuIHVzZSBgdXNlYCBhcyBhbiBhcmd1bWVudCBpbiB0aGUgY29yKCkgZnVuY3Rpb24uIFRyeSBvdXQgdGhlIGZvbGxvd2luZy4KCmBgYHtyfQpjb3IocGFyZW50aG9vZDIsIHVzZSA9ICJjb21wbGV0ZS5vYnMiKQpjb3IocGFyZW50aG9vZDIsIHVzZSA9ICJwYWlyd2lzZS5jb21wbGV0ZS5vYnMiKQpgYGAKCldoZW4gd2UgY2hvb3NlIGB1c2UgPSAiY29tcGxldGUub2JzImAsIFIgd2lsbCBjb21wbGV0ZWx5IGlnbm9yZSBhbGwgY2FzZXMgKGkuZS4sIGFsbCByb3dzIGluIG91ciBwYXJlbnRob29kMiBkYXRhIGZyYW1lKSB0aGF0IGhhdmUgYW55IG1pc3NpbmcgdmFsdWVzIGF0IGFsbC4gRm9yIGVnLiwgaWYgeW91IGNob29zZSB1c2UgPSAiY29tcGxldGUub2JzIiBSIHdpbGwgaWdub3JlIHRoYXQgcm93IGNvbXBsZXRlbHk6IHRoYXQgaXMsIGV2ZW4gd2hlbiBpdOKAmXMgdHJ5aW5nIHRvIGNhbGN1bGF0ZSB0aGUgY29ycmVsYXRpb24gYmV0d2VlbiBkYW4uc2xlZXAgYW5kIGRhbi5ncnVtcCwgb2JzZXJ2YXRpb24gMSB3aWxsIGJlIGlnbm9yZWQsIGJlY2F1c2UgdGhlIHZhbHVlIG9mIGJhYnkuc2xlZXAgaXMgbWlzc2luZyBmb3IgdGhhdCBvYnNlcnZhdGlvbi4KCldoZXJlYXMgd2hlbiB3ZSBzZXQgYHVzZSA9ICJwYWlyd2lzZS5jb21wbGV0ZS5vYnMiYCBSIG9ubHkgbG9va3MgYXQgdGhlIHZhcmlhYmxlcyB0aGF0IGl04oCZcyB0cnlpbmcgdG8gY29ycmVsYXRlIHdoZW4gZGV0ZXJtaW5pbmcgd2hhdCB0byBkcm9wLiBTbywgZm9yIGluc3RhbmNlLCBzaW5jZSB0aGUgb25seSBtaXNzaW5nIHZhbHVlIGZvciBvYnNlcnZhdGlvbiAxIG9mIHBhcmVudGhvb2QyIGlzIGZvciBiYWJ5LnNsZWVwIFIgd2lsbCBvbmx5IGRyb3Agb2JzZXJ2YXRpb24gMSB3aGVuIGJhYnkuc2xlZXAgaXMgb25lIG9mIHRoZSB2YXJpYWJsZXMgaW52b2x2ZWQ6IGFuZCBzbyBSIGtlZXBzIG9ic2VydmF0aW9uIDEgd2hlbiB0cnlpbmcgdG8gY29ycmVsYXRlIGRhbi5zbGVlcCBhbmQgZGFuLmdydW1wLgoKVGhlIGFib3ZlIG9wZXJhdGlvbiBjYW4gYWxzbyBiZSBwZXJmb3JtZWQgYnkgYW5vdGhlciBmdW5jdGlvbiBjYWxsZWQgYGNvcnJlbGF0ZSgpYCBpbiBgbHNyYCBwYWNrYWdlLgoKVHJ5IGl0IG91dC4KYGBge3J9CiNUcnkgY29ycmVsYXRlKCkgZm9yIHBhcmVudGhvb2QyIGhlcmUKYGBgCgpfUmVmZXJlbmNlIDogQ2hhcHRlciA1LCBELiBOYXZhcnJvXwoKVGhhdCdzIGFsbCBmb2xrcyEK
From 8c22e9dc9afd7aa403c49e695cf9f2dd26aa4179 Mon Sep 17 00:00:00 2001 From: Arjun Date: Sat, 11 Sep 2021 18:24:13 +0000 Subject: [PATCH 10/55] Added load dataset command --- Module 3/Notebooks/Plotting.Rmd | 2 ++ 1 file changed, 2 insertions(+) diff --git a/Module 3/Notebooks/Plotting.Rmd b/Module 3/Notebooks/Plotting.Rmd index 904ee23c..6537dee1 100644 --- a/Module 3/Notebooks/Plotting.Rmd +++ b/Module 3/Notebooks/Plotting.Rmd @@ -91,6 +91,8 @@ _Reference: Chapter 2, Whitlock and Schluter_ To examine data for single variable, we show its frequency distribution. The _frequency distribution_ of a variable is the number of occurrences of all values in the data. ```{r} +#Let's load aflsmall.Rdata +load("aflsmall.Rdata") #Here's a frequency table for afl.finalists table(afl.finalists) ``` From 7db764e64a33197929063b8821a28205e3b53bf8 Mon Sep 17 00:00:00 2001 From: Arjun Date: Mon, 20 Sep 2021 11:49:43 +0000 Subject: [PATCH 11/55] I added a few lines to illustrate committing to Git --- Module 3/Notebooks/Distributions.Rmd | 9 ++++++++- 1 file changed, 8 insertions(+), 1 deletion(-) diff --git a/Module 3/Notebooks/Distributions.Rmd b/Module 3/Notebooks/Distributions.Rmd index 00bd9618..b841db32 100644 --- a/Module 3/Notebooks/Distributions.Rmd +++ b/Module 3/Notebooks/Distributions.Rmd @@ -3,6 +3,13 @@ title: "Inferential Statistics: Probability & Distributions - 1" output: html_notebook --- + +You: made a change +I: added a new command +You: want to sync the new command + +### Follow this carefully + So far we have discussed about descriptive statistics - summarizing data and plotting it. But in order gain the power of making inferences, we will be strating with inferential statistics. #### Pre-requisite: Probability @@ -104,7 +111,7 @@ Some basic terminology - We’ll let `N` denote the number of dice rolls in our Let's generate a binomial distribution in R: ```{r} -dbinom( n = 4, size = 20, prob = 1/6 ) +dbinom( x = 4, size = 20, prob = 1/6 ) ``` The above command calculates the probability of getting x = 4 skulls, from an experiment of size = 20 trials, in which the probability of getting a skull on any one trial is prob = 1/6. From 5551f1af9312c528e086690f05bedacd0f08a494 Mon Sep 17 00:00:00 2001 From: Arjun Date: Mon, 20 Sep 2021 20:01:33 +0000 Subject: [PATCH 12/55] Added normal and other distributions. --- Module 3/Notebooks/Distributions.Rmd | 117 ++++- Module 3/Notebooks/Distributions.nb.html | 588 +++++++++++++++++++++++ 2 files changed, 700 insertions(+), 5 deletions(-) create mode 100644 Module 3/Notebooks/Distributions.nb.html diff --git a/Module 3/Notebooks/Distributions.Rmd b/Module 3/Notebooks/Distributions.Rmd index b841db32..589493a3 100644 --- a/Module 3/Notebooks/Distributions.Rmd +++ b/Module 3/Notebooks/Distributions.Rmd @@ -19,6 +19,20 @@ Probability theory is a branch of mathematics that tells you how often different In each case the “truth of the world” is known. We know that the coin is fair, so there’s a 50% chance that any individual coin flip will come up heads. We know that the lottery follows specific rules. The critical point is that probabilistic questions start with a known model of the world, and we use that model to do some calculations. *[Chapter 9, Navarro D.]* +Probability of heads when you toss a coin? +P(H) = 0.5 + +Frequentist view is also an objective view. +Coin - [H, T, H, T, H, T, H] +Prob - [1, 1/2, 2/3, 0.5, ... ] + + + + + +Coin - [1, 1, 1, 1, 0] +P'(H) - 0.7 + - - - - **A short note on Models** @@ -104,14 +118,18 @@ If any of these elementary events occurs, then E is also said to have occurred. *Refer to section 9.4.1, Navarro D., for the detailed example* -Some basic terminology - We’ll let `N` denote the number of dice rolls in our experiment; which is often referred to as the `size parameter` of our binomial distribution. We’ll also use `θ` to refer to the the probability that a single die comes up skulls, a quantity that is usually called the `success probability` of the binomial. Finally, we’ll use `X` to refer to the results of our experiment, namely the number of skulls I get when I roll the dice. Since the actual value of X is due to chance, we refer to it as a `random variable`. +Some basic terminology - We’ll let `N` denote the number of dice rolls in our experiment; which is often referred to as the `size parameter` of our binomial distribution. We’ll also use `θ` to refer to the the probability that a single die comes up skull, a quantity that is usually called the `success probability` of the binomial. Finally, we’ll use `X` to refer to the results of our experiment, namely the number of skulls I get when I roll the dice. Since the actual value of X is due to chance, we refer to it as a `random variable`. `X ~ Binomial(θ, N)` denotes X is generated randomly from a binomial distribution with parameters θ and N. +4 ~ Binomial(1/6, 20) + +5 ~ Binomial(1/2, 10) + Let's generate a binomial distribution in R: ```{r} -dbinom( x = 4, size = 20, prob = 1/6 ) +dbinom( x = 1, size = 20, prob = 1/6) ``` The above command calculates the probability of getting x = 4 skulls, from an experiment of size = 20 trials, in which the probability of getting a skull on any one trial is prob = 1/6. @@ -126,7 +144,7 @@ If we want to find the probability of obtaining an outcome smaller than or equal ```{r} #Find the probability of rolling 0 skulls or 1 skull or 2 skulls or 3 skulls or 4 skulls -pbinom( q= 4, size = 20, prob = 1/6) +pbinom( q= 3, size = 20, prob = 1/6) #Practice - Find probability of getting 0-5 heads in 50 trials of coin flip ``` @@ -135,7 +153,7 @@ In other words, value of 4 is actually the 76.9th percentile of this binomial di Now let’s say we want to calculate the 75th percentile of the binomial distribution. ```{r} -qbinom( p = 0.75, size = 20, prob = 1/6 ) +qbinom( p = 0.566, size = 20, prob = 1/6 ) #Practice - Find the 40th percentile ``` @@ -152,6 +170,95 @@ hist(z, col = 'steelblue') All these different functions *d, p, q, n* are also applicable to other distributions. E.g. *dnorm, pnorm, qnorm, rnorm* for Normal distribution. -End of part 1 + +##### Normal Distribution + +Most frequently encountered distribution. +Eg: heights of all students in the class, marks obtained in exams, etc + +Basically, whenever you have accumulation of data at the center, fewer extreme values and a near symmetric spread, you should recall the normal distribution. + + + +```{r} +normal_distribution <- rnorm(10000, mean = 0, sd = 1) +histogram_normal_distribution <- hist(normal_distribution) +plot(histogram_normal_distribution$mids,histogram_normal_distribution$density) + +``` + +Note: Normal distribution is sometimes referred to as the bell curve or Gaussian distribution + +The notation for a normal distribution is: X ∼ Normal(μ,σ) + + +dnorm tells you the probability of getting a particular outcome +```{r} +dnorm(x=0, mean=0, sd=1) + +``` +Cumulative normal distribution +```{r} +pnorm(2, mean = 0, sd = 1) +``` + +```{r} +qnorm(0.5 ,mean = , sd = 1) +``` + +##### Other useful distributions + +Some other distributions you may encounter include: +*1) t distribution* + +Looks like the normal distribution but has heavier tails. +Used when data looks like a normal distribution but the mean and SD are unknown. + +Use the following functions to visualize the t distribution: +dt(), pt(), qt() and rt() + +```{r} +t_distribution <- rt(10000, 3) +histogram_t_distribution <- hist(t_distribution) +plot(histogram_t_distribution$mids,histogram_t_distribution$density) +``` + + + + +*2) Chi square (χ2) distribution* + +All positive and heavily skewed to the left. +Used when data represents sum of squares of a normally distributed variables. + +Use the following functions to visualize the chi sq distribution: +dchisq(), pchisq(), qchisq(), rchisq(). + +```{r} +chisq_distribution <- rchisq(10000, 3, ncp = 0) +histogram_chisq_distribution <- hist(chisq_distribution) +plot(histogram_chisq_distribution$mids,histogram_chisq_distribution$density) +``` + + + + +3) F distribution + +This one looka a bit like the chi square distribution. But this distribution comes into picture when +one compares two chi sq distributions. + +Use the following functions to visualize the chi sq distribution: +df(), pf(), qf() and rf() + +```{r} +f_distribution <- rf(10000, 3, 5) +histogram_f_distribution <- hist(f_distribution) +plot(histogram_f_distribution$mids,histogram_f_distribution$density) +``` + + + +The End Reference - *Chapter 9, Navarro D.* diff --git a/Module 3/Notebooks/Distributions.nb.html b/Module 3/Notebooks/Distributions.nb.html new file mode 100644 index 00000000..862f186e --- /dev/null +++ b/Module 3/Notebooks/Distributions.nb.html @@ -0,0 +1,588 @@ + + + + + + + + + + + + + +Inferential Statistics: Probability & Distributions - 1 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + +

You: made a change I: added a new command You: want to sync the new command

+
+

Follow this carefully

+

So far we have discussed about descriptive statistics - summarizing data and plotting it. But in order gain the power of making inferences, we will be strating with inferential statistics.

+
+

Pre-requisite: Probability

+
+
Difference between probability and statistics**
+

Probability theory is a branch of mathematics that tells you how often different kinds of events will happen. For eg. What are the chances of a fair coin coming up heads 10 times in a row? or What are the chances that I’ll win the lottery?

+

In each case the “truth of the world” is known. We know that the coin is fair, so there’s a 50% chance that any individual coin flip will come up heads. We know that the lottery follows specific rules. The critical point is that probabilistic questions start with a known model of the world, and we use that model to do some calculations. [Chapter 9, Navarro D.]

+

Probability of heads when you toss a coin? P(H) = 0.5

+

Frequentist view is also an objective view. Coin - [H, T, H, T, H, T, H] Prob - [1, 1/2, 2/3, 0.5, … ]

+

Coin - [1, 1, 1, 1, 0] P’(H) - 0.7

+ ++++++ + + + + + + + + + + + + + + +
**Ashort note on Models**
Amodel is a simplified representation of a system. For example, the map of a city represents a city in a simplified fashion. A map providing as much detail as the original city would not only be impossible to construct, it would also be pointless. Humans build models, such as maps and statistical models, to make their lives simpler. [Chapter 3, Winter B.]
+

But even though we know the models like P(heads) = 0.5, we do not know the data (Whetehr heads will come 10 times or 3 times). However, for statistics, it is the opposite. We have the data and we want to infer the truth about the world. For eg., If my friend flips a coin 10 times and gets 10 heads, are they playing a trick on me? or If the lottery commissioner’s spouse wins the lottery, how likely is it that the lottery was rigged?

+

We want to figure out which is the true model of the world. Is it P(heads) = 0.5 or is it P(heads) \(\ne\) 0.5?

+
+
+
What is probability really?
+

The frequentist view

+
+ +

Frequentist_graph

+
+

According to the frequentist view, flip a fair coin over and over again, and as N grows large (approaches infinity, denoted N Ñ 8), the proportion of heads will converge to 50%.

+

Advantages - It is objective: the probability of an event is necessarily grounded in the world. - It is unambiguous: any two people watching the same sequence of events unfold, trying to calculate the probability of an event, must inevitably come up with the same answer.

+

But it all depends on infinite flips of coin. Do infinities really exist in the physical universe? What about the probability for a single non-repeatable event like the chances of rain on 21 September 2021?

+

The Bayesian view

+

Bayesian view is subjectivist view. The most common way of thinking about subjective probability is to define the probability of an event as the degree of belief that an intelligent and rational agent assigns to that truth of that event. But how to operationalize this ‘degree of belief’?

+

One way is to use ‘rational gambling’. So a “subjective probability” will be operationalized in terms of what bets you’re willing to accept.

+

Advantage - You don’t need to be limited to those events that are repeatable.

+

Disadvantage - Can’t be purely objective – specifying a probability requires us to specify an entity that has the relevant degree of belief. This entity might be a human, an alien, a robot, or even a statistician, but there has to be an intelligent agent out there that believes in things.

+

In short, frequentist view is sometimes considered to be too narrow (forbids lots of things that that we want to assign probabilities to) while the Bayesian view is sometimes thought to be too broad (allows too many differences between observers).

+
+
+
Definitions
+

Refer to the example described in Section 9.3.1, Navarro D. for the following content.

+

Elementary event: Every time we make an observation (e.g., every time I put on a pair of pants), then the outcome will be one and only one of these events.

+

Sample space: The set of all possible events (e.g., the wardrobe)

+

Probability: Numbers between 0 and 1.

+

For an event X, the probability of that event P(X) is a number that lies between 0 and 1. The bigger the value of P(X), the more likely the event is to occur.

+

If P(X) = 0, it means the event X is impossible (i.e., I never wear those pants). On the other hand, if P(X)= 1 it means that event X is certain to occur (i.e., I always wear those pants).

+

Law of total probability: The probabilities of the elementary events need to add up to 1

+
+
+
+

Distributions

+

Let’s take a look at this and see what is a distribution.

+ + + +
pants <- data.frame(
+   type = c("Blue jeans","Grey jeans","Black jeans","Black suit","Blue tracksuit"),
+   label = c("X1", "X2", "X3", "X4", "X5"),
+   probability = c(0.5,0.3,0.1,0,0.1))
+
+pants
+ + + +

Probability distribution is simply the probabilities of these different events above. Each of the events has a probability that lies between 0 and 1, and if we add up the probability of all events, they sum to 1.

+ + + +
#Try plotting a bar graph of all the probabilities above
+ + + +

Let’s think about what happens in case of non-elementary events. E.g. An event E where either “blue jeans” or “black jeans” or “grey jeans” has occurred. Then what will be the probability of event E.

+

P(E) = P(X1) + P(X2) + P(X3)

+

If any of these elementary events occurs, then E is also said to have occurred. Similarly, there are other rules satisfying probabilities:

+
+ +

Probability_rules

+
+
+
Binomial Distribution
+

Refer to section 9.4.1, Navarro D., for the detailed example

+

Some basic terminology - We’ll let N denote the number of dice rolls in our experiment; which is often referred to as the size parameter of our binomial distribution. We’ll also use θ to refer to the the probability that a single die comes up skull, a quantity that is usually called the success probability of the binomial. Finally, we’ll use X to refer to the results of our experiment, namely the number of skulls I get when I roll the dice. Since the actual value of X is due to chance, we refer to it as a random variable.

+

X ~ Binomial(θ, N) denotes X is generated randomly from a binomial distribution with parameters θ and N.

+

4 ~ Binomial(1/6, 20)

+

5 ~ Binomial(1/2, 10)

+

Let’s generate a binomial distribution in R:

+ + + +
dbinom( x = 3, size = 20, prob = 1/6)
+ + +
[1] 0.2378866
+ + + +

The above command calculates the probability of getting x = 4 skulls, from an experiment of size = 20 trials, in which the probability of getting a skull on any one trial is prob = 1/6.

+

What if the dice is replaced by a coin in the above example? How will the probability change?

+ + + +
#Try finding the probability for N = 20 and N=100 trials for a fair coin flip.
+ + + +

There are different functions in R for different distributions as well as different ones for finding different quantity of interest.

+

If we want to find the probability of obtaining an outcome smaller than or equal to quantile q, then we can directly use pbinom.

+ + + +
#Find the probability of rolling 0 skulls or 1 skull or 2 skulls or 3 skulls or 4 skulls
+pbinom( q= 3, size = 20, prob = 1/6)
+ + +
[1] 0.5665456
+ + +
#Practice - Find probability of getting 0-5 heads in 50 trials of coin flip
+ + + +

In other words, value of 4 is actually the 76.9th percentile of this binomial distribution.

+

Now let’s say we want to calculate the 75th percentile of the binomial distribution.

+ + + +
qbinom( p = 0.566, size = 20, prob = 1/6 )
+ + +
[1] 3
+ + +
#Practice - Find the 40th percentile
+ + + +

We’ve found different quantities. What if we want to simulate the above experiments. We specify how many times R should “simulate” the experiment using the n argument, and it will generate random outcomes from the binomial distribution using the rbinom function.

+ + + +
z <- rbinom( n = 100, size = 20, prob = 1/6 )
+z
+ + +
  [1] 2 5 3 1 6 4 2 5 4 4 5 3 3 4 0 3 3 3 4 3 3 1 3 2 2 6 3 5 2 8 2 5 4 4 2 2 1 6 2 3 4 2 3 3 4 4 3 1 2 3 2 1 2 1 4 4 6 3
+ [59] 4 6 2 5 7 3 2 5 5 5 4 2 4 0 1 2 5 5 2 6 3 3 3 1 3 3 3 3 2 3 5 3 3 3 4 3 2 3 3 5 6 3
+ + +
#Let's also plot this and see how it looks
+hist(z, col = 'steelblue')
+ + +

+ + + +

#Try plotting the distributions in above examples and vary the size, trial number and probability to generate different plots.

+

All these different functions d, p, q, n are also applicable to other distributions. E.g. dnorm, pnorm, qnorm, rnorm for Normal distribution.

+
+
+
Normal Distribution
+

Most frequently encountered distribution. Eg: heights of all students in the class, marks obtained in exams, etc

+

Basically, whenever you have accumulation of data at the center, fewer extreme values and a near symmetric spread, you should recall the normal distribution.

+ + + +
normal_distribution <- rnorm(10000, mean = 0, sd = 1) 
+histogram_normal_distribution <- hist(normal_distribution)
+ + +

+ + +
plot(histogram_normal_distribution$mids,histogram_normal_distribution$density)
+
+ + +

+ + + +

Note: Normal distribution is sometimes referred to as the bell curve or Gaussian distribution

+

The notation for a normal distribution is: X ∼ Normal(μ,σ)

+

dnorm tells you the probability of getting a particular outcome

+ + + +
dnorm(x=0, mean=0, sd=1)
+ + +
[1] 0.3989423
+ + + +

Cumulative normal distribution

+ + + +
pnorm(2, mean = 0, sd = 1)
+ + +
[1] 0.9772499
+ + + + + + +
qnorm(0.5 , mean = , sd = 1)
+ + +
[1] 0
+ + + +
+
+
Other useful distributions
+

Some other distributions you may encounter include: 1) t distribution

+

Looks like the normal distribution but has heavier tails. Used when data looks like a normal distribution but the mean and SD are unknown.

+

Use the following functions to visualize the t distribution: dt(), pt(), qt() and rt()

+ + + +
t_distribution <- rt(10000, 3)
+histogram_t_distribution <- hist(t_distribution)
+ + +

+ + +
plot(histogram_t_distribution$mids,histogram_t_distribution$density)
+ + +

+ + + +

2) Chi square (χ2) distribution

+

All positive and heavily skewed to the left.
+Used when data represents sum of squares of a normally distributed variables.

+

Use the following functions to visualize the chi sq distribution: dchisq(), pchisq(), qchisq(), rchisq().

+ + + +
chisq_distribution <- rchisq(10000, 3, ncp = 0)
+histogram_chisq_distribution <- hist(chisq_distribution)
+ + +

+ + +
plot(histogram_chisq_distribution$mids,histogram_chisq_distribution$density)
+ + +

+ + + +
    +
  1. F distribution
  2. +
+

This one looka a bit like the chi square distribution. But this distribution comes into picture when one compares two chi sq distributions.

+

Use the following functions to visualize the chi sq distribution: df(), pf(), qf() and rf()

+ + + +
f_distribution <- rf(10000, 3, 5)
+histogram_f_distribution <- hist(f_distribution)
+ + +

+ + +
plot(histogram_f_distribution$mids,histogram_f_distribution$density)
+ + +

+ + + +

The End

+

Reference - Chapter 9, Navarro D.

+ +
+
+
+ +
LS0tCnRpdGxlOiAiSW5mZXJlbnRpYWwgU3RhdGlzdGljczogUHJvYmFiaWxpdHkgJiBEaXN0cmlidXRpb25zIC0gMSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKCllvdTogbWFkZSBhIGNoYW5nZQpJOiBhZGRlZCBhIG5ldyBjb21tYW5kCllvdTogd2FudCB0byBzeW5jIHRoZSBuZXcgY29tbWFuZAoKIyMjIEZvbGxvdyB0aGlzIGNhcmVmdWxseQoKU28gZmFyIHdlIGhhdmUgZGlzY3Vzc2VkIGFib3V0IGRlc2NyaXB0aXZlIHN0YXRpc3RpY3MgLSBzdW1tYXJpemluZyBkYXRhIGFuZCBwbG90dGluZyBpdC4gQnV0IGluIG9yZGVyIGdhaW4gdGhlIHBvd2VyIG9mIG1ha2luZyBpbmZlcmVuY2VzLCB3ZSB3aWxsIGJlIHN0cmF0aW5nIHdpdGggaW5mZXJlbnRpYWwgc3RhdGlzdGljcy4KCiMjIyMgUHJlLXJlcXVpc2l0ZTogUHJvYmFiaWxpdHkKCiMjIyMjIERpZmZlcmVuY2UgYmV0d2VlbiBwcm9iYWJpbGl0eSBhbmQgc3RhdGlzdGljcyoqClByb2JhYmlsaXR5IHRoZW9yeSBpcyBhIGJyYW5jaCBvZiBtYXRoZW1hdGljcyB0aGF0IHRlbGxzIHlvdSBob3cgb2Z0ZW4gZGlmZmVyZW50IGtpbmRzIG9mIGV2ZW50cyB3aWxsIGhhcHBlbi4gRm9yIGVnLiBXaGF0IGFyZSB0aGUgY2hhbmNlcyBvZiBhIGZhaXIgY29pbiBjb21pbmcgdXAgaGVhZHMgMTAgdGltZXMgaW4gYSByb3c/IG9yIFdoYXQgYXJlIHRoZSBjaGFuY2VzIHRoYXQgSeKAmWxsIHdpbiB0aGUgbG90dGVyeT8KCkluIGVhY2ggY2FzZSB0aGUg4oCcdHJ1dGggb2YgdGhlIHdvcmxk4oCdIGlzIGtub3duLiBXZSBrbm93IHRoYXQgdGhlIGNvaW4gaXMgZmFpciwgc28gdGhlcmXigJlzIGEgNTAlIGNoYW5jZSB0aGF0IGFueSBpbmRpdmlkdWFsIGNvaW4gZmxpcCB3aWxsIGNvbWUgdXAgaGVhZHMuIFdlIGtub3cgdGhhdCB0aGUgbG90dGVyeSBmb2xsb3dzIHNwZWNpZmljIHJ1bGVzLiBUaGUgY3JpdGljYWwgcG9pbnQgaXMgdGhhdCBwcm9iYWJpbGlzdGljIHF1ZXN0aW9ucyBzdGFydCB3aXRoIGEga25vd24gbW9kZWwgb2YgdGhlIHdvcmxkLCBhbmQgd2UgdXNlIHRoYXQgbW9kZWwgdG8gZG8gc29tZSBjYWxjdWxhdGlvbnMuICpbQ2hhcHRlciA5LCBOYXZhcnJvIEQuXSoKClByb2JhYmlsaXR5IG9mIGhlYWRzIHdoZW4geW91IHRvc3MgYSBjb2luPyAKUChIKSA9IDAuNSAKCkZyZXF1ZW50aXN0IHZpZXcgaXMgYWxzbyBhbiBvYmplY3RpdmUgdmlldy4gCkNvaW4gLSBbSCwgVCwgSCwgVCwgSCwgVCwgSF0KUHJvYiAtIFsxLCAxLzIsIDIvMywgMC41LCAuLi4gXQoKCgoKCkNvaW4gLSBbMSwgMSwgMSwgMSwgMF0KUCcoSCkgLSAwLjcKCi0gLSAtIC0KKipBIHNob3J0IG5vdGUgb24gTW9kZWxzKioKCkEgbW9kZWwgaXMgYSBzaW1wbGlmaWVkIHJlcHJlc2VudGF0aW9uIG9mIGEgc3lzdGVtLiBGb3IgZXhhbXBsZSwgdGhlIG1hcCBvZiBhIGNpdHkgcmVwcmVzZW50cyBhIGNpdHkgaW4gYSBzaW1wbGlmaWVkIGZhc2hpb24uIEEgbWFwIHByb3ZpZGluZyBhcyBtdWNoIGRldGFpbCBhcyB0aGUgb3JpZ2luYWwgY2l0eSB3b3VsZCBub3Qgb25seSBiZSBpbXBvc3NpYmxlIHRvIGNvbnN0cnVjdCwgaXQgd291bGQgYWxzbyBiZSBwb2ludGxlc3MuIEh1bWFucyBidWlsZCBtb2RlbHMsIHN1Y2ggYXMgbWFwcyBhbmQgc3RhdGlzdGljYWwgbW9kZWxzLCB0byBtYWtlIHRoZWlyIGxpdmVzIHNpbXBsZXIuICpbQ2hhcHRlciAzLCBXaW50ZXIgQi5dKgotIC0gLSAtCgpCdXQgZXZlbiB0aG91Z2ggd2Uga25vdyB0aGUgbW9kZWxzIGxpa2UgYFAoaGVhZHMpID0gMC41YCwgd2UgZG8gbm90IGtub3cgdGhlIGRhdGEgKFdoZXRlaHIgaGVhZHMgd2lsbCBjb21lIDEwIHRpbWVzIG9yIDMgdGltZXMpLiBIb3dldmVyLCBmb3Igc3RhdGlzdGljcywgaXQgaXMgdGhlIG9wcG9zaXRlLiBXZSBoYXZlIHRoZSBkYXRhIGFuZCB3ZSB3YW50IHRvIGluZmVyIHRoZSB0cnV0aCBhYm91dCB0aGUgd29ybGQuIEZvciBlZy4sIElmIG15IGZyaWVuZCBmbGlwcyBhIGNvaW4gMTAgdGltZXMgYW5kIGdldHMgMTAgaGVhZHMsIGFyZSB0aGV5IHBsYXlpbmcgYSB0cmljayBvbiBtZT8gb3IgSWYgdGhlIGxvdHRlcnkgY29tbWlzc2lvbmVy4oCZcyBzcG91c2Ugd2lucyB0aGUgbG90dGVyeSwgaG93IGxpa2VseSBpcyBpdCB0aGF0IHRoZSBsb3R0ZXJ5IHdhcyByaWdnZWQ/CgpXZSB3YW50IHRvIGZpZ3VyZSBvdXQgd2hpY2ggaXMgdGhlIHRydWUgbW9kZWwgb2YgdGhlIHdvcmxkLiBJcyBpdCAqUChoZWFkcykgPSAwLjUqIG9yIGlzIGl0ICpQKGhlYWRzKSAkXG5lJCAwLjUqPwoKIyMjIyMgV2hhdCBpcyBwcm9iYWJpbGl0eSByZWFsbHk/CgoqKlRoZSBmcmVxdWVudGlzdCB2aWV3KioKCiFbRnJlcXVlbnRpc3RfZ3JhcGhdKEZpZzQucG5nKQoKQWNjb3JkaW5nIHRvIHRoZSBmcmVxdWVudGlzdCB2aWV3LCBmbGlwIGEgZmFpciBjb2luIG92ZXIgYW5kIG92ZXIgYWdhaW4sIGFuZCBhcyBOIGdyb3dzIGxhcmdlIChhcHByb2FjaGVzIGluZmluaXR5LCBkZW5vdGVkIE4gw5EgOCksIHRoZSBwcm9wb3J0aW9uIG9mIGhlYWRzIHdpbGwgY29udmVyZ2UgdG8gNTAlLgoKICpBZHZhbnRhZ2VzKgogLSAgSXQgaXMgb2JqZWN0aXZlOiB0aGUgcHJvYmFiaWxpdHkgb2YgYW4gZXZlbnQgaXMgbmVjZXNzYXJpbHkgZ3JvdW5kZWQgaW4gdGhlIHdvcmxkLgogLSAgSXQgaXMgdW5hbWJpZ3VvdXM6IGFueSB0d28gcGVvcGxlIHdhdGNoaW5nIHRoZSBzYW1lIHNlcXVlbmNlIG9mIGV2ZW50cyB1bmZvbGQsIHRyeWluZyB0byBjYWxjdWxhdGUgdGhlIHByb2JhYmlsaXR5IG9mIGFuIGV2ZW50LCBtdXN0IGluZXZpdGFibHkgY29tZSB1cCB3aXRoIHRoZSBzYW1lIGFuc3dlci4KCkJ1dCBpdCBhbGwgZGVwZW5kcyBvbiBpbmZpbml0ZSBmbGlwcyBvZiBjb2luLiBEbyBpbmZpbml0aWVzIHJlYWxseSBleGlzdCBpbiB0aGUgcGh5c2ljYWwgdW5pdmVyc2U/IFdoYXQgYWJvdXQgdGhlIHByb2JhYmlsaXR5IGZvciBhIHNpbmdsZSBub24tcmVwZWF0YWJsZSBldmVudCBsaWtlIHRoZSBjaGFuY2VzIG9mIHJhaW4gb24gMjEgU2VwdGVtYmVyIDIwMjE/CgoqKlRoZSBCYXllc2lhbiB2aWV3KioKCkJheWVzaWFuIHZpZXcgaXMgc3ViamVjdGl2aXN0IHZpZXcuIFRoZSBtb3N0IGNvbW1vbiB3YXkgb2YgdGhpbmtpbmcgYWJvdXQgc3ViamVjdGl2ZSBwcm9iYWJpbGl0eSBpcyB0byBkZWZpbmUgdGhlIHByb2JhYmlsaXR5IG9mIGFuIGV2ZW50IGFzIHRoZSBkZWdyZWUgb2YgYmVsaWVmIHRoYXQgYW4gaW50ZWxsaWdlbnQgYW5kIHJhdGlvbmFsIGFnZW50IGFzc2lnbnMgdG8gdGhhdCB0cnV0aCBvZiB0aGF0IGV2ZW50LiBCdXQgaG93IHRvIG9wZXJhdGlvbmFsaXplIHRoaXMgJ2RlZ3JlZSBvZiBiZWxpZWYnPyAKCk9uZSB3YXkgaXMgdG8gdXNlICdyYXRpb25hbCBnYW1ibGluZycuIFNvIGEg4oCcc3ViamVjdGl2ZSBwcm9iYWJpbGl0eeKAnSB3aWxsIGJlIG9wZXJhdGlvbmFsaXplZCBpbiB0ZXJtcyBvZiB3aGF0IGJldHMgeW91J3JlIHdpbGxpbmcgdG8gYWNjZXB0LgoKICpBZHZhbnRhZ2UqCiAtIFlvdSBkb27igJl0IG5lZWQgdG8gYmUgbGltaXRlZCB0byB0aG9zZSBldmVudHMgdGhhdCBhcmUgcmVwZWF0YWJsZS4KIAogKkRpc2FkdmFudGFnZSoKIC0gQ2Fu4oCZdCBiZSBwdXJlbHkgb2JqZWN0aXZlIOKAkyBzcGVjaWZ5aW5nIGEgcHJvYmFiaWxpdHkgcmVxdWlyZXMgdXMgdG8gc3BlY2lmeSBhbiBlbnRpdHkgdGhhdCBoYXMgdGhlIHJlbGV2YW50IGRlZ3JlZSBvZiBiZWxpZWYuIFRoaXMgZW50aXR5IG1pZ2h0IGJlIGEgaHVtYW4sIGFuIGFsaWVuLCBhIHJvYm90LCBvciBldmVuIGEgc3RhdGlzdGljaWFuLCBidXQgdGhlcmUgaGFzIHRvIGJlIGFuICoqaW50ZWxsaWdlbnQgYWdlbnQqKiBvdXQgdGhlcmUgdGhhdCBiZWxpZXZlcyBpbiB0aGluZ3MuIAoKCkluIHNob3J0LCBmcmVxdWVudGlzdCB2aWV3IGlzIHNvbWV0aW1lcyBjb25zaWRlcmVkIHRvIGJlIHRvbyBuYXJyb3cgKGZvcmJpZHMgbG90cyBvZiB0aGluZ3MgdGhhdCB0aGF0IHdlIHdhbnQgdG8gYXNzaWduIHByb2JhYmlsaXRpZXMgdG8pIHdoaWxlIHRoZSBCYXllc2lhbiB2aWV3IGlzIHNvbWV0aW1lcyB0aG91Z2h0IHRvIGJlIHRvbyBicm9hZCAoYWxsb3dzIHRvbyBtYW55IGRpZmZlcmVuY2VzIGJldHdlZW4gb2JzZXJ2ZXJzKS4KCiMjIyMjIERlZmluaXRpb25zCgpSZWZlciB0byB0aGUgZXhhbXBsZSBkZXNjcmliZWQgaW4gKlNlY3Rpb24gOS4zLjEsIE5hdmFycm8gRC4qIGZvciB0aGUgZm9sbG93aW5nIGNvbnRlbnQuCgoqKkVsZW1lbnRhcnkgZXZlbnQ6KiogRXZlcnkgdGltZSB3ZSBtYWtlIGFuIG9ic2VydmF0aW9uIChlLmcuLCBldmVyeSB0aW1lIEkgcHV0IG9uIGEgcGFpciBvZiBwYW50cyksIHRoZW4gdGhlIG91dGNvbWUgd2lsbCBiZSBvbmUgYW5kIG9ubHkgb25lIG9mIHRoZXNlIGV2ZW50cy4KCioqU2FtcGxlIHNwYWNlOioqIFRoZSBzZXQgb2YgYWxsIHBvc3NpYmxlIGV2ZW50cyAoZS5nLiwgdGhlIHdhcmRyb2JlKQoKKipQcm9iYWJpbGl0eToqKiBOdW1iZXJzIGJldHdlZW4gMCBhbmQgMS4KCkZvciBhbiBldmVudCBYLCB0aGUgcHJvYmFiaWxpdHkgb2YgdGhhdCBldmVudCBQKFgpIGlzIGEgbnVtYmVyIHRoYXQgbGllcyBiZXR3ZWVuIDAgYW5kIDEuIFRoZSBiaWdnZXIgdGhlIHZhbHVlIG9mIFAoWCksIHRoZSBtb3JlIGxpa2VseSB0aGUgZXZlbnQgaXMgdG8gb2NjdXIuCgpJZiBQKFgpID0gMCwgaXQgbWVhbnMgdGhlIGV2ZW50IFggaXMgaW1wb3NzaWJsZSAoaS5lLiwgSSBuZXZlciB3ZWFyIHRob3NlIHBhbnRzKS4gT24gdGhlIG90aGVyIGhhbmQsIGlmIFAoWCk9IDEgaXQgbWVhbnMgdGhhdCBldmVudCBYIGlzIGNlcnRhaW4gdG8gb2NjdXIgKGkuZS4sIEkgYWx3YXlzIHdlYXIgdGhvc2UgcGFudHMpLgoKKipMYXcgb2YgdG90YWwgcHJvYmFiaWxpdHk6KiogVGhlIHByb2JhYmlsaXRpZXMgb2YgdGhlIGVsZW1lbnRhcnkgZXZlbnRzIG5lZWQgdG8gYWRkIHVwIHRvIDEKCiMjIyMgRGlzdHJpYnV0aW9ucwoKTGV0J3MgdGFrZSBhIGxvb2sgYXQgdGhpcyBhbmQgc2VlIHdoYXQgaXMgYSBkaXN0cmlidXRpb24uIAoKYGBge3J9CnBhbnRzIDwtIGRhdGEuZnJhbWUoCiAgIHR5cGUgPSBjKCJCbHVlIGplYW5zIiwiR3JleSBqZWFucyIsIkJsYWNrIGplYW5zIiwiQmxhY2sgc3VpdCIsIkJsdWUgdHJhY2tzdWl0IiksCiAgIGxhYmVsID0gYygiWDEiLCAiWDIiLCAiWDMiLCAiWDQiLCAiWDUiKSwKICAgcHJvYmFiaWxpdHkgPSBjKDAuNSwwLjMsMC4xLDAsMC4xKSkKCnBhbnRzCmBgYApQcm9iYWJpbGl0eSBkaXN0cmlidXRpb24gaXMgc2ltcGx5IHRoZSBwcm9iYWJpbGl0aWVzIG9mIHRoZXNlIGRpZmZlcmVudCBldmVudHMgYWJvdmUuIEVhY2ggb2YgdGhlIGV2ZW50cyBoYXMgYSBwcm9iYWJpbGl0eSB0aGF0IGxpZXMgYmV0d2VlbiAwIGFuZCAxLCBhbmQgaWYgd2UgYWRkIHVwIHRoZSBwcm9iYWJpbGl0eSBvZiBhbGwgZXZlbnRzLCB0aGV5IHN1bSB0byAxLgoKYGBge3J9CiNUcnkgcGxvdHRpbmcgYSBiYXIgZ3JhcGggb2YgYWxsIHRoZSBwcm9iYWJpbGl0aWVzIGFib3ZlCmBgYApMZXQncyB0aGluayBhYm91dCB3aGF0IGhhcHBlbnMgaW4gY2FzZSBvZiBub24tZWxlbWVudGFyeSBldmVudHMuIEUuZy4gQW4gZXZlbnQgRSB3aGVyZSBlaXRoZXIg4oCcYmx1ZSBqZWFuc+KAnSBvciDigJxibGFjayBqZWFuc+KAnSBvciDigJxncmV5IGplYW5zIiBoYXMgb2NjdXJyZWQuIApUaGVuIHdoYXQgd2lsbCBiZSB0aGUgcHJvYmFiaWxpdHkgb2YgZXZlbnQgRS4KClAoRSkgPSBQKFgxKSArIFAoWDIpICsgUChYMykKCklmIGFueSBvZiB0aGVzZSBlbGVtZW50YXJ5IGV2ZW50cyBvY2N1cnMsIHRoZW4gRSBpcyBhbHNvIHNhaWQgdG8gaGF2ZSBvY2N1cnJlZC4gU2ltaWxhcmx5LCB0aGVyZSBhcmUgb3RoZXIgcnVsZXMgc2F0aXNmeWluZyBwcm9iYWJpbGl0aWVzOgoKIVtQcm9iYWJpbGl0eV9ydWxlc10oRmlnNS5wbmcpCgojIyMjIyBCaW5vbWlhbCBEaXN0cmlidXRpb24KCipSZWZlciB0byBzZWN0aW9uIDkuNC4xLCBOYXZhcnJvIEQuLCBmb3IgdGhlIGRldGFpbGVkIGV4YW1wbGUqCgpTb21lIGJhc2ljIHRlcm1pbm9sb2d5IC0gV2XigJlsbCBsZXQgYE5gIGRlbm90ZSB0aGUgbnVtYmVyIG9mIGRpY2Ugcm9sbHMgaW4gb3VyIGV4cGVyaW1lbnQ7IHdoaWNoIGlzIG9mdGVuIHJlZmVycmVkIHRvIGFzIHRoZSBgc2l6ZSBwYXJhbWV0ZXJgIG9mIG91ciBiaW5vbWlhbCBkaXN0cmlidXRpb24uIFdl4oCZbGwgYWxzbyB1c2UgYM64YCB0byByZWZlciB0byB0aGUgdGhlIHByb2JhYmlsaXR5IHRoYXQgYSBzaW5nbGUgZGllIGNvbWVzIHVwIHNrdWxsLCBhIHF1YW50aXR5IHRoYXQgaXMgdXN1YWxseSBjYWxsZWQgdGhlIGBzdWNjZXNzIHByb2JhYmlsaXR5YCBvZiB0aGUgYmlub21pYWwuIEZpbmFsbHksIHdl4oCZbGwgdXNlIGBYYCB0byByZWZlciB0byB0aGUgcmVzdWx0cyBvZiBvdXIgZXhwZXJpbWVudCwgbmFtZWx5IHRoZSBudW1iZXIgb2Ygc2t1bGxzIEkgZ2V0IHdoZW4gSSByb2xsIHRoZSBkaWNlLiBTaW5jZSB0aGUgYWN0dWFsIHZhbHVlIG9mIFggaXMgZHVlIHRvIGNoYW5jZSwgd2UgcmVmZXIgdG8gaXQgYXMgYSBgcmFuZG9tIHZhcmlhYmxlYC4KCmBYIH4gQmlub21pYWwozrgsIE4pYCBkZW5vdGVzIFggaXMgZ2VuZXJhdGVkIHJhbmRvbWx5IGZyb20gYSBiaW5vbWlhbCBkaXN0cmlidXRpb24gd2l0aCBwYXJhbWV0ZXJzIM64IGFuZCBOLgoKNCB+IEJpbm9taWFsKDEvNiwgMjApCgo1IH4gQmlub21pYWwoMS8yLCAxMCkKCkxldCdzIGdlbmVyYXRlIGEgYmlub21pYWwgZGlzdHJpYnV0aW9uIGluIFI6CgpgYGB7cn0KZGJpbm9tKCB4ID0gMSwgc2l6ZSA9IDIwLCBwcm9iID0gMS82KQpgYGAKVGhlIGFib3ZlIGNvbW1hbmQgY2FsY3VsYXRlcyB0aGUgcHJvYmFiaWxpdHkgb2YgZ2V0dGluZyB4ID0gNCBza3VsbHMsIGZyb20gYW4gZXhwZXJpbWVudCBvZiBzaXplID0gMjAgdHJpYWxzLCBpbiB3aGljaCB0aGUgcHJvYmFiaWxpdHkgb2YgZ2V0dGluZyBhIHNrdWxsIG9uIGFueSBvbmUgdHJpYWwgaXMgcHJvYiA9IDEvNi4KCldoYXQgaWYgdGhlIGRpY2UgaXMgcmVwbGFjZWQgYnkgYSBjb2luIGluIHRoZSBhYm92ZSBleGFtcGxlPyBIb3cgd2lsbCB0aGUgcHJvYmFiaWxpdHkgY2hhbmdlPyAKCmBgYHtyfQojVHJ5IGZpbmRpbmcgdGhlIHByb2JhYmlsaXR5IGZvciBOID0gMjAgYW5kIE49MTAwIHRyaWFscyBmb3IgYSBmYWlyIGNvaW4gZmxpcC4KYGBgClRoZXJlIGFyZSBkaWZmZXJlbnQgZnVuY3Rpb25zIGluIFIgZm9yIGRpZmZlcmVudCBkaXN0cmlidXRpb25zIGFzIHdlbGwgYXMgZGlmZmVyZW50IG9uZXMgZm9yIGZpbmRpbmcgZGlmZmVyZW50IHF1YW50aXR5IG9mIGludGVyZXN0LgoKSWYgd2Ugd2FudCB0byBmaW5kIHRoZSBwcm9iYWJpbGl0eSBvZiBvYnRhaW5pbmcgYW4gb3V0Y29tZSBzbWFsbGVyIHRoYW4gb3IgZXF1YWwgdG8gcXVhbnRpbGUgcSwgdGhlbiB3ZSBjYW4gZGlyZWN0bHkgdXNlIGBwYmlub21gLgoKYGBge3J9CiNGaW5kIHRoZSBwcm9iYWJpbGl0eSBvZiByb2xsaW5nIDAgc2t1bGxzIG9yIDEgc2t1bGwgb3IgMiBza3VsbHMgb3IgMyBza3VsbHMgb3IgNCBza3VsbHMKcGJpbm9tKCBxPSAzLCBzaXplID0gMjAsIHByb2IgPSAxLzYpCgojUHJhY3RpY2UgLSBGaW5kIHByb2JhYmlsaXR5IG9mIGdldHRpbmcgMC01IGhlYWRzIGluIDUwIHRyaWFscyBvZiBjb2luIGZsaXAKYGBgCkluIG90aGVyIHdvcmRzLCB2YWx1ZSBvZiA0IGlzIGFjdHVhbGx5IHRoZSA3Ni45dGggcGVyY2VudGlsZSBvZiB0aGlzIGJpbm9taWFsIGRpc3RyaWJ1dGlvbi4KCk5vdyBsZXTigJlzIHNheSB3ZSB3YW50IHRvIGNhbGN1bGF0ZSB0aGUgNzV0aCBwZXJjZW50aWxlIG9mIHRoZSBiaW5vbWlhbCBkaXN0cmlidXRpb24uCgpgYGB7cn0KcWJpbm9tKCBwID0gMC41NjYsIHNpemUgPSAyMCwgcHJvYiA9IDEvNiApCgojUHJhY3RpY2UgLSBGaW5kIHRoZSA0MHRoIHBlcmNlbnRpbGUKYGBgCgpXZSd2ZSBmb3VuZCBkaWZmZXJlbnQgcXVhbnRpdGllcy4gV2hhdCBpZiB3ZSB3YW50IHRvIHNpbXVsYXRlIHRoZSBhYm92ZSBleHBlcmltZW50cy4gV2Ugc3BlY2lmeSBob3cgbWFueSB0aW1lcyBSIHNob3VsZCDigJxzaW11bGF0ZeKAnSB0aGUgZXhwZXJpbWVudCB1c2luZyB0aGUgbiBhcmd1bWVudCwgYW5kIGl0IHdpbGwgZ2VuZXJhdGUgcmFuZG9tIG91dGNvbWVzIGZyb20gdGhlIGJpbm9taWFsIGRpc3RyaWJ1dGlvbiB1c2luZyB0aGUgYHJiaW5vbWAgZnVuY3Rpb24uCgpgYGB7cn0KeiA8LSByYmlub20oIG4gPSAxMDAsIHNpemUgPSAyMCwgcHJvYiA9IDEvNiApCnoKI0xldCdzIGFsc28gcGxvdCB0aGlzIGFuZCBzZWUgaG93IGl0IGxvb2tzCmhpc3QoeiwgY29sID0gJ3N0ZWVsYmx1ZScpCmBgYAojVHJ5IHBsb3R0aW5nIHRoZSBkaXN0cmlidXRpb25zIGluIGFib3ZlIGV4YW1wbGVzIGFuZCB2YXJ5IHRoZSBzaXplLCB0cmlhbCBudW1iZXIgYW5kIHByb2JhYmlsaXR5IHRvIGdlbmVyYXRlIGRpZmZlcmVudCBwbG90cy4KCkFsbCB0aGVzZSBkaWZmZXJlbnQgZnVuY3Rpb25zICpkLCBwLCBxLCBuKiBhcmUgYWxzbyBhcHBsaWNhYmxlIHRvIG90aGVyIGRpc3RyaWJ1dGlvbnMuIEUuZy4gKmRub3JtLCBwbm9ybSwgcW5vcm0sIHJub3JtKiBmb3IgTm9ybWFsIGRpc3RyaWJ1dGlvbi4gCgoKIyMjIyMgTm9ybWFsIERpc3RyaWJ1dGlvbgoKTW9zdCBmcmVxdWVudGx5IGVuY291bnRlcmVkIGRpc3RyaWJ1dGlvbi4KRWc6IGhlaWdodHMgb2YgYWxsIHN0dWRlbnRzIGluIHRoZSBjbGFzcywgbWFya3Mgb2J0YWluZWQgaW4gZXhhbXMsIGV0YwoKQmFzaWNhbGx5LCB3aGVuZXZlciB5b3UgaGF2ZSBhY2N1bXVsYXRpb24gb2YgZGF0YSBhdCB0aGUgY2VudGVyLCBmZXdlciBleHRyZW1lIHZhbHVlcyBhbmQgYSBuZWFyIHN5bW1ldHJpYyBzcHJlYWQsIHlvdSBzaG91bGQgcmVjYWxsIHRoZSBub3JtYWwgZGlzdHJpYnV0aW9uLgoKCgpgYGB7cn0Kbm9ybWFsX2Rpc3RyaWJ1dGlvbiA8LSBybm9ybSgxMDAwMCwgbWVhbiA9IDAsIHNkID0gMSkgCmhpc3RvZ3JhbV9ub3JtYWxfZGlzdHJpYnV0aW9uIDwtIGhpc3Qobm9ybWFsX2Rpc3RyaWJ1dGlvbikKcGxvdChoaXN0b2dyYW1fbm9ybWFsX2Rpc3RyaWJ1dGlvbiRtaWRzLGhpc3RvZ3JhbV9ub3JtYWxfZGlzdHJpYnV0aW9uJGRlbnNpdHkpCgpgYGAKCk5vdGU6IE5vcm1hbCBkaXN0cmlidXRpb24gaXMgc29tZXRpbWVzIHJlZmVycmVkIHRvIGFzIHRoZSBiZWxsIGN1cnZlIG9yIEdhdXNzaWFuIGRpc3RyaWJ1dGlvbgoKVGhlIG5vdGF0aW9uIGZvciBhIG5vcm1hbCBkaXN0cmlidXRpb24gaXM6IFgg4oi8IE5vcm1hbCjOvCzPgykgCgoKZG5vcm0gdGVsbHMgeW91IHRoZSBwcm9iYWJpbGl0eSBvZiBnZXR0aW5nIGEgcGFydGljdWxhciBvdXRjb21lCmBgYHtyfQpkbm9ybSh4PTAsIG1lYW49MCwgc2Q9MSkKCmBgYApDdW11bGF0aXZlIG5vcm1hbCBkaXN0cmlidXRpb24KYGBge3J9CnBub3JtKDIsIG1lYW4gPSAwLCBzZCA9IDEpCmBgYAoKYGBge3J9CnFub3JtKDAuNSAsbWVhbiA9ICwgc2QgPSAxKQpgYGAKCiMjIyMjIE90aGVyIHVzZWZ1bCBkaXN0cmlidXRpb25zCgpTb21lIG90aGVyIGRpc3RyaWJ1dGlvbnMgeW91IG1heSBlbmNvdW50ZXIgaW5jbHVkZToKKjEpIHQgZGlzdHJpYnV0aW9uKgoKTG9va3MgbGlrZSB0aGUgbm9ybWFsIGRpc3RyaWJ1dGlvbiBidXQgaGFzIGhlYXZpZXIgdGFpbHMuIApVc2VkIHdoZW4gZGF0YSBsb29rcyBsaWtlIGEgbm9ybWFsIGRpc3RyaWJ1dGlvbiBidXQgdGhlIG1lYW4gYW5kIFNEIGFyZSB1bmtub3duLgoKVXNlIHRoZSBmb2xsb3dpbmcgZnVuY3Rpb25zIHRvIHZpc3VhbGl6ZSB0aGUgdCBkaXN0cmlidXRpb246IApkdCgpLCBwdCgpLCBxdCgpIGFuZCBydCgpCgpgYGB7cn0KdF9kaXN0cmlidXRpb24gPC0gcnQoMTAwMDAsIDMpCmhpc3RvZ3JhbV90X2Rpc3RyaWJ1dGlvbiA8LSBoaXN0KHRfZGlzdHJpYnV0aW9uKQpwbG90KGhpc3RvZ3JhbV90X2Rpc3RyaWJ1dGlvbiRtaWRzLGhpc3RvZ3JhbV90X2Rpc3RyaWJ1dGlvbiRkZW5zaXR5KQpgYGAKCgoKCioyKSBDaGkgc3F1YXJlICjPhzIpIGRpc3RyaWJ1dGlvbioKCkFsbCBwb3NpdGl2ZSBhbmQgaGVhdmlseSBza2V3ZWQgdG8gdGhlIGxlZnQuICAKVXNlZCB3aGVuIGRhdGEgcmVwcmVzZW50cyBzdW0gb2Ygc3F1YXJlcyBvZiBhIG5vcm1hbGx5IGRpc3RyaWJ1dGVkIHZhcmlhYmxlcy4KClVzZSB0aGUgZm9sbG93aW5nIGZ1bmN0aW9ucyB0byB2aXN1YWxpemUgdGhlIGNoaSBzcSBkaXN0cmlidXRpb246IApkY2hpc3EoKSwgcGNoaXNxKCksIHFjaGlzcSgpLCByY2hpc3EoKS4KCmBgYHtyfQpjaGlzcV9kaXN0cmlidXRpb24gPC0gcmNoaXNxKDEwMDAwLCAzLCBuY3AgPSAwKQpoaXN0b2dyYW1fY2hpc3FfZGlzdHJpYnV0aW9uIDwtIGhpc3QoY2hpc3FfZGlzdHJpYnV0aW9uKQpwbG90KGhpc3RvZ3JhbV9jaGlzcV9kaXN0cmlidXRpb24kbWlkcyxoaXN0b2dyYW1fY2hpc3FfZGlzdHJpYnV0aW9uJGRlbnNpdHkpCmBgYAoKCgoKMykgRiBkaXN0cmlidXRpb24KClRoaXMgb25lIGxvb2thIGEgYml0IGxpa2UgdGhlIGNoaSBzcXVhcmUgZGlzdHJpYnV0aW9uLiBCdXQgdGhpcyBkaXN0cmlidXRpb24gY29tZXMgaW50byBwaWN0dXJlIHdoZW4gCm9uZSBjb21wYXJlcyB0d28gY2hpIHNxIGRpc3RyaWJ1dGlvbnMuCgpVc2UgdGhlIGZvbGxvd2luZyBmdW5jdGlvbnMgdG8gdmlzdWFsaXplIHRoZSBjaGkgc3EgZGlzdHJpYnV0aW9uOiAKZGYoKSwgcGYoKSwgcWYoKSBhbmQgcmYoKQoKYGBge3J9CmZfZGlzdHJpYnV0aW9uIDwtIHJmKDEwMDAwLCAzLCA1KQpoaXN0b2dyYW1fZl9kaXN0cmlidXRpb24gPC0gaGlzdChmX2Rpc3RyaWJ1dGlvbikKcGxvdChoaXN0b2dyYW1fZl9kaXN0cmlidXRpb24kbWlkcyxoaXN0b2dyYW1fZl9kaXN0cmlidXRpb24kZGVuc2l0eSkKYGBgCgoKClRoZSBFbmQKClJlZmVyZW5jZSAtICpDaGFwdGVyIDksIE5hdmFycm8gRC4qCg==
+ + + +
+ + + + + + + + + + + + + + + + From 90280efcf16f655db1fc5d9355f5eec6ee269dca Mon Sep 17 00:00:00 2001 From: Arjun Date: Tue, 21 Sep 2021 04:26:22 +0000 Subject: [PATCH 13/55] Added line plots, Shapiro Wilk test, added definitions for dnorm, qnorm etc, removed additions from yesterday's class, --- Module 3/Notebooks/Distributions.Rmd | 55 ++++++----- Module 3/Notebooks/Distributions.nb.html | 111 ++++++++++++----------- 2 files changed, 87 insertions(+), 79 deletions(-) diff --git a/Module 3/Notebooks/Distributions.Rmd b/Module 3/Notebooks/Distributions.Rmd index 589493a3..fd8eca5c 100644 --- a/Module 3/Notebooks/Distributions.Rmd +++ b/Module 3/Notebooks/Distributions.Rmd @@ -3,13 +3,6 @@ title: "Inferential Statistics: Probability & Distributions - 1" output: html_notebook --- - -You: made a change -I: added a new command -You: want to sync the new command - -### Follow this carefully - So far we have discussed about descriptive statistics - summarizing data and plotting it. But in order gain the power of making inferences, we will be strating with inferential statistics. #### Pre-requisite: Probability @@ -19,21 +12,6 @@ Probability theory is a branch of mathematics that tells you how often different In each case the “truth of the world” is known. We know that the coin is fair, so there’s a 50% chance that any individual coin flip will come up heads. We know that the lottery follows specific rules. The critical point is that probabilistic questions start with a known model of the world, and we use that model to do some calculations. *[Chapter 9, Navarro D.]* -Probability of heads when you toss a coin? -P(H) = 0.5 - -Frequentist view is also an objective view. -Coin - [H, T, H, T, H, T, H] -Prob - [1, 1/2, 2/3, 0.5, ... ] - - - - - -Coin - [1, 1, 1, 1, 0] -P'(H) - 0.7 - -- - - - **A short note on Models** A model is a simplified representation of a system. For example, the map of a city represents a city in a simplified fashion. A map providing as much detail as the original city would not only be impossible to construct, it would also be pointless. Humans build models, such as maps and statistical models, to make their lives simpler. *[Chapter 3, Winter B.]* @@ -179,11 +157,18 @@ Eg: heights of all students in the class, marks obtained in exams, etc Basically, whenever you have accumulation of data at the center, fewer extreme values and a near symmetric spread, you should recall the normal distribution. +- `dnorm()` - For probability density +- `pnorm()` - For cumulative probability +- `qnorm()` - For quantile of +- `rnorm()` - For random number generation + + ```{r} normal_distribution <- rnorm(10000, mean = 0, sd = 1) histogram_normal_distribution <- hist(normal_distribution) -plot(histogram_normal_distribution$mids,histogram_normal_distribution$density) +plot(histogram_normal_distribution$mids,histogram_normal_distribution$density, type="l", col="blue", lwd=3) + ``` @@ -206,6 +191,20 @@ pnorm(2, mean = 0, sd = 1) qnorm(0.5 ,mean = , sd = 1) ``` +*Checking for normality using the Shapiro-Wilk Test* +```{r} +norm <- rnorm(500, mean = 0, sd = 1) +shapiro.test(norm) + +binom <- rbinom(100, 20, 1/6) +shapiro.test(binom) + +``` + + + + + ##### Other useful distributions Some other distributions you may encounter include: @@ -218,9 +217,9 @@ Use the following functions to visualize the t distribution: dt(), pt(), qt() and rt() ```{r} -t_distribution <- rt(10000, 3) +t_distribution <- rt(10000, 8) histogram_t_distribution <- hist(t_distribution) -plot(histogram_t_distribution$mids,histogram_t_distribution$density) +plot(histogram_t_distribution$mids,histogram_t_distribution$density, type="l", col="blue", lwd=3) ``` @@ -237,7 +236,7 @@ dchisq(), pchisq(), qchisq(), rchisq(). ```{r} chisq_distribution <- rchisq(10000, 3, ncp = 0) histogram_chisq_distribution <- hist(chisq_distribution) -plot(histogram_chisq_distribution$mids,histogram_chisq_distribution$density) +plot(histogram_chisq_distribution$mids,histogram_chisq_distribution$density, type="l", col="blue", lwd=3) ``` @@ -252,9 +251,9 @@ Use the following functions to visualize the chi sq distribution: df(), pf(), qf() and rf() ```{r} -f_distribution <- rf(10000, 3, 5) +f_distribution <- rf(10000, 5, 10) histogram_f_distribution <- hist(f_distribution) -plot(histogram_f_distribution$mids,histogram_f_distribution$density) +plot(histogram_f_distribution$mids,histogram_f_distribution$density, type="l", col="blue", lwd=3) ``` diff --git a/Module 3/Notebooks/Distributions.nb.html b/Module 3/Notebooks/Distributions.nb.html index 862f186e..2f1b7b04 100644 --- a/Module 3/Notebooks/Distributions.nb.html +++ b/Module 3/Notebooks/Distributions.nb.html @@ -215,9 +215,6 @@

Inferential Statistics: Probability & Distribut -

You: made a change I: added a new command You: want to sync the new command

-
-

Follow this carefully

So far we have discussed about descriptive statistics - summarizing data and plotting it. But in order gain the power of making inferences, we will be strating with inferential statistics.

Pre-requisite: Probability

@@ -225,31 +222,8 @@

Pre-requisite: Probability

Difference between probability and statistics**

Probability theory is a branch of mathematics that tells you how often different kinds of events will happen. For eg. What are the chances of a fair coin coming up heads 10 times in a row? or What are the chances that I’ll win the lottery?

In each case the “truth of the world” is known. We know that the coin is fair, so there’s a 50% chance that any individual coin flip will come up heads. We know that the lottery follows specific rules. The critical point is that probabilistic questions start with a known model of the world, and we use that model to do some calculations. [Chapter 9, Navarro D.]

-

Probability of heads when you toss a coin? P(H) = 0.5

-

Frequentist view is also an objective view. Coin - [H, T, H, T, H, T, H] Prob - [1, 1/2, 2/3, 0.5, … ]

-

Coin - [1, 1, 1, 1, 0] P’(H) - 0.7

- ------ - - - - - - - - - - - - - - -
**Ashort note on Models**
Amodel is a simplified representation of a system. For example, the map of a city represents a city in a simplified fashion. A map providing as much detail as the original city would not only be impossible to construct, it would also be pointless. Humans build models, such as maps and statistical models, to make their lives simpler. [Chapter 3, Winter B.]
+

A short note on Models

+

A model is a simplified representation of a system. For example, the map of a city represents a city in a simplified fashion. A map providing as much detail as the original city would not only be impossible to construct, it would also be pointless. Humans build models, such as maps and statistical models, to make their lives simpler. [Chapter 3, Winter B.] - - - -

But even though we know the models like P(heads) = 0.5, we do not know the data (Whetehr heads will come 10 times or 3 times). However, for statistics, it is the opposite. We have the data and we want to infer the truth about the world. For eg., If my friend flips a coin 10 times and gets 10 heads, are they playing a trick on me? or If the lottery commissioner’s spouse wins the lottery, how likely is it that the lottery was rigged?

We want to figure out which is the true model of the world. Is it P(heads) = 0.5 or is it P(heads) \(\ne\) 0.5?

@@ -396,6 +370,12 @@
Binomial Distribution
Normal Distribution

Most frequently encountered distribution. Eg: heights of all students in the class, marks obtained in exams, etc

Basically, whenever you have accumulation of data at the center, fewer extreme values and a near symmetric spread, you should recall the normal distribution.

+
    +
  • dnorm() - For probability density
  • +
  • pnorm() - For cumulative probability
  • +
  • qnorm() - For quantile of
  • +
  • rnorm() - For random number generation
  • +
@@ -403,15 +383,18 @@
Normal Distribution
histogram_normal_distribution <- hist(normal_distribution) -

+

- -
plot(histogram_normal_distribution$mids,histogram_normal_distribution$density)
-
+ +
plot(histogram_normal_distribution$mids,histogram_normal_distribution$density, type="l", col="blue", lwd=3)
-

+

+ +
NA
+NA
+

Note: Normal distribution is sometimes referred to as the bell curve or Gaussian distribution

@@ -448,6 +431,33 @@
Normal Distribution
+

Checking for normality using the Shapiro-Wilk Test

+ + + +
norm <- rnorm(500, mean = 0, sd = 1) 
+shapiro.test(norm)
+ + +

+    Shapiro-Wilk normality test
+
+data:  norm
+W = 0.99593, p-value = 0.2251
+ + +
binom <- rbinom(100, 20, 1/6)
+shapiro.test(binom)
+ + +

+    Shapiro-Wilk normality test
+
+data:  binom
+W = 0.95443, p-value = 0.001644
+ + +
Other useful distributions
@@ -456,18 +466,18 @@
Other useful distributions

Use the following functions to visualize the t distribution: dt(), pt(), qt() and rt()

- -
t_distribution <- rt(10000, 3)
+
+
t_distribution <- rt(10000, 8)
 histogram_t_distribution <- hist(t_distribution)
-

+

- -
plot(histogram_t_distribution$mids,histogram_t_distribution$density)
+ +
plot(histogram_t_distribution$mids,histogram_t_distribution$density, type="l", col="blue", lwd=3)
-

+

@@ -482,13 +492,13 @@
Other useful distributions
histogram_chisq_distribution <- hist(chisq_distribution)
-

+

- -
plot(histogram_chisq_distribution$mids,histogram_chisq_distribution$density)
+ +
plot(histogram_chisq_distribution$mids,histogram_chisq_distribution$density, type="l", col="blue", lwd=3)
-

+

@@ -499,18 +509,18 @@
Other useful distributions

Use the following functions to visualize the chi sq distribution: df(), pf(), qf() and rf()

- -
f_distribution <- rf(10000, 3, 5)
+
+
f_distribution <- rf(10000, 5, 10)
 histogram_f_distribution <- hist(f_distribution)
-

+

- -
plot(histogram_f_distribution$mids,histogram_f_distribution$density)
+ +
plot(histogram_f_distribution$mids,histogram_f_distribution$density, type="l", col="blue", lwd=3)
-

+

@@ -519,9 +529,8 @@
Other useful distributions
- -
LS0tCnRpdGxlOiAiSW5mZXJlbnRpYWwgU3RhdGlzdGljczogUHJvYmFiaWxpdHkgJiBEaXN0cmlidXRpb25zIC0gMSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKCllvdTogbWFkZSBhIGNoYW5nZQpJOiBhZGRlZCBhIG5ldyBjb21tYW5kCllvdTogd2FudCB0byBzeW5jIHRoZSBuZXcgY29tbWFuZAoKIyMjIEZvbGxvdyB0aGlzIGNhcmVmdWxseQoKU28gZmFyIHdlIGhhdmUgZGlzY3Vzc2VkIGFib3V0IGRlc2NyaXB0aXZlIHN0YXRpc3RpY3MgLSBzdW1tYXJpemluZyBkYXRhIGFuZCBwbG90dGluZyBpdC4gQnV0IGluIG9yZGVyIGdhaW4gdGhlIHBvd2VyIG9mIG1ha2luZyBpbmZlcmVuY2VzLCB3ZSB3aWxsIGJlIHN0cmF0aW5nIHdpdGggaW5mZXJlbnRpYWwgc3RhdGlzdGljcy4KCiMjIyMgUHJlLXJlcXVpc2l0ZTogUHJvYmFiaWxpdHkKCiMjIyMjIERpZmZlcmVuY2UgYmV0d2VlbiBwcm9iYWJpbGl0eSBhbmQgc3RhdGlzdGljcyoqClByb2JhYmlsaXR5IHRoZW9yeSBpcyBhIGJyYW5jaCBvZiBtYXRoZW1hdGljcyB0aGF0IHRlbGxzIHlvdSBob3cgb2Z0ZW4gZGlmZmVyZW50IGtpbmRzIG9mIGV2ZW50cyB3aWxsIGhhcHBlbi4gRm9yIGVnLiBXaGF0IGFyZSB0aGUgY2hhbmNlcyBvZiBhIGZhaXIgY29pbiBjb21pbmcgdXAgaGVhZHMgMTAgdGltZXMgaW4gYSByb3c/IG9yIFdoYXQgYXJlIHRoZSBjaGFuY2VzIHRoYXQgSeKAmWxsIHdpbiB0aGUgbG90dGVyeT8KCkluIGVhY2ggY2FzZSB0aGUg4oCcdHJ1dGggb2YgdGhlIHdvcmxk4oCdIGlzIGtub3duLiBXZSBrbm93IHRoYXQgdGhlIGNvaW4gaXMgZmFpciwgc28gdGhlcmXigJlzIGEgNTAlIGNoYW5jZSB0aGF0IGFueSBpbmRpdmlkdWFsIGNvaW4gZmxpcCB3aWxsIGNvbWUgdXAgaGVhZHMuIFdlIGtub3cgdGhhdCB0aGUgbG90dGVyeSBmb2xsb3dzIHNwZWNpZmljIHJ1bGVzLiBUaGUgY3JpdGljYWwgcG9pbnQgaXMgdGhhdCBwcm9iYWJpbGlzdGljIHF1ZXN0aW9ucyBzdGFydCB3aXRoIGEga25vd24gbW9kZWwgb2YgdGhlIHdvcmxkLCBhbmQgd2UgdXNlIHRoYXQgbW9kZWwgdG8gZG8gc29tZSBjYWxjdWxhdGlvbnMuICpbQ2hhcHRlciA5LCBOYXZhcnJvIEQuXSoKClByb2JhYmlsaXR5IG9mIGhlYWRzIHdoZW4geW91IHRvc3MgYSBjb2luPyAKUChIKSA9IDAuNSAKCkZyZXF1ZW50aXN0IHZpZXcgaXMgYWxzbyBhbiBvYmplY3RpdmUgdmlldy4gCkNvaW4gLSBbSCwgVCwgSCwgVCwgSCwgVCwgSF0KUHJvYiAtIFsxLCAxLzIsIDIvMywgMC41LCAuLi4gXQoKCgoKCkNvaW4gLSBbMSwgMSwgMSwgMSwgMF0KUCcoSCkgLSAwLjcKCi0gLSAtIC0KKipBIHNob3J0IG5vdGUgb24gTW9kZWxzKioKCkEgbW9kZWwgaXMgYSBzaW1wbGlmaWVkIHJlcHJlc2VudGF0aW9uIG9mIGEgc3lzdGVtLiBGb3IgZXhhbXBsZSwgdGhlIG1hcCBvZiBhIGNpdHkgcmVwcmVzZW50cyBhIGNpdHkgaW4gYSBzaW1wbGlmaWVkIGZhc2hpb24uIEEgbWFwIHByb3ZpZGluZyBhcyBtdWNoIGRldGFpbCBhcyB0aGUgb3JpZ2luYWwgY2l0eSB3b3VsZCBub3Qgb25seSBiZSBpbXBvc3NpYmxlIHRvIGNvbnN0cnVjdCwgaXQgd291bGQgYWxzbyBiZSBwb2ludGxlc3MuIEh1bWFucyBidWlsZCBtb2RlbHMsIHN1Y2ggYXMgbWFwcyBhbmQgc3RhdGlzdGljYWwgbW9kZWxzLCB0byBtYWtlIHRoZWlyIGxpdmVzIHNpbXBsZXIuICpbQ2hhcHRlciAzLCBXaW50ZXIgQi5dKgotIC0gLSAtCgpCdXQgZXZlbiB0aG91Z2ggd2Uga25vdyB0aGUgbW9kZWxzIGxpa2UgYFAoaGVhZHMpID0gMC41YCwgd2UgZG8gbm90IGtub3cgdGhlIGRhdGEgKFdoZXRlaHIgaGVhZHMgd2lsbCBjb21lIDEwIHRpbWVzIG9yIDMgdGltZXMpLiBIb3dldmVyLCBmb3Igc3RhdGlzdGljcywgaXQgaXMgdGhlIG9wcG9zaXRlLiBXZSBoYXZlIHRoZSBkYXRhIGFuZCB3ZSB3YW50IHRvIGluZmVyIHRoZSB0cnV0aCBhYm91dCB0aGUgd29ybGQuIEZvciBlZy4sIElmIG15IGZyaWVuZCBmbGlwcyBhIGNvaW4gMTAgdGltZXMgYW5kIGdldHMgMTAgaGVhZHMsIGFyZSB0aGV5IHBsYXlpbmcgYSB0cmljayBvbiBtZT8gb3IgSWYgdGhlIGxvdHRlcnkgY29tbWlzc2lvbmVy4oCZcyBzcG91c2Ugd2lucyB0aGUgbG90dGVyeSwgaG93IGxpa2VseSBpcyBpdCB0aGF0IHRoZSBsb3R0ZXJ5IHdhcyByaWdnZWQ/CgpXZSB3YW50IHRvIGZpZ3VyZSBvdXQgd2hpY2ggaXMgdGhlIHRydWUgbW9kZWwgb2YgdGhlIHdvcmxkLiBJcyBpdCAqUChoZWFkcykgPSAwLjUqIG9yIGlzIGl0ICpQKGhlYWRzKSAkXG5lJCAwLjUqPwoKIyMjIyMgV2hhdCBpcyBwcm9iYWJpbGl0eSByZWFsbHk/CgoqKlRoZSBmcmVxdWVudGlzdCB2aWV3KioKCiFbRnJlcXVlbnRpc3RfZ3JhcGhdKEZpZzQucG5nKQoKQWNjb3JkaW5nIHRvIHRoZSBmcmVxdWVudGlzdCB2aWV3LCBmbGlwIGEgZmFpciBjb2luIG92ZXIgYW5kIG92ZXIgYWdhaW4sIGFuZCBhcyBOIGdyb3dzIGxhcmdlIChhcHByb2FjaGVzIGluZmluaXR5LCBkZW5vdGVkIE4gw5EgOCksIHRoZSBwcm9wb3J0aW9uIG9mIGhlYWRzIHdpbGwgY29udmVyZ2UgdG8gNTAlLgoKICpBZHZhbnRhZ2VzKgogLSAgSXQgaXMgb2JqZWN0aXZlOiB0aGUgcHJvYmFiaWxpdHkgb2YgYW4gZXZlbnQgaXMgbmVjZXNzYXJpbHkgZ3JvdW5kZWQgaW4gdGhlIHdvcmxkLgogLSAgSXQgaXMgdW5hbWJpZ3VvdXM6IGFueSB0d28gcGVvcGxlIHdhdGNoaW5nIHRoZSBzYW1lIHNlcXVlbmNlIG9mIGV2ZW50cyB1bmZvbGQsIHRyeWluZyB0byBjYWxjdWxhdGUgdGhlIHByb2JhYmlsaXR5IG9mIGFuIGV2ZW50LCBtdXN0IGluZXZpdGFibHkgY29tZSB1cCB3aXRoIHRoZSBzYW1lIGFuc3dlci4KCkJ1dCBpdCBhbGwgZGVwZW5kcyBvbiBpbmZpbml0ZSBmbGlwcyBvZiBjb2luLiBEbyBpbmZpbml0aWVzIHJlYWxseSBleGlzdCBpbiB0aGUgcGh5c2ljYWwgdW5pdmVyc2U/IFdoYXQgYWJvdXQgdGhlIHByb2JhYmlsaXR5IGZvciBhIHNpbmdsZSBub24tcmVwZWF0YWJsZSBldmVudCBsaWtlIHRoZSBjaGFuY2VzIG9mIHJhaW4gb24gMjEgU2VwdGVtYmVyIDIwMjE/CgoqKlRoZSBCYXllc2lhbiB2aWV3KioKCkJheWVzaWFuIHZpZXcgaXMgc3ViamVjdGl2aXN0IHZpZXcuIFRoZSBtb3N0IGNvbW1vbiB3YXkgb2YgdGhpbmtpbmcgYWJvdXQgc3ViamVjdGl2ZSBwcm9iYWJpbGl0eSBpcyB0byBkZWZpbmUgdGhlIHByb2JhYmlsaXR5IG9mIGFuIGV2ZW50IGFzIHRoZSBkZWdyZWUgb2YgYmVsaWVmIHRoYXQgYW4gaW50ZWxsaWdlbnQgYW5kIHJhdGlvbmFsIGFnZW50IGFzc2lnbnMgdG8gdGhhdCB0cnV0aCBvZiB0aGF0IGV2ZW50LiBCdXQgaG93IHRvIG9wZXJhdGlvbmFsaXplIHRoaXMgJ2RlZ3JlZSBvZiBiZWxpZWYnPyAKCk9uZSB3YXkgaXMgdG8gdXNlICdyYXRpb25hbCBnYW1ibGluZycuIFNvIGEg4oCcc3ViamVjdGl2ZSBwcm9iYWJpbGl0eeKAnSB3aWxsIGJlIG9wZXJhdGlvbmFsaXplZCBpbiB0ZXJtcyBvZiB3aGF0IGJldHMgeW91J3JlIHdpbGxpbmcgdG8gYWNjZXB0LgoKICpBZHZhbnRhZ2UqCiAtIFlvdSBkb27igJl0IG5lZWQgdG8gYmUgbGltaXRlZCB0byB0aG9zZSBldmVudHMgdGhhdCBhcmUgcmVwZWF0YWJsZS4KIAogKkRpc2FkdmFudGFnZSoKIC0gQ2Fu4oCZdCBiZSBwdXJlbHkgb2JqZWN0aXZlIOKAkyBzcGVjaWZ5aW5nIGEgcHJvYmFiaWxpdHkgcmVxdWlyZXMgdXMgdG8gc3BlY2lmeSBhbiBlbnRpdHkgdGhhdCBoYXMgdGhlIHJlbGV2YW50IGRlZ3JlZSBvZiBiZWxpZWYuIFRoaXMgZW50aXR5IG1pZ2h0IGJlIGEgaHVtYW4sIGFuIGFsaWVuLCBhIHJvYm90LCBvciBldmVuIGEgc3RhdGlzdGljaWFuLCBidXQgdGhlcmUgaGFzIHRvIGJlIGFuICoqaW50ZWxsaWdlbnQgYWdlbnQqKiBvdXQgdGhlcmUgdGhhdCBiZWxpZXZlcyBpbiB0aGluZ3MuIAoKCkluIHNob3J0LCBmcmVxdWVudGlzdCB2aWV3IGlzIHNvbWV0aW1lcyBjb25zaWRlcmVkIHRvIGJlIHRvbyBuYXJyb3cgKGZvcmJpZHMgbG90cyBvZiB0aGluZ3MgdGhhdCB0aGF0IHdlIHdhbnQgdG8gYXNzaWduIHByb2JhYmlsaXRpZXMgdG8pIHdoaWxlIHRoZSBCYXllc2lhbiB2aWV3IGlzIHNvbWV0aW1lcyB0aG91Z2h0IHRvIGJlIHRvbyBicm9hZCAoYWxsb3dzIHRvbyBtYW55IGRpZmZlcmVuY2VzIGJldHdlZW4gb2JzZXJ2ZXJzKS4KCiMjIyMjIERlZmluaXRpb25zCgpSZWZlciB0byB0aGUgZXhhbXBsZSBkZXNjcmliZWQgaW4gKlNlY3Rpb24gOS4zLjEsIE5hdmFycm8gRC4qIGZvciB0aGUgZm9sbG93aW5nIGNvbnRlbnQuCgoqKkVsZW1lbnRhcnkgZXZlbnQ6KiogRXZlcnkgdGltZSB3ZSBtYWtlIGFuIG9ic2VydmF0aW9uIChlLmcuLCBldmVyeSB0aW1lIEkgcHV0IG9uIGEgcGFpciBvZiBwYW50cyksIHRoZW4gdGhlIG91dGNvbWUgd2lsbCBiZSBvbmUgYW5kIG9ubHkgb25lIG9mIHRoZXNlIGV2ZW50cy4KCioqU2FtcGxlIHNwYWNlOioqIFRoZSBzZXQgb2YgYWxsIHBvc3NpYmxlIGV2ZW50cyAoZS5nLiwgdGhlIHdhcmRyb2JlKQoKKipQcm9iYWJpbGl0eToqKiBOdW1iZXJzIGJldHdlZW4gMCBhbmQgMS4KCkZvciBhbiBldmVudCBYLCB0aGUgcHJvYmFiaWxpdHkgb2YgdGhhdCBldmVudCBQKFgpIGlzIGEgbnVtYmVyIHRoYXQgbGllcyBiZXR3ZWVuIDAgYW5kIDEuIFRoZSBiaWdnZXIgdGhlIHZhbHVlIG9mIFAoWCksIHRoZSBtb3JlIGxpa2VseSB0aGUgZXZlbnQgaXMgdG8gb2NjdXIuCgpJZiBQKFgpID0gMCwgaXQgbWVhbnMgdGhlIGV2ZW50IFggaXMgaW1wb3NzaWJsZSAoaS5lLiwgSSBuZXZlciB3ZWFyIHRob3NlIHBhbnRzKS4gT24gdGhlIG90aGVyIGhhbmQsIGlmIFAoWCk9IDEgaXQgbWVhbnMgdGhhdCBldmVudCBYIGlzIGNlcnRhaW4gdG8gb2NjdXIgKGkuZS4sIEkgYWx3YXlzIHdlYXIgdGhvc2UgcGFudHMpLgoKKipMYXcgb2YgdG90YWwgcHJvYmFiaWxpdHk6KiogVGhlIHByb2JhYmlsaXRpZXMgb2YgdGhlIGVsZW1lbnRhcnkgZXZlbnRzIG5lZWQgdG8gYWRkIHVwIHRvIDEKCiMjIyMgRGlzdHJpYnV0aW9ucwoKTGV0J3MgdGFrZSBhIGxvb2sgYXQgdGhpcyBhbmQgc2VlIHdoYXQgaXMgYSBkaXN0cmlidXRpb24uIAoKYGBge3J9CnBhbnRzIDwtIGRhdGEuZnJhbWUoCiAgIHR5cGUgPSBjKCJCbHVlIGplYW5zIiwiR3JleSBqZWFucyIsIkJsYWNrIGplYW5zIiwiQmxhY2sgc3VpdCIsIkJsdWUgdHJhY2tzdWl0IiksCiAgIGxhYmVsID0gYygiWDEiLCAiWDIiLCAiWDMiLCAiWDQiLCAiWDUiKSwKICAgcHJvYmFiaWxpdHkgPSBjKDAuNSwwLjMsMC4xLDAsMC4xKSkKCnBhbnRzCmBgYApQcm9iYWJpbGl0eSBkaXN0cmlidXRpb24gaXMgc2ltcGx5IHRoZSBwcm9iYWJpbGl0aWVzIG9mIHRoZXNlIGRpZmZlcmVudCBldmVudHMgYWJvdmUuIEVhY2ggb2YgdGhlIGV2ZW50cyBoYXMgYSBwcm9iYWJpbGl0eSB0aGF0IGxpZXMgYmV0d2VlbiAwIGFuZCAxLCBhbmQgaWYgd2UgYWRkIHVwIHRoZSBwcm9iYWJpbGl0eSBvZiBhbGwgZXZlbnRzLCB0aGV5IHN1bSB0byAxLgoKYGBge3J9CiNUcnkgcGxvdHRpbmcgYSBiYXIgZ3JhcGggb2YgYWxsIHRoZSBwcm9iYWJpbGl0aWVzIGFib3ZlCmBgYApMZXQncyB0aGluayBhYm91dCB3aGF0IGhhcHBlbnMgaW4gY2FzZSBvZiBub24tZWxlbWVudGFyeSBldmVudHMuIEUuZy4gQW4gZXZlbnQgRSB3aGVyZSBlaXRoZXIg4oCcYmx1ZSBqZWFuc+KAnSBvciDigJxibGFjayBqZWFuc+KAnSBvciDigJxncmV5IGplYW5zIiBoYXMgb2NjdXJyZWQuIApUaGVuIHdoYXQgd2lsbCBiZSB0aGUgcHJvYmFiaWxpdHkgb2YgZXZlbnQgRS4KClAoRSkgPSBQKFgxKSArIFAoWDIpICsgUChYMykKCklmIGFueSBvZiB0aGVzZSBlbGVtZW50YXJ5IGV2ZW50cyBvY2N1cnMsIHRoZW4gRSBpcyBhbHNvIHNhaWQgdG8gaGF2ZSBvY2N1cnJlZC4gU2ltaWxhcmx5LCB0aGVyZSBhcmUgb3RoZXIgcnVsZXMgc2F0aXNmeWluZyBwcm9iYWJpbGl0aWVzOgoKIVtQcm9iYWJpbGl0eV9ydWxlc10oRmlnNS5wbmcpCgojIyMjIyBCaW5vbWlhbCBEaXN0cmlidXRpb24KCipSZWZlciB0byBzZWN0aW9uIDkuNC4xLCBOYXZhcnJvIEQuLCBmb3IgdGhlIGRldGFpbGVkIGV4YW1wbGUqCgpTb21lIGJhc2ljIHRlcm1pbm9sb2d5IC0gV2XigJlsbCBsZXQgYE5gIGRlbm90ZSB0aGUgbnVtYmVyIG9mIGRpY2Ugcm9sbHMgaW4gb3VyIGV4cGVyaW1lbnQ7IHdoaWNoIGlzIG9mdGVuIHJlZmVycmVkIHRvIGFzIHRoZSBgc2l6ZSBwYXJhbWV0ZXJgIG9mIG91ciBiaW5vbWlhbCBkaXN0cmlidXRpb24uIFdl4oCZbGwgYWxzbyB1c2UgYM64YCB0byByZWZlciB0byB0aGUgdGhlIHByb2JhYmlsaXR5IHRoYXQgYSBzaW5nbGUgZGllIGNvbWVzIHVwIHNrdWxsLCBhIHF1YW50aXR5IHRoYXQgaXMgdXN1YWxseSBjYWxsZWQgdGhlIGBzdWNjZXNzIHByb2JhYmlsaXR5YCBvZiB0aGUgYmlub21pYWwuIEZpbmFsbHksIHdl4oCZbGwgdXNlIGBYYCB0byByZWZlciB0byB0aGUgcmVzdWx0cyBvZiBvdXIgZXhwZXJpbWVudCwgbmFtZWx5IHRoZSBudW1iZXIgb2Ygc2t1bGxzIEkgZ2V0IHdoZW4gSSByb2xsIHRoZSBkaWNlLiBTaW5jZSB0aGUgYWN0dWFsIHZhbHVlIG9mIFggaXMgZHVlIHRvIGNoYW5jZSwgd2UgcmVmZXIgdG8gaXQgYXMgYSBgcmFuZG9tIHZhcmlhYmxlYC4KCmBYIH4gQmlub21pYWwozrgsIE4pYCBkZW5vdGVzIFggaXMgZ2VuZXJhdGVkIHJhbmRvbWx5IGZyb20gYSBiaW5vbWlhbCBkaXN0cmlidXRpb24gd2l0aCBwYXJhbWV0ZXJzIM64IGFuZCBOLgoKNCB+IEJpbm9taWFsKDEvNiwgMjApCgo1IH4gQmlub21pYWwoMS8yLCAxMCkKCkxldCdzIGdlbmVyYXRlIGEgYmlub21pYWwgZGlzdHJpYnV0aW9uIGluIFI6CgpgYGB7cn0KZGJpbm9tKCB4ID0gMSwgc2l6ZSA9IDIwLCBwcm9iID0gMS82KQpgYGAKVGhlIGFib3ZlIGNvbW1hbmQgY2FsY3VsYXRlcyB0aGUgcHJvYmFiaWxpdHkgb2YgZ2V0dGluZyB4ID0gNCBza3VsbHMsIGZyb20gYW4gZXhwZXJpbWVudCBvZiBzaXplID0gMjAgdHJpYWxzLCBpbiB3aGljaCB0aGUgcHJvYmFiaWxpdHkgb2YgZ2V0dGluZyBhIHNrdWxsIG9uIGFueSBvbmUgdHJpYWwgaXMgcHJvYiA9IDEvNi4KCldoYXQgaWYgdGhlIGRpY2UgaXMgcmVwbGFjZWQgYnkgYSBjb2luIGluIHRoZSBhYm92ZSBleGFtcGxlPyBIb3cgd2lsbCB0aGUgcHJvYmFiaWxpdHkgY2hhbmdlPyAKCmBgYHtyfQojVHJ5IGZpbmRpbmcgdGhlIHByb2JhYmlsaXR5IGZvciBOID0gMjAgYW5kIE49MTAwIHRyaWFscyBmb3IgYSBmYWlyIGNvaW4gZmxpcC4KYGBgClRoZXJlIGFyZSBkaWZmZXJlbnQgZnVuY3Rpb25zIGluIFIgZm9yIGRpZmZlcmVudCBkaXN0cmlidXRpb25zIGFzIHdlbGwgYXMgZGlmZmVyZW50IG9uZXMgZm9yIGZpbmRpbmcgZGlmZmVyZW50IHF1YW50aXR5IG9mIGludGVyZXN0LgoKSWYgd2Ugd2FudCB0byBmaW5kIHRoZSBwcm9iYWJpbGl0eSBvZiBvYnRhaW5pbmcgYW4gb3V0Y29tZSBzbWFsbGVyIHRoYW4gb3IgZXF1YWwgdG8gcXVhbnRpbGUgcSwgdGhlbiB3ZSBjYW4gZGlyZWN0bHkgdXNlIGBwYmlub21gLgoKYGBge3J9CiNGaW5kIHRoZSBwcm9iYWJpbGl0eSBvZiByb2xsaW5nIDAgc2t1bGxzIG9yIDEgc2t1bGwgb3IgMiBza3VsbHMgb3IgMyBza3VsbHMgb3IgNCBza3VsbHMKcGJpbm9tKCBxPSAzLCBzaXplID0gMjAsIHByb2IgPSAxLzYpCgojUHJhY3RpY2UgLSBGaW5kIHByb2JhYmlsaXR5IG9mIGdldHRpbmcgMC01IGhlYWRzIGluIDUwIHRyaWFscyBvZiBjb2luIGZsaXAKYGBgCkluIG90aGVyIHdvcmRzLCB2YWx1ZSBvZiA0IGlzIGFjdHVhbGx5IHRoZSA3Ni45dGggcGVyY2VudGlsZSBvZiB0aGlzIGJpbm9taWFsIGRpc3RyaWJ1dGlvbi4KCk5vdyBsZXTigJlzIHNheSB3ZSB3YW50IHRvIGNhbGN1bGF0ZSB0aGUgNzV0aCBwZXJjZW50aWxlIG9mIHRoZSBiaW5vbWlhbCBkaXN0cmlidXRpb24uCgpgYGB7cn0KcWJpbm9tKCBwID0gMC41NjYsIHNpemUgPSAyMCwgcHJvYiA9IDEvNiApCgojUHJhY3RpY2UgLSBGaW5kIHRoZSA0MHRoIHBlcmNlbnRpbGUKYGBgCgpXZSd2ZSBmb3VuZCBkaWZmZXJlbnQgcXVhbnRpdGllcy4gV2hhdCBpZiB3ZSB3YW50IHRvIHNpbXVsYXRlIHRoZSBhYm92ZSBleHBlcmltZW50cy4gV2Ugc3BlY2lmeSBob3cgbWFueSB0aW1lcyBSIHNob3VsZCDigJxzaW11bGF0ZeKAnSB0aGUgZXhwZXJpbWVudCB1c2luZyB0aGUgbiBhcmd1bWVudCwgYW5kIGl0IHdpbGwgZ2VuZXJhdGUgcmFuZG9tIG91dGNvbWVzIGZyb20gdGhlIGJpbm9taWFsIGRpc3RyaWJ1dGlvbiB1c2luZyB0aGUgYHJiaW5vbWAgZnVuY3Rpb24uCgpgYGB7cn0KeiA8LSByYmlub20oIG4gPSAxMDAsIHNpemUgPSAyMCwgcHJvYiA9IDEvNiApCnoKI0xldCdzIGFsc28gcGxvdCB0aGlzIGFuZCBzZWUgaG93IGl0IGxvb2tzCmhpc3QoeiwgY29sID0gJ3N0ZWVsYmx1ZScpCmBgYAojVHJ5IHBsb3R0aW5nIHRoZSBkaXN0cmlidXRpb25zIGluIGFib3ZlIGV4YW1wbGVzIGFuZCB2YXJ5IHRoZSBzaXplLCB0cmlhbCBudW1iZXIgYW5kIHByb2JhYmlsaXR5IHRvIGdlbmVyYXRlIGRpZmZlcmVudCBwbG90cy4KCkFsbCB0aGVzZSBkaWZmZXJlbnQgZnVuY3Rpb25zICpkLCBwLCBxLCBuKiBhcmUgYWxzbyBhcHBsaWNhYmxlIHRvIG90aGVyIGRpc3RyaWJ1dGlvbnMuIEUuZy4gKmRub3JtLCBwbm9ybSwgcW5vcm0sIHJub3JtKiBmb3IgTm9ybWFsIGRpc3RyaWJ1dGlvbi4gCgoKIyMjIyMgTm9ybWFsIERpc3RyaWJ1dGlvbgoKTW9zdCBmcmVxdWVudGx5IGVuY291bnRlcmVkIGRpc3RyaWJ1dGlvbi4KRWc6IGhlaWdodHMgb2YgYWxsIHN0dWRlbnRzIGluIHRoZSBjbGFzcywgbWFya3Mgb2J0YWluZWQgaW4gZXhhbXMsIGV0YwoKQmFzaWNhbGx5LCB3aGVuZXZlciB5b3UgaGF2ZSBhY2N1bXVsYXRpb24gb2YgZGF0YSBhdCB0aGUgY2VudGVyLCBmZXdlciBleHRyZW1lIHZhbHVlcyBhbmQgYSBuZWFyIHN5bW1ldHJpYyBzcHJlYWQsIHlvdSBzaG91bGQgcmVjYWxsIHRoZSBub3JtYWwgZGlzdHJpYnV0aW9uLgoKCgpgYGB7cn0Kbm9ybWFsX2Rpc3RyaWJ1dGlvbiA8LSBybm9ybSgxMDAwMCwgbWVhbiA9IDAsIHNkID0gMSkgCmhpc3RvZ3JhbV9ub3JtYWxfZGlzdHJpYnV0aW9uIDwtIGhpc3Qobm9ybWFsX2Rpc3RyaWJ1dGlvbikKcGxvdChoaXN0b2dyYW1fbm9ybWFsX2Rpc3RyaWJ1dGlvbiRtaWRzLGhpc3RvZ3JhbV9ub3JtYWxfZGlzdHJpYnV0aW9uJGRlbnNpdHkpCgpgYGAKCk5vdGU6IE5vcm1hbCBkaXN0cmlidXRpb24gaXMgc29tZXRpbWVzIHJlZmVycmVkIHRvIGFzIHRoZSBiZWxsIGN1cnZlIG9yIEdhdXNzaWFuIGRpc3RyaWJ1dGlvbgoKVGhlIG5vdGF0aW9uIGZvciBhIG5vcm1hbCBkaXN0cmlidXRpb24gaXM6IFgg4oi8IE5vcm1hbCjOvCzPgykgCgoKZG5vcm0gdGVsbHMgeW91IHRoZSBwcm9iYWJpbGl0eSBvZiBnZXR0aW5nIGEgcGFydGljdWxhciBvdXRjb21lCmBgYHtyfQpkbm9ybSh4PTAsIG1lYW49MCwgc2Q9MSkKCmBgYApDdW11bGF0aXZlIG5vcm1hbCBkaXN0cmlidXRpb24KYGBge3J9CnBub3JtKDIsIG1lYW4gPSAwLCBzZCA9IDEpCmBgYAoKYGBge3J9CnFub3JtKDAuNSAsbWVhbiA9ICwgc2QgPSAxKQpgYGAKCiMjIyMjIE90aGVyIHVzZWZ1bCBkaXN0cmlidXRpb25zCgpTb21lIG90aGVyIGRpc3RyaWJ1dGlvbnMgeW91IG1heSBlbmNvdW50ZXIgaW5jbHVkZToKKjEpIHQgZGlzdHJpYnV0aW9uKgoKTG9va3MgbGlrZSB0aGUgbm9ybWFsIGRpc3RyaWJ1dGlvbiBidXQgaGFzIGhlYXZpZXIgdGFpbHMuIApVc2VkIHdoZW4gZGF0YSBsb29rcyBsaWtlIGEgbm9ybWFsIGRpc3RyaWJ1dGlvbiBidXQgdGhlIG1lYW4gYW5kIFNEIGFyZSB1bmtub3duLgoKVXNlIHRoZSBmb2xsb3dpbmcgZnVuY3Rpb25zIHRvIHZpc3VhbGl6ZSB0aGUgdCBkaXN0cmlidXRpb246IApkdCgpLCBwdCgpLCBxdCgpIGFuZCBydCgpCgpgYGB7cn0KdF9kaXN0cmlidXRpb24gPC0gcnQoMTAwMDAsIDMpCmhpc3RvZ3JhbV90X2Rpc3RyaWJ1dGlvbiA8LSBoaXN0KHRfZGlzdHJpYnV0aW9uKQpwbG90KGhpc3RvZ3JhbV90X2Rpc3RyaWJ1dGlvbiRtaWRzLGhpc3RvZ3JhbV90X2Rpc3RyaWJ1dGlvbiRkZW5zaXR5KQpgYGAKCgoKCioyKSBDaGkgc3F1YXJlICjPhzIpIGRpc3RyaWJ1dGlvbioKCkFsbCBwb3NpdGl2ZSBhbmQgaGVhdmlseSBza2V3ZWQgdG8gdGhlIGxlZnQuICAKVXNlZCB3aGVuIGRhdGEgcmVwcmVzZW50cyBzdW0gb2Ygc3F1YXJlcyBvZiBhIG5vcm1hbGx5IGRpc3RyaWJ1dGVkIHZhcmlhYmxlcy4KClVzZSB0aGUgZm9sbG93aW5nIGZ1bmN0aW9ucyB0byB2aXN1YWxpemUgdGhlIGNoaSBzcSBkaXN0cmlidXRpb246IApkY2hpc3EoKSwgcGNoaXNxKCksIHFjaGlzcSgpLCByY2hpc3EoKS4KCmBgYHtyfQpjaGlzcV9kaXN0cmlidXRpb24gPC0gcmNoaXNxKDEwMDAwLCAzLCBuY3AgPSAwKQpoaXN0b2dyYW1fY2hpc3FfZGlzdHJpYnV0aW9uIDwtIGhpc3QoY2hpc3FfZGlzdHJpYnV0aW9uKQpwbG90KGhpc3RvZ3JhbV9jaGlzcV9kaXN0cmlidXRpb24kbWlkcyxoaXN0b2dyYW1fY2hpc3FfZGlzdHJpYnV0aW9uJGRlbnNpdHkpCmBgYAoKCgoKMykgRiBkaXN0cmlidXRpb24KClRoaXMgb25lIGxvb2thIGEgYml0IGxpa2UgdGhlIGNoaSBzcXVhcmUgZGlzdHJpYnV0aW9uLiBCdXQgdGhpcyBkaXN0cmlidXRpb24gY29tZXMgaW50byBwaWN0dXJlIHdoZW4gCm9uZSBjb21wYXJlcyB0d28gY2hpIHNxIGRpc3RyaWJ1dGlvbnMuCgpVc2UgdGhlIGZvbGxvd2luZyBmdW5jdGlvbnMgdG8gdmlzdWFsaXplIHRoZSBjaGkgc3EgZGlzdHJpYnV0aW9uOiAKZGYoKSwgcGYoKSwgcWYoKSBhbmQgcmYoKQoKYGBge3J9CmZfZGlzdHJpYnV0aW9uIDwtIHJmKDEwMDAwLCAzLCA1KQpoaXN0b2dyYW1fZl9kaXN0cmlidXRpb24gPC0gaGlzdChmX2Rpc3RyaWJ1dGlvbikKcGxvdChoaXN0b2dyYW1fZl9kaXN0cmlidXRpb24kbWlkcyxoaXN0b2dyYW1fZl9kaXN0cmlidXRpb24kZGVuc2l0eSkKYGBgCgoKClRoZSBFbmQKClJlZmVyZW5jZSAtICpDaGFwdGVyIDksIE5hdmFycm8gRC4qCg==
+
LS0tCnRpdGxlOiAiSW5mZXJlbnRpYWwgU3RhdGlzdGljczogUHJvYmFiaWxpdHkgJiBEaXN0cmlidXRpb25zIC0gMSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKU28gZmFyIHdlIGhhdmUgZGlzY3Vzc2VkIGFib3V0IGRlc2NyaXB0aXZlIHN0YXRpc3RpY3MgLSBzdW1tYXJpemluZyBkYXRhIGFuZCBwbG90dGluZyBpdC4gQnV0IGluIG9yZGVyIGdhaW4gdGhlIHBvd2VyIG9mIG1ha2luZyBpbmZlcmVuY2VzLCB3ZSB3aWxsIGJlIHN0cmF0aW5nIHdpdGggaW5mZXJlbnRpYWwgc3RhdGlzdGljcy4KCiMjIyMgUHJlLXJlcXVpc2l0ZTogUHJvYmFiaWxpdHkKCiMjIyMjIERpZmZlcmVuY2UgYmV0d2VlbiBwcm9iYWJpbGl0eSBhbmQgc3RhdGlzdGljcyoqClByb2JhYmlsaXR5IHRoZW9yeSBpcyBhIGJyYW5jaCBvZiBtYXRoZW1hdGljcyB0aGF0IHRlbGxzIHlvdSBob3cgb2Z0ZW4gZGlmZmVyZW50IGtpbmRzIG9mIGV2ZW50cyB3aWxsIGhhcHBlbi4gRm9yIGVnLiBXaGF0IGFyZSB0aGUgY2hhbmNlcyBvZiBhIGZhaXIgY29pbiBjb21pbmcgdXAgaGVhZHMgMTAgdGltZXMgaW4gYSByb3c/IG9yIFdoYXQgYXJlIHRoZSBjaGFuY2VzIHRoYXQgSeKAmWxsIHdpbiB0aGUgbG90dGVyeT8KCkluIGVhY2ggY2FzZSB0aGUg4oCcdHJ1dGggb2YgdGhlIHdvcmxk4oCdIGlzIGtub3duLiBXZSBrbm93IHRoYXQgdGhlIGNvaW4gaXMgZmFpciwgc28gdGhlcmXigJlzIGEgNTAlIGNoYW5jZSB0aGF0IGFueSBpbmRpdmlkdWFsIGNvaW4gZmxpcCB3aWxsIGNvbWUgdXAgaGVhZHMuIFdlIGtub3cgdGhhdCB0aGUgbG90dGVyeSBmb2xsb3dzIHNwZWNpZmljIHJ1bGVzLiBUaGUgY3JpdGljYWwgcG9pbnQgaXMgdGhhdCBwcm9iYWJpbGlzdGljIHF1ZXN0aW9ucyBzdGFydCB3aXRoIGEga25vd24gbW9kZWwgb2YgdGhlIHdvcmxkLCBhbmQgd2UgdXNlIHRoYXQgbW9kZWwgdG8gZG8gc29tZSBjYWxjdWxhdGlvbnMuICpbQ2hhcHRlciA5LCBOYXZhcnJvIEQuXSoKCioqQSBzaG9ydCBub3RlIG9uIE1vZGVscyoqCgpBIG1vZGVsIGlzIGEgc2ltcGxpZmllZCByZXByZXNlbnRhdGlvbiBvZiBhIHN5c3RlbS4gRm9yIGV4YW1wbGUsIHRoZSBtYXAgb2YgYSBjaXR5IHJlcHJlc2VudHMgYSBjaXR5IGluIGEgc2ltcGxpZmllZCBmYXNoaW9uLiBBIG1hcCBwcm92aWRpbmcgYXMgbXVjaCBkZXRhaWwgYXMgdGhlIG9yaWdpbmFsIGNpdHkgd291bGQgbm90IG9ubHkgYmUgaW1wb3NzaWJsZSB0byBjb25zdHJ1Y3QsIGl0IHdvdWxkIGFsc28gYmUgcG9pbnRsZXNzLiBIdW1hbnMgYnVpbGQgbW9kZWxzLCBzdWNoIGFzIG1hcHMgYW5kIHN0YXRpc3RpY2FsIG1vZGVscywgdG8gbWFrZSB0aGVpciBsaXZlcyBzaW1wbGVyLiAqW0NoYXB0ZXIgMywgV2ludGVyIEIuXSoKLSAtIC0gLQoKQnV0IGV2ZW4gdGhvdWdoIHdlIGtub3cgdGhlIG1vZGVscyBsaWtlIGBQKGhlYWRzKSA9IDAuNWAsIHdlIGRvIG5vdCBrbm93IHRoZSBkYXRhIChXaGV0ZWhyIGhlYWRzIHdpbGwgY29tZSAxMCB0aW1lcyBvciAzIHRpbWVzKS4gSG93ZXZlciwgZm9yIHN0YXRpc3RpY3MsIGl0IGlzIHRoZSBvcHBvc2l0ZS4gV2UgaGF2ZSB0aGUgZGF0YSBhbmQgd2Ugd2FudCB0byBpbmZlciB0aGUgdHJ1dGggYWJvdXQgdGhlIHdvcmxkLiBGb3IgZWcuLCBJZiBteSBmcmllbmQgZmxpcHMgYSBjb2luIDEwIHRpbWVzIGFuZCBnZXRzIDEwIGhlYWRzLCBhcmUgdGhleSBwbGF5aW5nIGEgdHJpY2sgb24gbWU/IG9yIElmIHRoZSBsb3R0ZXJ5IGNvbW1pc3Npb25lcuKAmXMgc3BvdXNlIHdpbnMgdGhlIGxvdHRlcnksIGhvdyBsaWtlbHkgaXMgaXQgdGhhdCB0aGUgbG90dGVyeSB3YXMgcmlnZ2VkPwoKV2Ugd2FudCB0byBmaWd1cmUgb3V0IHdoaWNoIGlzIHRoZSB0cnVlIG1vZGVsIG9mIHRoZSB3b3JsZC4gSXMgaXQgKlAoaGVhZHMpID0gMC41KiBvciBpcyBpdCAqUChoZWFkcykgJFxuZSQgMC41Kj8KCiMjIyMjIFdoYXQgaXMgcHJvYmFiaWxpdHkgcmVhbGx5PwoKKipUaGUgZnJlcXVlbnRpc3QgdmlldyoqCgohW0ZyZXF1ZW50aXN0X2dyYXBoXShGaWc0LnBuZykKCkFjY29yZGluZyB0byB0aGUgZnJlcXVlbnRpc3QgdmlldywgZmxpcCBhIGZhaXIgY29pbiBvdmVyIGFuZCBvdmVyIGFnYWluLCBhbmQgYXMgTiBncm93cyBsYXJnZSAoYXBwcm9hY2hlcyBpbmZpbml0eSwgZGVub3RlZCBOIMORIDgpLCB0aGUgcHJvcG9ydGlvbiBvZiBoZWFkcyB3aWxsIGNvbnZlcmdlIHRvIDUwJS4KCiAqQWR2YW50YWdlcyoKIC0gIEl0IGlzIG9iamVjdGl2ZTogdGhlIHByb2JhYmlsaXR5IG9mIGFuIGV2ZW50IGlzIG5lY2Vzc2FyaWx5IGdyb3VuZGVkIGluIHRoZSB3b3JsZC4KIC0gIEl0IGlzIHVuYW1iaWd1b3VzOiBhbnkgdHdvIHBlb3BsZSB3YXRjaGluZyB0aGUgc2FtZSBzZXF1ZW5jZSBvZiBldmVudHMgdW5mb2xkLCB0cnlpbmcgdG8gY2FsY3VsYXRlIHRoZSBwcm9iYWJpbGl0eSBvZiBhbiBldmVudCwgbXVzdCBpbmV2aXRhYmx5IGNvbWUgdXAgd2l0aCB0aGUgc2FtZSBhbnN3ZXIuCgpCdXQgaXQgYWxsIGRlcGVuZHMgb24gaW5maW5pdGUgZmxpcHMgb2YgY29pbi4gRG8gaW5maW5pdGllcyByZWFsbHkgZXhpc3QgaW4gdGhlIHBoeXNpY2FsIHVuaXZlcnNlPyBXaGF0IGFib3V0IHRoZSBwcm9iYWJpbGl0eSBmb3IgYSBzaW5nbGUgbm9uLXJlcGVhdGFibGUgZXZlbnQgbGlrZSB0aGUgY2hhbmNlcyBvZiByYWluIG9uIDIxIFNlcHRlbWJlciAyMDIxPwoKKipUaGUgQmF5ZXNpYW4gdmlldyoqCgpCYXllc2lhbiB2aWV3IGlzIHN1YmplY3RpdmlzdCB2aWV3LiBUaGUgbW9zdCBjb21tb24gd2F5IG9mIHRoaW5raW5nIGFib3V0IHN1YmplY3RpdmUgcHJvYmFiaWxpdHkgaXMgdG8gZGVmaW5lIHRoZSBwcm9iYWJpbGl0eSBvZiBhbiBldmVudCBhcyB0aGUgZGVncmVlIG9mIGJlbGllZiB0aGF0IGFuIGludGVsbGlnZW50IGFuZCByYXRpb25hbCBhZ2VudCBhc3NpZ25zIHRvIHRoYXQgdHJ1dGggb2YgdGhhdCBldmVudC4gQnV0IGhvdyB0byBvcGVyYXRpb25hbGl6ZSB0aGlzICdkZWdyZWUgb2YgYmVsaWVmJz8gCgpPbmUgd2F5IGlzIHRvIHVzZSAncmF0aW9uYWwgZ2FtYmxpbmcnLiBTbyBhIOKAnHN1YmplY3RpdmUgcHJvYmFiaWxpdHnigJ0gd2lsbCBiZSBvcGVyYXRpb25hbGl6ZWQgaW4gdGVybXMgb2Ygd2hhdCBiZXRzIHlvdSdyZSB3aWxsaW5nIHRvIGFjY2VwdC4KCiAqQWR2YW50YWdlKgogLSBZb3UgZG9u4oCZdCBuZWVkIHRvIGJlIGxpbWl0ZWQgdG8gdGhvc2UgZXZlbnRzIHRoYXQgYXJlIHJlcGVhdGFibGUuCiAKICpEaXNhZHZhbnRhZ2UqCiAtIENhbuKAmXQgYmUgcHVyZWx5IG9iamVjdGl2ZSDigJMgc3BlY2lmeWluZyBhIHByb2JhYmlsaXR5IHJlcXVpcmVzIHVzIHRvIHNwZWNpZnkgYW4gZW50aXR5IHRoYXQgaGFzIHRoZSByZWxldmFudCBkZWdyZWUgb2YgYmVsaWVmLiBUaGlzIGVudGl0eSBtaWdodCBiZSBhIGh1bWFuLCBhbiBhbGllbiwgYSByb2JvdCwgb3IgZXZlbiBhIHN0YXRpc3RpY2lhbiwgYnV0IHRoZXJlIGhhcyB0byBiZSBhbiAqKmludGVsbGlnZW50IGFnZW50Kiogb3V0IHRoZXJlIHRoYXQgYmVsaWV2ZXMgaW4gdGhpbmdzLiAKCgpJbiBzaG9ydCwgZnJlcXVlbnRpc3QgdmlldyBpcyBzb21ldGltZXMgY29uc2lkZXJlZCB0byBiZSB0b28gbmFycm93IChmb3JiaWRzIGxvdHMgb2YgdGhpbmdzIHRoYXQgdGhhdCB3ZSB3YW50IHRvIGFzc2lnbiBwcm9iYWJpbGl0aWVzIHRvKSB3aGlsZSB0aGUgQmF5ZXNpYW4gdmlldyBpcyBzb21ldGltZXMgdGhvdWdodCB0byBiZSB0b28gYnJvYWQgKGFsbG93cyB0b28gbWFueSBkaWZmZXJlbmNlcyBiZXR3ZWVuIG9ic2VydmVycykuCgojIyMjIyBEZWZpbml0aW9ucwoKUmVmZXIgdG8gdGhlIGV4YW1wbGUgZGVzY3JpYmVkIGluICpTZWN0aW9uIDkuMy4xLCBOYXZhcnJvIEQuKiBmb3IgdGhlIGZvbGxvd2luZyBjb250ZW50LgoKKipFbGVtZW50YXJ5IGV2ZW50OioqIEV2ZXJ5IHRpbWUgd2UgbWFrZSBhbiBvYnNlcnZhdGlvbiAoZS5nLiwgZXZlcnkgdGltZSBJIHB1dCBvbiBhIHBhaXIgb2YgcGFudHMpLCB0aGVuIHRoZSBvdXRjb21lIHdpbGwgYmUgb25lIGFuZCBvbmx5IG9uZSBvZiB0aGVzZSBldmVudHMuCgoqKlNhbXBsZSBzcGFjZToqKiBUaGUgc2V0IG9mIGFsbCBwb3NzaWJsZSBldmVudHMgKGUuZy4sIHRoZSB3YXJkcm9iZSkKCioqUHJvYmFiaWxpdHk6KiogTnVtYmVycyBiZXR3ZWVuIDAgYW5kIDEuCgpGb3IgYW4gZXZlbnQgWCwgdGhlIHByb2JhYmlsaXR5IG9mIHRoYXQgZXZlbnQgUChYKSBpcyBhIG51bWJlciB0aGF0IGxpZXMgYmV0d2VlbiAwIGFuZCAxLiBUaGUgYmlnZ2VyIHRoZSB2YWx1ZSBvZiBQKFgpLCB0aGUgbW9yZSBsaWtlbHkgdGhlIGV2ZW50IGlzIHRvIG9jY3VyLgoKSWYgUChYKSA9IDAsIGl0IG1lYW5zIHRoZSBldmVudCBYIGlzIGltcG9zc2libGUgKGkuZS4sIEkgbmV2ZXIgd2VhciB0aG9zZSBwYW50cykuIE9uIHRoZSBvdGhlciBoYW5kLCBpZiBQKFgpPSAxIGl0IG1lYW5zIHRoYXQgZXZlbnQgWCBpcyBjZXJ0YWluIHRvIG9jY3VyIChpLmUuLCBJIGFsd2F5cyB3ZWFyIHRob3NlIHBhbnRzKS4KCioqTGF3IG9mIHRvdGFsIHByb2JhYmlsaXR5OioqIFRoZSBwcm9iYWJpbGl0aWVzIG9mIHRoZSBlbGVtZW50YXJ5IGV2ZW50cyBuZWVkIHRvIGFkZCB1cCB0byAxCgojIyMjIERpc3RyaWJ1dGlvbnMKCkxldCdzIHRha2UgYSBsb29rIGF0IHRoaXMgYW5kIHNlZSB3aGF0IGlzIGEgZGlzdHJpYnV0aW9uLiAKCmBgYHtyfQpwYW50cyA8LSBkYXRhLmZyYW1lKAogICB0eXBlID0gYygiQmx1ZSBqZWFucyIsIkdyZXkgamVhbnMiLCJCbGFjayBqZWFucyIsIkJsYWNrIHN1aXQiLCJCbHVlIHRyYWNrc3VpdCIpLAogICBsYWJlbCA9IGMoIlgxIiwgIlgyIiwgIlgzIiwgIlg0IiwgIlg1IiksCiAgIHByb2JhYmlsaXR5ID0gYygwLjUsMC4zLDAuMSwwLDAuMSkpCgpwYW50cwpgYGAKUHJvYmFiaWxpdHkgZGlzdHJpYnV0aW9uIGlzIHNpbXBseSB0aGUgcHJvYmFiaWxpdGllcyBvZiB0aGVzZSBkaWZmZXJlbnQgZXZlbnRzIGFib3ZlLiBFYWNoIG9mIHRoZSBldmVudHMgaGFzIGEgcHJvYmFiaWxpdHkgdGhhdCBsaWVzIGJldHdlZW4gMCBhbmQgMSwgYW5kIGlmIHdlIGFkZCB1cCB0aGUgcHJvYmFiaWxpdHkgb2YgYWxsIGV2ZW50cywgdGhleSBzdW0gdG8gMS4KCmBgYHtyfQojVHJ5IHBsb3R0aW5nIGEgYmFyIGdyYXBoIG9mIGFsbCB0aGUgcHJvYmFiaWxpdGllcyBhYm92ZQpgYGAKTGV0J3MgdGhpbmsgYWJvdXQgd2hhdCBoYXBwZW5zIGluIGNhc2Ugb2Ygbm9uLWVsZW1lbnRhcnkgZXZlbnRzLiBFLmcuIEFuIGV2ZW50IEUgd2hlcmUgZWl0aGVyIOKAnGJsdWUgamVhbnPigJ0gb3Ig4oCcYmxhY2sgamVhbnPigJ0gb3Ig4oCcZ3JleSBqZWFucyIgaGFzIG9jY3VycmVkLiAKVGhlbiB3aGF0IHdpbGwgYmUgdGhlIHByb2JhYmlsaXR5IG9mIGV2ZW50IEUuCgpQKEUpID0gUChYMSkgKyBQKFgyKSArIFAoWDMpCgpJZiBhbnkgb2YgdGhlc2UgZWxlbWVudGFyeSBldmVudHMgb2NjdXJzLCB0aGVuIEUgaXMgYWxzbyBzYWlkIHRvIGhhdmUgb2NjdXJyZWQuIFNpbWlsYXJseSwgdGhlcmUgYXJlIG90aGVyIHJ1bGVzIHNhdGlzZnlpbmcgcHJvYmFiaWxpdGllczoKCiFbUHJvYmFiaWxpdHlfcnVsZXNdKEZpZzUucG5nKQoKIyMjIyMgQmlub21pYWwgRGlzdHJpYnV0aW9uCgoqUmVmZXIgdG8gc2VjdGlvbiA5LjQuMSwgTmF2YXJybyBELiwgZm9yIHRoZSBkZXRhaWxlZCBleGFtcGxlKgoKU29tZSBiYXNpYyB0ZXJtaW5vbG9neSAtIFdl4oCZbGwgbGV0IGBOYCBkZW5vdGUgdGhlIG51bWJlciBvZiBkaWNlIHJvbGxzIGluIG91ciBleHBlcmltZW50OyB3aGljaCBpcyBvZnRlbiByZWZlcnJlZCB0byBhcyB0aGUgYHNpemUgcGFyYW1ldGVyYCBvZiBvdXIgYmlub21pYWwgZGlzdHJpYnV0aW9uLiBXZeKAmWxsIGFsc28gdXNlIGDOuGAgdG8gcmVmZXIgdG8gdGhlIHRoZSBwcm9iYWJpbGl0eSB0aGF0IGEgc2luZ2xlIGRpZSBjb21lcyB1cCBza3VsbCwgYSBxdWFudGl0eSB0aGF0IGlzIHVzdWFsbHkgY2FsbGVkIHRoZSBgc3VjY2VzcyBwcm9iYWJpbGl0eWAgb2YgdGhlIGJpbm9taWFsLiBGaW5hbGx5LCB3ZeKAmWxsIHVzZSBgWGAgdG8gcmVmZXIgdG8gdGhlIHJlc3VsdHMgb2Ygb3VyIGV4cGVyaW1lbnQsIG5hbWVseSB0aGUgbnVtYmVyIG9mIHNrdWxscyBJIGdldCB3aGVuIEkgcm9sbCB0aGUgZGljZS4gU2luY2UgdGhlIGFjdHVhbCB2YWx1ZSBvZiBYIGlzIGR1ZSB0byBjaGFuY2UsIHdlIHJlZmVyIHRvIGl0IGFzIGEgYHJhbmRvbSB2YXJpYWJsZWAuCgpgWCB+IEJpbm9taWFsKM64LCBOKWAgZGVub3RlcyBYIGlzIGdlbmVyYXRlZCByYW5kb21seSBmcm9tIGEgYmlub21pYWwgZGlzdHJpYnV0aW9uIHdpdGggcGFyYW1ldGVycyDOuCBhbmQgTi4KCjQgfiBCaW5vbWlhbCgxLzYsIDIwKQoKNSB+IEJpbm9taWFsKDEvMiwgMTApCgpMZXQncyBnZW5lcmF0ZSBhIGJpbm9taWFsIGRpc3RyaWJ1dGlvbiBpbiBSOgoKYGBge3J9CmRiaW5vbSggeCA9IDEsIHNpemUgPSAyMCwgcHJvYiA9IDEvNikKYGBgClRoZSBhYm92ZSBjb21tYW5kIGNhbGN1bGF0ZXMgdGhlIHByb2JhYmlsaXR5IG9mIGdldHRpbmcgeCA9IDQgc2t1bGxzLCBmcm9tIGFuIGV4cGVyaW1lbnQgb2Ygc2l6ZSA9IDIwIHRyaWFscywgaW4gd2hpY2ggdGhlIHByb2JhYmlsaXR5IG9mIGdldHRpbmcgYSBza3VsbCBvbiBhbnkgb25lIHRyaWFsIGlzIHByb2IgPSAxLzYuCgpXaGF0IGlmIHRoZSBkaWNlIGlzIHJlcGxhY2VkIGJ5IGEgY29pbiBpbiB0aGUgYWJvdmUgZXhhbXBsZT8gSG93IHdpbGwgdGhlIHByb2JhYmlsaXR5IGNoYW5nZT8gCgpgYGB7cn0KI1RyeSBmaW5kaW5nIHRoZSBwcm9iYWJpbGl0eSBmb3IgTiA9IDIwIGFuZCBOPTEwMCB0cmlhbHMgZm9yIGEgZmFpciBjb2luIGZsaXAuCmBgYApUaGVyZSBhcmUgZGlmZmVyZW50IGZ1bmN0aW9ucyBpbiBSIGZvciBkaWZmZXJlbnQgZGlzdHJpYnV0aW9ucyBhcyB3ZWxsIGFzIGRpZmZlcmVudCBvbmVzIGZvciBmaW5kaW5nIGRpZmZlcmVudCBxdWFudGl0eSBvZiBpbnRlcmVzdC4KCklmIHdlIHdhbnQgdG8gZmluZCB0aGUgcHJvYmFiaWxpdHkgb2Ygb2J0YWluaW5nIGFuIG91dGNvbWUgc21hbGxlciB0aGFuIG9yIGVxdWFsIHRvIHF1YW50aWxlIHEsIHRoZW4gd2UgY2FuIGRpcmVjdGx5IHVzZSBgcGJpbm9tYC4KCmBgYHtyfQojRmluZCB0aGUgcHJvYmFiaWxpdHkgb2Ygcm9sbGluZyAwIHNrdWxscyBvciAxIHNrdWxsIG9yIDIgc2t1bGxzIG9yIDMgc2t1bGxzIG9yIDQgc2t1bGxzCnBiaW5vbSggcT0gMywgc2l6ZSA9IDIwLCBwcm9iID0gMS82KQoKI1ByYWN0aWNlIC0gRmluZCBwcm9iYWJpbGl0eSBvZiBnZXR0aW5nIDAtNSBoZWFkcyBpbiA1MCB0cmlhbHMgb2YgY29pbiBmbGlwCmBgYApJbiBvdGhlciB3b3JkcywgdmFsdWUgb2YgNCBpcyBhY3R1YWxseSB0aGUgNzYuOXRoIHBlcmNlbnRpbGUgb2YgdGhpcyBiaW5vbWlhbCBkaXN0cmlidXRpb24uCgpOb3cgbGV04oCZcyBzYXkgd2Ugd2FudCB0byBjYWxjdWxhdGUgdGhlIDc1dGggcGVyY2VudGlsZSBvZiB0aGUgYmlub21pYWwgZGlzdHJpYnV0aW9uLgoKYGBge3J9CnFiaW5vbSggcCA9IDAuNTY2LCBzaXplID0gMjAsIHByb2IgPSAxLzYgKQoKI1ByYWN0aWNlIC0gRmluZCB0aGUgNDB0aCBwZXJjZW50aWxlCmBgYAoKV2UndmUgZm91bmQgZGlmZmVyZW50IHF1YW50aXRpZXMuIFdoYXQgaWYgd2Ugd2FudCB0byBzaW11bGF0ZSB0aGUgYWJvdmUgZXhwZXJpbWVudHMuIFdlIHNwZWNpZnkgaG93IG1hbnkgdGltZXMgUiBzaG91bGQg4oCcc2ltdWxhdGXigJ0gdGhlIGV4cGVyaW1lbnQgdXNpbmcgdGhlIG4gYXJndW1lbnQsIGFuZCBpdCB3aWxsIGdlbmVyYXRlIHJhbmRvbSBvdXRjb21lcyBmcm9tIHRoZSBiaW5vbWlhbCBkaXN0cmlidXRpb24gdXNpbmcgdGhlIGByYmlub21gIGZ1bmN0aW9uLgoKYGBge3J9CnogPC0gcmJpbm9tKCBuID0gMTAwLCBzaXplID0gMjAsIHByb2IgPSAxLzYgKQp6CiNMZXQncyBhbHNvIHBsb3QgdGhpcyBhbmQgc2VlIGhvdyBpdCBsb29rcwpoaXN0KHosIGNvbCA9ICdzdGVlbGJsdWUnKQpgYGAKI1RyeSBwbG90dGluZyB0aGUgZGlzdHJpYnV0aW9ucyBpbiBhYm92ZSBleGFtcGxlcyBhbmQgdmFyeSB0aGUgc2l6ZSwgdHJpYWwgbnVtYmVyIGFuZCBwcm9iYWJpbGl0eSB0byBnZW5lcmF0ZSBkaWZmZXJlbnQgcGxvdHMuCgpBbGwgdGhlc2UgZGlmZmVyZW50IGZ1bmN0aW9ucyAqZCwgcCwgcSwgbiogYXJlIGFsc28gYXBwbGljYWJsZSB0byBvdGhlciBkaXN0cmlidXRpb25zLiBFLmcuICpkbm9ybSwgcG5vcm0sIHFub3JtLCBybm9ybSogZm9yIE5vcm1hbCBkaXN0cmlidXRpb24uIAoKCiMjIyMjIE5vcm1hbCBEaXN0cmlidXRpb24KCk1vc3QgZnJlcXVlbnRseSBlbmNvdW50ZXJlZCBkaXN0cmlidXRpb24uCkVnOiBoZWlnaHRzIG9mIGFsbCBzdHVkZW50cyBpbiB0aGUgY2xhc3MsIG1hcmtzIG9idGFpbmVkIGluIGV4YW1zLCBldGMKCkJhc2ljYWxseSwgd2hlbmV2ZXIgeW91IGhhdmUgYWNjdW11bGF0aW9uIG9mIGRhdGEgYXQgdGhlIGNlbnRlciwgZmV3ZXIgZXh0cmVtZSB2YWx1ZXMgYW5kIGEgbmVhciBzeW1tZXRyaWMgc3ByZWFkLCB5b3Ugc2hvdWxkIHJlY2FsbCB0aGUgbm9ybWFsIGRpc3RyaWJ1dGlvbi4KCgotIGBkbm9ybSgpYCAtIEZvciBwcm9iYWJpbGl0eSBkZW5zaXR5Ci0gYHBub3JtKClgIC0gRm9yIGN1bXVsYXRpdmUgcHJvYmFiaWxpdHkKLSBgcW5vcm0oKWAgLSBGb3IgcXVhbnRpbGUgb2YKLSBgcm5vcm0oKWAgLSBGb3IgcmFuZG9tIG51bWJlciBnZW5lcmF0aW9uCgoKCmBgYHtyfQpub3JtYWxfZGlzdHJpYnV0aW9uIDwtIHJub3JtKDEwMDAwLCBtZWFuID0gMCwgc2QgPSAxKSAKaGlzdG9ncmFtX25vcm1hbF9kaXN0cmlidXRpb24gPC0gaGlzdChub3JtYWxfZGlzdHJpYnV0aW9uKQpwbG90KGhpc3RvZ3JhbV9ub3JtYWxfZGlzdHJpYnV0aW9uJG1pZHMsaGlzdG9ncmFtX25vcm1hbF9kaXN0cmlidXRpb24kZGVuc2l0eSwgdHlwZT0ibCIsIGNvbD0iYmx1ZSIsIGx3ZD0zKQoKCmBgYAoKTm90ZTogTm9ybWFsIGRpc3RyaWJ1dGlvbiBpcyBzb21ldGltZXMgcmVmZXJyZWQgdG8gYXMgdGhlIGJlbGwgY3VydmUgb3IgR2F1c3NpYW4gZGlzdHJpYnV0aW9uCgpUaGUgbm90YXRpb24gZm9yIGEgbm9ybWFsIGRpc3RyaWJ1dGlvbiBpczogWCDiiLwgTm9ybWFsKM68LM+DKSAKCgpkbm9ybSB0ZWxscyB5b3UgdGhlIHByb2JhYmlsaXR5IG9mIGdldHRpbmcgYSBwYXJ0aWN1bGFyIG91dGNvbWUKYGBge3J9CmRub3JtKHg9MCwgbWVhbj0wLCBzZD0xKQoKYGBgCkN1bXVsYXRpdmUgbm9ybWFsIGRpc3RyaWJ1dGlvbgpgYGB7cn0KcG5vcm0oMiwgbWVhbiA9IDAsIHNkID0gMSkKYGBgCgpgYGB7cn0KcW5vcm0oMC41ICxtZWFuID0gLCBzZCA9IDEpCmBgYAoKKkNoZWNraW5nIGZvciBub3JtYWxpdHkgdXNpbmcgdGhlIFNoYXBpcm8tV2lsayBUZXN0KgpgYGB7cn0Kbm9ybSA8LSBybm9ybSg1MDAsIG1lYW4gPSAwLCBzZCA9IDEpIApzaGFwaXJvLnRlc3Qobm9ybSkKCmJpbm9tIDwtIHJiaW5vbSgxMDAsIDIwLCAxLzYpCnNoYXBpcm8udGVzdChiaW5vbSkKCmBgYAoKCgoKCiMjIyMjIE90aGVyIHVzZWZ1bCBkaXN0cmlidXRpb25zCgpTb21lIG90aGVyIGRpc3RyaWJ1dGlvbnMgeW91IG1heSBlbmNvdW50ZXIgaW5jbHVkZToKKjEpIHQgZGlzdHJpYnV0aW9uKgoKTG9va3MgbGlrZSB0aGUgbm9ybWFsIGRpc3RyaWJ1dGlvbiBidXQgaGFzIGhlYXZpZXIgdGFpbHMuIApVc2VkIHdoZW4gZGF0YSBsb29rcyBsaWtlIGEgbm9ybWFsIGRpc3RyaWJ1dGlvbiBidXQgdGhlIG1lYW4gYW5kIFNEIGFyZSB1bmtub3duLgoKVXNlIHRoZSBmb2xsb3dpbmcgZnVuY3Rpb25zIHRvIHZpc3VhbGl6ZSB0aGUgdCBkaXN0cmlidXRpb246IApkdCgpLCBwdCgpLCBxdCgpIGFuZCBydCgpCgpgYGB7cn0KdF9kaXN0cmlidXRpb24gPC0gcnQoMTAwMDAsIDgpCmhpc3RvZ3JhbV90X2Rpc3RyaWJ1dGlvbiA8LSBoaXN0KHRfZGlzdHJpYnV0aW9uKQpwbG90KGhpc3RvZ3JhbV90X2Rpc3RyaWJ1dGlvbiRtaWRzLGhpc3RvZ3JhbV90X2Rpc3RyaWJ1dGlvbiRkZW5zaXR5LCB0eXBlPSJsIiwgY29sPSJibHVlIiwgbHdkPTMpCmBgYAoKCgoKKjIpIENoaSBzcXVhcmUgKM+HMikgZGlzdHJpYnV0aW9uKgoKQWxsIHBvc2l0aXZlIGFuZCBoZWF2aWx5IHNrZXdlZCB0byB0aGUgbGVmdC4gIApVc2VkIHdoZW4gZGF0YSByZXByZXNlbnRzIHN1bSBvZiBzcXVhcmVzIG9mIGEgbm9ybWFsbHkgZGlzdHJpYnV0ZWQgdmFyaWFibGVzLgoKVXNlIHRoZSBmb2xsb3dpbmcgZnVuY3Rpb25zIHRvIHZpc3VhbGl6ZSB0aGUgY2hpIHNxIGRpc3RyaWJ1dGlvbjogCmRjaGlzcSgpLCBwY2hpc3EoKSwgcWNoaXNxKCksIHJjaGlzcSgpLgoKYGBge3J9CmNoaXNxX2Rpc3RyaWJ1dGlvbiA8LSByY2hpc3EoMTAwMDAsIDMsIG5jcCA9IDApCmhpc3RvZ3JhbV9jaGlzcV9kaXN0cmlidXRpb24gPC0gaGlzdChjaGlzcV9kaXN0cmlidXRpb24pCnBsb3QoaGlzdG9ncmFtX2NoaXNxX2Rpc3RyaWJ1dGlvbiRtaWRzLGhpc3RvZ3JhbV9jaGlzcV9kaXN0cmlidXRpb24kZGVuc2l0eSwgdHlwZT0ibCIsIGNvbD0iYmx1ZSIsIGx3ZD0zKQpgYGAKCgoKCjMpIEYgZGlzdHJpYnV0aW9uCgpUaGlzIG9uZSBsb29rYSBhIGJpdCBsaWtlIHRoZSBjaGkgc3F1YXJlIGRpc3RyaWJ1dGlvbi4gQnV0IHRoaXMgZGlzdHJpYnV0aW9uIGNvbWVzIGludG8gcGljdHVyZSB3aGVuIApvbmUgY29tcGFyZXMgdHdvIGNoaSBzcSBkaXN0cmlidXRpb25zLgoKVXNlIHRoZSBmb2xsb3dpbmcgZnVuY3Rpb25zIHRvIHZpc3VhbGl6ZSB0aGUgY2hpIHNxIGRpc3RyaWJ1dGlvbjogCmRmKCksIHBmKCksIHFmKCkgYW5kIHJmKCkKCmBgYHtyfQpmX2Rpc3RyaWJ1dGlvbiA8LSByZigxMDAwMCwgNSwgMTApCmhpc3RvZ3JhbV9mX2Rpc3RyaWJ1dGlvbiA8LSBoaXN0KGZfZGlzdHJpYnV0aW9uKQpwbG90KGhpc3RvZ3JhbV9mX2Rpc3RyaWJ1dGlvbiRtaWRzLGhpc3RvZ3JhbV9mX2Rpc3RyaWJ1dGlvbiRkZW5zaXR5LCB0eXBlPSJsIiwgY29sPSJibHVlIiwgbHdkPTMpCmBgYAoKCgpUaGUgRW5kCgpSZWZlcmVuY2UgLSAqQ2hhcHRlciA5LCBOYXZhcnJvIEQuKgo=
From ea11e82c9157b366c2004f226cbac8ca7b620aa9 Mon Sep 17 00:00:00 2001 From: Arjun Date: Mon, 27 Sep 2021 19:13:59 +0000 Subject: [PATCH 14/55] Corrected some typos. Added assignment at the end for sample standard deviation. --- Module 3/Notebooks/Distributions.Rmd | 23 +++-- Module 3/Notebooks/Distributions.nb.html | 103 +++++++++++++++-------- 2 files changed, 81 insertions(+), 45 deletions(-) diff --git a/Module 3/Notebooks/Distributions.Rmd b/Module 3/Notebooks/Distributions.Rmd index fd8eca5c..503dc14f 100644 --- a/Module 3/Notebooks/Distributions.Rmd +++ b/Module 3/Notebooks/Distributions.Rmd @@ -139,7 +139,7 @@ qbinom( p = 0.566, size = 20, prob = 1/6 ) We've found different quantities. What if we want to simulate the above experiments. We specify how many times R should “simulate” the experiment using the n argument, and it will generate random outcomes from the binomial distribution using the `rbinom` function. ```{r} -z <- rbinom( n = 100, size = 20, prob = 1/6 ) +z <- rbinom( n = 10000, size = 20, prob = 2/6 ) z #Let's also plot this and see how it looks hist(z, col = 'steelblue') @@ -163,7 +163,7 @@ Basically, whenever you have accumulation of data at the center, fewer extreme v - `rnorm()` - For random number generation - +mean = 0; sd = 1 -> standard normal distribution ```{r} normal_distribution <- rnorm(10000, mean = 0, sd = 1) histogram_normal_distribution <- hist(normal_distribution) @@ -179,21 +179,21 @@ The notation for a normal distribution is: X ∼ Normal(μ,σ) dnorm tells you the probability of getting a particular outcome ```{r} -dnorm(x=0, mean=0, sd=1) +dnorm(x=85, mean=80, sd=5) ``` Cumulative normal distribution ```{r} -pnorm(2, mean = 0, sd = 1) +pnorm(q = 80, mean = 80, sd = 5) ``` ```{r} -qnorm(0.5 ,mean = , sd = 1) +qnorm(0.25 ,mean = 0 , sd = 1) ``` *Checking for normality using the Shapiro-Wilk Test* ```{r} -norm <- rnorm(500, mean = 0, sd = 1) +norm <- rnorm(50, mean = 0, sd = 1) shapiro.test(norm) binom <- rbinom(100, 20, 1/6) @@ -217,7 +217,7 @@ Use the following functions to visualize the t distribution: dt(), pt(), qt() and rt() ```{r} -t_distribution <- rt(10000, 8) +t_distribution <- rt(10000, 3) histogram_t_distribution <- hist(t_distribution) plot(histogram_t_distribution$mids,histogram_t_distribution$density, type="l", col="blue", lwd=3) ``` @@ -234,7 +234,12 @@ Use the following functions to visualize the chi sq distribution: dchisq(), pchisq(), qchisq(), rchisq(). ```{r} -chisq_distribution <- rchisq(10000, 3, ncp = 0) + +norm1 <- rnorm(100, mean = 10, sd = 5) +norm2 <- rnorm(100, mean = 20, sd = 7) +chisqdist <- norm1^2 + norm2^2 + +chisq_distribution <- rchisq(10000, 3) histogram_chisq_distribution <- hist(chisq_distribution) plot(histogram_chisq_distribution$mids,histogram_chisq_distribution$density, type="l", col="blue", lwd=3) ``` @@ -244,7 +249,7 @@ plot(histogram_chisq_distribution$mids,histogram_chisq_distribution$density, typ 3) F distribution -This one looka a bit like the chi square distribution. But this distribution comes into picture when +This one looks a bit like the chi square distribution. But this distribution comes into picture when one compares two chi sq distributions. Use the following functions to visualize the chi sq distribution: diff --git a/Module 3/Notebooks/Distributions.nb.html b/Module 3/Notebooks/Distributions.nb.html index 2f1b7b04..97a872b7 100644 --- a/Module 3/Notebooks/Distributions.nb.html +++ b/Module 3/Notebooks/Distributions.nb.html @@ -346,20 +346,50 @@
Binomial Distribution

We’ve found different quantities. What if we want to simulate the above experiments. We specify how many times R should “simulate” the experiment using the n argument, and it will generate random outcomes from the binomial distribution using the rbinom function.

- -
z <- rbinom( n = 100, size = 20, prob = 1/6 )
+
+
z <- rbinom( n = 10000, size = 20, prob = 2/6 )
 z
- -
  [1] 2 5 3 1 6 4 2 5 4 4 5 3 3 4 0 3 3 3 4 3 3 1 3 2 2 6 3 5 2 8 2 5 4 4 2 2 1 6 2 3 4 2 3 3 4 4 3 1 2 3 2 1 2 1 4 4 6 3
- [59] 4 6 2 5 7 3 2 5 5 5 4 2 4 0 1 2 5 5 2 6 3 3 3 1 3 3 3 3 2 3 5 3 3 3 4 3 2 3 3 5 6 3
+ +
   [1]  6  7  4  8  2  6  6  8  2  9  6  5  6  7  8  5  4  4  5  7  9  7  8  6  8  8  8  4  7  8  6  6 10
+  [34]  9  3  8  6  7  9 10  5  7  2  3  6  6  5  9  9 12  8 10  6  7  6  4  7  8  6  4  7  8  8  5  6  3
+  [67]  5  7  6  6  8  7  3  8 14  3  5  4  4  5  7  8  4  7  8  3  8  7  7  7  5  5  9  4  8  4  6  7  8
+ [100]  3  6  6  5  7  6  8 12  1 12  9  7  5  9  9  8  6  5 12  5 10 10  7  8  8  6  8  9  6  7  8  3  9
+ [133]  4  5  4  2  8  6  9  6  7  9  6  7  7  7  5  8  5  2  6  9  3  9  6 11  6  4  4 10  4  7  8  6  8
+ [166]  4  3  6  6  7  8  1  5  7 10  6  6  9  7  4  8  7  4  4  6  6  9  7  7  4  8  4  6  6  5  6  5  7
+ [199]  3  9  2  9  5  8  6  8  6  2  9  8  5  4  4  7  7  4  7  6  5  6  4  8  6  8  6 11  9  9  6 10  7
+ [232]  7 10  8  4  7  7  6  3 10  4 11  4  7 10  6  4  3  5  5  6  6 11  9  5  8  7  7  6  5  7  6  7  4
+ [265]  6  6  4  2  1  7  6  7  5  7  7 11  8  7 10  4  7  8 10  9  4  5  9 10  7  9  9  9  7  5  6  4  7
+ [298]  8  9  4  9  6  7  7  7  7  5  5  5  9  5  6  7  5  6  7  6  8  6  5  8  8 10  9  5  6  3  8 10  6
+ [331]  7  7  4  6  5 10  5  6  5 10  9  8  7  8  7  7  5  8  6  7  7  7  6  4  9 11  6  6  5  7  6  7  8
+ [364]  5  8  6  8  8  5  7  6  7 11  6 10  4  7  7  2  3  7  6  3  5  8  9  7  7  4  4 13  4  8  8  7  6
+ [397]  6  7  6  6  7  7  8  6  8 11  6 12  5  4  6 11  6  9 11  7  8  7  7  9 10  9  6  3  6  9 10  5  7
+ [430]  7  5  3  9  9  6  9  7  8  5  8  4  9  7  3  6 11  7  4  9  5  7  7  4  6  7  5  7 12  7  7  5  9
+ [463]  4  8  9  9  4  8  3  5  8  6  7  4  9  6  8  5  5  3  6  9  7  5  9  7  6  7  7  6  8  9  9  8  7
+ [496]  7  7  8  5  3  7  5  9  5 10  8  8  7  6  1 12  9  7  4  8  7  4  7  6  3 11  5  5  9  3  8  3  8
+ [529]  6  6  6  6  7  5 10 11  7  6  5  7  4  2  5  7  6  8  9  6  6  5  4  6  6  8 10  8  5  8 10  6  9
+ [562]  6  8  5  7  7  8  9  6  1 11  3  5 10  8  7  6 11  7  4  5  1  6  5  9  7  7  7  9  9  4  8  9  9
+ [595] 10  6  7  7  6  8  7  6  6  3  4  7  5  8 12  6  4  9  6  6  9  8  5 13  6  6  6  7  7  3  4  4  7
+ [628]  3  7  4  5  7  8  7  3  7 10  7  5  4  6  6  7  5 10  7  2  5  8  7  6  8  8  5  6  7 10 10  8  8
+ [661]  8  7  8  9  8  4  6  4  5  8  7  7 10  9  9  9  3  9  6  8  7  6  4  5  7  6  9  3  3  8  1  5  8
+ [694] 10  3  7  9 11  8  7  5 12  4  2 10  3  6  5  9  7  4 11  8  8  5  8  6  8  6  7 10 10  5  3  6  4
+ [727]  6  7  6  9  5  7  7  3  8  9 10  3  9  7  4 10  6  7  4  6  7  8  6  3  7  8  7  6  7  6  7  7  6
+ [760] 10  7  6  3  6  7  7  3  6  7  5  7 10  4 11  9  4  9  5  6  4  6  6  7  7  4  7  9  6  8  4  9  8
+ [793]  6  8  5  7  7 10  9  4  9  6  6 10  7  5 12  7  5  6  4  3  8  6 10  4  6  5  8  4  4  6  7  9  6
+ [826]  8  6 10  7  8  9  5  8  5  7 10  5  6  8  8  2  7  5  3  5  3  9  7  5  8  8  6  5  7  8 10  5  7
+ [859]  9  4  7  7  8  9  8  6  2 10  7  6  5 10  6 10  3  6  5  3  7  8  2 11  4 10  4  8  9  4  7  6  3
+ [892]  6  6  9  5  4  6  5  3  5  6  8  3  7  6  6  8  4  5  4  7  7  8  7  5  8  2  8  4  2  8  9  5  8
+ [925]  7 11  5  4  8  4 10  9 11  7  4  8 10 12  8  7  7  7  5  5  5  4  5  9  9  9 10  8  7  5  5  8  8
+ [958]  5  6  5  4  4  5  4  8  7  4  8  4  5  4  6  5  6  7  6  8  4  8  3 10  5  9  6  7  4  9  5  7  6
+ [991]  7  6  5  4  8  3  4  8 10  6
+ [ reached getOption("max.print") -- omitted 9000 entries ]
#Let's also plot this and see how it looks
 hist(z, col = 'steelblue')
-

+

@@ -376,6 +406,7 @@
Normal Distribution
  • qnorm() - For quantile of
  • rnorm() - For random number generation
  • +

    mean = 0; sd = 1 -> standard normal distribution

    @@ -383,13 +414,13 @@
    Normal Distribution
    histogram_normal_distribution <- hist(normal_distribution)
    -

    +

    plot(histogram_normal_distribution$mids,histogram_normal_distribution$density, type="l", col="blue", lwd=3)
    -

    +

    NA
    @@ -402,59 +433,59 @@ 
    Normal Distribution

    dnorm tells you the probability of getting a particular outcome

    - -
    dnorm(x=0, mean=0, sd=1)
    + +
    dnorm(x=85, mean=80, sd=5)
    - -
    [1] 0.3989423
    + +
    [1] 0.04839414

    Cumulative normal distribution

    - -
    pnorm(2, mean = 0, sd = 1)
    + +
    pnorm(q = 80, mean = 80, sd = 5)
    - -
    [1] 0.9772499
    + +
    [1] 0.5
    - -
    qnorm(0.5 , mean = , sd = 1)
    + +
    qnorm(0.25 ,mean = 0 , sd = 1)
    - -
    [1] 0
    + +
    [1] -0.6744898

    Checking for normality using the Shapiro-Wilk Test

    - -
    norm <- rnorm(500, mean = 0, sd = 1) 
    +
    +
    norm <- rnorm(50, mean = 0, sd = 1) 
     shapiro.test(norm)
    - +
    
         Shapiro-Wilk normality test
     
     data:  norm
    -W = 0.99593, p-value = 0.2251
    +W = 0.9809, p-value = 0.5904
    binom <- rbinom(100, 20, 1/6)
     shapiro.test(binom)
    - +
    
         Shapiro-Wilk normality test
     
     data:  binom
    -W = 0.95443, p-value = 0.001644
    +W = 0.95971, p-value = 0.003833
    @@ -466,18 +497,18 @@
    Other useful distributions

    Use the following functions to visualize the t distribution: dt(), pt(), qt() and rt()

    - -
    t_distribution <- rt(10000, 8)
    +
    +
    t_distribution <- rt(10000, 3)
     histogram_t_distribution <- hist(t_distribution)
    -

    +

    plot(histogram_t_distribution$mids,histogram_t_distribution$density, type="l", col="blue", lwd=3)
    -

    +

    @@ -487,25 +518,25 @@
    Other useful distributions

    Use the following functions to visualize the chi sq distribution: dchisq(), pchisq(), qchisq(), rchisq().

    - -
    chisq_distribution <- rchisq(10000, 3, ncp = 0)
    +
    +
    chisq_distribution <- rchisq(10000, 3)
     histogram_chisq_distribution <- hist(chisq_distribution)
    -

    +

    plot(histogram_chisq_distribution$mids,histogram_chisq_distribution$density, type="l", col="blue", lwd=3)
    -

    +

    1. F distribution
    -

    This one looka a bit like the chi square distribution. But this distribution comes into picture when one compares two chi sq distributions.

    +

    This one looks a bit like the chi square distribution. But this distribution comes into picture when one compares two chi sq distributions.

    Use the following functions to visualize the chi sq distribution: df(), pf(), qf() and rf()

    @@ -530,7 +561,7 @@
    Other useful distributions
    -
    LS0tCnRpdGxlOiAiSW5mZXJlbnRpYWwgU3RhdGlzdGljczogUHJvYmFiaWxpdHkgJiBEaXN0cmlidXRpb25zIC0gMSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKU28gZmFyIHdlIGhhdmUgZGlzY3Vzc2VkIGFib3V0IGRlc2NyaXB0aXZlIHN0YXRpc3RpY3MgLSBzdW1tYXJpemluZyBkYXRhIGFuZCBwbG90dGluZyBpdC4gQnV0IGluIG9yZGVyIGdhaW4gdGhlIHBvd2VyIG9mIG1ha2luZyBpbmZlcmVuY2VzLCB3ZSB3aWxsIGJlIHN0cmF0aW5nIHdpdGggaW5mZXJlbnRpYWwgc3RhdGlzdGljcy4KCiMjIyMgUHJlLXJlcXVpc2l0ZTogUHJvYmFiaWxpdHkKCiMjIyMjIERpZmZlcmVuY2UgYmV0d2VlbiBwcm9iYWJpbGl0eSBhbmQgc3RhdGlzdGljcyoqClByb2JhYmlsaXR5IHRoZW9yeSBpcyBhIGJyYW5jaCBvZiBtYXRoZW1hdGljcyB0aGF0IHRlbGxzIHlvdSBob3cgb2Z0ZW4gZGlmZmVyZW50IGtpbmRzIG9mIGV2ZW50cyB3aWxsIGhhcHBlbi4gRm9yIGVnLiBXaGF0IGFyZSB0aGUgY2hhbmNlcyBvZiBhIGZhaXIgY29pbiBjb21pbmcgdXAgaGVhZHMgMTAgdGltZXMgaW4gYSByb3c/IG9yIFdoYXQgYXJlIHRoZSBjaGFuY2VzIHRoYXQgSeKAmWxsIHdpbiB0aGUgbG90dGVyeT8KCkluIGVhY2ggY2FzZSB0aGUg4oCcdHJ1dGggb2YgdGhlIHdvcmxk4oCdIGlzIGtub3duLiBXZSBrbm93IHRoYXQgdGhlIGNvaW4gaXMgZmFpciwgc28gdGhlcmXigJlzIGEgNTAlIGNoYW5jZSB0aGF0IGFueSBpbmRpdmlkdWFsIGNvaW4gZmxpcCB3aWxsIGNvbWUgdXAgaGVhZHMuIFdlIGtub3cgdGhhdCB0aGUgbG90dGVyeSBmb2xsb3dzIHNwZWNpZmljIHJ1bGVzLiBUaGUgY3JpdGljYWwgcG9pbnQgaXMgdGhhdCBwcm9iYWJpbGlzdGljIHF1ZXN0aW9ucyBzdGFydCB3aXRoIGEga25vd24gbW9kZWwgb2YgdGhlIHdvcmxkLCBhbmQgd2UgdXNlIHRoYXQgbW9kZWwgdG8gZG8gc29tZSBjYWxjdWxhdGlvbnMuICpbQ2hhcHRlciA5LCBOYXZhcnJvIEQuXSoKCioqQSBzaG9ydCBub3RlIG9uIE1vZGVscyoqCgpBIG1vZGVsIGlzIGEgc2ltcGxpZmllZCByZXByZXNlbnRhdGlvbiBvZiBhIHN5c3RlbS4gRm9yIGV4YW1wbGUsIHRoZSBtYXAgb2YgYSBjaXR5IHJlcHJlc2VudHMgYSBjaXR5IGluIGEgc2ltcGxpZmllZCBmYXNoaW9uLiBBIG1hcCBwcm92aWRpbmcgYXMgbXVjaCBkZXRhaWwgYXMgdGhlIG9yaWdpbmFsIGNpdHkgd291bGQgbm90IG9ubHkgYmUgaW1wb3NzaWJsZSB0byBjb25zdHJ1Y3QsIGl0IHdvdWxkIGFsc28gYmUgcG9pbnRsZXNzLiBIdW1hbnMgYnVpbGQgbW9kZWxzLCBzdWNoIGFzIG1hcHMgYW5kIHN0YXRpc3RpY2FsIG1vZGVscywgdG8gbWFrZSB0aGVpciBsaXZlcyBzaW1wbGVyLiAqW0NoYXB0ZXIgMywgV2ludGVyIEIuXSoKLSAtIC0gLQoKQnV0IGV2ZW4gdGhvdWdoIHdlIGtub3cgdGhlIG1vZGVscyBsaWtlIGBQKGhlYWRzKSA9IDAuNWAsIHdlIGRvIG5vdCBrbm93IHRoZSBkYXRhIChXaGV0ZWhyIGhlYWRzIHdpbGwgY29tZSAxMCB0aW1lcyBvciAzIHRpbWVzKS4gSG93ZXZlciwgZm9yIHN0YXRpc3RpY3MsIGl0IGlzIHRoZSBvcHBvc2l0ZS4gV2UgaGF2ZSB0aGUgZGF0YSBhbmQgd2Ugd2FudCB0byBpbmZlciB0aGUgdHJ1dGggYWJvdXQgdGhlIHdvcmxkLiBGb3IgZWcuLCBJZiBteSBmcmllbmQgZmxpcHMgYSBjb2luIDEwIHRpbWVzIGFuZCBnZXRzIDEwIGhlYWRzLCBhcmUgdGhleSBwbGF5aW5nIGEgdHJpY2sgb24gbWU/IG9yIElmIHRoZSBsb3R0ZXJ5IGNvbW1pc3Npb25lcuKAmXMgc3BvdXNlIHdpbnMgdGhlIGxvdHRlcnksIGhvdyBsaWtlbHkgaXMgaXQgdGhhdCB0aGUgbG90dGVyeSB3YXMgcmlnZ2VkPwoKV2Ugd2FudCB0byBmaWd1cmUgb3V0IHdoaWNoIGlzIHRoZSB0cnVlIG1vZGVsIG9mIHRoZSB3b3JsZC4gSXMgaXQgKlAoaGVhZHMpID0gMC41KiBvciBpcyBpdCAqUChoZWFkcykgJFxuZSQgMC41Kj8KCiMjIyMjIFdoYXQgaXMgcHJvYmFiaWxpdHkgcmVhbGx5PwoKKipUaGUgZnJlcXVlbnRpc3QgdmlldyoqCgohW0ZyZXF1ZW50aXN0X2dyYXBoXShGaWc0LnBuZykKCkFjY29yZGluZyB0byB0aGUgZnJlcXVlbnRpc3QgdmlldywgZmxpcCBhIGZhaXIgY29pbiBvdmVyIGFuZCBvdmVyIGFnYWluLCBhbmQgYXMgTiBncm93cyBsYXJnZSAoYXBwcm9hY2hlcyBpbmZpbml0eSwgZGVub3RlZCBOIMORIDgpLCB0aGUgcHJvcG9ydGlvbiBvZiBoZWFkcyB3aWxsIGNvbnZlcmdlIHRvIDUwJS4KCiAqQWR2YW50YWdlcyoKIC0gIEl0IGlzIG9iamVjdGl2ZTogdGhlIHByb2JhYmlsaXR5IG9mIGFuIGV2ZW50IGlzIG5lY2Vzc2FyaWx5IGdyb3VuZGVkIGluIHRoZSB3b3JsZC4KIC0gIEl0IGlzIHVuYW1iaWd1b3VzOiBhbnkgdHdvIHBlb3BsZSB3YXRjaGluZyB0aGUgc2FtZSBzZXF1ZW5jZSBvZiBldmVudHMgdW5mb2xkLCB0cnlpbmcgdG8gY2FsY3VsYXRlIHRoZSBwcm9iYWJpbGl0eSBvZiBhbiBldmVudCwgbXVzdCBpbmV2aXRhYmx5IGNvbWUgdXAgd2l0aCB0aGUgc2FtZSBhbnN3ZXIuCgpCdXQgaXQgYWxsIGRlcGVuZHMgb24gaW5maW5pdGUgZmxpcHMgb2YgY29pbi4gRG8gaW5maW5pdGllcyByZWFsbHkgZXhpc3QgaW4gdGhlIHBoeXNpY2FsIHVuaXZlcnNlPyBXaGF0IGFib3V0IHRoZSBwcm9iYWJpbGl0eSBmb3IgYSBzaW5nbGUgbm9uLXJlcGVhdGFibGUgZXZlbnQgbGlrZSB0aGUgY2hhbmNlcyBvZiByYWluIG9uIDIxIFNlcHRlbWJlciAyMDIxPwoKKipUaGUgQmF5ZXNpYW4gdmlldyoqCgpCYXllc2lhbiB2aWV3IGlzIHN1YmplY3RpdmlzdCB2aWV3LiBUaGUgbW9zdCBjb21tb24gd2F5IG9mIHRoaW5raW5nIGFib3V0IHN1YmplY3RpdmUgcHJvYmFiaWxpdHkgaXMgdG8gZGVmaW5lIHRoZSBwcm9iYWJpbGl0eSBvZiBhbiBldmVudCBhcyB0aGUgZGVncmVlIG9mIGJlbGllZiB0aGF0IGFuIGludGVsbGlnZW50IGFuZCByYXRpb25hbCBhZ2VudCBhc3NpZ25zIHRvIHRoYXQgdHJ1dGggb2YgdGhhdCBldmVudC4gQnV0IGhvdyB0byBvcGVyYXRpb25hbGl6ZSB0aGlzICdkZWdyZWUgb2YgYmVsaWVmJz8gCgpPbmUgd2F5IGlzIHRvIHVzZSAncmF0aW9uYWwgZ2FtYmxpbmcnLiBTbyBhIOKAnHN1YmplY3RpdmUgcHJvYmFiaWxpdHnigJ0gd2lsbCBiZSBvcGVyYXRpb25hbGl6ZWQgaW4gdGVybXMgb2Ygd2hhdCBiZXRzIHlvdSdyZSB3aWxsaW5nIHRvIGFjY2VwdC4KCiAqQWR2YW50YWdlKgogLSBZb3UgZG9u4oCZdCBuZWVkIHRvIGJlIGxpbWl0ZWQgdG8gdGhvc2UgZXZlbnRzIHRoYXQgYXJlIHJlcGVhdGFibGUuCiAKICpEaXNhZHZhbnRhZ2UqCiAtIENhbuKAmXQgYmUgcHVyZWx5IG9iamVjdGl2ZSDigJMgc3BlY2lmeWluZyBhIHByb2JhYmlsaXR5IHJlcXVpcmVzIHVzIHRvIHNwZWNpZnkgYW4gZW50aXR5IHRoYXQgaGFzIHRoZSByZWxldmFudCBkZWdyZWUgb2YgYmVsaWVmLiBUaGlzIGVudGl0eSBtaWdodCBiZSBhIGh1bWFuLCBhbiBhbGllbiwgYSByb2JvdCwgb3IgZXZlbiBhIHN0YXRpc3RpY2lhbiwgYnV0IHRoZXJlIGhhcyB0byBiZSBhbiAqKmludGVsbGlnZW50IGFnZW50Kiogb3V0IHRoZXJlIHRoYXQgYmVsaWV2ZXMgaW4gdGhpbmdzLiAKCgpJbiBzaG9ydCwgZnJlcXVlbnRpc3QgdmlldyBpcyBzb21ldGltZXMgY29uc2lkZXJlZCB0byBiZSB0b28gbmFycm93IChmb3JiaWRzIGxvdHMgb2YgdGhpbmdzIHRoYXQgdGhhdCB3ZSB3YW50IHRvIGFzc2lnbiBwcm9iYWJpbGl0aWVzIHRvKSB3aGlsZSB0aGUgQmF5ZXNpYW4gdmlldyBpcyBzb21ldGltZXMgdGhvdWdodCB0byBiZSB0b28gYnJvYWQgKGFsbG93cyB0b28gbWFueSBkaWZmZXJlbmNlcyBiZXR3ZWVuIG9ic2VydmVycykuCgojIyMjIyBEZWZpbml0aW9ucwoKUmVmZXIgdG8gdGhlIGV4YW1wbGUgZGVzY3JpYmVkIGluICpTZWN0aW9uIDkuMy4xLCBOYXZhcnJvIEQuKiBmb3IgdGhlIGZvbGxvd2luZyBjb250ZW50LgoKKipFbGVtZW50YXJ5IGV2ZW50OioqIEV2ZXJ5IHRpbWUgd2UgbWFrZSBhbiBvYnNlcnZhdGlvbiAoZS5nLiwgZXZlcnkgdGltZSBJIHB1dCBvbiBhIHBhaXIgb2YgcGFudHMpLCB0aGVuIHRoZSBvdXRjb21lIHdpbGwgYmUgb25lIGFuZCBvbmx5IG9uZSBvZiB0aGVzZSBldmVudHMuCgoqKlNhbXBsZSBzcGFjZToqKiBUaGUgc2V0IG9mIGFsbCBwb3NzaWJsZSBldmVudHMgKGUuZy4sIHRoZSB3YXJkcm9iZSkKCioqUHJvYmFiaWxpdHk6KiogTnVtYmVycyBiZXR3ZWVuIDAgYW5kIDEuCgpGb3IgYW4gZXZlbnQgWCwgdGhlIHByb2JhYmlsaXR5IG9mIHRoYXQgZXZlbnQgUChYKSBpcyBhIG51bWJlciB0aGF0IGxpZXMgYmV0d2VlbiAwIGFuZCAxLiBUaGUgYmlnZ2VyIHRoZSB2YWx1ZSBvZiBQKFgpLCB0aGUgbW9yZSBsaWtlbHkgdGhlIGV2ZW50IGlzIHRvIG9jY3VyLgoKSWYgUChYKSA9IDAsIGl0IG1lYW5zIHRoZSBldmVudCBYIGlzIGltcG9zc2libGUgKGkuZS4sIEkgbmV2ZXIgd2VhciB0aG9zZSBwYW50cykuIE9uIHRoZSBvdGhlciBoYW5kLCBpZiBQKFgpPSAxIGl0IG1lYW5zIHRoYXQgZXZlbnQgWCBpcyBjZXJ0YWluIHRvIG9jY3VyIChpLmUuLCBJIGFsd2F5cyB3ZWFyIHRob3NlIHBhbnRzKS4KCioqTGF3IG9mIHRvdGFsIHByb2JhYmlsaXR5OioqIFRoZSBwcm9iYWJpbGl0aWVzIG9mIHRoZSBlbGVtZW50YXJ5IGV2ZW50cyBuZWVkIHRvIGFkZCB1cCB0byAxCgojIyMjIERpc3RyaWJ1dGlvbnMKCkxldCdzIHRha2UgYSBsb29rIGF0IHRoaXMgYW5kIHNlZSB3aGF0IGlzIGEgZGlzdHJpYnV0aW9uLiAKCmBgYHtyfQpwYW50cyA8LSBkYXRhLmZyYW1lKAogICB0eXBlID0gYygiQmx1ZSBqZWFucyIsIkdyZXkgamVhbnMiLCJCbGFjayBqZWFucyIsIkJsYWNrIHN1aXQiLCJCbHVlIHRyYWNrc3VpdCIpLAogICBsYWJlbCA9IGMoIlgxIiwgIlgyIiwgIlgzIiwgIlg0IiwgIlg1IiksCiAgIHByb2JhYmlsaXR5ID0gYygwLjUsMC4zLDAuMSwwLDAuMSkpCgpwYW50cwpgYGAKUHJvYmFiaWxpdHkgZGlzdHJpYnV0aW9uIGlzIHNpbXBseSB0aGUgcHJvYmFiaWxpdGllcyBvZiB0aGVzZSBkaWZmZXJlbnQgZXZlbnRzIGFib3ZlLiBFYWNoIG9mIHRoZSBldmVudHMgaGFzIGEgcHJvYmFiaWxpdHkgdGhhdCBsaWVzIGJldHdlZW4gMCBhbmQgMSwgYW5kIGlmIHdlIGFkZCB1cCB0aGUgcHJvYmFiaWxpdHkgb2YgYWxsIGV2ZW50cywgdGhleSBzdW0gdG8gMS4KCmBgYHtyfQojVHJ5IHBsb3R0aW5nIGEgYmFyIGdyYXBoIG9mIGFsbCB0aGUgcHJvYmFiaWxpdGllcyBhYm92ZQpgYGAKTGV0J3MgdGhpbmsgYWJvdXQgd2hhdCBoYXBwZW5zIGluIGNhc2Ugb2Ygbm9uLWVsZW1lbnRhcnkgZXZlbnRzLiBFLmcuIEFuIGV2ZW50IEUgd2hlcmUgZWl0aGVyIOKAnGJsdWUgamVhbnPigJ0gb3Ig4oCcYmxhY2sgamVhbnPigJ0gb3Ig4oCcZ3JleSBqZWFucyIgaGFzIG9jY3VycmVkLiAKVGhlbiB3aGF0IHdpbGwgYmUgdGhlIHByb2JhYmlsaXR5IG9mIGV2ZW50IEUuCgpQKEUpID0gUChYMSkgKyBQKFgyKSArIFAoWDMpCgpJZiBhbnkgb2YgdGhlc2UgZWxlbWVudGFyeSBldmVudHMgb2NjdXJzLCB0aGVuIEUgaXMgYWxzbyBzYWlkIHRvIGhhdmUgb2NjdXJyZWQuIFNpbWlsYXJseSwgdGhlcmUgYXJlIG90aGVyIHJ1bGVzIHNhdGlzZnlpbmcgcHJvYmFiaWxpdGllczoKCiFbUHJvYmFiaWxpdHlfcnVsZXNdKEZpZzUucG5nKQoKIyMjIyMgQmlub21pYWwgRGlzdHJpYnV0aW9uCgoqUmVmZXIgdG8gc2VjdGlvbiA5LjQuMSwgTmF2YXJybyBELiwgZm9yIHRoZSBkZXRhaWxlZCBleGFtcGxlKgoKU29tZSBiYXNpYyB0ZXJtaW5vbG9neSAtIFdl4oCZbGwgbGV0IGBOYCBkZW5vdGUgdGhlIG51bWJlciBvZiBkaWNlIHJvbGxzIGluIG91ciBleHBlcmltZW50OyB3aGljaCBpcyBvZnRlbiByZWZlcnJlZCB0byBhcyB0aGUgYHNpemUgcGFyYW1ldGVyYCBvZiBvdXIgYmlub21pYWwgZGlzdHJpYnV0aW9uLiBXZeKAmWxsIGFsc28gdXNlIGDOuGAgdG8gcmVmZXIgdG8gdGhlIHRoZSBwcm9iYWJpbGl0eSB0aGF0IGEgc2luZ2xlIGRpZSBjb21lcyB1cCBza3VsbCwgYSBxdWFudGl0eSB0aGF0IGlzIHVzdWFsbHkgY2FsbGVkIHRoZSBgc3VjY2VzcyBwcm9iYWJpbGl0eWAgb2YgdGhlIGJpbm9taWFsLiBGaW5hbGx5LCB3ZeKAmWxsIHVzZSBgWGAgdG8gcmVmZXIgdG8gdGhlIHJlc3VsdHMgb2Ygb3VyIGV4cGVyaW1lbnQsIG5hbWVseSB0aGUgbnVtYmVyIG9mIHNrdWxscyBJIGdldCB3aGVuIEkgcm9sbCB0aGUgZGljZS4gU2luY2UgdGhlIGFjdHVhbCB2YWx1ZSBvZiBYIGlzIGR1ZSB0byBjaGFuY2UsIHdlIHJlZmVyIHRvIGl0IGFzIGEgYHJhbmRvbSB2YXJpYWJsZWAuCgpgWCB+IEJpbm9taWFsKM64LCBOKWAgZGVub3RlcyBYIGlzIGdlbmVyYXRlZCByYW5kb21seSBmcm9tIGEgYmlub21pYWwgZGlzdHJpYnV0aW9uIHdpdGggcGFyYW1ldGVycyDOuCBhbmQgTi4KCjQgfiBCaW5vbWlhbCgxLzYsIDIwKQoKNSB+IEJpbm9taWFsKDEvMiwgMTApCgpMZXQncyBnZW5lcmF0ZSBhIGJpbm9taWFsIGRpc3RyaWJ1dGlvbiBpbiBSOgoKYGBge3J9CmRiaW5vbSggeCA9IDEsIHNpemUgPSAyMCwgcHJvYiA9IDEvNikKYGBgClRoZSBhYm92ZSBjb21tYW5kIGNhbGN1bGF0ZXMgdGhlIHByb2JhYmlsaXR5IG9mIGdldHRpbmcgeCA9IDQgc2t1bGxzLCBmcm9tIGFuIGV4cGVyaW1lbnQgb2Ygc2l6ZSA9IDIwIHRyaWFscywgaW4gd2hpY2ggdGhlIHByb2JhYmlsaXR5IG9mIGdldHRpbmcgYSBza3VsbCBvbiBhbnkgb25lIHRyaWFsIGlzIHByb2IgPSAxLzYuCgpXaGF0IGlmIHRoZSBkaWNlIGlzIHJlcGxhY2VkIGJ5IGEgY29pbiBpbiB0aGUgYWJvdmUgZXhhbXBsZT8gSG93IHdpbGwgdGhlIHByb2JhYmlsaXR5IGNoYW5nZT8gCgpgYGB7cn0KI1RyeSBmaW5kaW5nIHRoZSBwcm9iYWJpbGl0eSBmb3IgTiA9IDIwIGFuZCBOPTEwMCB0cmlhbHMgZm9yIGEgZmFpciBjb2luIGZsaXAuCmBgYApUaGVyZSBhcmUgZGlmZmVyZW50IGZ1bmN0aW9ucyBpbiBSIGZvciBkaWZmZXJlbnQgZGlzdHJpYnV0aW9ucyBhcyB3ZWxsIGFzIGRpZmZlcmVudCBvbmVzIGZvciBmaW5kaW5nIGRpZmZlcmVudCBxdWFudGl0eSBvZiBpbnRlcmVzdC4KCklmIHdlIHdhbnQgdG8gZmluZCB0aGUgcHJvYmFiaWxpdHkgb2Ygb2J0YWluaW5nIGFuIG91dGNvbWUgc21hbGxlciB0aGFuIG9yIGVxdWFsIHRvIHF1YW50aWxlIHEsIHRoZW4gd2UgY2FuIGRpcmVjdGx5IHVzZSBgcGJpbm9tYC4KCmBgYHtyfQojRmluZCB0aGUgcHJvYmFiaWxpdHkgb2Ygcm9sbGluZyAwIHNrdWxscyBvciAxIHNrdWxsIG9yIDIgc2t1bGxzIG9yIDMgc2t1bGxzIG9yIDQgc2t1bGxzCnBiaW5vbSggcT0gMywgc2l6ZSA9IDIwLCBwcm9iID0gMS82KQoKI1ByYWN0aWNlIC0gRmluZCBwcm9iYWJpbGl0eSBvZiBnZXR0aW5nIDAtNSBoZWFkcyBpbiA1MCB0cmlhbHMgb2YgY29pbiBmbGlwCmBgYApJbiBvdGhlciB3b3JkcywgdmFsdWUgb2YgNCBpcyBhY3R1YWxseSB0aGUgNzYuOXRoIHBlcmNlbnRpbGUgb2YgdGhpcyBiaW5vbWlhbCBkaXN0cmlidXRpb24uCgpOb3cgbGV04oCZcyBzYXkgd2Ugd2FudCB0byBjYWxjdWxhdGUgdGhlIDc1dGggcGVyY2VudGlsZSBvZiB0aGUgYmlub21pYWwgZGlzdHJpYnV0aW9uLgoKYGBge3J9CnFiaW5vbSggcCA9IDAuNTY2LCBzaXplID0gMjAsIHByb2IgPSAxLzYgKQoKI1ByYWN0aWNlIC0gRmluZCB0aGUgNDB0aCBwZXJjZW50aWxlCmBgYAoKV2UndmUgZm91bmQgZGlmZmVyZW50IHF1YW50aXRpZXMuIFdoYXQgaWYgd2Ugd2FudCB0byBzaW11bGF0ZSB0aGUgYWJvdmUgZXhwZXJpbWVudHMuIFdlIHNwZWNpZnkgaG93IG1hbnkgdGltZXMgUiBzaG91bGQg4oCcc2ltdWxhdGXigJ0gdGhlIGV4cGVyaW1lbnQgdXNpbmcgdGhlIG4gYXJndW1lbnQsIGFuZCBpdCB3aWxsIGdlbmVyYXRlIHJhbmRvbSBvdXRjb21lcyBmcm9tIHRoZSBiaW5vbWlhbCBkaXN0cmlidXRpb24gdXNpbmcgdGhlIGByYmlub21gIGZ1bmN0aW9uLgoKYGBge3J9CnogPC0gcmJpbm9tKCBuID0gMTAwLCBzaXplID0gMjAsIHByb2IgPSAxLzYgKQp6CiNMZXQncyBhbHNvIHBsb3QgdGhpcyBhbmQgc2VlIGhvdyBpdCBsb29rcwpoaXN0KHosIGNvbCA9ICdzdGVlbGJsdWUnKQpgYGAKI1RyeSBwbG90dGluZyB0aGUgZGlzdHJpYnV0aW9ucyBpbiBhYm92ZSBleGFtcGxlcyBhbmQgdmFyeSB0aGUgc2l6ZSwgdHJpYWwgbnVtYmVyIGFuZCBwcm9iYWJpbGl0eSB0byBnZW5lcmF0ZSBkaWZmZXJlbnQgcGxvdHMuCgpBbGwgdGhlc2UgZGlmZmVyZW50IGZ1bmN0aW9ucyAqZCwgcCwgcSwgbiogYXJlIGFsc28gYXBwbGljYWJsZSB0byBvdGhlciBkaXN0cmlidXRpb25zLiBFLmcuICpkbm9ybSwgcG5vcm0sIHFub3JtLCBybm9ybSogZm9yIE5vcm1hbCBkaXN0cmlidXRpb24uIAoKCiMjIyMjIE5vcm1hbCBEaXN0cmlidXRpb24KCk1vc3QgZnJlcXVlbnRseSBlbmNvdW50ZXJlZCBkaXN0cmlidXRpb24uCkVnOiBoZWlnaHRzIG9mIGFsbCBzdHVkZW50cyBpbiB0aGUgY2xhc3MsIG1hcmtzIG9idGFpbmVkIGluIGV4YW1zLCBldGMKCkJhc2ljYWxseSwgd2hlbmV2ZXIgeW91IGhhdmUgYWNjdW11bGF0aW9uIG9mIGRhdGEgYXQgdGhlIGNlbnRlciwgZmV3ZXIgZXh0cmVtZSB2YWx1ZXMgYW5kIGEgbmVhciBzeW1tZXRyaWMgc3ByZWFkLCB5b3Ugc2hvdWxkIHJlY2FsbCB0aGUgbm9ybWFsIGRpc3RyaWJ1dGlvbi4KCgotIGBkbm9ybSgpYCAtIEZvciBwcm9iYWJpbGl0eSBkZW5zaXR5Ci0gYHBub3JtKClgIC0gRm9yIGN1bXVsYXRpdmUgcHJvYmFiaWxpdHkKLSBgcW5vcm0oKWAgLSBGb3IgcXVhbnRpbGUgb2YKLSBgcm5vcm0oKWAgLSBGb3IgcmFuZG9tIG51bWJlciBnZW5lcmF0aW9uCgoKCmBgYHtyfQpub3JtYWxfZGlzdHJpYnV0aW9uIDwtIHJub3JtKDEwMDAwLCBtZWFuID0gMCwgc2QgPSAxKSAKaGlzdG9ncmFtX25vcm1hbF9kaXN0cmlidXRpb24gPC0gaGlzdChub3JtYWxfZGlzdHJpYnV0aW9uKQpwbG90KGhpc3RvZ3JhbV9ub3JtYWxfZGlzdHJpYnV0aW9uJG1pZHMsaGlzdG9ncmFtX25vcm1hbF9kaXN0cmlidXRpb24kZGVuc2l0eSwgdHlwZT0ibCIsIGNvbD0iYmx1ZSIsIGx3ZD0zKQoKCmBgYAoKTm90ZTogTm9ybWFsIGRpc3RyaWJ1dGlvbiBpcyBzb21ldGltZXMgcmVmZXJyZWQgdG8gYXMgdGhlIGJlbGwgY3VydmUgb3IgR2F1c3NpYW4gZGlzdHJpYnV0aW9uCgpUaGUgbm90YXRpb24gZm9yIGEgbm9ybWFsIGRpc3RyaWJ1dGlvbiBpczogWCDiiLwgTm9ybWFsKM68LM+DKSAKCgpkbm9ybSB0ZWxscyB5b3UgdGhlIHByb2JhYmlsaXR5IG9mIGdldHRpbmcgYSBwYXJ0aWN1bGFyIG91dGNvbWUKYGBge3J9CmRub3JtKHg9MCwgbWVhbj0wLCBzZD0xKQoKYGBgCkN1bXVsYXRpdmUgbm9ybWFsIGRpc3RyaWJ1dGlvbgpgYGB7cn0KcG5vcm0oMiwgbWVhbiA9IDAsIHNkID0gMSkKYGBgCgpgYGB7cn0KcW5vcm0oMC41ICxtZWFuID0gLCBzZCA9IDEpCmBgYAoKKkNoZWNraW5nIGZvciBub3JtYWxpdHkgdXNpbmcgdGhlIFNoYXBpcm8tV2lsayBUZXN0KgpgYGB7cn0Kbm9ybSA8LSBybm9ybSg1MDAsIG1lYW4gPSAwLCBzZCA9IDEpIApzaGFwaXJvLnRlc3Qobm9ybSkKCmJpbm9tIDwtIHJiaW5vbSgxMDAsIDIwLCAxLzYpCnNoYXBpcm8udGVzdChiaW5vbSkKCmBgYAoKCgoKCiMjIyMjIE90aGVyIHVzZWZ1bCBkaXN0cmlidXRpb25zCgpTb21lIG90aGVyIGRpc3RyaWJ1dGlvbnMgeW91IG1heSBlbmNvdW50ZXIgaW5jbHVkZToKKjEpIHQgZGlzdHJpYnV0aW9uKgoKTG9va3MgbGlrZSB0aGUgbm9ybWFsIGRpc3RyaWJ1dGlvbiBidXQgaGFzIGhlYXZpZXIgdGFpbHMuIApVc2VkIHdoZW4gZGF0YSBsb29rcyBsaWtlIGEgbm9ybWFsIGRpc3RyaWJ1dGlvbiBidXQgdGhlIG1lYW4gYW5kIFNEIGFyZSB1bmtub3duLgoKVXNlIHRoZSBmb2xsb3dpbmcgZnVuY3Rpb25zIHRvIHZpc3VhbGl6ZSB0aGUgdCBkaXN0cmlidXRpb246IApkdCgpLCBwdCgpLCBxdCgpIGFuZCBydCgpCgpgYGB7cn0KdF9kaXN0cmlidXRpb24gPC0gcnQoMTAwMDAsIDgpCmhpc3RvZ3JhbV90X2Rpc3RyaWJ1dGlvbiA8LSBoaXN0KHRfZGlzdHJpYnV0aW9uKQpwbG90KGhpc3RvZ3JhbV90X2Rpc3RyaWJ1dGlvbiRtaWRzLGhpc3RvZ3JhbV90X2Rpc3RyaWJ1dGlvbiRkZW5zaXR5LCB0eXBlPSJsIiwgY29sPSJibHVlIiwgbHdkPTMpCmBgYAoKCgoKKjIpIENoaSBzcXVhcmUgKM+HMikgZGlzdHJpYnV0aW9uKgoKQWxsIHBvc2l0aXZlIGFuZCBoZWF2aWx5IHNrZXdlZCB0byB0aGUgbGVmdC4gIApVc2VkIHdoZW4gZGF0YSByZXByZXNlbnRzIHN1bSBvZiBzcXVhcmVzIG9mIGEgbm9ybWFsbHkgZGlzdHJpYnV0ZWQgdmFyaWFibGVzLgoKVXNlIHRoZSBmb2xsb3dpbmcgZnVuY3Rpb25zIHRvIHZpc3VhbGl6ZSB0aGUgY2hpIHNxIGRpc3RyaWJ1dGlvbjogCmRjaGlzcSgpLCBwY2hpc3EoKSwgcWNoaXNxKCksIHJjaGlzcSgpLgoKYGBge3J9CmNoaXNxX2Rpc3RyaWJ1dGlvbiA8LSByY2hpc3EoMTAwMDAsIDMsIG5jcCA9IDApCmhpc3RvZ3JhbV9jaGlzcV9kaXN0cmlidXRpb24gPC0gaGlzdChjaGlzcV9kaXN0cmlidXRpb24pCnBsb3QoaGlzdG9ncmFtX2NoaXNxX2Rpc3RyaWJ1dGlvbiRtaWRzLGhpc3RvZ3JhbV9jaGlzcV9kaXN0cmlidXRpb24kZGVuc2l0eSwgdHlwZT0ibCIsIGNvbD0iYmx1ZSIsIGx3ZD0zKQpgYGAKCgoKCjMpIEYgZGlzdHJpYnV0aW9uCgpUaGlzIG9uZSBsb29rYSBhIGJpdCBsaWtlIHRoZSBjaGkgc3F1YXJlIGRpc3RyaWJ1dGlvbi4gQnV0IHRoaXMgZGlzdHJpYnV0aW9uIGNvbWVzIGludG8gcGljdHVyZSB3aGVuIApvbmUgY29tcGFyZXMgdHdvIGNoaSBzcSBkaXN0cmlidXRpb25zLgoKVXNlIHRoZSBmb2xsb3dpbmcgZnVuY3Rpb25zIHRvIHZpc3VhbGl6ZSB0aGUgY2hpIHNxIGRpc3RyaWJ1dGlvbjogCmRmKCksIHBmKCksIHFmKCkgYW5kIHJmKCkKCmBgYHtyfQpmX2Rpc3RyaWJ1dGlvbiA8LSByZigxMDAwMCwgNSwgMTApCmhpc3RvZ3JhbV9mX2Rpc3RyaWJ1dGlvbiA8LSBoaXN0KGZfZGlzdHJpYnV0aW9uKQpwbG90KGhpc3RvZ3JhbV9mX2Rpc3RyaWJ1dGlvbiRtaWRzLGhpc3RvZ3JhbV9mX2Rpc3RyaWJ1dGlvbiRkZW5zaXR5LCB0eXBlPSJsIiwgY29sPSJibHVlIiwgbHdkPTMpCmBgYAoKCgpUaGUgRW5kCgpSZWZlcmVuY2UgLSAqQ2hhcHRlciA5LCBOYXZhcnJvIEQuKgo=
    +
    LS0tCnRpdGxlOiAiSW5mZXJlbnRpYWwgU3RhdGlzdGljczogUHJvYmFiaWxpdHkgJiBEaXN0cmlidXRpb25zIC0gMSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKU28gZmFyIHdlIGhhdmUgZGlzY3Vzc2VkIGFib3V0IGRlc2NyaXB0aXZlIHN0YXRpc3RpY3MgLSBzdW1tYXJpemluZyBkYXRhIGFuZCBwbG90dGluZyBpdC4gQnV0IGluIG9yZGVyIGdhaW4gdGhlIHBvd2VyIG9mIG1ha2luZyBpbmZlcmVuY2VzLCB3ZSB3aWxsIGJlIHN0cmF0aW5nIHdpdGggaW5mZXJlbnRpYWwgc3RhdGlzdGljcy4KCiMjIyMgUHJlLXJlcXVpc2l0ZTogUHJvYmFiaWxpdHkKCiMjIyMjIERpZmZlcmVuY2UgYmV0d2VlbiBwcm9iYWJpbGl0eSBhbmQgc3RhdGlzdGljcyoqClByb2JhYmlsaXR5IHRoZW9yeSBpcyBhIGJyYW5jaCBvZiBtYXRoZW1hdGljcyB0aGF0IHRlbGxzIHlvdSBob3cgb2Z0ZW4gZGlmZmVyZW50IGtpbmRzIG9mIGV2ZW50cyB3aWxsIGhhcHBlbi4gRm9yIGVnLiBXaGF0IGFyZSB0aGUgY2hhbmNlcyBvZiBhIGZhaXIgY29pbiBjb21pbmcgdXAgaGVhZHMgMTAgdGltZXMgaW4gYSByb3c/IG9yIFdoYXQgYXJlIHRoZSBjaGFuY2VzIHRoYXQgSeKAmWxsIHdpbiB0aGUgbG90dGVyeT8KCkluIGVhY2ggY2FzZSB0aGUg4oCcdHJ1dGggb2YgdGhlIHdvcmxk4oCdIGlzIGtub3duLiBXZSBrbm93IHRoYXQgdGhlIGNvaW4gaXMgZmFpciwgc28gdGhlcmXigJlzIGEgNTAlIGNoYW5jZSB0aGF0IGFueSBpbmRpdmlkdWFsIGNvaW4gZmxpcCB3aWxsIGNvbWUgdXAgaGVhZHMuIFdlIGtub3cgdGhhdCB0aGUgbG90dGVyeSBmb2xsb3dzIHNwZWNpZmljIHJ1bGVzLiBUaGUgY3JpdGljYWwgcG9pbnQgaXMgdGhhdCBwcm9iYWJpbGlzdGljIHF1ZXN0aW9ucyBzdGFydCB3aXRoIGEga25vd24gbW9kZWwgb2YgdGhlIHdvcmxkLCBhbmQgd2UgdXNlIHRoYXQgbW9kZWwgdG8gZG8gc29tZSBjYWxjdWxhdGlvbnMuICpbQ2hhcHRlciA5LCBOYXZhcnJvIEQuXSoKCioqQSBzaG9ydCBub3RlIG9uIE1vZGVscyoqCgpBIG1vZGVsIGlzIGEgc2ltcGxpZmllZCByZXByZXNlbnRhdGlvbiBvZiBhIHN5c3RlbS4gRm9yIGV4YW1wbGUsIHRoZSBtYXAgb2YgYSBjaXR5IHJlcHJlc2VudHMgYSBjaXR5IGluIGEgc2ltcGxpZmllZCBmYXNoaW9uLiBBIG1hcCBwcm92aWRpbmcgYXMgbXVjaCBkZXRhaWwgYXMgdGhlIG9yaWdpbmFsIGNpdHkgd291bGQgbm90IG9ubHkgYmUgaW1wb3NzaWJsZSB0byBjb25zdHJ1Y3QsIGl0IHdvdWxkIGFsc28gYmUgcG9pbnRsZXNzLiBIdW1hbnMgYnVpbGQgbW9kZWxzLCBzdWNoIGFzIG1hcHMgYW5kIHN0YXRpc3RpY2FsIG1vZGVscywgdG8gbWFrZSB0aGVpciBsaXZlcyBzaW1wbGVyLiAqW0NoYXB0ZXIgMywgV2ludGVyIEIuXSoKLSAtIC0gLQoKQnV0IGV2ZW4gdGhvdWdoIHdlIGtub3cgdGhlIG1vZGVscyBsaWtlIGBQKGhlYWRzKSA9IDAuNWAsIHdlIGRvIG5vdCBrbm93IHRoZSBkYXRhIChXaGV0ZWhyIGhlYWRzIHdpbGwgY29tZSAxMCB0aW1lcyBvciAzIHRpbWVzKS4gSG93ZXZlciwgZm9yIHN0YXRpc3RpY3MsIGl0IGlzIHRoZSBvcHBvc2l0ZS4gV2UgaGF2ZSB0aGUgZGF0YSBhbmQgd2Ugd2FudCB0byBpbmZlciB0aGUgdHJ1dGggYWJvdXQgdGhlIHdvcmxkLiBGb3IgZWcuLCBJZiBteSBmcmllbmQgZmxpcHMgYSBjb2luIDEwIHRpbWVzIGFuZCBnZXRzIDEwIGhlYWRzLCBhcmUgdGhleSBwbGF5aW5nIGEgdHJpY2sgb24gbWU/IG9yIElmIHRoZSBsb3R0ZXJ5IGNvbW1pc3Npb25lcuKAmXMgc3BvdXNlIHdpbnMgdGhlIGxvdHRlcnksIGhvdyBsaWtlbHkgaXMgaXQgdGhhdCB0aGUgbG90dGVyeSB3YXMgcmlnZ2VkPwoKV2Ugd2FudCB0byBmaWd1cmUgb3V0IHdoaWNoIGlzIHRoZSB0cnVlIG1vZGVsIG9mIHRoZSB3b3JsZC4gSXMgaXQgKlAoaGVhZHMpID0gMC41KiBvciBpcyBpdCAqUChoZWFkcykgJFxuZSQgMC41Kj8KCiMjIyMjIFdoYXQgaXMgcHJvYmFiaWxpdHkgcmVhbGx5PwoKKipUaGUgZnJlcXVlbnRpc3QgdmlldyoqCgohW0ZyZXF1ZW50aXN0X2dyYXBoXShGaWc0LnBuZykKCkFjY29yZGluZyB0byB0aGUgZnJlcXVlbnRpc3QgdmlldywgZmxpcCBhIGZhaXIgY29pbiBvdmVyIGFuZCBvdmVyIGFnYWluLCBhbmQgYXMgTiBncm93cyBsYXJnZSAoYXBwcm9hY2hlcyBpbmZpbml0eSwgZGVub3RlZCBOIMORIDgpLCB0aGUgcHJvcG9ydGlvbiBvZiBoZWFkcyB3aWxsIGNvbnZlcmdlIHRvIDUwJS4KCiAqQWR2YW50YWdlcyoKIC0gIEl0IGlzIG9iamVjdGl2ZTogdGhlIHByb2JhYmlsaXR5IG9mIGFuIGV2ZW50IGlzIG5lY2Vzc2FyaWx5IGdyb3VuZGVkIGluIHRoZSB3b3JsZC4KIC0gIEl0IGlzIHVuYW1iaWd1b3VzOiBhbnkgdHdvIHBlb3BsZSB3YXRjaGluZyB0aGUgc2FtZSBzZXF1ZW5jZSBvZiBldmVudHMgdW5mb2xkLCB0cnlpbmcgdG8gY2FsY3VsYXRlIHRoZSBwcm9iYWJpbGl0eSBvZiBhbiBldmVudCwgbXVzdCBpbmV2aXRhYmx5IGNvbWUgdXAgd2l0aCB0aGUgc2FtZSBhbnN3ZXIuCgpCdXQgaXQgYWxsIGRlcGVuZHMgb24gaW5maW5pdGUgZmxpcHMgb2YgY29pbi4gRG8gaW5maW5pdGllcyByZWFsbHkgZXhpc3QgaW4gdGhlIHBoeXNpY2FsIHVuaXZlcnNlPyBXaGF0IGFib3V0IHRoZSBwcm9iYWJpbGl0eSBmb3IgYSBzaW5nbGUgbm9uLXJlcGVhdGFibGUgZXZlbnQgbGlrZSB0aGUgY2hhbmNlcyBvZiByYWluIG9uIDIxIFNlcHRlbWJlciAyMDIxPwoKKipUaGUgQmF5ZXNpYW4gdmlldyoqCgpCYXllc2lhbiB2aWV3IGlzIHN1YmplY3RpdmlzdCB2aWV3LiBUaGUgbW9zdCBjb21tb24gd2F5IG9mIHRoaW5raW5nIGFib3V0IHN1YmplY3RpdmUgcHJvYmFiaWxpdHkgaXMgdG8gZGVmaW5lIHRoZSBwcm9iYWJpbGl0eSBvZiBhbiBldmVudCBhcyB0aGUgZGVncmVlIG9mIGJlbGllZiB0aGF0IGFuIGludGVsbGlnZW50IGFuZCByYXRpb25hbCBhZ2VudCBhc3NpZ25zIHRvIHRoYXQgdHJ1dGggb2YgdGhhdCBldmVudC4gQnV0IGhvdyB0byBvcGVyYXRpb25hbGl6ZSB0aGlzICdkZWdyZWUgb2YgYmVsaWVmJz8gCgpPbmUgd2F5IGlzIHRvIHVzZSAncmF0aW9uYWwgZ2FtYmxpbmcnLiBTbyBhIOKAnHN1YmplY3RpdmUgcHJvYmFiaWxpdHnigJ0gd2lsbCBiZSBvcGVyYXRpb25hbGl6ZWQgaW4gdGVybXMgb2Ygd2hhdCBiZXRzIHlvdSdyZSB3aWxsaW5nIHRvIGFjY2VwdC4KCiAqQWR2YW50YWdlKgogLSBZb3UgZG9u4oCZdCBuZWVkIHRvIGJlIGxpbWl0ZWQgdG8gdGhvc2UgZXZlbnRzIHRoYXQgYXJlIHJlcGVhdGFibGUuCiAKICpEaXNhZHZhbnRhZ2UqCiAtIENhbuKAmXQgYmUgcHVyZWx5IG9iamVjdGl2ZSDigJMgc3BlY2lmeWluZyBhIHByb2JhYmlsaXR5IHJlcXVpcmVzIHVzIHRvIHNwZWNpZnkgYW4gZW50aXR5IHRoYXQgaGFzIHRoZSByZWxldmFudCBkZWdyZWUgb2YgYmVsaWVmLiBUaGlzIGVudGl0eSBtaWdodCBiZSBhIGh1bWFuLCBhbiBhbGllbiwgYSByb2JvdCwgb3IgZXZlbiBhIHN0YXRpc3RpY2lhbiwgYnV0IHRoZXJlIGhhcyB0byBiZSBhbiAqKmludGVsbGlnZW50IGFnZW50Kiogb3V0IHRoZXJlIHRoYXQgYmVsaWV2ZXMgaW4gdGhpbmdzLiAKCgpJbiBzaG9ydCwgZnJlcXVlbnRpc3QgdmlldyBpcyBzb21ldGltZXMgY29uc2lkZXJlZCB0byBiZSB0b28gbmFycm93IChmb3JiaWRzIGxvdHMgb2YgdGhpbmdzIHRoYXQgdGhhdCB3ZSB3YW50IHRvIGFzc2lnbiBwcm9iYWJpbGl0aWVzIHRvKSB3aGlsZSB0aGUgQmF5ZXNpYW4gdmlldyBpcyBzb21ldGltZXMgdGhvdWdodCB0byBiZSB0b28gYnJvYWQgKGFsbG93cyB0b28gbWFueSBkaWZmZXJlbmNlcyBiZXR3ZWVuIG9ic2VydmVycykuCgojIyMjIyBEZWZpbml0aW9ucwoKUmVmZXIgdG8gdGhlIGV4YW1wbGUgZGVzY3JpYmVkIGluICpTZWN0aW9uIDkuMy4xLCBOYXZhcnJvIEQuKiBmb3IgdGhlIGZvbGxvd2luZyBjb250ZW50LgoKKipFbGVtZW50YXJ5IGV2ZW50OioqIEV2ZXJ5IHRpbWUgd2UgbWFrZSBhbiBvYnNlcnZhdGlvbiAoZS5nLiwgZXZlcnkgdGltZSBJIHB1dCBvbiBhIHBhaXIgb2YgcGFudHMpLCB0aGVuIHRoZSBvdXRjb21lIHdpbGwgYmUgb25lIGFuZCBvbmx5IG9uZSBvZiB0aGVzZSBldmVudHMuCgoqKlNhbXBsZSBzcGFjZToqKiBUaGUgc2V0IG9mIGFsbCBwb3NzaWJsZSBldmVudHMgKGUuZy4sIHRoZSB3YXJkcm9iZSkKCioqUHJvYmFiaWxpdHk6KiogTnVtYmVycyBiZXR3ZWVuIDAgYW5kIDEuCgpGb3IgYW4gZXZlbnQgWCwgdGhlIHByb2JhYmlsaXR5IG9mIHRoYXQgZXZlbnQgUChYKSBpcyBhIG51bWJlciB0aGF0IGxpZXMgYmV0d2VlbiAwIGFuZCAxLiBUaGUgYmlnZ2VyIHRoZSB2YWx1ZSBvZiBQKFgpLCB0aGUgbW9yZSBsaWtlbHkgdGhlIGV2ZW50IGlzIHRvIG9jY3VyLgoKSWYgUChYKSA9IDAsIGl0IG1lYW5zIHRoZSBldmVudCBYIGlzIGltcG9zc2libGUgKGkuZS4sIEkgbmV2ZXIgd2VhciB0aG9zZSBwYW50cykuIE9uIHRoZSBvdGhlciBoYW5kLCBpZiBQKFgpPSAxIGl0IG1lYW5zIHRoYXQgZXZlbnQgWCBpcyBjZXJ0YWluIHRvIG9jY3VyIChpLmUuLCBJIGFsd2F5cyB3ZWFyIHRob3NlIHBhbnRzKS4KCioqTGF3IG9mIHRvdGFsIHByb2JhYmlsaXR5OioqIFRoZSBwcm9iYWJpbGl0aWVzIG9mIHRoZSBlbGVtZW50YXJ5IGV2ZW50cyBuZWVkIHRvIGFkZCB1cCB0byAxCgojIyMjIERpc3RyaWJ1dGlvbnMKCkxldCdzIHRha2UgYSBsb29rIGF0IHRoaXMgYW5kIHNlZSB3aGF0IGlzIGEgZGlzdHJpYnV0aW9uLiAKCmBgYHtyfQpwYW50cyA8LSBkYXRhLmZyYW1lKAogICB0eXBlID0gYygiQmx1ZSBqZWFucyIsIkdyZXkgamVhbnMiLCJCbGFjayBqZWFucyIsIkJsYWNrIHN1aXQiLCJCbHVlIHRyYWNrc3VpdCIpLAogICBsYWJlbCA9IGMoIlgxIiwgIlgyIiwgIlgzIiwgIlg0IiwgIlg1IiksCiAgIHByb2JhYmlsaXR5ID0gYygwLjUsMC4zLDAuMSwwLDAuMSkpCgpwYW50cwpgYGAKUHJvYmFiaWxpdHkgZGlzdHJpYnV0aW9uIGlzIHNpbXBseSB0aGUgcHJvYmFiaWxpdGllcyBvZiB0aGVzZSBkaWZmZXJlbnQgZXZlbnRzIGFib3ZlLiBFYWNoIG9mIHRoZSBldmVudHMgaGFzIGEgcHJvYmFiaWxpdHkgdGhhdCBsaWVzIGJldHdlZW4gMCBhbmQgMSwgYW5kIGlmIHdlIGFkZCB1cCB0aGUgcHJvYmFiaWxpdHkgb2YgYWxsIGV2ZW50cywgdGhleSBzdW0gdG8gMS4KCmBgYHtyfQojVHJ5IHBsb3R0aW5nIGEgYmFyIGdyYXBoIG9mIGFsbCB0aGUgcHJvYmFiaWxpdGllcyBhYm92ZQpgYGAKTGV0J3MgdGhpbmsgYWJvdXQgd2hhdCBoYXBwZW5zIGluIGNhc2Ugb2Ygbm9uLWVsZW1lbnRhcnkgZXZlbnRzLiBFLmcuIEFuIGV2ZW50IEUgd2hlcmUgZWl0aGVyIOKAnGJsdWUgamVhbnPigJ0gb3Ig4oCcYmxhY2sgamVhbnPigJ0gb3Ig4oCcZ3JleSBqZWFucyIgaGFzIG9jY3VycmVkLiAKVGhlbiB3aGF0IHdpbGwgYmUgdGhlIHByb2JhYmlsaXR5IG9mIGV2ZW50IEUuCgpQKEUpID0gUChYMSkgKyBQKFgyKSArIFAoWDMpCgpJZiBhbnkgb2YgdGhlc2UgZWxlbWVudGFyeSBldmVudHMgb2NjdXJzLCB0aGVuIEUgaXMgYWxzbyBzYWlkIHRvIGhhdmUgb2NjdXJyZWQuIFNpbWlsYXJseSwgdGhlcmUgYXJlIG90aGVyIHJ1bGVzIHNhdGlzZnlpbmcgcHJvYmFiaWxpdGllczoKCiFbUHJvYmFiaWxpdHlfcnVsZXNdKEZpZzUucG5nKQoKIyMjIyMgQmlub21pYWwgRGlzdHJpYnV0aW9uCgoqUmVmZXIgdG8gc2VjdGlvbiA5LjQuMSwgTmF2YXJybyBELiwgZm9yIHRoZSBkZXRhaWxlZCBleGFtcGxlKgoKU29tZSBiYXNpYyB0ZXJtaW5vbG9neSAtIFdl4oCZbGwgbGV0IGBOYCBkZW5vdGUgdGhlIG51bWJlciBvZiBkaWNlIHJvbGxzIGluIG91ciBleHBlcmltZW50OyB3aGljaCBpcyBvZnRlbiByZWZlcnJlZCB0byBhcyB0aGUgYHNpemUgcGFyYW1ldGVyYCBvZiBvdXIgYmlub21pYWwgZGlzdHJpYnV0aW9uLiBXZeKAmWxsIGFsc28gdXNlIGDOuGAgdG8gcmVmZXIgdG8gdGhlIHRoZSBwcm9iYWJpbGl0eSB0aGF0IGEgc2luZ2xlIGRpZSBjb21lcyB1cCBza3VsbCwgYSBxdWFudGl0eSB0aGF0IGlzIHVzdWFsbHkgY2FsbGVkIHRoZSBgc3VjY2VzcyBwcm9iYWJpbGl0eWAgb2YgdGhlIGJpbm9taWFsLiBGaW5hbGx5LCB3ZeKAmWxsIHVzZSBgWGAgdG8gcmVmZXIgdG8gdGhlIHJlc3VsdHMgb2Ygb3VyIGV4cGVyaW1lbnQsIG5hbWVseSB0aGUgbnVtYmVyIG9mIHNrdWxscyBJIGdldCB3aGVuIEkgcm9sbCB0aGUgZGljZS4gU2luY2UgdGhlIGFjdHVhbCB2YWx1ZSBvZiBYIGlzIGR1ZSB0byBjaGFuY2UsIHdlIHJlZmVyIHRvIGl0IGFzIGEgYHJhbmRvbSB2YXJpYWJsZWAuCgpgWCB+IEJpbm9taWFsKM64LCBOKWAgZGVub3RlcyBYIGlzIGdlbmVyYXRlZCByYW5kb21seSBmcm9tIGEgYmlub21pYWwgZGlzdHJpYnV0aW9uIHdpdGggcGFyYW1ldGVycyDOuCBhbmQgTi4KCjQgfiBCaW5vbWlhbCgxLzYsIDIwKQoKNSB+IEJpbm9taWFsKDEvMiwgMTApCgpMZXQncyBnZW5lcmF0ZSBhIGJpbm9taWFsIGRpc3RyaWJ1dGlvbiBpbiBSOgoKYGBge3J9CmRiaW5vbSggeCA9IDEsIHNpemUgPSAyMCwgcHJvYiA9IDEvNikKYGBgClRoZSBhYm92ZSBjb21tYW5kIGNhbGN1bGF0ZXMgdGhlIHByb2JhYmlsaXR5IG9mIGdldHRpbmcgeCA9IDQgc2t1bGxzLCBmcm9tIGFuIGV4cGVyaW1lbnQgb2Ygc2l6ZSA9IDIwIHRyaWFscywgaW4gd2hpY2ggdGhlIHByb2JhYmlsaXR5IG9mIGdldHRpbmcgYSBza3VsbCBvbiBhbnkgb25lIHRyaWFsIGlzIHByb2IgPSAxLzYuCgpXaGF0IGlmIHRoZSBkaWNlIGlzIHJlcGxhY2VkIGJ5IGEgY29pbiBpbiB0aGUgYWJvdmUgZXhhbXBsZT8gSG93IHdpbGwgdGhlIHByb2JhYmlsaXR5IGNoYW5nZT8gCgpgYGB7cn0KI1RyeSBmaW5kaW5nIHRoZSBwcm9iYWJpbGl0eSBmb3IgTiA9IDIwIGFuZCBOPTEwMCB0cmlhbHMgZm9yIGEgZmFpciBjb2luIGZsaXAuCmBgYApUaGVyZSBhcmUgZGlmZmVyZW50IGZ1bmN0aW9ucyBpbiBSIGZvciBkaWZmZXJlbnQgZGlzdHJpYnV0aW9ucyBhcyB3ZWxsIGFzIGRpZmZlcmVudCBvbmVzIGZvciBmaW5kaW5nIGRpZmZlcmVudCBxdWFudGl0eSBvZiBpbnRlcmVzdC4KCklmIHdlIHdhbnQgdG8gZmluZCB0aGUgcHJvYmFiaWxpdHkgb2Ygb2J0YWluaW5nIGFuIG91dGNvbWUgc21hbGxlciB0aGFuIG9yIGVxdWFsIHRvIHF1YW50aWxlIHEsIHRoZW4gd2UgY2FuIGRpcmVjdGx5IHVzZSBgcGJpbm9tYC4KCmBgYHtyfQojRmluZCB0aGUgcHJvYmFiaWxpdHkgb2Ygcm9sbGluZyAwIHNrdWxscyBvciAxIHNrdWxsIG9yIDIgc2t1bGxzIG9yIDMgc2t1bGxzIG9yIDQgc2t1bGxzCnBiaW5vbSggcT0gMywgc2l6ZSA9IDIwLCBwcm9iID0gMS82KQoKI1ByYWN0aWNlIC0gRmluZCBwcm9iYWJpbGl0eSBvZiBnZXR0aW5nIDAtNSBoZWFkcyBpbiA1MCB0cmlhbHMgb2YgY29pbiBmbGlwCmBgYApJbiBvdGhlciB3b3JkcywgdmFsdWUgb2YgNCBpcyBhY3R1YWxseSB0aGUgNzYuOXRoIHBlcmNlbnRpbGUgb2YgdGhpcyBiaW5vbWlhbCBkaXN0cmlidXRpb24uCgpOb3cgbGV04oCZcyBzYXkgd2Ugd2FudCB0byBjYWxjdWxhdGUgdGhlIDc1dGggcGVyY2VudGlsZSBvZiB0aGUgYmlub21pYWwgZGlzdHJpYnV0aW9uLgoKYGBge3J9CnFiaW5vbSggcCA9IDAuNTY2LCBzaXplID0gMjAsIHByb2IgPSAxLzYgKQoKI1ByYWN0aWNlIC0gRmluZCB0aGUgNDB0aCBwZXJjZW50aWxlCmBgYAoKV2UndmUgZm91bmQgZGlmZmVyZW50IHF1YW50aXRpZXMuIFdoYXQgaWYgd2Ugd2FudCB0byBzaW11bGF0ZSB0aGUgYWJvdmUgZXhwZXJpbWVudHMuIFdlIHNwZWNpZnkgaG93IG1hbnkgdGltZXMgUiBzaG91bGQg4oCcc2ltdWxhdGXigJ0gdGhlIGV4cGVyaW1lbnQgdXNpbmcgdGhlIG4gYXJndW1lbnQsIGFuZCBpdCB3aWxsIGdlbmVyYXRlIHJhbmRvbSBvdXRjb21lcyBmcm9tIHRoZSBiaW5vbWlhbCBkaXN0cmlidXRpb24gdXNpbmcgdGhlIGByYmlub21gIGZ1bmN0aW9uLgoKYGBge3J9CnogPC0gcmJpbm9tKCBuID0gMTAwMDAsIHNpemUgPSAyMCwgcHJvYiA9IDIvNiApCnoKI0xldCdzIGFsc28gcGxvdCB0aGlzIGFuZCBzZWUgaG93IGl0IGxvb2tzCmhpc3QoeiwgY29sID0gJ3N0ZWVsYmx1ZScpCmBgYAojVHJ5IHBsb3R0aW5nIHRoZSBkaXN0cmlidXRpb25zIGluIGFib3ZlIGV4YW1wbGVzIGFuZCB2YXJ5IHRoZSBzaXplLCB0cmlhbCBudW1iZXIgYW5kIHByb2JhYmlsaXR5IHRvIGdlbmVyYXRlIGRpZmZlcmVudCBwbG90cy4KCkFsbCB0aGVzZSBkaWZmZXJlbnQgZnVuY3Rpb25zICpkLCBwLCBxLCBuKiBhcmUgYWxzbyBhcHBsaWNhYmxlIHRvIG90aGVyIGRpc3RyaWJ1dGlvbnMuIEUuZy4gKmRub3JtLCBwbm9ybSwgcW5vcm0sIHJub3JtKiBmb3IgTm9ybWFsIGRpc3RyaWJ1dGlvbi4gCgoKIyMjIyMgTm9ybWFsIERpc3RyaWJ1dGlvbgoKTW9zdCBmcmVxdWVudGx5IGVuY291bnRlcmVkIGRpc3RyaWJ1dGlvbi4KRWc6IGhlaWdodHMgb2YgYWxsIHN0dWRlbnRzIGluIHRoZSBjbGFzcywgbWFya3Mgb2J0YWluZWQgaW4gZXhhbXMsIGV0YwoKQmFzaWNhbGx5LCB3aGVuZXZlciB5b3UgaGF2ZSBhY2N1bXVsYXRpb24gb2YgZGF0YSBhdCB0aGUgY2VudGVyLCBmZXdlciBleHRyZW1lIHZhbHVlcyBhbmQgYSBuZWFyIHN5bW1ldHJpYyBzcHJlYWQsIHlvdSBzaG91bGQgcmVjYWxsIHRoZSBub3JtYWwgZGlzdHJpYnV0aW9uLgoKCi0gYGRub3JtKClgIC0gRm9yIHByb2JhYmlsaXR5IGRlbnNpdHkKLSBgcG5vcm0oKWAgLSBGb3IgY3VtdWxhdGl2ZSBwcm9iYWJpbGl0eQotIGBxbm9ybSgpYCAtIEZvciBxdWFudGlsZSBvZgotIGBybm9ybSgpYCAtIEZvciByYW5kb20gbnVtYmVyIGdlbmVyYXRpb24KCgptZWFuID0gMDsgc2QgPSAxIC0+IHN0YW5kYXJkIG5vcm1hbCBkaXN0cmlidXRpb24KYGBge3J9Cm5vcm1hbF9kaXN0cmlidXRpb24gPC0gcm5vcm0oMTAwMDAsIG1lYW4gPSAwLCBzZCA9IDEpIApoaXN0b2dyYW1fbm9ybWFsX2Rpc3RyaWJ1dGlvbiA8LSBoaXN0KG5vcm1hbF9kaXN0cmlidXRpb24pCnBsb3QoaGlzdG9ncmFtX25vcm1hbF9kaXN0cmlidXRpb24kbWlkcyxoaXN0b2dyYW1fbm9ybWFsX2Rpc3RyaWJ1dGlvbiRkZW5zaXR5LCB0eXBlPSJsIiwgY29sPSJibHVlIiwgbHdkPTMpCgoKYGBgCgpOb3RlOiBOb3JtYWwgZGlzdHJpYnV0aW9uIGlzIHNvbWV0aW1lcyByZWZlcnJlZCB0byBhcyB0aGUgYmVsbCBjdXJ2ZSBvciBHYXVzc2lhbiBkaXN0cmlidXRpb24KClRoZSBub3RhdGlvbiBmb3IgYSBub3JtYWwgZGlzdHJpYnV0aW9uIGlzOiBYIOKIvCBOb3JtYWwozrwsz4MpIAoKCmRub3JtIHRlbGxzIHlvdSB0aGUgcHJvYmFiaWxpdHkgb2YgZ2V0dGluZyBhIHBhcnRpY3VsYXIgb3V0Y29tZQpgYGB7cn0KZG5vcm0oeD04NSwgbWVhbj04MCwgc2Q9NSkKCmBgYApDdW11bGF0aXZlIG5vcm1hbCBkaXN0cmlidXRpb24KYGBge3J9CnBub3JtKHEgPSA4MCwgbWVhbiA9IDgwLCBzZCA9IDUpCmBgYAoKYGBge3J9CnFub3JtKDAuMjUgLG1lYW4gPSAwICwgc2QgPSAxKQpgYGAKCipDaGVja2luZyBmb3Igbm9ybWFsaXR5IHVzaW5nIHRoZSBTaGFwaXJvLVdpbGsgVGVzdCoKYGBge3J9Cm5vcm0gPC0gcm5vcm0oNTAsIG1lYW4gPSAwLCBzZCA9IDEpIApzaGFwaXJvLnRlc3Qobm9ybSkKCmJpbm9tIDwtIHJiaW5vbSgxMDAsIDIwLCAxLzYpCnNoYXBpcm8udGVzdChiaW5vbSkKCmBgYAoKCgoKCiMjIyMjIE90aGVyIHVzZWZ1bCBkaXN0cmlidXRpb25zCgpTb21lIG90aGVyIGRpc3RyaWJ1dGlvbnMgeW91IG1heSBlbmNvdW50ZXIgaW5jbHVkZToKKjEpIHQgZGlzdHJpYnV0aW9uKgoKTG9va3MgbGlrZSB0aGUgbm9ybWFsIGRpc3RyaWJ1dGlvbiBidXQgaGFzIGhlYXZpZXIgdGFpbHMuIApVc2VkIHdoZW4gZGF0YSBsb29rcyBsaWtlIGEgbm9ybWFsIGRpc3RyaWJ1dGlvbiBidXQgdGhlIG1lYW4gYW5kIFNEIGFyZSB1bmtub3duLgoKVXNlIHRoZSBmb2xsb3dpbmcgZnVuY3Rpb25zIHRvIHZpc3VhbGl6ZSB0aGUgdCBkaXN0cmlidXRpb246IApkdCgpLCBwdCgpLCBxdCgpIGFuZCBydCgpCgpgYGB7cn0KdF9kaXN0cmlidXRpb24gPC0gcnQoMTAwMDAsIDMpCmhpc3RvZ3JhbV90X2Rpc3RyaWJ1dGlvbiA8LSBoaXN0KHRfZGlzdHJpYnV0aW9uKQpwbG90KGhpc3RvZ3JhbV90X2Rpc3RyaWJ1dGlvbiRtaWRzLGhpc3RvZ3JhbV90X2Rpc3RyaWJ1dGlvbiRkZW5zaXR5LCB0eXBlPSJsIiwgY29sPSJibHVlIiwgbHdkPTMpCmBgYAoKCgoKKjIpIENoaSBzcXVhcmUgKM+HMikgZGlzdHJpYnV0aW9uKgoKQWxsIHBvc2l0aXZlIGFuZCBoZWF2aWx5IHNrZXdlZCB0byB0aGUgbGVmdC4gIApVc2VkIHdoZW4gZGF0YSByZXByZXNlbnRzIHN1bSBvZiBzcXVhcmVzIG9mIGEgbm9ybWFsbHkgZGlzdHJpYnV0ZWQgdmFyaWFibGVzLgoKVXNlIHRoZSBmb2xsb3dpbmcgZnVuY3Rpb25zIHRvIHZpc3VhbGl6ZSB0aGUgY2hpIHNxIGRpc3RyaWJ1dGlvbjogCmRjaGlzcSgpLCBwY2hpc3EoKSwgcWNoaXNxKCksIHJjaGlzcSgpLgoKYGBge3J9Cgpub3JtMSA8LSBybm9ybSgxMDAsIG1lYW4gPSAxMCwgc2QgPSA1KQpub3JtMiA8LSBybm9ybSgxMDAsIG1lYW4gPSAyMCwgc2QgPSA3KQpjaGlzcWRpc3QgPC0gbm9ybTFeMiArIG5vcm0yXjIKCmNoaXNxX2Rpc3RyaWJ1dGlvbiA8LSByY2hpc3EoMTAwMDAsIDMpCmhpc3RvZ3JhbV9jaGlzcV9kaXN0cmlidXRpb24gPC0gaGlzdChjaGlzcV9kaXN0cmlidXRpb24pCnBsb3QoaGlzdG9ncmFtX2NoaXNxX2Rpc3RyaWJ1dGlvbiRtaWRzLGhpc3RvZ3JhbV9jaGlzcV9kaXN0cmlidXRpb24kZGVuc2l0eSwgdHlwZT0ibCIsIGNvbD0iYmx1ZSIsIGx3ZD0zKQpgYGAKCgoKCjMpIEYgZGlzdHJpYnV0aW9uCgpUaGlzIG9uZSBsb29rcyBhIGJpdCBsaWtlIHRoZSBjaGkgc3F1YXJlIGRpc3RyaWJ1dGlvbi4gQnV0IHRoaXMgZGlzdHJpYnV0aW9uIGNvbWVzIGludG8gcGljdHVyZSB3aGVuIApvbmUgY29tcGFyZXMgdHdvIGNoaSBzcSBkaXN0cmlidXRpb25zLgoKVXNlIHRoZSBmb2xsb3dpbmcgZnVuY3Rpb25zIHRvIHZpc3VhbGl6ZSB0aGUgY2hpIHNxIGRpc3RyaWJ1dGlvbjogCmRmKCksIHBmKCksIHFmKCkgYW5kIHJmKCkKCmBgYHtyfQpmX2Rpc3RyaWJ1dGlvbiA8LSByZigxMDAwMCwgNSwgMTApCmhpc3RvZ3JhbV9mX2Rpc3RyaWJ1dGlvbiA8LSBoaXN0KGZfZGlzdHJpYnV0aW9uKQpwbG90KGhpc3RvZ3JhbV9mX2Rpc3RyaWJ1dGlvbiRtaWRzLGhpc3RvZ3JhbV9mX2Rpc3RyaWJ1dGlvbiRkZW5zaXR5LCB0eXBlPSJsIiwgY29sPSJibHVlIiwgbHdkPTMpCmBgYAoKCgpUaGUgRW5kCgpSZWZlcmVuY2UgLSAqQ2hhcHRlciA5LCBOYXZhcnJvIEQuKgo=
    From c2d800c073320491c1b6e488a7f8c6f7dcbfa9a3 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Mon, 25 Oct 2021 23:41:07 +0530 Subject: [PATCH 15/55] Sampling distribution and Power analysis --- Module 3/Notebooks/SamplingDistribution.Rmd | 84 +++++++++++++++++++++ 1 file changed, 84 insertions(+) create mode 100644 Module 3/Notebooks/SamplingDistribution.Rmd diff --git a/Module 3/Notebooks/SamplingDistribution.Rmd b/Module 3/Notebooks/SamplingDistribution.Rmd new file mode 100644 index 00000000..df89f310 --- /dev/null +++ b/Module 3/Notebooks/SamplingDistribution.Rmd @@ -0,0 +1,84 @@ +--- +title: "R Notebook" +output: html_notebook +--- + +This is an [R Markdown](http://rmarkdown.rstudio.com) Notebook. When you execute code within the notebook, the results appear beneath the code. + +Try executing this chunk by clicking the *Run* button within the chunk or by placing your cursor inside it and pressing *Ctrl+Shift+Enter*. + +ESP example: + +Out of 100, 62 individuals correctly predicted the card on their forehead. + +Null hypothesis: p = 0.5 +n = 100 + + + +*Null hypothesis* +```{r} +r <- rbinom(n = 10000, size = 100, prob = 0.5) +hist(r) +``` + + + +How many people have scored above 60? +```{r} +pbinom(q = 63, size = 100,prob = 0.5,lower.tail = FALSE) +``` + + +How many have scored below 40? + +```{r} +pbinom(q = 36, size = 100,prob = 0.5) + +``` +Overall including those below 40 and above 59, we have 0.028+0.028 = 0.056 or ~ 5.6% of the individuals. + +That means under the 5% type-1 error criterion, as long as the number of individuals is between 40 and 59, we still cannot reject the Null hypothesis. + +But at 62, we can! + + +How can we directly test this? +*Binomial Test in R* + +```{r} +binom.test( x=62, n=100, p=.5 ) + + + +``` + +*Power Analysis in R* + + +```{r} +library(pwr) +pwr.p.test(h = ES.h(p1 = 0.75, p2 = 0.5), + sig.level = 0.05, + power = 0.80, + alternative = "greater") +``` +```{r} +pwr.p.test(n = 100, + sig.level = 0.001, + power = 0.80, + alternative = "greater") +``` + +```{r} +ES.h(p1 = 0.95, p2 = 0.5) +``` +git config user.email "arjunr@iitk.ac.in" +git config user.name "Arjun" + + +Add a new chunk by clicking the *Insert Chunk* button on the toolbar or by pressing *Ctrl+Alt+I*. + +When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the *Preview* button or press *Ctrl+Shift+K* to preview the HTML file). + +The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike *Knit*, *Preview* does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed. From d4784ea17916223dffc4f85d9beb4e630c61c3e4 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Tue, 23 Aug 2022 08:16:00 +0530 Subject: [PATCH 16/55] ggplot related additions Added some ggplots --- Module 3/Notebooks/Module3_Nb1.Rmd | 718 +++++++++++++++-------------- 1 file changed, 378 insertions(+), 340 deletions(-) diff --git a/Module 3/Notebooks/Module3_Nb1.Rmd b/Module 3/Notebooks/Module3_Nb1.Rmd index ea61e465..9f098df6 100644 --- a/Module 3/Notebooks/Module3_Nb1.Rmd +++ b/Module 3/Notebooks/Module3_Nb1.Rmd @@ -1,340 +1,378 @@ ---- -title: "Descriptive Statistics: Central and Variability measures" -output: html_notebook ---- -```{r} -#Initial packages -install.packages("lsr") -``` - -In this notebook, we'll take a look at how to explore a dataset. - -Any time that you get a new data set to look at, one of the first tasks that you have to do is find ways of summarising the data in a compact, easily understood fashion. This is what **descriptive statistics** is all about. - -#### Describing data - -Imagine you've conducted an experiment involving measurements from 20 animals. If you wanted to report the outcome of your experiment to an audience, you wouldn’t want to talk through each and every data point. Instead, you report a summary, such as ‘The 20 animals had an average weight of 15 grams’, thus saving your audience valuable time and mental energy. This notebook focuses on such summaries of numerical information including distributions, measures of central tendency and measures of variability. - -##### What exactly is a distribution? - -If you throw a single dice 20 times in a row and note down how frequently each face occurs. The result of tallying all counts is a ‘frequency distribution’, which associates each possible outcome with a particular frequency value. Such a distribution is an empirically observed distribution because it is based on a set of 20 actual throws of a dice. Fig (a) below. - -![Empirical and theoretical distributions](dice rolling probability.png) - -But Fig (b) shows a theoretical distribution and represents probability rather than frequency. It depicts how probable is each outcome. In this case, all outcomes are equally probable and therefore it is a ‘uniform’ distribution because the probability is uniformly spread across all possible outcomes. It is furthermore a ‘discrete’ distribution because there are only six particular outcomes and no in-betweens. (Chapter 3, Winter B.) - -Apart from *looking* at how a data is distributed, the most important descriptive statistics for numerical data are those measuring the location of a frequency distribution and its spread. The location tells us something about the average or *typical* individual—where the observations are centered. The spread tells us how variable the measurements are from individual to individual—how widely scattered the observations are around the center. The proportion is the most important descriptive statistic for a categorical variable, measuring the fraction of observations in a given category. - -##### But why is it needed? -The importance of calculating some sort of a centre of a distribution seems obvious. How else do we address questions like “Which species is larger?” or “Which drug yielded the greatest response?” The importance of describing distribution spread is less obvious but no less crucial, at least in biology. In some fields of science, variability around a central value is instrument noise or measurement error, but in biology much of the variability signifies real differences among individuals. Different individuals respond differently to treatments, and this variability begs measurement. (Adapted from Chapter 3, Whitlock & Schluter, 2015) - -That's a lot of theory, let's dive into some data now. - -**Loading the Australian Football League Dataset** - -```{r} -#Change the path according to your PC -load("aflsmall.Rdata") -library(lsr) -who() -``` - -As you can see there are multiple variables of different class and size. - -Let's take a look at afl.margins variable. - -```{r} -print(afl.margins) -``` - -This output doesn’t make it easy to get a sense of what the data is actually saying. Just “looking at the data” isn’t a terribly effective way of understanding data. - -Let's try to plot it. - -**Frequency distribution** - -```{r} -hist (afl.margins) -``` - -As you can see, different margins in a sample will have different measurements. We can see this variability with a **frequency distribution**. The frequency of a specific measurement in a sample is the number of observations having a particular value of the measurement. The frequency distribution shows how often each value of the variable occurs in the sample. - -Therefore, here we have plotted a histogram for the afl.margins variable which gives the frequency distribution of the different margin values. - -**Skewness** - -If you observe the graph, you will find that it is not entirely symmetrical. A measure of such asymmetry is called **Skewness**. If the data tend to have a lot of extreme small values (i.e., the lower tail is “longer” than the upper tail) and not so many extremely large values (left panel), then we say that the data are _negatively skewed_. On the other hand, if there are more extremely large values than extremely small ones (right panel) we say that the data are _positively skewed_. - -`psych` package contains a `skew()` function that you can use to calculate skewness. - -Try finding the skewness for the above data for afl.margins using skew() function and also try to guess whether this data is positively or negatively skewed. - -```{r} -library(psych) -#Try finding skewness of afl.margins here -``` - -Although such a graphical representation gives a 'gist' of the data but it is useful to find some "summary" statistics as well. - -##### Measures of Central Tendency -In most situations, the first thing that you’ll want to calculate is a measure of central tendency. That is, you’d like to know something about the “average” or “middle” of your data lies. The two most commonly used measures are the mean, median and mode. - -**Mean** - -As you've already seen in previous classes, the mean of a set of observations is just a normal, old-fashioned average: add all of the values up, and then divide by the total number of values. - -Try finding the mean for the first 5 values from afl.margins and then for all the values of afl.margins -```{r} -mean(afl.margins) # average margin -mean(afl.margins[1:5]) # mean of the margin from the first 5 games - -``` - -**Median** - -The second measure is the median. It is just the middle value of a set of observations. -*Try : Guess the median for 56, 31, 56, 8 and 32 * - -Probably you mentally arranged these numbers in ascending order first and then found the middle value. If there were a list of numbers like this `8, 14, 31, 32, 56, 56` . You will then find the average of middle 2 values. - -Now try finding out the median for afl.margins. - -```{r} -median(afl.margins) -``` - -**Difference between Mean and Median** - -Both of these are measures of central tendency but when to use which can be a bit confusing. In general, the mean is kind of like the “centre of gravity” of the data set, whereas the median is the “middle value” in the data. - -![Difference between mean and median](pic2.png) -*Fig 5.2 from Learning Statistics with R by D. Navarro* - -**Some key points** - -- If data is nominal scale, then it’s probably best to use the mode instead of mean or median. - -- If your data are ordinal scale, you’re more likely to want to use the median than the mean. - -- For interval and ratio scale data, either mean or median is generally acceptable. The mean has the advantage that it uses all the information in the data (which is useful when you don’t have a lot of data), but it’s very sensitive to extreme values. - -*You can read more about this in Section 5.1.4, Learning Statistics with R by D. Navarro* - -Now let's take a look at some more data: - -` -100,2,3,4,5,6,7,8,9,10` - -If you observed such data in real life, you will probably think that -100 is an **_outlier_**, a value that doesn’t really belong with the others. You might consider removing it from the data set entirely but you don’t always get such cut-and-dried examples. For instance, you might get this instead: - -` -15,2,3,4,5,6,7,8,9,12` - -The `-15` looks a bit suspicious, but not anywhere near as much as `-100` did. In this case, it’s a -little trickier. It might be a legitimate observation, it might not. In such situations, the mean might give you an error as it is highly sensitive to one or two extreme values, and is thus not considered to be a robust measure. - -In such situations, one solution is to use the median or another is to use a **trimmed mean**. To calculate a trimmed mean, what you do is **discard** the most extreme examples on both ends (i.e., the largest and the smallest), and then take the mean of everything else. So, for instance, a 10% trimmed mean discards the largest 10% of the observations and the smallest 10% of the observations, and then takes the mean of the remaining 80% of the observations. This helps in taking the mean by excluding the outliers. - -Let's try trimming the mean for above data. - -```{r} -dataset <- c(-15,2,3,4,5,6,7,8,9,12) -mean(x = dataset, trim = .1) -#Try calculating 5% trimmed mean for above dataset -``` - -**Mode** - -So far we've seen how to find the mean and median but what about mode. The **mode** of a sample is very simple: it is the value that occurs most frequently. The core packages in R don’t have a function for calculating the mode. However, the _lsr_ package has a function called modeOf() that does this. - -Say, you want to bet your money on the outcome of a match. You may want to find the most likely margin. This is when Mode is useful. Try to find out the mode for the variable afl.margins - -```{r} -#afl.mode = -#afl.mode -modeOf(afl.margins) -maxFreq(afl.margins) -``` - -So far we've just seen the central measures of tendency, but we saw in the beginning that individual variability is quite important in biology. So, let's take a look at some of the measures of variability. - - - -```{r} -mean(afl.margins) -``` - -##### Measures of variability - -This refers to how “spread out” are the data? How “far” away from the mean or median do the observed values tend to be? - - -```{r} -plot(afl.margins) -``` -**Range** - -The range of a variable is very simple: it’s the biggest value minus the smallest value. Try to find out the range of afl.margins using the `range()` function. - -```{r} -#Find range of afl.margins here using the range function -``` - -But what about the earlier data we saw, ` -100,2,3,4,5,6,7,8,9,10`. Without removing the outlier, we'll get a range of 110 but without the outlier, we'll get a range of only 8. - -**Inter-quartile Range (IQR)** -That is why there is something called the interquartile range (IQR) which is like the range, but instead of calculating the difference between the biggest and smallest value, it calculates the difference between the 25th quantile and the 75th quantile. A 10% _quantile_ or _percentile_ of a data set is defined as the smallest number _x_ such that 10% of the data is less than _x_. - -Try finding out 25%, 75% and 50% quantiles for afl.margins and also the Inter-quartile range. -```{r} -#Use the functions quantile(x = afl.margins, prob = 0.25) for 25% quantile and IQR() -quantile(x = afl.margins, prob = 0.2) - -``` - -IQR can simply be thought as the range spanned by the “middle half” of the data. - - -```{r} -quantile( x = afl.margins, probs = c(.25,.75) ) -# try using IQR() here - -``` - - -**Variance** - -In order to find out the variance of data from the mean or median, we need to find the deviation such that abs (X~i~ - $\overline{X}$). ($\overline{X}$ is the mean of dataset). Mathematically, squared deviations are preferred over absolute deviations, and if we take the mean of all the squared deviations, we'll get the **variance** of the data. - - -Try finding out the variance using `var()`. - -```{r} -#Use var() for finding variance of afl.margins -``` - -_Read more about var() function and absolute vs squared deviations in Section 5.2.4 from Learning Statistics with R by D. Navarro_ - -Also note that the division is by N-1 for variance for a sample! Why is that not N? -This we will discuss later. - -**Standard Deviation** - -But what does this variance signify? It is very difficult to interpret the squared value and therefore, we take the _root mean square deviation_ for interpreting the spread of data points. This is called _Standard Deviation_ and is calculated by taking the square root of variance mathematically, and using the sd() function in R base package. - -Try to find out the standard deviation of afl.margins. - -```{r} -#Find out Std dev. here using sd() -``` - -##### Quick cheat sheet: When to use what? - -- Range: - - Gives full spread of data. - - Very vulnerable to outliers - -- Interquartile range: - - Gives the “middle half” of data - - Robust, and complements the median nicely - -- Variance: - - Average squared deviation from the mean - - It’s mathematically elegant but it’s completely uninterpretable - -- Standard deviation: - - Square root of the variance - - Fairly elegant mathematically, and can be interpreted pretty well - - Complements mean and is the most popular measure of variation - - -##### Derivation for deviation based variance estimates -Mean absolute deviation; Variance; SD - -Say, the sample is sample = [20,30,40]; -the mean of the sample is then 30 - -The deviation of each sample data point from the mean is: -deviation = [20-30, 30-30, 40-30]; - = [-10, 0, 10] - -absolute deviation = [10,0,10] -mean of absolute deviation = (10+0+10)/3 - -square of the deviation = [-10^2, 0^2, 10^2]; -mean of the squared deviations = variance = (100+0+100)/3 - -root of mean squared deviation = standard deviation = sqrt(variance) - - -##### Bessel's correction -While calculating variance and standard deviation of the sample, we are always -trying to estimate the variance and standard deviation of the population. - -Remember the heights of students example! - -Now since the sample variance and standard deviation is biased and less than -that of the population, we divide by N-1 instead of N to inflate the estimates. - -So the variance after Bessel's correction should be -mean of the squared deviations = variance = (100+0+100)/(3-1) - - -##### Summary function -Now that we've learnt about the different methods of describing a data, it would've been awesome if R could summarize all of this for us together, right? - -There's indeed a function called `summary()` in R. - -```{r} -#Check out what summary() does for afl.margins -summary(afl.margins) - -``` - -Pretty cool, no? - -Also try it out for other kinds of variables like `afl.finalists` or `as.character(afl.finalists)` - - - -##### Summarizing dataframes - -Let's try out summarizing a dataframe as well. - -```{r} -load("clinicaltrial.Rdata") -#Check the name of the variable in the environment which contains the dataframe and try summarizing it -``` - -The `psych` package also has a function called `describe()` for dataframes. Don't forget to check it out too! - -In fact, you can also describe these statistics group wise. - -For instance, run `describeBy( x=clin.trial, group=clin.trial$therapy )` - -```{r} -describeBy( x=clin.trial, group=clin.trial$therapy ) -``` -Notice that, the output displays asterisks for factor variables, in order to draw your attention to the fact that the descriptive statistics that it has calculated won’t be very meaningful for those variables. - -Another more general command for grouping is `by()` - -Try running the following chunk and compare the results with the `describeBy()` command above. - -```{r} -by(data=clin.trial, INDICES=clin.trial$therapy, FUN=describe) -#Also try replacing describe in FUN above with summary -``` - -What if you have multiple grouping variables? Suppose, for example, you would like to look at the average mood gain separately for all possible combinations of drug and therapy.We can use `aggregate()` command. - -```{r} -aggregate( formula = mood.gain ~ drug + therapy, - data = clin.trial, - FUN = mean) -#1 mood.gain by drug/therapy combination -#2 data is in the clin.trial data frame -#3 print out group means - -#Try interchanging the positions of drug and therapy above -``` - -That's all for today! +--- +title: "Descriptive Statistics: Central and Variability measures" +output: html_notebook +--- +```{r} +#Initial packages +install.packages("lsr") +``` + +In this notebook, we'll take a look at how to explore a dataset. + +Any time that you get a new data set to look at, one of the first tasks that you have to do is find ways of summarising the data in a compact, easily understood fashion. This is what **descriptive statistics** is all about. + +#### Describing data + +Imagine you've conducted an experiment involving measurements from 20 animals. If you wanted to report the outcome of your experiment to an audience, you wouldn’t want to talk through each and every data point. Instead, you report a summary, such as ‘The 20 animals had an average weight of 15 grams’, thus saving your audience valuable time and mental energy. This notebook focuses on such summaries of numerical information including distributions, measures of central tendency and measures of variability. + +##### What exactly is a distribution? + +If you throw a single dice 20 times in a row and note down how frequently each face occurs. The result of tallying all counts is a ‘frequency distribution’, which associates each possible outcome with a particular frequency value. Such a distribution is an empirically observed distribution because it is based on a set of 20 actual throws of a dice. Fig (a) below. + +![Empirical and theoretical distributions](dice rolling probability.png) + +But Fig (b) shows a theoretical distribution and represents probability rather than frequency. It depicts how probable is each outcome. In this case, all outcomes are equally probable and therefore it is a ‘uniform’ distribution because the probability is uniformly spread across all possible outcomes. It is furthermore a ‘discrete’ distribution because there are only six particular outcomes and no in-betweens. (Chapter 3, Winter B.) + +Apart from *looking* at how a data is distributed, the most important descriptive statistics for numerical data are those measuring the location of a frequency distribution and its spread. The location tells us something about the average or *typical* individual—where the observations are centered. The spread tells us how variable the measurements are from individual to individual—how widely scattered the observations are around the center. The proportion is the most important descriptive statistic for a categorical variable, measuring the fraction of observations in a given category. + +##### But why is it needed? +The importance of calculating some sort of a centre of a distribution seems obvious. How else do we address questions like “Which species is larger?” or “Which drug yielded the greatest response?” The importance of describing distribution spread is less obvious but no less crucial, at least in biology. In some fields of science, variability around a central value is instrument noise or measurement error, but in biology much of the variability signifies real differences among individuals. Different individuals respond differently to treatments, and this variability begs measurement. (Adapted from Chapter 3, Whitlock & Schluter, 2015) + +That's a lot of theory, let's dive into some data now. + +**Loading the Australian Football League Dataset** + +```{r} +#Change the path according to your PC +load("aflsmall.Rdata") +library(lsr) +who() +``` + +As you can see there are multiple variables of different class and size. + +Let's take a look at afl.margins variable. + +```{r} +print(afl.margins) +``` + +This output doesn’t make it easy to get a sense of what the data is actually saying. Just “looking at the data” isn’t a terribly effective way of understanding data. + +Let's try to plot it. + +**Frequency distribution** + +```{r} +hist (afl.margins) +``` + +As you can see, different margins in a sample will have different measurements. We can see this variability with a **frequency distribution**. The frequency of a specific measurement in a sample is the number of observations having a particular value of the measurement. The frequency distribution shows how often each value of the variable occurs in the sample. + +Therefore, here we have plotted a histogram for the afl.margins variable which gives the frequency distribution of the different margin values. + +Now let's try this using GGPLOT, shall we?! +```{r} +library(ggplot2) +``` + +```{r} +df <- data.frame(afl.margins) +``` + + +```{r} +ggplot(df, aes(x = afl.margins)) + geom_histogram(bins=12) +``` + +```{r} +# Basic histogram +ggplot(df, aes(x = afl.margins)) + geom_histogram(bins=25,color="gray", fill="gray") +``` +Note: if you want to learn more about plotting histograms check this out: http://www.sthda.com/english/wiki/ggplot2-histogram-plot-quick-start-guide-r-software-and-data-visualization + + +**Skewness** + +If you observe the graph, you will find that it is not entirely symmetrical. A measure of such asymmetry is called **Skewness**. If the data tend to have a lot of extreme small values (i.e., the lower tail is “longer” than the upper tail) and not so many extremely large values (left panel), then we say that the data are _negatively skewed_. On the other hand, if there are more extremely large values than extremely small ones (right panel) we say that the data are _positively skewed_. + +`psych` package contains a `skew()` function that you can use to calculate skewness. + +Try finding the skewness for the above data for afl.margins using skew() function and also try to guess whether this data is positively or negatively skewed. + +```{r} +library(psych) +#Try finding skewness of afl.margins here +``` + +Although such a graphical representation gives a 'gist' of the data but it is useful to find some "summary" statistics as well. + +##### Measures of Central Tendency +In most situations, the first thing that you’ll want to calculate is a measure of central tendency. That is, you’d like to know something about the “average” or “middle” of your data lies. The two most commonly used measures are the mean, median and mode. + +**Mean** + +As you've already seen in previous classes, the mean of a set of observations is just a normal, old-fashioned average: add all of the values up, and then divide by the total number of values. + +Try finding the mean for the first 5 values from afl.margins and then for all the values of afl.margins +```{r} +mean(afl.margins) # average margin +mean(afl.margins[1:5]) # mean of the margin from the first 5 games + +``` + +**Median** + +The second measure is the median. It is just the middle value of a set of observations. +*Try : Guess the median for 56, 31, 56, 8 and 32 * + +Probably you mentally arranged these numbers in ascending order first and then found the middle value. If there were a list of numbers like this `8, 14, 31, 32, 56, 56` . You will then find the average of middle 2 values. + +Now try finding out the median for afl.margins. + +```{r} +median(afl.margins) +``` + +**Difference between Mean and Median** + +Both of these are measures of central tendency but when to use which can be a bit confusing. In general, the mean is kind of like the “centre of gravity” of the data set, whereas the median is the “middle value” in the data. + +![Difference between mean and median](pic2.png) +*Fig 5.2 from Learning Statistics with R by D. Navarro* + +**Some key points** + +- If data is nominal scale, then it’s probably best to use the mode instead of mean or median. + +- If your data are ordinal scale, you’re more likely to want to use the median than the mean. + +- For interval and ratio scale data, either mean or median is generally acceptable. The mean has the advantage that it uses all the information in the data (which is useful when you don’t have a lot of data), but it’s very sensitive to extreme values. + +*You can read more about this in Section 5.1.4, Learning Statistics with R by D. Navarro* + +Now let's take a look at some more data: + +` -100,2,3,4,5,6,7,8,9,10` + +If you observed such data in real life, you will probably think that -100 is an **_outlier_**, a value that doesn’t really belong with the others. You might consider removing it from the data set entirely but you don’t always get such cut-and-dried examples. For instance, you might get this instead: + +` -15,2,3,4,5,6,7,8,9,12` + +The `-15` looks a bit suspicious, but not anywhere near as much as `-100` did. In this case, it’s a +little trickier. It might be a legitimate observation, it might not. In such situations, the mean might give you an error as it is highly sensitive to one or two extreme values, and is thus not considered to be a robust measure. + +In such situations, one solution is to use the median or another is to use a **trimmed mean**. To calculate a trimmed mean, what you do is **discard** the most extreme examples on both ends (i.e., the largest and the smallest), and then take the mean of everything else. So, for instance, a 10% trimmed mean discards the largest 10% of the observations and the smallest 10% of the observations, and then takes the mean of the remaining 80% of the observations. This helps in taking the mean by excluding the outliers. + +Let's try trimming the mean for above data. + +```{r} +dataset <- c(-15,2,3,4,5,6,7,8,9,12) +mean(x = dataset, trim = .1) +#Try calculating 5% trimmed mean for above dataset +``` + +**Mode** + +So far we've seen how to find the mean and median but what about mode. The **mode** of a sample is very simple: it is the value that occurs most frequently. The core packages in R don’t have a function for calculating the mode. However, the _lsr_ package has a function called modeOf() that does this. + +Say, you want to bet your money on the outcome of a match. You may want to find the most likely margin. This is when Mode is useful. Try to find out the mode for the variable afl.margins + +```{r} +#afl.mode = +#afl.mode +modeOf(afl.margins) +maxFreq(afl.margins) +``` + +So far we've just seen the central measures of tendency, but we saw in the beginning that individual variability is quite important in biology. So, let's take a look at some of the measures of variability. + + + +```{r} +mean(afl.margins) +``` + +##### Measures of variability + +This refers to how “spread out” are the data? How “far” away from the mean or median do the observed values tend to be? + + +```{r} +plot(afl.margins) +``` +Again, do you what to try this using GGPLOT? Let's give it a shot! +```{r} +library(dplyr) +df <- mutate(df, numgames= 1:length(afl.margins)) +``` + + + +```{r} +ggplot(df, aes(y = afl.margins, x = numgames)) + geom_point() +``` + + + +**Range** + +The range of a variable is very simple: it’s the biggest value minus the smallest value. Try to find out the range of afl.margins using the `range()` function. + +```{r} +#Find range of afl.margins here using the range function +range(afl.margins) +``` + +But what about the earlier data we saw, ` -100,2,3,4,5,6,7,8,9,10`. Without removing the outlier, we'll get a range of 110 but without the outlier, we'll get a range of only 8. + +**Inter-quartile Range (IQR)** +That is why there is something called the interquartile range (IQR) which is like the range, but instead of calculating the difference between the biggest and smallest value, it calculates the difference between the 25th quantile and the 75th quantile. A 10% _quantile_ or _percentile_ of a data set is defined as the smallest number _x_ such that 10% of the data is less than _x_. + +Try finding out 25%, 75% and 50% quantiles for afl.margins and also the Inter-quartile range. +```{r} +#Use the functions quantile(x = afl.margins, prob = 0.25) for 25% quantile +quantile(x = afl.margins, prob = 0.25) + +``` + +IQR can simply be thought as the range spanned by the “middle half” of the data. + + +```{r} +quantile( x = afl.margins, probs = c(.25,.75) ) +# try using IQR() here + +``` + + +**Variance** + +In order to find out the variance of data from the mean or median, we need to find the deviation such that abs (X~i~ - $\overline{X}$). ($\overline{X}$ is the mean of dataset). Mathematically, squared deviations are preferred over absolute deviations, and if we take the mean of all the squared deviations, we'll get the **variance** of the data. + + +Try finding out the variance using `var()`. + +```{r} +#Use var() for finding variance of afl.margins +var(afl.margins) +``` + +_Read more about var() function and absolute vs squared deviations in Section 5.2.4 from Learning Statistics with R by D. Navarro_ + +Also note that the division is by N-1 for variance for a sample! Why is that not N? +This we will discuss later. + +**Standard Deviation** + +But what does this variance signify? It is very difficult to interpret the squared value and therefore, we take the _root mean square deviation_ for interpreting the spread of data points. This is called _Standard Deviation_ and is calculated by taking the square root of variance mathematically, and using the sd() function in R base package. + +Try to find out the standard deviation of afl.margins. + +```{r} +#Find out Std dev. here using sd() + +``` + +##### Quick cheat sheet: When to use what? + +- Range: + - Gives full spread of data. + - Very vulnerable to outliers + +- Interquartile range: + - Gives the “middle half” of data + - Robust, and complements the median nicely + +- Variance: + - Average squared deviation from the mean + - It’s mathematically elegant but it’s completely uninterpretable + +- Standard deviation: + - Square root of the variance + - Fairly elegant mathematically, and can be interpreted pretty well + - Complements mean and is the most popular measure of variation + + +##### Derivation for deviation based variance estimates +Mean absolute deviation; Variance; SD + +Say, the sample is sample = [20,30,40]; +the mean of the sample is then 30 + +The deviation of each sample data point from the mean is: +deviation = [20-30, 30-30, 40-30]; + = [-10, 0, 10] + +absolute deviation = [10,0,10] +mean of absolute deviation = (10+0+10)/3 + +square of the deviation = [-10^2, 0^2, 10^2]; +mean of the squared deviations = variance = (100+0+100)/3 + +root of mean squared deviation = standard deviation = sqrt(variance) + + +##### Bessel's correction +While calculating variance and standard deviation of the sample, we are always +trying to estimate the variance and standard deviation of the population. + +Remember the heights of students example! + +Now since the sample variance and standard deviation is biased and less than +that of the population, we divide by N-1 instead of N to inflate the estimates. + +So the variance after Bessel's correction should be +mean of the squared deviations = variance = (100+0+100)/(3-1) + + +##### Summary function +Now that we've learnt about the different methods of describing a data, it would've been awesome if R could summarize all of this for us together, right? + +There's indeed a function called `summary()` in R. + +```{r} +#Check out what summary() does for afl.margins +summary(afl.margins) + +``` + +Pretty cool, no? + +Also try it out for other kinds of variables like `afl.finalists` or `as.character(afl.finalists)` + + + +##### Summarizing dataframes + +Let's try out summarizing a dataframe as well. + +```{r} +load("clinicaltrial.Rdata") +#Check the name of the variable in the environment which contains the dataframe and try summarizing it +``` + +The `psych` package also has a function called `describe()` for dataframes. Don't forget to check it out too! + +In fact, you can also describe these statistics group wise. + +For instance, run `describeBy( x=clin.trial, group=clin.trial$therapy )` + +```{r} +describeBy( x=clin.trial, group=clin.trial$therapy ) +``` +Notice that, the output displays asterisks for factor variables, in order to draw your attention to the fact that the descriptive statistics that it has calculated won’t be very meaningful for those variables. + +Another more general command for grouping is `by()` + +Try running the following chunk and compare the results with the `describeBy()` command above. + +```{r} +by(data=clin.trial, INDICES=clin.trial$therapy, FUN=describe) +#Also try replacing describe in FUN above with summary +``` + +What if you have multiple grouping variables? Suppose, for example, you would like to look at the average mood gain separately for all possible combinations of drug and therapy.We can use `aggregate()` command. + +```{r} +aggregate( formula = mood.gain ~ drug + therapy, + data = clin.trial, + FUN = mean) +#1 mood.gain by drug/therapy combination +#2 data is in the clin.trial data frame +#3 print out group means + +#Try interchanging the positions of drug and therapy above +``` + +That's all for today! From 80e85fcc412bd72c7c5e340fd8a9b653874500e4 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Tue, 30 Aug 2022 09:49:39 +0530 Subject: [PATCH 17/55] Via upload. Summary with different objects. --- Module 3/Notebooks/Module3_Nb1.Rmd | 32 +++++++++++++++++++++++++----- 1 file changed, 27 insertions(+), 5 deletions(-) diff --git a/Module 3/Notebooks/Module3_Nb1.Rmd b/Module 3/Notebooks/Module3_Nb1.Rmd index 9f098df6..fa7d0e9f 100644 --- a/Module 3/Notebooks/Module3_Nb1.Rmd +++ b/Module 3/Notebooks/Module3_Nb1.Rmd @@ -331,17 +331,41 @@ Pretty cool, no? Also try it out for other kinds of variables like `afl.finalists` or `as.character(afl.finalists)` +```{r} +ggplot(df, aes(x=afl.margins, )) + + geom_boxplot()+ coord_flip() +``` -##### Summarizing dataframes -Let's try out summarizing a dataframe as well. +##### Summary function + +If the Object is a numeric +```{r} +summary(object = afl.margins) +``` + +```{r} +blowouts <- afl.margins > 50 +blowouts +``` +```{r} +summary (object = blowouts) +``` + + +Now let's try out summarizing a dataframe as well. + ```{r} load("clinicaltrial.Rdata") #Check the name of the variable in the environment which contains the dataframe and try summarizing it ``` +```{r} +summary(clin.trial) +``` + The `psych` package also has a function called `describe()` for dataframes. Don't forget to check it out too! In fact, you can also describe these statistics group wise. @@ -365,9 +389,7 @@ by(data=clin.trial, INDICES=clin.trial$therapy, FUN=describe) What if you have multiple grouping variables? Suppose, for example, you would like to look at the average mood gain separately for all possible combinations of drug and therapy.We can use `aggregate()` command. ```{r} -aggregate( formula = mood.gain ~ drug + therapy, - data = clin.trial, - FUN = mean) +aggregate( mood.gain ~ drug + therapy, data = clin.trial,FUN = mean) #1 mood.gain by drug/therapy combination #2 data is in the clin.trial data frame #3 print out group means From 64cc6290a878b5a0e8c6688ee4451da0eeb2f045 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Tue, 6 Sep 2022 07:35:57 +0530 Subject: [PATCH 18/55] Included ggcorrplot, correlate functions --- Module 3/Notebooks/Module3_Nb2.Rmd | 656 ++++++++++++++++------------- 1 file changed, 360 insertions(+), 296 deletions(-) diff --git a/Module 3/Notebooks/Module3_Nb2.Rmd b/Module 3/Notebooks/Module3_Nb2.Rmd index 879883c4..9d13312f 100644 --- a/Module 3/Notebooks/Module3_Nb2.Rmd +++ b/Module 3/Notebooks/Module3_Nb2.Rmd @@ -1,296 +1,360 @@ ---- -title: "Descriptive Statistics: Scaling and Correlations" -output: html_notebook ---- - -After taking a first look at our data in the last notebook, now we want to start looking at it more closely as per our needs and requirements. - -#### Scaling - -In simple terms, scaling refers to changing size of an object without affecting its shape. - -##### Linear Transformation: - -A linear transformation involves addition, subtraction, multiplication, or division with a constant value. For example, if you add 1 to the numbers 2, 4, and 6, the resulting numbers (3, 5, and 7) are a linear transformation of the original numbers. -Linear transformations are useful, because they allow you to represent your data in a metric that is suitable to you and your audience. - -**Centering:** - -‘Centering’ is a particularly common linear transformation. This linear transfor- mation is frequently applied to continuous predictor variables. -To center a predictor variable, subtract the mean of that predictor variable from each data point. As a result, each data point is expressed in terms of how much it is above the mean (positive score) or below the mean (negative score). Thus, subtracting the mean out of the variable expresses each data point as a mean-deviation score. The value zero now has a new meaning for this variable: it is at the ‘center’ of the variable’s distribution, namely, the mean. - -**Standardizing:** - -A second common linear transformation is ‘standardizing’ or ‘z–scoring’. For standardizing, the centered variable is divided by the standard deviation of the sample. - -Let's look at an example: - -The following are response durations from a psycholinguistic experiment: - -`460ms 480ms 500ms 520ms 540ms` - -The mean of these five numbers is `500ms`. - -Centering these numbers results in the following: - -`− 40ms − 20ms 0ms +20ms + 40ms` - -The standard deviation (learnt in last notebook) for these numbers is `~32ms`. - -To ‘standardize’, we have to divide the centered data by the standard deviation. For example, the first point, `–40ms`, divided by `32ms`, yields `–1.3`. Since each data point is divided by the same number, this change qualifies as a linear transformation. - -As a result of standardization, you get the following numbers (rounded to one digit): - -`−1.3z − 0.6z 0z + 0.6z +1.3z` - -The raw response duration `460ms` is `–40ms` (after centering), which corresponds to being `1.3` standard deviations below the mean. Thus, standardization involves re-expressing the data in terms of **how many standard deviations they are away from the mean**. - -##### But why this extra effort? - -Standardizing is a way of getting rid of a variable’s metric. In a situation with multiple variables, each variable may have a different standard deviation, but by dividing each variable by the respective standard deviation, it is possible to convert all variables into a scale of **standard units**. This sometimes may help in making variables comparable, for example, when assessing the relative impact of multiple predictors. For example, if you can imagine we have two questionnaires - one for extraversion where you scored 2 out of 10 and the other for grumpiness where you scored 35 out of 50, then it doesn’t make a lot of sense to try to compare your raw score of 2 on the extraversion questionnaire to your raw score of 35 on the grumpiness questionnaire. The raw scores for the two variables are “about” fundamentally different things, so this would be like comparing apples to oranges. But if you standardize them, they will still become comparable in some sense. - -Let's also examine the score of 35 out of 50 for grumpiness. Would this mean that you're 70% grumpy? Instead of interpreting raw data this way, it would make more sense if we describe your grumpiness in terms of the overall distribution of the grumpiness of humans which is possible through standardisation i.e. where do you lie on the grumpiness spectrum of the all humans? ;) - -```{r} -#Try it out yourself -#Define a vector with Grumpiness scores of you and your friends and find the z score for your self -X = -z = (X - mean(X)) / sd(X) -``` - -Using scale() to center and normalize -```{r} -load("aflsmall.Rdata") -afl.margins_c <- scale(afl.margins, scale = FALSE) -afl.margins_z <- scale(afl.margins) -``` - -Plotting the histogram -```{r} -hist(afl.margins) -hist(afl.margins_c) -hist(afl.margins_z) -``` - - - -_Reference: Chapter 5, Winter B._ - -#### Correlation - -So far we have focused entirely on how to construct descriptive statistics for a single variable. We haven’t talked about how to describe the relationships between variables in the data. To do that, we want to talk mostly about the correlation between variables. - -```{r} -#Let's load some data -load( "parenthood.Rdata" ) -who(TRUE) -``` - -```{r} -#Try describe() for the above dataframe -``` - - -```{r} -#Let's also take a graphical look at the data -hist(parenthood$dan.sleep) - -#Try plotting for the other 2 variables - -``` - -But we now want to take a look at the relationship between two variables. n order to visualize that, it is better to plot a **scatter plot.** (Plotting graphs will be covered in detail a separate notebook). - -_Brief note on Scatterplots:_ - -In this kind of plot, each observation corresponds to one dot: the horizontal location of the dot plots the value of the observation on one variable, and the vertical location displays its value on the other variable. In many situations you don’t really have a clear opinion about what the causal relationship is (e.g., does A cause B, or does B cause A, or does some other variable C controls both A and B). If that’s the case, it doesn’t really matter which variable you plot on the x-axis and which one you plot on the y-axis. However, in many situations you do have a pretty strong idea which variable you think is most likely to be causal, or at least you have some suspicions in that direction. If so, then it’s conventional to plot the **cause** variable on the **x-axis**, and the **effect** variable on the **y-axis**. - -Suppose our goal is to draw a scatterplot displaying the relationship between the amount of sleep that Dan gets (dan.sleep) and how grumpy she is the next day (dan.grump). _Do you suspect a causal relationship here?_ - -A simple way to plot these scatter plots is to use the scatterplot() function in the car package. - -Let's load the package and get started. - -```{r} -install.packages("car") -install.packages("Rcpp") -``` - - -```{r} -library(car) -scatterplot( dan.grump ~ dan.sleep, data = parenthood, regLine = FALSE, smooth = FALSE) -scatterplot -``` - -```{r} -#Plot a scatter plot for baby.sleep and dan.grump variables -``` - - -Just by plain observation and comparison, you can see that the relationship is qualitatively the same in both cases: more sleep equals less grump! However, it’s also pretty obvious that the relationship between dan.sleep and dan.grump is stronger than the relationship between baby.sleep and dan.grump. - -But what about the plot between baby.sleep and dan.sleep? - -```{r} -#Plot baby sleep and dan sleep here -``` - -Is the direction of this plot same as the earlier plots? What about strength? - -##### Correlation coefficient - -In order to to quantitatively represent the relationships of strength and direction we discussed above, we can use correlation coefficient. - -The correlation coefficient (or Pearson's correlation coefficient) between two variables X and Y (sometimes denoted _r~XY~_ ) is a measure that varies from -1 to 1. When _r_ = -1 it means that we have a perfect negative relationship, and when _r_ = 1 it means we have a perfect positive relationship. When _r_ = 0, there’s no relationship at all. - -Look at the plots for different _r_ values: - -![Correlation plots](fig 4.png) - -##### Covariance - -The covariance between two variables X and Y is a generalisation of the notion of the variance; it’s a mathematically simple way of describing the relationship between two variables: - - \begin{align*} - - Cov (X, Y) = \frac{1}{N-1}\sum_{i=1}^{N} (X- \overline{X} ) (Y- \overline{Y} ) \\ - - \end{align*} - -Covariance can be understood as an “average cross product” between X and Y . The covariance has the nice property that, if X and Y are entirely unrelated, then the covariance is exactly zero. If it is positive, then the covariance is also positive; and if the relationship is negative then the covariance is also negative. But as it has weird units (try seeing for yourself), it si difficult to interpret and therefore we standardise the covariance, the exact same way that the z-score standardises a raw score: by dividing by the standard deviation. However, because we have two variables that contribute to the covariance, the standardisation only works if we divide by both standard deviations. - -This is what we call as the correlation coefficent, _r_: - -\begin{align*} - - r~XY~ = \frac{Cov(X,Y)}{\sigma_{X} \sigma_{Y}} - -\end{align*} - -This way, covariance properties are retained and it also becomes interpretable. - -Now let's check out how to code this using cor(). - -```{r} -cor(x = parenthood$dan.sleep, y = parenthood$dan.grump) - -#Try giving the entire dataframe 'parenthood' as input in cor() -``` - -What did you find? - -##### What does r = 0.4 mean? - -It really depends on what you want to use the data for, and on how strong the correlations in your field tend to be. - -![Correlation coefficient interpretation table](fig 5.png) - -Now let's take a look at this data called "Anscombe's Quartet" - -```{r} -load( "anscombesquartet.Rdata" ) -cor( X1, Y1 ) -cor( X2, Y2 ) -cor (X3, Y3) -cor (X4, Y4) -``` - -Were the correlation coefficients same? - -Now try plotting them. - -```{r} -scatterplot(x = X1, y = Y1,regLine = FALSE, smooth = FALSE) -scatterplot(x = X2, y = Y2,regLine = FALSE, smooth = FALSE) -scatterplot(x = X3, y = Y3,regLine = FALSE, smooth = FALSE) -scatterplot(x = X4, y = Y4,regLine = FALSE, smooth = FALSE) - - -``` - -Therefore, remember to always look at the scatterplot before attaching any interpretation to the data! - -If we have to properly define the role of Pearson's coefficient, we can say that it actually measures the strength of the linear relationship between two variables. In other words, it gives a measure of the extent to which the data all tend to fall on a single, perfectly straight line. - -##### Spearman's Rank Order Correlation Coefficient - -But let's take a look at another dataset and find correlation between its variables. - -```{r} -load( "effort.Rdata" ) -effort -cor( effort$hours, effort$grade ) -``` - -If you plot this - - -```{r} -scatterplot(effort$hours, effort$grade, regLine = TRUE, smooth = FALSE) -``` - -The correlation _r_ = 0.91 we get above doe snot represent the actual relationship the plot is depicting. What we’re looking for is something that captures the fact that there is a perfect **ordinal relationship** here. That is, if student 1 works more hours than student 2, then we can guarantee that student 1 will get the better grade. - -If we’re looking for ordinal relationships, all we have to do is treat the data as if it were ordinal scale! So, instead of measuring effort in terms of “hours worked”, let's rank all 10 of the students in order of hours worked. That is, student 1 did the least work out of anyone (2 hours) so they get the lowest rank (rank = 1). Student 4 was the next laziest, putting in only 6 hours of work in over the whole semester, so they get the next lowest rank (rank = 2). - -```{r} -hours.rank <- rank( effort$hours ) # rank students by hours worked -grade.rank <- rank( effort$grade ) # rank students by grade received - -#Now try cor() function for these -cor( hours.rank, grade.rank ) -``` - -Now the correlation coefficient we get is different from the Perason's correlation coefficient _r_ we got earlier. This new correlation coefficient that we got is called '**Spearman's Correlation Coefficient**', denoted by $\rho$. - -```{r} -#Execute this and compare with the correlation coefficient we got above -cor( effort$hours, effort$grade, method = "spearman") -``` - -##### the correlate() function -Try using this function to find the relationship between several variables in a dataframe at once. - - -##### Handling missing values - -We've seen in earlier lectures that there could be missing values in data which are represented by `NA` in R. One easy way to remove them is using `na.rm = TRUE` as argument in many functions. - -But what if we have missing values in a dataframe where we have to find correlations across variables. - -Let's look at such a dataset. - -```{r} -load( "parenthood2.Rdata" ) -print( parenthood2 ) -describe( parenthood2 ) -#Check how many missing values are there for each variable - compare the values in 'n' with the number of days. -``` - -Now, let's try finding correlations for this dataframe. - -```{r} -cor(parenthood2) -``` - -In order top overcome this problem, we can use `use` as an argument in the cor() function. Try out the following. - -```{r} -cor(parenthood2, use = "complete.obs") -cor(parenthood2, use = "pairwise.complete.obs") -``` - -When we choose `use = "complete.obs"`, R will completely ignore all cases (i.e., all rows in our parenthood2 data frame) that have any missing values at all. For eg., if you choose use = "complete.obs" R will ignore that row completely: that is, even when it’s trying to calculate the correlation between dan.sleep and dan.grump, observation 1 will be ignored, because the value of baby.sleep is missing for that observation. - -Whereas when we set `use = "pairwise.complete.obs"` R only looks at the variables that it’s trying to correlate when determining what to drop. So, for instance, since the only missing value for observation 1 of parenthood2 is for baby.sleep R will only drop observation 1 when baby.sleep is one of the variables involved: and so R keeps observation 1 when trying to correlate dan.sleep and dan.grump. - -The above operation can also be performed by another function called `correlate()` in `lsr` package. - -Try it out. -```{r} -#Try correlate() for parenthood2 here -``` - -_Reference : Chapter 5, D. Navarro_ - -That's all folks! +--- +title: "Descriptive Statistics: Scaling and Correlations" +output: html_notebook +--- + +After taking a first look at our data in the last notebook, now we want to start looking at it more closely as per our needs and requirements. + +#### Scaling + +In simple terms, scaling refers to changing size of an object without affecting its shape. + +##### Linear Transformation: + +A linear transformation involves addition, subtraction, multiplication, or division with a constant value. For example, if you add 1 to the numbers 2, 4, and 6, the resulting numbers (3, 5, and 7) are a linear transformation of the original numbers. +Linear transformations are useful, because they allow you to represent your data in a metric that is suitable to you and your audience. + +**Centering:** + +‘Centering’ is a particularly common linear transformation. This linear transfor- mation is frequently applied to continuous predictor variables. +To center a predictor variable, subtract the mean of that predictor variable from each data point. As a result, each data point is expressed in terms of how much it is above the mean (positive score) or below the mean (negative score). Thus, subtracting the mean out of the variable expresses each data point as a mean-deviation score. The value zero now has a new meaning for this variable: it is at the ‘center’ of the variable’s distribution, namely, the mean. + +**Standardizing:** + +A second common linear transformation is ‘standardizing’ or ‘z–scoring’. For standardizing, the centered variable is divided by the standard deviation of the sample. + +Let's look at an example: + +The following are response durations from a psycholinguistic experiment: + +`460ms 480ms 500ms 520ms 540ms` + +The mean of these five numbers is `500ms`. + +Centering these numbers results in the following: + +`− 40ms − 20ms 0ms +20ms + 40ms` + +The standard deviation (learnt in last notebook) for these numbers is `~32ms`. + +To ‘standardize’, we have to divide the centered data by the standard deviation. For example, the first point, `–40ms`, divided by `32ms`, yields `–1.3`. Since each data point is divided by the same number, this change qualifies as a linear transformation. + +As a result of standardization, you get the following numbers (rounded to one digit): + +`−1.3z − 0.6z 0z + 0.6z +1.3z` + +The raw response duration `460ms` is `–40ms` (after centering), which corresponds to being `1.3` standard deviations below the mean. Thus, standardization involves re-expressing the data in terms of **how many standard deviations they are away from the mean**. + +##### But why this extra effort? + +Standardizing is a way of getting rid of a variable’s metric. In a situation with multiple variables, each variable may have a different standard deviation, but by dividing each variable by the respective standard deviation, it is possible to convert all variables into a scale of **standard units**. This sometimes may help in making variables comparable, for example, when assessing the relative impact of multiple predictors. For example, if you can imagine we have two questionnaires - one for extraversion where you scored 2 out of 10 and the other for grumpiness where you scored 35 out of 50, then it doesn’t make a lot of sense to try to compare your raw score of 2 on the extraversion questionnaire to your raw score of 35 on the grumpiness questionnaire. The raw scores for the two variables are “about” fundamentally different things, so this would be like comparing apples to oranges. But if you standardize them, they will still become comparable in some sense. + +Let's also examine the score of 35 out of 50 for grumpiness. Would this mean that you're 70% grumpy? Instead of interpreting raw data this way, it would make more sense if we describe your grumpiness in terms of the overall distribution of the grumpiness of humans which is possible through standardisation i.e. where do you lie on the grumpiness spectrum of the all humans? ;) + +```{r} +#Try it out yourself +#Define a vector with Grumpiness scores of you and your friends and find the z score for your self +X = +z = (X - mean(X)) / sd(X) +``` + +Using scale() to center and normalize +```{r} +load("aflsmall.Rdata") +afl.margins_c <- scale(afl.margins, scale = FALSE) +afl.margins_z <- scale(afl.margins) +``` + +Plotting the histogram +```{r} +hist(afl.margins) +hist(afl.margins_c) +hist(afl.margins_z) +``` + + + +_Reference: Chapter 5, Winter B._ + +#### Correlation + +So far we have focused entirely on how to construct descriptive statistics for a single variable. We haven’t talked about how to describe the relationships between variables in the data. To do that, we want to talk mostly about the correlation between variables. + +```{r} +#Let's load some data +load( "parenthood.Rdata" ) +who(TRUE) +``` + +```{r} +#Try describe() for the above dataframe +``` + + +```{r} +#Let's also take a graphical look at the data +hist(parenthood$dan.sleep) + +#Try plotting for the other 2 variables + +``` + +But we now want to take a look at the relationship between two variables. n order to visualize that, it is better to plot a **scatter plot.** (Plotting graphs will be covered in detail a separate notebook). + +_Brief note on Scatterplots:_ + +In this kind of plot, each observation corresponds to one dot: the horizontal location of the dot plots the value of the observation on one variable, and the vertical location displays its value on the other variable. In many situations you don’t really have a clear opinion about what the causal relationship is (e.g., does A cause B, or does B cause A, or does some other variable C controls both A and B). If that’s the case, it doesn’t really matter which variable you plot on the x-axis and which one you plot on the y-axis. However, in many situations you do have a pretty strong idea which variable you think is most likely to be causal, or at least you have some suspicions in that direction. If so, then it’s conventional to plot the **cause** variable on the **x-axis**, and the **effect** variable on the **y-axis**. + +Suppose our goal is to draw a scatterplot displaying the relationship between the amount of sleep that Dan gets (dan.sleep) and how grumpy she is the next day (dan.grump). _Do you suspect a causal relationship here?_ + +A simple way to plot these scatter plots is to use the scatterplot() function in the car package. + +Let's load the package and get started. + +```{r} +install.packages("car") +install.packages("Rcpp") +``` + + +```{r} +library(car) +scatterplot( dan.grump ~ dan.sleep, data = parenthood, regLine = FALSE, smooth = FALSE) +scatterplot +``` + + +```{r} +library(ggplot2) +# Basic scatter plot +ggplot(parenthood, aes(x = dan.sleep, y = dan.grump)) + geom_point() + geom_point() + geom_smooth() +``` + + + + + +```{r} +#Plot a scatter plot for baby.sleep and dan.grump variables +ggplot(parenthood, aes(x = baby.sleep, y = dan.grump)) + geom_point() + +``` + + +Just by plain observation and comparison, you can see that the relationship is qualitatively the same in both cases: more sleep equals less grump! However, it’s also pretty obvious that the relationship between dan.sleep and dan.grump is stronger than the relationship between baby.sleep and dan.grump. + +But what about the plot between baby.sleep and dan.sleep? + +```{r} +#Plot baby sleep and dan sleep here +``` + +Is the direction of this plot same as the earlier plots? What about strength? + +##### Correlation coefficient + +In order to to quantitatively represent the relationships of strength and direction we discussed above, we can use correlation coefficient. + +The correlation coefficient (or Pearson's correlation coefficient) between two variables X and Y (sometimes denoted _r~XY~_ ) is a measure that varies from -1 to 1. When _r_ = -1 it means that we have a perfect negative relationship, and when _r_ = 1 it means we have a perfect positive relationship. When _r_ = 0, there’s no relationship at all. + +Look at the plots for different _r_ values: + +![Correlation plots](fig 4.png) + +##### Covariance + +The covariance between two variables X and Y is a generalisation of the notion of the variance; it’s a mathematically simple way of describing the relationship between two variables: + + \begin{align*} + + Cov (X, Y) = \frac{1}{N-1}\sum_{i=1}^{N} (X- \overline{X} ) (Y- \overline{Y} ) \\ + + \end{align*} + +Covariance can be understood as an “average cross product” between X and Y . The covariance has the nice property that, if X and Y are entirely unrelated, then the covariance is exactly zero. If it is positive, then the covariance is also positive; and if the relationship is negative then the covariance is also negative. But as it has weird units (try seeing for yourself), it si difficult to interpret and therefore we standardise the covariance, the exact same way that the z-score standardises a raw score: by dividing by the standard deviation. However, because we have two variables that contribute to the covariance, the standardisation only works if we divide by both standard deviations. + +This is what we call as the correlation coefficent, _r_: + +\begin{align*} + + r~XY~ = \frac{Cov(X,Y)}{\sigma_{X} \sigma_{Y}} + +\end{align*} + +This way, covariance properties are retained and it also becomes interpretable. + +Now let's check out how to code this using cor(). + +```{r} +cor(x = parenthood$dan.sleep, y = parenthood$dan.grump) + +#Try giving the entire dataframe 'parenthood' as input in cor() +``` + +What did you find? + +##### What does r = 0.4 mean? + +It really depends on what you want to use the data for, and on how strong the correlations in your field tend to be. + +![Correlation coefficient interpretation table](fig 5.png) + +Let's make some correlation plots using ggcorrplot library +```{r} +install.packages("ggcorrplot") +``` + + +```{r} +library(ggcorrplot) +``` + +```{r} +corr <- round(cor(parenthood), 1) +corr +``` +```{r} +p.mat <- cor_pmat(parenthood) +p.mat +``` + +```{r} +ggcorrplot(corr) +``` + +```{r} +ggcorrplot(corr, method = "circle") +``` + + +```{r} +ggcorrplot(corr, hc.order = TRUE, type = "lower", + lab = TRUE) +``` +For more such options refer: +http://www.sthda.com/english/wiki/ggcorrplot-visualization-of-a-correlation-matrix-using-ggplot2 + + +Now let's take a look at this data called "Anscombe's Quartet" + +```{r} +load( "anscombesquartet.Rdata" ) +cor( X1, Y1 ) +cor( X2, Y2 ) +cor (X3, Y3) +cor (X4, Y4) +``` + +Were the correlation coefficients same? + +Now try plotting them. + +```{r} +scatterplot(x = X1, y = Y1,regLine = FALSE, smooth = FALSE) +scatterplot(x = X2, y = Y2,regLine = FALSE, smooth = FALSE) +scatterplot(x = X3, y = Y3,regLine = FALSE, smooth = FALSE) +scatterplot(x = X4, y = Y4,regLine = FALSE, smooth = FALSE) + + +``` + +Therefore, remember to always look at the scatterplot before attaching any interpretation to the data! + +If we have to properly define the role of Pearson's coefficient, we can say that it actually measures the strength of the linear relationship between two variables. In other words, it gives a measure of the extent to which the data all tend to fall on a single, perfectly straight line. + +##### Spearman's Rank Order Correlation Coefficient + +But let's take a look at another dataset and find correlation between its variables. + +```{r} +load( "effort.Rdata" ) +effort +cor( effort$hours, effort$grade ) +``` + +If you plot this - + +```{r} +scatterplot(effort$hours, effort$grade, regLine = TRUE, smooth = FALSE) +``` + +The correlation _r_ = 0.91 we get above does not represent the actual relationship the plot is depicting. What we’re looking for is something that captures the fact that there is a perfect **ordinal relationship** here. That is, if student 1 works more hours than student 2, then we can guarantee that student 1 will get the better grade. + +If we’re looking for ordinal relationships, all we have to do is treat the data as if it were ordinal scale! So, instead of measuring effort in terms of “hours worked”, let's rank all 10 of the students in order of hours worked. That is, student 1 did the least work out of anyone (2 hours) so they get the lowest rank (rank = 1). Student 4 was the next laziest, putting in only 6 hours of work in over the whole semester, so they get the next lowest rank (rank = 2). + +```{r} +hours.rank <- rank( effort$hours ) # rank students by hours worked +grade.rank <- rank( effort$grade ) # rank students by grade received + +#Now try cor() function for these +cor( hours.rank, grade.rank ) +``` + +Now the correlation coefficient we get is different from the Perason's correlation coefficient _r_ we got earlier. This new correlation coefficient that we got is called '**Spearman's Correlation Coefficient**', denoted by $\rho$. + +```{r} +#Execute this and compare with the correlation coefficient we got above +cor( effort$hours, effort$grade, method = "spearman") +``` + +##### the correlate() function +Try using this function to find the relationship between several variables in a dataframe at once even if some of them are not numeric! + +```{r} +load("work.Rdata") +head(work) +``` +```{r} +cor(work) +``` +```{r} +correlate(work) +``` +Or if you want to use the Spearman method +```{r} +correlate( work, corr.method="spearman" ) +``` + + +##### Handling missing values + +We've seen in earlier lectures that there could be missing values in data which are represented by `NA` in R. One easy way to remove them is using `na.rm = TRUE` as argument in many functions. + +But what if we have missing values in a dataframe where we have to find correlations across variables. + +Let's look at such a dataset. + +```{r} +load( "parenthood2.Rdata" ) +print( parenthood2 ) +head(parenthood2) +#Check how many missing values are there for each variable - compare the values in 'n' with the number of days. +``` + +Now, let's try finding correlations for this dataframe. + +```{r} +cor(parenthood2) +``` + +In order top overcome this problem, we can use `use` as an argument in the cor() function. Try out the following. + +```{r} +cor(parenthood2, use = "complete.obs") +cor(parenthood2, use = "pairwise.complete.obs") +``` + +When we choose `use = "complete.obs"`, R will completely ignore all cases (i.e., all rows in our parenthood2 data frame) that have any missing values at all. For eg., if you choose use = "complete.obs" R will ignore that row completely: that is, even when it’s trying to calculate the correlation between dan.sleep and dan.grump, observation 1 will be ignored, because the value of baby.sleep is missing for that observation. + +Whereas when we set `use = "pairwise.complete.obs"` R only looks at the variables that it’s trying to correlate when determining what to drop. So, for instance, since the only missing value for observation 1 of parenthood2 is for baby.sleep R will only drop observation 1 when baby.sleep is one of the variables involved: and so R keeps observation 1 when trying to correlate dan.sleep and dan.grump. + +The above operation can also be performed by another function called `correlate()` in `lsr` package. + +Try it out. +```{r} +#Try correlate() for parenthood2 here +``` + +_Reference : Chapter 5, D. Navarro_ + +That's all folks! From d07b479596257a1068e7cdcaa210c7e0bdc867ac Mon Sep 17 00:00:00 2001 From: juneeybug Date: Mon, 12 Sep 2022 16:37:17 +0530 Subject: [PATCH 19/55] Binomial plots, ggplot histogram, density plots --- Module 3/Notebooks/Distributions.Rmd | 556 ++++++++++++++------------- 1 file changed, 288 insertions(+), 268 deletions(-) diff --git a/Module 3/Notebooks/Distributions.Rmd b/Module 3/Notebooks/Distributions.Rmd index 503dc14f..e2d99e02 100644 --- a/Module 3/Notebooks/Distributions.Rmd +++ b/Module 3/Notebooks/Distributions.Rmd @@ -1,268 +1,288 @@ ---- -title: "Inferential Statistics: Probability & Distributions - 1" -output: html_notebook ---- - -So far we have discussed about descriptive statistics - summarizing data and plotting it. But in order gain the power of making inferences, we will be strating with inferential statistics. - -#### Pre-requisite: Probability - -##### Difference between probability and statistics** -Probability theory is a branch of mathematics that tells you how often different kinds of events will happen. For eg. What are the chances of a fair coin coming up heads 10 times in a row? or What are the chances that I’ll win the lottery? - -In each case the “truth of the world” is known. We know that the coin is fair, so there’s a 50% chance that any individual coin flip will come up heads. We know that the lottery follows specific rules. The critical point is that probabilistic questions start with a known model of the world, and we use that model to do some calculations. *[Chapter 9, Navarro D.]* - -**A short note on Models** - -A model is a simplified representation of a system. For example, the map of a city represents a city in a simplified fashion. A map providing as much detail as the original city would not only be impossible to construct, it would also be pointless. Humans build models, such as maps and statistical models, to make their lives simpler. *[Chapter 3, Winter B.]* -- - - - - -But even though we know the models like `P(heads) = 0.5`, we do not know the data (Whetehr heads will come 10 times or 3 times). However, for statistics, it is the opposite. We have the data and we want to infer the truth about the world. For eg., If my friend flips a coin 10 times and gets 10 heads, are they playing a trick on me? or If the lottery commissioner’s spouse wins the lottery, how likely is it that the lottery was rigged? - -We want to figure out which is the true model of the world. Is it *P(heads) = 0.5* or is it *P(heads) $\ne$ 0.5*? - -##### What is probability really? - -**The frequentist view** - -![Frequentist_graph](Fig4.png) - -According to the frequentist view, flip a fair coin over and over again, and as N grows large (approaches infinity, denoted N Ñ 8), the proportion of heads will converge to 50%. - - *Advantages* - - It is objective: the probability of an event is necessarily grounded in the world. - - It is unambiguous: any two people watching the same sequence of events unfold, trying to calculate the probability of an event, must inevitably come up with the same answer. - -But it all depends on infinite flips of coin. Do infinities really exist in the physical universe? What about the probability for a single non-repeatable event like the chances of rain on 21 September 2021? - -**The Bayesian view** - -Bayesian view is subjectivist view. The most common way of thinking about subjective probability is to define the probability of an event as the degree of belief that an intelligent and rational agent assigns to that truth of that event. But how to operationalize this 'degree of belief'? - -One way is to use 'rational gambling'. So a “subjective probability” will be operationalized in terms of what bets you're willing to accept. - - *Advantage* - - You don’t need to be limited to those events that are repeatable. - - *Disadvantage* - - Can’t be purely objective – specifying a probability requires us to specify an entity that has the relevant degree of belief. This entity might be a human, an alien, a robot, or even a statistician, but there has to be an **intelligent agent** out there that believes in things. - - -In short, frequentist view is sometimes considered to be too narrow (forbids lots of things that that we want to assign probabilities to) while the Bayesian view is sometimes thought to be too broad (allows too many differences between observers). - -##### Definitions - -Refer to the example described in *Section 9.3.1, Navarro D.* for the following content. - -**Elementary event:** Every time we make an observation (e.g., every time I put on a pair of pants), then the outcome will be one and only one of these events. - -**Sample space:** The set of all possible events (e.g., the wardrobe) - -**Probability:** Numbers between 0 and 1. - -For an event X, the probability of that event P(X) is a number that lies between 0 and 1. The bigger the value of P(X), the more likely the event is to occur. - -If P(X) = 0, it means the event X is impossible (i.e., I never wear those pants). On the other hand, if P(X)= 1 it means that event X is certain to occur (i.e., I always wear those pants). - -**Law of total probability:** The probabilities of the elementary events need to add up to 1 - -#### Distributions - -Let's take a look at this and see what is a distribution. - -```{r} -pants <- data.frame( - type = c("Blue jeans","Grey jeans","Black jeans","Black suit","Blue tracksuit"), - label = c("X1", "X2", "X3", "X4", "X5"), - probability = c(0.5,0.3,0.1,0,0.1)) - -pants -``` -Probability distribution is simply the probabilities of these different events above. Each of the events has a probability that lies between 0 and 1, and if we add up the probability of all events, they sum to 1. - -```{r} -#Try plotting a bar graph of all the probabilities above -``` -Let's think about what happens in case of non-elementary events. E.g. An event E where either “blue jeans” or “black jeans” or “grey jeans" has occurred. -Then what will be the probability of event E. - -P(E) = P(X1) + P(X2) + P(X3) - -If any of these elementary events occurs, then E is also said to have occurred. Similarly, there are other rules satisfying probabilities: - -![Probability_rules](Fig5.png) - -##### Binomial Distribution - -*Refer to section 9.4.1, Navarro D., for the detailed example* - -Some basic terminology - We’ll let `N` denote the number of dice rolls in our experiment; which is often referred to as the `size parameter` of our binomial distribution. We’ll also use `θ` to refer to the the probability that a single die comes up skull, a quantity that is usually called the `success probability` of the binomial. Finally, we’ll use `X` to refer to the results of our experiment, namely the number of skulls I get when I roll the dice. Since the actual value of X is due to chance, we refer to it as a `random variable`. - -`X ~ Binomial(θ, N)` denotes X is generated randomly from a binomial distribution with parameters θ and N. - -4 ~ Binomial(1/6, 20) - -5 ~ Binomial(1/2, 10) - -Let's generate a binomial distribution in R: - -```{r} -dbinom( x = 1, size = 20, prob = 1/6) -``` -The above command calculates the probability of getting x = 4 skulls, from an experiment of size = 20 trials, in which the probability of getting a skull on any one trial is prob = 1/6. - -What if the dice is replaced by a coin in the above example? How will the probability change? - -```{r} -#Try finding the probability for N = 20 and N=100 trials for a fair coin flip. -``` -There are different functions in R for different distributions as well as different ones for finding different quantity of interest. - -If we want to find the probability of obtaining an outcome smaller than or equal to quantile q, then we can directly use `pbinom`. - -```{r} -#Find the probability of rolling 0 skulls or 1 skull or 2 skulls or 3 skulls or 4 skulls -pbinom( q= 3, size = 20, prob = 1/6) - -#Practice - Find probability of getting 0-5 heads in 50 trials of coin flip -``` -In other words, value of 4 is actually the 76.9th percentile of this binomial distribution. - -Now let’s say we want to calculate the 75th percentile of the binomial distribution. - -```{r} -qbinom( p = 0.566, size = 20, prob = 1/6 ) - -#Practice - Find the 40th percentile -``` - -We've found different quantities. What if we want to simulate the above experiments. We specify how many times R should “simulate” the experiment using the n argument, and it will generate random outcomes from the binomial distribution using the `rbinom` function. - -```{r} -z <- rbinom( n = 10000, size = 20, prob = 2/6 ) -z -#Let's also plot this and see how it looks -hist(z, col = 'steelblue') -``` -#Try plotting the distributions in above examples and vary the size, trial number and probability to generate different plots. - -All these different functions *d, p, q, n* are also applicable to other distributions. E.g. *dnorm, pnorm, qnorm, rnorm* for Normal distribution. - - -##### Normal Distribution - -Most frequently encountered distribution. -Eg: heights of all students in the class, marks obtained in exams, etc - -Basically, whenever you have accumulation of data at the center, fewer extreme values and a near symmetric spread, you should recall the normal distribution. - - -- `dnorm()` - For probability density -- `pnorm()` - For cumulative probability -- `qnorm()` - For quantile of -- `rnorm()` - For random number generation - - -mean = 0; sd = 1 -> standard normal distribution -```{r} -normal_distribution <- rnorm(10000, mean = 0, sd = 1) -histogram_normal_distribution <- hist(normal_distribution) -plot(histogram_normal_distribution$mids,histogram_normal_distribution$density, type="l", col="blue", lwd=3) - - -``` - -Note: Normal distribution is sometimes referred to as the bell curve or Gaussian distribution - -The notation for a normal distribution is: X ∼ Normal(μ,σ) - - -dnorm tells you the probability of getting a particular outcome -```{r} -dnorm(x=85, mean=80, sd=5) - -``` -Cumulative normal distribution -```{r} -pnorm(q = 80, mean = 80, sd = 5) -``` - -```{r} -qnorm(0.25 ,mean = 0 , sd = 1) -``` - -*Checking for normality using the Shapiro-Wilk Test* -```{r} -norm <- rnorm(50, mean = 0, sd = 1) -shapiro.test(norm) - -binom <- rbinom(100, 20, 1/6) -shapiro.test(binom) - -``` - - - - - -##### Other useful distributions - -Some other distributions you may encounter include: -*1) t distribution* - -Looks like the normal distribution but has heavier tails. -Used when data looks like a normal distribution but the mean and SD are unknown. - -Use the following functions to visualize the t distribution: -dt(), pt(), qt() and rt() - -```{r} -t_distribution <- rt(10000, 3) -histogram_t_distribution <- hist(t_distribution) -plot(histogram_t_distribution$mids,histogram_t_distribution$density, type="l", col="blue", lwd=3) -``` - - - - -*2) Chi square (χ2) distribution* - -All positive and heavily skewed to the left. -Used when data represents sum of squares of a normally distributed variables. - -Use the following functions to visualize the chi sq distribution: -dchisq(), pchisq(), qchisq(), rchisq(). - -```{r} - -norm1 <- rnorm(100, mean = 10, sd = 5) -norm2 <- rnorm(100, mean = 20, sd = 7) -chisqdist <- norm1^2 + norm2^2 - -chisq_distribution <- rchisq(10000, 3) -histogram_chisq_distribution <- hist(chisq_distribution) -plot(histogram_chisq_distribution$mids,histogram_chisq_distribution$density, type="l", col="blue", lwd=3) -``` - - - - -3) F distribution - -This one looks a bit like the chi square distribution. But this distribution comes into picture when -one compares two chi sq distributions. - -Use the following functions to visualize the chi sq distribution: -df(), pf(), qf() and rf() - -```{r} -f_distribution <- rf(10000, 5, 10) -histogram_f_distribution <- hist(f_distribution) -plot(histogram_f_distribution$mids,histogram_f_distribution$density, type="l", col="blue", lwd=3) -``` - - - -The End - -Reference - *Chapter 9, Navarro D.* +--- +title: "Inferential Statistics: Probability & Distributions - 1" +output: html_notebook +--- + +So far we have discussed about descriptive statistics - summarizing data and plotting it. But in order gain the power of making inferences, we will be strating with inferential statistics. + +#### Pre-requisite: Probability + +##### Difference between probability and statistics** +Probability theory is a branch of mathematics that tells you how often different kinds of events will happen. For eg. What are the chances of a fair coin coming up heads 10 times in a row? or What are the chances that I’ll win the lottery? + +In each case the “truth of the world” is known. We know that the coin is fair, so there’s a 50% chance that any individual coin flip will come up heads. We know that the lottery follows specific rules. The critical point is that probabilistic questions start with a known model of the world, and we use that model to do some calculations. *[Chapter 9, Navarro D.]* + +**A short note on Models** + +A model is a simplified representation of a system. For example, the map of a city represents a city in a simplified fashion. A map providing as much detail as the original city would not only be impossible to construct, it would also be pointless. Humans build models, such as maps and statistical models, to make their lives simpler. *[Chapter 3, Winter B.]* +- - - - + +But even though we know the models like `P(heads) = 0.5`, we do not know the data (Whetehr heads will come 10 times or 3 times). However, for statistics, it is the opposite. We have the data and we want to infer the truth about the world. For eg., If my friend flips a coin 10 times and gets 10 heads, are they playing a trick on me? or If the lottery commissioner’s spouse wins the lottery, how likely is it that the lottery was rigged? + +We want to figure out which is the true model of the world. Is it *P(heads) = 0.5* or is it *P(heads) $\ne$ 0.5*? + +##### What is probability really? + +**The frequentist view** + +![Frequentist_graph](Fig4.png) + +According to the frequentist view, flip a fair coin over and over again, and as N grows large (approaches infinity, denoted N Ñ 8), the proportion of heads will converge to 50%. + + *Advantages* + - It is objective: the probability of an event is necessarily grounded in the world. + - It is unambiguous: any two people watching the same sequence of events unfold, trying to calculate the probability of an event, must inevitably come up with the same answer. + +But it all depends on infinite flips of coin. Do infinities really exist in the physical universe? What about the probability for a single non-repeatable event like the chances of rain on 21 September 2021? + +**The Bayesian view** + +Bayesian view is subjectivist view. The most common way of thinking about subjective probability is to define the probability of an event as the degree of belief that an intelligent and rational agent assigns to that truth of that event. But how to operationalize this 'degree of belief'? + +One way is to use 'rational gambling'. So a “subjective probability” will be operationalized in terms of what bets you're willing to accept. + + *Advantage* + - You don’t need to be limited to those events that are repeatable. + + *Disadvantage* + - Can’t be purely objective – specifying a probability requires us to specify an entity that has the relevant degree of belief. This entity might be a human, an alien, a robot, or even a statistician, but there has to be an **intelligent agent** out there that believes in things. + + +In short, frequentist view is sometimes considered to be too narrow (forbids lots of things that that we want to assign probabilities to) while the Bayesian view is sometimes thought to be too broad (allows too many differences between observers). + +##### Definitions + +Refer to the example described in *Section 9.3.1, Navarro D.* for the following content. + +**Elementary event:** Every time we make an observation (e.g., every time I put on a pair of pants), then the outcome will be one and only one of these events. + +**Sample space:** The set of all possible events (e.g., the wardrobe) + +**Probability:** Numbers between 0 and 1. + +For an event X, the probability of that event P(X) is a number that lies between 0 and 1. The bigger the value of P(X), the more likely the event is to occur. + +If P(X) = 0, it means the event X is impossible (i.e., I never wear those pants). On the other hand, if P(X)= 1 it means that event X is certain to occur (i.e., I always wear those pants). + +**Law of total probability:** The probabilities of the elementary events need to add up to 1 + +#### Distributions + +Let's take a look at this and see what is a distribution. + +```{r} +pants <- data.frame( + type = c("Blue jeans","Grey jeans","Black jeans","Black suit","Blue tracksuit"), + label = c("X1", "X2", "X3", "X4", "X5"), + probability = c(0.5,0.3,0.1,0,0.1)) + +pants +``` +Probability distribution is simply the probabilities of these different events above. Each of the events has a probability that lies between 0 and 1, and if we add up the probability of all events, they sum to 1. + +```{r} +#Try plotting a bar graph of all the probabilities above +``` +Let's think about what happens in case of non-elementary events. E.g. An event E where either “blue jeans” or “black jeans” or “grey jeans" has occurred. +Then what will be the probability of event E. + +P(E) = P(X1) + P(X2) + P(X3) + +If any of these elementary events occurs, then E is also said to have occurred. Similarly, there are other rules satisfying probabilities: + +![Probability_rules](Fig5.png) + +##### Binomial Distribution + +*Refer to section 9.4.1, Navarro D., for the detailed example* + +Some basic terminology - We’ll let `N` denote the number of dice rolls in our experiment; which is often referred to as the `size parameter` of our binomial distribution. We’ll also use `θ` to refer to the the probability that a single die comes up skull, a quantity that is usually called the `success probability` of the binomial. Finally, we’ll use `X` to refer to the results of our experiment, namely the number of skulls I get when I roll the dice. Since the actual value of X is due to chance, we refer to it as a `random variable`. + +`X ~ Binomial(θ, N)` denotes X is generated randomly from a binomial distribution with parameters θ and N. + +4 ~ Binomial(1/6, 20) + +5 ~ Binomial(1/2, 10) + +Let's generate a binomial distribution in R: + +```{r} +dbinom( x = 1, size = 20, prob = 1/6) +``` +The above command calculates the probability of getting x = 4 skulls, from an experiment of size = 20 trials, in which the probability of getting a skull on any one trial is prob = 1/6. + +What if the dice is replaced by a coin in the above example? How will the probability change? + +```{r} +#Try finding the probability for N = 20 and N=100 trials for a fair coin flip. +``` +There are different functions in R for different distributions as well as different ones for finding different quantity of interest. + +If we want to find the probability of obtaining an outcome smaller than or equal to quantile q, then we can directly use `pbinom`. + +```{r} +#Find the probability of rolling 0 skulls or 1 skull or 2 skulls or 3 skulls or 4 skulls +pbinom( q= 3, size = 20, prob = 1/6) + +#Practice - Find probability of getting 0-5 heads in 50 trials of coin flip +``` +In other words, value of 4 is actually the 76.9th percentile of this binomial distribution. + +Now let’s say we want to calculate the 75th percentile of the binomial distribution. + +```{r} +qbinom( p = 0.566, size = 20, prob = 1/6 ) + +#Practice - Find the 40th percentile +``` + +We've found different quantities. What if we want to simulate the above experiments. We specify how many times R should “simulate” the experiment using the n argument, and it will generate random outcomes from the binomial distribution using the `rbinom` function. + +```{r} +z <- rbinom( n = 1000, size = 20, prob = 1/2 ) +#Let's also plot this and see how it looks +hist(z, breaks=15, col = 'steelblue') +``` +#Try plotting the distributions in above examples and vary the size, trial number and probability to generate different plots. +```{r} +library(ggplot2) +df<- data.frame(z) +# Basic histogram with custom binwidth +ggplot(df, aes(x=z)) + geom_histogram(aes(y = ..density..), binwidth=1, color="darkblue", fill="lightblue") +``` + +```{r} +dbinom(x = 10, size = 20, prob = 1/2) +``` +```{r} +pbinom(q = 10, size = 20, prob = 1/2) +``` +```{r} +qbinom(p = 0.95, size = 20, prob = 1/2) +``` + + + + + + +All these different functions *d, p, q, n* are also applicable to other distributions. E.g. *dnorm, pnorm, qnorm, rnorm* for Normal distribution. + + +##### Normal Distribution + +Most frequently encountered distribution. +Eg: heights of all students in the class, marks obtained in exams, etc + +Basically, whenever you have accumulation of data at the center, fewer extreme values and a near symmetric spread, you should recall the normal distribution. + + +- `dnorm()` - For probability density +- `pnorm()` - For cumulative probability +- `qnorm()` - For quantile of +- `rnorm()` - For random number generation + + +mean = 0; sd = 1 -> standard normal distribution +```{r} +normal_distribution <- rnorm(10000, mean = 10, sd = 5) +histogram_normal_distribution <- hist(normal_distribution) +plot(histogram_normal_distribution$mids,histogram_normal_distribution$density, type="l", col="blue", lwd=1) + + +``` + +Note: Normal distribution is sometimes referred to as the bell curve or Gaussian distribution + +The notation for a normal distribution is: X ∼ Normal(μ,σ) + + +dnorm tells you the probability of getting a particular outcome +```{r} +dnorm(x=85, mean=80, sd=5) + +``` +Cumulative normal distribution +```{r} +pnorm(q = 80, mean = 80, sd = 5) +``` + +```{r} +qnorm(0.25 ,mean = 0 , sd = 1) +``` + +*Checking for normality using the Shapiro-Wilk Test* +```{r} +norm <- rnorm(50, mean = 0, sd = 1) +shapiro.test(norm) + +binom <- rbinom(100, 20, 1/6) +shapiro.test(binom) + +``` + + + + + +##### Other useful distributions + +Some other distributions you may encounter include: +*1) t distribution* + +Looks like the normal distribution but has heavier tails. +Used when data looks like a normal distribution but the mean and SD are unknown. + +Use the following functions to visualize the t distribution: +dt(), pt(), qt() and rt() + +```{r} +t_distribution <- rt(10000, 15) +histogram_t_distribution <- hist(t_distribution) +plot(histogram_t_distribution$mids,histogram_t_distribution$density, type="l", col="blue", lwd=3) +``` + + + + +*2) Chi square (χ2) distribution* + +All positive and heavily skewed to the left. +Used when data represents sum of squares of a normally distributed variables. + +Use the following functions to visualize the chi sq distribution: +dchisq(), pchisq(), qchisq(), rchisq(). + +```{r} + +norm1 <- rnorm(100, mean = 10, sd = 5) +norm2 <- rnorm(100, mean = 20, sd = 7) +chisqdist <- norm1^2 + norm2^2 + +chisq_distribution <- rchisq(10000, 3) +histogram_chisq_distribution <- hist(chisq_distribution) +plot(histogram_chisq_distribution$mids,histogram_chisq_distribution$density, type="l", col="blue", lwd=3) +``` + + + + +3) F distribution + +This one looks a bit like the chi square distribution. But this distribution comes into picture when +one compares two chi sq distributions. + +Use the following functions to visualize the chi sq distribution: +df(), pf(), qf() and rf() + +```{r} +f_distribution <- rf(10000, 5, 10) +histogram_f_distribution <- hist(f_distribution) +plot(histogram_f_distribution$mids,histogram_f_distribution$density, type="l", col="blue", lwd=3) +``` + + + +The End + +Reference - *Chapter 9, Navarro D.* From 8bc3e9cfc8c88dde0c5a27ce98ed647302a2c127 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Sat, 1 Oct 2022 09:28:45 +0530 Subject: [PATCH 20/55] power calculation + null vs alternative comparison --- Module 3/Notebooks/Distributions.Rmd | 61 ++++++++++++++++++++++++---- 1 file changed, 54 insertions(+), 7 deletions(-) diff --git a/Module 3/Notebooks/Distributions.Rmd b/Module 3/Notebooks/Distributions.Rmd index e2d99e02..f38d5a7e 100644 --- a/Module 3/Notebooks/Distributions.Rmd +++ b/Module 3/Notebooks/Distributions.Rmd @@ -139,7 +139,7 @@ qbinom( p = 0.566, size = 20, prob = 1/6 ) We've found different quantities. What if we want to simulate the above experiments. We specify how many times R should “simulate” the experiment using the n argument, and it will generate random outcomes from the binomial distribution using the `rbinom` function. ```{r} -z <- rbinom( n = 1000, size = 20, prob = 1/2 ) +z <- rbinom( n = 1000000, size = 100, prob = 1/2 ) #Let's also plot this and see how it looks hist(z, breaks=15, col = 'steelblue') ``` @@ -152,14 +152,61 @@ ggplot(df, aes(x=z)) + geom_histogram(aes(y = ..density..), binwidth=1, color="d ``` ```{r} -dbinom(x = 10, size = 20, prob = 1/2) +dbinom(x = 43, size = 100, prob = 1/2) ``` ```{r} -pbinom(q = 10, size = 20, prob = 1/2) +pbinom(q = 17, size = 20, prob = 1/2) ``` ```{r} -qbinom(p = 0.95, size = 20, prob = 1/2) +qbinom(p = 0.975, size = 10, prob = 1/2) ``` +```{r} +qbinom(p = 0.025, size = 10, prob = 1/2) +``` + +```{r} +binom.test( x=62, n=100, p=.5 ) +``` + + +```{r} +z <- rbinom( n = 1000000, size = 100, prob = 0.9 ) + +library(ggplot2) +df<- data.frame(z) +# Basic histogram with custom binwidth +ggplot(df, aes(x=z)) + geom_histogram(aes(y = ..density..), binwidth=1, color="darkblue", fill="lightblue") +``` +```{r} +library(ggplot2) +library("ggpubr") +``` + + +```{r} +num <- 10000 +z_null <- rbinom( n = num, size = 100, prob = 0.5 ) +z_alt <- rbinom( n = num, size = 100, prob = 0.6 ) +df1 <- data.frame(z_null,z_alt) +# Basic histogram with custom binwidth +p1 <- ggplot(df1, aes(x=z_null)) + geom_histogram(aes(y = ..density..), binwidth=1, color="lightblue", fill="lightblue") +p2 <- ggplot(df1, aes(x=z_alt)) + geom_histogram(aes(y = ..density..), binwidth=1, color="lightgreen", fill="lightgreen") + +figure <- ggarrange(p1, p2, + labels = c("Null", "Alt")) +figure +``` + + +```{r} +library(pwr) +pwr.p.test(h = ES.h(p1 = 0.7, p2 = 0.5), sig.level = 0.05, power = 0.8) +``` +```{r} +effsize <- ES.h(p1 = 0.7, p2 = 0.5) +effsize +``` + @@ -199,12 +246,12 @@ The notation for a normal distribution is: X ∼ Normal(μ,σ) dnorm tells you the probability of getting a particular outcome ```{r} -dnorm(x=85, mean=80, sd=5) +dnorm(x=10, mean=10, sd=5) ``` Cumulative normal distribution ```{r} -pnorm(q = 80, mean = 80, sd = 5) +pnorm(q = 19.8, mean = 10, sd = 5) ``` ```{r} @@ -259,7 +306,7 @@ norm1 <- rnorm(100, mean = 10, sd = 5) norm2 <- rnorm(100, mean = 20, sd = 7) chisqdist <- norm1^2 + norm2^2 -chisq_distribution <- rchisq(10000, 3) +chisq_distribution <- rchisq(10000, 2) histogram_chisq_distribution <- hist(chisq_distribution) plot(histogram_chisq_distribution$mids,histogram_chisq_distribution$density, type="l", col="blue", lwd=3) ``` From f93b8e20ab3bc31e9cfe817ac6de00d7eaae8fc2 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Mon, 17 Oct 2022 13:28:59 +0530 Subject: [PATCH 21/55] Added Normality Tests --- .gitignore | 4 ++ BSE658.Rproj | 13 ++++ Module 5/Ttest.Rmd | 22 ++++++- Module 5/Ttest.nb.html | 146 +++++++++++++++++++++++++++++++++-------- 4 files changed, 156 insertions(+), 29 deletions(-) create mode 100644 .gitignore create mode 100644 BSE658.Rproj diff --git a/.gitignore b/.gitignore new file mode 100644 index 00000000..5b6a0652 --- /dev/null +++ b/.gitignore @@ -0,0 +1,4 @@ +.Rproj.user +.Rhistory +.RData +.Ruserdata diff --git a/BSE658.Rproj b/BSE658.Rproj new file mode 100644 index 00000000..8e3c2ebc --- /dev/null +++ b/BSE658.Rproj @@ -0,0 +1,13 @@ +Version: 1.0 + +RestoreWorkspace: Default +SaveWorkspace: Default +AlwaysSaveHistory: Default + +EnableCodeIndexing: Yes +UseSpacesForTab: Yes +NumSpacesForTab: 2 +Encoding: UTF-8 + +RnwWeave: Sweave +LaTeX: pdfLaTeX diff --git a/Module 5/Ttest.Rmd b/Module 5/Ttest.Rmd index 7279e0c7..cb5d2209 100644 --- a/Module 5/Ttest.Rmd +++ b/Module 5/Ttest.Rmd @@ -81,6 +81,26 @@ head( chico ) oneSampleTTest( chico$improvement, mu=0 ) ``` ```{r} -wilcox.test( x = chico$improvement, mu=0) +qqnorm( y = chico$improvement ) # draw the QQ plot +``` + +```{r} +shapiro.test( x = chico$improvement ) +``` + +```{r} +improvement2 <- rchisq(100, 2) +hist(x = improvement2) +``` +```{r} +qqnorm( y = improvement2 ) +``` +```{r} +shapiro.test( x = improvement2 ) +``` + + +```{r} +wilcox.test( x = improvement2, mu=0) ``` diff --git a/Module 5/Ttest.nb.html b/Module 5/Ttest.nb.html index ca4e9724..b1f72e0e 100644 --- a/Module 5/Ttest.nb.html +++ b/Module 5/Ttest.nb.html @@ -1774,14 +1774,34 @@
    setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) # set curretn path as workpath
     install.packages('psych')
    - -
    Error in install.packages : Updating loaded packages
    + +
    Installing package into ‘C:/Users/Arjun/AppData/Local/R/win-library/4.2’
    +(as ‘lib’ is unspecified)
    +trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.2/psych_2.2.9.zip'
    +Content type 'application/zip' length 3821660 bytes (3.6 MB)
    +downloaded 3.6 MB
    + + +
    package ‘psych’ successfully unpacked and MD5 sums checked
    +
    +The downloaded binary packages are in
    +    C:\Users\Arjun\AppData\Local\Temp\RtmpgT0xwo\downloaded_packages
    install.packages('lsr')
    - -
    Error in install.packages : Updating loaded packages
    + +
    Installing package into ‘C:/Users/Arjun/AppData/Local/R/win-library/4.2’
    +(as ‘lib’ is unspecified)
    +trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.2/lsr_0.5.2.zip'
    +Content type 'application/zip' length 209262 bytes (204 KB)
    +downloaded 204 KB
    + + +
    package ‘lsr’ successfully unpacked and MD5 sums checked
    +
    +The downloaded binary packages are in
    +    C:\Users\Arjun\AppData\Local\Temp\RtmpgT0xwo\downloaded_packages
    @@ -1838,22 +1858,40 @@ - -
    head( harpo )
    - - -
    - -
    - - - - - - -
    independentSamplesTTest( 
    +
    +
    ```r
    +head( harpo )
    +
    
    +<!-- rnb-source-end -->
    +
    +<!-- rnb-frame-begin eyJtZXRhZGF0YSI6eyJjbGFzc2VzIjoiZGF0YS5mcmFtZSIsIm5yb3ciOjYsIm5jb2wiOjIsInN1bW1hcnkiOltdfSwicmRmIjoiSDRzSUFBQUFBQUFBQm0xUVRVL0RNQXgxUDFMVVNodEkvSTcyc3N1T0JTSE9Zd0pwVjlObW8xcElwalFGanZ3MGZ0bkFhWk5waXpoRXRsLzhudjI4ZnRnc2lrMEJBQW1rY1FRSm94VFl5L05qdVFSQ3FJZ2doZHpHTDJxNnBjU0NjM3BadmFwdE45UnJtT0xxMjlVK3V2K25uNmtCa3BubGphS1RUdXh5VjE4TXpBVC80S0tuN0diOG5kRDhUbUp2c08vUUFjVTkxeEpiYmd3UEJGZ2pzUGY4aytvV0c2TTBaY2V3WGVJN0Q4ZXhuU1p0WDVoaHBGN1FjcTArSzArMS91TEp2ZlZwRzVQZllJT2lSWVBWVmhQbG55MnUxTUYwU3BKWWJJL05BbktrQStCNmtIWjRXelp2Zzl5WEN6dmc3S2d6RjdPejNCMDY5WXN4ZnhvdWQ1MDhtUlg0eW9VcjVtUnk5RmdkZENlTmQwSm9YeGxsMFBjVmpSSWVHYjNCOFE5bVN3MGpZd0lBQUE9PSJ9 -->
    +
    +<div data-pagedtable="false">
    +  <script data-pagedtable-source type="application/json">
    +{"columns":[{"label":[""],"name":["_rn_"],"type":[""],"align":["left"]},{"label":["grade"],"name":[1],"type":["dbl"],"align":["right"]},{"label":["tutor"],"name":[2],"type":["fctr"],"align":["left"]}],"data":[{"1":"65","2":"Anastasia","_rn_":"1"},{"1":"72","2":"Bernadette","_rn_":"2"},{"1":"66","2":"Bernadette","_rn_":"3"},{"1":"74","2":"Anastasia","_rn_":"4"},{"1":"73","2":"Anastasia","_rn_":"5"},{"1":"71","2":"Bernadette","_rn_":"6"}],"options":{"columns":{"min":{},"max":[10],"total":[2]},"rows":{"min":[10],"max":[10],"total":[6]},"pages":{}}}
    +  </script>
    +</div>
    +
    +<!-- rnb-frame-end -->
    +
    +<!-- rnb-chunk-end -->
    +
    +
    +<!-- rnb-text-begin -->
    +
    +
    +
    +
    +<!-- rnb-text-end -->
    +
    +
    +<!-- rnb-chunk-begin -->
    +
    +
    +<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuaW5kZXBlbmRlbnRTYW1wbGVzVFRlc3QoIFxuICAgICAgZm9ybXVsYSA9IGdyYWRlIH4gdHV0b3IsICAjIGZvcm11bGEgc3BlY2lmeWluZyBvdXRjb21lIGFuZCBncm91cCB2YXJpYWJsZXNcbiAgICAgIGRhdGEgPSBoYXJwbywgICAgICAgICAgICAgIyBkYXRhIGZyYW1lIHRoYXQgY29udGFpbnMgdGhlIHZhcmlhYmxlc1xuICAgICAgdmFyLmVxdWFsID0gVFJVRSAgICAgICAgICAjIGFzc3VtZSB0aGF0IHRoZSB0d28gZ3JvdXBzIGhhdmUgdGhlIHNhbWUgdmFyaWFuY2VcbiAgKVxuYGBgIn0= -->
    +
    +```r
    +independentSamplesTTest( 
           formula = grade ~ tutor,  # formula specifying outcome and group variables
           data = harpo,             # data frame that contains the variables
           var.equal = TRUE          # assume that the two groups have the same variance
    @@ -2012,25 +2050,77 @@
     
     
     
    -
    -
    wilcox.test( x = chico$improvement, mu=0)
    + +
    qqnorm( y = chico$improvement )        # draw the QQ plot
    + + +

    + + + + + + +
    shapiro.test( x = chico$improvement )
    - -
    Warning: cannot compute exact p-value with tiesWarning: cannot compute exact p-value with zeroes
    + +
    
    +    Shapiro-Wilk normality test
    +
    +data:  chico$improvement
    +W = 0.9664, p-value = 0.6778
    - + + + + + +
    improvement2 <- rchisq(100, 2) 
    +hist(x = improvement2)
    + + +

    + + + + +
    qqnorm( y = improvement2 ) 
    + + +

    + + + + +
    shapiro.test( x = improvement2 )
    + + +
    
    +    Shapiro-Wilk normality test
    +
    +data:  improvement2
    +W = 0.80117, p-value = 2.689e-10
    + + + + + + +
    wilcox.test( x = improvement2, mu=0)
    + +
    
         Wilcoxon signed rank test with continuity correction
     
    -data:  chico$improvement
    -V = 188, p-value = 0.0001965
    +data:  improvement2
    +V = 5050, p-value < 2.2e-16
     alternative hypothesis: true location is not equal to 0
    -
    LS0tDQp0aXRsZTogIiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCg0KDQpJbnN0YWxsIGxzciwgcHN5Y2ggbGlicmFyeSBpZiBub3QgYWxyZWFkeSBpbnN0YWxsZWQNCmBgYHtyfQ0Kc2V0d2QoZGlybmFtZShyc3R1ZGlvYXBpOjpnZXRBY3RpdmVEb2N1bWVudENvbnRleHQoKSRwYXRoKSkgIyBzZXQgY3VycmV0biBwYXRoIGFzIHdvcmtwYXRoDQppbnN0YWxsLnBhY2thZ2VzKCdwc3ljaCcpDQppbnN0YWxsLnBhY2thZ2VzKCdsc3InKQ0KYGBgDQoNCmBgYHtyfQ0KDQpgYGANCg0KDQpgYGB7cn0NCmxpYnJhcnkobHNyKQ0KbG9hZCggZmlsZS5wYXRoKCJ6ZXBwby5SZGF0YSIgKSkgDQpvbmVTYW1wbGVUVGVzdCggeD1ncmFkZXMsIG11PTY3LjUgKSAjYWRkIHRoZSBtdSB2YWx1ZSBoZXJlDQoNCmBgYA0KDQoNCmBgYHtyfQ0KDQpsb2FkIChmaWxlLnBhdGgoImhhcnBvLlJkYXRhIiApKQ0Kc3RyKGhhcnBvKQ0KYGBgDQoNCmBgYHtyfQ0KaGVhZCggaGFycG8gKQ0KYGBgDQoNCg0KYGBge3J9DQppbmRlcGVuZGVudFNhbXBsZXNUVGVzdCggDQogICAgICBmb3JtdWxhID0gZ3JhZGUgfiB0dXRvciwgICMgZm9ybXVsYSBzcGVjaWZ5aW5nIG91dGNvbWUgYW5kIGdyb3VwIHZhcmlhYmxlcw0KICAgICAgZGF0YSA9IGhhcnBvLCAgICAgICAgICAgICAjIGRhdGEgZnJhbWUgdGhhdCBjb250YWlucyB0aGUgdmFyaWFibGVzDQogICAgICB2YXIuZXF1YWwgPSBUUlVFICAgICAgICAgICMgYXNzdW1lIHRoYXQgdGhlIHR3byBncm91cHMgaGF2ZSB0aGUgc2FtZSB2YXJpYW5jZQ0KICApDQpgYGANCmBgYHtyfQ0KaW5kZXBlbmRlbnRTYW1wbGVzVFRlc3QoIA0KICAgICAgZm9ybXVsYSA9IGdyYWRlIH4gdHV0b3IsICAjIGZvcm11bGEgc3BlY2lmeWluZyBvdXRjb21lIGFuZCBncm91cCB2YXJpYWJsZXMNCiAgICAgIGRhdGEgPSBoYXJwbyAgICAgICAgICAgICAgIyBkYXRhIGZyYW1lIHRoYXQgY29udGFpbnMgdGhlIHZhcmlhYmxlcw0KICApDQpgYGANCg0KDQpgYGB7cn0NCmxvYWQoIGZpbGUucGF0aCgiY2hpY28uUmRhdGEiICkpDQpzdHIoY2hpY28pIA0KYGBgDQoNCg0KYGBge3J9DQpoZWFkKCBjaGljbyApDQpgYGANCg0KDQpgYGB7cn0NCmxpYnJhcnkoIHBzeWNoICkNCmRlc2NyaWJlKCBjaGljbyApDQpgYGANCg0KDQoNCmBgYHtyfQ0KY2hpY28kaW1wcm92ZW1lbnQgPC0gY2hpY28kZ3JhZGVfdGVzdDIgLSBjaGljbyRncmFkZV90ZXN0MSANCmBgYA0KDQoNCmBgYHtyfQ0KaGVhZCggY2hpY28gKQ0KYGBgDQpgYGB7cn0NCm9uZVNhbXBsZVRUZXN0KCBjaGljbyRpbXByb3ZlbWVudCwgbXU9MCApDQpgYGANCmBgYHtyfQ0Kd2lsY294LnRlc3QoIHggPSBjaGljbyRpbXByb3ZlbWVudCwgbXU9MCkNCmBgYA0KDQo=
    +
    LS0tDQp0aXRsZTogIiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCg0KDQpJbnN0YWxsIGxzciwgcHN5Y2ggbGlicmFyeSBpZiBub3QgYWxyZWFkeSBpbnN0YWxsZWQNCmBgYHtyfQ0Kc2V0d2QoZGlybmFtZShyc3R1ZGlvYXBpOjpnZXRBY3RpdmVEb2N1bWVudENvbnRleHQoKSRwYXRoKSkgIyBzZXQgY3VycmV0biBwYXRoIGFzIHdvcmtwYXRoDQppbnN0YWxsLnBhY2thZ2VzKCdwc3ljaCcpDQppbnN0YWxsLnBhY2thZ2VzKCdsc3InKQ0KYGBgDQoNCmBgYHtyfQ0KDQpgYGANCg0KDQpgYGB7cn0NCmxpYnJhcnkobHNyKQ0KbG9hZCggZmlsZS5wYXRoKCJ6ZXBwby5SZGF0YSIgKSkgDQpvbmVTYW1wbGVUVGVzdCggeD1ncmFkZXMsIG11PTY3LjUgKSAjYWRkIHRoZSBtdSB2YWx1ZSBoZXJlDQoNCmBgYA0KDQoNCmBgYHtyfQ0KDQpsb2FkIChmaWxlLnBhdGgoImhhcnBvLlJkYXRhIiApKQ0Kc3RyKGhhcnBvKQ0KYGBgDQoNCmBgYHtyfQ0KaGVhZCggaGFycG8gKQ0KYGBgDQoNCg0KYGBge3J9DQppbmRlcGVuZGVudFNhbXBsZXNUVGVzdCggDQogICAgICBmb3JtdWxhID0gZ3JhZGUgfiB0dXRvciwgICMgZm9ybXVsYSBzcGVjaWZ5aW5nIG91dGNvbWUgYW5kIGdyb3VwIHZhcmlhYmxlcw0KICAgICAgZGF0YSA9IGhhcnBvLCAgICAgICAgICAgICAjIGRhdGEgZnJhbWUgdGhhdCBjb250YWlucyB0aGUgdmFyaWFibGVzDQogICAgICB2YXIuZXF1YWwgPSBUUlVFICAgICAgICAgICMgYXNzdW1lIHRoYXQgdGhlIHR3byBncm91cHMgaGF2ZSB0aGUgc2FtZSB2YXJpYW5jZQ0KICApDQpgYGANCmBgYHtyfQ0KaW5kZXBlbmRlbnRTYW1wbGVzVFRlc3QoIA0KICAgICAgZm9ybXVsYSA9IGdyYWRlIH4gdHV0b3IsICAjIGZvcm11bGEgc3BlY2lmeWluZyBvdXRjb21lIGFuZCBncm91cCB2YXJpYWJsZXMNCiAgICAgIGRhdGEgPSBoYXJwbyAgICAgICAgICAgICAgIyBkYXRhIGZyYW1lIHRoYXQgY29udGFpbnMgdGhlIHZhcmlhYmxlcw0KICApDQpgYGANCg0KDQpgYGB7cn0NCmxvYWQoIGZpbGUucGF0aCgiY2hpY28uUmRhdGEiICkpDQpzdHIoY2hpY28pIA0KYGBgDQoNCg0KYGBge3J9DQpoZWFkKCBjaGljbyApDQpgYGANCg0KDQpgYGB7cn0NCmxpYnJhcnkoIHBzeWNoICkNCmRlc2NyaWJlKCBjaGljbyApDQpgYGANCg0KDQoNCmBgYHtyfQ0KY2hpY28kaW1wcm92ZW1lbnQgPC0gY2hpY28kZ3JhZGVfdGVzdDIgLSBjaGljbyRncmFkZV90ZXN0MSANCmBgYA0KDQoNCmBgYHtyfQ0KaGVhZCggY2hpY28gKQ0KYGBgDQpgYGB7cn0NCm9uZVNhbXBsZVRUZXN0KCBjaGljbyRpbXByb3ZlbWVudCwgbXU9MCApDQpgYGANCmBgYHtyfQ0KcXFub3JtKCB5ID0gY2hpY28kaW1wcm92ZW1lbnQgKSAgICAgICAgIyBkcmF3IHRoZSBRUSBwbG90DQpgYGANCg0KYGBge3J9DQpzaGFwaXJvLnRlc3QoIHggPSBjaGljbyRpbXByb3ZlbWVudCApDQpgYGANCg0KYGBge3J9DQppbXByb3ZlbWVudDIgPC0gcmNoaXNxKDEwMCwgMikgDQpoaXN0KHggPSBpbXByb3ZlbWVudDIpDQpgYGANCmBgYHtyfQ0KcXFub3JtKCB5ID0gaW1wcm92ZW1lbnQyICkgDQpgYGANCmBgYHtyfQ0Kc2hhcGlyby50ZXN0KCB4ID0gaW1wcm92ZW1lbnQyICkNCmBgYA0KDQoNCmBgYHtyfQ0Kd2lsY294LnRlc3QoIHggPSBpbXByb3ZlbWVudDIsIG11PTApDQpgYGANCg0K
    From d91a361dde1a084c9ab262615a8a38e5321fc6c7 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Mon, 17 Oct 2022 13:37:05 +0530 Subject: [PATCH 22/55] Added Levene Test --- Module 5/Ttest.Rmd | 9 +++++++++ Module 5/Ttest.nb.html | 30 +++++++++++++++++++++++++++++- 2 files changed, 38 insertions(+), 1 deletion(-) diff --git a/Module 5/Ttest.Rmd b/Module 5/Ttest.Rmd index cb5d2209..716072e0 100644 --- a/Module 5/Ttest.Rmd +++ b/Module 5/Ttest.Rmd @@ -43,12 +43,21 @@ independentSamplesTTest( var.equal = TRUE # assume that the two groups have the same variance ) ``` +```{r} +library(car) +``` + + ```{r} independentSamplesTTest( formula = grade ~ tutor, # formula specifying outcome and group variables data = harpo # data frame that contains the variables ) ``` +```{r} +leveneTest(grade ~ tutor, # formula specifying outcome and group variables + data = harpo) # data frame that contains the variables) +``` ```{r} diff --git a/Module 5/Ttest.nb.html b/Module 5/Ttest.nb.html index b1f72e0e..0f648d7a 100644 --- a/Module 5/Ttest.nb.html +++ b/Module 5/Ttest.nb.html @@ -1924,6 +1924,22 @@ + +
    library(car)
    + + +
    Loading required package: carData
    +
    +Attaching package: ‘car’
    +
    +The following object is masked from ‘package:psych’:
    +
    +    logit
    + + + + +
    independentSamplesTTest( 
           formula = grade ~ tutor,  # formula specifying outcome and group variables
    @@ -1956,6 +1972,18 @@
        estimated effect size (Cohen's d):  0.724 
    + + +
    leveneTest(grade ~ tutor,  # formula specifying outcome and group variables
    +      data = harpo)              # data frame that contains the variables)
    + + +
    Levene's Test for Homogeneity of Variance (center = median)
    +      Df F value Pr(>F)
    +group  1  2.1287 0.1546
    +      31               
    + + @@ -2120,7 +2148,7 @@ -
    LS0tDQp0aXRsZTogIiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCg0KDQpJbnN0YWxsIGxzciwgcHN5Y2ggbGlicmFyeSBpZiBub3QgYWxyZWFkeSBpbnN0YWxsZWQNCmBgYHtyfQ0Kc2V0d2QoZGlybmFtZShyc3R1ZGlvYXBpOjpnZXRBY3RpdmVEb2N1bWVudENvbnRleHQoKSRwYXRoKSkgIyBzZXQgY3VycmV0biBwYXRoIGFzIHdvcmtwYXRoDQppbnN0YWxsLnBhY2thZ2VzKCdwc3ljaCcpDQppbnN0YWxsLnBhY2thZ2VzKCdsc3InKQ0KYGBgDQoNCmBgYHtyfQ0KDQpgYGANCg0KDQpgYGB7cn0NCmxpYnJhcnkobHNyKQ0KbG9hZCggZmlsZS5wYXRoKCJ6ZXBwby5SZGF0YSIgKSkgDQpvbmVTYW1wbGVUVGVzdCggeD1ncmFkZXMsIG11PTY3LjUgKSAjYWRkIHRoZSBtdSB2YWx1ZSBoZXJlDQoNCmBgYA0KDQoNCmBgYHtyfQ0KDQpsb2FkIChmaWxlLnBhdGgoImhhcnBvLlJkYXRhIiApKQ0Kc3RyKGhhcnBvKQ0KYGBgDQoNCmBgYHtyfQ0KaGVhZCggaGFycG8gKQ0KYGBgDQoNCg0KYGBge3J9DQppbmRlcGVuZGVudFNhbXBsZXNUVGVzdCggDQogICAgICBmb3JtdWxhID0gZ3JhZGUgfiB0dXRvciwgICMgZm9ybXVsYSBzcGVjaWZ5aW5nIG91dGNvbWUgYW5kIGdyb3VwIHZhcmlhYmxlcw0KICAgICAgZGF0YSA9IGhhcnBvLCAgICAgICAgICAgICAjIGRhdGEgZnJhbWUgdGhhdCBjb250YWlucyB0aGUgdmFyaWFibGVzDQogICAgICB2YXIuZXF1YWwgPSBUUlVFICAgICAgICAgICMgYXNzdW1lIHRoYXQgdGhlIHR3byBncm91cHMgaGF2ZSB0aGUgc2FtZSB2YXJpYW5jZQ0KICApDQpgYGANCmBgYHtyfQ0KaW5kZXBlbmRlbnRTYW1wbGVzVFRlc3QoIA0KICAgICAgZm9ybXVsYSA9IGdyYWRlIH4gdHV0b3IsICAjIGZvcm11bGEgc3BlY2lmeWluZyBvdXRjb21lIGFuZCBncm91cCB2YXJpYWJsZXMNCiAgICAgIGRhdGEgPSBoYXJwbyAgICAgICAgICAgICAgIyBkYXRhIGZyYW1lIHRoYXQgY29udGFpbnMgdGhlIHZhcmlhYmxlcw0KICApDQpgYGANCg0KDQpgYGB7cn0NCmxvYWQoIGZpbGUucGF0aCgiY2hpY28uUmRhdGEiICkpDQpzdHIoY2hpY28pIA0KYGBgDQoNCg0KYGBge3J9DQpoZWFkKCBjaGljbyApDQpgYGANCg0KDQpgYGB7cn0NCmxpYnJhcnkoIHBzeWNoICkNCmRlc2NyaWJlKCBjaGljbyApDQpgYGANCg0KDQoNCmBgYHtyfQ0KY2hpY28kaW1wcm92ZW1lbnQgPC0gY2hpY28kZ3JhZGVfdGVzdDIgLSBjaGljbyRncmFkZV90ZXN0MSANCmBgYA0KDQoNCmBgYHtyfQ0KaGVhZCggY2hpY28gKQ0KYGBgDQpgYGB7cn0NCm9uZVNhbXBsZVRUZXN0KCBjaGljbyRpbXByb3ZlbWVudCwgbXU9MCApDQpgYGANCmBgYHtyfQ0KcXFub3JtKCB5ID0gY2hpY28kaW1wcm92ZW1lbnQgKSAgICAgICAgIyBkcmF3IHRoZSBRUSBwbG90DQpgYGANCg0KYGBge3J9DQpzaGFwaXJvLnRlc3QoIHggPSBjaGljbyRpbXByb3ZlbWVudCApDQpgYGANCg0KYGBge3J9DQppbXByb3ZlbWVudDIgPC0gcmNoaXNxKDEwMCwgMikgDQpoaXN0KHggPSBpbXByb3ZlbWVudDIpDQpgYGANCmBgYHtyfQ0KcXFub3JtKCB5ID0gaW1wcm92ZW1lbnQyICkgDQpgYGANCmBgYHtyfQ0Kc2hhcGlyby50ZXN0KCB4ID0gaW1wcm92ZW1lbnQyICkNCmBgYA0KDQoNCmBgYHtyfQ0Kd2lsY294LnRlc3QoIHggPSBpbXByb3ZlbWVudDIsIG11PTApDQpgYGANCg0K
    +
    LS0tDQp0aXRsZTogIiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCg0KDQpJbnN0YWxsIGxzciwgcHN5Y2ggbGlicmFyeSBpZiBub3QgYWxyZWFkeSBpbnN0YWxsZWQNCmBgYHtyfQ0Kc2V0d2QoZGlybmFtZShyc3R1ZGlvYXBpOjpnZXRBY3RpdmVEb2N1bWVudENvbnRleHQoKSRwYXRoKSkgIyBzZXQgY3VycmV0biBwYXRoIGFzIHdvcmtwYXRoDQppbnN0YWxsLnBhY2thZ2VzKCdwc3ljaCcpDQppbnN0YWxsLnBhY2thZ2VzKCdsc3InKQ0KYGBgDQoNCmBgYHtyfQ0KDQpgYGANCg0KDQpgYGB7cn0NCmxpYnJhcnkobHNyKQ0KbG9hZCggZmlsZS5wYXRoKCJ6ZXBwby5SZGF0YSIgKSkgDQpvbmVTYW1wbGVUVGVzdCggeD1ncmFkZXMsIG11PTY3LjUgKSAjYWRkIHRoZSBtdSB2YWx1ZSBoZXJlDQoNCmBgYA0KDQoNCmBgYHtyfQ0KDQpsb2FkIChmaWxlLnBhdGgoImhhcnBvLlJkYXRhIiApKQ0Kc3RyKGhhcnBvKQ0KYGBgDQoNCmBgYHtyfQ0KaGVhZCggaGFycG8gKQ0KYGBgDQoNCg0KYGBge3J9DQppbmRlcGVuZGVudFNhbXBsZXNUVGVzdCggDQogICAgICBmb3JtdWxhID0gZ3JhZGUgfiB0dXRvciwgICMgZm9ybXVsYSBzcGVjaWZ5aW5nIG91dGNvbWUgYW5kIGdyb3VwIHZhcmlhYmxlcw0KICAgICAgZGF0YSA9IGhhcnBvLCAgICAgICAgICAgICAjIGRhdGEgZnJhbWUgdGhhdCBjb250YWlucyB0aGUgdmFyaWFibGVzDQogICAgICB2YXIuZXF1YWwgPSBUUlVFICAgICAgICAgICMgYXNzdW1lIHRoYXQgdGhlIHR3byBncm91cHMgaGF2ZSB0aGUgc2FtZSB2YXJpYW5jZQ0KICApDQpgYGANCmBgYHtyfQ0KbGlicmFyeShjYXIpDQpgYGANCg0KDQpgYGB7cn0NCmluZGVwZW5kZW50U2FtcGxlc1RUZXN0KCANCiAgICAgIGZvcm11bGEgPSBncmFkZSB+IHR1dG9yLCAgIyBmb3JtdWxhIHNwZWNpZnlpbmcgb3V0Y29tZSBhbmQgZ3JvdXAgdmFyaWFibGVzDQogICAgICBkYXRhID0gaGFycG8gICAgICAgICAgICAgICMgZGF0YSBmcmFtZSB0aGF0IGNvbnRhaW5zIHRoZSB2YXJpYWJsZXMNCiAgKQ0KYGBgDQpgYGB7cn0NCmxldmVuZVRlc3QoZ3JhZGUgfiB0dXRvciwgICMgZm9ybXVsYSBzcGVjaWZ5aW5nIG91dGNvbWUgYW5kIGdyb3VwIHZhcmlhYmxlcw0KICAgICAgZGF0YSA9IGhhcnBvKSAgICAgICAgICAgICAgIyBkYXRhIGZyYW1lIHRoYXQgY29udGFpbnMgdGhlIHZhcmlhYmxlcykNCmBgYA0KDQoNCmBgYHtyfQ0KbG9hZCggZmlsZS5wYXRoKCJjaGljby5SZGF0YSIgKSkNCnN0cihjaGljbykgDQpgYGANCg0KDQpgYGB7cn0NCmhlYWQoIGNoaWNvICkNCmBgYA0KDQoNCmBgYHtyfQ0KbGlicmFyeSggcHN5Y2ggKQ0KZGVzY3JpYmUoIGNoaWNvICkNCmBgYA0KDQoNCg0KYGBge3J9DQpjaGljbyRpbXByb3ZlbWVudCA8LSBjaGljbyRncmFkZV90ZXN0MiAtIGNoaWNvJGdyYWRlX3Rlc3QxIA0KYGBgDQoNCg0KYGBge3J9DQpoZWFkKCBjaGljbyApDQpgYGANCmBgYHtyfQ0Kb25lU2FtcGxlVFRlc3QoIGNoaWNvJGltcHJvdmVtZW50LCBtdT0wICkNCmBgYA0KYGBge3J9DQpxcW5vcm0oIHkgPSBjaGljbyRpbXByb3ZlbWVudCApICAgICAgICAjIGRyYXcgdGhlIFFRIHBsb3QNCmBgYA0KDQpgYGB7cn0NCnNoYXBpcm8udGVzdCggeCA9IGNoaWNvJGltcHJvdmVtZW50ICkNCmBgYA0KDQpgYGB7cn0NCmltcHJvdmVtZW50MiA8LSByY2hpc3EoMTAwLCAyKSANCmhpc3QoeCA9IGltcHJvdmVtZW50MikNCmBgYA0KYGBge3J9DQpxcW5vcm0oIHkgPSBpbXByb3ZlbWVudDIgKSANCmBgYA0KYGBge3J9DQpzaGFwaXJvLnRlc3QoIHggPSBpbXByb3ZlbWVudDIgKQ0KYGBgDQoNCg0KYGBge3J9DQp3aWxjb3gudGVzdCggeCA9IGltcHJvdmVtZW50MiwgbXU9MCkNCmBgYA0KDQo=
    From bdcbfebb952a2ebb91b1396e2af0e836cd392f97 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Tue, 18 Oct 2022 09:20:52 +0530 Subject: [PATCH 23/55] Added Chisq.test --- Module 5/Chi_sq.Rmd | 21 +++++++ Module 5/Chi_sq.nb.html | 126 ++++++++++++++++++++++++++++++++-------- 2 files changed, 124 insertions(+), 23 deletions(-) diff --git a/Module 5/Chi_sq.Rmd b/Module 5/Chi_sq.Rmd index 466071dd..79944c10 100644 --- a/Module 5/Chi_sq.Rmd +++ b/Module 5/Chi_sq.Rmd @@ -58,6 +58,16 @@ pchisq( q = 8.44, df = 3, lower.tail = FALSE ) goodnessOfFitTest( cards$choice_1 ) ``` +Doing the same Goodness of Fit test using chisq.test. +Note: observed frequencies are provided instead of choices. +```{r} +chisq.test( x = observed ) +``` + + + + + ```{r} nullProbs <- c(clubs = .2, diamonds = .3, hearts = .3, spades = .2) nullProbs @@ -67,6 +77,14 @@ nullProbs goodnessOfFitTest( x = cards$choice_1, p = nullProbs ) ``` +```{r} +chisq.test( x = observed, p = c(.2, .3, .3, .2) ) +``` + + + + + Chi Sq Association test With Chapek9 ```{r} @@ -96,4 +114,7 @@ associationTest( formula = ~choice+species, data = chapek9 ) ```{r} cramersV( chapekFrequencies ) ``` +```{r} +chisq.test( chapekFrequencies ) +``` diff --git a/Module 5/Chi_sq.nb.html b/Module 5/Chi_sq.nb.html index 7d12ea0c..3a525551 100644 --- a/Module 5/Chi_sq.nb.html +++ b/Module 5/Chi_sq.nb.html @@ -1877,28 +1877,66 @@

    R Notebook

    - -
    pchisq( q = 8.44, df = 3, lower.tail = FALSE )
    - - -
    [1] 0.03774185
    - - - - - - -
    1-pchisq( q = 8.44, df = 3 )
    - - -
    [1] 0.03774185
    - - - - - - -
    goodnessOfFitTest( cards$choice_1 )
    + +
    ```r
    +pchisq( q = 8.44, df = 3, lower.tail = FALSE )
    +
    
    +<!-- rnb-source-end -->
    +
    +<!-- rnb-output-begin eyJkYXRhIjoiWzFdIDAuMDM3NzQxODVcbiJ9 -->
    +
    +

    [1] 0.03774185

    +
    
    +
    +
    +<!-- rnb-output-end -->
    +
    +<!-- rnb-chunk-end -->
    +
    +
    +<!-- rnb-text-begin -->
    +
    +
    +
    +<!-- rnb-text-end -->
    +
    +
    +<!-- rnb-chunk-begin -->
    +
    +
    +<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuYGBgclxuMS1wY2hpc3EoIHEgPSA4LjQ0LCBkZiA9IDMgKVxuYGBgXG5gYGAifQ== -->
    +
    +```r
    +```r
    +1-pchisq( q = 8.44, df = 3 )
    +
    
    +<!-- rnb-source-end -->
    +
    +<!-- rnb-output-begin eyJkYXRhIjoiWzFdIDAuMDM3NzQxODVcbiJ9 -->
    +
    +

    [1] 0.03774185

    +
    
    +
    +
    +<!-- rnb-output-end -->
    +
    +<!-- rnb-chunk-end -->
    +
    +
    +<!-- rnb-text-begin -->
    +
    +
    +
    +<!-- rnb-text-end -->
    +
    +
    +<!-- rnb-chunk-begin -->
    +
    +
    +<!-- rnb-source-begin eyJkYXRhIjoiYGBgclxuZ29vZG5lc3NPZkZpdFRlc3QoIGNhcmRzJGNob2ljZV8xIClcbmBgYCJ9 -->
    +
    +```r
    +goodnessOfFitTest( cards$choice_1 )
    
    @@ -1924,6 +1962,22 @@ 

    R Notebook

    +

    Doing the same Goodness of Fit test using chisq.test. Note: observed +frequencies are provided instead of choices.

    + + + +
    chisq.test( x = observed  )
    + + +
    
    +    Chi-squared test for given probabilities
    +
    +data:  observed
    +X-squared = 8.44, df = 3, p-value = 0.03774
    + + + @@ -1965,6 +2019,20 @@

    R Notebook

    + + + +
    chisq.test( x = observed, p = c(.2, .3, .3, .2) )
    + + +
    
    +    Chi-squared test for given probabilities
    +
    +data:  observed
    +X-squared = 4.7417, df = 3, p-value = 0.1917
    + + +

    Chi Sq Association test With Chapek9

    @@ -2069,10 +2137,22 @@

    R Notebook

    [1] 0.244058
    + + +
    chisq.test( chapekFrequencies )
    + + +
    
    +    Pearson's Chi-squared test
    +
    +data:  chapekFrequencies
    +X-squared = 10.722, df = 2, p-value = 0.004697
    + + -
    LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCmBgYHtyfQ0KbGlicmFyeSggbHNyICkNCmxvYWQoIGZpbGUucGF0aCgicmFuZG9tbmVzcy5SZGF0YSIgKSkNCnN0cihjYXJkcykNCmBgYA0KYGBge3J9DQpvYnNlcnZlZCA8LSB0YWJsZSggY2FyZHMkY2hvaWNlXzEgKQ0Kb2JzZXJ2ZWQNCmBgYA0KDQpgYGB7cn0NCnByb2JhYmlsaXRpZXMgPC0gYyhjbHVicyA9IC4yNSwgZGlhbW9uZHMgPSAuMjUsIGhlYXJ0cyA9IC4yNSwgc3BhZGVzID0gLjI1KSANCnByb2JhYmlsaXRpZXMNCmBgYA0KDQpgYGB7cn0NCk4gPC0gMjAwICAjIHNhbXBsZSBzaXplDQpleHBlY3RlZCA8LSBOICogcHJvYmFiaWxpdGllcyAjIGV4cGVjdGVkIGZyZXF1ZW5jaWVzDQpleHBlY3RlZA0KYGBgDQoNCmBgYHtyfQ0Kb2JzZXJ2ZWQgLSBleHBlY3RlZCANCmBgYA0KDQpgYGB7cn0NCihvYnNlcnZlZCAtIGV4cGVjdGVkKV4yDQpgYGANCg0KYGBge3J9DQoob2JzZXJ2ZWQgLSBleHBlY3RlZCleMiAvIGV4cGVjdGVkDQpgYGANCg0KYGBge3J9DQpzdW0oIChvYnNlcnZlZCAtIGV4cGVjdGVkKV4yIC8gZXhwZWN0ZWQgKQ0KYGBgDQoNCmBgYHtyfQ0KcWNoaXNxKCBwID0gLjk1LCBkZiA9IDMgKQ0KYGBgDQoNCg0KYGBge3J9DQpwY2hpc3EoIHEgPSA4LjQ0LCBkZiA9IDMsIGxvd2VyLnRhaWwgPSBGQUxTRSApDQpgYGANCg0KYGBge3J9DQoxLXBjaGlzcSggcSA9IDguNDQsIGRmID0gMyApDQpgYGANCg0KYGBge3J9DQpnb29kbmVzc09mRml0VGVzdCggY2FyZHMkY2hvaWNlXzEgKQ0KYGBgDQoNCmBgYHtyfQ0KbnVsbFByb2JzIDwtIGMoY2x1YnMgPSAuMiwgZGlhbW9uZHMgPSAuMywgaGVhcnRzID0gLjMsIHNwYWRlcyA9IC4yKQ0KbnVsbFByb2JzDQpgYGANCg0KYGBge3J9DQpnb29kbmVzc09mRml0VGVzdCggeCA9IGNhcmRzJGNob2ljZV8xLCBwID0gbnVsbFByb2JzICkNCmBgYA0KDQpDaGkgU3EgQXNzb2NpYXRpb24gdGVzdCBXaXRoIENoYXBlazkNCg0KYGBge3J9DQpsb2FkKCBmaWxlLnBhdGgoICJjaGFwZWs5LlJkYXRhIiApKQ0Kc3RyKGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpoZWFkKGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpjaGFwZWtGcmVxdWVuY2llcyA8LSB4dGFicyggfiBjaG9pY2UgKyBzcGVjaWVzLCBkYXRhID0gY2hhcGVrOSkNCmNoYXBla0ZyZXF1ZW5jaWVzDQpgYGANCg0KDQpgYGB7cn0NCmFzc29jaWF0aW9uVGVzdCggZm9ybXVsYSA9IH5jaG9pY2Urc3BlY2llcywgZGF0YSA9IGNoYXBlazkgKQ0KDQpgYGANCg0KYGBge3J9DQpjcmFtZXJzViggY2hhcGVrRnJlcXVlbmNpZXMgKQ0KYGBgDQoNCg==
    +
    LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCmBgYHtyfQ0KbGlicmFyeSggbHNyICkNCmxvYWQoIGZpbGUucGF0aCgicmFuZG9tbmVzcy5SZGF0YSIgKSkNCnN0cihjYXJkcykNCmBgYA0KYGBge3J9DQpvYnNlcnZlZCA8LSB0YWJsZSggY2FyZHMkY2hvaWNlXzEgKQ0Kb2JzZXJ2ZWQNCmBgYA0KDQpgYGB7cn0NCnByb2JhYmlsaXRpZXMgPC0gYyhjbHVicyA9IC4yNSwgZGlhbW9uZHMgPSAuMjUsIGhlYXJ0cyA9IC4yNSwgc3BhZGVzID0gLjI1KSANCnByb2JhYmlsaXRpZXMNCmBgYA0KDQpgYGB7cn0NCk4gPC0gMjAwICAjIHNhbXBsZSBzaXplDQpleHBlY3RlZCA8LSBOICogcHJvYmFiaWxpdGllcyAjIGV4cGVjdGVkIGZyZXF1ZW5jaWVzDQpleHBlY3RlZA0KYGBgDQoNCmBgYHtyfQ0Kb2JzZXJ2ZWQgLSBleHBlY3RlZCANCmBgYA0KDQpgYGB7cn0NCihvYnNlcnZlZCAtIGV4cGVjdGVkKV4yDQpgYGANCg0KYGBge3J9DQoob2JzZXJ2ZWQgLSBleHBlY3RlZCleMiAvIGV4cGVjdGVkDQpgYGANCg0KYGBge3J9DQpzdW0oIChvYnNlcnZlZCAtIGV4cGVjdGVkKV4yIC8gZXhwZWN0ZWQgKQ0KYGBgDQoNCmBgYHtyfQ0KcWNoaXNxKCBwID0gLjk1LCBkZiA9IDMgKQ0KYGBgDQoNCg0KYGBge3J9DQpwY2hpc3EoIHEgPSA4LjQ0LCBkZiA9IDMsIGxvd2VyLnRhaWwgPSBGQUxTRSApDQpgYGANCg0KYGBge3J9DQoxLXBjaGlzcSggcSA9IDguNDQsIGRmID0gMyApDQpgYGANCg0KYGBge3J9DQpnb29kbmVzc09mRml0VGVzdCggY2FyZHMkY2hvaWNlXzEgKQ0KYGBgDQoNCkRvaW5nIHRoZSBzYW1lIEdvb2RuZXNzIG9mIEZpdCB0ZXN0IHVzaW5nIGNoaXNxLnRlc3QuIA0KTm90ZTogb2JzZXJ2ZWQgZnJlcXVlbmNpZXMgYXJlIHByb3ZpZGVkIGluc3RlYWQgb2YgY2hvaWNlcy4NCmBgYHtyfQ0KY2hpc3EudGVzdCggeCA9IG9ic2VydmVkICApDQpgYGANCg0KDQoNCg0KDQpgYGB7cn0NCm51bGxQcm9icyA8LSBjKGNsdWJzID0gLjIsIGRpYW1vbmRzID0gLjMsIGhlYXJ0cyA9IC4zLCBzcGFkZXMgPSAuMikNCm51bGxQcm9icw0KYGBgDQoNCmBgYHtyfQ0KZ29vZG5lc3NPZkZpdFRlc3QoIHggPSBjYXJkcyRjaG9pY2VfMSwgcCA9IG51bGxQcm9icyApDQpgYGANCg0KYGBge3J9DQpjaGlzcS50ZXN0KCB4ID0gb2JzZXJ2ZWQsIHAgPSBjKC4yLCAuMywgLjMsIC4yKSApDQpgYGANCg0KDQoNCg0KDQpDaGkgU3EgQXNzb2NpYXRpb24gdGVzdCBXaXRoIENoYXBlazkNCg0KYGBge3J9DQpsb2FkKCBmaWxlLnBhdGgoICJjaGFwZWs5LlJkYXRhIiApKQ0Kc3RyKGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpoZWFkKGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpjaGFwZWtGcmVxdWVuY2llcyA8LSB4dGFicyggfiBjaG9pY2UgKyBzcGVjaWVzLCBkYXRhID0gY2hhcGVrOSkNCmNoYXBla0ZyZXF1ZW5jaWVzDQpgYGANCg0KDQpgYGB7cn0NCmFzc29jaWF0aW9uVGVzdCggZm9ybXVsYSA9IH5jaG9pY2Urc3BlY2llcywgZGF0YSA9IGNoYXBlazkgKQ0KDQpgYGANCg0KYGBge3J9DQpjcmFtZXJzViggY2hhcGVrRnJlcXVlbmNpZXMgKQ0KYGBgDQpgYGB7cn0NCmNoaXNxLnRlc3QoIGNoYXBla0ZyZXF1ZW5jaWVzICkNCmBgYA0KDQo=
    From afe28c77a5b0b07f0ba20942bf8206f7cc359e0c Mon Sep 17 00:00:00 2001 From: juneeybug Date: Tue, 18 Oct 2022 09:23:13 +0530 Subject: [PATCH 24/55] Added Salem.Rdata --- Module 5/salem.Rdata | Bin 0 -> 155 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 Module 5/salem.Rdata diff --git a/Module 5/salem.Rdata b/Module 5/salem.Rdata new file mode 100644 index 0000000000000000000000000000000000000000..7e591e801cc300bb8a8c49d1de432c781d3a0b44 GIT binary patch literal 155 zcmV;M0A&9kiwFP!000000}FDAFye~fVqjokVqoHBWMEAnzXt0|2n8 Jc^p{*004o>H~9bn literal 0 HcmV?d00001 From 2f9a17ebc4179c3b37235a7e9b1f9d760572a906 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Tue, 18 Oct 2022 09:28:28 +0530 Subject: [PATCH 25/55] Added Fischer Exact Test --- Module 5/Chi_sq.Rmd | 27 +++++++++++++++++ Module 5/Chi_sq.nb.html | 64 ++++++++++++++++++++++++++++++++++++++++- 2 files changed, 90 insertions(+), 1 deletion(-) diff --git a/Module 5/Chi_sq.Rmd b/Module 5/Chi_sq.Rmd index 79944c10..612631bd 100644 --- a/Module 5/Chi_sq.Rmd +++ b/Module 5/Chi_sq.Rmd @@ -113,8 +113,35 @@ associationTest( formula = ~choice+species, data = chapek9 ) ```{r} cramersV( chapekFrequencies ) + ``` + + + + ```{r} chisq.test( chapekFrequencies ) ``` + +Fisher Exact test: when observed frequencies are less than 5 +80% of the time in larger datasets + +```{r} +load( file.path( "salem.Rdata" )) +``` + + +```{r} +salem.tabs <- table( trial ) +print( salem.tabs ) +``` + +```{r} +chisq.test( salem.tabs ) +``` + +```{r} +fisher.test( salem.tabs ) +``` + diff --git a/Module 5/Chi_sq.nb.html b/Module 5/Chi_sq.nb.html index 3a525551..6e1e2f2c 100644 --- a/Module 5/Chi_sq.nb.html +++ b/Module 5/Chi_sq.nb.html @@ -2137,6 +2137,8 @@

    R Notebook

    [1] 0.244058
    + +
    chisq.test( chapekFrequencies )
    @@ -2150,9 +2152,69 @@

    R Notebook

    +

    Fisher Exact test: when observed frequencies are less than 5 80% of +the time in larger datasets

    + + + +
    load( file.path( "salem.Rdata" ))
    + + + + + + +
    salem.tabs <- table( trial )
    +print( salem.tabs )
    + + +
           on.fire
    +happy   FALSE TRUE
    +  FALSE     3    3
    +  TRUE     10    0
    + + + + + + +
    chisq.test( salem.tabs )
    + + +
    Warning: Chi-squared approximation may be incorrect
    + + +
    
    +    Pearson's Chi-squared test with Yates' continuity correction
    +
    +data:  salem.tabs
    +X-squared = 3.3094, df = 1, p-value = 0.06888
    + + + + + + +
    fisher.test( salem.tabs )
    + + +
    
    +    Fisher's Exact Test for Count Data
    +
    +data:  salem.tabs
    +p-value = 0.03571
    +alternative hypothesis: true odds ratio is not equal to 1
    +95 percent confidence interval:
    + 0.000000 1.202913
    +sample estimates:
    +odds ratio 
    +         0 
    + + + -
    LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCmBgYHtyfQ0KbGlicmFyeSggbHNyICkNCmxvYWQoIGZpbGUucGF0aCgicmFuZG9tbmVzcy5SZGF0YSIgKSkNCnN0cihjYXJkcykNCmBgYA0KYGBge3J9DQpvYnNlcnZlZCA8LSB0YWJsZSggY2FyZHMkY2hvaWNlXzEgKQ0Kb2JzZXJ2ZWQNCmBgYA0KDQpgYGB7cn0NCnByb2JhYmlsaXRpZXMgPC0gYyhjbHVicyA9IC4yNSwgZGlhbW9uZHMgPSAuMjUsIGhlYXJ0cyA9IC4yNSwgc3BhZGVzID0gLjI1KSANCnByb2JhYmlsaXRpZXMNCmBgYA0KDQpgYGB7cn0NCk4gPC0gMjAwICAjIHNhbXBsZSBzaXplDQpleHBlY3RlZCA8LSBOICogcHJvYmFiaWxpdGllcyAjIGV4cGVjdGVkIGZyZXF1ZW5jaWVzDQpleHBlY3RlZA0KYGBgDQoNCmBgYHtyfQ0Kb2JzZXJ2ZWQgLSBleHBlY3RlZCANCmBgYA0KDQpgYGB7cn0NCihvYnNlcnZlZCAtIGV4cGVjdGVkKV4yDQpgYGANCg0KYGBge3J9DQoob2JzZXJ2ZWQgLSBleHBlY3RlZCleMiAvIGV4cGVjdGVkDQpgYGANCg0KYGBge3J9DQpzdW0oIChvYnNlcnZlZCAtIGV4cGVjdGVkKV4yIC8gZXhwZWN0ZWQgKQ0KYGBgDQoNCmBgYHtyfQ0KcWNoaXNxKCBwID0gLjk1LCBkZiA9IDMgKQ0KYGBgDQoNCg0KYGBge3J9DQpwY2hpc3EoIHEgPSA4LjQ0LCBkZiA9IDMsIGxvd2VyLnRhaWwgPSBGQUxTRSApDQpgYGANCg0KYGBge3J9DQoxLXBjaGlzcSggcSA9IDguNDQsIGRmID0gMyApDQpgYGANCg0KYGBge3J9DQpnb29kbmVzc09mRml0VGVzdCggY2FyZHMkY2hvaWNlXzEgKQ0KYGBgDQoNCkRvaW5nIHRoZSBzYW1lIEdvb2RuZXNzIG9mIEZpdCB0ZXN0IHVzaW5nIGNoaXNxLnRlc3QuIA0KTm90ZTogb2JzZXJ2ZWQgZnJlcXVlbmNpZXMgYXJlIHByb3ZpZGVkIGluc3RlYWQgb2YgY2hvaWNlcy4NCmBgYHtyfQ0KY2hpc3EudGVzdCggeCA9IG9ic2VydmVkICApDQpgYGANCg0KDQoNCg0KDQpgYGB7cn0NCm51bGxQcm9icyA8LSBjKGNsdWJzID0gLjIsIGRpYW1vbmRzID0gLjMsIGhlYXJ0cyA9IC4zLCBzcGFkZXMgPSAuMikNCm51bGxQcm9icw0KYGBgDQoNCmBgYHtyfQ0KZ29vZG5lc3NPZkZpdFRlc3QoIHggPSBjYXJkcyRjaG9pY2VfMSwgcCA9IG51bGxQcm9icyApDQpgYGANCg0KYGBge3J9DQpjaGlzcS50ZXN0KCB4ID0gb2JzZXJ2ZWQsIHAgPSBjKC4yLCAuMywgLjMsIC4yKSApDQpgYGANCg0KDQoNCg0KDQpDaGkgU3EgQXNzb2NpYXRpb24gdGVzdCBXaXRoIENoYXBlazkNCg0KYGBge3J9DQpsb2FkKCBmaWxlLnBhdGgoICJjaGFwZWs5LlJkYXRhIiApKQ0Kc3RyKGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpoZWFkKGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpjaGFwZWtGcmVxdWVuY2llcyA8LSB4dGFicyggfiBjaG9pY2UgKyBzcGVjaWVzLCBkYXRhID0gY2hhcGVrOSkNCmNoYXBla0ZyZXF1ZW5jaWVzDQpgYGANCg0KDQpgYGB7cn0NCmFzc29jaWF0aW9uVGVzdCggZm9ybXVsYSA9IH5jaG9pY2Urc3BlY2llcywgZGF0YSA9IGNoYXBlazkgKQ0KDQpgYGANCg0KYGBge3J9DQpjcmFtZXJzViggY2hhcGVrRnJlcXVlbmNpZXMgKQ0KYGBgDQpgYGB7cn0NCmNoaXNxLnRlc3QoIGNoYXBla0ZyZXF1ZW5jaWVzICkNCmBgYA0KDQo=
    +
    LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCmBgYHtyfQ0KbGlicmFyeSggbHNyICkNCmxvYWQoIGZpbGUucGF0aCgicmFuZG9tbmVzcy5SZGF0YSIgKSkNCnN0cihjYXJkcykNCmBgYA0KYGBge3J9DQpvYnNlcnZlZCA8LSB0YWJsZSggY2FyZHMkY2hvaWNlXzEgKQ0Kb2JzZXJ2ZWQNCmBgYA0KDQpgYGB7cn0NCnByb2JhYmlsaXRpZXMgPC0gYyhjbHVicyA9IC4yNSwgZGlhbW9uZHMgPSAuMjUsIGhlYXJ0cyA9IC4yNSwgc3BhZGVzID0gLjI1KSANCnByb2JhYmlsaXRpZXMNCmBgYA0KDQpgYGB7cn0NCk4gPC0gMjAwICAjIHNhbXBsZSBzaXplDQpleHBlY3RlZCA8LSBOICogcHJvYmFiaWxpdGllcyAjIGV4cGVjdGVkIGZyZXF1ZW5jaWVzDQpleHBlY3RlZA0KYGBgDQoNCmBgYHtyfQ0Kb2JzZXJ2ZWQgLSBleHBlY3RlZCANCmBgYA0KDQpgYGB7cn0NCihvYnNlcnZlZCAtIGV4cGVjdGVkKV4yDQpgYGANCg0KYGBge3J9DQoob2JzZXJ2ZWQgLSBleHBlY3RlZCleMiAvIGV4cGVjdGVkDQpgYGANCg0KYGBge3J9DQpzdW0oIChvYnNlcnZlZCAtIGV4cGVjdGVkKV4yIC8gZXhwZWN0ZWQgKQ0KYGBgDQoNCmBgYHtyfQ0KcWNoaXNxKCBwID0gLjk1LCBkZiA9IDMgKQ0KYGBgDQoNCg0KYGBge3J9DQpwY2hpc3EoIHEgPSA4LjQ0LCBkZiA9IDMsIGxvd2VyLnRhaWwgPSBGQUxTRSApDQpgYGANCg0KYGBge3J9DQoxLXBjaGlzcSggcSA9IDguNDQsIGRmID0gMyApDQpgYGANCg0KYGBge3J9DQpnb29kbmVzc09mRml0VGVzdCggY2FyZHMkY2hvaWNlXzEgKQ0KYGBgDQoNCkRvaW5nIHRoZSBzYW1lIEdvb2RuZXNzIG9mIEZpdCB0ZXN0IHVzaW5nIGNoaXNxLnRlc3QuIA0KTm90ZTogb2JzZXJ2ZWQgZnJlcXVlbmNpZXMgYXJlIHByb3ZpZGVkIGluc3RlYWQgb2YgY2hvaWNlcy4NCmBgYHtyfQ0KY2hpc3EudGVzdCggeCA9IG9ic2VydmVkICApDQpgYGANCg0KDQoNCg0KDQpgYGB7cn0NCm51bGxQcm9icyA8LSBjKGNsdWJzID0gLjIsIGRpYW1vbmRzID0gLjMsIGhlYXJ0cyA9IC4zLCBzcGFkZXMgPSAuMikNCm51bGxQcm9icw0KYGBgDQoNCmBgYHtyfQ0KZ29vZG5lc3NPZkZpdFRlc3QoIHggPSBjYXJkcyRjaG9pY2VfMSwgcCA9IG51bGxQcm9icyApDQpgYGANCg0KYGBge3J9DQpjaGlzcS50ZXN0KCB4ID0gb2JzZXJ2ZWQsIHAgPSBjKC4yLCAuMywgLjMsIC4yKSApDQpgYGANCg0KDQoNCg0KDQpDaGkgU3EgQXNzb2NpYXRpb24gdGVzdCBXaXRoIENoYXBlazkNCg0KYGBge3J9DQpsb2FkKCBmaWxlLnBhdGgoICJjaGFwZWs5LlJkYXRhIiApKQ0Kc3RyKGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpoZWFkKGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpjaGFwZWtGcmVxdWVuY2llcyA8LSB4dGFicyggfiBjaG9pY2UgKyBzcGVjaWVzLCBkYXRhID0gY2hhcGVrOSkNCmNoYXBla0ZyZXF1ZW5jaWVzDQpgYGANCg0KDQpgYGB7cn0NCmFzc29jaWF0aW9uVGVzdCggZm9ybXVsYSA9IH5jaG9pY2Urc3BlY2llcywgZGF0YSA9IGNoYXBlazkgKQ0KDQpgYGANCg0KYGBge3J9DQpjcmFtZXJzViggY2hhcGVrRnJlcXVlbmNpZXMgKQ0KDQpgYGANCg0KDQoNCg0KYGBge3J9DQpjaGlzcS50ZXN0KCBjaGFwZWtGcmVxdWVuY2llcyApDQpgYGANCg0KDQpGaXNoZXIgRXhhY3QgdGVzdDogd2hlbiBvYnNlcnZlZCBmcmVxdWVuY2llcyBhcmUgbGVzcyB0aGFuIDUgDQo4MCUgb2YgdGhlIHRpbWUgaW4gbGFyZ2VyIGRhdGFzZXRzDQoNCmBgYHtyfQ0KbG9hZCggZmlsZS5wYXRoKCAic2FsZW0uUmRhdGEiICkpDQpgYGANCg0KDQpgYGB7cn0NCnNhbGVtLnRhYnMgPC0gdGFibGUoIHRyaWFsICkNCnByaW50KCBzYWxlbS50YWJzICkNCmBgYA0KDQpgYGB7cn0NCmNoaXNxLnRlc3QoIHNhbGVtLnRhYnMgKQ0KYGBgDQoNCmBgYHtyfQ0KZmlzaGVyLnRlc3QoIHNhbGVtLnRhYnMgKQ0KYGBgDQoNCg==
    From 491ae81bb8d351283ffef29141b9b20b2efed424 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Tue, 18 Oct 2022 09:34:51 +0530 Subject: [PATCH 26/55] Added agpp data --- Module 5/agpp.Rdata | Bin 0 -> 677 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 Module 5/agpp.Rdata diff --git a/Module 5/agpp.Rdata b/Module 5/agpp.Rdata new file mode 100644 index 0000000000000000000000000000000000000000..a856b2627c439eaccaaeb473896d7d55b977d4ed GIT binary patch literal 677 zcmb2|=3oE==C#+#gM}R#+8;jlTcz~vUUhFl?OWFB<87k+MTI333^-r?m_J{pmbtuV zzig+$fiuo|>)-4>IjLph!@&LdTh15CTrd1>Ept7&xcBsWzAxL@ZZ3bBdHkc<=Ch9L z=O521+_QBrb9-RpK?AwRXYb63>GvyHC~bRm&)VvBN3GTzXD~}pHd|P_U-w2=?v1{= zH(KxBXx@9H{jWtsvqg)tMOU&#pRh$|utl%2MR&2p5rG;O4nak?CXwfbjN*ly(+gR{ z3wf^>GMg82Z!csoFXaFJk%9jshyMo=<%+iF6^+v?S_AhSi{5j%y5@j{ozh_owXUrn z)|kGYb!Pwb$!8yluANpr`~I>0A#GiO-~VK6koYEY*wHp;?%US}7ZO(-_GsV8CoH?n z%H-0T?O(TEyzX}2DpI;O_X~&_4`u|u7tTmt(A#Lnc5Uk|2`CfDSnMa0mAs;Np;_B4 ziKyUA7&B|}Ig!ldCA|~P+-^x^Ca0WT17$9blgdtB)4S2^*ewY#qf|M!XRF~gH(T?I z$6Ta^bA7fLLK$m*XC*J{tunZJEJQju*JrCCoUzqt%f%Cpi+kOqd(EVBO>SjuxtOu| zqTAx$V-fRz%oUy-x%tn5_#aX$QiYAbvPEycCcgdm^ggqg*BkFzdRv~i+c#xn?cM$F zHr^JVs=sZ|{L12gD(h`l{{5s^x^miP9_`3) zQ_t+a^E3SQuFx%Br&s5HTlpqCZr{zlMd!{x{a?x4yT>wie%7<($CYdEo#?*%TD&ZM z>&!igXK&tK@qfjX&)fb@yAyxzj(_RIJ^QlECWmJ6>do{oN&C;R@Y(WEUmgYq07Z3J A&j0`b literal 0 HcmV?d00001 From 601f6dc74bc23d5e7f584191b0e3bc410cdf2f4f Mon Sep 17 00:00:00 2001 From: juneeybug Date: Tue, 18 Oct 2022 09:37:50 +0530 Subject: [PATCH 27/55] Added McNemar Test --- Module 5/Chi_sq.Rmd | 26 +++++++++++++ Module 5/Chi_sq.nb.html | 83 ++++++++++++++++++++++++++++++++++++++++- 2 files changed, 108 insertions(+), 1 deletion(-) diff --git a/Module 5/Chi_sq.Rmd b/Module 5/Chi_sq.Rmd index 612631bd..62019904 100644 --- a/Module 5/Chi_sq.Rmd +++ b/Module 5/Chi_sq.Rmd @@ -144,4 +144,30 @@ chisq.test( salem.tabs ) ```{r} fisher.test( salem.tabs ) ``` +McNemar Test (remember paired samples t test? This is the equivalent test for nominal variables) + +```{r} +load( file.path( "agpp.Rdata" )) +``` + +```{r} +str(agpp) +``` + +```{r} +head(agpp) +``` + +```{r} +summary(agpp) +``` + +```{r} +right.table <- xtabs( ~ response_before + response_after, data = agpp) +print( right.table ) +``` + +```{r} +mcnemar.test( right.table ) +``` diff --git a/Module 5/Chi_sq.nb.html b/Module 5/Chi_sq.nb.html index 6e1e2f2c..fb3b061c 100644 --- a/Module 5/Chi_sq.nb.html +++ b/Module 5/Chi_sq.nb.html @@ -2212,9 +2212,90 @@

    R Notebook

    +

    McNemar Test (remember paired samples t test? This is the equivalent +test for nominal variables)

    + + + +
    load( file.path( "agpp.Rdata" ))
    + + + + + + +
    str(agpp)
    + + +
    'data.frame':   100 obs. of  3 variables:
    + $ id             : Factor w/ 100 levels "subj.1","subj.10",..: 1 13 24 35 46 57 68 79 90 2 ...
    + $ response_before: Factor w/ 2 levels "no","yes": 1 2 2 2 1 1 1 1 1 1 ...
    + $ response_after : Factor w/ 2 levels "no","yes": 2 1 1 1 1 1 1 2 1 1 ...
    + + + + + + +
    head(agpp)
    + + +
    + +
    + + + + + + +
    summary(agpp)    
    + + +
            id     response_before response_after
    + subj.1  : 1   no :70          no :90        
    + subj.10 : 1   yes:30          yes:10        
    + subj.100: 1                                 
    + subj.11 : 1                                 
    + subj.12 : 1                                 
    + subj.13 : 1                                 
    + (Other) :94                                 
    + + + + + + +
    right.table <- xtabs( ~ response_before + response_after, data = agpp)
    +print( right.table )
    + + +
                   response_after
    +response_before no yes
    +            no  65   5
    +            yes 25   5
    + + + + + + +
    mcnemar.test( right.table )
    + + +
    
    +    McNemar's Chi-squared test with continuity correction
    +
    +data:  right.table
    +McNemar's chi-squared = 12.033, df = 1, p-value = 0.0005226
    + + + -
    LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCmBgYHtyfQ0KbGlicmFyeSggbHNyICkNCmxvYWQoIGZpbGUucGF0aCgicmFuZG9tbmVzcy5SZGF0YSIgKSkNCnN0cihjYXJkcykNCmBgYA0KYGBge3J9DQpvYnNlcnZlZCA8LSB0YWJsZSggY2FyZHMkY2hvaWNlXzEgKQ0Kb2JzZXJ2ZWQNCmBgYA0KDQpgYGB7cn0NCnByb2JhYmlsaXRpZXMgPC0gYyhjbHVicyA9IC4yNSwgZGlhbW9uZHMgPSAuMjUsIGhlYXJ0cyA9IC4yNSwgc3BhZGVzID0gLjI1KSANCnByb2JhYmlsaXRpZXMNCmBgYA0KDQpgYGB7cn0NCk4gPC0gMjAwICAjIHNhbXBsZSBzaXplDQpleHBlY3RlZCA8LSBOICogcHJvYmFiaWxpdGllcyAjIGV4cGVjdGVkIGZyZXF1ZW5jaWVzDQpleHBlY3RlZA0KYGBgDQoNCmBgYHtyfQ0Kb2JzZXJ2ZWQgLSBleHBlY3RlZCANCmBgYA0KDQpgYGB7cn0NCihvYnNlcnZlZCAtIGV4cGVjdGVkKV4yDQpgYGANCg0KYGBge3J9DQoob2JzZXJ2ZWQgLSBleHBlY3RlZCleMiAvIGV4cGVjdGVkDQpgYGANCg0KYGBge3J9DQpzdW0oIChvYnNlcnZlZCAtIGV4cGVjdGVkKV4yIC8gZXhwZWN0ZWQgKQ0KYGBgDQoNCmBgYHtyfQ0KcWNoaXNxKCBwID0gLjk1LCBkZiA9IDMgKQ0KYGBgDQoNCg0KYGBge3J9DQpwY2hpc3EoIHEgPSA4LjQ0LCBkZiA9IDMsIGxvd2VyLnRhaWwgPSBGQUxTRSApDQpgYGANCg0KYGBge3J9DQoxLXBjaGlzcSggcSA9IDguNDQsIGRmID0gMyApDQpgYGANCg0KYGBge3J9DQpnb29kbmVzc09mRml0VGVzdCggY2FyZHMkY2hvaWNlXzEgKQ0KYGBgDQoNCkRvaW5nIHRoZSBzYW1lIEdvb2RuZXNzIG9mIEZpdCB0ZXN0IHVzaW5nIGNoaXNxLnRlc3QuIA0KTm90ZTogb2JzZXJ2ZWQgZnJlcXVlbmNpZXMgYXJlIHByb3ZpZGVkIGluc3RlYWQgb2YgY2hvaWNlcy4NCmBgYHtyfQ0KY2hpc3EudGVzdCggeCA9IG9ic2VydmVkICApDQpgYGANCg0KDQoNCg0KDQpgYGB7cn0NCm51bGxQcm9icyA8LSBjKGNsdWJzID0gLjIsIGRpYW1vbmRzID0gLjMsIGhlYXJ0cyA9IC4zLCBzcGFkZXMgPSAuMikNCm51bGxQcm9icw0KYGBgDQoNCmBgYHtyfQ0KZ29vZG5lc3NPZkZpdFRlc3QoIHggPSBjYXJkcyRjaG9pY2VfMSwgcCA9IG51bGxQcm9icyApDQpgYGANCg0KYGBge3J9DQpjaGlzcS50ZXN0KCB4ID0gb2JzZXJ2ZWQsIHAgPSBjKC4yLCAuMywgLjMsIC4yKSApDQpgYGANCg0KDQoNCg0KDQpDaGkgU3EgQXNzb2NpYXRpb24gdGVzdCBXaXRoIENoYXBlazkNCg0KYGBge3J9DQpsb2FkKCBmaWxlLnBhdGgoICJjaGFwZWs5LlJkYXRhIiApKQ0Kc3RyKGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpoZWFkKGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpjaGFwZWtGcmVxdWVuY2llcyA8LSB4dGFicyggfiBjaG9pY2UgKyBzcGVjaWVzLCBkYXRhID0gY2hhcGVrOSkNCmNoYXBla0ZyZXF1ZW5jaWVzDQpgYGANCg0KDQpgYGB7cn0NCmFzc29jaWF0aW9uVGVzdCggZm9ybXVsYSA9IH5jaG9pY2Urc3BlY2llcywgZGF0YSA9IGNoYXBlazkgKQ0KDQpgYGANCg0KYGBge3J9DQpjcmFtZXJzViggY2hhcGVrRnJlcXVlbmNpZXMgKQ0KDQpgYGANCg0KDQoNCg0KYGBge3J9DQpjaGlzcS50ZXN0KCBjaGFwZWtGcmVxdWVuY2llcyApDQpgYGANCg0KDQpGaXNoZXIgRXhhY3QgdGVzdDogd2hlbiBvYnNlcnZlZCBmcmVxdWVuY2llcyBhcmUgbGVzcyB0aGFuIDUgDQo4MCUgb2YgdGhlIHRpbWUgaW4gbGFyZ2VyIGRhdGFzZXRzDQoNCmBgYHtyfQ0KbG9hZCggZmlsZS5wYXRoKCAic2FsZW0uUmRhdGEiICkpDQpgYGANCg0KDQpgYGB7cn0NCnNhbGVtLnRhYnMgPC0gdGFibGUoIHRyaWFsICkNCnByaW50KCBzYWxlbS50YWJzICkNCmBgYA0KDQpgYGB7cn0NCmNoaXNxLnRlc3QoIHNhbGVtLnRhYnMgKQ0KYGBgDQoNCmBgYHtyfQ0KZmlzaGVyLnRlc3QoIHNhbGVtLnRhYnMgKQ0KYGBgDQoNCg==
    +
    LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCmBgYHtyfQ0KbGlicmFyeSggbHNyICkNCmxvYWQoIGZpbGUucGF0aCgicmFuZG9tbmVzcy5SZGF0YSIgKSkNCnN0cihjYXJkcykNCmBgYA0KYGBge3J9DQpvYnNlcnZlZCA8LSB0YWJsZSggY2FyZHMkY2hvaWNlXzEgKQ0Kb2JzZXJ2ZWQNCmBgYA0KDQpgYGB7cn0NCnByb2JhYmlsaXRpZXMgPC0gYyhjbHVicyA9IC4yNSwgZGlhbW9uZHMgPSAuMjUsIGhlYXJ0cyA9IC4yNSwgc3BhZGVzID0gLjI1KSANCnByb2JhYmlsaXRpZXMNCmBgYA0KDQpgYGB7cn0NCk4gPC0gMjAwICAjIHNhbXBsZSBzaXplDQpleHBlY3RlZCA8LSBOICogcHJvYmFiaWxpdGllcyAjIGV4cGVjdGVkIGZyZXF1ZW5jaWVzDQpleHBlY3RlZA0KYGBgDQoNCmBgYHtyfQ0Kb2JzZXJ2ZWQgLSBleHBlY3RlZCANCmBgYA0KDQpgYGB7cn0NCihvYnNlcnZlZCAtIGV4cGVjdGVkKV4yDQpgYGANCg0KYGBge3J9DQoob2JzZXJ2ZWQgLSBleHBlY3RlZCleMiAvIGV4cGVjdGVkDQpgYGANCg0KYGBge3J9DQpzdW0oIChvYnNlcnZlZCAtIGV4cGVjdGVkKV4yIC8gZXhwZWN0ZWQgKQ0KYGBgDQoNCmBgYHtyfQ0KcWNoaXNxKCBwID0gLjk1LCBkZiA9IDMgKQ0KYGBgDQoNCg0KYGBge3J9DQpwY2hpc3EoIHEgPSA4LjQ0LCBkZiA9IDMsIGxvd2VyLnRhaWwgPSBGQUxTRSApDQpgYGANCg0KYGBge3J9DQoxLXBjaGlzcSggcSA9IDguNDQsIGRmID0gMyApDQpgYGANCg0KYGBge3J9DQpnb29kbmVzc09mRml0VGVzdCggY2FyZHMkY2hvaWNlXzEgKQ0KYGBgDQoNCkRvaW5nIHRoZSBzYW1lIEdvb2RuZXNzIG9mIEZpdCB0ZXN0IHVzaW5nIGNoaXNxLnRlc3QuIA0KTm90ZTogb2JzZXJ2ZWQgZnJlcXVlbmNpZXMgYXJlIHByb3ZpZGVkIGluc3RlYWQgb2YgY2hvaWNlcy4NCmBgYHtyfQ0KY2hpc3EudGVzdCggeCA9IG9ic2VydmVkICApDQpgYGANCg0KDQoNCg0KDQpgYGB7cn0NCm51bGxQcm9icyA8LSBjKGNsdWJzID0gLjIsIGRpYW1vbmRzID0gLjMsIGhlYXJ0cyA9IC4zLCBzcGFkZXMgPSAuMikNCm51bGxQcm9icw0KYGBgDQoNCmBgYHtyfQ0KZ29vZG5lc3NPZkZpdFRlc3QoIHggPSBjYXJkcyRjaG9pY2VfMSwgcCA9IG51bGxQcm9icyApDQpgYGANCg0KYGBge3J9DQpjaGlzcS50ZXN0KCB4ID0gb2JzZXJ2ZWQsIHAgPSBjKC4yLCAuMywgLjMsIC4yKSApDQpgYGANCg0KDQoNCg0KDQpDaGkgU3EgQXNzb2NpYXRpb24gdGVzdCBXaXRoIENoYXBlazkNCg0KYGBge3J9DQpsb2FkKCBmaWxlLnBhdGgoICJjaGFwZWs5LlJkYXRhIiApKQ0Kc3RyKGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpoZWFkKGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpjaGFwZWtGcmVxdWVuY2llcyA8LSB4dGFicyggfiBjaG9pY2UgKyBzcGVjaWVzLCBkYXRhID0gY2hhcGVrOSkNCmNoYXBla0ZyZXF1ZW5jaWVzDQpgYGANCg0KDQpgYGB7cn0NCmFzc29jaWF0aW9uVGVzdCggZm9ybXVsYSA9IH5jaG9pY2Urc3BlY2llcywgZGF0YSA9IGNoYXBlazkgKQ0KDQpgYGANCg0KYGBge3J9DQpjcmFtZXJzViggY2hhcGVrRnJlcXVlbmNpZXMgKQ0KDQpgYGANCg0KDQoNCg0KYGBge3J9DQpjaGlzcS50ZXN0KCBjaGFwZWtGcmVxdWVuY2llcyApDQpgYGANCg0KDQpGaXNoZXIgRXhhY3QgdGVzdDogd2hlbiBvYnNlcnZlZCBmcmVxdWVuY2llcyBhcmUgbGVzcyB0aGFuIDUgDQo4MCUgb2YgdGhlIHRpbWUgaW4gbGFyZ2VyIGRhdGFzZXRzDQoNCmBgYHtyfQ0KbG9hZCggZmlsZS5wYXRoKCAic2FsZW0uUmRhdGEiICkpDQpgYGANCg0KDQpgYGB7cn0NCnNhbGVtLnRhYnMgPC0gdGFibGUoIHRyaWFsICkNCnByaW50KCBzYWxlbS50YWJzICkNCmBgYA0KDQpgYGB7cn0NCmNoaXNxLnRlc3QoIHNhbGVtLnRhYnMgKQ0KYGBgDQoNCmBgYHtyfQ0KZmlzaGVyLnRlc3QoIHNhbGVtLnRhYnMgKQ0KYGBgDQpNY05lbWFyIFRlc3QgKHJlbWVtYmVyIHBhaXJlZCBzYW1wbGVzIHQgdGVzdD8gVGhpcyBpcyB0aGUgZXF1aXZhbGVudCB0ZXN0IGZvciBub21pbmFsIHZhcmlhYmxlcykgDQoNCmBgYHtyfQ0KbG9hZCggZmlsZS5wYXRoKCAiYWdwcC5SZGF0YSIgKSkNCmBgYA0KDQpgYGB7cn0NCnN0cihhZ3BwKQ0KYGBgDQoNCmBgYHtyfQ0KaGVhZChhZ3BwKQ0KYGBgDQoNCmBgYHtyfQ0Kc3VtbWFyeShhZ3BwKSAgICANCmBgYA0KDQpgYGB7cn0NCnJpZ2h0LnRhYmxlIDwtIHh0YWJzKCB+IHJlc3BvbnNlX2JlZm9yZSArIHJlc3BvbnNlX2FmdGVyLCBkYXRhID0gYWdwcCkNCnByaW50KCByaWdodC50YWJsZSApDQpgYGANCg0KYGBge3J9DQptY25lbWFyLnRlc3QoIHJpZ2h0LnRhYmxlICkNCmBgYA0KDQo=
    From f43a5353c75b142f62a61c3f1e94cf9fa070aaf1 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Tue, 25 Oct 2022 09:10:04 +0530 Subject: [PATCH 28/55] Added Post hoc testing --- Module 5/Chi_sq.Rmd | 7 ++-- Module 5/Chi_sq.nb.html | 82 ++++++++--------------------------------- 2 files changed, 19 insertions(+), 70 deletions(-) diff --git a/Module 5/Chi_sq.Rmd b/Module 5/Chi_sq.Rmd index 62019904..0df200ef 100644 --- a/Module 5/Chi_sq.Rmd +++ b/Module 5/Chi_sq.Rmd @@ -82,9 +82,6 @@ chisq.test( x = observed, p = c(.2, .3, .3, .2) ) ``` - - - Chi Sq Association test With Chapek9 ```{r} @@ -122,6 +119,10 @@ cramersV( chapekFrequencies ) ```{r} chisq.test( chapekFrequencies ) ``` +```{r} +library(chisq.posthoc.test) +chisq.posthoc.test(chapekFrequencies) +``` Fisher Exact test: when observed frequencies are less than 5 diff --git a/Module 5/Chi_sq.nb.html b/Module 5/Chi_sq.nb.html index fb3b061c..f0c07ba5 100644 --- a/Module 5/Chi_sq.nb.html +++ b/Module 5/Chi_sq.nb.html @@ -2052,7 +2052,7 @@

    R Notebook

    head(chapek9)
    - +
    +
    + +

    Fisher Exact test: when observed frequencies are less than 5 80% of the time in larger datasets

    @@ -2167,12 +2180,6 @@

    R Notebook

    salem.tabs <- table( trial )
     print( salem.tabs )
    - -
           on.fire
    -happy   FALSE TRUE
    -  FALSE     3    3
    -  TRUE     10    0
    - @@ -2180,16 +2187,6 @@

    R Notebook

    chisq.test( salem.tabs )
    - -
    Warning: Chi-squared approximation may be incorrect
    - - -
    
    -    Pearson's Chi-squared test with Yates' continuity correction
    -
    -data:  salem.tabs
    -X-squared = 3.3094, df = 1, p-value = 0.06888
    - @@ -2197,19 +2194,6 @@

    R Notebook

    fisher.test( salem.tabs )
    - -
    
    -    Fisher's Exact Test for Count Data
    -
    -data:  salem.tabs
    -p-value = 0.03571
    -alternative hypothesis: true odds ratio is not equal to 1
    -95 percent confidence interval:
    - 0.000000 1.202913
    -sample estimates:
    -odds ratio 
    -         0 
    -

    McNemar Test (remember paired samples t test? This is the equivalent @@ -2226,12 +2210,6 @@

    R Notebook

    str(agpp)
    - -
    'data.frame':   100 obs. of  3 variables:
    - $ id             : Factor w/ 100 levels "subj.1","subj.10",..: 1 13 24 35 46 57 68 79 90 2 ...
    - $ response_before: Factor w/ 2 levels "no","yes": 1 2 2 2 1 1 1 1 1 1 ...
    - $ response_after : Factor w/ 2 levels "no","yes": 2 1 1 1 1 1 1 2 1 1 ...
    - @@ -2239,13 +2217,6 @@

    R Notebook

    head(agpp)
    - -
    - -
    - @@ -2253,16 +2224,6 @@

    R Notebook

    summary(agpp)    
    - -
            id     response_before response_after
    - subj.1  : 1   no :70          no :90        
    - subj.10 : 1   yes:30          yes:10        
    - subj.100: 1                                 
    - subj.11 : 1                                 
    - subj.12 : 1                                 
    - subj.13 : 1                                 
    - (Other) :94                                 
    - @@ -2271,12 +2232,6 @@

    R Notebook

    right.table <- xtabs( ~ response_before + response_after, data = agpp)
     print( right.table )
    - -
                   response_after
    -response_before no yes
    -            no  65   5
    -            yes 25   5
    - @@ -2284,18 +2239,11 @@

    R Notebook

    mcnemar.test( right.table )
    - -
    
    -    McNemar's Chi-squared test with continuity correction
    -
    -data:  right.table
    -McNemar's chi-squared = 12.033, df = 1, p-value = 0.0005226
    - -
    LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCmBgYHtyfQ0KbGlicmFyeSggbHNyICkNCmxvYWQoIGZpbGUucGF0aCgicmFuZG9tbmVzcy5SZGF0YSIgKSkNCnN0cihjYXJkcykNCmBgYA0KYGBge3J9DQpvYnNlcnZlZCA8LSB0YWJsZSggY2FyZHMkY2hvaWNlXzEgKQ0Kb2JzZXJ2ZWQNCmBgYA0KDQpgYGB7cn0NCnByb2JhYmlsaXRpZXMgPC0gYyhjbHVicyA9IC4yNSwgZGlhbW9uZHMgPSAuMjUsIGhlYXJ0cyA9IC4yNSwgc3BhZGVzID0gLjI1KSANCnByb2JhYmlsaXRpZXMNCmBgYA0KDQpgYGB7cn0NCk4gPC0gMjAwICAjIHNhbXBsZSBzaXplDQpleHBlY3RlZCA8LSBOICogcHJvYmFiaWxpdGllcyAjIGV4cGVjdGVkIGZyZXF1ZW5jaWVzDQpleHBlY3RlZA0KYGBgDQoNCmBgYHtyfQ0Kb2JzZXJ2ZWQgLSBleHBlY3RlZCANCmBgYA0KDQpgYGB7cn0NCihvYnNlcnZlZCAtIGV4cGVjdGVkKV4yDQpgYGANCg0KYGBge3J9DQoob2JzZXJ2ZWQgLSBleHBlY3RlZCleMiAvIGV4cGVjdGVkDQpgYGANCg0KYGBge3J9DQpzdW0oIChvYnNlcnZlZCAtIGV4cGVjdGVkKV4yIC8gZXhwZWN0ZWQgKQ0KYGBgDQoNCmBgYHtyfQ0KcWNoaXNxKCBwID0gLjk1LCBkZiA9IDMgKQ0KYGBgDQoNCg0KYGBge3J9DQpwY2hpc3EoIHEgPSA4LjQ0LCBkZiA9IDMsIGxvd2VyLnRhaWwgPSBGQUxTRSApDQpgYGANCg0KYGBge3J9DQoxLXBjaGlzcSggcSA9IDguNDQsIGRmID0gMyApDQpgYGANCg0KYGBge3J9DQpnb29kbmVzc09mRml0VGVzdCggY2FyZHMkY2hvaWNlXzEgKQ0KYGBgDQoNCkRvaW5nIHRoZSBzYW1lIEdvb2RuZXNzIG9mIEZpdCB0ZXN0IHVzaW5nIGNoaXNxLnRlc3QuIA0KTm90ZTogb2JzZXJ2ZWQgZnJlcXVlbmNpZXMgYXJlIHByb3ZpZGVkIGluc3RlYWQgb2YgY2hvaWNlcy4NCmBgYHtyfQ0KY2hpc3EudGVzdCggeCA9IG9ic2VydmVkICApDQpgYGANCg0KDQoNCg0KDQpgYGB7cn0NCm51bGxQcm9icyA8LSBjKGNsdWJzID0gLjIsIGRpYW1vbmRzID0gLjMsIGhlYXJ0cyA9IC4zLCBzcGFkZXMgPSAuMikNCm51bGxQcm9icw0KYGBgDQoNCmBgYHtyfQ0KZ29vZG5lc3NPZkZpdFRlc3QoIHggPSBjYXJkcyRjaG9pY2VfMSwgcCA9IG51bGxQcm9icyApDQpgYGANCg0KYGBge3J9DQpjaGlzcS50ZXN0KCB4ID0gb2JzZXJ2ZWQsIHAgPSBjKC4yLCAuMywgLjMsIC4yKSApDQpgYGANCg0KDQoNCg0KDQpDaGkgU3EgQXNzb2NpYXRpb24gdGVzdCBXaXRoIENoYXBlazkNCg0KYGBge3J9DQpsb2FkKCBmaWxlLnBhdGgoICJjaGFwZWs5LlJkYXRhIiApKQ0Kc3RyKGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpoZWFkKGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpjaGFwZWtGcmVxdWVuY2llcyA8LSB4dGFicyggfiBjaG9pY2UgKyBzcGVjaWVzLCBkYXRhID0gY2hhcGVrOSkNCmNoYXBla0ZyZXF1ZW5jaWVzDQpgYGANCg0KDQpgYGB7cn0NCmFzc29jaWF0aW9uVGVzdCggZm9ybXVsYSA9IH5jaG9pY2Urc3BlY2llcywgZGF0YSA9IGNoYXBlazkgKQ0KDQpgYGANCg0KYGBge3J9DQpjcmFtZXJzViggY2hhcGVrRnJlcXVlbmNpZXMgKQ0KDQpgYGANCg0KDQoNCg0KYGBge3J9DQpjaGlzcS50ZXN0KCBjaGFwZWtGcmVxdWVuY2llcyApDQpgYGANCg0KDQpGaXNoZXIgRXhhY3QgdGVzdDogd2hlbiBvYnNlcnZlZCBmcmVxdWVuY2llcyBhcmUgbGVzcyB0aGFuIDUgDQo4MCUgb2YgdGhlIHRpbWUgaW4gbGFyZ2VyIGRhdGFzZXRzDQoNCmBgYHtyfQ0KbG9hZCggZmlsZS5wYXRoKCAic2FsZW0uUmRhdGEiICkpDQpgYGANCg0KDQpgYGB7cn0NCnNhbGVtLnRhYnMgPC0gdGFibGUoIHRyaWFsICkNCnByaW50KCBzYWxlbS50YWJzICkNCmBgYA0KDQpgYGB7cn0NCmNoaXNxLnRlc3QoIHNhbGVtLnRhYnMgKQ0KYGBgDQoNCmBgYHtyfQ0KZmlzaGVyLnRlc3QoIHNhbGVtLnRhYnMgKQ0KYGBgDQpNY05lbWFyIFRlc3QgKHJlbWVtYmVyIHBhaXJlZCBzYW1wbGVzIHQgdGVzdD8gVGhpcyBpcyB0aGUgZXF1aXZhbGVudCB0ZXN0IGZvciBub21pbmFsIHZhcmlhYmxlcykgDQoNCmBgYHtyfQ0KbG9hZCggZmlsZS5wYXRoKCAiYWdwcC5SZGF0YSIgKSkNCmBgYA0KDQpgYGB7cn0NCnN0cihhZ3BwKQ0KYGBgDQoNCmBgYHtyfQ0KaGVhZChhZ3BwKQ0KYGBgDQoNCmBgYHtyfQ0Kc3VtbWFyeShhZ3BwKSAgICANCmBgYA0KDQpgYGB7cn0NCnJpZ2h0LnRhYmxlIDwtIHh0YWJzKCB+IHJlc3BvbnNlX2JlZm9yZSArIHJlc3BvbnNlX2FmdGVyLCBkYXRhID0gYWdwcCkNCnByaW50KCByaWdodC50YWJsZSApDQpgYGANCg0KYGBge3J9DQptY25lbWFyLnRlc3QoIHJpZ2h0LnRhYmxlICkNCmBgYA0KDQo=
    +
    LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQoNCmBgYHtyfQ0KbGlicmFyeSggbHNyICkNCmxvYWQoIGZpbGUucGF0aCgicmFuZG9tbmVzcy5SZGF0YSIgKSkNCnN0cihjYXJkcykNCmBgYA0KYGBge3J9DQpvYnNlcnZlZCA8LSB0YWJsZSggY2FyZHMkY2hvaWNlXzEgKQ0Kb2JzZXJ2ZWQNCmBgYA0KDQpgYGB7cn0NCnByb2JhYmlsaXRpZXMgPC0gYyhjbHVicyA9IC4yNSwgZGlhbW9uZHMgPSAuMjUsIGhlYXJ0cyA9IC4yNSwgc3BhZGVzID0gLjI1KSANCnByb2JhYmlsaXRpZXMNCmBgYA0KDQpgYGB7cn0NCk4gPC0gMjAwICAjIHNhbXBsZSBzaXplDQpleHBlY3RlZCA8LSBOICogcHJvYmFiaWxpdGllcyAjIGV4cGVjdGVkIGZyZXF1ZW5jaWVzDQpleHBlY3RlZA0KYGBgDQoNCmBgYHtyfQ0Kb2JzZXJ2ZWQgLSBleHBlY3RlZCANCmBgYA0KDQpgYGB7cn0NCihvYnNlcnZlZCAtIGV4cGVjdGVkKV4yDQpgYGANCg0KYGBge3J9DQoob2JzZXJ2ZWQgLSBleHBlY3RlZCleMiAvIGV4cGVjdGVkDQpgYGANCg0KYGBge3J9DQpzdW0oIChvYnNlcnZlZCAtIGV4cGVjdGVkKV4yIC8gZXhwZWN0ZWQgKQ0KYGBgDQoNCmBgYHtyfQ0KcWNoaXNxKCBwID0gLjk1LCBkZiA9IDMgKQ0KYGBgDQoNCg0KYGBge3J9DQpwY2hpc3EoIHEgPSA4LjQ0LCBkZiA9IDMsIGxvd2VyLnRhaWwgPSBGQUxTRSApDQpgYGANCg0KYGBge3J9DQoxLXBjaGlzcSggcSA9IDguNDQsIGRmID0gMyApDQpgYGANCg0KYGBge3J9DQpnb29kbmVzc09mRml0VGVzdCggY2FyZHMkY2hvaWNlXzEgKQ0KYGBgDQoNCkRvaW5nIHRoZSBzYW1lIEdvb2RuZXNzIG9mIEZpdCB0ZXN0IHVzaW5nIGNoaXNxLnRlc3QuIA0KTm90ZTogb2JzZXJ2ZWQgZnJlcXVlbmNpZXMgYXJlIHByb3ZpZGVkIGluc3RlYWQgb2YgY2hvaWNlcy4NCmBgYHtyfQ0KY2hpc3EudGVzdCggeCA9IG9ic2VydmVkICApDQpgYGANCg0KDQoNCg0KDQpgYGB7cn0NCm51bGxQcm9icyA8LSBjKGNsdWJzID0gLjIsIGRpYW1vbmRzID0gLjMsIGhlYXJ0cyA9IC4zLCBzcGFkZXMgPSAuMikNCm51bGxQcm9icw0KYGBgDQoNCmBgYHtyfQ0KZ29vZG5lc3NPZkZpdFRlc3QoIHggPSBjYXJkcyRjaG9pY2VfMSwgcCA9IG51bGxQcm9icyApDQpgYGANCg0KYGBge3J9DQpjaGlzcS50ZXN0KCB4ID0gb2JzZXJ2ZWQsIHAgPSBjKC4yLCAuMywgLjMsIC4yKSApDQpgYGANCg0KDQpDaGkgU3EgQXNzb2NpYXRpb24gdGVzdCBXaXRoIENoYXBlazkNCg0KYGBge3J9DQpsb2FkKCBmaWxlLnBhdGgoICJjaGFwZWs5LlJkYXRhIiApKQ0Kc3RyKGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpoZWFkKGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpzdW1tYXJ5KGNoYXBlazkpDQpgYGANCg0KYGBge3J9DQpjaGFwZWtGcmVxdWVuY2llcyA8LSB4dGFicyggfiBjaG9pY2UgKyBzcGVjaWVzLCBkYXRhID0gY2hhcGVrOSkNCmNoYXBla0ZyZXF1ZW5jaWVzDQpgYGANCg0KDQpgYGB7cn0NCmFzc29jaWF0aW9uVGVzdCggZm9ybXVsYSA9IH5jaG9pY2Urc3BlY2llcywgZGF0YSA9IGNoYXBlazkgKQ0KDQpgYGANCg0KYGBge3J9DQpjcmFtZXJzViggY2hhcGVrRnJlcXVlbmNpZXMgKQ0KDQpgYGANCg0KDQoNCg0KYGBge3J9DQpjaGlzcS50ZXN0KCBjaGFwZWtGcmVxdWVuY2llcyApDQpgYGANCmBgYHtyfQ0KbGlicmFyeShjaGlzcS5wb3N0aG9jLnRlc3QpDQpjaGlzcS5wb3N0aG9jLnRlc3QoY2hhcGVrRnJlcXVlbmNpZXMpDQpgYGANCg0KDQpGaXNoZXIgRXhhY3QgdGVzdDogd2hlbiBvYnNlcnZlZCBmcmVxdWVuY2llcyBhcmUgbGVzcyB0aGFuIDUgDQo4MCUgb2YgdGhlIHRpbWUgaW4gbGFyZ2VyIGRhdGFzZXRzDQoNCmBgYHtyfQ0KbG9hZCggZmlsZS5wYXRoKCAic2FsZW0uUmRhdGEiICkpDQpgYGANCg0KDQpgYGB7cn0NCnNhbGVtLnRhYnMgPC0gdGFibGUoIHRyaWFsICkNCnByaW50KCBzYWxlbS50YWJzICkNCmBgYA0KDQpgYGB7cn0NCmNoaXNxLnRlc3QoIHNhbGVtLnRhYnMgKQ0KYGBgDQoNCmBgYHtyfQ0KZmlzaGVyLnRlc3QoIHNhbGVtLnRhYnMgKQ0KYGBgDQpNY05lbWFyIFRlc3QgKHJlbWVtYmVyIHBhaXJlZCBzYW1wbGVzIHQgdGVzdD8gVGhpcyBpcyB0aGUgZXF1aXZhbGVudCB0ZXN0IGZvciBub21pbmFsIHZhcmlhYmxlcykgDQoNCmBgYHtyfQ0KbG9hZCggZmlsZS5wYXRoKCAiYWdwcC5SZGF0YSIgKSkNCmBgYA0KDQpgYGB7cn0NCnN0cihhZ3BwKQ0KYGBgDQoNCmBgYHtyfQ0KaGVhZChhZ3BwKQ0KYGBgDQoNCmBgYHtyfQ0Kc3VtbWFyeShhZ3BwKSAgICANCmBgYA0KDQpgYGB7cn0NCnJpZ2h0LnRhYmxlIDwtIHh0YWJzKCB+IHJlc3BvbnNlX2JlZm9yZSArIHJlc3BvbnNlX2FmdGVyLCBkYXRhID0gYWdwcCkNCnByaW50KCByaWdodC50YWJsZSApDQpgYGANCg0KYGBge3J9DQptY25lbWFyLnRlc3QoIHJpZ2h0LnRhYmxlICkNCmBgYA0KDQo=
    From 307d090449d617faab7c8d1924ac9980b9a14121 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Tue, 1 Nov 2022 09:13:09 +0530 Subject: [PATCH 29/55] Module 6 ANOVA --- Module 6 | 1 - Module 6/ANOVA.Rmd | 299 +++++++++++++++++++++++++++++++++++ Module 6/clinicaltrial.Rdata | Bin 0 -> 326 bytes 3 files changed, 299 insertions(+), 1 deletion(-) delete mode 100644 Module 6 create mode 100644 Module 6/ANOVA.Rmd create mode 100644 Module 6/clinicaltrial.Rdata diff --git a/Module 6 b/Module 6 deleted file mode 100644 index 8b137891..00000000 --- a/Module 6 +++ /dev/null @@ -1 +0,0 @@ - diff --git a/Module 6/ANOVA.Rmd b/Module 6/ANOVA.Rmd new file mode 100644 index 00000000..bfd040c2 --- /dev/null +++ b/Module 6/ANOVA.Rmd @@ -0,0 +1,299 @@ +--- +title: "ANOVA" +output: html_document +date: "2022-10-31" +--- + +```{r setup, include=FALSE} +knitr::opts_chunk$set(echo = TRUE) +``` +## R Markdown +Suppose you are testing a new antidepressant drug called Joyzepam. To test of the drug’s effectiveness, the study involves three separate drugs to be administered. +One is a placebo, and the other is an existing antidepressant / anti-anxiety drug called Anxifree. +18 participants with moderate to severe depression are recruited for your initial testing +the drugs are sometimes administered in conjunction with psychological therapy, your study includes 9 people undergoing cognitive behavioural therapy (CBT) and 9 who are not. +Participants are randomly assigned (doubly blinded, of course) a treatment, such that there are 3 CBT people and 3 no-therapy people assigned to each of the 3 drugs. A psychologist assesses the mood of each person after a 3 month run with each drug: and the overall improvement in each person’s mood is assessed on a scale ranging from −5 to +5. +let’s now look at what we’ve got in the data file: +```{r ANOVA} +projecthome = "D:/Stats class"; #enter folder name where the data is downloaded +load(file.path(projecthome, "clinicaltrial.Rdata")) # load data +str(clin.trial) +print( clin.trial ) +``` +Lets see how many people we have in each group: + +```{r Opening Data} +xtabs( ~drug, clin.trial ) +``` +calculate means and standard deviations + +```{r Opening Data} +aggregate( mood.gain ~ drug, clin.trial, mean ) +``` + +produce a pretty picture plots +You might want to install it by using (install.packages("gplots")) +observe the graph carefully +```{r Opening Data} +library(gplots) +plotmeans( formula = mood.gain ~ drug, # plot mood.gain by drug + data = clin.trial, # the data frame + xlab = "Drug Administered", # x-axis label + ylab = "Mood Gain", # y-axis label + n.label = FALSE # don't display sample size +) +``` +The question that we want to answer is: are these difference “real”, or are they just due to chance? To answer the question posed by our clinical trial data, we’re going to run a one-way ANOVA. We’re interested in comparing the average mood change for the three different drugs. + +let μP denote the population mean for the mood change induced by the placebo, and let μA and μJ denote the corresponding means for our two drugs, Anxifree and Joyzepam. + +null hypothesis = H0: it is true that μP=μA=μJ (all three equal) +alternative hypothesis = H1:it is *not* true that μP=μA=μJ + +We’ll start out by playing around with variances, and it will turn out that this gives us a useful tool for investigating means. + +There are Two formulas for the variance, Can you recall the formula ? +sum of squares = same as variance but not divided by N i.e. instead of averaging the squared deviations, which is what we do when calculating the variance, we just add them up + +This can be done within grp as well as between grps (students can try and plot within grp vs between grp sum of squares.) + +Qualitative idea behind ANOVA is to compare the two sums of squares values + +SSb and SSw to each other: if the between-group variation is SSb is large relative to the within-group variation, SSw then we have reason to suspect that the population means for the different groups aren’t identical to each other + +What we do to calculate our test statistic – which is called an F ratio + +convert our SS values into an F-ratio +“the variation due to the differences in the sample means for the different groups” (SSb) plus “all the rest of the variation” (SSw) + +calculate the degrees of freedom associated with the SSb and SSw values. The degrees of freedom corresponds to the number of unique “data points” that contribute to a particular calculation, minus the number of “constraints” that they need to satisfy. + +Within-groups variability, what we’re calculating is the variation of the individual observations (Ndata points) around the group means for the between groups variability, we’re interested in the variation of the group means (G data points) around the grand mean (1 constraint) + +The intuition behind the F statistic is straightforward: bigger values of F means that the between-groups variation is large, relative to the within-groups variation , larger the value of F, the more evidence we have against the null hypothesis. + +lets see an example, recall the the means of the three groups that were administered different drugs + +```{r Opening Data} +outcome <- clin.trial$mood.gain +group <- clin.trial$drug +gp.means <- tapply(outcome,group,mean) +gp.means <- gp.means[group] +dev.from.gp.means <- outcome - gp.means +squared.devs <- dev.from.gp.means ^2 +#putting variables in the dataframe +Y <- data.frame( group, outcome, gp.means, + dev.from.gp.means, squared.devs ) +print(Y, digits = 2) +``` +Calculations of the within-group sum of squares + +```{r Opening Data} +SSw <- sum( squared.devs ) +print( SSw ) +``` +Now that we’ve calculated the within groups variation, SSw, it’s time to turn our attention to the between-group sum of squares, SSb. +We calculate the differences between the group means and the grand mean. + +However, for the between group calculations we need to multiply each of these squared deviations by Nk, the number of observations in the group (guess why?) + +For between group calculations +```{r Opening Data} +gp.means <- tapply(outcome,group,mean) +grand.mean <- mean(outcome) +dev.from.grand.mean <- gp.means - grand.mean +squared.devs <- dev.from.grand.mean ^2 +gp.sizes <- tapply(outcome,group,length) +wt.squared.devs <- gp.sizes * squared.devs +``` +dump all our variables into a data frame + +```{r Opening Data} +Y <- data.frame( gp.means, grand.mean, dev.from.grand.mean, + squared.devs, gp.sizes, wt.squared.devs ) +print(Y, digits = 2) +``` +rounded all my numbers to 2 decimal places ;) + +```{r Opening Data} +SSb <- sum( wt.squared.devs ) +print( SSb ) +``` +We’ve calculated our sums of squares values, SSb and SSw + +The next step is to calculate the degrees of freedom. Since we have G=3 groups and N=18 observations in total, our degrees of freedom can be calculated by simple subtraction: + dfb = G−1 = 2 + dfw = N−G = 15 + +since we’ve now calculated the values for the sums of squares and the degrees of freedom, for both the within-groups variability and the between-groups variability, we can obtain the mean square values by dividing one by the other: + MSb = SSb/dfb = 3.45/2 = 1.73 + MSw = SSw/dfw = 1.39/15= 0.09 + +We calculate F-values by dividing the between-groups MS value by the and within-groups MS value. + F = MSb/MSw = 1.73/0.09 = 18.6 + +It is easier to directly calculate the p-value. + +reject the null hypothesis for very large F-values + + +```{r Opening Data} +pf( 18.6, df1 = 2, df2 = 15, lower.tail = FALSE) +``` +You get a p-value, we’re pretty much guaranteed to reject the null hypothesis. + +A pretty standard way of reporting this result would be to write something like this: +One-way ANOVA showed a significant effect of drug on mood gain (F (2,15) = 18.6, p<.001). + +Using the aov() function to specify your ANOVA: type '?aov' and have a look at the help documentation + +```{r Opening Data} +my.anova <- aov( formula = mood.gain ~ drug, data = clin.trial ) +print( my.anova ) +``` +R doesn’t use the names “between-group” and “within-group” +instead : between groups variance corresponds to the effect that the drug has on the outcome variable; and the within groups variance is corresponds to the “leftover” variability, so it calls that the residuals. + +but wait Where’s the F-value? The p-value? These are the most important numbers in our hypothesis test + +ask for a summary() + + + +```{r Opening Data} +summary( my.anova ) +``` + +Effect size +most commonly used measures to calculate effect size are η2 (eta squared) and partial η2 + η2 = SSb/SStot + +interpretation of η2 is equally straightforward: it refers to the proportion of the variability in the outcome variable (mood.gain) that can be explained in terms of the predictor (drug). A value of + η2 = 0, means that there is no relationship at all between the two, whereas + η2 = 1, means that the relationship is perfect. + +you can derive pearson correlation from η2 by taking an underoot of it i.e. η + +core packages in R don’t include any functions for calculating η2 +mannually we can do this +```{r Opening Data} +SStot <- SSb + SSw # total sums of squares +eta.squared <- SSb / SStot # eta-squared value +print( eta.squared ) +``` +or use function directly +load libraray(lsr) +```{r Opening Data} +etaSquared( x = my.anova ) +``` +Multiple comparisons and post hoc tests + +Running “pairwise” t-tests ask your professor why to do a t-test +There’s a couple of ways that we could do this. One method would be to construct new variables corresponding the groups you want to compare (e.g., anxifree, placebo and joyzepam), and then run a t-test on these new variables: + +```{r Opening Data} +anxifree <- with(clin.trial, mood.gain[drug == "anxifree"]) # mood change due to anxifree +placebo <- with(clin.trial, mood.gain[drug == "placebo"]) # mood change due to placebo + +t.test( anxifree, placebo, var.equal = TRUE ) # Student t-test +``` +or, you could use + +```{r Opening Data} +t.test( formula = mood.gain ~ drug, + data = clin.trial, + subset = drug %in% c("placebo","anxifree"), + var.equal = TRUE ) +``` +function called pairwise.t.test() that automatically runs all of the t-tests for you. + +```{r Opening Data} +pairwise.t.test( x = clin.trial$mood.gain, # outcome variable + g = clin.trial$drug, # grouping variable + p.adjust.method = "none" ) # which correction to use? +``` +Corrections for multiple testing +#each individual + +t-test is designed to have a 5% Type I error rate (i.e.,α = 0.05), imagine if you have more than 10 groups ! +correction for multiple comparisons, though it is sometimes referred to as “simultaneous inference” + +Bonferroni corrections + +post hoc analysis consists of m separate tests, and I want to ensure that the total probability of making any Type I errors at all is at most α. +the Bonferroni correction just says “multiply all your raw p-values by m” +```{r Opening Data} +pairwise.t.test( x = clin.trial$mood.gain, # outcome variable + g = clin.trial$drug, # grouping variable + p.adjust.method = "bonferroni" ) # set p.adjust.method = "bonferroni" +``` +Holm corrections + +Holm correction is to pretend that you’re doing the tests sequentially; starting with the smallest (raw) p-value and moving onto the largest one. +First, you sort all of your p-values in order, from smallest to largest. For the smallest p-value all you do is multiply it by m when you move to the second smallest p value, you first multiply it by m−1.If this produces a number that is bigger than the adjusted p-value that you got last time, then you keep it. But if it’s smaller than the last one, then you copy the last p-value. + +To run the Holm correction in R, you could specify p.adjust.method = "Holm" in the above equation or +```{r Opening Data} +posthocPairwiseT( my.anova ) #takes Holm's correction by default. +``` +Assumptions of one-way ANOVA + +There are three key assumptions that you need to be aware of: normality, homogeneity of variance and independence + +Checking the homogeneity of variance assumption +Levene test involve checking the assumptions of an ANOVA + +```{r Opening Data} +leveneTest(y = mood.gain ~ drug, data = clin.trial) # y is a formula in this case +leveneTest(y = clin.trial$mood.gain, group = clin.trial$drug) # y is the outcome +``` +Is your levene test significant ? What do you observe ? + +Removing the homogeneity of variance assumption +```{r Opening Data} +oneway.test(mood.gain ~ drug, data = clin.trial) # Welch one-way ANOVA +``` +Originally our ANOVA gave us the result F(2,15) = 18.6, oneway.test(mood.gain ~ drug, data = clin.trial, var.equal = TRUE) +whereas the Welch one-way test gave us F(2,9.49)=26.32. +In other words, the Welch test has reduced the within-groups degrees of freedom from 15 to 9.49, and the F-value has increased from 18.6 to 26.32. + +Checking the normality assumption +we need to know how to pull out the residuals (i.e., the ϵik values) so that we can draw our QQ plot and run our Shapiro-Wilk test. + +First, let’s extract the residuals (Can you recall what are residuals ?) + +```{r Opening Data} +my.anova.residuals <- residuals( object = my.anova ) # extract the residuals +hist( x = my.anova.residuals ) # plot a histogram (similar to Figure @ref{fig:normalityanova}a) +qqnorm( y = my.anova.residuals ) # draw a QQ plot (similar to Figure @ref{fig:normalityanova}b) +shapiro.test( x = my.anova.residuals ) # run Shapiro-Wilk test +``` + +Removing the normality assumption (what we can do to address violations of normality) + +switch to a non-parametric test (i.e., one that doesn’t rely on any particular assumption about the kind of distribution involved) +Wilcoxon test provides the non-parametric alternative for two groups + +But, What if I got three or more groups? +you can use the Kruskal-Wallis rank sum test + +```{r Opening Data} +kruskal.test(mood.gain ~ drug, data = clin.trial) +``` +Relationship between ANOVA and the Student t-test + +```{r Opening Data} +summary( aov( mood.gain ~ therapy, data = clin.trial )) +``` +looks like there’s no significant effect here at all + +```{r Opening Data} +t.test( mood.gain ~ therapy, data = clin.trial, var.equal = TRUE ) +``` +p-values are identical +what about the test statistic? Having run a t-test instead of an ANOVA, we get a somewhat different answer, namely t(16) = −1.3068. + +there is a fairly straightforward relationship here. If we square the t-statistic we get the F-statistic from before. + +```{r Opening Data} +1.3068 ^ 2 \ No newline at end of file diff --git a/Module 6/clinicaltrial.Rdata b/Module 6/clinicaltrial.Rdata new file mode 100644 index 0000000000000000000000000000000000000000..82e9762dc54eff9f67c9859da60f1b137c6bbcf6 GIT binary patch literal 326 zcmV-M0lEGkiwFP!000000}FDAFye~fVqjokVqoHDWME>;Ow3_mU={|70F^NF0%;+zDgko6CTUvOb2!Wd*d z(|@RqOt4VQ%hxN(NG(b%sDz3zJ3ECy6f^(F=R5{Jkn`*xFo1#mWn(a~-#HTmX4yZ6 z@^3=Q7=_Xn)(JXHTVsJR*F zp`4ePn~EM|EGb2$>9E*C^*m>8etwExdSYfCnn9dJ`Q>^r!$1+k)Bq&@|Ns9EM_6&C YB$g!Vr4<3SK*Q@F0KjN<7}Np)0G{=bp8x;= literal 0 HcmV?d00001 From ddd83f1ba9cb1444a601a77ab0a6fcf25c340595 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Tue, 1 Nov 2022 09:13:23 +0530 Subject: [PATCH 30/55] minor stuff chi sq html --- Module 5/Chi_sq.nb.html | 58 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 58 insertions(+) diff --git a/Module 5/Chi_sq.nb.html b/Module 5/Chi_sq.nb.html index f0c07ba5..45367b3a 100644 --- a/Module 5/Chi_sq.nb.html +++ b/Module 5/Chi_sq.nb.html @@ -2180,6 +2180,12 @@

    R Notebook

    salem.tabs <- table( trial )
     print( salem.tabs )
    + +
           on.fire
    +happy   FALSE TRUE
    +  FALSE     3    3
    +  TRUE     10    0
    + @@ -2187,6 +2193,16 @@

    R Notebook

    chisq.test( salem.tabs )
    + +
    Warning: Chi-squared approximation may be incorrect
    + + +
    
    +    Pearson's Chi-squared test with Yates' continuity correction
    +
    +data:  salem.tabs
    +X-squared = 3.3094, df = 1, p-value = 0.06888
    + @@ -2194,6 +2210,19 @@

    R Notebook

    fisher.test( salem.tabs )
    + +
    
    +    Fisher's Exact Test for Count Data
    +
    +data:  salem.tabs
    +p-value = 0.03571
    +alternative hypothesis: true odds ratio is not equal to 1
    +95 percent confidence interval:
    + 0.000000 1.202913
    +sample estimates:
    +odds ratio 
    +         0 
    +

    McNemar Test (remember paired samples t test? This is the equivalent @@ -2210,6 +2239,12 @@

    R Notebook

    str(agpp)
    + +
    'data.frame':   100 obs. of  3 variables:
    + $ id             : Factor w/ 100 levels "subj.1","subj.10",..: 1 13 24 35 46 57 68 79 90 2 ...
    + $ response_before: Factor w/ 2 levels "no","yes": 1 2 2 2 1 1 1 1 1 1 ...
    + $ response_after : Factor w/ 2 levels "no","yes": 2 1 1 1 1 1 1 2 1 1 ...
    + @@ -2217,6 +2252,13 @@

    R Notebook

    head(agpp)
    + +
    + +
    + @@ -2224,6 +2266,16 @@

    R Notebook

    summary(agpp)    
    + +
            id     response_before response_after
    + subj.1  : 1   no :70          no :90        
    + subj.10 : 1   yes:30          yes:10        
    + subj.100: 1                                 
    + subj.11 : 1                                 
    + subj.12 : 1                                 
    + subj.13 : 1                                 
    + (Other) :94                                 
    + @@ -2232,6 +2284,12 @@

    R Notebook

    right.table <- xtabs( ~ response_before + response_after, data = agpp)
     print( right.table )
    + +
                   response_after
    +response_before no yes
    +            no  65   5
    +            yes 25   5
    + From 78e96166fe95086bb18b5430f4a2f2fd12eae72c Mon Sep 17 00:00:00 2001 From: juneeybug Date: Tue, 1 Nov 2022 09:35:32 +0530 Subject: [PATCH 31/55] Minor corrections. --- Module 6/ANOVA.Rmd | 6 ++---- 1 file changed, 2 insertions(+), 4 deletions(-) diff --git a/Module 6/ANOVA.Rmd b/Module 6/ANOVA.Rmd index bfd040c2..89ef849f 100644 --- a/Module 6/ANOVA.Rmd +++ b/Module 6/ANOVA.Rmd @@ -15,8 +15,7 @@ the drugs are sometimes administered in conjunction with psychological therapy, Participants are randomly assigned (doubly blinded, of course) a treatment, such that there are 3 CBT people and 3 no-therapy people assigned to each of the 3 drugs. A psychologist assesses the mood of each person after a 3 month run with each drug: and the overall improvement in each person’s mood is assessed on a scale ranging from −5 to +5. let’s now look at what we’ve got in the data file: ```{r ANOVA} -projecthome = "D:/Stats class"; #enter folder name where the data is downloaded -load(file.path(projecthome, "clinicaltrial.Rdata")) # load data +load( file.path("clinicaltrial.Rdata" )) str(clin.trial) print( clin.trial ) ``` @@ -182,7 +181,6 @@ eta.squared <- SSb / SStot # eta-squared value print( eta.squared ) ``` or use function directly -load libraray(lsr) ```{r Opening Data} etaSquared( x = my.anova ) ``` @@ -213,9 +211,9 @@ pairwise.t.test( x = clin.trial$mood.gain, # outcome variable p.adjust.method = "none" ) # which correction to use? ``` Corrections for multiple testing -#each individual t-test is designed to have a 5% Type I error rate (i.e.,α = 0.05), imagine if you have more than 10 groups ! + correction for multiple comparisons, though it is sometimes referred to as “simultaneous inference” Bonferroni corrections From cdd32dafacb76854cc288658f9ba00b8eab0e331 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Mon, 7 Nov 2022 10:19:45 +0530 Subject: [PATCH 32/55] Update ANOVA.Rmd --- Module 6/ANOVA.Rmd | 49 ++++++++++++++++++++++++++++++++++------------ 1 file changed, 37 insertions(+), 12 deletions(-) diff --git a/Module 6/ANOVA.Rmd b/Module 6/ANOVA.Rmd index 89ef849f..1640599e 100644 --- a/Module 6/ANOVA.Rmd +++ b/Module 6/ANOVA.Rmd @@ -7,6 +7,13 @@ date: "2022-10-31" ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` + +```{r} +library(lsr) +``` + + + ## R Markdown Suppose you are testing a new antidepressant drug called Joyzepam. To test of the drug’s effectiveness, the study involves three separate drugs to be administered. One is a placebo, and the other is an existing antidepressant / anti-anxiety drug called Anxifree. @@ -20,6 +27,9 @@ str(clin.trial) print( clin.trial ) ``` Lets see how many people we have in each group: +```{r} + +``` ```{r Opening Data} xtabs( ~drug, clin.trial ) @@ -214,7 +224,7 @@ Corrections for multiple testing t-test is designed to have a 5% Type I error rate (i.e.,α = 0.05), imagine if you have more than 10 groups ! -correction for multiple comparisons, though it is sometimes referred to as “simultaneous inference” +c orrection for multiple comparisons, though it is sometimes referred to as “simultaneous inference” Bonferroni corrections @@ -278,20 +288,35 @@ you can use the Kruskal-Wallis rank sum test ```{r Opening Data} kruskal.test(mood.gain ~ drug, data = clin.trial) ``` -Relationship between ANOVA and the Student t-test -```{r Opening Data} -summary( aov( mood.gain ~ therapy, data = clin.trial )) +Two-factor ANOVA: +What if you want to look at the effect of Drug and Therapy? + +```{r One factor ANOVA} +model.1 <- aov( mood.gain ~ drug, clin.trial ) +summary( model.1 ) ``` -looks like there’s no significant effect here at all -```{r Opening Data} -t.test( mood.gain ~ therapy, data = clin.trial, var.equal = TRUE ) +```{r Two factor ANOVA} +model.2 <- aov( mood.gain ~ drug + therapy, clin.trial ) +summary(model.2) +``` +Computing Effect Size +```{r} +etaSquared( model.2 ) +``` + + + + + +Now, how do you determine whether the drug and therapy interact? +```{r Two factor ANOVA with interaction effects} +model.3 <- aov( mood.gain ~ drug + therapy + drug:therapy, clin.trial ) +summary(model.3) +``` +```{r} +etaSquared( model.3 ) ``` -p-values are identical -what about the test statistic? Having run a t-test instead of an ANOVA, we get a somewhat different answer, namely t(16) = −1.3068. -there is a fairly straightforward relationship here. If we square the t-statistic we get the F-statistic from before. -```{r Opening Data} -1.3068 ^ 2 \ No newline at end of file From 11b71ab321a4509aa9a48016818227e266ac1232 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Mon, 7 Nov 2022 10:22:06 +0530 Subject: [PATCH 33/55] Regression Initial Commit --- Module 6/Regression.Rmd | 171 ++++++++++++++++++++++++++++++++++++++ Module 6/parenthood.Rdata | Bin 0 -> 1150 bytes 2 files changed, 171 insertions(+) create mode 100644 Module 6/Regression.Rmd create mode 100644 Module 6/parenthood.Rdata diff --git a/Module 6/Regression.Rmd b/Module 6/Regression.Rmd new file mode 100644 index 00000000..95ec5879 --- /dev/null +++ b/Module 6/Regression.Rmd @@ -0,0 +1,171 @@ +--- +title: "Regression" +output: html_document +date: "2022-11-06" +--- + +```{r setup, include=FALSE} +knitr::opts_chunk$set(echo = TRUE) +setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) # set curretn path as workpath +``` + + + +```{r} +load( file.path("parenthood.Rdata" )) +colnames(parenthood) <- c('dan.sleep','baby.sleep','dan.grump','day') +``` + +linear regression: +dan.grump ~ dan.sleep +```{r} +regression.1 <- lm( formula = dan.grump ~ dan.sleep, + data = parenthood ) +print( regression.1 ) +``` +##Multiple linear regression +dan.grump ~ dan.sleep + baby.sleep + +```{r} +regression.2 <- lm( formula = dan.grump ~ dan.sleep + baby.sleep, + data = parenthood ) +print( regression.2 ) +``` + + +The R-squared value Calculation + + +#Calculating y-predicted +```{r} +X <- parenthood$dan.sleep # the predictor +Y <- parenthood$dan.grump # the outcome +Y.pred <- -8.95025 * X + 125.96557 + +``` + +#calculating residue +```{r} +SS.resid <- sum( (Y - Y.pred)^2 ) +print( SS.resid ) +``` + + +```{r} +SS.tot <- sum( (Y - mean(Y))^2 ) +print( SS.tot ) +``` + + +```{r} +R.squared <- 1 - (SS.resid / SS.tot) +print( R.squared ) +``` + +```{r} +r <- cor(X, Y) # calculate the correlation +print( r^2 ) +``` + +```{r} +print( regression.2 ) +``` + +```{r} +summary( regression.2 ) +``` +```{r} +summary( regression.1 ) +``` + +```{r} +cor.test( x = parenthood$dan.sleep, y = parenthood$dan.grump ) +``` + +```{r} +library(lsr) +correlate(parenthood, test=TRUE) +``` + +```{r} +confint( object = regression.2, + level = .99) +``` + +```{r} +standardCoefs( regression.2 ) + +``` + +```{r} +residuals( object = regression.2 ) +``` + +```{r} +rstandard( model = regression.2 ) +``` + +```{r} +rstudent( model = regression.2 ) +``` + +```{r} +hatvalues( model = regression.2 ) +``` + +```{r} +ckd <- cooks.distance( model = regression.2 ) +plot(regression.2,which=4) +``` +```{r} +lm( formula = dan.grump ~ dan.sleep + baby.sleep, # same formula + data = parenthood, # same data frame... + subset = -64 # ...but observation 64 is deleted + ) +``` +```{r} + hist( x = residuals( regression.2 ), # data are the residuals + xlab = "Value of residual", # x-axis label + main = "", # no title + breaks = 20 # lots of breaks + ) +``` +```{r} +plot( x = regression.2, which = 2 ) +``` + +Backward elimination + +```{r} +full.model <- lm( formula = dan.grump ~ dan.sleep + baby.sleep + day, + data = parenthood + ) +``` + +```{r} + step( object = full.model, # start at the full model + direction = "backward" # allow it remove predictors but not add them + ) +``` +Forward selection +```{r} + null.model <- lm( dan.grump ~ 1, parenthood ) # intercept only. + step( object = null.model, # start with null.model + direction = "forward", # only consider "addition" moves + scope = dan.grump ~ dan.sleep + baby.sleep + day # largest model allowed + ) +``` + Comparing two regression models +```{r} +M0 <- lm( dan.grump ~ dan.sleep + day, parenthood ) +M1 <- lm( dan.grump ~ dan.sleep + day + baby.sleep, parenthood ) +``` + +```{r} +AIC( M0, M1 ) +``` + +```{r} +anova( M0, M1 ) +``` + diff --git a/Module 6/parenthood.Rdata b/Module 6/parenthood.Rdata new file mode 100644 index 0000000000000000000000000000000000000000..b571c3317c0267477ba5563148bae9bef6cb1a0e GIT binary patch literal 1150 zcmV-^1cCb>iwFP!0000016`Ioa2r(=h8N2rSOH?J=W180T}iea9tIK~;bFKW1}Cur zOHLdE<{`(qV zXZPH5{(H{7n%kROJ(^$5JB~BrfhPtdsBeOJ~661x;6Hu>oH@VL6W)iXKIi$YkLn(&o}3?Ytg|jP`Umu{Gk(B2mFTa2xU8#ByTtho&i6S#{3)@A zePSH-p~!j{SZCGUr>;QtUQFUw7`M!I*Er9ko-*SX`M$(HH5jkN`HJr*x`*eaO+6jz zQ@>ls6aB40(!V16(f%{Z8-BxnF`utE9IMRRVB9kGs=qpKF8!vMugred*x#1+5#PIf z-~1!VbBKCf^-F!#IhL)u(C#qb1a0j<*&*xMWSnvBSMHDIw@E##oHxn(cKAEf;l7yS zekgODp3WibFu^=6o{#Ak&mY&L`6c#0WL}T)Cr>2$qM4))+V4K~%72Reb9w&qJeR6( z#6EX8HmOJFA!1)!?0f683qpAso(INEKUEam%3k`rbV-NesJ_dJm(kgiUimTZ>5R^Wv_GCl0PbP9 zo!J{3E@Vz}A3FdZ1P8%GAilYQL*QY~vuEru7zdAm31IJYMNk4|Pytn7e;I1P{xbNW z4g$~sA&7vzb+kYmOoA!U0n^|JcpN+do&-;U8SpfC20ROnf@9!0@H}_{ya1c=D?f4o+i6SOxEa_rV8X4SWbb0w04 Date: Wed, 9 Nov 2022 14:14:04 +0530 Subject: [PATCH 34/55] Added car package and InteractionPlot --- Module 6/ANOVA.Rmd | 11 +++---- Module 6/Regression.Rmd | 65 ++++++++++++----------------------------- 2 files changed, 24 insertions(+), 52 deletions(-) diff --git a/Module 6/ANOVA.Rmd b/Module 6/ANOVA.Rmd index 1640599e..3289038a 100644 --- a/Module 6/ANOVA.Rmd +++ b/Module 6/ANOVA.Rmd @@ -25,10 +25,6 @@ let’s now look at what we’ve got in the data file: load( file.path("clinicaltrial.Rdata" )) str(clin.trial) print( clin.trial ) -``` -Lets see how many people we have in each group: -```{r} - ``` ```{r Opening Data} @@ -224,7 +220,7 @@ Corrections for multiple testing t-test is designed to have a 5% Type I error rate (i.e.,α = 0.05), imagine if you have more than 10 groups ! -c orrection for multiple comparisons, though it is sometimes referred to as “simultaneous inference” +correction for multiple comparisons, though it is sometimes referred to as “simultaneous inference” Bonferroni corrections @@ -252,6 +248,7 @@ Checking the homogeneity of variance assumption Levene test involve checking the assumptions of an ANOVA ```{r Opening Data} +library(car) leveneTest(y = mood.gain ~ drug, data = clin.trial) # y is a formula in this case leveneTest(y = clin.trial$mood.gain, group = clin.trial$drug) # y is the outcome ``` @@ -307,6 +304,10 @@ etaSquared( model.2 ) ``` +```{r} +interaction.plot(x.factor = clin.trial$drug, response = clin.trial$mood.gain, + trace.factor = clin.trial$therapy) +``` diff --git a/Module 6/Regression.Rmd b/Module 6/Regression.Rmd index 95ec5879..ba0210c3 100644 --- a/Module 6/Regression.Rmd +++ b/Module 6/Regression.Rmd @@ -6,7 +6,7 @@ date: "2022-11-06" ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) -setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) # set curretn path as workpath +setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) # set current path as work path ``` @@ -16,70 +16,38 @@ load( file.path("parenthood.Rdata" )) colnames(parenthood) <- c('dan.sleep','baby.sleep','dan.grump','day') ``` -linear regression: -dan.grump ~ dan.sleep -```{r} -regression.1 <- lm( formula = dan.grump ~ dan.sleep, - data = parenthood ) -print( regression.1 ) -``` -##Multiple linear regression -dan.grump ~ dan.sleep + baby.sleep ```{r} -regression.2 <- lm( formula = dan.grump ~ dan.sleep + baby.sleep, - data = parenthood ) -print( regression.2 ) +head(parenthood) ``` - -The R-squared value Calculation - - -#Calculating y-predicted -```{r} -X <- parenthood$dan.sleep # the predictor -Y <- parenthood$dan.grump # the outcome -Y.pred <- -8.95025 * X + 125.96557 - -``` - -#calculating residue +## Simple linear regression: +dan.grump ~ dan.sleep (Is Dan's sleep deprivation leading to grumpiness the next day?) ```{r} -SS.resid <- sum( (Y - Y.pred)^2 ) -print( SS.resid ) +regression.1 <- lm( formula = dan.grump ~ dan.sleep, + data = parenthood ) +print( regression.1 ) ``` - ```{r} -SS.tot <- sum( (Y - mean(Y))^2 ) -print( SS.tot ) +summary(regression.1) ``` - ```{r} -R.squared <- 1 - (SS.resid / SS.tot) -print( R.squared ) +cor.test( x = parenthood$dan.sleep, y = parenthood$dan.grump ) ``` -```{r} -r <- cor(X, Y) # calculate the correlation -print( r^2 ) -``` -```{r} -print( regression.2 ) -``` +## Multiple linear regression +dan.grump ~ dan.sleep + baby.sleep (Is Dan's sleep and the baby's sleep both together leading to grumpiness the next day?) ```{r} -summary( regression.2 ) -``` -```{r} -summary( regression.1 ) +regression.2 <- lm( formula = dan.grump ~ dan.sleep + baby.sleep, + data = parenthood ) +print( regression.2 ) ``` - ```{r} -cor.test( x = parenthood$dan.sleep, y = parenthood$dan.grump ) +summary(regression.2) ``` ```{r} @@ -97,6 +65,9 @@ standardCoefs( regression.2 ) ``` +## Checking Model Assumptions +First, we need to generate the residuals! + ```{r} residuals( object = regression.2 ) ``` From 0509c92f1692cb34464f8977e1a1c965cadb486b Mon Sep 17 00:00:00 2001 From: juneeybug Date: Wed, 9 Nov 2022 14:22:29 +0530 Subject: [PATCH 35/55] Added tukeyHSD instead of pairwise t test --- Module 6/ANOVA.Rmd | 9 +++++++++ 1 file changed, 9 insertions(+) diff --git a/Module 6/ANOVA.Rmd b/Module 6/ANOVA.Rmd index 3289038a..0c1b8478 100644 --- a/Module 6/ANOVA.Rmd +++ b/Module 6/ANOVA.Rmd @@ -302,6 +302,15 @@ Computing Effect Size ```{r} etaSquared( model.2 ) ``` +Running a posthoc test on 2-way ANOVA +Using tukey HSD because it can run on more complex models. +```{r} +TukeyHSD( model.2 ) +``` + + + + ```{r} From 309adcd15ed9b1b6061888d8bb9610180f8ff4d1 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Wed, 9 Nov 2022 14:26:49 +0530 Subject: [PATCH 36/55] updated Cook's distance and plot of residuals --- Module 6/Regression.Rmd | 29 +++++++++++++++++++++++++++++ 1 file changed, 29 insertions(+) diff --git a/Module 6/Regression.Rmd b/Module 6/Regression.Rmd index ba0210c3..3cb12ca1 100644 --- a/Module 6/Regression.Rmd +++ b/Module 6/Regression.Rmd @@ -86,14 +86,27 @@ hatvalues( model = regression.2 ) ```{r} ckd <- cooks.distance( model = regression.2 ) +ckd +``` + +Directly plotting Cook's distance using plot from car package +```{r} plot(regression.2,which=4) ``` + + + + ```{r} lm( formula = dan.grump ~ dan.sleep + baby.sleep, # same formula data = parenthood, # same data frame... subset = -64 # ...but observation 64 is deleted ) ``` + + + + ```{r} hist( x = residuals( regression.2 ), # data are the residuals xlab = "Value of residual", # x-axis label @@ -101,10 +114,26 @@ lm( formula = dan.grump ~ dan.sleep + baby.sleep, # same formula breaks = 20 # lots of breaks ) ``` + + +Directly make the QQ plot of residuals + ```{r} plot( x = regression.2, which = 2 ) ``` + + + + + + + + + + + + Backward elimination ```{r} From b50de3a360cd3dd09f8a9a25e94007302aee5fd3 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Sat, 12 Nov 2022 16:21:20 +0530 Subject: [PATCH 37/55] Added diagnostics --- Module 6/Regression.Rmd | 32 ++++++++++++++++++++++++++++++++ 1 file changed, 32 insertions(+) diff --git a/Module 6/Regression.Rmd b/Module 6/Regression.Rmd index 3cb12ca1..0a9c0d3d 100644 --- a/Module 6/Regression.Rmd +++ b/Module 6/Regression.Rmd @@ -122,14 +122,46 @@ Directly make the QQ plot of residuals plot( x = regression.2, which = 2 ) ``` +Checking linearity of relationship +```{r} +yhat.2 <- fitted.values( object = regression.2 ) + plot( x = yhat.2, + y = parenthood$dan.grump, + xlab = "Fitted Values", + ylab = "Observed Values" + ) +``` +Checking this using residuals -- using plot +```{r} +plot(x = regression.2, which = 1) +``` +```{r} +residualPlots( model = regression.2 ) +``` +If the curvature is significant, then you might want to transform the predictor using Box Cox Transformation. Or use the powerTransform() in the car package. +Checking homogeneity of variance +```{r} +plot(x = regression.2, which = 3) + +``` +```{r} +ncvTest( regression.2 ) + +``` + +Lastly, we assess the variance inflation factor -- to diagnose for collinearity + +```{r} +vif( mod = regression.2 ) +``` From d84a5dad0d6e10b3cc807fef49f826b27793d36b Mon Sep 17 00:00:00 2001 From: juneeybug Date: Sat, 12 Nov 2022 16:22:02 +0530 Subject: [PATCH 38/55] Added Bootstrapping from MKinfer --- Module 5/Ttest.Rmd | 29 +++++++-- Module 5/Ttest.nb.html | 137 ++++++++++++++++++++++++++++++++++++----- 2 files changed, 146 insertions(+), 20 deletions(-) diff --git a/Module 5/Ttest.Rmd b/Module 5/Ttest.Rmd index 716072e0..65b456aa 100644 --- a/Module 5/Ttest.Rmd +++ b/Module 5/Ttest.Rmd @@ -13,18 +13,29 @@ install.packages('lsr') ``` ```{r} +library(lsr) +load( file.path("zeppo.Rdata" )) +oneSampleTTest( x=grades, mu=67.5 ) #add the mu value here ``` - +```{r} +install.packages('MKinfer') +``` ```{r} -library(lsr) -load( file.path("zeppo.Rdata" )) -oneSampleTTest( x=grades, mu=67.5 ) #add the mu value here +library(MKinfer) +``` + +```{r} +boot.t.test( x=grades, mu=67.5 ) ``` + + + + ```{r} load (file.path("harpo.Rdata" )) @@ -43,6 +54,16 @@ independentSamplesTTest( var.equal = TRUE # assume that the two groups have the same variance ) ``` + +```{r} +boot.t.test( + formula = grade ~ tutor, # formula specifying outcome and group variables + data = harpo # data frame that contains the variables + ) +``` + + + ```{r} library(car) ``` diff --git a/Module 5/Ttest.nb.html b/Module 5/Ttest.nb.html index 0f648d7a..8c144833 100644 --- a/Module 5/Ttest.nb.html +++ b/Module 5/Ttest.nb.html @@ -1774,46 +1774,47 @@
    setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) # set curretn path as workpath
     install.packages('psych')
    - +
    Installing package into ‘C:/Users/Arjun/AppData/Local/R/win-library/4.2’
     (as ‘lib’ is unspecified)
     trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.2/psych_2.2.9.zip'
    -Content type 'application/zip' length 3821660 bytes (3.6 MB)
    +Content type 'application/zip' length 3821161 bytes (3.6 MB)
     downloaded 3.6 MB
    - +
    package ‘psych’ successfully unpacked and MD5 sums checked
     
     The downloaded binary packages are in
    -    C:\Users\Arjun\AppData\Local\Temp\RtmpgT0xwo\downloaded_packages
    + C:\Users\Arjun\AppData\Local\Temp\RtmpSmUVDl\downloaded_packages
    install.packages('lsr')
    - +
    Installing package into ‘C:/Users/Arjun/AppData/Local/R/win-library/4.2’
     (as ‘lib’ is unspecified)
     trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.2/lsr_0.5.2.zip'
    -Content type 'application/zip' length 209262 bytes (204 KB)
    +Content type 'application/zip' length 209226 bytes (204 KB)
     downloaded 204 KB
    - +
    package ‘lsr’ successfully unpacked and MD5 sums checked
     
     The downloaded binary packages are in
    -    C:\Users\Arjun\AppData\Local\Temp\RtmpgT0xwo\downloaded_packages
    + C:\Users\Arjun\AppData\Local\Temp\RtmpSmUVDl\downloaded_packages
    - - - - - -
    library(lsr)
    -load( file.path("zeppo.Rdata" )) 
    +
    +
    library(lsr)
    + + +
    Warning: package ‘lsr’ was built under R version 4.2.2
    + + +
    load( file.path("zeppo.Rdata" )) 
     oneSampleTTest( x=grades, mu=67.5 ) #add the mu value here
    @@ -1841,6 +1842,79 @@ estimated effect size (Cohen's d): 0.504
    + + +
    install.packages('MKinfer')
    + + +
    Installing package into ‘C:/Users/Arjun/AppData/Local/R/win-library/4.2’
    +(as ‘lib’ is unspecified)
    +also installing the dependencies ‘gmp’, ‘MKdescr’, ‘arrangements’, ‘exactRankTests’
    +
    +trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.2/gmp_0.6-8.zip'
    +Content type 'application/zip' length 737069 bytes (719 KB)
    +downloaded 719 KB
    +
    +trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.2/MKdescr_0.8.zip'
    +Content type 'application/zip' length 383849 bytes (374 KB)
    +downloaded 374 KB
    +
    +trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.2/arrangements_1.1.9.zip'
    +Content type 'application/zip' length 379010 bytes (370 KB)
    +downloaded 370 KB
    +
    +trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.2/exactRankTests_0.8-35.zip'
    +Content type 'application/zip' length 157132 bytes (153 KB)
    +downloaded 153 KB
    +
    +trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.2/MKinfer_0.8.zip'
    +Content type 'application/zip' length 288495 bytes (281 KB)
    +downloaded 281 KB
    + + +
    package ‘gmp’ successfully unpacked and MD5 sums checked
    +package ‘MKdescr’ successfully unpacked and MD5 sums checked
    +package ‘arrangements’ successfully unpacked and MD5 sums checked
    +package ‘exactRankTests’ successfully unpacked and MD5 sums checked
    +package ‘MKinfer’ successfully unpacked and MD5 sums checked
    +
    +The downloaded binary packages are in
    +    C:\Users\Arjun\AppData\Local\Temp\RtmpSmUVDl\downloaded_packages
    + + + + + + +
    library(MKinfer)
    + + + + + + +
    boot.t.test( x=grades, mu=67.5 )
    + + +
    
    +    Bootstrap One Sample t-test
    +
    +data:  grades
    +bootstrap p-value = 0.05361 
    +bootstrap mean of x (SE) = 72.27616 (2.052497) 
    +95 percent bootstrap percentile confidence interval:
    + 68.15 76.25
    +
    +Results without bootstrap:
    +t = 2.2547, df = 19, p-value = 0.03615
    +alternative hypothesis: true mean is not equal to 67.5
    +95 percent confidence interval:
    + 67.84422 76.75578
    +sample estimates:
    +mean of x 
    +     72.3 
    + + @@ -1923,6 +1997,37 @@ estimated effect size (Cohen's d): 0.74
    + + + + +
    boot.t.test( 
    +      formula = grade ~ tutor,  # formula specifying outcome and group variables
    +      data = harpo            # data frame that contains the variables
    +  )
    + + +
    
    +    Bootstrap Welch Two Sample t-test
    +
    +data:  grade by tutor
    +bootstrap p-value = 0.05841 
    +bootstrap difference of means (SE) = 5.464636 (2.582662) 
    +95 percent bootstrap percentile confidence interval:
    +  0.4222222 10.4444444
    +
    +Results without bootstrap:
    +t = 2.0342, df = 23.025, p-value = 0.05361
    +alternative hypothesis: true difference in means is not equal to 0
    +95 percent confidence interval:
    + -0.09249349 11.04804904
    +sample estimates:
    + mean in group Anastasia mean in group Bernadette 
    +                74.53333                 69.05556 
    + + + +
    library(car)
    @@ -2148,7 +2253,7 @@ -
    LS0tDQp0aXRsZTogIiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCg0KDQpJbnN0YWxsIGxzciwgcHN5Y2ggbGlicmFyeSBpZiBub3QgYWxyZWFkeSBpbnN0YWxsZWQNCmBgYHtyfQ0Kc2V0d2QoZGlybmFtZShyc3R1ZGlvYXBpOjpnZXRBY3RpdmVEb2N1bWVudENvbnRleHQoKSRwYXRoKSkgIyBzZXQgY3VycmV0biBwYXRoIGFzIHdvcmtwYXRoDQppbnN0YWxsLnBhY2thZ2VzKCdwc3ljaCcpDQppbnN0YWxsLnBhY2thZ2VzKCdsc3InKQ0KYGBgDQoNCmBgYHtyfQ0KDQpgYGANCg0KDQpgYGB7cn0NCmxpYnJhcnkobHNyKQ0KbG9hZCggZmlsZS5wYXRoKCJ6ZXBwby5SZGF0YSIgKSkgDQpvbmVTYW1wbGVUVGVzdCggeD1ncmFkZXMsIG11PTY3LjUgKSAjYWRkIHRoZSBtdSB2YWx1ZSBoZXJlDQoNCmBgYA0KDQoNCmBgYHtyfQ0KDQpsb2FkIChmaWxlLnBhdGgoImhhcnBvLlJkYXRhIiApKQ0Kc3RyKGhhcnBvKQ0KYGBgDQoNCmBgYHtyfQ0KaGVhZCggaGFycG8gKQ0KYGBgDQoNCg0KYGBge3J9DQppbmRlcGVuZGVudFNhbXBsZXNUVGVzdCggDQogICAgICBmb3JtdWxhID0gZ3JhZGUgfiB0dXRvciwgICMgZm9ybXVsYSBzcGVjaWZ5aW5nIG91dGNvbWUgYW5kIGdyb3VwIHZhcmlhYmxlcw0KICAgICAgZGF0YSA9IGhhcnBvLCAgICAgICAgICAgICAjIGRhdGEgZnJhbWUgdGhhdCBjb250YWlucyB0aGUgdmFyaWFibGVzDQogICAgICB2YXIuZXF1YWwgPSBUUlVFICAgICAgICAgICMgYXNzdW1lIHRoYXQgdGhlIHR3byBncm91cHMgaGF2ZSB0aGUgc2FtZSB2YXJpYW5jZQ0KICApDQpgYGANCmBgYHtyfQ0KbGlicmFyeShjYXIpDQpgYGANCg0KDQpgYGB7cn0NCmluZGVwZW5kZW50U2FtcGxlc1RUZXN0KCANCiAgICAgIGZvcm11bGEgPSBncmFkZSB+IHR1dG9yLCAgIyBmb3JtdWxhIHNwZWNpZnlpbmcgb3V0Y29tZSBhbmQgZ3JvdXAgdmFyaWFibGVzDQogICAgICBkYXRhID0gaGFycG8gICAgICAgICAgICAgICMgZGF0YSBmcmFtZSB0aGF0IGNvbnRhaW5zIHRoZSB2YXJpYWJsZXMNCiAgKQ0KYGBgDQpgYGB7cn0NCmxldmVuZVRlc3QoZ3JhZGUgfiB0dXRvciwgICMgZm9ybXVsYSBzcGVjaWZ5aW5nIG91dGNvbWUgYW5kIGdyb3VwIHZhcmlhYmxlcw0KICAgICAgZGF0YSA9IGhhcnBvKSAgICAgICAgICAgICAgIyBkYXRhIGZyYW1lIHRoYXQgY29udGFpbnMgdGhlIHZhcmlhYmxlcykNCmBgYA0KDQoNCmBgYHtyfQ0KbG9hZCggZmlsZS5wYXRoKCJjaGljby5SZGF0YSIgKSkNCnN0cihjaGljbykgDQpgYGANCg0KDQpgYGB7cn0NCmhlYWQoIGNoaWNvICkNCmBgYA0KDQoNCmBgYHtyfQ0KbGlicmFyeSggcHN5Y2ggKQ0KZGVzY3JpYmUoIGNoaWNvICkNCmBgYA0KDQoNCg0KYGBge3J9DQpjaGljbyRpbXByb3ZlbWVudCA8LSBjaGljbyRncmFkZV90ZXN0MiAtIGNoaWNvJGdyYWRlX3Rlc3QxIA0KYGBgDQoNCg0KYGBge3J9DQpoZWFkKCBjaGljbyApDQpgYGANCmBgYHtyfQ0Kb25lU2FtcGxlVFRlc3QoIGNoaWNvJGltcHJvdmVtZW50LCBtdT0wICkNCmBgYA0KYGBge3J9DQpxcW5vcm0oIHkgPSBjaGljbyRpbXByb3ZlbWVudCApICAgICAgICAjIGRyYXcgdGhlIFFRIHBsb3QNCmBgYA0KDQpgYGB7cn0NCnNoYXBpcm8udGVzdCggeCA9IGNoaWNvJGltcHJvdmVtZW50ICkNCmBgYA0KDQpgYGB7cn0NCmltcHJvdmVtZW50MiA8LSByY2hpc3EoMTAwLCAyKSANCmhpc3QoeCA9IGltcHJvdmVtZW50MikNCmBgYA0KYGBge3J9DQpxcW5vcm0oIHkgPSBpbXByb3ZlbWVudDIgKSANCmBgYA0KYGBge3J9DQpzaGFwaXJvLnRlc3QoIHggPSBpbXByb3ZlbWVudDIgKQ0KYGBgDQoNCg0KYGBge3J9DQp3aWxjb3gudGVzdCggeCA9IGltcHJvdmVtZW50MiwgbXU9MCkNCmBgYA0KDQo=
    +
    LS0tDQp0aXRsZTogIiINCm91dHB1dDogaHRtbF9ub3RlYm9vaw0KLS0tDQoNCg0KDQpJbnN0YWxsIGxzciwgcHN5Y2ggbGlicmFyeSBpZiBub3QgYWxyZWFkeSBpbnN0YWxsZWQNCmBgYHtyfQ0Kc2V0d2QoZGlybmFtZShyc3R1ZGlvYXBpOjpnZXRBY3RpdmVEb2N1bWVudENvbnRleHQoKSRwYXRoKSkgIyBzZXQgY3VycmV0biBwYXRoIGFzIHdvcmtwYXRoDQppbnN0YWxsLnBhY2thZ2VzKCdwc3ljaCcpDQppbnN0YWxsLnBhY2thZ2VzKCdsc3InKQ0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeShsc3IpDQpsb2FkKCBmaWxlLnBhdGgoInplcHBvLlJkYXRhIiApKSANCm9uZVNhbXBsZVRUZXN0KCB4PWdyYWRlcywgbXU9NjcuNSApICNhZGQgdGhlIG11IHZhbHVlIGhlcmUNCg0KYGBgDQpgYGB7cn0NCmluc3RhbGwucGFja2FnZXMoJ01LaW5mZXInKQ0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeShNS2luZmVyKQ0KYGBgDQoNCg0KYGBge3J9DQpib290LnQudGVzdCggeD1ncmFkZXMsIG11PTY3LjUgKQ0KYGBgDQoNCg0KDQoNCg0KDQpgYGB7cn0NCg0KbG9hZCAoZmlsZS5wYXRoKCJoYXJwby5SZGF0YSIgKSkNCnN0cihoYXJwbykNCmBgYA0KDQpgYGB7cn0NCmhlYWQoIGhhcnBvICkNCmBgYA0KDQoNCmBgYHtyfQ0KaW5kZXBlbmRlbnRTYW1wbGVzVFRlc3QoIA0KICAgICAgZm9ybXVsYSA9IGdyYWRlIH4gdHV0b3IsICAjIGZvcm11bGEgc3BlY2lmeWluZyBvdXRjb21lIGFuZCBncm91cCB2YXJpYWJsZXMNCiAgICAgIGRhdGEgPSBoYXJwbywgICAgICAgICAgICAgIyBkYXRhIGZyYW1lIHRoYXQgY29udGFpbnMgdGhlIHZhcmlhYmxlcw0KICAgICAgdmFyLmVxdWFsID0gVFJVRSAgICAgICAgICAjIGFzc3VtZSB0aGF0IHRoZSB0d28gZ3JvdXBzIGhhdmUgdGhlIHNhbWUgdmFyaWFuY2UNCiAgKQ0KYGBgDQoNCmBgYHtyfQ0KYm9vdC50LnRlc3QoIA0KICAgICAgZm9ybXVsYSA9IGdyYWRlIH4gdHV0b3IsICAjIGZvcm11bGEgc3BlY2lmeWluZyBvdXRjb21lIGFuZCBncm91cCB2YXJpYWJsZXMNCiAgICAgIGRhdGEgPSBoYXJwbyAgICAgICAgICAgICMgZGF0YSBmcmFtZSB0aGF0IGNvbnRhaW5zIHRoZSB2YXJpYWJsZXMNCiAgKQ0KYGBgDQoNCg0KDQpgYGB7cn0NCmxpYnJhcnkoY2FyKQ0KYGBgDQoNCg0KYGBge3J9DQppbmRlcGVuZGVudFNhbXBsZXNUVGVzdCggDQogICAgICBmb3JtdWxhID0gZ3JhZGUgfiB0dXRvciwgICMgZm9ybXVsYSBzcGVjaWZ5aW5nIG91dGNvbWUgYW5kIGdyb3VwIHZhcmlhYmxlcw0KICAgICAgZGF0YSA9IGhhcnBvICAgICAgICAgICAgICAjIGRhdGEgZnJhbWUgdGhhdCBjb250YWlucyB0aGUgdmFyaWFibGVzDQogICkNCmBgYA0KYGBge3J9DQpsZXZlbmVUZXN0KGdyYWRlIH4gdHV0b3IsICAjIGZvcm11bGEgc3BlY2lmeWluZyBvdXRjb21lIGFuZCBncm91cCB2YXJpYWJsZXMNCiAgICAgIGRhdGEgPSBoYXJwbykgICAgICAgICAgICAgICMgZGF0YSBmcmFtZSB0aGF0IGNvbnRhaW5zIHRoZSB2YXJpYWJsZXMpDQpgYGANCg0KDQpgYGB7cn0NCmxvYWQoIGZpbGUucGF0aCgiY2hpY28uUmRhdGEiICkpDQpzdHIoY2hpY28pIA0KYGBgDQoNCg0KYGBge3J9DQpoZWFkKCBjaGljbyApDQpgYGANCg0KDQpgYGB7cn0NCmxpYnJhcnkoIHBzeWNoICkNCmRlc2NyaWJlKCBjaGljbyApDQpgYGANCg0KDQoNCmBgYHtyfQ0KY2hpY28kaW1wcm92ZW1lbnQgPC0gY2hpY28kZ3JhZGVfdGVzdDIgLSBjaGljbyRncmFkZV90ZXN0MSANCmBgYA0KDQoNCmBgYHtyfQ0KaGVhZCggY2hpY28gKQ0KYGBgDQpgYGB7cn0NCm9uZVNhbXBsZVRUZXN0KCBjaGljbyRpbXByb3ZlbWVudCwgbXU9MCApDQpgYGANCmBgYHtyfQ0KcXFub3JtKCB5ID0gY2hpY28kaW1wcm92ZW1lbnQgKSAgICAgICAgIyBkcmF3IHRoZSBRUSBwbG90DQpgYGANCg0KYGBge3J9DQpzaGFwaXJvLnRlc3QoIHggPSBjaGljbyRpbXByb3ZlbWVudCApDQpgYGANCg0KYGBge3J9DQppbXByb3ZlbWVudDIgPC0gcmNoaXNxKDEwMCwgMikgDQpoaXN0KHggPSBpbXByb3ZlbWVudDIpDQpgYGANCmBgYHtyfQ0KcXFub3JtKCB5ID0gaW1wcm92ZW1lbnQyICkgDQpgYGANCmBgYHtyfQ0Kc2hhcGlyby50ZXN0KCB4ID0gaW1wcm92ZW1lbnQyICkNCmBgYA0KDQoNCmBgYHtyfQ0Kd2lsY294LnRlc3QoIHggPSBpbXByb3ZlbWVudDIsIG11PTApDQpgYGANCg0K
    From 90d05c0b3dcce05ed76f6b6c85350d2e98547ac0 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Tue, 15 Nov 2022 09:15:33 +0530 Subject: [PATCH 39/55] Linear Mixed Models first update --- Module 6/linearMixedModels.Rmd | 154 ++ Module 6/linearMixedModels.nb.html | 2256 ++++++++++++++++++++++++++++ 2 files changed, 2410 insertions(+) create mode 100644 Module 6/linearMixedModels.Rmd create mode 100644 Module 6/linearMixedModels.nb.html diff --git a/Module 6/linearMixedModels.Rmd b/Module 6/linearMixedModels.Rmd new file mode 100644 index 00000000..e401d899 --- /dev/null +++ b/Module 6/linearMixedModels.Rmd @@ -0,0 +1,154 @@ +--- +title: "R Notebook" +output: html_notebook +--- + +Linear Mixed Models +Adapted from: https://chenzixu.rbind.io/slides/lme/lmer.html + + +```{r} +library(lme4) +library(magrittr) +library(tidyverse) +library(ggplot2) +library(lmerTest) +``` + +```{r} +data("sleepstudy") +head(sleepstudy) +``` + +Plotting subjectwise data + +```{r} +sleep2 <- sleepstudy %>% + filter(Days >= 2) %>% + mutate(days_deprived = Days - 2) +ggplot(sleep2, aes(x = days_deprived, + y = Reaction)) + + geom_point() + + scale_x_continuous(breaks = 0:7) + + facet_wrap(~Subject) + + labs(y = "Reaction Time", + x = "Days deprived of sleep (0 = baseline)") +``` + + +Complete Pooling model + + +```{r} +cp_model <- lm(Reaction ~ days_deprived, sleep2) +summary(cp_model) +ggplot(sleep2, aes(x = days_deprived, y = Reaction)) + + geom_abline(intercept = coef(cp_model)[1], + slope = coef(cp_model)[2], + color = '#f4cae2', size = 1.5) + + geom_point() + + scale_x_continuous(breaks = 0:7) + + facet_wrap(~Subject, nrow = 3) + + labs(y = "Reaction Time", + x = "Days deprived of sleep (0 = baseline)") +``` + +No Pooling Model + +```{r} +sleep2 %>% pull(Subject) %>% is.factor() +np_model <- lm(Reaction ~ days_deprived + Subject + days_deprived:Subject, + data = sleep2) + summary(np_model) +all_intercepts <- c(coef(np_model)["(Intercept)"], + coef(np_model)[3:19] + coef(np_model)["(Intercept)"]) +all_slopes <- c(coef(np_model)["days_deprived"], + coef(np_model)[20:36] + coef(np_model)["days_deprived"]) +ids <- sleep2 %>% pull(Subject) %>% levels() %>% factor() +np_coef <- tibble(Subject = ids, + intercept = all_intercepts, + slope = all_slopes) +``` + +```{r} +ggplot(sleep2, aes(x = days_deprived, y = Reaction)) + + geom_abline(data = np_coef, + mapping = aes(intercept = intercept, + slope = slope), + color = '#f4cae2', size = 1.5) + + geom_point() + theme_bw() + + scale_x_continuous(breaks = 0:7) + + facet_wrap(~Subject, nrow=3) + + labs(y = "Reaction Time", + x = "Days deprived of sleep (0 = baseline)") +``` + +Partial Pooling Model + +```{r} +pp_mod <- lmer(Reaction ~ days_deprived + (days_deprived | Subject), sleep2) +summary(pp_mod) +newdata <- crossing( + Subject = sleep2 %>% pull(Subject) %>% levels() %>% factor(), + days_deprived = 0:7) +newdata2 <- newdata %>% + mutate(Reaction = predict(pp_mod, newdata)) +``` + + +```{r} +ggplot(sleep2, aes(x = days_deprived, y = Reaction)) + + geom_line(data = newdata2, + color = '#f4cae2', size = 1.5) + + geom_point() + theme_bw() + + scale_x_continuous(breaks = 0:7) + + facet_wrap(~Subject, nrow = 3) + + labs(y = "Reaction Time", + x = "Days deprived of sleep (0 = baseline)") +``` + +##Research Question +We're interested in the relationship between pitch and politeness (Winter & Grawunder, 2012). + +Politeness: formal/polite and informal register (categorical factor) +multiple measures per subject (inter-dependent!) + +```{r} +data = read.csv("http://www.bodowinter.com/tutorial/politeness_data.csv") +head(data) +``` + +Convert attitude, gender, subject into factors. +```{r} +data = data %>% mutate(attitude=as.factor(attitude), gender=as.factor(gender), subject=as.factor(subject)) + +``` + + +Random Intercept Models + +```{r} +politeness.model0 = lmer(frequency ~ attitude + (1|subject) + (1|scenario), data=data) +summary(politeness.model0) +``` + +```{r} +politeness.model = lmer(frequency ~ attitude + gender + (1|subject) + (1|scenario), data=data) +summary(politeness.model) +``` +Likelihood Ratio Test + +```{r} +politeness.null = lmer(frequency ~ gender + (1|subject) + (1|scenario), data=data, REML=FALSE) +politeness.full = lmer(frequency ~ attitude + gender + (1|subject) + (1|scenario), data=data, REML=FALSE) +anova(politeness.null, politeness.full) +``` + +Random Slope Model + +```{r} +politeness.model1 = lmer(frequency~attitude + gender + (1+attitude|subject) + (1+attitude|scenario), data = data) +coef(politeness.model1) +``` + + diff --git a/Module 6/linearMixedModels.nb.html b/Module 6/linearMixedModels.nb.html new file mode 100644 index 00000000..dc575050 --- /dev/null +++ b/Module 6/linearMixedModels.nb.html @@ -0,0 +1,2256 @@ + + + + + + + + + + + + + +R Notebook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + +

    Linear Mixed Models Adapted from: https://chenzixu.rbind.io/slides/lme/lmer.html

    + + + +
    library(lmerTest)
    +
    + + +
    Warning: package ‘lmerTest’ was built under R version 4.2.2
    +Attaching package: ‘lmerTest’
    +
    +The following object is masked from ‘package:lme4’:
    +
    +    lmer
    +
    +The following object is masked from ‘package:stats’:
    +
    +    step
    + + + + + + +
    data("sleepstudy")
    +head(sleepstudy)
    + + +
    + +
    + + + +

    Plotting subjectwise data

    + + + +
    sleep2 <- sleepstudy %>%
    +  filter(Days >= 2) %>%
    +  mutate(days_deprived = Days - 2)
    +ggplot(sleep2, aes(x = days_deprived, 
    +                   y = Reaction)) +
    +  geom_point() +
    +  scale_x_continuous(breaks = 0:7) +
    +  facet_wrap(~Subject) +
    +  labs(y = "Reaction Time", 
    +       x = "Days deprived of sleep (0 = baseline)")
    + + + +

    Complete Pooling model

    + + + +
    cp_model <- lm(Reaction ~ days_deprived, sleep2)
    +summary(cp_model)
    + + +
    
    +Call:
    +lm(formula = Reaction ~ days_deprived, data = sleep2)
    +
    +Residuals:
    +     Min       1Q   Median       3Q      Max 
    +-112.284  -26.732    2.143   27.734  140.453 
    +
    +Coefficients:
    +              Estimate Std. Error t value Pr(>|t|)    
    +(Intercept)    267.967      7.737  34.633  < 2e-16 ***
    +days_deprived   11.435      1.850   6.183 6.32e-09 ***
    +---
    +Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    +
    +Residual standard error: 50.85 on 142 degrees of freedom
    +Multiple R-squared:  0.2121,    Adjusted R-squared:  0.2066 
    +F-statistic: 38.23 on 1 and 142 DF,  p-value: 6.316e-09
    + + +
    ggplot(sleep2, aes(x = days_deprived, y = Reaction)) +
    +  geom_abline(intercept = coef(cp_model)[1],
    +              slope = coef(cp_model)[2],
    +              color = '#f4cae2', size = 1.5) +
    +  geom_point() +
    +  scale_x_continuous(breaks = 0:7) +
    +  facet_wrap(~Subject, nrow = 3) +
    +  labs(y = "Reaction Time", 
    +       x = "Days deprived of sleep (0 = baseline)")
    + + +

    + + + +

    No Pooling Model

    + + + +
    sleep2 %>% pull(Subject) %>% is.factor()
    + + +
    [1] TRUE
    + + +
    np_model <- lm(Reaction ~ days_deprived + Subject + days_deprived:Subject,
    +               data = sleep2)
    +  summary(np_model)
    + + +
    
    +Call:
    +lm(formula = Reaction ~ days_deprived + Subject + days_deprived:Subject, 
    +    data = sleep2)
    +
    +Residuals:
    +     Min       1Q   Median       3Q      Max 
    +-106.521   -8.541    1.143    8.889  128.545 
    +
    +Coefficients:
    +                         Estimate Std. Error t value Pr(>|t|)    
    +(Intercept)              288.2175    16.4772  17.492  < 2e-16 ***
    +days_deprived             21.6905     3.9388   5.507 2.49e-07 ***
    +Subject309               -87.9262    23.3023  -3.773 0.000264 ***
    +Subject310               -62.2856    23.3023  -2.673 0.008685 ** 
    +Subject330               -14.9533    23.3023  -0.642 0.522422    
    +Subject331                 9.9658    23.3023   0.428 0.669740    
    +Subject332                27.8157    23.3023   1.194 0.235215    
    +Subject333                -2.7581    23.3023  -0.118 0.906000    
    +Subject334               -50.2051    23.3023  -2.155 0.033422 *  
    +Subject335               -25.3429    23.3023  -1.088 0.279207    
    +Subject337                24.6143    23.3023   1.056 0.293187    
    +Subject349               -59.2183    23.3023  -2.541 0.012464 *  
    +Subject350               -40.2023    23.3023  -1.725 0.087343 .  
    +Subject351               -24.2467    23.3023  -1.041 0.300419    
    +Subject352                43.0655    23.3023   1.848 0.067321 .  
    +Subject369               -21.5040    23.3023  -0.923 0.358154    
    +Subject370               -53.3072    23.3023  -2.288 0.024107 *  
    +Subject371               -30.4896    23.3023  -1.308 0.193504    
    +Subject372                 2.4772    23.3023   0.106 0.915535    
    +days_deprived:Subject309 -17.3334     5.5703  -3.112 0.002380 ** 
    +days_deprived:Subject310 -17.7915     5.5703  -3.194 0.001839 ** 
    +days_deprived:Subject330 -13.6849     5.5703  -2.457 0.015613 *  
    +days_deprived:Subject331 -16.8231     5.5703  -3.020 0.003154 ** 
    +days_deprived:Subject332 -19.2947     5.5703  -3.464 0.000765 ***
    +days_deprived:Subject333 -10.8151     5.5703  -1.942 0.054796 .  
    +days_deprived:Subject334  -3.5745     5.5703  -0.642 0.522423    
    +days_deprived:Subject335 -25.8995     5.5703  -4.650 9.47e-06 ***
    +days_deprived:Subject337   0.7518     5.5703   0.135 0.892895    
    +days_deprived:Subject349  -5.2644     5.5703  -0.945 0.346731    
    +days_deprived:Subject350   1.6007     5.5703   0.287 0.774382    
    +days_deprived:Subject351 -13.1681     5.5703  -2.364 0.019867 *  
    +days_deprived:Subject352 -14.4019     5.5703  -2.585 0.011057 *  
    +days_deprived:Subject369  -7.8948     5.5703  -1.417 0.159273    
    +days_deprived:Subject370  -1.0495     5.5703  -0.188 0.850912    
    +days_deprived:Subject371  -9.3443     5.5703  -1.678 0.096334 .  
    +days_deprived:Subject372 -10.6041     5.5703  -1.904 0.059613 .  
    +---
    +Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    +
    +Residual standard error: 25.53 on 108 degrees of freedom
    +Multiple R-squared:  0.849, Adjusted R-squared:  0.8001 
    +F-statistic: 17.35 on 35 and 108 DF,  p-value: < 2.2e-16
    + + +
    all_intercepts <- c(coef(np_model)["(Intercept)"],
    +                    coef(np_model)[3:19] + coef(np_model)["(Intercept)"])
    +all_slopes  <- c(coef(np_model)["days_deprived"],
    +                 coef(np_model)[20:36] + coef(np_model)["days_deprived"])
    +ids <- sleep2 %>% pull(Subject) %>% levels() %>% factor()
    +np_coef <- tibble(Subject = ids,
    +                  intercept = all_intercepts,
    +                  slope = all_slopes)
    + + + + + + +
    ggplot(sleep2, aes(x = days_deprived, y = Reaction)) +
    +  geom_abline(data = np_coef,
    +              mapping = aes(intercept = intercept,
    +                            slope = slope),
    +              color = '#f4cae2', size = 1.5) +
    +  geom_point() + theme_bw() +
    +  scale_x_continuous(breaks = 0:7) +
    +  facet_wrap(~Subject, nrow=3) +
    +  labs(y = "Reaction Time", 
    +       x = "Days deprived of sleep (0 = baseline)")
    + + +

    + + + +

    Partial Pooling Model

    + + + +
    pp_mod <- lmer(Reaction ~ days_deprived + (days_deprived | Subject), sleep2)
    +summary(pp_mod)
    + + +
    Linear mixed model fit by REML ['lmerMod']
    +Formula: Reaction ~ days_deprived + (days_deprived | Subject)
    +   Data: sleep2
    +
    +REML criterion at convergence: 1404.1
    +
    +Scaled residuals: 
    +    Min      1Q  Median      3Q     Max 
    +-4.0157 -0.3541  0.0069  0.4681  5.0732 
    +
    +Random effects:
    + Groups   Name          Variance Std.Dev. Corr
    + Subject  (Intercept)   958.35   30.957       
    +          days_deprived  45.78    6.766   0.18
    + Residual               651.60   25.526       
    +Number of obs: 144, groups:  Subject, 18
    +
    +Fixed effects:
    +              Estimate Std. Error t value
    +(Intercept)    267.967      8.266  32.418
    +days_deprived   11.435      1.845   6.197
    +
    +Correlation of Fixed Effects:
    +            (Intr)
    +days_deprvd -0.062
    + + +
    newdata <- crossing(
    +  Subject = sleep2 %>% pull(Subject) %>% levels() %>% factor(),
    +  days_deprived = 0:7)
    +newdata2 <- newdata %>%
    +  mutate(Reaction = predict(pp_mod, newdata))
    + + + + + + +
    ggplot(sleep2, aes(x = days_deprived, y = Reaction)) +
    +  geom_line(data = newdata2,
    +            color = '#f4cae2', size = 1.5) +
    +  geom_point() + theme_bw() +
    +  scale_x_continuous(breaks = 0:7) +
    +  facet_wrap(~Subject, nrow = 3) +
    +  labs(y = "Reaction Time", 
    +       x = "Days deprived of sleep (0 = baseline)")
    + + +

    + + + +

    ##Research Question We’re interested in the relationship between +pitch and politeness (Winter & Grawunder, 2012).

    +

    Politeness: formal/polite and informal register (categorical factor) +multiple measures per subject (inter-dependent!)

    + + + +
    data = read.csv("http://www.bodowinter.com/tutorial/politeness_data.csv")
    +head(data)
    + + +
    + +
    + + + +

    Convert attitude, gender, subject into factors.

    + + + +
    data = data %>% mutate(attitude=as.factor(attitude), gender=as.factor(gender), subject=as.factor(subject))
    +
    + + + +

    Random Intercept Models

    + + + +
    summary(politeness.model0)
    +
    + + +
    Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
    +Formula: frequency ~ attitude + (1 | subject) + (1 | scenario)
    +   Data: data
    +
    +REML criterion at convergence: 793.5
    +
    +Scaled residuals: 
    +    Min      1Q  Median      3Q     Max 
    +-2.2006 -0.5817 -0.0639  0.5625  3.4385 
    +
    +Random effects:
    + Groups   Name        Variance Std.Dev.
    + scenario (Intercept)  219     14.80   
    + subject  (Intercept) 4015     63.36   
    + Residual              646     25.42   
    +Number of obs: 83, groups:  scenario, 7; subject, 6
    +
    +Fixed effects:
    +            Estimate Std. Error      df t value Pr(>|t|)    
    +(Intercept)  202.588     26.754   5.575   7.572 0.000389 ***
    +attitudepol  -19.695      5.585  70.022  -3.527 0.000748 ***
    +---
    +Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    +
    +Correlation of Fixed Effects:
    +            (Intr)
    +attitudepol -0.103
    + + + + + + +
    politeness.model = lmer(frequency ~ attitude + gender + (1|subject) + (1|scenario), data=data)
    +summary(politeness.model)
    + + +
    Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
    +Formula: frequency ~ attitude + gender + (1 | subject) + (1 | scenario)
    +   Data: data
    +
    +REML criterion at convergence: 775.5
    +
    +Scaled residuals: 
    +    Min      1Q  Median      3Q     Max 
    +-2.2591 -0.6236 -0.0772  0.5388  3.4795 
    +
    +Random effects:
    + Groups   Name        Variance Std.Dev.
    + scenario (Intercept) 219.5    14.81   
    + subject  (Intercept) 615.6    24.81   
    + Residual             645.9    25.41   
    +Number of obs: 83, groups:  scenario, 7; subject, 6
    +
    +Fixed effects:
    +            Estimate Std. Error       df t value Pr(>|t|)    
    +(Intercept)  256.846     16.116    5.432  15.938 9.06e-06 ***
    +attitudepol  -19.721      5.584   70.054  -3.532 0.000735 ***
    +genderM     -108.516     21.013    4.007  -5.164 0.006647 ** 
    +---
    +Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    +
    +Correlation of Fixed Effects:
    +            (Intr) atttdp
    +attitudepol -0.173       
    +genderM     -0.652  0.004
    + + + +

    Likelihood Ratio Test

    + + + +
    politeness.null = lmer(frequency ~ gender + (1|subject) + (1|scenario), data=data, REML=FALSE)
    +politeness.full = lmer(frequency ~ attitude + gender + (1|subject) + (1|scenario), data=data, REML=FALSE)
    +anova(politeness.null, politeness.full)
    + + +
    Data: data
    +Models:
    +politeness.null: frequency ~ gender + (1 | subject) + (1 | scenario)
    +politeness.full: frequency ~ attitude + gender + (1 | subject) + (1 | scenario)
    +                npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
    +politeness.null    5 816.72 828.81 -403.36   806.72                         
    +politeness.full    6 807.10 821.61 -397.55   795.10 11.618  1  0.0006532 ***
    +---
    +Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    + + + +

    Random Slope Model

    + + + +
    politeness.model1 = lmer(frequency~attitude + gender + (1+attitude|subject) + (1+attitude|scenario), data = data)
    + + +
    boundary (singular) fit: see help('isSingular')
    + + +
    coef(politeness.model1)
    + + +
    $scenario
    +  (Intercept) attitudepol   genderM
    +1    244.4740   -19.00296 -111.1058
    +2    261.9447   -12.87473 -111.1058
    +3    270.9290   -23.46233 -111.1058
    +4    277.0651   -15.90595 -111.1058
    +5    255.8277   -18.72597 -111.1058
    +6    247.0421   -22.37916 -111.1058
    +7    249.7042   -25.93003 -111.1058
    +
    +$subject
    +   (Intercept) attitudepol   genderM
    +F1    243.2804   -20.49940 -111.1058
    +F2    267.1173   -19.30447 -111.1058
    +F3    260.2849   -19.64697 -111.1058
    +M3    287.1024   -18.30263 -111.1058
    +M4    264.6698   -19.42716 -111.1058
    +M7    226.3911   -21.34605 -111.1058
    +
    +attr(,"class")
    +[1] "coef.mer"
    + + + + + +
    LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpMaW5lYXIgTWl4ZWQgTW9kZWxzDQpBZGFwdGVkIGZyb206IGh0dHBzOi8vY2hlbnppeHUucmJpbmQuaW8vc2xpZGVzL2xtZS9sbWVyLmh0bWwNCg0KDQpgYGB7cn0NCmxpYnJhcnkobG1lNCkNCmxpYnJhcnkobWFncml0dHIpDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkobG1lclRlc3QpDQpgYGANCg0KYGBge3J9DQpkYXRhKCJzbGVlcHN0dWR5IikNCmhlYWQoc2xlZXBzdHVkeSkNCmBgYA0KDQpQbG90dGluZyBzdWJqZWN0d2lzZSBkYXRhDQoNCmBgYHtyfQ0Kc2xlZXAyIDwtIHNsZWVwc3R1ZHkgJT4lDQogIGZpbHRlcihEYXlzID49IDIpICU+JQ0KICBtdXRhdGUoZGF5c19kZXByaXZlZCA9IERheXMgLSAyKQ0KZ2dwbG90KHNsZWVwMiwgYWVzKHggPSBkYXlzX2RlcHJpdmVkLCANCiAgICAgICAgICAgICAgICAgICB5ID0gUmVhY3Rpb24pKSArDQogIGdlb21fcG9pbnQoKSArDQogIHNjYWxlX3hfY29udGludW91cyhicmVha3MgPSAwOjcpICsNCiAgZmFjZXRfd3JhcCh+U3ViamVjdCkgKw0KICBsYWJzKHkgPSAiUmVhY3Rpb24gVGltZSIsIA0KICAgICAgIHggPSAiRGF5cyBkZXByaXZlZCBvZiBzbGVlcCAoMCA9IGJhc2VsaW5lKSIpDQpgYGANCg0KDQpDb21wbGV0ZSBQb29saW5nIG1vZGVsDQoNCg0KYGBge3J9DQpjcF9tb2RlbCA8LSBsbShSZWFjdGlvbiB+IGRheXNfZGVwcml2ZWQsIHNsZWVwMikNCnN1bW1hcnkoY3BfbW9kZWwpDQpnZ3Bsb3Qoc2xlZXAyLCBhZXMoeCA9IGRheXNfZGVwcml2ZWQsIHkgPSBSZWFjdGlvbikpICsNCiAgZ2VvbV9hYmxpbmUoaW50ZXJjZXB0ID0gY29lZihjcF9tb2RlbClbMV0sDQogICAgICAgICAgICAgIHNsb3BlID0gY29lZihjcF9tb2RlbClbMl0sDQogICAgICAgICAgICAgIGNvbG9yID0gJyNmNGNhZTInLCBzaXplID0gMS41KSArDQogIGdlb21fcG9pbnQoKSArDQogIHNjYWxlX3hfY29udGludW91cyhicmVha3MgPSAwOjcpICsNCiAgZmFjZXRfd3JhcCh+U3ViamVjdCwgbnJvdyA9IDMpICsNCiAgbGFicyh5ID0gIlJlYWN0aW9uIFRpbWUiLCANCiAgICAgICB4ID0gIkRheXMgZGVwcml2ZWQgb2Ygc2xlZXAgKDAgPSBiYXNlbGluZSkiKQ0KYGBgDQoNCk5vIFBvb2xpbmcgTW9kZWwNCg0KYGBge3J9DQpzbGVlcDIgJT4lIHB1bGwoU3ViamVjdCkgJT4lIGlzLmZhY3RvcigpDQpucF9tb2RlbCA8LSBsbShSZWFjdGlvbiB+IGRheXNfZGVwcml2ZWQgKyBTdWJqZWN0ICsgZGF5c19kZXByaXZlZDpTdWJqZWN0LA0KICAgICAgICAgICAgICAgZGF0YSA9IHNsZWVwMikNCiAgc3VtbWFyeShucF9tb2RlbCkNCmFsbF9pbnRlcmNlcHRzIDwtIGMoY29lZihucF9tb2RlbClbIihJbnRlcmNlcHQpIl0sDQogICAgICAgICAgICAgICAgICAgIGNvZWYobnBfbW9kZWwpWzM6MTldICsgY29lZihucF9tb2RlbClbIihJbnRlcmNlcHQpIl0pDQphbGxfc2xvcGVzICA8LSBjKGNvZWYobnBfbW9kZWwpWyJkYXlzX2RlcHJpdmVkIl0sDQogICAgICAgICAgICAgICAgIGNvZWYobnBfbW9kZWwpWzIwOjM2XSArIGNvZWYobnBfbW9kZWwpWyJkYXlzX2RlcHJpdmVkIl0pDQppZHMgPC0gc2xlZXAyICU+JSBwdWxsKFN1YmplY3QpICU+JSBsZXZlbHMoKSAlPiUgZmFjdG9yKCkNCm5wX2NvZWYgPC0gdGliYmxlKFN1YmplY3QgPSBpZHMsDQogICAgICAgICAgICAgICAgICBpbnRlcmNlcHQgPSBhbGxfaW50ZXJjZXB0cywNCiAgICAgICAgICAgICAgICAgIHNsb3BlID0gYWxsX3Nsb3BlcykNCmBgYA0KDQpgYGB7cn0NCmdncGxvdChzbGVlcDIsIGFlcyh4ID0gZGF5c19kZXByaXZlZCwgeSA9IFJlYWN0aW9uKSkgKw0KICBnZW9tX2FibGluZShkYXRhID0gbnBfY29lZiwNCiAgICAgICAgICAgICAgbWFwcGluZyA9IGFlcyhpbnRlcmNlcHQgPSBpbnRlcmNlcHQsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgc2xvcGUgPSBzbG9wZSksDQogICAgICAgICAgICAgIGNvbG9yID0gJyNmNGNhZTInLCBzaXplID0gMS41KSArDQogIGdlb21fcG9pbnQoKSArIHRoZW1lX2J3KCkgKw0KICBzY2FsZV94X2NvbnRpbnVvdXMoYnJlYWtzID0gMDo3KSArDQogIGZhY2V0X3dyYXAoflN1YmplY3QsIG5yb3c9MykgKw0KICBsYWJzKHkgPSAiUmVhY3Rpb24gVGltZSIsIA0KICAgICAgIHggPSAiRGF5cyBkZXByaXZlZCBvZiBzbGVlcCAoMCA9IGJhc2VsaW5lKSIpDQpgYGANCg0KUGFydGlhbCBQb29saW5nIE1vZGVsDQoNCmBgYHtyfQ0KcHBfbW9kIDwtIGxtZXIoUmVhY3Rpb24gfiBkYXlzX2RlcHJpdmVkICsgKGRheXNfZGVwcml2ZWQgfCBTdWJqZWN0KSwgc2xlZXAyKQ0Kc3VtbWFyeShwcF9tb2QpDQpuZXdkYXRhIDwtIGNyb3NzaW5nKA0KICBTdWJqZWN0ID0gc2xlZXAyICU+JSBwdWxsKFN1YmplY3QpICU+JSBsZXZlbHMoKSAlPiUgZmFjdG9yKCksDQogIGRheXNfZGVwcml2ZWQgPSAwOjcpDQpuZXdkYXRhMiA8LSBuZXdkYXRhICU+JQ0KICBtdXRhdGUoUmVhY3Rpb24gPSBwcmVkaWN0KHBwX21vZCwgbmV3ZGF0YSkpDQpgYGANCg0KDQpgYGB7cn0NCmdncGxvdChzbGVlcDIsIGFlcyh4ID0gZGF5c19kZXByaXZlZCwgeSA9IFJlYWN0aW9uKSkgKw0KICBnZW9tX2xpbmUoZGF0YSA9IG5ld2RhdGEyLA0KICAgICAgICAgICAgY29sb3IgPSAnI2Y0Y2FlMicsIHNpemUgPSAxLjUpICsNCiAgZ2VvbV9wb2ludCgpICsgdGhlbWVfYncoKSArDQogIHNjYWxlX3hfY29udGludW91cyhicmVha3MgPSAwOjcpICsNCiAgZmFjZXRfd3JhcCh+U3ViamVjdCwgbnJvdyA9IDMpICsNCiAgbGFicyh5ID0gIlJlYWN0aW9uIFRpbWUiLCANCiAgICAgICB4ID0gIkRheXMgZGVwcml2ZWQgb2Ygc2xlZXAgKDAgPSBiYXNlbGluZSkiKQ0KYGBgDQoNCiMjUmVzZWFyY2ggUXVlc3Rpb24NCldlJ3JlIGludGVyZXN0ZWQgaW4gdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHBpdGNoIGFuZCBwb2xpdGVuZXNzIChXaW50ZXIgJiBHcmF3dW5kZXIsIDIwMTIpLg0KDQpQb2xpdGVuZXNzOiBmb3JtYWwvcG9saXRlIGFuZCBpbmZvcm1hbCByZWdpc3RlciAoY2F0ZWdvcmljYWwgZmFjdG9yKQ0KbXVsdGlwbGUgbWVhc3VyZXMgcGVyIHN1YmplY3QgKGludGVyLWRlcGVuZGVudCEpDQoNCmBgYHtyfQ0KZGF0YSA9IHJlYWQuY3N2KCJodHRwOi8vd3d3LmJvZG93aW50ZXIuY29tL3R1dG9yaWFsL3BvbGl0ZW5lc3NfZGF0YS5jc3YiKQ0KaGVhZChkYXRhKQ0KYGBgDQoNCkNvbnZlcnQgYXR0aXR1ZGUsIGdlbmRlciwgc3ViamVjdCBpbnRvIGZhY3RvcnMuDQpgYGB7cn0NCmRhdGEgPSBkYXRhICU+JSBtdXRhdGUoYXR0aXR1ZGU9YXMuZmFjdG9yKGF0dGl0dWRlKSwgZ2VuZGVyPWFzLmZhY3RvcihnZW5kZXIpLCBzdWJqZWN0PWFzLmZhY3RvcihzdWJqZWN0KSkNCg0KYGBgDQoNCg0KUmFuZG9tIEludGVyY2VwdCBNb2RlbHMNCg0KYGBge3J9DQpwb2xpdGVuZXNzLm1vZGVsMCA9IGxtZXIoZnJlcXVlbmN5IH4gYXR0aXR1ZGUgKyAoMXxzdWJqZWN0KSArICgxfHNjZW5hcmlvKSwgZGF0YT1kYXRhKQ0Kc3VtbWFyeShwb2xpdGVuZXNzLm1vZGVsMCkNCmBgYA0KDQpgYGB7cn0NCnBvbGl0ZW5lc3MubW9kZWwgPSBsbWVyKGZyZXF1ZW5jeSB+IGF0dGl0dWRlICsgZ2VuZGVyICsgKDF8c3ViamVjdCkgKyAoMXxzY2VuYXJpbyksIGRhdGE9ZGF0YSkNCnN1bW1hcnkocG9saXRlbmVzcy5tb2RlbCkNCmBgYA0KTGlrZWxpaG9vZCBSYXRpbyBUZXN0DQoNCmBgYHtyfQ0KcG9saXRlbmVzcy5udWxsID0gbG1lcihmcmVxdWVuY3kgfiBnZW5kZXIgKyAoMXxzdWJqZWN0KSArICgxfHNjZW5hcmlvKSwgZGF0YT1kYXRhLCBSRU1MPUZBTFNFKQ0KcG9saXRlbmVzcy5mdWxsID0gbG1lcihmcmVxdWVuY3kgfiBhdHRpdHVkZSArIGdlbmRlciArICgxfHN1YmplY3QpICsgKDF8c2NlbmFyaW8pLCBkYXRhPWRhdGEsIFJFTUw9RkFMU0UpDQphbm92YShwb2xpdGVuZXNzLm51bGwsIHBvbGl0ZW5lc3MuZnVsbCkNCmBgYA0KDQpSYW5kb20gU2xvcGUgTW9kZWwNCg0KYGBge3J9DQpwb2xpdGVuZXNzLm1vZGVsMSA9IGxtZXIoZnJlcXVlbmN5fmF0dGl0dWRlICsgZ2VuZGVyICsgKDErYXR0aXR1ZGV8c3ViamVjdCkgKyAoMSthdHRpdHVkZXxzY2VuYXJpbyksIGRhdGEgPSBkYXRhKQ0KY29lZihwb2xpdGVuZXNzLm1vZGVsMSkNCmBgYA0KDQoNCg==
    + + + +
    + + + + + + + + + + + + + + + + From 8e2e723b8d878a9f4811c5cf7ee4fa82287660e4 Mon Sep 17 00:00:00 2001 From: Chetan Kandpal Date: Fri, 4 Aug 2023 12:02:13 +0530 Subject: [PATCH 40/55] Shifted Module 1 & 2 in same folder --- Module 1/Notebook for chapter 1.Rmd | 109 + Module 1/Notebook for chapter 1.nb.html | 457 + Module 1/R notebook tutorial-2.Rmd | 45 + Module 1/R notebook tutorial.Rmd | 171 + Module 1/R notebook tutorial.nb.html | 423 + Module 1/README.md | 1 + Module 2/README.md | 10 + Module 2/StatewiseTestingDetails.csv | 14099 ++++++++++++++++++++++ Module 2/Tidyverse.Rmd | 207 + Module 2/Tidyverse.nb.html | 2309 ++++ Module 2/project.Rproj | 13 + Module 2/using ggplot.Rmd | 59 + Module 2/using-ggplot.html | 311 + 13 files changed, 18214 insertions(+) create mode 100644 Module 1/Notebook for chapter 1.Rmd create mode 100644 Module 1/Notebook for chapter 1.nb.html create mode 100644 Module 1/R notebook tutorial-2.Rmd create mode 100644 Module 1/R notebook tutorial.Rmd create mode 100644 Module 1/R notebook tutorial.nb.html create mode 100644 Module 1/README.md create mode 100644 Module 2/README.md create mode 100644 Module 2/StatewiseTestingDetails.csv create mode 100644 Module 2/Tidyverse.Rmd create mode 100644 Module 2/Tidyverse.nb.html create mode 100644 Module 2/project.Rproj create mode 100644 Module 2/using ggplot.Rmd create mode 100644 Module 2/using-ggplot.html diff --git a/Module 1/Notebook for chapter 1.Rmd b/Module 1/Notebook for chapter 1.Rmd new file mode 100644 index 00000000..651600df --- /dev/null +++ b/Module 1/Notebook for chapter 1.Rmd @@ -0,0 +1,109 @@ +--- +title: "R Notebook" +output: html_notebook +--- + +This is an [R Markdown](http://rmarkdown.rstudio.com) Notebook. When you execute code within the notebook, the results appear beneath the code. + +Try executing this chunk by clicking the *Run* button within the chunk or by placing your cursor inside it and pressing *Ctrl+Shift+Enter*. + +```{r} +plot(cars) +``` +Basic commands on R +Assigning variable +```{r} +x<- 2*8 +x +``` +Numeric Vector and operation on it +```{r} +y <- c(2.3, 1, 5) +y +``` + +```{r} +length(y) +mode(y) +class(y) +``` +sequence of integers storing in vector +```{r} +mynums <- 10:1 +mynums +``` +operating on Numeric vector +```{r} +sum(mynums) +min(mynums) +max(mynums) +range(mynums) +``` +standard deviation, mean and median +```{r} +mean(mynums) +sd(mynums) +median(mynums) +``` +Indexing Numeric vector +```{r} +mynums[2] +mynums[1:4] +mynums[-4] # retrieve everything except fourth position +``` +character vectors +```{r} +gender <- c('F', 'M', 'M', 'F', 'F') +gender +class(gender) +``` +Finding repitition of a character +```{r} +gender[gender == 'F'] +``` +operating on Data frames +```{r} +participant <- c('louis', 'paula', 'vincenzo') +mydf <- data.frame(participant, score = c(67, 85, 32)) +mydf +mydf$score +mean(mydf$score) +``` +Indexing on Data frame +```{r} +mydf[1,] # first row +mydf[, 1][2] +``` +Indexing +```{r} +mydf[2, ] # 2nd column +``` +PLOTING +```{r} +mean(mydf$score) +str(mydf) +summary(mydf) +``` +Loading files +```{r} +covid_19 <- read.csv('india_covid_19_statewise_status.csv') +covid_19 +``` +ASSIGNMENT +Assignment for chapter -1 + +1. Create a Numeric vector with 10 elements ranging between 20 to 30, name it Mynums. Find maximum and minimum element of the vector. Compute Sum operation on the vector put it in a variable z. Find out the 4,5,6 th element of the vector. + +2. Create a 10 element numeric vector and compute mean, median and Standard deviation of the vector. + +3. Create a dataframe with 5 participants and their math score. Calculate mean of their score. + + +Student name Math score +Louis 67 +Paul 86 +Vincenzo 80 +Tim 56 +Dorothy 91 + + diff --git a/Module 1/Notebook for chapter 1.nb.html b/Module 1/Notebook for chapter 1.nb.html new file mode 100644 index 00000000..117d05d6 --- /dev/null +++ b/Module 1/Notebook for chapter 1.nb.html @@ -0,0 +1,457 @@ + + + + + + + + + + + + + +R Notebook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + +

    This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

    +

    Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

    + + + +
    plot(cars)
    + + + +

    Basic commands on R Assigning variable

    + + + +
    x<- 2*8
    +x
    + + + +

    Numeric Vector and operation on it

    + + + +
    y <- c(2.3, 1, 5)
    +y
    + + +
    [1] 2.3 1.0 5.0
    + + + + + + +
    length(y)
    +mode(y)
    +class(y)
    + + + +

    sequence of integers storing in vector

    + + + +
    mynums <- 10:1
    +mynums 
    + + + +

    operating on Numeric vector

    + + + +
    sum(mynums)
    + + +
    [1] 55
    + + +
    min(mynums)
    + + +
    [1] 1
    + + +
    max(mynums)
    + + +
    [1] 10
    + + +
    range(mynums)
    + + +
    [1]  1 10
    + + + +

    standard deviation, mean and median

    + + + +
    mean(mynums)
    +sd(mynums)
    +median(mynums)
    + + + +

    Indexing Numeric vector

    + + + +
    mynums[2]
    +mynums[1:4] 
    +mynums[-4] # retrieve everything except fourth position
    + + + +

    character vectors

    + + + +
    gender <- c('F', 'M', 'M', 'F', 'F')
    +gender
    +class(gender)
    + + + +

    Finding repetation of a character

    + + + +
    gender[gender == 'F']
    + + + +

    operating on Data frames

    + + + +
    participant <- c('louis', 'paula', 'vincenzo')
    +mydf <- data.frame(participant, score = c(67, 85, 32)) 
    +mydf
    +mydf$score
    +mean(mydf$score)
    + + + +

    Indexing on Data frame

    + + + +
    mydf[1,] # first row
    +mydf[, 1][2]
    + + + +

    Indexing

    + + + +
    mydf[2, ] # 2nd column
    + + + +

    PLOTING

    + + + +
    mean(mydf$score)
    +str(mydf)
    +summary(mydf)
    + + + +

    Loading files

    + + + +
    covid_19 <- read.csv('india_covid_19_statewise_status.csv')
    +covid_19
    + + + +

    ASSIGNMENT Assignment for chapter -1

    +
      +
    1. Create a Numeric vector with 10 elements ranging between 20 to 30, name it Mynums. Find maximum and minimum element of the vector. Compute Sum operation on the vector put it in a variable z. Find out the 4,5,6 th element of the vector.

    2. +
    3. Create a 10 element numeric vector and compute mean, median and Standard deviation of the vector.

    4. +
    5. Create a dataframe with 5 participants and their math score. Calculate mean of their score.

    6. +
    +

    Student name Math score Louis 67 Paul 86 Vincenzo 80 Tim 56 Dorothy 91

    +

    Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Ctrl+Alt+I.

    +

    When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Ctrl+Shift+K to preview the HTML file).

    +

    The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

    + + +
    LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKVGhpcyBpcyBhbiBbUiBNYXJrZG93bl0oaHR0cDovL3JtYXJrZG93bi5yc3R1ZGlvLmNvbSkgTm90ZWJvb2suIFdoZW4geW91IGV4ZWN1dGUgY29kZSB3aXRoaW4gdGhlIG5vdGVib29rLCB0aGUgcmVzdWx0cyBhcHBlYXIgYmVuZWF0aCB0aGUgY29kZS4gCgpUcnkgZXhlY3V0aW5nIHRoaXMgY2h1bmsgYnkgY2xpY2tpbmcgdGhlICpSdW4qIGJ1dHRvbiB3aXRoaW4gdGhlIGNodW5rIG9yIGJ5IHBsYWNpbmcgeW91ciBjdXJzb3IgaW5zaWRlIGl0IGFuZCBwcmVzc2luZyAqQ3RybCtTaGlmdCtFbnRlciouIAoKYGBge3J9CnBsb3QoY2FycykKYGBgCkJhc2ljIGNvbW1hbmRzIG9uIFIKQXNzaWduaW5nIHZhcmlhYmxlIApgYGB7cn0KeDwtIDIqOAp4CmBgYApOdW1lcmljIFZlY3RvciBhbmQgb3BlcmF0aW9uIG9uIGl0CmBgYHtyfQp5IDwtIGMoMi4zLCAxLCA1KQp5CmBgYAoKYGBge3J9Cmxlbmd0aCh5KQptb2RlKHkpCmNsYXNzKHkpCmBgYApzZXF1ZW5jZSBvZiBpbnRlZ2VycyBzdG9yaW5nIGluIHZlY3RvcgpgYGB7cn0KbXludW1zIDwtIDEwOjEKbXludW1zIApgYGAKb3BlcmF0aW5nIG9uIE51bWVyaWMgdmVjdG9yCmBgYHtyfQpzdW0obXludW1zKQptaW4obXludW1zKQptYXgobXludW1zKQpyYW5nZShteW51bXMpCmBgYApzdGFuZGFyZCBkZXZpYXRpb24sIG1lYW4gYW5kIG1lZGlhbiAKYGBge3J9Cm1lYW4obXludW1zKQpzZChteW51bXMpCm1lZGlhbihteW51bXMpCmBgYApJbmRleGluZyBOdW1lcmljIHZlY3RvcgpgYGB7cn0KbXludW1zWzJdCm15bnVtc1sxOjRdCQpteW51bXNbLTRdICMgcmV0cmlldmUgZXZlcnl0aGluZyBleGNlcHQgZm91cnRoIHBvc2l0aW9uCmBgYApjaGFyYWN0ZXIgdmVjdG9ycwpgYGB7cn0KZ2VuZGVyIDwtIGMoJ0YnLCAnTScsICdNJywgJ0YnLCAnRicpCmdlbmRlcgpjbGFzcyhnZW5kZXIpCmBgYApGaW5kaW5nIHJlcGV0YXRpb24gb2YgYSBjaGFyYWN0ZXIKYGBge3J9CmdlbmRlcltnZW5kZXIgPT0gJ0YnXQpgYGAKb3BlcmF0aW5nIG9uIERhdGEgZnJhbWVzCmBgYHtyfQpwYXJ0aWNpcGFudCA8LSBjKCdsb3VpcycsICdwYXVsYScsICd2aW5jZW56bycpCm15ZGYgPC0gZGF0YS5mcmFtZShwYXJ0aWNpcGFudCwgc2NvcmUgPSBjKDY3LCA4NSwgMzIpKSAKbXlkZgpteWRmJHNjb3JlCm1lYW4obXlkZiRzY29yZSkKYGBgCkluZGV4aW5nIG9uIERhdGEgZnJhbWUKYGBge3J9Cm15ZGZbMSxdICMgZmlyc3Qgcm93Cm15ZGZbLCAxXVsyXQpgYGAKSW5kZXhpbmcKYGBge3J9Cm15ZGZbMiwgXSAjIDJuZCBjb2x1bW4KYGBgClBMT1RJTkcKYGBge3J9Cm1lYW4obXlkZiRzY29yZSkKc3RyKG15ZGYpCnN1bW1hcnkobXlkZikKYGBgCkxvYWRpbmcgZmlsZXMKYGBge3J9CmNvdmlkXzE5IDwtIHJlYWQuY3N2KCdpbmRpYV9jb3ZpZF8xOV9zdGF0ZXdpc2Vfc3RhdHVzLmNzdicpCmNvdmlkXzE5CmBgYApBU1NJR05NRU5UCkFzc2lnbm1lbnQgZm9yIGNoYXB0ZXIgLTEgCgoxLglDcmVhdGUgYSBOdW1lcmljIHZlY3RvciB3aXRoIDEwIGVsZW1lbnRzIHJhbmdpbmcgYmV0d2VlbiAyMCB0byAzMCwgbmFtZSBpdCBNeW51bXMuIEZpbmQgbWF4aW11bSBhbmQgbWluaW11bSBlbGVtZW50IG9mIHRoZSB2ZWN0b3IuIENvbXB1dGUgU3VtIG9wZXJhdGlvbiBvbiB0aGUgdmVjdG9yIHB1dCBpdCBpbiBhIHZhcmlhYmxlIHouIEZpbmQgb3V0IHRoZSA0LDUsNiB0aCBlbGVtZW50IG9mIHRoZSB2ZWN0b3IuCgoyLglDcmVhdGUgYSAxMCBlbGVtZW50IG51bWVyaWMgdmVjdG9yIGFuZCBjb21wdXRlIG1lYW4sIG1lZGlhbiBhbmQgU3RhbmRhcmQgZGV2aWF0aW9uIG9mIHRoZSB2ZWN0b3IuIAoKMy4JQ3JlYXRlIGEgZGF0YWZyYW1lIHdpdGggNSBwYXJ0aWNpcGFudHMgYW5kIHRoZWlyIG1hdGggc2NvcmUuIENhbGN1bGF0ZSBtZWFuIG9mIHRoZWlyIHNjb3JlLgoKClN0dWRlbnQgbmFtZQlNYXRoIHNjb3JlCkxvdWlzCTY3ClBhdWwJODYKVmluY2Vuem8JODAKVGltCTU2CkRvcm90aHkJOTEKCgoKQWRkIGEgbmV3IGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqSW5zZXJ0IENodW5rKiBidXR0b24gb24gdGhlIHRvb2xiYXIgb3IgYnkgcHJlc3NpbmcgKkN0cmwrQWx0K0kqLgoKV2hlbiB5b3Ugc2F2ZSB0aGUgbm90ZWJvb2ssIGFuIEhUTUwgZmlsZSBjb250YWluaW5nIHRoZSBjb2RlIGFuZCBvdXRwdXQgd2lsbCBiZSBzYXZlZCBhbG9uZ3NpZGUgaXQgKGNsaWNrIHRoZSAqUHJldmlldyogYnV0dG9uIG9yIHByZXNzICpDdHJsK1NoaWZ0K0sqIHRvIHByZXZpZXcgdGhlIEhUTUwgZmlsZSkuCgpUaGUgcHJldmlldyBzaG93cyB5b3UgYSByZW5kZXJlZCBIVE1MIGNvcHkgb2YgdGhlIGNvbnRlbnRzIG9mIHRoZSBlZGl0b3IuIENvbnNlcXVlbnRseSwgdW5saWtlICpLbml0KiwgKlByZXZpZXcqIGRvZXMgbm90IHJ1biBhbnkgUiBjb2RlIGNodW5rcy4gSW5zdGVhZCwgdGhlIG91dHB1dCBvZiB0aGUgY2h1bmsgd2hlbiBpdCB3YXMgbGFzdCBydW4gaW4gdGhlIGVkaXRvciBpcyBkaXNwbGF5ZWQuCg==
    + + + +
    + + + + + + + + + + + + + + + + diff --git a/Module 1/R notebook tutorial-2.Rmd b/Module 1/R notebook tutorial-2.Rmd new file mode 100644 index 00000000..7727cd42 --- /dev/null +++ b/Module 1/R notebook tutorial-2.Rmd @@ -0,0 +1,45 @@ +--- +title: "R Notebook" +output: html_notebook +--- + +--- +title: "Getting used to R notebooks" +output: html_document +--- + +### Hi all, Welcome to statistics with R +### This file is intended to make you familiar with R notebooks, if you are already an R user - thats good, but still you should have quick view of this tutorial, you may learn something new. + +##### This is an R Markdown notebook file, you might have noticed that this file has the format of *.Rmd* +##### R Markdown or .Rmd is a file format for making dynamic documents with R. An R Markdown document is written in markdown (an easy-to-write plain text format) and contains chunks of embedded R code. Hence, this tutorial file can itself has plain text as well as embeded code. Currently, these instructions you are reading are in the markdown format, and if you wish to insert a chunck of code below it, you can do so by clicking the *Insert Chunk* button on the toolbar or by pressing *Ctrl+Alt+I*. So, why to wait, lets write a code chuck for printing "hello". +```{r} +print('Hello') +``` + +##### Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. There can be several different output formats for this markdown file and you can mention it at the start of this file under output:, for this notebook it is mentioned 'html document' which outputs a .html file with the same name as of the .Rmd file. You might be already reading this in a .html output file in your browser, if not then you can always preview that html file in you browser to have a look. + +To know more about R Markdown you can visit this [link](http://rmarkdown.rstudio.com). + +[R Markdown interface](https://rmarkdown.rstudio.com/lesson-2.html) notebook. + +Try executing this chunk by clicking the *Run* button within the chunk or by placing your cursor inside it and pressing *Ctrl+Shift+Enter*. + +### Knitting and converting +When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this: + +### Some basic markdown commands to make your text look good + +```{r cars} +summary(cars) +``` + +## Including Plots + +You can also embed plots, for example: + +```{r pressure, echo=FALSE} +plot(pressure) +``` + +Note that the `echo = FALSE` parameter was added to the code chunk to prevent printing of the R code that generated the plot. diff --git a/Module 1/R notebook tutorial.Rmd b/Module 1/R notebook tutorial.Rmd new file mode 100644 index 00000000..125a9b99 --- /dev/null +++ b/Module 1/R notebook tutorial.Rmd @@ -0,0 +1,171 @@ +--- +title: "R Notebook" +output: html_notebook +--- + +--- +title: "Introduction to R notebooks" +output: html_document +--- + +### Welcome to statistics with R! + + +This tutorial notebook is intended to introduce and make you familiar with **R notebooks**. Even if you have used R previously, you can take a quick glance at the tutorial and might learn something new. + +This is an R Markdown notebook file, you might have noticed that this file has the format of *.Rmd*. +First things first, + +##### What the heck is Markdown? +Markdown is a [markup language](https://en.wikipedia.org/wiki/Markup_language) for creating formatted text using a plain-text editor. The idea and terminology evolved from the "marking up" of paper manuscripts (i.e., the revision instructions by editors), which is traditionally written with a red or blue pen on authors' manuscripts. Markdown using any language including R is just a *digital* version of such blue and red pen annotations. + +##### But what is an R Notebook then? +R Notebook is simply an R Markdown document (a document written in the *language* R Markdown) with chunks that can be executed independently and interactively, with output visible immediately beneath the input. It is an implementation of [Literate Programming](https://en.wikipedia.org/wiki/Literate_programming) that allows for direct interaction with R while producing a reproducible document with publication-quality output. A notebook can therefore be thought of as a special execution mode for R Markdown documents. + +With the .Rmd file format, you can make such dynamic documents with R. In fact, this tutorial file itself is an R Notebook file with both plain text (that you're currently reading) and embeded code (which you'll insert below). + +Before moving to code insertion, so far we've learnt that the R Notebook (R Markdown document) is written in R markdown (an easy-to-write markup language) and contains chunks of embedded R code. + +Now if you wish to insert a code chunk, you can do so by clicking the *Insert Chunk* button on the toolbar or you can by press *Ctrl+Alt+I*. (*mac: Cmd + option + I*). Let's write our first code chunk for printing "hello". *Try it yourself:* Insert a new code chunk to print "My First Markdown File". +```{r} +print('Hello') +``` + +Try executing the inserted chunk(s) by clicking the *Run* button (green arrowhead) within the chunk or by placing your cursor inside it and pressing *Ctrl+Shift+Enter*. + +##### Some more information on R Markdown +Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. There can be several different output formats for this markdown file and you can mention it at the start of this file under output:, for R notebooks, the output type is 'html document' which outputs a .html file with the same name as of the .Rmd file. You might be already reading this in a .html output file in your browser, if not then you can always *Preview* that html file in you browser to have a look. + +To know more about R Markdown you can visit this [link](http://rmarkdown.rstudio.com). + +[R Markdown interface](https://rmarkdown.rstudio.com/lesson-2.html) notebook. + +**_Suggested reading:_** Section 3.2 (R Notebook) and Sections 2.5, 2.6 (Markdown syntax) from the book - [R Markdown: The definitive guide](https://bookdown.org/yihui/rmarkdown/) + +#### R Markdown syntax +The text in an R Markdown document is written with the Markdown syntax. More precisely, it is [Pandoc’s Markdown](https://pandoc.org/MANUAL.html). The following information has been adapted form the above mentioned book. + +_Note_ : It is suggested to view the file as HTML document for this section in order to see the effect of formatting. You can do so by clicking the Preview button in the toolbar. + +##### Inline formatting + +Inline text will be _italic_ if surrounded by underscores or asterisks, e.g., `_text_` or `*text*`. **Bold** text is produced using a pair of double asterisks (`**text**`). A pair of tildes (~) turn text to a subscript (e.g., `H~3~PO~4~` renders H~3~PO~4). A pair of carets (^) produce a superscript (e.g., `Cu^2+^` renders Cu^2+^). + +To mark text as inline code, use a pair of backticks, e.g., `` `code` ``. + +Hyperlinks are created using the syntax `[text](link)`, e.g., `[RStudio](https://www.rstudio.com)` will output [RStudio](https://www.rstudio.com). The syntax for images is similar: just add an exclamation mark, e.g., `![alt text or image title](path/to/image)`. Footnotes are put inside the square brackets after a caret `^[]`, e.g., `^[This is a footnote.]` + +##### Block level elements +Section headers can be written after a number of hashtags, e.g., + +`# First-level header` + +# First-level header + +`## Second-level header` + +## Second-level header + +`### Third-level header` + +### Third-level header + +If you do not want a certain heading to be numbered, you can add {-} or {.unnumbered} after the heading, e.g., + +`# Preface {-}` + +Unordered list items start with *, -, or +, and you can nest one list within another list by indenting the sub-list, e.g., + +``` +- one item +- one item +- one item + - one more item + - one more item + - one more item +``` + +The output is: + +- one item + +- one item + +- one item + + - one more item + + - one more item + + - one more item + +Ordered list items start with numbers (you can also nest lists within lists), e.g., + +``` +1. the first item +2. the second item +3. the third item + - one unordered item + - one unordered item +``` + +The output does not look too much different with the Markdown source: + +1. the first item + +2. the second item + +3. the third item + + - one unordered item + + - one unordered item + +Plain code blocks can be written after three or more backticks. +```` +``` +Just like this +``` +```` + +#### All about Code chunks +You inserted a code chunk in the beginning and therefore you now know that code chunks can be inserted by either using the RStudio toolbar (the `Insert` button) or the keyboard shortcut `Ctrl + Alt + I` (`Cmd + Option + I` on macOS). There are a lot of things you can do in a code chunk: you can produce text output, tables, or graphics. You have fine control over all these output via chunk options, which can be provided inside the curly braces (between ```` ```{r and }````). For example, you can choose hide text output via the chunk option `results = 'hide'`, or set the figure height to 4 inches via `fig.height = 4`. Chunk options are separated by commas, e.g., + +**```{r, chunk-label, results='hide', fig.height=4}** + +A few of the options are: + +`echo = FALSE` Whether to echo the source code in the output document (someone may not prefer reading your smart source code but only results) + +`include = FALSE` prevents code and results from appearing in the finished file. R Markdown still runs the code in the chunk, and the results can be used by other chunks. + +`message = FALSE` prevents messages that are generated by code from appearing in the finished file. + +`warning = FALSE` prevents warnings that are generated by code from appearing in the finished. + +`fig.cap = "..."` adds a caption to graphical results. + +##### Plotting figures: +By default, figures produced by R code will be placed immediately after the code chunk they were generated from. For example: + +```{r pressure, echo=FALSE} +plot(pressure) +``` +Notice the `echo = 'FALSE'` option added in the code in the source file. That is why the code for the above plot is not visible in the HTML output file. + +##### Creating tables + +```{r tables-mtcars} +knitr::kable(iris[1:5, ], caption = 'A caption') +``` + +You might have noticed `knitr` in the above code chunk. So let's briefly know about Knitr here. + +##### Knitr - +It is a package in the programming language R that enables integration of R code into LaTeX, LyX, HTML, Markdown, AsciiDoc, and reStructuredText documents. _Note_ - Packages will be introduced in a separate tutorial. + +In the R Studio toolbar, where you can see the `Preview` button, if you click on the drop down arrow next to it, you will find the options `Knit to HTML`, `Knit to PDF`, `Knit to Word` etc. When you click the **Knit** button the specific output document will be generated that includes both content as well as the result of any embedded R code chunks within the notebook. + +Before, we end this introductory tutorial, here's a [cheatsheet](https://rmarkdown.rstudio.com/lesson-15.html) for working with R Markdown and Notebooks for easy and quick reference. + +Now that you've learnt about R Notebooks, you are ready to create your own and get started : Go to `File -> New File -> R Notebook`, or if you have opened an `R markdown` file, you can specify the output type as `html_notebook` in the document’s YAML metadata. Have fun working with R Notebooks! diff --git a/Module 1/R notebook tutorial.nb.html b/Module 1/R notebook tutorial.nb.html new file mode 100644 index 00000000..2cb5cd0a --- /dev/null +++ b/Module 1/R notebook tutorial.nb.html @@ -0,0 +1,423 @@ + + + + + + + + + + + + + +Introduction to R notebooks + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + +
    +

    Welcome to statistics with R!

    +

    This tutorial notebook is intended to introduce and make you familiar with R notebooks. Even if you have used R previously, you can take a quick glance at the tutorial and might learn something new.

    +

    This is an R Markdown notebook file, you might have noticed that this file has the format of .Rmd. First things first,

    +
    +
    What the heck is Markdown?
    +

    Markdown is a markup language for creating formatted text using a plain-text editor. The idea and terminology evolved from the “marking up” of paper manuscripts (i.e., the revision instructions by editors), which is traditionally written with a red or blue pen on authors’ manuscripts. Markdown using any language including R is just a digital version of such blue and red pen annotations.

    +
    +
    +
    But what is an R Notebook then?
    +

    R Notebook is simply an R Markdown document (a document written in the language R Markdown) with chunks that can be executed independently and interactively, with output visible immediately beneath the input. It is an implementation of Literate Programming that allows for direct interaction with R while producing a reproducible document with publication-quality output. A notebook can therefore be thought of as a special execution mode for R Markdown documents.

    +

    With the .Rmd file format, you can make such dynamic documents with R. In fact, this tutorial file itself is an R Notebook file with both plain text (that you’re currently reading) and embeded code (which you’ll insert below).

    +

    Before moving to code insertion, so far we’ve learnt that the R Notebook (R Markdown document) is written in R markdown (an easy-to-write markup language) and contains chunks of embedded R code.

    +

    Now if you wish to insert a code chunk, you can do so by clicking the Insert Chunk button on the toolbar or you can by press Ctrl+Alt+I. (mac: Cmd + option + I). Let’s write our first code chunk for printing “hello”. Try it yourself: Insert a new code chunk to print “My First Markdown File”.

    + + + +
    print('Hello')
    + + + +

    Try executing the inserted chunk(s) by clicking the Run button (green arrowhead) within the chunk or by placing your cursor inside it and pressing Ctrl+Shift+Enter.

    +
    +
    +
    Some more information on R Markdown
    +

    Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. There can be several different output formats for this markdown file and you can mention it at the start of this file under output:, for R notebooks, the output type is ‘html document’ which outputs a .html file with the same name as of the .Rmd file. You might be already reading this in a .html output file in your browser, if not then you can always Preview that html file in you browser to have a look.

    +

    To know more about R Markdown you can visit this link.

    +

    R Markdown interface notebook.

    +

    Suggested reading: Section 3.2 (R Notebook) and Sections 2.5, 2.6 (Markdown syntax) from the book - R Markdown: The definitive guide

    +
    +
    +

    R Markdown syntax

    +

    The text in an R Markdown document is written with the Markdown syntax. More precisely, it is Pandoc’s Markdown. The following information has been adapted form the above mentioned book.

    +

    Note : It is suggested to view the file as HTML document for this section in order to see the effect of formatting. You can do so by clicking the Preview button in the toolbar.

    +
    +
    Inline formatting
    +

    Inline text will be italic if surrounded by underscores or asterisks, e.g., _text_ or *text*. Bold text is produced using a pair of double asterisks (**text**). A pair of tildes (~) turn text to a subscript (e.g., H~3~PO~4~ renders H3PO~4). A pair of carets (^) produce a superscript (e.g., Cu^2+^ renders Cu2+).

    +

    To mark text as inline code, use a pair of backticks, e.g., `code`.

    +

    Hyperlinks are created using the syntax [text](link), e.g., [RStudio](https://www.rstudio.com) will output RStudio. The syntax for images is similar: just add an exclamation mark, e.g., ![alt text or image title](path/to/image). Footnotes are put inside the square brackets after a caret ^[], e.g., ^[This is a footnote.]

    +
    +
    +
    Block level elements
    +

    Section headers can be written after a number of hashtags, e.g.,

    +

    # First-level header

    +
    +
    +
    +
    +

    First-level header

    +

    ## Second-level header

    +
    +

    Second-level header

    +

    ### Third-level header

    +
    +

    Third-level header

    +

    If you do not want a certain heading to be numbered, you can add {-} or {.unnumbered} after the heading, e.g.,

    +

    # Preface {-}

    +

    Unordered list items start with *, -, or +, and you can nest one list within another list by indenting the sub-list, e.g.,

    +
    - one item
    +- one item
    +- one item
    +    - one more item
    +    - one more item
    +    - one more item
    +

    The output is:

    +
      +
    • one item

    • +
    • one item

    • +
    • one item

      +
        +
      • one more item

      • +
      • one more item

      • +
      • one more item

      • +
    • +
    +

    Ordered list items start with numbers (you can also nest lists within lists), e.g.,

    +
    1. the first item
    +2. the second item
    +3. the third item
    +    - one unordered item
    +    - one unordered item
    +

    The output does not look too much different with the Markdown source:

    +
      +
    1. the first item

    2. +
    3. the second item

    4. +
    5. the third item

      +
        +
      • one unordered item

      • +
      • one unordered item

      • +
    6. +
    +

    Plain code blocks can be written after three or more backticks.

    +
    ```
    +Just like this
    +```
    +
    +

    All about Code chunks

    +

    You inserted a code chunk in the beginning and therefore you now know that code chunks can be inserted by either using the RStudio toolbar (the Insert button) or the keyboard shortcut Ctrl + Alt + I (Cmd + Option + I on macOS). There are a lot of things you can do in a code chunk: you can produce text output, tables, or graphics. You have fine control over all these output via chunk options, which can be provided inside the curly braces (between ```{r and }). For example, you can choose hide text output via the chunk option results = 'hide', or set the figure height to 4 inches via fig.height = 4. Chunk options are separated by commas, e.g.,

    +

    ```{r, chunk-label, results=‘hide’, fig.height=4}

    +

    A few of the options are:

    +

    echo = FALSE Whether to echo the source code in the output document (someone may not prefer reading your smart source code but only results)

    +

    include = FALSE prevents code and results from appearing in the finished file. R Markdown still runs the code in the chunk, and the results can be used by other chunks.

    +

    message = FALSE prevents messages that are generated by code from appearing in the finished file.

    +

    warning = FALSE prevents warnings that are generated by code from appearing in the finished.

    +

    fig.cap = "..." adds a caption to graphical results.

    +
    +
    Plotting figures:
    +

    By default, figures produced by R code will be placed immediately after the code chunk they were generated from. For example:

    + + + +

    + + + +

    Notice the echo = 'FALSE' option added in the code in the source file. That is why the code for the above plot is not visible in the HTML output file.

    +
    +
    +
    Creating tables
    + + + +
    knitr::kable(iris[1:5, ], caption = 'A caption')
    + + + +

    You might have noticed knitr in the above code chunk. So let’s briefly know about Knitr here.

    +
    +
    +
    Knitr -
    +

    It is a package in the programming language R that enables integration of R code into LaTeX, LyX, HTML, Markdown, AsciiDoc, and reStructuredText documents. Note - Packages will be introduced in a separate tutorial.

    +

    In the R Studio toolbar, where you can see the Preview button, if you click on the drop down arrow next to it, you will find the options Knit to HTML, Knit to PDF, Knit to Word etc. When you click the Knit button the specific output document will be generated that includes both content as well as the result of any embedded R code chunks within the notebook.

    +

    Before, we end this introductory tutorial, here’s a cheatsheet for working with R Markdown and Notebooks for easy and quick reference.

    +

    Now that you’ve learnt about R Notebooks, you are ready to create your own and get started : Go to File -> New File -> R Notebook, or if you have opened an R markdown file, you can specify the output type as html_notebook in the document’s YAML metadata. Have fun working with R Notebooks!

    + +
    +
    +
    +
    +
    + +
    LS0tCnRpdGxlOiAiUiBOb3RlYm9vayIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKLS0tCnRpdGxlOiAiSW50cm9kdWN0aW9uIHRvIFIgbm90ZWJvb2tzIgpvdXRwdXQ6IGh0bWxfZG9jdW1lbnQKLS0tCgojIyMgV2VsY29tZSB0byBzdGF0aXN0aWNzIHdpdGggUiEKCgpUaGlzIHR1dG9yaWFsIG5vdGVib29rIGlzIGludGVuZGVkIHRvIGludHJvZHVjZSBhbmQgbWFrZSB5b3UgZmFtaWxpYXIgd2l0aCAqKlIgbm90ZWJvb2tzKiouIEV2ZW4gaWYgeW91IGhhdmUgdXNlZCBSIHByZXZpb3VzbHksIHlvdSBjYW4gdGFrZSBhIHF1aWNrIGdsYW5jZSBhdCB0aGUgdHV0b3JpYWwgYW5kIG1pZ2h0IGxlYXJuIHNvbWV0aGluZyBuZXcuCgpUaGlzIGlzIGFuIFIgTWFya2Rvd24gbm90ZWJvb2sgZmlsZSwgeW91IG1pZ2h0IGhhdmUgbm90aWNlZCB0aGF0IHRoaXMgZmlsZSBoYXMgdGhlIGZvcm1hdCBvZiAqLlJtZCouCkZpcnN0IHRoaW5ncyBmaXJzdCwKCiMjIyMjIFdoYXQgdGhlIGhlY2sgaXMgTWFya2Rvd24/Ck1hcmtkb3duIGlzIGEgW21hcmt1cCBsYW5ndWFnZV0oaHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvTWFya3VwX2xhbmd1YWdlKSBmb3IgY3JlYXRpbmcgZm9ybWF0dGVkIHRleHQgdXNpbmcgYSBwbGFpbi10ZXh0IGVkaXRvci4gVGhlIGlkZWEgYW5kIHRlcm1pbm9sb2d5IGV2b2x2ZWQgZnJvbSB0aGUgIm1hcmtpbmcgdXAiIG9mIHBhcGVyIG1hbnVzY3JpcHRzIChpLmUuLCB0aGUgcmV2aXNpb24gaW5zdHJ1Y3Rpb25zIGJ5IGVkaXRvcnMpLCB3aGljaCBpcyB0cmFkaXRpb25hbGx5IHdyaXR0ZW4gd2l0aCBhIHJlZCBvciBibHVlIHBlbiBvbiBhdXRob3JzJyBtYW51c2NyaXB0cy4gTWFya2Rvd24gdXNpbmcgYW55IGxhbmd1YWdlIGluY2x1ZGluZyBSIGlzIGp1c3QgYSAqZGlnaXRhbCogdmVyc2lvbiBvZiBzdWNoIGJsdWUgYW5kIHJlZCBwZW4gYW5ub3RhdGlvbnMuCgojIyMjIyBCdXQgd2hhdCBpcyBhbiBSIE5vdGVib29rIHRoZW4/ClIgTm90ZWJvb2sgaXMgc2ltcGx5IGFuIFIgTWFya2Rvd24gZG9jdW1lbnQgKGEgZG9jdW1lbnQgd3JpdHRlbiBpbiB0aGUgKmxhbmd1YWdlKiBSIE1hcmtkb3duKSB3aXRoIGNodW5rcyB0aGF0IGNhbiBiZSBleGVjdXRlZCBpbmRlcGVuZGVudGx5IGFuZCBpbnRlcmFjdGl2ZWx5LCB3aXRoIG91dHB1dCB2aXNpYmxlIGltbWVkaWF0ZWx5IGJlbmVhdGggdGhlIGlucHV0LiBJdCBpcyBhbiBpbXBsZW1lbnRhdGlvbiBvZiBbTGl0ZXJhdGUgUHJvZ3JhbW1pbmddKGh0dHBzOi8vZW4ud2lraXBlZGlhLm9yZy93aWtpL0xpdGVyYXRlX3Byb2dyYW1taW5nKSB0aGF0IGFsbG93cyBmb3IgZGlyZWN0IGludGVyYWN0aW9uIHdpdGggUiB3aGlsZSBwcm9kdWNpbmcgYSByZXByb2R1Y2libGUgZG9jdW1lbnQgd2l0aCBwdWJsaWNhdGlvbi1xdWFsaXR5IG91dHB1dC4gQSBub3RlYm9vayBjYW4gdGhlcmVmb3JlIGJlIHRob3VnaHQgb2YgYXMgYSBzcGVjaWFsIGV4ZWN1dGlvbiBtb2RlIGZvciBSIE1hcmtkb3duIGRvY3VtZW50cy4KCldpdGggdGhlIC5SbWQgZmlsZSBmb3JtYXQsIHlvdSBjYW4gbWFrZSBzdWNoIGR5bmFtaWMgZG9jdW1lbnRzIHdpdGggUi4gSW4gZmFjdCwgdGhpcyB0dXRvcmlhbCBmaWxlIGl0c2VsZiBpcyBhbiBSIE5vdGVib29rIGZpbGUgd2l0aCBib3RoIHBsYWluIHRleHQgKHRoYXQgeW91J3JlIGN1cnJlbnRseSByZWFkaW5nKSBhbmQgZW1iZWRlZCBjb2RlICh3aGljaCB5b3UnbGwgaW5zZXJ0IGJlbG93KS4gCgpCZWZvcmUgbW92aW5nIHRvIGNvZGUgaW5zZXJ0aW9uLCBzbyBmYXIgd2UndmUgbGVhcm50IHRoYXQgdGhlIFIgTm90ZWJvb2sgKFIgTWFya2Rvd24gZG9jdW1lbnQpICBpcyB3cml0dGVuIGluIFIgbWFya2Rvd24gKGFuIGVhc3ktdG8td3JpdGUgbWFya3VwIGxhbmd1YWdlKSBhbmQgY29udGFpbnMgY2h1bmtzIG9mIGVtYmVkZGVkIFIgY29kZS4gCgpOb3cgaWYgeW91IHdpc2ggdG8gaW5zZXJ0IGEgY29kZSBjaHVuaywgeW91IGNhbiBkbyBzbyBieSBjbGlja2luZyB0aGUgKkluc2VydCBDaHVuayogYnV0dG9uIG9uIHRoZSB0b29sYmFyIG9yIHlvdSBjYW4gYnkgcHJlc3MgKkN0cmwrQWx0K0kqLiAoKm1hYzogQ21kICsgb3B0aW9uICsgSSopLiBMZXQncyB3cml0ZSBvdXIgZmlyc3QgY29kZSBjaHVuayBmb3IgcHJpbnRpbmcgImhlbGxvIi4gKlRyeSBpdCB5b3Vyc2VsZjoqIEluc2VydCBhIG5ldyBjb2RlIGNodW5rIHRvIHByaW50ICJNeSBGaXJzdCBNYXJrZG93biBGaWxlIi4KYGBge3J9CnByaW50KCdIZWxsbycpCmBgYAoKVHJ5IGV4ZWN1dGluZyB0aGUgaW5zZXJ0ZWQgY2h1bmsocykgYnkgY2xpY2tpbmcgdGhlICpSdW4qIGJ1dHRvbiAoZ3JlZW4gYXJyb3doZWFkKSB3aXRoaW4gdGhlIGNodW5rIG9yIGJ5IHBsYWNpbmcgeW91ciBjdXJzb3IgaW5zaWRlIGl0IGFuZCBwcmVzc2luZyAqQ3RybCtTaGlmdCtFbnRlciouIAoKIyMjIyMgU29tZSBtb3JlIGluZm9ybWF0aW9uIG9uIFIgTWFya2Rvd24KTWFya2Rvd24gaXMgYSBzaW1wbGUgZm9ybWF0dGluZyBzeW50YXggZm9yIGF1dGhvcmluZyBIVE1MLCBQREYsIGFuZCBNUyBXb3JkIGRvY3VtZW50cy4gVGhlcmUgY2FuIGJlIHNldmVyYWwgZGlmZmVyZW50IG91dHB1dCBmb3JtYXRzIGZvciB0aGlzIG1hcmtkb3duIGZpbGUgYW5kIHlvdSBjYW4gbWVudGlvbiBpdCBhdCB0aGUgc3RhcnQgb2YgdGhpcyBmaWxlIHVuZGVyIG91dHB1dDosIGZvciBSIG5vdGVib29rcywgdGhlIG91dHB1dCB0eXBlIGlzICdodG1sIGRvY3VtZW50JyB3aGljaCBvdXRwdXRzIGEgLmh0bWwgZmlsZSB3aXRoIHRoZSBzYW1lIG5hbWUgYXMgb2YgdGhlIC5SbWQgZmlsZS4gWW91IG1pZ2h0IGJlIGFscmVhZHkgcmVhZGluZyB0aGlzIGluIGEgLmh0bWwgb3V0cHV0IGZpbGUgaW4geW91ciBicm93c2VyLCBpZiBub3QgdGhlbiB5b3UgY2FuIGFsd2F5cyAqUHJldmlldyogdGhhdCBodG1sIGZpbGUgaW4geW91IGJyb3dzZXIgdG8gaGF2ZSBhIGxvb2suCgpUbyBrbm93IG1vcmUgYWJvdXQgUiBNYXJrZG93biB5b3UgY2FuIHZpc2l0IHRoaXMgW2xpbmtdKGh0dHA6Ly9ybWFya2Rvd24ucnN0dWRpby5jb20pLiAKCltSIE1hcmtkb3duIGludGVyZmFjZV0oaHR0cHM6Ly9ybWFya2Rvd24ucnN0dWRpby5jb20vbGVzc29uLTIuaHRtbCkgbm90ZWJvb2suIAoKKipfU3VnZ2VzdGVkIHJlYWRpbmc6XyoqIFNlY3Rpb24gMy4yIChSIE5vdGVib29rKSBhbmQgU2VjdGlvbnMgMi41LCAyLjYgKE1hcmtkb3duIHN5bnRheCkgZnJvbSB0aGUgYm9vayAtIFtSIE1hcmtkb3duOiBUaGUgZGVmaW5pdGl2ZSBndWlkZV0oaHR0cHM6Ly9ib29rZG93bi5vcmcveWlodWkvcm1hcmtkb3duLykKCiMjIyMgUiBNYXJrZG93biBzeW50YXgKVGhlIHRleHQgaW4gYW4gUiBNYXJrZG93biBkb2N1bWVudCBpcyB3cml0dGVuIHdpdGggdGhlIE1hcmtkb3duIHN5bnRheC4gTW9yZSBwcmVjaXNlbHksIGl0IGlzIFtQYW5kb2PigJlzIE1hcmtkb3duXShodHRwczovL3BhbmRvYy5vcmcvTUFOVUFMLmh0bWwpLiBUaGUgZm9sbG93aW5nIGluZm9ybWF0aW9uIGhhcyBiZWVuIGFkYXB0ZWQgZm9ybSB0aGUgYWJvdmUgbWVudGlvbmVkIGJvb2suCgpfTm90ZV8gOiBJdCBpcyBzdWdnZXN0ZWQgdG8gdmlldyB0aGUgZmlsZSBhcyBIVE1MIGRvY3VtZW50IGZvciB0aGlzIHNlY3Rpb24gaW4gb3JkZXIgdG8gc2VlIHRoZSBlZmZlY3Qgb2YgZm9ybWF0dGluZy4gWW91IGNhbiBkbyBzbyBieSBjbGlja2luZyB0aGUgUHJldmlldyBidXR0b24gaW4gdGhlIHRvb2xiYXIuCgojIyMjIyBJbmxpbmUgZm9ybWF0dGluZwoKSW5saW5lIHRleHQgd2lsbCBiZSBfaXRhbGljXyBpZiBzdXJyb3VuZGVkIGJ5IHVuZGVyc2NvcmVzIG9yIGFzdGVyaXNrcywgZS5nLiwgYF90ZXh0X2Agb3IgYCp0ZXh0KmAuICoqQm9sZCoqIHRleHQgaXMgcHJvZHVjZWQgdXNpbmcgYSBwYWlyIG9mIGRvdWJsZSBhc3Rlcmlza3MgKGAqKnRleHQqKmApLiBBIHBhaXIgb2YgdGlsZGVzICh+KSB0dXJuIHRleHQgdG8gYSBzdWJzY3JpcHQgKGUuZy4sIGBIfjN+UE9+NH5gIHJlbmRlcnMgSH4zflBPfjQpLiBBIHBhaXIgb2YgY2FyZXRzICheKSBwcm9kdWNlIGEgc3VwZXJzY3JpcHQgKGUuZy4sIGBDdV4yK15gIHJlbmRlcnMgQ3VeMiteKS4gCgpUbyBtYXJrIHRleHQgYXMgaW5saW5lIGNvZGUsIHVzZSBhIHBhaXIgb2YgYmFja3RpY2tzLCBlLmcuLCBgYCBgY29kZWAgYGAuCgpIeXBlcmxpbmtzIGFyZSBjcmVhdGVkIHVzaW5nIHRoZSBzeW50YXggYFt0ZXh0XShsaW5rKWAsIGUuZy4sIGBbUlN0dWRpb10oaHR0cHM6Ly93d3cucnN0dWRpby5jb20pYCB3aWxsIG91dHB1dCBbUlN0dWRpb10oaHR0cHM6Ly93d3cucnN0dWRpby5jb20pLiBUaGUgc3ludGF4IGZvciBpbWFnZXMgaXMgc2ltaWxhcjoganVzdCBhZGQgYW4gZXhjbGFtYXRpb24gbWFyaywgZS5nLiwgYCFbYWx0IHRleHQgb3IgaW1hZ2UgdGl0bGVdKHBhdGgvdG8vaW1hZ2UpYC4gRm9vdG5vdGVzIGFyZSBwdXQgaW5zaWRlIHRoZSBzcXVhcmUgYnJhY2tldHMgYWZ0ZXIgYSBjYXJldCBgXltdYCwgZS5nLiwgYF5bVGhpcyBpcyBhIGZvb3Rub3RlLl1gCgojIyMjIyBCbG9jayBsZXZlbCBlbGVtZW50cwpTZWN0aW9uIGhlYWRlcnMgY2FuIGJlIHdyaXR0ZW4gYWZ0ZXIgYSBudW1iZXIgb2YgaGFzaHRhZ3MsIGUuZy4sCgpgIyBGaXJzdC1sZXZlbCBoZWFkZXJgCgojIEZpcnN0LWxldmVsIGhlYWRlcgoKYCMjIFNlY29uZC1sZXZlbCBoZWFkZXJgCgojIyBTZWNvbmQtbGV2ZWwgaGVhZGVyCgpgIyMjIFRoaXJkLWxldmVsIGhlYWRlcmAKCiMjIyBUaGlyZC1sZXZlbCBoZWFkZXIKCklmIHlvdSBkbyBub3Qgd2FudCBhIGNlcnRhaW4gaGVhZGluZyB0byBiZSBudW1iZXJlZCwgeW91IGNhbiBhZGQgey19IG9yIHsudW5udW1iZXJlZH0gYWZ0ZXIgdGhlIGhlYWRpbmcsIGUuZy4sCgpgIyBQcmVmYWNlIHstfWAKClVub3JkZXJlZCBsaXN0IGl0ZW1zIHN0YXJ0IHdpdGggKiwgLSwgb3IgKywgYW5kIHlvdSBjYW4gbmVzdCBvbmUgbGlzdCB3aXRoaW4gYW5vdGhlciBsaXN0IGJ5IGluZGVudGluZyB0aGUgc3ViLWxpc3QsIGUuZy4sCgpgYGAKLSBvbmUgaXRlbQotIG9uZSBpdGVtCi0gb25lIGl0ZW0KICAgIC0gb25lIG1vcmUgaXRlbQogICAgLSBvbmUgbW9yZSBpdGVtCiAgICAtIG9uZSBtb3JlIGl0ZW0KYGBgCgpUaGUgb3V0cHV0IGlzOgoKLSBvbmUgaXRlbQoKLSBvbmUgaXRlbQoKLSBvbmUgaXRlbQoKICAtIG9uZSBtb3JlIGl0ZW0KICAKICAtIG9uZSBtb3JlIGl0ZW0KICAKICAtIG9uZSBtb3JlIGl0ZW0KCk9yZGVyZWQgbGlzdCBpdGVtcyBzdGFydCB3aXRoIG51bWJlcnMgKHlvdSBjYW4gYWxzbyBuZXN0IGxpc3RzIHdpdGhpbiBsaXN0cyksIGUuZy4sCgpgYGAKMS4gdGhlIGZpcnN0IGl0ZW0KMi4gdGhlIHNlY29uZCBpdGVtCjMuIHRoZSB0aGlyZCBpdGVtCiAgICAtIG9uZSB1bm9yZGVyZWQgaXRlbQogICAgLSBvbmUgdW5vcmRlcmVkIGl0ZW0KYGBgCgpUaGUgb3V0cHV0IGRvZXMgbm90IGxvb2sgdG9vIG11Y2ggZGlmZmVyZW50IHdpdGggdGhlIE1hcmtkb3duIHNvdXJjZToKCjEuIHRoZSBmaXJzdCBpdGVtCgoyLiB0aGUgc2Vjb25kIGl0ZW0KCjMuIHRoZSB0aGlyZCBpdGVtCgogICAgLSBvbmUgdW5vcmRlcmVkIGl0ZW0KICAgIAogICAgLSBvbmUgdW5vcmRlcmVkIGl0ZW0KICAgIApQbGFpbiBjb2RlIGJsb2NrcyBjYW4gYmUgd3JpdHRlbiBhZnRlciB0aHJlZSBvciBtb3JlIGJhY2t0aWNrcy4KYGBgYApgYGAKSnVzdCBsaWtlIHRoaXMKYGBgCmBgYGAKCiMjIyMgQWxsIGFib3V0IENvZGUgY2h1bmtzCllvdSBpbnNlcnRlZCBhIGNvZGUgY2h1bmsgaW4gdGhlIGJlZ2lubmluZyBhbmQgdGhlcmVmb3JlIHlvdSBub3cga25vdyB0aGF0IGNvZGUgY2h1bmtzIGNhbiBiZSBpbnNlcnRlZCBieSBlaXRoZXIgdXNpbmcgdGhlIFJTdHVkaW8gdG9vbGJhciAodGhlIGBJbnNlcnRgIGJ1dHRvbikgb3IgdGhlIGtleWJvYXJkIHNob3J0Y3V0IGBDdHJsICsgQWx0ICsgSWAgKGBDbWQgKyBPcHRpb24gKyBJYCBvbiBtYWNPUykuIFRoZXJlIGFyZSBhIGxvdCBvZiB0aGluZ3MgeW91IGNhbiBkbyBpbiBhIGNvZGUgY2h1bms6IHlvdSBjYW4gcHJvZHVjZSB0ZXh0IG91dHB1dCwgdGFibGVzLCBvciBncmFwaGljcy4gWW91IGhhdmUgZmluZSBjb250cm9sIG92ZXIgYWxsIHRoZXNlIG91dHB1dCB2aWEgY2h1bmsgb3B0aW9ucywgd2hpY2ggY2FuIGJlIHByb3ZpZGVkIGluc2lkZSB0aGUgY3VybHkgYnJhY2VzIChiZXR3ZWVuIGBgYGAgYGBge3IgYW5kIH1gYGBgKS4gRm9yIGV4YW1wbGUsIHlvdSBjYW4gY2hvb3NlIGhpZGUgdGV4dCBvdXRwdXQgdmlhIHRoZSBjaHVuayBvcHRpb24gYHJlc3VsdHMgPSAnaGlkZSdgLCBvciBzZXQgdGhlIGZpZ3VyZSBoZWlnaHQgdG8gNCBpbmNoZXMgdmlhIGBmaWcuaGVpZ2h0ID0gNGAuIENodW5rIG9wdGlvbnMgYXJlIHNlcGFyYXRlZCBieSBjb21tYXMsIGUuZy4sCgoqKmBgYHtyLCBjaHVuay1sYWJlbCwgcmVzdWx0cz0naGlkZScsIGZpZy5oZWlnaHQ9NH0qKgoKQSBmZXcgb2YgdGhlIG9wdGlvbnMgYXJlOgoKYGVjaG8gPSBGQUxTRWAgV2hldGhlciB0byBlY2hvIHRoZSBzb3VyY2UgY29kZSBpbiB0aGUgb3V0cHV0IGRvY3VtZW50IChzb21lb25lIG1heSBub3QgcHJlZmVyIHJlYWRpbmcgeW91ciBzbWFydCBzb3VyY2UgY29kZSBidXQgb25seSByZXN1bHRzKQoKYGluY2x1ZGUgPSBGQUxTRWAgcHJldmVudHMgY29kZSBhbmQgcmVzdWx0cyBmcm9tIGFwcGVhcmluZyBpbiB0aGUgZmluaXNoZWQgZmlsZS4gUiBNYXJrZG93biBzdGlsbCBydW5zIHRoZSBjb2RlIGluIHRoZSBjaHVuaywgYW5kIHRoZSByZXN1bHRzIGNhbiBiZSB1c2VkIGJ5IG90aGVyIGNodW5rcy4KCmBtZXNzYWdlID0gRkFMU0VgIHByZXZlbnRzIG1lc3NhZ2VzIHRoYXQgYXJlIGdlbmVyYXRlZCBieSBjb2RlIGZyb20gYXBwZWFyaW5nIGluIHRoZSBmaW5pc2hlZCBmaWxlLgoKYHdhcm5pbmcgPSBGQUxTRWAgcHJldmVudHMgd2FybmluZ3MgdGhhdCBhcmUgZ2VuZXJhdGVkIGJ5IGNvZGUgZnJvbSBhcHBlYXJpbmcgaW4gdGhlIGZpbmlzaGVkLgoKYGZpZy5jYXAgPSAiLi4uImAgYWRkcyBhIGNhcHRpb24gdG8gZ3JhcGhpY2FsIHJlc3VsdHMuCgojIyMjIyBQbG90dGluZyBmaWd1cmVzOgpCeSBkZWZhdWx0LCBmaWd1cmVzIHByb2R1Y2VkIGJ5IFIgY29kZSB3aWxsIGJlIHBsYWNlZCBpbW1lZGlhdGVseSBhZnRlciB0aGUgY29kZSBjaHVuayB0aGV5IHdlcmUgZ2VuZXJhdGVkIGZyb20uIEZvciBleGFtcGxlOgoKYGBge3IgcHJlc3N1cmUsIGVjaG89RkFMU0V9CnBsb3QocHJlc3N1cmUpCmBgYApOb3RpY2UgdGhlIGBlY2hvID0gJ0ZBTFNFJ2Agb3B0aW9uIGFkZGVkIGluIHRoZSBjb2RlIGluIHRoZSBzb3VyY2UgZmlsZS4gVGhhdCBpcyB3aHkgdGhlIGNvZGUgZm9yIHRoZSBhYm92ZSBwbG90IGlzIG5vdCB2aXNpYmxlIGluIHRoZSBIVE1MIG91dHB1dCBmaWxlLgoKIyMjIyMgQ3JlYXRpbmcgdGFibGVzCgpgYGB7ciB0YWJsZXMtbXRjYXJzfQprbml0cjo6a2FibGUoaXJpc1sxOjUsIF0sIGNhcHRpb24gPSAnQSBjYXB0aW9uJykKYGBgCgpZb3UgbWlnaHQgaGF2ZSBub3RpY2VkIGBrbml0cmAgaW4gdGhlIGFib3ZlIGNvZGUgY2h1bmsuIFNvIGxldCdzIGJyaWVmbHkga25vdyBhYm91dCBLbml0ciBoZXJlLiAKCiMjIyMjIEtuaXRyIC0gCkl0IGlzIGEgcGFja2FnZSBpbiB0aGUgcHJvZ3JhbW1pbmcgbGFuZ3VhZ2UgUiB0aGF0IGVuYWJsZXMgaW50ZWdyYXRpb24gb2YgUiBjb2RlIGludG8gTGFUZVgsIEx5WCwgSFRNTCwgTWFya2Rvd24sIEFzY2lpRG9jLCBhbmQgcmVTdHJ1Y3R1cmVkVGV4dCBkb2N1bWVudHMuIF9Ob3RlXyAtIFBhY2thZ2VzIHdpbGwgYmUgaW50cm9kdWNlZCBpbiBhIHNlcGFyYXRlIHR1dG9yaWFsLgoKSW4gdGhlIFIgU3R1ZGlvIHRvb2xiYXIsIHdoZXJlIHlvdSBjYW4gc2VlIHRoZSBgUHJldmlld2AgYnV0dG9uLCBpZiB5b3UgY2xpY2sgb24gdGhlIGRyb3AgZG93biBhcnJvdyBuZXh0IHRvIGl0LCB5b3Ugd2lsbCBmaW5kIHRoZSBvcHRpb25zIGBLbml0IHRvIEhUTUxgLCBgS25pdCB0byBQREZgLCBgS25pdCB0byBXb3JkYCBldGMuIFdoZW4geW91IGNsaWNrIHRoZSAqKktuaXQqKiBidXR0b24gdGhlIHNwZWNpZmljIG91dHB1dCBkb2N1bWVudCB3aWxsIGJlIGdlbmVyYXRlZCB0aGF0IGluY2x1ZGVzIGJvdGggY29udGVudCBhcyB3ZWxsIGFzIHRoZSByZXN1bHQgb2YgYW55IGVtYmVkZGVkIFIgY29kZSBjaHVua3Mgd2l0aGluIHRoZSBub3RlYm9vay4KCkJlZm9yZSwgd2UgZW5kIHRoaXMgaW50cm9kdWN0b3J5IHR1dG9yaWFsLCBoZXJlJ3MgYSBbY2hlYXRzaGVldF0oaHR0cHM6Ly9ybWFya2Rvd24ucnN0dWRpby5jb20vbGVzc29uLTE1Lmh0bWwpIGZvciB3b3JraW5nIHdpdGggUiBNYXJrZG93biBhbmQgTm90ZWJvb2tzIGZvciBlYXN5IGFuZCBxdWljayByZWZlcmVuY2UuCgpOb3cgdGhhdCB5b3UndmUgbGVhcm50IGFib3V0IFIgTm90ZWJvb2tzLCB5b3UgYXJlIHJlYWR5IHRvIGNyZWF0ZSB5b3VyIG93biBhbmQgZ2V0IHN0YXJ0ZWQgOiBHbyB0byBgRmlsZSAtPiBOZXcgRmlsZSAtPiBSIE5vdGVib29rYCwgb3IgaWYgeW91IGhhdmUgb3BlbmVkIGFuIGBSIG1hcmtkb3duYCBmaWxlLCB5b3UgY2FuIHNwZWNpZnkgdGhlIG91dHB1dCB0eXBlIGFzIGBodG1sX25vdGVib29rYCBpbiB0aGUgZG9jdW1lbnTigJlzIFlBTUwgbWV0YWRhdGEuIEhhdmUgZnVuIHdvcmtpbmcgd2l0aCBSIE5vdGVib29rcyEK
    + + + +
    + + + + + + + + + + + + + + + + diff --git a/Module 1/README.md b/Module 1/README.md new file mode 100644 index 00000000..ccb19cd1 --- /dev/null +++ b/Module 1/README.md @@ -0,0 +1 @@ +# BSE658_chapter1 \ No newline at end of file diff --git a/Module 2/README.md b/Module 2/README.md new file mode 100644 index 00000000..90701a98 --- /dev/null +++ b/Module 2/README.md @@ -0,0 +1,10 @@ +## BSE658: Chapter 2 + +### This repository covers two important things: + +1. Tidyverse +2. ggplot2 + +`Tidyverse.rmd` file explains a few of the `tidyverse` packages in order to handle data frames. `ggplot.rmd` explains how to use `ggplot2` package to create beautiful plots. + +The html files can be downloaded and opened to view in your browser. diff --git a/Module 2/StatewiseTestingDetails.csv b/Module 2/StatewiseTestingDetails.csv new file mode 100644 index 00000000..079c7f75 --- /dev/null +++ b/Module 2/StatewiseTestingDetails.csv @@ -0,0 +1,14099 @@ +Date,State,TotalSamples,Negative,Positive +2020-04-17,Andaman and Nicobar Islands,1403.0,1210,12.0 +2020-04-24,Andaman and Nicobar Islands,2679.0,,27.0 +2020-04-27,Andaman and Nicobar Islands,2848.0,,33.0 +2020-05-01,Andaman and Nicobar Islands,3754.0,,33.0 +2020-05-16,Andaman and Nicobar Islands,6677.0,,33.0 +2020-05-19,Andaman and Nicobar Islands,6965.0,,33.0 +2020-05-20,Andaman and Nicobar Islands,7082.0,,33.0 +2020-05-21,Andaman and Nicobar Islands,7167.0,,33.0 +2020-05-22,Andaman and Nicobar Islands,7263.0,,33.0 +2020-05-23,Andaman and Nicobar Islands,7327.0,,33.0 +2020-05-24,Andaman and Nicobar Islands,7327.0,,33.0 +2020-05-25,Andaman and Nicobar Islands,7363.0,,33.0 +2020-05-26,Andaman and Nicobar Islands,7448.0,,33.0 +2020-05-27,Andaman and Nicobar Islands,7499.0,,33.0 +2020-05-28,Andaman and Nicobar Islands,7519.0,,33.0 +2020-05-29,Andaman and Nicobar Islands,7567.0,,33.0 +2020-05-30,Andaman and Nicobar Islands,7567.0,,33.0 +2020-05-31,Andaman and Nicobar Islands,7706.0,,33.0 +2020-06-01,Andaman and Nicobar Islands,7805.0,,33.0 +2020-06-02,Andaman and Nicobar Islands,8086.0,,33.0 +2020-06-03,Andaman and Nicobar Islands,8295.0,,33.0 +2020-06-04,Andaman and Nicobar Islands,8413.0,,33.0 +2020-06-05,Andaman and Nicobar Islands,8694.0,,33.0 +2020-06-06,Andaman and Nicobar Islands,9037.0,,33.0 +2020-06-07,Andaman and Nicobar Islands,9242.0,,33.0 +2020-06-08,Andaman and Nicobar Islands,9341.0,,33.0 +2020-06-09,Andaman and Nicobar Islands,9859.0,,33.0 +2020-06-10,Andaman and Nicobar Islands,10010.0,,35.0 +2020-06-11,Andaman and Nicobar Islands,10226.0,,38.0 +2020-06-12,Andaman and Nicobar Islands,10697.0,,38.0 +2020-06-13,Andaman and Nicobar Islands,10955.0,,38.0 +2020-06-14,Andaman and Nicobar Islands,11356.0,,38.0 +2020-06-15,Andaman and Nicobar Islands,11518.0,,41.0 +2020-06-16,Andaman and Nicobar Islands,11809.0,,44.0 +2020-06-17,Andaman and Nicobar Islands,12239.0,,44.0 +2020-06-18,Andaman and Nicobar Islands,12622.0,,45.0 +2020-06-19,Andaman and Nicobar Islands,12930.0,,47.0 +2020-06-20,Andaman and Nicobar Islands,13320.0,,47.0 +2020-06-21,Andaman and Nicobar Islands,13434.0,,48.0 +2020-06-22,Andaman and Nicobar Islands,13511.0,,48.0 +2020-06-23,Andaman and Nicobar Islands,13723.0,,50.0 +2020-06-24,Andaman and Nicobar Islands,13994.0,,56.0 +2020-06-25,Andaman and Nicobar Islands,14277.0,,59.0 +2020-06-26,Andaman and Nicobar Islands,14583.0,,72.0 +2020-06-27,Andaman and Nicobar Islands,14851.0,,73.0 +2020-06-28,Andaman and Nicobar Islands,15094.0,,83.0 +2020-06-29,Andaman and Nicobar Islands,15410.0,,90.0 +2020-06-30,Andaman and Nicobar Islands,15709.0,,97.0 +2020-07-01,Andaman and Nicobar Islands,15982.0,,100.0 +2020-07-02,Andaman and Nicobar Islands,16278.0,,109.0 +2020-07-03,Andaman and Nicobar Islands,16626.0,,116.0 +2020-07-04,Andaman and Nicobar Islands,16832.0,,119.0 +2020-07-05,Andaman and Nicobar Islands,16909.0,,125.0 +2020-07-06,Andaman and Nicobar Islands,17095.0,,141.0 +2020-07-07,Andaman and Nicobar Islands,17381.0,,147.0 +2020-07-08,Andaman and Nicobar Islands,17643.0,,149.0 +2020-07-09,Andaman and Nicobar Islands,17852.0,,151.0 +2020-07-10,Andaman and Nicobar Islands,18046.0,,156.0 +2020-07-11,Andaman and Nicobar Islands,18315.0,,163.0 +2020-07-12,Andaman and Nicobar Islands,18447.0,,163.0 +2020-07-13,Andaman and Nicobar Islands,18609.0,,166.0 +2020-07-14,Andaman and Nicobar Islands,18884.0,,171.0 +2020-07-15,Andaman and Nicobar Islands,19061.0,,176.0 +2020-07-16,Andaman and Nicobar Islands,19227.0,,180.0 +2020-07-17,Andaman and Nicobar Islands,19421.0,,194.0 +2020-07-18,Andaman and Nicobar Islands,19671.0,,198.0 +2020-07-19,Andaman and Nicobar Islands,19904.0,,203.0 +2020-07-20,Andaman and Nicobar Islands,20301.0,,207.0 +2020-07-21,Andaman and Nicobar Islands,20642.0,,212.0 +2020-07-22,Andaman and Nicobar Islands,21043.0,,221.0 +2020-07-23,Andaman and Nicobar Islands,21310.0,,240.0 +2020-07-24,Andaman and Nicobar Islands,21743.0,,259.0 +2020-07-25,Andaman and Nicobar Islands,21965.0,,290.0 +2020-07-26,Andaman and Nicobar Islands,22049.0,,324.0 +2020-07-27,Andaman and Nicobar Islands,22548.0,,338.0 +2020-07-28,Andaman and Nicobar Islands,22925.0,,363.0 +2020-07-29,Andaman and Nicobar Islands,23217.0,,428.0 +2020-07-30,Andaman and Nicobar Islands,23615.0,,471.0 +2020-07-31,Andaman and Nicobar Islands,24038.0,,548.0 +2020-08-01,Andaman and Nicobar Islands,24308.0,,636.0 +2020-08-02,Andaman and Nicobar Islands,24580.0,,734.0 +2020-08-03,Andaman and Nicobar Islands,25034.0,,830.0 +2020-08-04,Andaman and Nicobar Islands,25492.0,,928.0 +2020-08-05,Andaman and Nicobar Islands,25826.0,,1027.0 +2020-08-06,Andaman and Nicobar Islands,26516.0,,1123.0 +2020-08-07,Andaman and Nicobar Islands,26915.0,,1222.0 +2020-08-08,Andaman and Nicobar Islands,27073.0,,1351.0 +2020-08-09,Andaman and Nicobar Islands,27103.0,,1490.0 +2020-08-10,Andaman and Nicobar Islands,27346.0,,1625.0 +2020-08-11,Andaman and Nicobar Islands,27455.0,,1764.0 +2020-08-12,Andaman and Nicobar Islands,27744.0,,1900.0 +2020-08-13,Andaman and Nicobar Islands,27973.0,,2037.0 +2020-08-14,Andaman and Nicobar Islands,28129.0,,2186.0 +2020-08-15,Andaman and Nicobar Islands,28209.0,,2306.0 +2020-08-16,Andaman and Nicobar Islands,28229.0,,2399.0 +2020-08-17,Andaman and Nicobar Islands,28672.0,,2445.0 +2020-08-18,Andaman and Nicobar Islands,28937.0,,2529.0 +2020-08-19,Andaman and Nicobar Islands,29303.0,,2604.0 +2020-08-20,Andaman and Nicobar Islands,29487.0,,2680.0 +2020-08-21,Andaman and Nicobar Islands,29573.0,,2747.0 +2020-08-22,Andaman and Nicobar Islands,29888.0,,2808.0 +2020-08-23,Andaman and Nicobar Islands,30278.0,,2860.0 +2020-08-24,Andaman and Nicobar Islands,30513.0,,2904.0 +2020-08-25,Andaman and Nicobar Islands,31082.0,,2945.0 +2020-08-26,Andaman and Nicobar Islands,31646.0,,2985.0 +2020-08-27,Andaman and Nicobar Islands,31830.0,,3018.0 +2020-08-28,Andaman and Nicobar Islands,32100.0,,3050.0 +2020-08-29,Andaman and Nicobar Islands,32407.0,,3081.0 +2020-08-30,Andaman and Nicobar Islands,32674.0,,3104.0 +2020-08-31,Andaman and Nicobar Islands,33485.0,,3132.0 +2020-09-01,Andaman and Nicobar Islands,35104.0,,3160.0 +2020-09-02,Andaman and Nicobar Islands,36136.0,, +2020-09-03,Andaman and Nicobar Islands,37075.0,,3223.0 +2020-09-04,Andaman and Nicobar Islands,37825.0,,3257.0 +2020-09-05,Andaman and Nicobar Islands,38574.0,,3292.0 +2020-09-06,Andaman and Nicobar Islands,39205.0,,3332.0 +2020-09-07,Andaman and Nicobar Islands,39995.0,,3359.0 +2020-09-08,Andaman and Nicobar Islands,41039.0,,3392.0 +2020-09-09,Andaman and Nicobar Islands,41776.0,,3426.0 +2020-09-10,Andaman and Nicobar Islands,42792.0,,3465.0 +2020-09-11,Andaman and Nicobar Islands,43680.0,,3494.0 +2020-09-12,Andaman and Nicobar Islands,44570.0,,3521.0 +2020-09-13,Andaman and Nicobar Islands,45279.0,,3546.0 +2020-09-14,Andaman and Nicobar Islands,45987.0,,3557.0 +2020-09-15,Andaman and Nicobar Islands,46823.0,,3574.0 +2020-09-16,Andaman and Nicobar Islands,47794.0,,3593.0 +2020-09-17,Andaman and Nicobar Islands,48861.0,,3604.0 +2020-09-18,Andaman and Nicobar Islands,50035.0,,3631.0 +2020-09-19,Andaman and Nicobar Islands,50681.0,,3644.0 +2020-09-20,Andaman and Nicobar Islands,51262.0,,3651.0 +2020-09-21,Andaman and Nicobar Islands,52220.0,,3673.0 +2020-09-22,Andaman and Nicobar Islands,52845.0,,3691.0 +2020-09-23,Andaman and Nicobar Islands,53591.0,,3712.0 +2020-09-24,Andaman and Nicobar Islands,52992.0,,3744.0 +2020-09-25,Andaman and Nicobar Islands,55169.0,,3759.0 +2020-09-26,Andaman and Nicobar Islands,56059.0,,3774.0 +2020-09-27,Andaman and Nicobar Islands,56661.0,,3794.0 +2020-09-28,Andaman and Nicobar Islands,57343.0,,3803.0 +2020-09-29,Andaman and Nicobar Islands,58135.0,,3821.0 +2020-09-30,Andaman and Nicobar Islands,58763.0,,3835.0 +2020-10-01,Andaman and Nicobar Islands,59676.0,,3848.0 +2020-10-02,Andaman and Nicobar Islands,60437.0,,3858.0 +2020-10-03,Andaman and Nicobar Islands,61231.0,,3868.0 +2020-10-04,Andaman and Nicobar Islands,62103.0,,3884.0 +2020-10-05,Andaman and Nicobar Islands,63009.0,,3899.0 +2020-10-06,Andaman and Nicobar Islands,63790.0,,3912.0 +2020-10-07,Andaman and Nicobar Islands,65111.0,,3935.0 +2020-10-08,Andaman and Nicobar Islands,66244.0,,3952.0 +2020-10-09,Andaman and Nicobar Islands,67332.0,,3976.0 +2020-10-10,Andaman and Nicobar Islands,68464.0,,3992.0 +2020-10-11,Andaman and Nicobar Islands,69146.0,,4005.0 +2020-10-12,Andaman and Nicobar Islands,69932.0,,4023.0 +2020-10-13,Andaman and Nicobar Islands,70780.0,,4036.0 +2020-10-14,Andaman and Nicobar Islands,71624.0,,4046.0 +2020-10-15,Andaman and Nicobar Islands,72525.0,,4062.0 +2020-10-16,Andaman and Nicobar Islands,73363.0,,4072.0 +2020-10-17,Andaman and Nicobar Islands,74277.0,,4083.0 +2020-10-18,Andaman and Nicobar Islands,75030.0,,4108.0 +2020-10-19,Andaman and Nicobar Islands,75977.0,,4126.0 +2020-10-20,Andaman and Nicobar Islands,77200.0,,4141.0 +2020-10-21,Andaman and Nicobar Islands,78303.0,,4168.0 +2020-10-22,Andaman and Nicobar Islands,79301.0,,4184.0 +2020-10-23,Andaman and Nicobar Islands,80768.0,,4207.0 +2020-10-24,Andaman and Nicobar Islands,81880.0,,4225.0 +2020-10-25,Andaman and Nicobar Islands,82626.0,,4245.0 +2020-10-26,Andaman and Nicobar Islands,83115.0,,4253.0 +2020-10-27,Andaman and Nicobar Islands,84308.0,,4274.0 +2020-10-28,Andaman and Nicobar Islands,85378.0,,4289.0 +2020-10-29,Andaman and Nicobar Islands,86715.0,,4305.0 +2020-10-30,Andaman and Nicobar Islands,87789.0,,4317.0 +2020-10-31,Andaman and Nicobar Islands,88453.0,,4332.0 +2020-11-01,Andaman and Nicobar Islands,89559.0,,4340.0 +2020-11-02,Andaman and Nicobar Islands,90901.0,,4352.0 +2020-11-03,Andaman and Nicobar Islands,92249.0,,4372.0 +2020-11-04,Andaman and Nicobar Islands,93406.0,,4389.0 +2020-11-05,Andaman and Nicobar Islands,94639.0,,4403.0 +2020-11-06,Andaman and Nicobar Islands,96214.0,,4420.0 +2020-11-07,Andaman and Nicobar Islands,97603.0,,4441.0 +2020-11-08,Andaman and Nicobar Islands,98812.0,,4450.0 +2020-11-09,Andaman and Nicobar Islands,100025.0,,4463.0 +2020-11-10,Andaman and Nicobar Islands,101226.0,,4477.0 +2020-11-11,Andaman and Nicobar Islands,102433.0,,4494.0 +2020-11-12,Andaman and Nicobar Islands,103599.0,,4507.0 +2020-11-13,Andaman and Nicobar Islands,104785.0,,4518.0 +2020-11-14,Andaman and Nicobar Islands,105699.0,,4527.0 +2020-11-15,Andaman and Nicobar Islands,106734.0,,4536.0 +2020-11-16,Andaman and Nicobar Islands,108080.0,,4557.0 +2020-11-17,Andaman and Nicobar Islands,109646.0,,4574.0 +2020-11-18,Andaman and Nicobar Islands,111166.0,,4593.0 +2020-11-19,Andaman and Nicobar Islands,112792.0,,4604.0 +2020-11-20,Andaman and Nicobar Islands,114392.0,,4617.0 +2020-11-21,Andaman and Nicobar Islands,115968.0,,4631.0 +2020-11-22,Andaman and Nicobar Islands,117093.0,,4641.0 +2020-11-23,Andaman and Nicobar Islands,118654.0,,4656.0 +2020-11-24,Andaman and Nicobar Islands,120324.0,,4667.0 +2020-11-25,Andaman and Nicobar Islands,121931.0,,4677.0 +2020-11-26,Andaman and Nicobar Islands,123165.0,,4682.0 +2020-11-27,Andaman and Nicobar Islands,124832.0,,4689.0 +2020-11-28,Andaman and Nicobar Islands,126331.0,,4698.0 +2020-11-29,Andaman and Nicobar Islands,127912.0,,4704.0 +2020-11-30,Andaman and Nicobar Islands,129389.0,,4710.0 +2020-12-01,Andaman and Nicobar Islands,131080.0,,4718.0 +2020-12-02,Andaman and Nicobar Islands,132784.0,,4723.0 +2020-12-03,Andaman and Nicobar Islands,134355.0,,4729.0 +2020-12-04,Andaman and Nicobar Islands,135952.0,,4742.0 +2020-12-05,Andaman and Nicobar Islands,137648.0,,4747.0 +2020-12-06,Andaman and Nicobar Islands,139326.0,,4758.0 +2020-12-07,Andaman and Nicobar Islands,140961.0,,4773.0 +2020-12-08,Andaman and Nicobar Islands,142667.0,,4778.0 +2020-12-09,Andaman and Nicobar Islands,144401.0,,4783.0 +2020-12-10,Andaman and Nicobar Islands,146143.0,,4791.0 +2020-12-11,Andaman and Nicobar Islands,147806.0,,4798.0 +2020-12-12,Andaman and Nicobar Islands,149926.0,,4805.0 +2020-12-13,Andaman and Nicobar Islands,152004.0,,4818.0 +2020-12-14,Andaman and Nicobar Islands,153685.0,,4834.0 +2020-12-15,Andaman and Nicobar Islands,155454.0,,4842.0 +2020-12-16,Andaman and Nicobar Islands,157242.0,,4850.0 +2020-12-17,Andaman and Nicobar Islands,159027.0,,4860.0 +2020-12-18,Andaman and Nicobar Islands,160856.0,,4869.0 +2020-12-19,Andaman and Nicobar Islands,162821.0,,4875.0 +2020-12-20,Andaman and Nicobar Islands,165024.0,,4881.0 +2020-12-21,Andaman and Nicobar Islands,166845.0,,4888.0 +2020-12-22,Andaman and Nicobar Islands,168769.0,,4893.0 +2020-12-23,Andaman and Nicobar Islands,170666.0,,4896.0 +2020-12-24,Andaman and Nicobar Islands,172756.0,,4901.0 +2020-12-25,Andaman and Nicobar Islands,174482.0,,4912.0 +2020-12-26,Andaman and Nicobar Islands,175578.0,,4912.0 +2020-12-27,Andaman and Nicobar Islands,176898.0,,4924.0 +2020-12-28,Andaman and Nicobar Islands,177926.0,,4929.0 +2020-12-29,Andaman and Nicobar Islands,179444.0,,4936.0 +2020-12-30,Andaman and Nicobar Islands,180626.0,,4941.0 +2020-12-31,Andaman and Nicobar Islands,181640.0,,4945.0 +2021-01-01,Andaman and Nicobar Islands,182631.0,,4946.0 +2021-01-02,Andaman and Nicobar Islands,183725.0,,4947.0 +2021-01-03,Andaman and Nicobar Islands,184955.0,,4948.0 +2021-01-04,Andaman and Nicobar Islands,186140.0,,4948.0 +2021-01-05,Andaman and Nicobar Islands,187115.0,,4949.0 +2021-01-06,Andaman and Nicobar Islands,188351.0,,4949.0 +2021-01-07,Andaman and Nicobar Islands,190031.0,,4958.0 +2021-01-08,Andaman and Nicobar Islands,191206.0,,4959.0 +2021-01-09,Andaman and Nicobar Islands,192560.0,,4959.0 +2021-01-10,Andaman and Nicobar Islands,193719.0,,4960.0 +2021-01-11,Andaman and Nicobar Islands,195351.0,,4963.0 +2021-01-12,Andaman and Nicobar Islands,196859.0,,4966.0 +2021-01-13,Andaman and Nicobar Islands,198478.0,,4969.0 +2021-01-14,Andaman and Nicobar Islands,199805.0,,4976.0 +2021-01-15,Andaman and Nicobar Islands,200953.0,,4979.0 +2021-01-16,Andaman and Nicobar Islands,202521.0,,4982.0 +2021-01-17,Andaman and Nicobar Islands,203741.0,,4983.0 +2021-01-18,Andaman and Nicobar Islands,205411.0,,4988.0 +2021-01-19,Andaman and Nicobar Islands,206732.0,,4989.0 +2021-01-20,Andaman and Nicobar Islands,208179.0,,4991.0 +2021-01-21,Andaman and Nicobar Islands,209437.0,,4991.0 +2021-01-22,Andaman and Nicobar Islands,210762.0,,4992.0 +2021-01-23,Andaman and Nicobar Islands,212393.0,,4993.0 +2021-01-24,Andaman and Nicobar Islands,213467.0,,4993.0 +2021-01-25,Andaman and Nicobar Islands,214915.0,,4994.0 +2021-01-26,Andaman and Nicobar Islands,215858.0,,4994.0 +2021-01-27,Andaman and Nicobar Islands,217007.0,,4994.0 +2021-01-28,Andaman and Nicobar Islands,218629.0,,4994.0 +2021-01-29,Andaman and Nicobar Islands,220484.0,,4994.0 +2021-01-30,Andaman and Nicobar Islands,221876.0,,4994.0 +2021-01-31,Andaman and Nicobar Islands,223137.0,,4994.0 +2021-02-01,Andaman and Nicobar Islands,224852.0,,4994.0 +2021-02-02,Andaman and Nicobar Islands,226584.0,,4994.0 +2021-02-03,Andaman and Nicobar Islands,228290.0,,4994.0 +2021-02-04,Andaman and Nicobar Islands,230133.0,,4994.0 +2021-02-05,Andaman and Nicobar Islands,231633.0,,4997.0 +2021-02-06,Andaman and Nicobar Islands,233597.0,,5000.0 +2021-02-07,Andaman and Nicobar Islands,235072.0,,5001.0 +2021-02-08,Andaman and Nicobar Islands,236643.0,,5005.0 +2021-02-09,Andaman and Nicobar Islands,238339.0,,5007.0 +2021-02-10,Andaman and Nicobar Islands,240362.0,,5007.0 +2021-02-11,Andaman and Nicobar Islands,241833.0,,5007.0 +2021-02-12,Andaman and Nicobar Islands,243631.0,,5007.0 +2021-02-13,Andaman and Nicobar Islands,245745.0,,5009.0 +2021-02-14,Andaman and Nicobar Islands,247289.0,,5009.0 +2021-02-15,Andaman and Nicobar Islands,248562.0,,5009.0 +2021-02-16,Andaman and Nicobar Islands,250037.0,,5013.0 +2021-02-17,Andaman and Nicobar Islands,251774.0,,5014.0 +2021-02-18,Andaman and Nicobar Islands,253718.0,,5014.0 +2021-02-19,Andaman and Nicobar Islands,255675.0,,5014.0 +2021-02-20,Andaman and Nicobar Islands,257213.0,,5014.0 +2021-02-21,Andaman and Nicobar Islands,258773.0,,5014.0 +2021-02-22,Andaman and Nicobar Islands,260324.0,,5015.0 +2021-02-23,Andaman and Nicobar Islands,261719.0,,5016.0 +2021-02-24,Andaman and Nicobar Islands,263090.0,,5016.0 +2021-02-25,Andaman and Nicobar Islands,264369.0,,5016.0 +2021-02-26,Andaman and Nicobar Islands,265852.0,,5017.0 +2021-02-27,Andaman and Nicobar Islands,267209.0,,5018.0 +2021-02-28,Andaman and Nicobar Islands,268499.0,,5020.0 +2021-03-01,Andaman and Nicobar Islands,269799.0,,5020.0 +2021-03-02,Andaman and Nicobar Islands,271193.0,,5020.0 +2021-03-03,Andaman and Nicobar Islands,273010.0,,5022.0 +2021-03-04,Andaman and Nicobar Islands,274849.0,,5024.0 +2021-03-05,Andaman and Nicobar Islands,276471.0,,5024.0 +2021-03-06,Andaman and Nicobar Islands,278437.0,,5024.0 +2021-03-07,Andaman and Nicobar Islands,280041.0,, +2021-03-08,Andaman and Nicobar Islands,281955.0,,5026.0 +2021-03-09,Andaman and Nicobar Islands,283492.0,,5028.0 +2021-03-10,Andaman and Nicobar Islands,285087.0,,5028.0 +2021-03-11,Andaman and Nicobar Islands,286505.0,,5028.0 +2021-03-12,Andaman and Nicobar Islands,288197.0,,5029.0 +2021-03-13,Andaman and Nicobar Islands,290341.0,,5030.0 +2021-03-14,Andaman and Nicobar Islands,291842.0,,5031.0 +2021-03-15,Andaman and Nicobar Islands,294094.0,,5031.0 +2021-03-16,Andaman and Nicobar Islands,295827.0,,5032.0 +2021-03-17,Andaman and Nicobar Islands,297433.0,,5035.0 +2021-03-18,Andaman and Nicobar Islands,299048.0,,5036.0 +2021-03-19,Andaman and Nicobar Islands,300892.0,,5038.0 +2021-03-20,Andaman and Nicobar Islands,302566.0,,5038.0 +2021-03-21,Andaman and Nicobar Islands,304391.0,,5039.0 +2021-03-22,Andaman and Nicobar Islands,305778.0,,5039.0 +2021-03-23,Andaman and Nicobar Islands,307255.0,,5039.0 +2021-03-24,Andaman and Nicobar Islands,308812.0,,5041.0 +2021-03-25,Andaman and Nicobar Islands,310615.0,,5042.0 +2021-03-26,Andaman and Nicobar Islands,312378.0,,5043.0 +2021-03-27,Andaman and Nicobar Islands,314309.0,,5044.0 +2021-03-28,Andaman and Nicobar Islands,315818.0,,5046.0 +2021-03-29,Andaman and Nicobar Islands,317137.0,,5052.0 +2021-03-30,Andaman and Nicobar Islands,318382.0,,5081.0 +2021-03-31,Andaman and Nicobar Islands,319864.0,,5083.0 +2021-04-01,Andaman and Nicobar Islands,321456.0,,5084.0 +2021-04-02,Andaman and Nicobar Islands,323001.0,,5084.0 +2021-04-03,Andaman and Nicobar Islands,324207.0,,5098.0 +2021-04-04,Andaman and Nicobar Islands,325826.0,,5109.0 +2021-04-05,Andaman and Nicobar Islands,327270.0,,5116.0 +2021-04-06,Andaman and Nicobar Islands,328737.0,,5123.0 +2021-04-07,Andaman and Nicobar Islands,330481.0,,5131.0 +2021-04-08,Andaman and Nicobar Islands,332119.0,,5149.0 +2021-04-09,Andaman and Nicobar Islands,333671.0,,5161.0 +2021-04-10,Andaman and Nicobar Islands,335784.0,,5175.0 +2021-04-11,Andaman and Nicobar Islands,337833.0,,5190.0 +2021-04-12,Andaman and Nicobar Islands,339482.0,,5201.0 +2021-04-13,Andaman and Nicobar Islands,341557.0,,5209.0 +2021-04-14,Andaman and Nicobar Islands,343431.0,,5247.0 +2021-04-15,Andaman and Nicobar Islands,345485.0,,5262.0 +2021-04-16,Andaman and Nicobar Islands,347489.0,,5289.0 +2021-04-17,Andaman and Nicobar Islands,349739.0,,5331.0 +2021-04-18,Andaman and Nicobar Islands,352086.0,,5390.0 +2021-04-19,Andaman and Nicobar Islands,353754.0,,5421.0 +2021-04-20,Andaman and Nicobar Islands,355507.0,,5466.0 +2021-04-21,Andaman and Nicobar Islands,357442.0,,5490.0 +2021-04-22,Andaman and Nicobar Islands,358903.0,,5527.0 +2021-04-23,Andaman and Nicobar Islands,360595.0,,5569.0 +2021-04-24,Andaman and Nicobar Islands,361594.0,,5614.0 +2021-04-25,Andaman and Nicobar Islands,363056.0,,5665.0 +2021-04-26,Andaman and Nicobar Islands,364735.0,,5716.0 +2021-04-27,Andaman and Nicobar Islands,366683.0,,5764.0 +2021-04-28,Andaman and Nicobar Islands,367689.0,,5816.0 +2021-04-29,Andaman and Nicobar Islands,368945.0,,5875.0 +2021-04-30,Andaman and Nicobar Islands,370896.0,,5949.0 +2021-05-01,Andaman and Nicobar Islands,372214.0,,6046.0 +2021-05-02,Andaman and Nicobar Islands,373007.0,,6084.0 +2021-05-03,Andaman and Nicobar Islands,373785.0,,6150.0 +2021-05-04,Andaman and Nicobar Islands,374428.0,,6181.0 +2021-05-05,Andaman and Nicobar Islands,375095.0,,6223.0 +2021-05-06,Andaman and Nicobar Islands,375477.0,,6255.0 +2021-05-07,Andaman and Nicobar Islands,375967.0,,6311.0 +2021-05-08,Andaman and Nicobar Islands,376536.0,,6341.0 +2021-05-09,Andaman and Nicobar Islands,376933.0,,6367.0 +2021-05-10,Andaman and Nicobar Islands,377293.0,,6398.0 +2021-05-11,Andaman and Nicobar Islands,377516.0,,6426.0 +2021-05-12,Andaman and Nicobar Islands,378060.0,,6470.0 +2021-05-13,Andaman and Nicobar Islands,378462.0,,6510.0 +2021-05-14,Andaman and Nicobar Islands,378887.0,,6542.0 +2021-05-15,Andaman and Nicobar Islands,379096.0,,6568.0 +2021-05-16,Andaman and Nicobar Islands,379674.0,,6603.0 +2021-05-17,Andaman and Nicobar Islands,380102.0,,6638.0 +2021-05-18,Andaman and Nicobar Islands,380395.0,,6674.0 +2021-05-19,Andaman and Nicobar Islands,380853.0,,6709.0 +2021-05-20,Andaman and Nicobar Islands,381349.0,,6758.0 +2021-05-21,Andaman and Nicobar Islands,382015.0,,6789.0 +2021-05-22,Andaman and Nicobar Islands,382640.0,,6820.0 +2021-05-23,Andaman and Nicobar Islands,383265.0,,6844.0 +2021-05-24,Andaman and Nicobar Islands,383396.0,,6853.0 +2021-05-25,Andaman and Nicobar Islands,383727.0,,6878.0 +2021-05-26,Andaman and Nicobar Islands,384188.0,,6901.0 +2021-05-27,Andaman and Nicobar Islands,384528.0,,6917.0 +2021-05-28,Andaman and Nicobar Islands,385020.0,,6936.0 +2021-05-29,Andaman and Nicobar Islands,385564.0,,6964.0 +2021-05-30,Andaman and Nicobar Islands,385988.0,,6984.0 +2021-05-31,Andaman and Nicobar Islands,386613.0,,7005.0 +2021-06-01,Andaman and Nicobar Islands,387348.0,,7018.0 +2021-06-02,Andaman and Nicobar Islands,387871.0,,7043.0 +2021-06-03,Andaman and Nicobar Islands,388486.0,,7070.0 +2021-06-04,Andaman and Nicobar Islands,389152.0,,7088.0 +2021-06-05,Andaman and Nicobar Islands,389785.0,,7105.0 +2021-06-06,Andaman and Nicobar Islands,390574.0,,7119.0 +2020-04-02,Andhra Pradesh,1800.0,1175,132.0 +2020-04-10,Andhra Pradesh,6374.0,6009,365.0 +2020-04-11,Andhra Pradesh,6958.0,6577,381.0 +2020-04-12,Andhra Pradesh,6958.0,6553,405.0 +2020-04-13,Andhra Pradesh,8755.0,8323,432.0 +2020-04-14,Andhra Pradesh,10505.0,10032,473.0 +2020-04-15,Andhra Pradesh,11613.0,11088,525.0 +2020-04-16,Andhra Pradesh,20235.0,19701,534.0 +2020-04-17,Andhra Pradesh,20235.0,,572.0 +2020-04-18,Andhra Pradesh,21450.0,20487,603.0 +2020-04-19,Andhra Pradesh,26958.0,26311,647.0 +2020-04-20,Andhra Pradesh,30733.0,30011,722.0 +2020-04-21,Andhra Pradesh,35755.0,34998,757.0 +2020-04-22,Andhra Pradesh,41512.0,40699,813.0 +2020-04-23,Andhra Pradesh,48032.0,47139,893.0 +2020-04-24,Andhra Pradesh,54338.0,53383,955.0 +2020-04-25,Andhra Pradesh,61266.0,60250,1016.0 +2020-04-26,Andhra Pradesh,68034.0,66937,1097.0 +2020-04-27,Andhra Pradesh,74551.0,73374,1177.0 +2020-04-28,Andhra Pradesh,80334.0,79075,1259.0 +2020-04-29,Andhra Pradesh,88061.0,86729,1332.0 +2020-04-30,Andhra Pradesh,94558.0,93155,1403.0 +2020-05-01,Andhra Pradesh,102460.0,100997,1463.0 +2020-05-02,Andhra Pradesh,108403.0,106878,1525.0 +2020-05-03,Andhra Pradesh,114937.0,113354,1583.0 +2020-05-04,Andhra Pradesh,125229.0,123579,1650.0 +2020-05-05,Andhra Pradesh,133492.0,131775,1717.0 +2020-05-06,Andhra Pradesh,141274.0,139497,1777.0 +2020-05-07,Andhra Pradesh,149361.0,147528,1833.0 +2020-05-08,Andhra Pradesh,156681.0,154794,1887.0 +2020-05-09,Andhra Pradesh,165069.0,163139,1930.0 +2020-05-10,Andhra Pradesh,173735.0,171755,1980.0 +2020-05-11,Andhra Pradesh,181144.0,179126,2018.0 +2020-05-12,Andhra Pradesh,191874.0,189823,2051.0 +2020-05-13,Andhra Pradesh,201196.0,199059,2137.0 +2020-05-14,Andhra Pradesh,210452.0,208247,2100.0 +2020-05-15,Andhra Pradesh,219490.0,217183,2157.0 +2020-05-17,Andhra Pradesh,238998.0,236618,2230.0 +2020-05-18,Andhra Pradesh,248771.0,246279,2282.0 +2020-05-19,Andhra Pradesh,258450.0,255961,2339.0 +2020-05-20,Andhra Pradesh,267612.0,265052,2407.0 +2020-05-21,Andhra Pradesh,275704.0,273099,2452.0 +2020-05-22,Andhra Pradesh,284119.0,281452,2514.0 +2020-05-23,Andhra Pradesh,292969.0,290255,2561.0 +2020-05-24,Andhra Pradesh,304326.0,301529,2627.0 +2020-05-25,Andhra Pradesh,314566.0,311680,2671.0 +2020-05-26,Andhra Pradesh,322714.0,319731,2719.0 +2020-05-27,Andhra Pradesh,332378.0,329261,2787.0 +2020-05-28,Andhra Pradesh,342236.0,338991,2841.0 +2020-05-29,Andhra Pradesh,353874.0,350544,2874.0 +2020-05-30,Andhra Pradesh,363378.0,359917,2944.0 +2020-05-31,Andhra Pradesh,372748.0,369177,3045.0 +2020-06-01,Andhra Pradesh,383315.0,379639,3118.0 +2020-06-02,Andhra Pradesh,395681.0,391890,3200.0 +2020-06-03,Andhra Pradesh,403747.0,399776,3279.0 +2020-06-04,Andhra Pradesh,413733.0,409621,3377.0 +2020-06-05,Andhra Pradesh,423564.0,419314,3427.0 +2020-06-06,Andhra Pradesh,436335.0,431875,3588.0 +2020-06-07,Andhra Pradesh,454030.0,449371,3718.0 +2020-06-08,Andhra Pradesh,468276.0,463463,3843.0 +2020-06-09,Andhra Pradesh,483361.0,478332,3990.0 +2020-06-10,Andhra Pradesh,498716.0,493469,4126.0 +2020-06-11,Andhra Pradesh,510318.0,504889,4261.0 +2020-06-12,Andhra Pradesh,522093.0,516457,4402.0 +2020-06-13,Andhra Pradesh,536570.0,530712,4588.0 +2020-06-14,Andhra Pradesh,552202.0,546050,4841.0 +2020-06-15,Andhra Pradesh,567375.0,560919,5087.0 +2020-06-16,Andhra Pradesh,583286.0,576566,5280.0 +2020-06-17,Andhra Pradesh,598474.0,591403,5555.0 +2020-06-18,Andhra Pradesh,612397.0,604901,5854.0 +2020-06-19,Andhra Pradesh,630006.0,622045,7961.0 +2020-06-20,Andhra Pradesh,652377.0,643925,8452.0 +2020-06-21,Andhra Pradesh,676828.0,667899,8929.0 +2020-06-22,Andhra Pradesh,693548.0,684176,9372.0 +2020-06-23,Andhra Pradesh,714187.0,704353,9834.0 +2020-06-24,Andhra Pradesh,750234.0,739903,10331.0 +2020-06-25,Andhra Pradesh,769319.0,758435,10884.0 +2020-06-26,Andhra Pradesh,791624.0,780135,11489.0 +2020-06-27,Andhra Pradesh,816082.0,803797,12285.0 +2020-06-28,Andhra Pradesh,841860.0,828762,13098.0 +2020-06-29,Andhra Pradesh,872076.0,858185,13891.0 +2020-06-30,Andhra Pradesh,890190.0,875595,14595.0 +2020-07-01,Andhra Pradesh,918429.0,903177,15252.0 +2020-07-02,Andhra Pradesh,932713.0,916616,16097.0 +2020-07-03,Andhra Pradesh,971611.0,954677,16934.0 +2020-07-04,Andhra Pradesh,996573.0,978874,17699.0 +2020-07-05,Andhra Pradesh,1017140.0,998443,18697.0 +2020-07-06,Andhra Pradesh,1033852.0,1013833,20019.0 +2020-07-07,Andhra Pradesh,1050090.0,1028897,21197.0 +2020-07-08,Andhra Pradesh,1077733.0,1055474,22259.0 +2020-07-09,Andhra Pradesh,1094615.0,1070801,23814.0 +2020-07-10,Andhra Pradesh,1115635.0,1090213,25422.0 +2020-07-11,Andhra Pradesh,1136225.0,1108990,27235.0 +2020-07-12,Andhra Pradesh,1153849.0,1124681,29168.0 +2020-07-13,Andhra Pradesh,1173096.0,1141993,31103.0 +2020-07-14,Andhra Pradesh,1195766.0,1162747,33019.0 +2020-07-15,Andhra Pradesh,1217963.0,1182512,35451.0 +2020-07-16,Andhra Pradesh,1240267.0,1202223,38044.0 +2020-07-17,Andhra Pradesh,1260512.0,1219866,40646.0 +2020-07-18,Andhra Pradesh,1284384.0,1239775,44609.0 +2020-07-19,Andhra Pradesh,1315532.0,1265882,49650.0 +2020-07-20,Andhra Pradesh,1349112.0,1295388,53724.0 +2020-07-21,Andhra Pradesh,1386274.0,1327606,58668.0 +2020-07-22,Andhra Pradesh,1435827.0,1371114,64713.0 +2020-07-23,Andhra Pradesh,1493879.0,1421168,72711.0 +2020-07-24,Andhra Pradesh,1541993.0,1461135,80858.0 +2020-07-25,Andhra Pradesh,1595674.0,1507003,88671.0 +2020-07-26,Andhra Pradesh,1643319.0,1547021,96298.0 +2020-07-27,Andhra Pradesh,1686446.0,1584097,102349.0 +2020-07-28,Andhra Pradesh,1749425.0,1639128,110297.0 +2020-07-29,Andhra Pradesh,1820009.0,1699619,120390.0 +2020-07-30,Andhra Pradesh,1890077.0,1759520,130557.0 +2020-07-31,Andhra Pradesh,1951776.0,1810843,140933.0 +2020-08-01,Andhra Pradesh,2012573.0,1862364,150209.0 +2020-08-02,Andhra Pradesh,2065407.0,1906643,158764.0 +2020-08-03,Andhra Pradesh,2110923.0,1944337,166586.0 +2020-08-04,Andhra Pradesh,2175070.0,1998737,176333.0 +2020-08-05,Andhra Pradesh,2235646.0,2049185,186461.0 +2020-08-06,Andhra Pradesh,2299332.0,2102543,196789.0 +2020-08-07,Andhra Pradesh,2362270.0,2155310,206960.0 +2020-08-08,Andhra Pradesh,2424393.0,2207353,217040.0 +2020-08-09,Andhra Pradesh,2487305.0,2259445,227860.0 +2020-08-10,Andhra Pradesh,2534304.0,2298779,235525.0 +2020-08-11,Andhra Pradesh,2592619.0,2348070, +2020-08-12,Andhra Pradesh,2649767.0,2395621, +2020-08-13,Andhra Pradesh,2705459.0,2441317, +2020-08-14,Andhra Pradesh,2758485.0,2485400, +2020-08-15,Andhra Pradesh,2812197.0,2530380, +2020-08-16,Andhra Pradesh,2860943.0,2571114, +2020-08-17,Andhra Pradesh,2905521.0,2608912, +2020-08-18,Andhra Pradesh,2961611.0,2658245, +2020-08-19,Andhra Pradesh,3019296.0,2703293, +2020-08-20,Andhra Pradesh,3074847.0,2749451, +2020-08-21,Andhra Pradesh,3129857.0,2794917, +2020-08-22,Andhra Pradesh,3191326.0,2846110, +2020-08-23,Andhra Pradesh,3238038.0,2884927, +2020-08-24,Andhra Pradesh,3292501.0,2930789, +2020-08-25,Andhra Pradesh,3356852.0,2985213, +2020-08-26,Andhra Pradesh,3418690.0,3036221, +2020-08-27,Andhra Pradesh,3479990.0,3086900, +2020-08-28,Andhra Pradesh,3541321.0,3137705, +2020-08-29,Andhra Pradesh,3603345.0,3189181, +2020-08-30,Andhra Pradesh,3666422.0,3241655, +2020-08-31,Andhra Pradesh,3722912.0,3288141, +2020-09-01,Andhra Pradesh,3782746.0,3337607, +2020-09-02,Andhra Pradesh,3843550.0,3388019, +2020-09-03,Andhra Pradesh,3905775.0,3442940, +2020-09-04,Andhra Pradesh,3965694.0,3492083, +2020-09-05,Andhra Pradesh,4035317.0,3547986, +2020-09-06,Andhra Pradesh,4107890.0,3612660, +2020-09-07,Andhra Pradesh,4166077.0,3659584, +2020-09-08,Andhra Pradesh,4237070.0,3719976, +2020-09-09,Andhra Pradesh,4308762.0,3781250, +2020-09-10,Andhra Pradesh,4380991.0,3843304, +2020-09-11,Andhra Pradesh,4452128.0,3904442, +2020-09-12,Andhra Pradesh,4527593.0,3970006, +2020-09-13,Andhra Pradesh,4599826.0,4032703, +2020-09-14,Andhra Pradesh,4661355.0,4086276, +2020-09-15,Andhra Pradesh,4731866.0,4147941, +2020-09-16,Andhra Pradesh,4806879.0,4214119, +2020-09-17,Andhra Pradesh,4884371.0,4282909, +2020-09-18,Andhra Pradesh,4959081.0,4349523, +2020-09-19,Andhra Pradesh,5033676.0,, +2020-09-20,Andhra Pradesh,5104131.0,, +2020-09-21,Andhra Pradesh,5160700.0,4528951, +2020-09-22,Andhra Pradesh,5229529.0,4590227, +2020-09-23,Andhra Pradesh,5302367.0,4655837, +2020-09-24,Andhra Pradesh,5378367.0,4723982, +2020-09-25,Andhra Pradesh,5447796.0,4786338, +2020-09-26,Andhra Pradesh,5523786.0,4855035, +2020-09-27,Andhra Pradesh,5600202.0,4924528, +2020-09-28,Andhra Pradesh,5666323.0,4985162, +2020-09-29,Andhra Pradesh,5734752.0,5047401, +2020-09-30,Andhra Pradesh,5806558.0,5113074, +2020-10-01,Andhra Pradesh,5878135.0,5177900, +2020-10-02,Andhra Pradesh,5948534.0,5241744, +2020-10-03,Andhra Pradesh,6021395.0,5308381, +2020-10-04,Andhra Pradesh,6094206.0,, +2020-10-05,Andhra Pradesh,6150351.0,5426839, +2020-10-06,Andhra Pradesh,6216240.0,5486933, +2020-10-07,Andhra Pradesh,6283009.0,5548582, +2020-10-08,Andhra Pradesh,6349953.0,5610234, +2020-10-09,Andhra Pradesh,6420474.0,5675610, +2020-10-10,Andhra Pradesh,6494099.0,, +2020-10-11,Andhra Pradesh,6569616.0,5813889, +2020-10-12,Andhra Pradesh,6630728.0,5871777, +2020-10-13,Andhra Pradesh,6702810.0,5939237, +2020-10-14,Andhra Pradesh,6772273.0,6004808, +2020-10-15,Andhra Pradesh,6846040.0,6074537, +2020-10-16,Andhra Pradesh,6920377.0,6144907, +2020-10-17,Andhra Pradesh,6991258.0,6212112, +2020-10-18,Andhra Pradesh,7066203.0,6283071, +2020-10-19,Andhra Pradesh,7127533.0,6341483, +2020-10-20,Andhra Pradesh,7196628.0,6407075, +2020-10-21,Andhra Pradesh,7271050.0,6477751, +2020-10-22,Andhra Pradesh,7347776.0,6550857, +2020-10-23,Andhra Pradesh,7428014.0,6627330, +2020-10-24,Andhra Pradesh,7502933.0,, +2020-10-25,Andhra Pradesh,7570352.0,, +2020-10-26,Andhra Pradesh,7621896.0,, +2020-10-27,Andhra Pradesh,7696653.0,6884828, +2020-10-28,Andhra Pradesh,7773681.0,6958907, +2020-10-29,Andhra Pradesh,7862459.0,7044780, +2020-10-30,Andhra Pradesh,7946860.0,7126295, +2020-10-31,Andhra Pradesh,8028905.0,, +2020-11-01,Andhra Pradesh,8117685.0,, +2020-11-02,Andhra Pradesh,8182266.0,7354384, +2020-11-03,Andhra Pradesh,8266800.0,7436069, +2020-11-04,Andhra Pradesh,8342265.0,7509057, +2020-11-05,Andhra Pradesh,8427629.0,7591676, +2020-11-06,Andhra Pradesh,8507230.0,7668867, +2020-11-07,Andhra Pradesh,8587312.0,, +2020-11-08,Andhra Pradesh,8663975.0,7821008, +2020-11-09,Andhra Pradesh,8725025.0,7880666, +2020-11-10,Andhra Pradesh,8792935.0,7946690, +2020-11-11,Andhra Pradesh,8863340.0,8015363, +2020-11-12,Andhra Pradesh,8940488.0,8090783, +2020-11-13,Andhra Pradesh,9021225.0,, +2020-11-14,Andhra Pradesh,9101048.0,, +2020-11-15,Andhra Pradesh,9154263.0,, +2020-11-16,Andhra Pradesh,9197307.0,8342543, +2020-11-17,Andhra Pradesh,9264085.0,8407926, +2020-11-18,Andhra Pradesh,9333703.0,8476308, +2020-11-19,Andhra Pradesh,9408868.0,8550157, +2020-11-20,Andhra Pradesh,9474870.0,8614938, +2020-11-21,Andhra Pradesh,9543177.0,, +2020-11-22,Andhra Pradesh,9615090.0,, +2020-11-23,Andhra Pradesh,9662220.0,8799462, +2020-11-24,Andhra Pradesh,9727321.0,8863478, +2020-11-25,Andhra Pradesh,9788047.0,8923373, +2020-11-26,Andhra Pradesh,9855316.0,8989611, +2020-11-27,Andhra Pradesh,9913068.0,9046630, +2020-11-28,Andhra Pradesh,9962416.0,9095353, +2020-11-29,Andhra Pradesh,10017126.0,, +2020-11-30,Andhra Pradesh,10057854.0,, +2020-12-01,Andhra Pradesh,10109708.0,9240959, +2020-12-02,Andhra Pradesh,10166696.0,9297284, +2020-12-03,Andhra Pradesh,10229745.0,9359669, +2020-12-04,Andhra Pradesh,10293151.0,, +2020-12-05,Andhra Pradesh,10350283.0,, +2020-12-06,Andhra Pradesh,10410612.0,, +2020-12-07,Andhra Pradesh,10453618.0,9581330, +2020-12-08,Andhra Pradesh,10509805.0,, +2020-12-09,Andhra Pradesh,10570843.0,, +2020-12-10,Andhra Pradesh,10635197.0,, +2020-12-11,Andhra Pradesh,10699622.0,9359669, +2020-12-12,Andhra Pradesh,10767117.0,, +2020-12-13,Andhra Pradesh,10830990.0,9955459, +2020-12-14,Andhra Pradesh,10875925.0,10000089, +2020-12-15,Andhra Pradesh,10937377.0,10061041, +2020-12-16,Andhra Pradesh,11001476.0,10124662, +2020-12-17,Andhra Pradesh,11065297.0,10187949, +2020-12-18,Andhra Pradesh,11134359.0,10256553, +2020-12-19,Andhra Pradesh,11196574.0,, +2020-12-20,Andhra Pradesh,11260810.0,, +2020-12-21,Andhra Pradesh,11301105.0,10422168, +2020-12-22,Andhra Pradesh,11357530.0,10478191, +2020-12-23,Andhra Pradesh,11415249.0,10535528, +2020-12-24,Andhra Pradesh,11474797.0,10594722, +2020-12-25,Andhra Pradesh,11531206.0,10650776, +2020-12-26,Andhra Pradesh,11574117.0,10693405, +2020-12-27,Andhra Pradesh,11620503.0,, +2020-12-28,Andhra Pradesh,11657884.0,, +2020-12-29,Andhra Pradesh,11708678.0,10827079, +2020-12-30,Andhra Pradesh,11764418.0,10882470, +2020-12-31,Andhra Pradesh,11825566.0,10943280, +2021-01-01,Andhra Pradesh,11884085.0,11001473, +2021-01-02,Andhra Pradesh,11932603.0,11049753, +2021-01-03,Andhra Pradesh,11972780.0,11089698, +2021-01-04,Andhra Pradesh,12002494.0,11119284, +2021-01-05,Andhra Pradesh,12053914.0,11170327, +2021-01-06,Andhra Pradesh,12105121.0,11221245, +2021-01-07,Andhra Pradesh,12164531.0,11280360, +2021-01-08,Andhra Pradesh,12224202.0,12224202, +2021-01-09,Andhra Pradesh,12274647.0,, +2021-01-10,Andhra Pradesh,12324674.0,, +2021-01-11,Andhra Pradesh,12355607.0,11470570, +2021-01-12,Andhra Pradesh,12396593.0,11511359, +2021-01-13,Andhra Pradesh,12441272.0,, +2021-01-14,Andhra Pradesh,12482943.0,11597327, +2021-01-15,Andhra Pradesh,12514639.0,11628929, +2021-01-16,Andhra Pradesh,12540181.0,, +2021-01-17,Andhra Pradesh,12576272.0,, +2021-01-18,Andhra Pradesh,12604214.0,, +2021-01-19,Andhra Pradesh,12643313.0,11757068, +2021-01-20,Andhra Pradesh,12690165.0,11803747, +2021-01-21,Andhra Pradesh,12739648.0,11853091, +2021-01-22,Andhra Pradesh,12787961.0,11901267, +2021-01-23,Andhra Pradesh,12831731.0,11944879, +2021-01-24,Andhra Pradesh,12876113.0,11989103, +2021-01-25,Andhra Pradesh,12903830.0,12016764, +2021-01-26,Andhra Pradesh,12942153.0,12054915, +2021-01-27,Andhra Pradesh,12975961.0,12088612, +2021-01-28,Andhra Pradesh,13012150.0,12124684, +2021-01-29,Andhra Pradesh,13054959.0,12167368, +2021-01-30,Andhra Pradesh,13095962.0,, +2021-01-31,Andhra Pradesh,13137872.0,, +2021-02-01,Andhra Pradesh,13159794.0,12271894, +2021-02-02,Andhra Pradesh,13189103.0,12301099, +2021-02-03,Andhra Pradesh,13214548.0,12326449, +2021-02-04,Andhra Pradesh,13242802.0,12354624, +2021-02-05,Andhra Pradesh,13276678.0,12388403, +2021-02-06,Andhra Pradesh,13311542.0,12423192, +2021-02-07,Andhra Pradesh,13345522.0,, +2021-02-08,Andhra Pradesh,13367616.0,12479131, +2021-02-09,Andhra Pradesh,13394460.0,12505905, +2021-02-10,Andhra Pradesh,13422878.0,12534273, +2021-02-11,Andhra Pradesh,13453405.0,12564713, +2021-02-12,Andhra Pradesh,13484025.0,12595265, +2021-02-13,Andhra Pradesh,13517440.0,, +2021-02-14,Andhra Pradesh,13546228.0,, +2021-02-15,Andhra Pradesh,13565062.0,12676163, +2021-02-16,Andhra Pradesh,13589373.0,12700414, +2021-02-17,Andhra Pradesh,13615847.0,12726837, +2021-02-18,Andhra Pradesh,13644086.0,12755009, +2021-02-19,Andhra Pradesh,13670612.0,12781456, +2021-02-20,Andhra Pradesh,13697048.0,, +2021-02-21,Andhra Pradesh,13728728.0,12839430, +2021-02-22,Andhra Pradesh,13746985.0,12857646, +2021-02-23,Andhra Pradesh,13775253.0,12888739, +2021-02-24,Andhra Pradesh,13807747.0,, +2021-02-25,Andhra Pradesh,13843190.0,12953605, +2021-02-26,Andhra Pradesh,13877968.0,, +2021-02-27,Andhra Pradesh,13915009.0,13025210, +2021-02-28,Andhra Pradesh,13954131.0,13064215, +2021-03-01,Andhra Pradesh,13974400.0,13084426, +2021-03-02,Andhra Pradesh,14010204.0,13120124, +2021-03-03,Andhra Pradesh,14047174.0,13156959, +2021-03-04,Andhra Pradesh,14092251.0,13201934, +2021-03-05,Andhra Pradesh,14143911.0,13253470, +2021-03-06,Andhra Pradesh,14190477.0,, +2021-03-07,Andhra Pradesh,14236179.0,13345487, +2021-03-08,Andhra Pradesh,14262086.0,13371320, +2021-03-09,Andhra Pradesh,14307165.0,13416281, +2021-03-10,Andhra Pradesh,14356138.0,13465134, +2021-03-11,Andhra Pradesh,14403941.0,13512763, +2021-03-12,Andhra Pradesh,14448650.0,13557262, +2021-03-13,Andhra Pradesh,14489098.0,13597535, +2021-03-14,Andhra Pradesh,14534762.0,, +2021-03-15,Andhra Pradesh,14557366.0,13665358, +2021-03-16,Andhra Pradesh,14580783.0,13688514, +2021-03-17,Andhra Pradesh,14611499.0,13718977, +2021-03-18,Andhra Pradesh,14642664.0,13749924, +2021-03-19,Andhra Pradesh,14674210.0,13781224, +2021-03-20,Andhra Pradesh,14705188.0,13811822, +2021-03-21,Andhra Pradesh,14736326.0,13842592, +2021-03-22,Andhra Pradesh,14771701.0,13877657, +2021-03-23,Andhra Pradesh,14805335.0,13910799, +2021-03-24,Andhra Pradesh,14840401.0,13945280, +2021-03-25,Andhra Pradesh,14875597.0,13979718, +2021-03-26,Andhra Pradesh,14916201.0,14019338, +2021-03-27,Andhra Pradesh,14958897.0,, +2021-03-28,Andhra Pradesh,14990039.0,14091224, +2021-03-29,Andhra Pradesh,15021364.0,14121552, +2021-03-30,Andhra Pradesh,15052215.0,, +2021-03-31,Andhra Pradesh,15083179.0,14181190, +2021-04-01,Andhra Pradesh,15114988.0,14211728, +2021-04-02,Andhra Pradesh,15146104.0,14241556, +2021-04-03,Andhra Pradesh,15177364.0,14271418, +2021-04-04,Andhra Pradesh,15208436.0,14300760, +2021-04-05,Andhra Pradesh,15239114.0,14330112, +2021-04-06,Andhra Pradesh,15270771.0,14359828, +2021-04-07,Andhra Pradesh,15302583.0,14389309, +2021-04-08,Andhra Pradesh,15333851.0,14418019, +2021-04-09,Andhra Pradesh,15365743.0,14447176, +2021-04-10,Andhra Pradesh,15397672.0,14475766, +2021-04-11,Andhra Pradesh,15429391.0,14503990, +2021-04-12,Andhra Pradesh,15463146.0,14534482, +2021-04-13,Andhra Pradesh,15498728.0,14565836, +2021-04-14,Andhra Pradesh,15534460.0,14597411, +2021-04-15,Andhra Pradesh,15570201.0,14628066, +2021-04-16,Andhra Pradesh,15606163.0,14657932, +2021-04-17,Andhra Pradesh,15642070.0,14686615, +2021-04-18,Andhra Pradesh,15677992.0,14715955, +2021-04-19,Andhra Pradesh,15715757.0,14747757, +2021-04-20,Andhra Pradesh,15753679.0,14776692, +2021-04-21,Andhra Pradesh,15793298.0,14806595, +2021-04-22,Andhra Pradesh,15835169.0,14837707, +2021-04-23,Andhra Pradesh,15880750.0,14871522, +2021-04-24,Andhra Pradesh,15931722.0,14910796, +2021-04-25,Andhra Pradesh,15994607.0,14961047, +2021-04-26,Andhra Pradesh,16068648.0,15025207, +2021-04-27,Andhra Pradesh,16143083.0,15088208, +2021-04-28,Andhra Pradesh,16217831.0,15148287, +2021-04-29,Andhra Pradesh,16303866.0,15219530, +2021-04-30,Andhra Pradesh,16390360.0,15288670, +2021-05-01,Andhra Pradesh,16488574.0,15367472, +2021-05-02,Andhra Pradesh,16602873.0,15457851, +2021-05-03,Andhra Pradesh,16718148.0,15554154, +2021-05-04,Andhra Pradesh,16833932.0,15649904, +2021-05-05,Andhra Pradesh,16950299.0,15744067, +2021-05-06,Andhra Pradesh,17060446.0,15832260, +2021-05-07,Andhra Pradesh,17160870.0,15915496, +2021-05-08,Andhra Pradesh,17262441.0,15991002, +2021-05-09,Andhra Pradesh,17367935.0,16080332, +2021-05-10,Andhra Pradesh,17428059.0,16125470, +2021-05-11,Andhra Pradesh,17514937.0,16192003, +2021-05-12,Andhra Pradesh,17605687.0,16261301, +2021-05-13,Andhra Pradesh,17702133.0,16335348, +2021-05-14,Andhra Pradesh,17791220.0,16402417, +2021-05-15,Andhra Pradesh,17880755.0,16469435, +2021-05-16,Andhra Pradesh,17975305.0,16539814, +2021-05-17,Andhra Pradesh,18049054.0,16595002, +2021-05-18,Andhra Pradesh,18140307.0,16664935, +2021-05-19,Andhra Pradesh,18241637.0,16743105, +2021-05-20,Andhra Pradesh,18342918.0,16821776, +2021-05-21,Andhra Pradesh,18435149.0,16893070, +2021-05-22,Andhra Pradesh,18525758.0,16963698, +2021-05-23,Andhra Pradesh,18617387.0,17036560, +2021-05-24,Andhra Pradesh,18676222.0,17082401, +2021-05-25,Andhra Pradesh,18749201.0,17140096, +2021-05-26,Andhra Pradesh,18840321.0,17212931, +2021-05-27,Andhra Pradesh,18924545.0,17280988, +2021-05-28,Andhra Pradesh,19009047.0,17351061, +2021-05-29,Andhra Pradesh,19088611.0,17416869, +2021-05-30,Andhra Pradesh,19172843.0,17487701, +2021-05-31,Andhra Pradesh,19256304.0,17563219, +2021-06-01,Andhra Pradesh,19350008.0,15858831, +2021-06-02,Andhra Pradesh,19448056.0,17730900, +2021-06-03,Andhra Pradesh,19534279.0,17805702, +2021-06-04,Andhra Pradesh,19619590.0,17880600, +2021-06-05,Andhra Pradesh,19708031.0,, +2021-06-06,Andhra Pradesh,19791721.0,18033382, +2021-06-07,Andhra Pradesh,19856521.0,18093310, +2020-04-09,Arunachal Pradesh,206.0,185,1.0 +2020-04-14,Arunachal Pradesh,280.0,250,1.0 +2020-04-17,Arunachal Pradesh,363.0,338,1.0 +2020-04-18,Arunachal Pradesh,389.0,358,1.0 +2020-04-20,Arunachal Pradesh,439.0,405,1.0 +2020-04-21,Arunachal Pradesh,454.0,433,1.0 +2020-04-22,Arunachal Pradesh,496.0,441,2.0 +2020-04-24,Arunachal Pradesh,526.0,508,2.0 +2020-04-26,Arunachal Pradesh,568.0,529,2.0 +2020-04-27,Arunachal Pradesh,584.0,566,2.0 +2020-04-28,Arunachal Pradesh,610.0,581,2.0 +2020-04-29,Arunachal Pradesh,662.0,595,2.0 +2020-04-30,Arunachal Pradesh,694.0,656,2.0 +2020-05-01,Arunachal Pradesh,724.0,692,2.0 +2020-05-03,Arunachal Pradesh,810.0,761,2.0 +2020-05-04,Arunachal Pradesh,869.0,762,2.0 +2020-05-05,Arunachal Pradesh,970.0,814,2.0 +2020-05-06,Arunachal Pradesh,1039.0,857,2.0 +2020-05-07,Arunachal Pradesh,1144.0,952,2.0 +2020-05-08,Arunachal Pradesh,1354.0,1015,2.0 +2020-05-09,Arunachal Pradesh,1597.0,1266,2.0 +2020-05-10,Arunachal Pradesh,1823.0,1363,2.0 +2020-05-11,Arunachal Pradesh,2078.0,1538,2.0 +2020-05-12,Arunachal Pradesh,2257.0,1798,2.0 +2020-05-13,Arunachal Pradesh,2483.0,1902,2.0 +2020-05-14,Arunachal Pradesh,2677.0,2233,2.0 +2020-05-15,Arunachal Pradesh,2942.0,2546,2.0 +2020-05-16,Arunachal Pradesh,3163.0,2861,2.0 +2020-05-17,Arunachal Pradesh,3349.0,2966,2.0 +2020-05-18,Arunachal Pradesh,3662.0,3166,2.0 +2020-05-19,Arunachal Pradesh,3941.0,3392,2.0 +2020-05-20,Arunachal Pradesh,4157.0,3710,2.0 +2020-05-21,Arunachal Pradesh,4438.0,3963,2.0 +2020-05-22,Arunachal Pradesh,4844.0,4211,2.0 +2020-05-23,Arunachal Pradesh,5206.0,4340,2.0 +2020-05-24,Arunachal Pradesh,5428.0,4552,2.0 +2020-05-25,Arunachal Pradesh,5997.0,4941,2.0 +2020-05-26,Arunachal Pradesh,6319.0,5083,2.0 +2020-05-27,Arunachal Pradesh,6436.0,5405,2.0 +2020-05-28,Arunachal Pradesh,6984.0,5677,3.0 +2020-05-29,Arunachal Pradesh,7488.0,6268,3.0 +2020-05-30,Arunachal Pradesh,8017.0,6675,4.0 +2020-05-31,Arunachal Pradesh,8283.0,7012,4.0 +2020-06-01,Arunachal Pradesh,8768.0,7528,22.0 +2020-06-02,Arunachal Pradesh,9079.0,7806,28.0 +2020-06-03,Arunachal Pradesh,9551.0,7927,38.0 +2020-06-04,Arunachal Pradesh,10025.0,8552,43.0 +2020-06-05,Arunachal Pradesh,10790.0,8877,46.0 +2020-06-06,Arunachal Pradesh,11261.0,9350,49.0 +2020-06-07,Arunachal Pradesh,11516.0,9921,51.0 +2020-06-08,Arunachal Pradesh,12012.0,10376,57.0 +2020-06-09,Arunachal Pradesh,12455.0,10642,57.0 +2020-06-10,Arunachal Pradesh,13035.0,11420,61.0 +2020-06-11,Arunachal Pradesh,13479.0,11754,67.0 +2020-06-12,Arunachal Pradesh,14047.0,12119,87.0 +2020-06-13,Arunachal Pradesh,14518.0,12817,88.0 +2020-06-15,Arunachal Pradesh,15453.0,13610,95.0 +2020-06-16,Arunachal Pradesh,16158.0,14339,99.0 +2020-06-17,Arunachal Pradesh,16630.0,14698,103.0 +2020-06-18,Arunachal Pradesh,16630.0,14698,103.0 +2020-06-19,Arunachal Pradesh,18008.0,14698,135.0 +2020-06-20,Arunachal Pradesh,18521.0,16827,135.0 +2020-06-21,Arunachal Pradesh,19154.0,17100,139.0 +2020-06-22,Arunachal Pradesh,19799.0,18123,148.0 +2020-06-23,Arunachal Pradesh,20398.0,18571,158.0 +2020-06-24,Arunachal Pradesh,20938.0,18979,160.0 +2020-06-25,Arunachal Pradesh,21274.0,19298,172.0 +2020-06-26,Arunachal Pradesh,21890.0,19877,174.0 +2020-06-27,Arunachal Pradesh,22623.0,20209,177.0 +2020-06-28,Arunachal Pradesh,23011.0,20673,182.0 +2020-06-29,Arunachal Pradesh,23709.0,21408,187.0 +2020-06-30,Arunachal Pradesh,24237.0,21766,191.0 +2020-07-01,Arunachal Pradesh,24856.0,22443,195.0 +2020-07-02,Arunachal Pradesh,25440.0,23025,232.0 +2020-07-03,Arunachal Pradesh,25917.0,23486,252.0 +2020-07-04,Arunachal Pradesh,26569.0,24025,259.0 +2020-07-05,Arunachal Pradesh,26808.0,24466,269.0 +2020-07-06,Arunachal Pradesh,27645.0,24900,270.0 +2020-07-07,Arunachal Pradesh,28072.0,25649,276.0 +2020-07-08,Arunachal Pradesh,28581.0,25996,287.0 +2020-07-09,Arunachal Pradesh,29232.0,26707,302.0 +2020-07-10,Arunachal Pradesh,29834.0,28023,335.0 +2020-07-11,Arunachal Pradesh,30922.0,28711,341.0 +2020-07-12,Arunachal Pradesh,31520.0,29296,359.0 +2020-07-13,Arunachal Pradesh,32691.0,30725,387.0 +2020-07-14,Arunachal Pradesh,33807.0,31688,462.0 +2020-07-15,Arunachal Pradesh,34619.0,32450,491.0 +2020-07-16,Arunachal Pradesh,35430.0,33222,543.0 +2020-07-17,Arunachal Pradesh,36426.0,34040,609.0 +2020-07-18,Arunachal Pradesh,38042.0,35471,650.0 +2020-07-19,Arunachal Pradesh,39288.0,37032,740.0 +2020-07-20,Arunachal Pradesh,40477.0,37752,790.0 +2020-07-21,Arunachal Pradesh,41772.0,39116,858.0 +2020-07-22,Arunachal Pradesh,44986.0,42369,949.0 +2020-07-23,Arunachal Pradesh,48880.0,46332,991.0 +2020-07-24,Arunachal Pradesh,53335.0,51033,1056.0 +2020-07-25,Arunachal Pradesh,57861.0,55574,1126.0 +2020-07-26,Arunachal Pradesh,59558.0,57541,1158.0 +2020-07-27,Arunachal Pradesh,63784.0,61629,1239.0 +2020-07-28,Arunachal Pradesh,68034.0,65962,1330.0 +2020-07-29,Arunachal Pradesh,72739.0,70551,1410.0 +2020-07-30,Arunachal Pradesh,77630.0,75572,1484.0 +2020-07-31,Arunachal Pradesh,81865.0,77637,1591.0 +2020-08-01,Arunachal Pradesh,86288.0,81988,1673.0 +2020-08-02,Arunachal Pradesh,89031.0,84700,1698.0 +2020-08-03,Arunachal Pradesh,91227.0,86828,1758.0 +2020-08-04,Arunachal Pradesh,93365.0,91127,1790.0 +2020-08-05,Arunachal Pradesh,95983.0,91164,1855.0 +2020-08-06,Arunachal Pradesh,98733.0,93684,1948.0 +2020-08-07,Arunachal Pradesh,101947.0,96758,2049.0 +2020-08-08,Arunachal Pradesh,104833.0,99460,2117.0 +2020-08-09,Arunachal Pradesh,106792.0,101265,2155.0 +2020-08-10,Arunachal Pradesh,109863.0,104171,2231.0 +2020-08-11,Arunachal Pradesh,112689.0,106807,2327.0 +2020-08-12,Arunachal Pradesh,115758.0,109794, +2020-08-13,Arunachal Pradesh,118882.0,112767, +2020-08-14,Arunachal Pradesh,121371.0,115112,2607.0 +2020-08-15,Arunachal Pradesh,122854.0,116538,2658.0 +2020-08-16,Arunachal Pradesh,124786.0,118381, +2020-08-17,Arunachal Pradesh,127286.0,120729, +2020-08-18,Arunachal Pradesh,130246.0,123408, +2020-08-19,Arunachal Pradesh,133048.0,126085, +2020-08-20,Arunachal Pradesh,136092.0,128762, +2020-08-21,Arunachal Pradesh,138913.0,131556, +2020-08-22,Arunachal Pradesh,141655.0,134121, +2020-08-23,Arunachal Pradesh,143626.0,135812, +2020-08-24,Arunachal Pradesh,146012.0,138059, +2020-08-25,Arunachal Pradesh,149273.0,141127, +2020-08-26,Arunachal Pradesh,152852.0,144556, +2020-08-27,Arunachal Pradesh,155750.0,147281, +2020-08-28,Arunachal Pradesh,158993.0,150209, +2020-08-29,Arunachal Pradesh,161525.0,152666, +2020-08-30,Arunachal Pradesh,164524.0,155425, +2020-08-31,Arunachal Pradesh,167615.0,158324, +2020-09-01,Arunachal Pradesh,170445.0,160911, +2020-09-02,Arunachal Pradesh,173469.0,163658, +2020-09-03,Arunachal Pradesh,177259.0,167280, +2020-09-04,Arunachal Pradesh,180372.0,170070, +2020-09-05,Arunachal Pradesh,183390.0,172829, +2020-09-06,Arunachal Pradesh,185322.0,174589, +2020-09-07,Arunachal Pradesh,188435.0,177394, +2020-09-08,Arunachal Pradesh,191632.0,180193, +2020-09-09,Arunachal Pradesh,194647.0,182937, +2020-09-10,Arunachal Pradesh,197711.0,185795, +2020-09-11,Arunachal Pradesh,201010.0,188857, +2020-09-12,Arunachal Pradesh,203356.0,191018, +2020-09-13,Arunachal Pradesh,205519.0,192960, +2020-09-14,Arunachal Pradesh,208164.0,195308, +2020-09-15,Arunachal Pradesh,210345.0,197252, +2020-09-16,Arunachal Pradesh,214292.0,200905, +2020-09-17,Arunachal Pradesh,216202.0,202540, +2020-09-18,Arunachal Pradesh,218285.0,204350, +2020-09-19,Arunachal Pradesh,220706.0,206425, +2020-09-20,Arunachal Pradesh,222429.0,207925, +2020-09-21,Arunachal Pradesh,225328.0,210458, +2020-09-22,Arunachal Pradesh,228242.0,213033, +2020-09-23,Arunachal Pradesh,231045.0,215460, +2020-09-24,Arunachal Pradesh,233456.0,216919, +2020-09-25,Arunachal Pradesh,235979.0,219655, +2020-09-26,Arunachal Pradesh,238223.0,221576, +2020-09-27,Arunachal Pradesh,239900.0,223119, +2020-09-28,Arunachal Pradesh,242948.0,225773, +2020-09-29,Arunachal Pradesh,245788.0,228315, +2020-09-30,Arunachal Pradesh,248439.0,230620, +2020-10-01,Arunachal Pradesh,250993.0,232867, +2020-10-02,Arunachal Pradesh,253413.0,234989, +2020-10-03,Arunachal Pradesh,255951.0,237222, +2020-10-04,Arunachal Pradesh,257972.0,239060, +2020-10-05,Arunachal Pradesh,261029.0,241750, +2020-10-06,Arunachal Pradesh,263242.0,243642, +2020-10-07,Arunachal Pradesh,265870.0,245963, +2020-10-08,Arunachal Pradesh,268286.0,248047, +2020-10-09,Arunachal Pradesh,271035.0,250405, +2020-10-10,Arunachal Pradesh,273441.0,252475, +2020-10-11,Arunachal Pradesh,275319.0,254145, +2020-10-12,Arunachal Pradesh,277171.0,255649, +2020-10-13,Arunachal Pradesh,279792.0,257940, +2020-10-14,Arunachal Pradesh,283856.0,261730, +2020-10-15,Arunachal Pradesh,286572.0,264114, +2020-10-17,Arunachal Pradesh,291875.0,268732, +2020-10-18,Arunachal Pradesh,293164.0,269846, +2020-10-19,Arunachal Pradesh,296135.0,272412, +2020-10-20,Arunachal Pradesh,298490.0,274506, +2020-10-21,Arunachal Pradesh,300977.0,276756, +2020-10-22,Arunachal Pradesh,303101.0,278550, +2020-10-23,Arunachal Pradesh,304526.0,279778, +2020-10-24,Arunachal Pradesh,305694.0,280771, +2020-10-25,Arunachal Pradesh,306694.0,281697, +2020-10-26,Arunachal Pradesh,308912.0,283634, +2020-10-27,Arunachal Pradesh,310668.0,285259, +2020-10-28,Arunachal Pradesh,312775.0,287150, +2020-10-29,Arunachal Pradesh,314749.0,289094, +2020-10-30,Arunachal Pradesh,316633.0,290828, +2020-10-31,Arunachal Pradesh,318479.0,292467, +2020-11-01,Arunachal Pradesh,319596.0,293500, +2020-11-02,Arunachal Pradesh,321688.0,295438, +2020-11-03,Arunachal Pradesh,324062.0,297660, +2020-11-04,Arunachal Pradesh,325823.0,299275, +2020-11-05,Arunachal Pradesh,327812.0,301137, +2020-11-06,Arunachal Pradesh,329760.0,302951, +2020-11-07,Arunachal Pradesh,331244.0,304308, +2020-11-08,Arunachal Pradesh,332402.0,305367, +2020-11-09,Arunachal Pradesh,334117.0,306990, +2020-11-10,Arunachal Pradesh,336558.0,309285, +2020-11-11,Arunachal Pradesh,338280.0,327363, +2020-11-12,Arunachal Pradesh,339487.0,311977, +2020-11-13,Arunachal Pradesh,341099.0,313459, +2020-11-14,Arunachal Pradesh,341928.0,314213, +2020-11-15,Arunachal Pradesh,342450.0,314677, +2020-11-16,Arunachal Pradesh,343791.0,315797, +2020-11-17,Arunachal Pradesh,345190.0,333989, +2020-11-18,Arunachal Pradesh,346532.0,318507, +2020-11-19,Arunachal Pradesh,347737.0,319640, +2020-11-20,Arunachal Pradesh,348960.0,320812, +2020-11-21,Arunachal Pradesh,350020.0,321808, +2020-11-22,Arunachal Pradesh,350713.0,322474, +2020-11-23,Arunachal Pradesh,351737.0,323427, +2020-11-24,Arunachal Pradesh,353201.0,324803, +2020-11-25,Arunachal Pradesh,354379.0,325921, +2020-11-26,Arunachal Pradesh,355611.0,327088, +2020-11-27,Arunachal Pradesh,356661.0,328110, +2020-11-28,Arunachal Pradesh,357695.0,329110, +2020-11-29,Arunachal Pradesh,358294.0,329702, +2020-11-30,Arunachal Pradesh,359123.0,330517, +2020-12-01,Arunachal Pradesh,360088.0,331468, +2020-12-02,Arunachal Pradesh,361250.0,332605, +2020-12-03,Arunachal Pradesh,362267.0,333591, +2020-12-04,Arunachal Pradesh,363062.0,334363, +2020-12-05,Arunachal Pradesh,363953.0,335236, +2020-12-06,Arunachal Pradesh,364420.0,335692, +2020-12-07,Arunachal Pradesh,365286.0,336535, +2020-12-08,Arunachal Pradesh,365935.0,337159, +2020-12-09,Arunachal Pradesh,366530.0,337727, +2020-12-10,Arunachal Pradesh,367306.0,338485, +2020-12-11,Arunachal Pradesh,367980.0,339141, +2020-12-12,Arunachal Pradesh,368526.0,339675, +2020-12-13,Arunachal Pradesh,368841.0,339985, +2020-12-14,Arunachal Pradesh,369540.0,340661, +2020-12-15,Arunachal Pradesh,370128.0,341231, +2020-12-16,Arunachal Pradesh,370756.0,341838, +2020-12-17,Arunachal Pradesh,371423.0,342475, +2020-12-18,Arunachal Pradesh,371936.0,342979, +2020-12-19,Arunachal Pradesh,372458.0,343483, +2020-12-20,Arunachal Pradesh,372693.0,343717, +2020-12-21,Arunachal Pradesh,373351.0,344351, +2020-12-22,Arunachal Pradesh,373734.0,344729, +2020-12-23,Arunachal Pradesh,374423.0,345406, +2020-12-24,Arunachal Pradesh,375058.0,346032, +2020-12-25,Arunachal Pradesh,375405.0,346379, +2020-12-26,Arunachal Pradesh,375766.0,346731, +2020-12-27,Arunachal Pradesh,376168.0,347131, +2020-12-28,Arunachal Pradesh,376568.0,347523, +2020-12-29,Arunachal Pradesh,377052.0,, +2020-12-30,Arunachal Pradesh,377725.0,348665, +2020-12-31,Arunachal Pradesh,378151.0,349083, +2021-01-01,Arunachal Pradesh,378364.0,, +2021-01-02,Arunachal Pradesh,378926.0,349850, +2021-01-03,Arunachal Pradesh,379261.0,350180, +2021-01-04,Arunachal Pradesh,379934.0,350884, +2021-01-05,Arunachal Pradesh,381014.0,351921, +2021-01-06,Arunachal Pradesh,381616.0,352513, +2021-01-07,Arunachal Pradesh,382096.0,352989, +2021-01-08,Arunachal Pradesh,382701.0,353587, +2021-01-09,Arunachal Pradesh,383065.0,353948, +2021-01-10,Arunachal Pradesh,383621.0,354499, +2021-01-11,Arunachal Pradesh,384038.0,354911, +2021-01-12,Arunachal Pradesh,384536.0,355404, +2021-01-13,Arunachal Pradesh,385299.0,356166, +2021-01-14,Arunachal Pradesh,386124.0,356976, +2021-01-15,Arunachal Pradesh,386656.0,, +2021-01-16,Arunachal Pradesh,387121.0,357963, +2021-01-17,Arunachal Pradesh,387291.0,358130, +2021-01-18,Arunachal Pradesh,387691.0,358529, +2021-01-19,Arunachal Pradesh,388013.0,358848, +2021-01-20,Arunachal Pradesh,388375.0,359210, +2021-01-21,Arunachal Pradesh,388696.0,359530, +2021-01-22,Arunachal Pradesh,389149.0,359982, +2021-01-23,Arunachal Pradesh,389553.0,, +2021-01-24,Arunachal Pradesh,389689.0,360519, +2021-01-25,Arunachal Pradesh,390074.0,360903, +2021-01-26,Arunachal Pradesh,390552.0,361080, +2021-01-27,Arunachal Pradesh,390926.0,, +2021-01-28,Arunachal Pradesh,391275.0,362097, +2021-01-29,Arunachal Pradesh,391822.0,, +2021-01-30,Arunachal Pradesh,392143.0,, +2021-01-31,Arunachal Pradesh,392211.0,, +2021-02-01,Arunachal Pradesh,392762.0,363583, +2021-02-02,Arunachal Pradesh,393314.0,364134, +2021-02-03,Arunachal Pradesh,393880.0,364700, +2021-02-04,Arunachal Pradesh,394542.0,365362, +2021-02-05,Arunachal Pradesh,395200.0,366020, +2021-02-06,Arunachal Pradesh,395795.0,366614, +2021-02-07,Arunachal Pradesh,395994.0,366813, +2021-02-08,Arunachal Pradesh,397038.0,367856, +2021-02-09,Arunachal Pradesh,397631.0,368449, +2021-02-10,Arunachal Pradesh,398385.0,369203, +2021-02-11,Arunachal Pradesh,398970.0,369787, +2021-02-12,Arunachal Pradesh,399702.0,370519, +2021-02-13,Arunachal Pradesh,400178.0,370995, +2021-02-14,Arunachal Pradesh,400354.0,371171, +2021-02-15,Arunachal Pradesh,400852.0,371668, +2021-02-16,Arunachal Pradesh,401518.0,372334, +2021-02-17,Arunachal Pradesh,402086.0,372902, +2021-02-18,Arunachal Pradesh,402617.0,373430, +2021-02-19,Arunachal Pradesh,403063.0,373876, +2021-02-20,Arunachal Pradesh,403289.0,374102, +2021-02-21,Arunachal Pradesh,403485.0,374298, +2021-02-22,Arunachal Pradesh,403950.0,374763, +2021-02-23,Arunachal Pradesh,404280.0,375093, +2021-02-24,Arunachal Pradesh,404737.0,375550, +2021-02-25,Arunachal Pradesh,404999.0,375812, +2021-02-26,Arunachal Pradesh,405335.0,376071, +2021-02-27,Arunachal Pradesh,405647.0,376383, +2021-02-28,Arunachal Pradesh,405804.0,376540, +2021-03-01,Arunachal Pradesh,406182.0,376917, +2021-03-02,Arunachal Pradesh,406705.0,377439, +2021-03-03,Arunachal Pradesh,407051.0,377785, +2021-03-04,Arunachal Pradesh,407377.0,378111, +2021-03-05,Arunachal Pradesh,407682.0,378415, +2021-03-06,Arunachal Pradesh,408024.0,378756, +2021-03-07,Arunachal Pradesh,408171.0,378903, +2021-03-08,Arunachal Pradesh,408452.0,379184, +2021-03-09,Arunachal Pradesh,408728.0,379460, +2021-03-10,Arunachal Pradesh,409168.0,379899, +2021-03-11,Arunachal Pradesh,409502.0,380233, +2021-03-12,Arunachal Pradesh,409789.0,380520, +2021-03-13,Arunachal Pradesh,409993.0,380724, +2021-03-14,Arunachal Pradesh,410101.0,380832, +2021-03-15,Arunachal Pradesh,410355.0,381086, +2021-03-16,Arunachal Pradesh,410571.0,381301, +2021-03-17,Arunachal Pradesh,410875.0,381605, +2021-03-18,Arunachal Pradesh,411170.0,381906, +2021-03-19,Arunachal Pradesh,411459.0,382188, +2021-03-20,Arunachal Pradesh,411693.0,382422, +2021-03-21,Arunachal Pradesh,411821.0,382550, +2021-03-22,Arunachal Pradesh,411947.0,382676, +2021-03-23,Arunachal Pradesh,412230.0,382959, +2021-03-24,Arunachal Pradesh,412521.0,383250, +2021-03-25,Arunachal Pradesh,412761.0,383490, +2021-03-26,Arunachal Pradesh,413053.0,383781, +2021-03-27,Arunachal Pradesh,413321.0,384046, +2021-03-28,Arunachal Pradesh,413432.0,384157, +2021-03-29,Arunachal Pradesh,413554.0,384279, +2021-03-30,Arunachal Pradesh,413804.0,384529, +2021-03-31,Arunachal Pradesh,413963.0,384688, +2021-04-01,Arunachal Pradesh,414169.0,384894, +2021-04-02,Arunachal Pradesh,414273.0,384997, +2021-04-03,Arunachal Pradesh,414467.0,385188, +2021-04-04,Arunachal Pradesh,414602.0,385323, +2021-04-05,Arunachal Pradesh,414958.0,385677, +2021-04-06,Arunachal Pradesh,415217.0,385934, +2021-04-07,Arunachal Pradesh,415547.0,386256, +2021-04-08,Arunachal Pradesh,416046.0,386738, +2021-04-09,Arunachal Pradesh,416577.0,387272, +2021-04-10,Arunachal Pradesh,416897.0,387589, +2021-04-11,Arunachal Pradesh,417041.0,387729, +2021-04-12,Arunachal Pradesh,417356.0,388038, +2021-04-13,Arunachal Pradesh,417994.0,388661, +2021-04-14,Arunachal Pradesh,418290.0,388947, +2021-04-15,Arunachal Pradesh,418501.0,389150, +2021-04-16,Arunachal Pradesh,419072.0,389693, +2021-04-17,Arunachal Pradesh,419731.0,390330, +2021-04-18,Arunachal Pradesh,419969.0,390548, +2021-04-19,Arunachal Pradesh,421131.0,391644, +2021-04-20,Arunachal Pradesh,423123.0,393575, +2021-04-21,Arunachal Pradesh,425461.0,395839, +2021-04-22,Arunachal Pradesh,428202.0,398469, +2021-04-23,Arunachal Pradesh,431231.0,401354, +2021-04-24,Arunachal Pradesh,434293.0,404295, +2021-04-25,Arunachal Pradesh,436658.0,406585, +2021-04-26,Arunachal Pradesh,440234.0,409987, +2021-04-27,Arunachal Pradesh,443327.0,412948, +2021-04-28,Arunachal Pradesh,447019.0,416471, +2021-04-29,Arunachal Pradesh,450543.0,419790, +2021-04-30,Arunachal Pradesh,453906.0,422980, +2021-05-01,Arunachal Pradesh,457369.0,426217, +2021-05-02,Arunachal Pradesh,459804.0,428546, +2021-05-03,Arunachal Pradesh,463551.0,432062, +2021-05-04,Arunachal Pradesh,467378.0,435648, +2021-05-05,Arunachal Pradesh,470855.0,438895, +2021-05-06,Arunachal Pradesh,474314.0,442129, +2021-05-07,Arunachal Pradesh,477466.0,445102, +2021-05-08,Arunachal Pradesh,480631.0,448014, +2021-05-09,Arunachal Pradesh,482862.0,450118, +2021-05-10,Arunachal Pradesh,485734.0,452781, +2021-05-11,Arunachal Pradesh,488727.0,455567, +2021-05-12,Arunachal Pradesh,492061.0,458616, +2021-05-13,Arunachal Pradesh,495141.0,461437, +2021-05-14,Arunachal Pradesh,497938.0,463963, +2021-05-15,Arunachal Pradesh,500708.0,466473, +2021-05-16,Arunachal Pradesh,502767.0,468349, +2021-05-17,Arunachal Pradesh,506975.0,472242, +2021-05-18,Arunachal Pradesh,511863.0,476764, +2021-05-19,Arunachal Pradesh,516372.0,480928, +2021-05-20,Arunachal Pradesh,520974.0,485146, +2021-05-21,Arunachal Pradesh,525589.0,489363, +2021-05-22,Arunachal Pradesh,530121.0,493576, +2021-05-23,Arunachal Pradesh,533126.0,496350, +2021-05-24,Arunachal Pradesh,539733.0,502474, +2021-05-25,Arunachal Pradesh,546447.0,508750, +2021-05-26,Arunachal Pradesh,553056.0,514977, +2021-05-27,Arunachal Pradesh,560340.0,521814, +2021-05-28,Arunachal Pradesh,568556.0,529524, +2021-05-29,Arunachal Pradesh,575997.0,536497, +2021-05-30,Arunachal Pradesh,580353.0,540676, +2021-05-31,Arunachal Pradesh,585905.0,545903, +2021-06-01,Arunachal Pradesh,592424.0,552041, +2021-06-02,Arunachal Pradesh,599605.0,558835, +2021-06-03,Arunachal Pradesh,607591.0,566447, +2021-06-04,Arunachal Pradesh,616569.0,575014, +2021-06-05,Arunachal Pradesh,624422.0,582526, +2021-06-06,Arunachal Pradesh,630180.0,588052, +2021-06-07,Arunachal Pradesh,638028.0,595531, +2020-04-02,Assam,962.0,819,16.0 +2020-04-10,Assam,2863.0,2685,29.0 +2020-04-11,Assam,3011.0,2842,29.0 +2020-04-12,Assam,3138.0,2973,29.0 +2020-04-14,Assam,3491.0,3267,31.0 +2020-04-15,Assam,3613.0,3492,32.0 +2020-04-16,Assam,4108.0,3803,34.0 +2020-04-17,Assam,4236.0,4024,34.0 +2020-04-18,Assam,4400.0,4199,34.0 +2020-04-19,Assam,4865.0,4584,34.0 +2020-04-20,Assam,5112.0,4937,34.0 +2020-04-21,Assam,5514.0,5245,34.0 +2020-04-24,Assam,6680.0,6391,35.0 +2020-04-25,Assam,7159.0,6781,35.0 +2020-04-26,Assam,7823.0,7474,35.0 +2020-04-27,Assam,8117.0,7985,35.0 +2020-04-29,Assam,9520.0,8771,37.0 +2020-05-02,Assam,11623.0,10499,42.0 +2020-05-04,Assam,12775.0,11764,42.0 +2020-05-05,Assam,13442.0,12533,43.0 +2020-05-09,Assam,16167.0,15076,59.0 +2020-05-10,Assam,18002.0,16236,62.0 +2020-05-11,Assam,19589.0,17813,64.0 +2020-05-12,Assam,21791.0,19211,64.0 +2020-05-14,Assam,25824.0,23178,86.0 +2020-05-15,Assam,28178.0,25431,86.0 +2020-05-16,Assam,31276.0,28332,91.0 +2020-05-17,Assam,34376.0,32035,97.0 +2020-05-18,Assam,37898.0,35159,106.0 +2020-05-19,Assam,41116.0,38138,141.0 +2020-05-20,Assam,47084.0,42729,170.0 +2020-05-21,Assam,51730.0,46442,203.0 +2020-05-22,Assam,55791.0,50450,259.0 +2020-05-23,Assam,60405.0,54185,329.0 +2020-05-24,Assam,66444.0,58972,378.0 +2020-05-25,Assam,70029.0,62244,526.0 +2020-05-26,Assam,72654.0,66562,616.0 +2020-05-29,Assam,92390.0,84933,1024.0 +2020-05-30,Assam,101257.0,91248,1185.0 +2020-05-31,Assam,109097.0,101006,1272.0 +2020-06-02,Assam,120375.0,111229,1513.0 +2020-06-03,Assam,126726.0,117650,1672.0 +2020-06-04,Assam,133029.0,122618,1988.0 +2020-06-06,Assam,146605.0,136154,2397.0 +2020-06-07,Assam,153326.0,142192,2565.0 +2020-06-09,Assam,169842.0,159760,2937.0 +2020-06-11,Assam,181108.0,171070,3319.0 +2020-06-12,Assam,188090.0,177989,3498.0 +2020-06-15,Assam,217088.0,,4158.0 +2020-06-16,Assam,227109.0,,4319.0 +2020-06-17,Assam,235214.0,,4605.0 +2020-06-18,Assam,246590.0,,4861.0 +2020-06-19,Assam,258797.0,,4904.0 +2020-06-20,Assam,273047.0,,5006.0 +2020-06-21,Assam,288306.0,,5388.0 +2020-06-22,Assam,301557.0,,5586.0 +2020-06-23,Assam,323258.0,,5853.0 +2020-06-24,Assam,336091.0,,6282.0 +2020-06-25,Assam,351753.0,,6646.0 +2020-06-26,Assam,362713.0,,6646.0 +2020-06-27,Assam,374519.0,,6919.0 +2020-06-28,Assam,385299.0,,7165.0 +2020-06-29,Assam,399393.0,,7492.0 +2020-06-30,Assam,412214.0,,7835.0 +2020-07-01,Assam,419878.0,,8547.0 +2020-07-02,Assam,428866.0,,8955.0 +2020-07-03,Assam,438882.0,,9434.0 +2020-07-04,Assam,449629.0,,9799.0 +2020-07-05,Assam,459143.0,,11001.0 +2020-07-06,Assam,471221.0,,11736.0 +2020-07-07,Assam,485156.0,,12522.0 +2020-07-09,Assam,508973.0,,14032.0 +2020-07-10,Assam,525485.0,,14600.0 +2020-07-11,Assam,537831.0,,15536.0 +2020-07-12,Assam,552376.0,,16071.0 +2020-07-13,Assam,563482.0,,16806.0 +2020-07-14,Assam,575867.0,,17807.0 +2020-07-15,Assam,589202.0,,18666.0 +2020-07-16,Assam,601385.0,,19754.0 +2020-07-17,Assam,614743.0,,20646.0 +2020-07-18,Assam,632372.0,,21864.0 +2020-07-19,Assam,651179.0,,22981.0 +2020-07-20,Assam,671191.0,,23999.0 +2020-07-21,Assam,689343.0,,25092.0 +2020-07-22,Assam,703374.0,,27744.0 +2020-07-23,Assam,723287.0,,28791.0 +2020-07-24,Assam,739465.0,,29921.0 +2020-07-25,Assam,753939.0,,31086.0 +2020-07-26,Assam,774484.0,,32228.0 +2020-07-27,Assam,796226.0,,33576.0 +2020-07-28,Assam,802674.0,,34947.0 +2020-07-29,Assam,838043.0,,36295.0 +2020-07-30,Assam,879071.0,,38407.0 +2020-07-31,Assam,917395.0,,40269.0 +2020-08-01,Assam,944556.0,,41726.0 +2020-08-02,Assam,964499.0,,42904.0 +2020-08-03,Assam,1006457.0,,45275.0 +2020-08-04,Assam,1065521.0,,48161.0 +2020-08-05,Assam,1124683.0,,50445.0 +2020-08-06,Assam,1180336.0,,52817.0 +2020-08-07,Assam,1238867.0,,55496.0 +2020-08-08,Assam,1293712.0,,57714.0 +2020-08-09,Assam,1318204.0,,58837.0 +2020-08-10,Assam,1378629.0,,61737.0 +2020-08-11,Assam,1430691.0,,64406.0 +2020-08-12,Assam,1573800.0,,68999.0 +2020-08-13,Assam,1635118.0,,71795.0 +2020-08-14,Assam,1684721.0,,74501.0 +2020-08-15,Assam,1705526.0,, +2020-08-16,Assam,1725893.0,,76875.0 +2020-08-17,Assam,1775403.0,,79667.0 +2020-08-18,Assam,1819819.0,,82201.0 +2020-08-19,Assam,1860208.0,,84317.0 +2020-08-20,Assam,1894584.0,,86052.0 +2020-08-21,Assam,1930764.0,,87908.0 +2020-08-22,Assam,1953804.0,, +2020-08-23,Assam,1972239.0,, +2020-08-24,Assam,2000909.0,, +2020-08-25,Assam,2035216.0,, +2020-08-26,Assam,2071441.0,, +2020-08-27,Assam,2106836.0,, +2020-08-28,Assam,2146938.0,, +2020-08-29,Assam,2183777.0,, +2020-08-30,Assam,2217879.0,, +2020-08-31,Assam,2262827.0,, +2020-09-01,Assam,2299893.0,, +2020-09-02,Assam,2347637.0,, +2020-09-03,Assam,2396483.0,, +2020-09-04,Assam,2436127.0,, +2020-09-05,Assam,2471274.0,, +2020-09-06,Assam,2494610.0,, +2020-09-07,Assam,2533221.0,, +2020-09-08,Assam,2567683.0,, +2020-09-09,Assam,2599245.0,, +2020-09-10,Assam,2634614.0,, +2020-09-11,Assam,2671027.0,, +2020-09-12,Assam,2702280.0,, +2020-09-13,Assam,2717795.0,, +2020-09-14,Assam,2750037.0,, +2020-09-15,Assam,2782807.0,, +2020-09-16,Assam,2815285.0,, +2020-09-17,Assam,2835842.0,, +2020-09-18,Assam,2871869.0,, +2020-09-19,Assam,2907044.0,, +2020-09-20,Assam,2926362.0,, +2020-09-21,Assam,2961965.0,, +2020-09-22,Assam,2991612.0,, +2020-09-23,Assam,3021508.0,, +2020-09-24,Assam,3050501.0,, +2020-09-25,Assam,3078746.0,, +2020-09-26,Assam,3104577.0,, +2020-09-27,Assam,3119924.0,, +2020-09-28,Assam,3240080.0,, +2020-09-29,Assam,3374650.0,, +2020-09-30,Assam,3523430.0,, +2020-10-01,Assam,3563210.0,, +2020-10-02,Assam,3591511.0,, +2020-10-03,Assam,3625167.0,, +2020-10-04,Assam,3638290.0,, +2020-10-05,Assam,3673960.0,, +2020-10-06,Assam,3705740.0,, +2020-10-07,Assam,3739086.0,, +2020-10-08,Assam,3771494.0,, +2020-10-09,Assam,3803080.0,, +2020-10-10,Assam,3830571.0,, +2020-10-11,Assam,3841947.0,, +2020-10-12,Assam,3949847.0,, +2020-10-13,Assam,4076126.0,, +2020-10-14,Assam,4215994.0,, +2020-10-15,Assam,4251034.0,, +2020-10-16,Assam,4285748.0,, +2020-10-17,Assam,4308877.0,, +2020-10-18,Assam,4322424.0,, +2020-10-19,Assam,4357380.0,, +2020-10-20,Assam,4395965.0,, +2020-10-21,Assam,4438417.0,, +2020-10-22,Assam,4472792.0,, +2020-10-23,Assam,4490288.0,, +2020-10-24,Assam,4502551.0,, +2020-10-25,Assam,4511304.0,, +2020-10-26,Assam,4525529.0,, +2020-10-27,Assam,4551693.0,, +2020-10-28,Assam,4577843.0,, +2020-10-29,Assam,4606145.0,, +2020-10-30,Assam,4631817.0,, +2020-10-31,Assam,4657839.0,, +2020-11-01,Assam,4669415.0,, +2020-11-02,Assam,4699749.0,, +2020-11-03,Assam,4728633.0,, +2020-11-04,Assam,4757659.0,, +2020-11-05,Assam,4785618.0,, +2020-11-06,Assam,4811501.0,, +2020-11-07,Assam,4834733.0,, +2020-11-08,Assam,4845718.0,, +2020-11-09,Assam,4874244.0,, +2020-11-10,Assam,4899583.0,, +2020-11-11,Assam,4926906.0,, +2020-11-12,Assam,4951256.0,, +2020-11-13,Assam,4977600.0,, +2020-11-14,Assam,4991216.0,, +2020-11-15,Assam,4999585.0,, +2020-11-16,Assam,5018957.0,, +2020-11-17,Assam,5043594.0,, +2020-11-18,Assam,5067078.0,, +2020-11-19,Assam,5089868.0,, +2020-11-20,Assam,5108138.0,, +2020-11-21,Assam,5127982.0,, +2020-11-22,Assam,5137976.0,, +2020-11-23,Assam,5163201.0,, +2020-11-24,Assam,5184973.0,, +2020-11-25,Assam,5209399.0,, +2020-11-26,Assam,5230177.0,, +2020-11-27,Assam,5256021.0,, +2020-11-28,Assam,5279948.0,, +2020-11-29,Assam,5291506.0,, +2020-11-30,Assam,5314189.0,, +2020-12-01,Assam,5342717.0,, +2020-12-02,Assam,5368608.0,, +2020-12-03,Assam,5396616.0,, +2020-12-04,Assam,5425067.0,, +2020-12-05,Assam,5449083.0,, +2020-12-06,Assam,5460597.0,, +2020-12-07,Assam,5490072.0,, +2020-12-08,Assam,5510027.0,, +2020-12-09,Assam,5538923.0,, +2020-12-10,Assam,5561572.0,, +2020-12-11,Assam,5582574.0,, +2020-12-12,Assam,5604468.0,, +2020-12-13,Assam,5615996.0,, +2020-12-14,Assam,5644556.0,, +2020-12-15,Assam,5670841.0,, +2020-12-16,Assam,5693810.0,, +2020-12-17,Assam,5717410.0,, +2020-12-18,Assam,5740172.0,, +2020-12-19,Assam,5760162.0,, +2020-12-20,Assam,5770309.0,, +2020-12-21,Assam,5794448.0,, +2020-12-22,Assam,5817612.0,, +2020-12-23,Assam,5839239.0,, +2020-12-24,Assam,5861134.0,, +2020-12-25,Assam,5872891.0,, +2020-12-26,Assam,5891165.0,, +2020-12-27,Assam,5901470.0,, +2020-12-28,Assam,5926250.0,, +2020-12-29,Assam,5949488.0,, +2020-12-30,Assam,5974986.0,, +2020-12-31,Assam,5997450.0,, +2021-01-01,Assam,6014286.0,, +2021-01-02,Assam,6038661.0,, +2021-01-03,Assam,6047033.0,, +2021-01-04,Assam,6071395.0,, +2021-01-05,Assam,6093608.0,, +2021-01-06,Assam,6116867.0,, +2021-01-07,Assam,6136824.0,, +2021-01-08,Assam,6155346.0,, +2021-01-09,Assam,6171341.0,, +2021-01-10,Assam,6179337.0,, +2021-01-11,Assam,6198370.0,, +2021-01-12,Assam,6214575.0,, +2021-01-13,Assam,6226872.0,, +2021-01-14,Assam,6232827.0,, +2021-01-15,Assam,6241227.0,, +2021-01-16,Assam,6255061.0,, +2021-01-17,Assam,6262239.0,, +2021-01-18,Assam,6280908.0,, +2021-01-19,Assam,6298494.0,, +2021-01-20,Assam,6314289.0,, +2021-01-21,Assam,6331271.0,, +2021-01-22,Assam,6348913.0,, +2021-01-23,Assam,6363340.0,, +2021-01-24,Assam,6369654.0,, +2021-01-25,Assam,6388162.0,, +2021-01-26,Assam,6395713.0,, +2021-01-27,Assam,6412217.0,, +2021-01-28,Assam,6429030.0,, +2021-01-29,Assam,6445513.0,, +2021-01-30,Assam,6459972.0,, +2021-01-31,Assam,6465926.0,, +2021-02-01,Assam,6482747.0,, +2021-02-02,Assam,6498609.0,, +2021-02-03,Assam,6514682.0,, +2021-02-04,Assam,6530025.0,, +2021-02-05,Assam,6546265.0,, +2021-02-06,Assam,6561527.0,, +2021-02-07,Assam,6567763.0,, +2021-02-08,Assam,6586636.0,, +2021-02-09,Assam,6603122.0,, +2021-02-10,Assam,6621149.0,, +2021-02-11,Assam,6636931.0,, +2021-02-12,Assam,6651866.0,, +2021-02-13,Assam,6665457.0,, +2021-02-14,Assam,6671847.0,, +2021-02-15,Assam,6687517.0,, +2021-02-16,Assam,6699439.0,, +2021-02-17,Assam,6714092.0,, +2021-02-18,Assam,6727393.0,, +2021-02-19,Assam,6741534.0,, +2021-02-20,Assam,6755773.0,, +2021-02-21,Assam,6761696.0,, +2021-02-22,Assam,6777232.0,, +2021-02-23,Assam,6791871.0,, +2021-02-24,Assam,6806954.0,, +2021-02-25,Assam,6820414.0,, +2021-02-26,Assam,6832623.0,, +2021-02-27,Assam,6844652.0,, +2021-02-28,Assam,6850204.0,, +2021-03-01,Assam,6864937.0,, +2021-03-02,Assam,6878793.0,, +2021-03-03,Assam,6892401.0,, +2021-03-04,Assam,6905061.0,, +2021-03-05,Assam,6918612.0,, +2021-03-06,Assam,6930530.0,, +2021-03-07,Assam,6936521.0,, +2021-03-08,Assam,6951764.0,, +2021-03-09,Assam,6965973.0,, +2021-03-10,Assam,6980144.0,, +2021-03-11,Assam,6991954.0,, +2021-03-12,Assam,7004429.0,, +2021-03-13,Assam,7015053.0,, +2021-03-14,Assam,7020154.0,, +2021-03-15,Assam,7034805.0,, +2021-03-16,Assam,7049339.0,, +2021-03-17,Assam,7062543.0,, +2021-03-18,Assam,7076079.0,, +2021-03-19,Assam,7089297.0,, +2021-03-20,Assam,7102521.0,, +2021-03-21,Assam,7109925.0,, +2021-03-22,Assam,7125829.0,, +2021-03-23,Assam,7140065.0,, +2021-03-24,Assam,7155821.0,, +2021-03-25,Assam,7170030.0,, +2021-03-26,Assam,7184142.0,, +2021-03-27,Assam,7193204.0,, +2021-03-28,Assam,7198536.0,, +2021-03-29,Assam,7205649.0,, +2021-03-30,Assam,7218433.0,, +2021-03-31,Assam,7231399.0,, +2021-04-01,Assam,7243652.0,, +2021-04-02,Assam,7255974.0,, +2021-04-03,Assam,7271998.0,, +2021-04-04,Assam,7279073.0,, +2021-04-05,Assam,7296678.0,, +2021-04-06,Assam,7311418.0,, +2021-04-07,Assam,7332580.0,, +2021-04-08,Assam,7355468.0,, +2021-04-09,Assam,7380587.0,, +2021-04-10,Assam,7448662.0,, +2021-04-11,Assam,7521991.0,, +2021-04-12,Assam,7624173.0,, +2021-04-13,Assam,7683483.0,, +2021-04-14,Assam,7713548.0,, +2021-04-15,Assam,7731871.0,, +2021-04-16,Assam,7764292.0,, +2021-04-17,Assam,7807560.0,, +2021-04-18,Assam,7830860.0,, +2021-04-19,Assam,7896270.0,, +2021-04-20,Assam,7963421.0,, +2021-04-21,Assam,8025528.0,, +2021-04-22,Assam,8098956.0,, +2021-04-23,Assam,8171361.0,, +2021-04-24,Assam,8240455.0,, +2021-04-25,Assam,8274129.0,, +2021-04-26,Assam,8347310.0,, +2021-04-27,Assam,8409938.0,, +2021-04-28,Assam,8465418.0,, +2021-04-29,Assam,8532696.0,, +2021-04-30,Assam,8604935.0,, +2021-05-01,Assam,8658937.0,, +2021-05-02,Assam,8682755.0,, +2021-05-03,Assam,8738694.0,, +2021-05-04,Assam,8793697.0,, +2021-05-05,Assam,8845771.0,, +2021-05-06,Assam,8907148.0,, +2021-05-07,Assam,8975466.0,, +2021-05-08,Assam,9040606.0,, +2021-05-09,Assam,9076741.0,, +2021-05-10,Assam,9148938.0,, +2021-05-11,Assam,9217510.0,, +2021-05-12,Assam,9281466.0,, +2021-05-13,Assam,9341060.0,, +2021-05-14,Assam,9385117.0,, +2021-05-15,Assam,9449818.0,, +2021-05-16,Assam,9492702.0,, +2021-05-17,Assam,9584183.0,, +2021-05-18,Assam,9674434.0,, +2021-05-19,Assam,9776474.0,, +2021-05-20,Assam,9879158.0,, +2021-05-21,Assam,9982316.0,, +2021-05-22,Assam,10089714.0,, +2021-05-23,Assam,10152436.0,, +2021-05-24,Assam,10273104.0,, +2021-05-25,Assam,10387419.0,, +2021-05-26,Assam,10503538.0,, +2021-05-27,Assam,10622979.0,, +2021-05-28,Assam,10745956.0,, +2021-05-29,Assam,10862518.0,, +2021-05-30,Assam,10934116.0,, +2021-05-31,Assam,11045702.0,, +2021-06-01,Assam,11161215.0,, +2021-06-02,Assam,11264137.0,, +2021-06-03,Assam,11371212.0,, +2021-06-04,Assam,11494805.0,, +2021-06-05,Assam,11610773.0,, +2021-06-06,Assam,11684421.0,, +2021-06-07,Assam,11808737.0,, +2020-04-05,Bihar,3037.0,2299,32.0 +2020-04-08,Bihar,4596.0,,38.0 +2020-04-09,Bihar,4991.0,,43.0 +2020-04-10,Bihar,5457.0,,60.0 +2020-04-11,Bihar,6250.0,,61.0 +2020-04-12,Bihar,6703.0,,64.0 +2020-04-13,Bihar,7263.0,,65.0 +2020-04-14,Bihar,7727.0,,62.0 +2020-04-15,Bihar,8263.0,,66.0 +2020-04-16,Bihar,8846.0,,72.0 +2020-04-17,Bihar,9486.0,,83.0 +2020-04-18,Bihar,10130.0,,85.0 +2020-04-19,Bihar,10745.0,,92.0 +2020-04-20,Bihar,11319.0,,96.0 +2020-04-21,Bihar,11999.0,,115.0 +2020-04-22,Bihar,12978.0,,136.0 +2020-04-23,Bihar,13785.0,,148.0 +2020-04-24,Bihar,14924.0,,176.0 +2020-04-25,Bihar,15885.0,,238.0 +2020-04-26,Bihar,17041.0,,255.0 +2020-04-27,Bihar,18179.0,,328.0 +2020-04-28,Bihar,19790.0,,346.0 +2020-04-29,Bihar,21180.0,,383.0 +2020-04-30,Bihar,22672.0,,409.0 +2020-05-01,Bihar,24118.0,,466.0 +2020-05-02,Bihar,25724.0,,476.0 +2020-05-03,Bihar,26951.0,,485.0 +2020-05-04,Bihar,28345.0,,525.0 +2020-05-05,Bihar,28791.0,,529.0 +2020-05-06,Bihar,29328.0,,539.0 +2020-05-07,Bihar,29841.0,,547.0 +2020-05-08,Bihar,30320.0,,564.0 +2020-05-09,Bihar,31552.0,,585.0 +2020-05-10,Bihar,32670.0,,653.0 +2020-05-11,Bihar,34662.0,,714.0 +2020-05-12,Bihar,37430.0,,796.0 +2020-05-13,Bihar,39149.0,,909.0 +2020-05-14,Bihar,40782.0,,970.0 +2020-05-15,Bihar,42645.0,,1010.0 +2020-05-16,Bihar,44340.0,,1083.0 +2020-05-17,Bihar,45729.0,,1193.0 +2020-05-18,Bihar,46996.0,,1391.0 +2020-05-19,Bihar,50563.0,,1495.0 +2020-05-20,Bihar,53361.0,,1607.0 +2020-05-21,Bihar,55692.0,,1881.0 +2020-05-22,Bihar,58481.0,,2098.0 +2020-05-23,Bihar,61220.0,,2344.0 +2020-05-24,Bihar,63741.0,,2507.0 +2020-05-27,Bihar,68262.0,,3010.0 +2020-05-28,Bihar,70275.0,,3106.0 +2020-05-29,Bihar,72256.0,,3276.0 +2020-05-30,Bihar,73929.0,,3511.0 +2020-05-31,Bihar,75737.0,,3692.0 +2020-06-01,Bihar,78090.0,,3872.0 +2020-06-02,Bihar,81413.0,,4049.0 +2020-06-03,Bihar,84729.0,,4273.0 +2020-06-04,Bihar,88313.0,,4420.0 +2020-06-05,Bihar,91903.0,,4551.0 +2020-06-06,Bihar,95473.0,,4745.0 +2020-06-07,Bihar,99108.0,,4972.0 +2020-06-08,Bihar,102318.0,,5176.0 +2020-06-09,Bihar,105588.0,,5364.0 +2020-06-10,Bihar,109483.0,,5583.0 +2020-06-11,Bihar,113225.0,,5807.0 +2020-06-12,Bihar,116671.0,,6043.0 +2020-06-13,Bihar,120086.0,,6183.0 +2020-06-14,Bihar,123629.0,,6355.0 +2020-06-15,Bihar,127126.0,,6581.0 +2020-06-16,Bihar,130783.0,,6736.0 +2020-06-17,Bihar,134402.0,,6889.0 +2020-06-18,Bihar,139584.0,,6993.0 +2020-06-19,Bihar,145562.0,,7178.0 +2020-06-20,Bihar,151148.0,,7380.0 +2020-06-21,Bihar,156926.0,,7602.0 +2020-06-22,Bihar,163476.0,,7808.0 +2020-06-23,Bihar,169401.0,,7974.0 +2020-06-24,Bihar,175103.0,,8180.0 +2020-06-25,Bihar,181737.0,,8381.0 +2020-06-26,Bihar,189643.0,,8611.0 +2020-06-27,Bihar,198385.0,,8859.0 +2020-06-28,Bihar,205832.0,,9117.0 +2020-06-29,Bihar,212659.0,,9506.0 +2020-06-30,Bihar,220890.0,,9744.0 +2020-07-01,Bihar,228689.0,,10075.0 +2020-07-02,Bihar,235980.0,,10392.0 +2020-07-03,Bihar,243167.0,,10911.0 +2020-07-04,Bihar,251097.0,,11457.0 +2020-07-05,Bihar,257896.0,,11860.0 +2020-07-06,Bihar,264109.0,,12140.0 +2020-07-07,Bihar,269277.0,,12525.0 +2020-07-08,Bihar,275554.0,,13274.0 +2020-07-09,Bihar,284059.0,,13978.0 +2020-07-10,Bihar,291654.0,,14330.0 +2020-07-11,Bihar,300762.0,,15039.0 +2020-07-12,Bihar,310013.0,,16305.0 +2020-07-13,Bihar,319142.0,,17421.0 +2020-07-14,Bihar,329160.0,,18853.0 +2020-07-15,Bihar,337212.0,,20173.0 +2020-07-16,Bihar,347457.0,,21558.0 +2020-07-17,Bihar,357730.0,,23300.0 +2020-07-18,Bihar,368232.0,,24967.0 +2020-07-19,Bihar,378508.0,,26379.0 +2020-07-20,Bihar,388626.0,,27455.0 +2020-07-21,Bihar,398929.0,,28564.0 +2020-07-22,Bihar,409088.0,,30066.0 +2020-07-23,Bihar,419208.0,,31691.0 +2020-07-24,Bihar,429664.0,,33511.0 +2020-07-25,Bihar,442125.0,,36314.0 +2020-07-26,Bihar,456324.0,,38919.0 +2020-07-27,Bihar,470560.0,,41111.0 +2020-07-28,Bihar,486835.0,,43591.0 +2020-07-29,Bihar,504629.0,,45919.0 +2020-07-30,Bihar,525430.0,,48001.0 +2020-07-31,Bihar,548172.0,,50987.0 +2020-08-01,Bihar,576796.0,,54508.0 +2020-08-02,Bihar,612415.0,,57270.0 +2020-08-03,Bihar,648939.0,,59567.0 +2020-08-04,Bihar,687154.0,,62301.0 +2020-08-05,Bihar,739078.0,,64732.0 +2020-08-06,Bihar,799332.0,,68148.0 +2020-08-07,Bihar,870852.0,,71794.0 +2020-08-08,Bihar,946278.0,,75786.0 +2020-08-09,Bihar,1021906.0,,79720.0 +2020-08-10,Bihar,1097252.0,,82741.0 +2020-08-11,Bihar,1180566.0,,86812.0 +2020-08-12,Bihar,1272980.0,,90553.0 +2020-08-13,Bihar,1377432.0,, +2020-08-14,Bihar,1498752.0,, +2020-08-15,Bihar,1612250.0,, +2020-08-16,Bihar,1679462.0,, +2020-08-17,Bihar,1787189.0,, +2020-08-18,Bihar,1899970.0,, +2020-08-19,Bihar,2008149.0,, +2020-08-20,Bihar,2116094.0,, +2020-08-21,Bihar,2228516.0,, +2020-08-22,Bihar,2331461.0,, +2020-08-23,Bihar,2432497.0,, +2020-08-24,Bihar,2494712.0,, +2020-08-25,Bihar,2570097.0,, +2020-08-26,Bihar,2672687.0,, +2020-08-27,Bihar,2777160.0,, +2020-08-28,Bihar,2882926.0,, +2020-08-29,Bihar,2989407.0,, +2020-08-30,Bihar,3097137.0,, +2020-08-31,Bihar,3187161.0,, +2020-09-01,Bihar,3302720.0,, +2020-09-02,Bihar,3430124.0,, +2020-09-03,Bihar,3571055.0,, +2020-09-04,Bihar,3721250.0,, +2020-09-05,Bihar,3871733.0,, +2020-09-06,Bihar,4022766.0,, +2020-09-07,Bihar,4175922.0,, +2020-09-08,Bihar,4328593.0,, +2020-09-09,Bihar,4450714.0,, +2020-09-10,Bihar,4562913.0,, +2020-09-11,Bihar,4667987.0,, +2020-09-12,Bihar,4773917.0,, +2020-09-13,Bihar,4884417.0,, +2020-09-14,Bihar,4986747.0,, +2020-09-15,Bihar,5094239.0,, +2020-09-16,Bihar,5202209.0,, +2020-09-17,Bihar,5307337.0,, +2020-09-18,Bihar,5399493.0,, +2020-09-19,Bihar,5523825.0,, +2020-09-20,Bihar,5700336.0,, +2020-09-21,Bihar,5873939.0,, +2020-09-22,Bihar,6068027.0,, +2020-09-23,Bihar,6243612.0,, +2020-09-24,Bihar,6414658.0,, +2020-09-25,Bihar,6579427.0,, +2020-09-26,Bihar,6730100.0,, +2020-09-27,Bihar,6869768.0,, +2020-09-28,Bihar,6990232.0,, +2020-09-29,Bihar,7134767.0,, +2020-09-30,Bihar,7266150.0,, +2020-10-01,Bihar,7386521.0,, +2020-10-02,Bihar,7506649.0,, +2020-10-03,Bihar,7593645.0,, +2020-10-04,Bihar,7701839.0,, +2020-10-05,Bihar,7789608.0,, +2020-10-06,Bihar,7893739.0,, +2020-10-07,Bihar,7995594.0,, +2020-10-08,Bihar,8100131.0,, +2020-10-09,Bihar,8199627.0,, +2020-10-10,Bihar,8306444.0,, +2020-10-11,Bihar,8403189.0,, +2020-10-12,Bihar,8478692.0,, +2020-10-13,Bihar,8572837.0,, +2020-10-14,Bihar,8669522.0,, +2020-10-15,Bihar,8777607.0,, +2020-10-16,Bihar,8894758.0,, +2020-10-17,Bihar,9015471.0,, +2020-10-18,Bihar,9134927.0,, +2020-10-19,Bihar,9248652.0,, +2020-10-20,Bihar,9389946.0,, +2020-10-21,Bihar,9531168.0,, +2020-10-22,Bihar,9676330.0,, +2020-10-23,Bihar,9818199.0,, +2020-10-24,Bihar,9960104.0,, +2020-10-25,Bihar,10099322.0,, +2020-10-26,Bihar,10223823.0,, +2020-10-27,Bihar,10358361.0,, +2020-10-28,Bihar,10498813.0,, +2020-10-29,Bihar,10630170.0,, +2020-10-30,Bihar,10776083.0,, +2020-10-31,Bihar,10923023.0,, +2020-11-01,Bihar,11066634.0,, +2020-11-02,Bihar,11192201.0,, +2020-11-03,Bihar,11335843.0,, +2020-11-04,Bihar,11462665.0,, +2020-11-05,Bihar,11601204.0,, +2020-11-06,Bihar,11738124.0,, +2020-11-07,Bihar,11867267.0,, +2020-11-08,Bihar,11989797.0,, +2020-11-09,Bihar,12105731.0,, +2020-11-10,Bihar,12244081.0,, +2020-11-11,Bihar,12374768.0,, +2020-11-12,Bihar,12510088.0,, +2020-11-13,Bihar,12645695.0,, +2020-11-14,Bihar,12772706.0,, +2020-11-15,Bihar,12869405.0,, +2020-11-16,Bihar,12977501.0,, +2020-11-17,Bihar,13103152.0,, +2020-11-18,Bihar,13232081.0,, +2020-11-19,Bihar,13349790.0,, +2020-11-20,Bihar,13458368.0,, +2020-11-21,Bihar,13543542.0,, +2020-11-22,Bihar,13637477.0,, +2020-11-23,Bihar,13743532.0,, +2020-11-24,Bihar,13871236.0,, +2020-11-25,Bihar,14002979.0,, +2020-11-26,Bihar,14138915.0,, +2020-11-27,Bihar,14275274.0,, +2020-11-28,Bihar,14412044.0,, +2020-11-29,Bihar,14547988.0,, +2020-11-30,Bihar,14664431.0,, +2020-12-01,Bihar,14794415.0,, +2020-12-02,Bihar,14921021.0,, +2020-12-03,Bihar,15047551.0,, +2020-12-04,Bihar,15174056.0,, +2020-12-05,Bihar,15302698.0,, +2020-12-06,Bihar,15428602.0,, +2020-12-07,Bihar,15539015.0,, +2020-12-08,Bihar,15664718.0,, +2020-12-09,Bihar,15782581.0,, +2020-12-10,Bihar,15908787.0,, +2020-12-11,Bihar,16033415.0,, +2020-12-12,Bihar,16154121.0,, +2020-12-13,Bihar,16274624.0,, +2020-12-14,Bihar,16383883.0,, +2020-12-15,Bihar,16507066.0,, +2020-12-16,Bihar,16629179.0,, +2020-12-17,Bihar,16751770.0,, +2020-12-18,Bihar,16874214.0,, +2020-12-19,Bihar,16995748.0,, +2020-12-20,Bihar,17114663.0,, +2020-12-21,Bihar,17217553.0,, +2020-12-22,Bihar,17336868.0,, +2020-12-23,Bihar,17453751.0,, +2020-12-24,Bihar,17571979.0,, +2020-12-25,Bihar,17685756.0,, +2020-12-26,Bihar,17787811.0,, +2020-12-27,Bihar,17902025.0,, +2020-12-28,Bihar,17999839.0,, +2020-12-29,Bihar,18114647.0,, +2020-12-30,Bihar,18227119.0,, +2020-12-31,Bihar,18336722.0,, +2021-01-01,Bihar,18442165.0,, +2021-01-02,Bihar,18526245.0,, +2021-01-03,Bihar,18620805.0,, +2021-01-04,Bihar,18702664.0,, +2021-01-05,Bihar,18797683.0,, +2021-01-06,Bihar,18892926.0,, +2021-01-07,Bihar,18991011.0,, +2021-01-08,Bihar,19082418.0,, +2021-01-09,Bihar,19180737.0,, +2021-01-10,Bihar,19281224.0,, +2021-01-11,Bihar,19361524.0,, +2021-01-12,Bihar,19456871.0,, +2021-01-13,Bihar,19552000.0,, +2021-01-14,Bihar,19646625.0,, +2021-01-15,Bihar,19731328.0,, +2021-01-16,Bihar,19818150.0,, +2021-01-17,Bihar,19901779.0,, +2021-01-18,Bihar,19975038.0,, +2021-01-19,Bihar,20063688.0,, +2021-01-20,Bihar,20151380.0,, +2021-01-21,Bihar,20237577.0,, +2021-01-22,Bihar,20324919.0,, +2021-01-23,Bihar,20408181.0,, +2021-01-24,Bihar,20491088.0,, +2021-01-25,Bihar,20560357.0,, +2021-01-26,Bihar,20701517.0,, +2021-01-27,Bihar,20770786.0,, +2021-01-28,Bihar,20782818.0,, +2021-01-29,Bihar,20864841.0,, +2021-01-30,Bihar,20946382.0,, +2021-01-31,Bihar,21021650.0,, +2021-02-01,Bihar,21086973.0,, +2021-02-02,Bihar,21160236.0,, +2021-02-03,Bihar,21235979.0,, +2021-02-04,Bihar,21309467.0,, +2021-02-05,Bihar,21383874.0,, +2021-02-06,Bihar,21458338.0,, +2021-02-07,Bihar,21530827.0,, +2021-02-08,Bihar,21591296.0,, +2021-02-09,Bihar,21664852.0,, +2021-02-10,Bihar,21741730.0,, +2021-02-11,Bihar,21812681.0,, +2021-02-12,Bihar,21877920.0,, +2021-02-13,Bihar,21940459.0,, +2021-02-14,Bihar,21987741.0,, +2021-02-15,Bihar,22018681.0,, +2021-02-16,Bihar,22055937.0,, +2021-02-17,Bihar,22086083.0,, +2021-02-18,Bihar,22121258.0,, +2021-02-19,Bihar,22155721.0,, +2021-02-20,Bihar,22187704.0,, +2021-02-21,Bihar,22219581.0,, +2021-02-22,Bihar,22241341.0,, +2021-02-23,Bihar,22274557.0,, +2021-02-24,Bihar,22306633.0,, +2021-02-25,Bihar,22339594.0,, +2021-02-26,Bihar,22371889.0,, +2021-02-27,Bihar,22403554.0,, +2021-02-28,Bihar,22434044.0,, +2021-03-01,Bihar,22456253.0,, +2021-03-02,Bihar,22491500.0,, +2021-03-03,Bihar,22525216.0,, +2021-03-04,Bihar,22559016.0,, +2021-03-05,Bihar,22594432.0,, +2021-03-06,Bihar,22623383.0,, +2021-03-07,Bihar,22647925.0,, +2021-03-08,Bihar,22662545.0,, +2021-03-09,Bihar,22681679.0,, +2021-03-10,Bihar,22706935.0,, +2021-03-11,Bihar,22730162.0,, +2021-03-12,Bihar,22752418.0,, +2021-03-13,Bihar,22785366.0,, +2021-03-14,Bihar,22825493.0,, +2021-03-15,Bihar,22858540.0,, +2021-03-16,Bihar,22899132.0,, +2021-03-17,Bihar,22943812.0,, +2021-03-18,Bihar,23002888.0,, +2021-03-19,Bihar,23058747.0,, +2021-03-20,Bihar,23114123.0,, +2021-03-21,Bihar,23167654.0,, +2021-03-22,Bihar,23211498.0,, +2021-03-23,Bihar,23266156.0,, +2021-03-24,Bihar,23322388.0,, +2021-03-25,Bihar,23375172.0,, +2021-03-26,Bihar,23426834.0,, +2021-03-27,Bihar,23485865.0,, +2021-03-28,Bihar,23550969.0,, +2021-03-29,Bihar,23621031.0,, +2021-03-30,Bihar,23650955.0,, +2021-03-31,Bihar,23701470.0,, +2021-04-01,Bihar,23761732.0,, +2021-04-02,Bihar,23825578.0,, +2021-04-03,Bihar,23889560.0,, +2021-04-04,Bihar,23956593.0,, +2021-04-05,Bihar,24029011.0,, +2021-04-06,Bihar,24110325.0,, +2021-04-07,Bihar,24195375.0,, +2021-04-08,Bihar,24285079.0,, +2021-04-09,Bihar,24375830.0,, +2021-04-10,Bihar,24470942.0,, +2021-04-11,Bihar,24569965.0,, +2021-04-12,Bihar,24649983.0,, +2021-04-13,Bihar,24743506.0,, +2021-04-14,Bihar,24843640.0,, +2021-04-15,Bihar,24944876.0,, +2021-04-16,Bihar,25045280.0,, +2021-04-17,Bihar,25145835.0,, +2021-04-18,Bihar,25246439.0,, +2021-04-19,Bihar,25329800.0,, +2021-04-20,Bihar,25435956.0,, +2021-04-21,Bihar,25541936.0,, +2021-04-22,Bihar,25642999.0,, +2021-04-23,Bihar,25751146.0,, +2021-04-24,Bihar,25852574.0,, +2021-04-25,Bihar,25953065.0,, +2021-04-26,Bihar,26033526.0,, +2021-04-27,Bihar,26133854.0,, +2021-04-28,Bihar,26237749.0,, +2021-04-29,Bihar,26335721.0,, +2021-04-30,Bihar,26433890.0,, +2021-05-01,Bihar,26529576.0,, +2021-05-02,Bihar,26618969.0,, +2021-05-03,Bihar,26691627.0,, +2021-05-04,Bihar,26786518.0,, +2021-05-05,Bihar,26881766.0,, +2021-05-06,Bihar,26986790.0,, +2021-05-07,Bihar,27093943.0,, +2021-05-08,Bihar,27201953.0,, +2021-05-09,Bihar,27311143.0,, +2021-05-10,Bihar,27411255.0,, +2021-05-11,Bihar,27521326.0,, +2021-05-12,Bihar,27633066.0,, +2021-05-13,Bihar,27730730.0,, +2021-05-14,Bihar,27839046.0,, +2021-05-15,Bihar,27949218.0,, +2021-05-16,Bihar,28069489.0,, +2021-05-17,Bihar,28194831.0,, +2021-05-18,Bihar,28329961.0,, +2021-05-19,Bihar,28470063.0,, +2021-05-20,Bihar,28610133.0,, +2021-05-21,Bihar,28735144.0,, +2021-05-22,Bihar,28875658.0,, +2021-05-23,Bihar,29008248.0,, +2021-05-24,Bihar,29136281.0,, +2021-05-25,Bihar,29280386.0,, +2021-05-26,Bihar,29412302.0,, +2021-05-27,Bihar,29534428.0,, +2021-05-28,Bihar,29626601.0,, +2021-05-29,Bihar,29709069.0,, +2021-05-30,Bihar,29809563.0,, +2021-05-31,Bihar,29910596.0,, +2021-06-01,Bihar,30018943.0,, +2021-06-02,Bihar,30128262.0,, +2021-06-03,Bihar,30236914.0,, +2021-06-04,Bihar,30350360.0,, +2021-06-05,Bihar,30464240.0,, +2021-06-06,Bihar,30573173.0,, +2021-06-07,Bihar,30673286.0,, +2020-04-02,Chandigarh,124.0,98,18.0 +2020-04-08,Chandigarh,184.0,162,18.0 +2020-04-10,Chandigarh,223.0,199,19.0 +2020-04-11,Chandigarh,264.0,223,19.0 +2020-04-12,Chandigarh,279.0,247,21.0 +2020-04-13,Chandigarh,296.0,263,21.0 +2020-04-14,Chandigarh,309.0,285,21.0 +2020-04-15,Chandigarh,317.0,293,21.0 +2020-04-16,Chandigarh,337.0,315,21.0 +2020-04-17,Chandigarh,358.0,335,21.0 +2020-04-18,Chandigarh,381.0,348,23.0 +2020-04-19,Chandigarh,430.0,388,26.0 +2020-04-20,Chandigarh,453.0,417,26.0 +2020-04-21,Chandigarh,497.0,445,27.0 +2020-04-22,Chandigarh,529.0,492,27.0 +2020-04-23,Chandigarh,599.0,557,27.0 +2020-04-24,Chandigarh,638.0,603,27.0 +2020-04-25,Chandigarh,734.0,668,28.0 +2020-04-26,Chandigarh,756.0,677,30.0 +2020-04-27,Chandigarh,843.0,777,40.0 +2020-04-28,Chandigarh,924.0,857,56.0 +2020-04-29,Chandigarh,1012.0,922,67.0 +2020-04-30,Chandigarh,1147.0,1022,74.0 +2020-05-01,Chandigarh,1252.0,1131,88.0 +2020-05-02,Chandigarh,1462.0,1339,94.0 +2020-05-03,Chandigarh,1616.0,1491,97.0 +2020-05-04,Chandigarh,1678.0,1545,102.0 +2020-05-05,Chandigarh,1713.0,1576,115.0 +2020-05-06,Chandigarh,1785.0,1641,120.0 +2020-05-07,Chandigarh,1845.0,1698,129.0 +2020-05-08,Chandigarh,1913.0,1748,146.0 +2020-05-09,Chandigarh,2055.0,1871,169.0 +2020-05-10,Chandigarh,2142.0,1947,173.0 +2020-05-11,Chandigarh,2177.0,1978,173.0 +2020-05-12,Chandigarh,2276.0,2069,187.0 +2020-05-13,Chandigarh,2420.0,2206,189.0 +2020-05-14,Chandigarh,2505.0,2299,191.0 +2020-05-15,Chandigarh,2586.0,2383,191.0 +2020-05-16,Chandigarh,2718.0,2513,191.0 +2020-05-17,Chandigarh,2812.0,2604,191.0 +2020-05-18,Chandigarh,2892.0,2663,196.0 +2020-05-19,Chandigarh,3031.0,2783,199.0 +2020-05-21,Chandigarh,3369.0,3125,216.0 +2020-05-22,Chandigarh,3531.0,3234,219.0 +2020-05-23,Chandigarh,3749.0,3390,225.0 +2020-05-24,Chandigarh,3904.0,3514,238.0 +2020-05-25,Chandigarh,4089.0,3695,266.0 +2020-05-26,Chandigarh,4207.0,3828,278.0 +2020-05-27,Chandigarh,4332.0,3991,279.0 +2020-05-28,Chandigarh,4467.0,4138,289.0 +2020-05-29,Chandigarh,4543.0,4222,289.0 +2020-05-30,Chandigarh,4654.0,4342,289.0 +2020-05-31,Chandigarh,4785.0,4478,293.0 +2020-06-01,Chandigarh,4816.0,4495,294.0 +2020-06-02,Chandigarh,4902.0,4573,301.0 +2020-06-03,Chandigarh,4977.0,4658,301.0 +2020-06-04,Chandigarh,5059.0,4735,302.0 +2020-06-05,Chandigarh,5121.0,4793,309.0 +2020-06-06,Chandigarh,5237.0,4906,309.0 +2020-06-07,Chandigarh,5312.0,4977,314.0 +2020-06-08,Chandigarh,5385.0,5040,318.0 +2020-06-10,Chandigarh,5532.0,5182,328.0 +2020-06-11,Chandigarh,5636.0,5267,332.0 +2020-06-12,Chandigarh,5708.0,5342,334.0 +2020-06-13,Chandigarh,5839.0,5459,345.0 +2020-06-14,Chandigarh,5937.0,5563,350.0 +2020-06-15,Chandigarh,6027.0,5643,357.0 +2020-06-16,Chandigarh,6115.0,5727,358.0 +2020-06-17,Chandigarh,6233.0,5830,368.0 +2020-06-18,Chandigarh,6315.0,5912,373.0 +2020-06-19,Chandigarh,6438.0,6032,375.0 +2020-06-20,Chandigarh,6578.0,6162,390.0 +2020-06-21,Chandigarh,6677.0,6243,404.0 +2020-06-22,Chandigarh,6745.0,6301,410.0 +2020-06-23,Chandigarh,6840.0,6390,415.0 +2020-06-24,Chandigarh,6981.0,6528,420.0 +2020-06-25,Chandigarh,7072.0,6618,423.0 +2020-06-26,Chandigarh,7201.0,6746,424.0 +2020-06-27,Chandigarh,7342.0,6883,427.0 +2020-06-28,Chandigarh,7455.0,6992,429.0 +2020-06-29,Chandigarh,7548.0,7083,434.0 +2020-06-30,Chandigarh,7689.0,7219,440.0 +2020-07-01,Chandigarh,7792.0,7317,446.0 +2020-07-02,Chandigarh,7938.0,7457,450.0 +2020-07-03,Chandigarh,8074.0,7591,454.0 +2020-07-04,Chandigarh,8209.0,7717,459.0 +2020-07-05,Chandigarh,8419.0,7922,466.0 +2020-07-06,Chandigarh,8528.0,8007,487.0 +2020-07-07,Chandigarh,8669.0,8137,492.0 +2020-07-08,Chandigarh,8833.0,8267,507.0 +2020-07-09,Chandigarh,9096.0,8518,523.0 +2020-07-10,Chandigarh,9253.0,8672,536.0 +2020-07-11,Chandigarh,9405.0,8803,549.0 +2020-07-12,Chandigarh,9571.0,8966,559.0 +2020-07-13,Chandigarh,9722.0,9094,588.0 +2020-07-14,Chandigarh,9834.0,9192,600.0 +2020-07-15,Chandigarh,10050.0,9385,619.0 +2020-07-16,Chandigarh,10244.0,9560,635.0 +2020-07-17,Chandigarh,10457.0,9744,660.0 +2020-07-18,Chandigarh,10773.0,10024,691.0 +2020-07-19,Chandigarh,10959.0,10180,717.0 +2020-07-20,Chandigarh,11075.0,10277,739.0 +2020-07-21,Chandigarh,11271.0,10468,751.0 +2020-07-22,Chandigarh,11547.0,10719,780.0 +2020-07-23,Chandigarh,11780.0,10930,800.0 +2020-07-24,Chandigarh,12030.0,11159,823.0 +2020-07-25,Chandigarh,12358.0,11450,852.0 +2020-07-26,Chandigarh,12608.0,11665,887.0 +2020-07-27,Chandigarh,12786.0,11816,910.0 +2020-07-28,Chandigarh,13069.0,12076,934.0 +2020-07-29,Chandigarh,13327.0,12284,978.0 +2020-07-30,Chandigarh,13683.0,12601,1016.0 +2020-07-31,Chandigarh,13959.0,12838,1051.0 +2020-08-01,Chandigarh,14239.0,13090,1079.0 +2020-08-02,Chandigarh,14493.0,13304,1117.0 +2020-08-03,Chandigarh,14778.0,13541,1159.0 +2020-08-04,Chandigarh,15116.0,13833,1206.0 +2020-08-05,Chandigarh,15611.0,14264,1270.0 +2020-08-06,Chandigarh,16034.0,14623,1327.0 +2020-08-07,Chandigarh,16596.0,15138,1374.0 +2020-08-08,Chandigarh,17067.0,15560,1426.0 +2020-08-09,Chandigarh,17510.0,15910,1515.0 +2020-08-10,Chandigarh,17928.0,16246,1595.0 +2020-08-11,Chandigarh,18625.0,16865, +2020-08-12,Chandigarh,19141.0,17302, +2020-08-13,Chandigarh,19593.0,17662,1842.0 +2020-08-14,Chandigarh,20060.0,18042,1928.0 +2020-08-15,Chandigarh,20520.0,18419,2009.0 +2020-08-16,Chandigarh,21060.0,18864, +2020-08-17,Chandigarh,21563.0,19244, +2020-08-18,Chandigarh,22198.0,19787,2305.0 +2020-08-19,Chandigarh,22730.0,20210, +2020-08-20,Chandigarh,23374.0,20735, +2020-08-21,Chandigarh,24064.0,21280, +2020-08-22,Chandigarh,24693.0,21764, +2020-08-23,Chandigarh,25203.0,22086, +2020-08-24,Chandigarh,25645.0,22411, +2020-08-25,Chandigarh,26348.0,22934, +2020-08-26,Chandigarh,27076.0,23480, +2020-08-27,Chandigarh,27567.0,23783, +2020-08-28,Chandigarh,28337.0,24365, +2020-08-29,Chandigarh,29118.0,24885, +2020-08-30,Chandigarh,29864.0,25460, +2020-08-31,Chandigarh,30377.0,25742, +2020-09-01,Chandigarh,31268.0,26440, +2020-09-02,Chandigarh,32134.0,27067, +2020-09-03,Chandigarh,33007.0,27664, +2020-09-04,Chandigarh,33572.0,28085, +2020-09-05,Chandigarh,34369.0,28480, +2020-09-06,Chandigarh,35288.0,29168, +2020-09-07,Chandigarh,36079.0,29712, +2020-09-08,Chandigarh,37070.0,30326, +2020-09-09,Chandigarh,41440.0,34475, +2020-09-10,Chandigarh,43701.0,36448, +2020-09-11,Chandigarh,45336.0,37772, +2020-09-12,Chandigarh,47306.0,39483, +2020-09-13,Chandigarh,49451.0,41168, +2020-09-14,Chandigarh,51718.0,43171, +2020-09-15,Chandigarh,54371.0,45464, +2020-09-16,Chandigarh,56490.0,47205, +2020-09-17,Chandigarh,57679.0,48088, +2020-09-18,Chandigarh,58937.0,49088, +2020-09-19,Chandigarh,60311.0,50164, +2020-09-20,Chandigarh,62834.0,52389, +2020-09-21,Chandigarh,64625.0,53951, +2020-09-22,Chandigarh,67020.0,56089, +2020-09-23,Chandigarh,68270.0,57147, +2020-09-24,Chandigarh,69528.0,58154, +2020-09-25,Chandigarh,71009.0,59381, +2020-09-26,Chandigarh,72652.0,60849, +2020-09-27,Chandigarh,74415.0,62428, +2020-09-28,Chandigarh,75896.0,63776, +2020-09-29,Chandigarh,76721.0,64456, +2020-09-30,Chandigarh,77489.0,65093, +2020-10-01,Chandigarh,78390.0,65866, +2020-10-02,Chandigarh,79351.0,66660, +2020-10-03,Chandigarh,80300.0,67453, +2020-10-04,Chandigarh,81066.0,68126, +2020-10-05,Chandigarh,81671.0,68591, +2020-10-06,Chandigarh,82586.0,69370, +2020-10-07,Chandigarh,83413.0,70078, +2020-10-08,Chandigarh,84167.0,70726, +2020-10-09,Chandigarh,85187.0,71678, +2020-10-10,Chandigarh,86201.0,72589, +2020-10-11,Chandigarh,87485.0,73784, +2020-10-12,Chandigarh,88819.0,75016, +2020-10-13,Chandigarh,89969.0,76089, +2020-10-14,Chandigarh,91177.0,77220, +2020-10-15,Chandigarh,92198.0,78160, +2020-10-16,Chandigarh,93420.0,79320, +2020-10-17,Chandigarh,94462.0,80308, +2020-10-18,Chandigarh,95022.0,80799, +2020-10-19,Chandigarh,95776.0,81509, +2020-10-20,Chandigarh,96707.0,82377, +2020-10-21,Chandigarh,97841.0,83454, +2020-10-22,Chandigarh,98981.0,84536, +2020-10-23,Chandigarh,100045.0,85522, +2020-10-24,Chandigarh,100797.0,86213, +2020-10-25,Chandigarh,101219.0,86568, +2020-10-26,Chandigarh,101778.0,87074, +2020-10-27,Chandigarh,102933.0,88155, +2020-10-28,Chandigarh,104136.0,89293, +2020-10-29,Chandigarh,105409.0,90480, +2020-10-30,Chandigarh,106090.0,91097, +2020-10-31,Chandigarh,107015.0,91950, +2020-11-01,Chandigarh,107851.0,92724, +2020-11-02,Chandigarh,108911.0,93726, +2020-11-03,Chandigarh,110083.0,94814, +2020-11-04,Chandigarh,110989.0,95620, +2020-11-05,Chandigarh,112391.0,96925, +2020-11-06,Chandigarh,113593.0,97991, +2020-11-07,Chandigarh,114773.0,99037, +2020-11-08,Chandigarh,115589.0,99769, +2020-11-09,Chandigarh,116839.0,100898, +2020-11-10,Chandigarh,118279.0,102243, +2020-11-11,Chandigarh,119635.0,103499, +2020-11-12,Chandigarh,120681.0,104431, +2020-11-13,Chandigarh,121484.0,105136, +2020-11-15,Chandigarh,122189.0,105664, +2020-11-16,Chandigarh,123326.0,106714, +2020-11-17,Chandigarh,124741.0,107986, +2020-11-18,Chandigarh,126852.0,109943, +2020-11-19,Chandigarh,128558.0,111487, +2020-11-20,Chandigarh,130070.0,112844, +2020-11-21,Chandigarh,131280.0,113928, +2020-11-22,Chandigarh,132090.0,114651, +2020-11-23,Chandigarh,133478.0,115935, +2020-11-24,Chandigarh,134281.0,116658, +2020-11-25,Chandigarh,135876.0,118166, +2020-11-26,Chandigarh,137442.0,119600, +2020-11-27,Chandigarh,140730.0,122777, +2020-11-29,Chandigarh,141616.0,123467, +2020-11-30,Chandigarh,142326.0,124109, +2020-12-01,Chandigarh,144204.0,125856, +2020-12-02,Chandigarh,145958.0,127500, +2020-12-03,Chandigarh,147467.0,128934, +2020-12-04,Chandigarh,149019.0,130367, +2020-12-05,Chandigarh,150409.0,131651, +2020-12-06,Chandigarh,151473.0,132612, +2020-12-07,Chandigarh,152801.0,133852, +2020-12-08,Chandigarh,154396.0,135138, +2020-12-09,Chandigarh,155643.0,136480, +2020-12-10,Chandigarh,157056.0,137802, +2020-12-11,Chandigarh,158516.0,139166, +2020-12-12,Chandigarh,159784.0,140360, +2020-12-13,Chandigarh,160600.0,141106, +2020-12-14,Chandigarh,161810.0,142236, +2020-12-15,Chandigarh,162991.0,143354, +2020-12-16,Chandigarh,164254.0,144548, +2020-12-17,Chandigarh,165414.0,145646, +2020-12-18,Chandigarh,166499.0,146655, +2020-12-19,Chandigarh,167704.0,147795, +2020-12-20,Chandigarh,168234.0,148296, +2020-12-21,Chandigarh,169489.0,149492, +2020-12-22,Chandigarh,170841.0,150787, +2020-12-23,Chandigarh,172379.0,152240, +2020-12-24,Chandigarh,173459.0,153276, +2020-12-25,Chandigarh,174395.0,154176, +2020-12-26,Chandigarh,175611.0,155311, +2020-12-27,Chandigarh,176337.0,155970, +2020-12-28,Chandigarh,177441.0,156995, +2020-12-29,Chandigarh,178691.0,158179, +2020-12-30,Chandigarh,180014.0,159429, +2020-12-31,Chandigarh,181186.0,160534, +2021-01-01,Chandigarh,182063.0,161358, +2021-01-02,Chandigarh,183091.0,162317, +2021-01-03,Chandigarh,183594.0,162803, +2021-01-04,Chandigarh,184844.0,163994, +2021-01-05,Chandigarh,186419.0,165457, +2021-01-06,Chandigarh,187897.0,166855, +2021-01-07,Chandigarh,189318.0,168231, +2021-01-08,Chandigarh,190556.0,169415, +2021-01-09,Chandigarh,191673.0,170482, +2021-01-10,Chandigarh,192376.0,171141, +2021-01-12,Chandigarh,194901.0,173583, +2021-01-13,Chandigarh,196211.0,174856, +2021-01-14,Chandigarh,197283.0,175903, +2021-01-15,Chandigarh,198409.0,177003, +2021-01-16,Chandigarh,199538.0,178093, +2021-01-17,Chandigarh,200245.0,178766, +2021-01-18,Chandigarh,201373.0,179867, +2021-01-19,Chandigarh,202434.0,180897, +2021-01-20,Chandigarh,203275.0,181710, +2021-01-21,Chandigarh,204305.0,182724, +2021-01-22,Chandigarh,205814.0,184208, +2021-01-23,Chandigarh,207047.0,185419, +2021-01-24,Chandigarh,208107.0,186447, +2021-01-26,Chandigarh,210111.0,, +2021-01-27,Chandigarh,211460.0,189699, +2021-01-28,Chandigarh,212915.0,191118, +2021-01-29,Chandigarh,214102.0,192278, +2021-01-30,Chandigarh,215242.0,193401, +2021-01-31,Chandigarh,216246.0,194378, +2021-02-01,Chandigarh,217610.0,195710, +2021-02-02,Chandigarh,218941.0,197019, +2021-02-03,Chandigarh,220301.0,198343, +2021-02-07,Chandigarh,225242.0,203192, +2021-02-08,Chandigarh,226503.0,204427, +2021-02-10,Chandigarh,228973.0,206859, +2021-02-11,Chandigarh,230418.0,208291, +2021-02-12,Chandigarh,231652.0,209506, +2021-02-13,Chandigarh,233067.0,210904, +2021-02-14,Chandigarh,234069.0,211888, +2021-02-15,Chandigarh,235303.0,213096, +2021-02-16,Chandigarh,236728.0,214491, +2021-02-17,Chandigarh,238048.0,215781, +2021-02-18,Chandigarh,239648.0,217351, +2021-02-19,Chandigarh,240935.0,218619, +2021-02-20,Chandigarh,242302.0,219960, +2021-02-21,Chandigarh,243429.0,221056, +2021-02-22,Chandigarh,244956.0,222545, +2021-02-23,Chandigarh,246706.0,224258, +2021-02-24,Chandigarh,248384.0,225895, +2021-02-25,Chandigarh,250130.0,227592, +2021-02-26,Chandigarh,252022.0,229413, +2021-02-27,Chandigarh,253339.0,230669, +2021-02-28,Chandigarh,254433.0,231712, +2021-03-01,Chandigarh,256362.0,233566, +2021-03-02,Chandigarh,258184.0,235319, +2021-03-03,Chandigarh,259793.0,236870, +2021-03-04,Chandigarh,261609.0,238605, +2021-03-05,Chandigarh,263410.0,240330, +2021-03-06,Chandigarh,265479.0,242276, +2021-03-07,Chandigarh,266685.0,243399, +2021-03-08,Chandigarh,268392.0,245027, +2021-03-09,Chandigarh,270350.0,246880, +2021-03-10,Chandigarh,272059.0,248501, +2021-03-11,Chandigarh,273400.0,249733, +2021-03-12,Chandigarh,274991.0,251187, +2021-03-13,Chandigarh,276905.0,252953, +2021-03-14,Chandigarh,278390.0,254318, +2021-03-15,Chandigarh,280183.0,255961, +2021-03-16,Chandigarh,282157.0,257788, +2021-03-17,Chandigarh,284386.0,259816, +2021-03-18,Chandigarh,286187.0,261398, +2021-03-19,Chandigarh,287941.0,262938, +2021-03-20,Chandigarh,289955.0,264748, +2021-03-21,Chandigarh,292183.0,266727, +2021-03-22,Chandigarh,294023.0,268359, +2021-03-23,Chandigarh,296079.0,270196, +2021-03-24,Chandigarh,298087.0,271952, +2021-03-25,Chandigarh,300105.0,273740, +2021-03-26,Chandigarh,302049.0,275427, +2021-03-27,Chandigarh,303963.0,277045, +2021-03-28,Chandigarh,306217.0,279003, +2021-03-29,Chandigarh,308086.0,280594, +2021-03-30,Chandigarh,309840.0,282078, +2021-03-31,Chandigarh,311905.0,283876, +2021-04-01,Chandigarh,313935.0,285648, +2021-04-02,Chandigarh,316037.0,287463, +2021-04-03,Chandigarh,318451.0,289564, +2021-04-04,Chandigarh,321189.0,291960, +2021-04-05,Chandigarh,323293.0,293776, +2021-04-06,Chandigarh,325654.0,295815, +2021-04-07,Chandigarh,328766.0,298528, +2021-04-08,Chandigarh,331288.0,300725, +2021-04-09,Chandigarh,334548.0,303559, +2021-04-10,Chandigarh,337663.0,306276, +2021-04-11,Chandigarh,340849.0,309055, +2021-04-12,Chandigarh,343981.0,311760, +2021-04-13,Chandigarh,346766.0,314145, +2021-04-14,Chandigarh,349851.0,316806, +2021-04-15,Chandigarh,352815.0,319357, +2021-04-16,Chandigarh,355840.0,321895, +2021-04-17,Chandigarh,358856.0,324486, +2021-04-18,Chandigarh,362406.0,327401, +2021-04-19,Chandigarh,365412.0,329794, +2021-04-20,Chandigarh,368438.0,332216, +2021-04-21,Chandigarh,371408.0,334563, +2021-04-22,Chandigarh,374392.0,336913, +2021-04-23,Chandigarh,378454.0,340146, +2021-04-24,Chandigarh,382125.0,343106, +2021-04-25,Chandigarh,385925.0,346154, +2021-04-26,Chandigarh,389827.0,349235, +2021-04-27,Chandigarh,394029.0,352598, +2021-04-28,Chandigarh,397590.0,355384, +2021-04-29,Chandigarh,401411.0,358403, +2021-04-30,Chandigarh,404615.0,360875, +2021-05-01,Chandigarh,408487.0,363939, +2021-05-02,Chandigarh,412497.0,367088, +2021-05-03,Chandigarh,416408.0,370101, +2021-05-04,Chandigarh,419601.0,372510, +2021-05-05,Chandigarh,423313.0,375400, +2021-05-06,Chandigarh,426227.0,377550, +2021-05-07,Chandigarh,430125.0,380551, +2021-05-08,Chandigarh,433928.0,383480, +2021-05-09,Chandigarh,437869.0,386521, +2021-05-10,Chandigarh,441625.0,389411, +2021-05-11,Chandigarh,444454.0,391453, +2021-05-12,Chandigarh,447896.0,394118, +2021-05-13,Chandigarh,451453.0,396911, +2021-05-14,Chandigarh,454814.0,399617, +2021-05-15,Chandigarh,458231.0,402365, +2021-05-16,Chandigarh,461826.0,405289, +2021-05-17,Chandigarh,465181.0,408024, +2021-05-18,Chandigarh,468017.0,410333, +2021-05-19,Chandigarh,470962.0,412862, +2021-05-20,Chandigarh,474170.0,415650, +2021-05-21,Chandigarh,477484.0,418558, +2021-05-22,Chandigarh,481446.0,422124, +2021-05-23,Chandigarh,485087.0,425404, +2021-05-24,Chandigarh,488182.0,428251, +2021-05-25,Chandigarh,491148.0,430958, +2021-05-26,Chandigarh,493948.0,433534, +2021-05-27,Chandigarh,496588.0,435973, +2021-05-28,Chandigarh,499561.0,438778, +2021-05-29,Chandigarh,502637.0,441690, +2021-05-30,Chandigarh,505899.0,444767, +2021-05-31,Chandigarh,508469.0,447211, +2021-06-01,Chandigarh,510724.0,449335, +2021-06-02,Chandigarh,513554.0,452047, +2021-06-03,Chandigarh,516329.0,454706, +2021-06-04,Chandigarh,518931.0,457218, +2021-06-05,Chandigarh,521716.0,459904, +2021-06-06,Chandigarh,523880.0,461989, +2021-06-07,Chandigarh,525544.0,463603, +2020-04-02,Chhattisgarh,1232.0,921,9.0 +2020-04-10,Chhattisgarh,3473.0,3322,18.0 +2020-04-11,Chhattisgarh,3858.0,3503,18.0 +2020-04-12,Chhattisgarh,3945.0,3856,31.0 +2020-04-13,Chhattisgarh,4377.0,3969,31.0 +2020-04-14,Chhattisgarh,4812.0,4319,33.0 +2020-04-15,Chhattisgarh,5122.0,4878,33.0 +2020-04-16,Chhattisgarh,5519.0,5168,33.0 +2020-04-17,Chhattisgarh,5776.0,5484,36.0 +2020-04-18,Chhattisgarh,5776.0,5484,36.0 +2020-04-19,Chhattisgarh,6675.0,6086,36.0 +2020-04-20,Chhattisgarh,7601.0,7029,36.0 +2020-04-21,Chhattisgarh,8272.0,7555,36.0 +2020-04-22,Chhattisgarh,9220.0,8296,36.0 +2020-04-23,Chhattisgarh,10346.0,9206,36.0 +2020-04-24,Chhattisgarh,11386.0,10213,36.0 +2020-04-25,Chhattisgarh,12596.0,11168,37.0 +2020-04-26,Chhattisgarh,13786.0,12406,37.0 +2020-04-27,Chhattisgarh,14987.0,13882,37.0 +2020-04-28,Chhattisgarh,15737.0,14953,38.0 +2020-04-29,Chhattisgarh,16546.0,15658,38.0 +2020-04-30,Chhattisgarh,17541.0,16602,40.0 +2020-05-01,Chhattisgarh,18039.0,17199,43.0 +2020-05-03,Chhattisgarh,19902.0,18848,57.0 +2020-05-05,Chhattisgarh,21323.0,20300,58.0 +2020-05-06,Chhattisgarh,22188.0,20873,59.0 +2020-05-08,Chhattisgarh,23629.0,22509,59.0 +2020-05-09,Chhattisgarh,24506.0,23326,59.0 +2020-05-10,Chhattisgarh,25282.0,24186,59.0 +2020-05-12,Chhattisgarh,27339.0,25741,59.0 +2020-05-13,Chhattisgarh,28837.0,27012,59.0 +2020-05-14,Chhattisgarh,29697.0,28234,59.0 +2020-05-15,Chhattisgarh,31341.0,29812,66.0 +2020-05-16,Chhattisgarh,32678.0,31275,67.0 +2020-05-18,Chhattisgarh,36606.0,34656,93.0 +2020-05-19,Chhattisgarh,39010.0,36586,100.0 +2020-05-21,Chhattisgarh,45522.0,42618,128.0 +2020-05-22,Chhattisgarh,48116.0,45022,172.0 +2020-05-23,Chhattisgarh,49763.0,46894,214.0 +2020-05-25,Chhattisgarh,55022.0,52598,292.0 +2020-05-26,Chhattisgarh,57479.0,55539,360.0 +2020-05-27,Chhattisgarh,59320.0,57283,364.0 +2020-05-28,Chhattisgarh,61771.0,59585,398.0 +2020-05-29,Chhattisgarh,63992.0,62983,415.0 +2020-05-30,Chhattisgarh,66417.0,64762,447.0 +2020-05-31,Chhattisgarh,69152.0,67268,492.0 +2020-06-01,Chhattisgarh,70726.0,69361,539.0 +2020-06-02,Chhattisgarh,73198.0,71218,556.0 +2020-06-03,Chhattisgarh,76446.0,73706,626.0 +2020-06-04,Chhattisgarh,78971.0,75519,756.0 +2020-06-05,Chhattisgarh,81773.0,78134,863.0 +2020-06-06,Chhattisgarh,85346.0,80477,923.0 +2020-06-07,Chhattisgarh,88896.0,84344,1073.0 +2020-06-08,Chhattisgarh,92598.0,86719,1160.0 +2020-06-09,Chhattisgarh,93059.0,89914,1211.0 +2020-06-10,Chhattisgarh,94576.0,92049,1262.0 +2020-06-11,Chhattisgarh,96230.0,93903,1398.0 +2020-06-12,Chhattisgarh,98603.0,95965,1429.0 +2020-06-13,Chhattisgarh,101554.0,,1512.0 +2020-06-14,Chhattisgarh,103895.0,,1549.0 +2020-06-15,Chhattisgarh,107172.0,,1715.0 +2020-06-16,Chhattisgarh,110062.0,,1784.0 +2020-06-17,Chhattisgarh,113613.0,,1864.0 +2020-06-18,Chhattisgarh,116329.0,,1946.0 +2020-06-19,Chhattisgarh,120523.0,115197,2018.0 +2020-06-20,Chhattisgarh,123983.0,,2076.0 +2020-06-21,Chhattisgarh,126246.0,121044,2273.0 +2020-06-22,Chhattisgarh,129731.0,124679,2302.0 +2020-06-23,Chhattisgarh,133753.0,127831,2356.0 +2020-06-24,Chhattisgarh,137400.0,132332,2419.0 +2020-06-25,Chhattisgarh,142090.0,,2456.0 +2020-06-26,Chhattisgarh,144828.0,,2545.0 +2020-06-27,Chhattisgarh,152874.0,,2602.0 +2020-06-28,Chhattisgarh,154526.0,,2694.0 +2020-06-29,Chhattisgarh,156386.0,,2761.0 +2020-06-30,Chhattisgarh,160650.0,,2858.0 +2020-07-01,Chhattisgarh,163662.0,,2940.0 +2020-07-02,Chhattisgarh,166656.0,,3013.0 +2020-07-03,Chhattisgarh,177554.0,,3065.0 +2020-07-04,Chhattisgarh,179782.0,,3133.0 +2020-07-05,Chhattisgarh,182636.0,,3207.0 +2020-07-06,Chhattisgarh,185399.0,,3305.0 +2020-07-07,Chhattisgarh,189038.0,,3415.0 +2020-07-08,Chhattisgarh,191938.0,,3491.0 +2020-07-09,Chhattisgarh,196150.0,,3679.0 +2020-07-10,Chhattisgarh,200006.0,,3806.0 +2020-07-11,Chhattisgarh,204932.0,,3897.0 +2020-07-12,Chhattisgarh,209864.0,,4081.0 +2020-07-13,Chhattisgarh,213395.0,,4265.0 +2020-07-14,Chhattisgarh,217433.0,,4379.0 +2020-07-15,Chhattisgarh,222113.0,,4556.0 +2020-07-16,Chhattisgarh,225913.0,,4754.0 +2020-07-17,Chhattisgarh,232873.0,,4976.0 +2020-07-18,Chhattisgarh,238890.0,,5246.0 +2020-07-19,Chhattisgarh,244937.0,,5407.0 +2020-07-20,Chhattisgarh,250016.0,,5598.0 +2020-07-21,Chhattisgarh,254185.0,,5731.0 +2020-07-22,Chhattisgarh,260227.0,,5968.0 +2020-07-23,Chhattisgarh,268285.0,,6254.0 +2020-07-24,Chhattisgarh,274660.0,,6731.0 +2020-07-25,Chhattisgarh,280964.0,,7087.0 +2020-07-26,Chhattisgarh,286291.0,,7489.0 +2020-07-27,Chhattisgarh,292627.0,,7863.0 +2020-07-28,Chhattisgarh,297481.0,,8257.0 +2020-07-29,Chhattisgarh,302506.0,,8515.0 +2020-07-30,Chhattisgarh,310696.0,,8775.0 +2020-07-31,Chhattisgarh,316127.0,,9086.0 +2020-08-01,Chhattisgarh,323692.0,,9385.0 +2020-08-02,Chhattisgarh,331268.0,,9608.0 +2020-08-03,Chhattisgarh,334709.0,,9800.0 +2020-08-04,Chhattisgarh,340043.0,,10109.0 +2020-08-05,Chhattisgarh,345250.0,,10407.0 +2020-08-06,Chhattisgarh,352681.0,,10932.0 +2020-08-07,Chhattisgarh,359857.0,,11328.0 +2020-08-08,Chhattisgarh,366957.0,,11743.0 +2020-08-09,Chhattisgarh,371706.0,,12148.0 +2020-08-10,Chhattisgarh,381018.0,,12502.0 +2020-08-11,Chhattisgarh,388852.0,,12938.0 +2020-08-12,Chhattisgarh,394141.0,, +2020-08-13,Chhattisgarh,402390.0,,13960.0 +2020-08-14,Chhattisgarh,409693.0,,14481.0 +2020-08-15,Chhattisgarh,414328.0,,14987.0 +2020-08-16,Chhattisgarh,419658.0,,15471.0 +2020-08-17,Chhattisgarh,427209.0,,15993.0 +2020-08-18,Chhattisgarh,436180.0,,16726.0 +2020-08-19,Chhattisgarh,445420.0,,17485.0 +2020-08-20,Chhattisgarh,455106.0,, +2020-08-21,Chhattisgarh,468099.0,,19459.0 +2020-08-22,Chhattisgarh,477974.0,, +2020-08-23,Chhattisgarh,483989.0,, +2020-08-24,Chhattisgarh,494081.0,, +2020-08-25,Chhattisgarh,505193.0,, +2020-08-26,Chhattisgarh,519678.0,, +2020-08-27,Chhattisgarh,533691.0,, +2020-08-28,Chhattisgarh,548182.0,, +2020-08-29,Chhattisgarh,560273.0,, +2020-08-30,Chhattisgarh,571177.0,, +2020-08-31,Chhattisgarh,582540.0,, +2020-09-01,Chhattisgarh,596544.0,, +2020-09-02,Chhattisgarh,609578.0,, +2020-09-03,Chhattisgarh,615568.0,, +2020-09-04,Chhattisgarh,634702.0,, +2020-09-05,Chhattisgarh,653608.0,, +2020-09-06,Chhattisgarh,669541.0,, +2020-09-07,Chhattisgarh,681978.0,, +2020-09-08,Chhattisgarh,700529.0,, +2020-09-09,Chhattisgarh,719630.0,, +2020-09-10,Chhattisgarh,737334.0,, +2020-09-11,Chhattisgarh,756163.0,, +2020-09-12,Chhattisgarh,772134.0,, +2020-09-13,Chhattisgarh,784483.0,, +2020-09-14,Chhattisgarh,806045.0,, +2020-09-15,Chhattisgarh,827074.0,, +2020-09-16,Chhattisgarh,846663.0,, +2020-09-17,Chhattisgarh,872584.0,, +2020-09-18,Chhattisgarh,904770.0,, +2020-09-19,Chhattisgarh,918455.0,, +2020-09-20,Chhattisgarh,929701.0,, +2020-09-21,Chhattisgarh,942303.0,, +2020-09-22,Chhattisgarh,958452.0,, +2020-09-23,Chhattisgarh,982825.0,, +2020-09-24,Chhattisgarh,998347.0,, +2020-09-25,Chhattisgarh,1015613.0,, +2020-09-26,Chhattisgarh,1034460.0,, +2020-09-27,Chhattisgarh,1046534.0,, +2020-09-28,Chhattisgarh,1081521.0,, +2020-09-29,Chhattisgarh,1093348.0,, +2020-09-30,Chhattisgarh,1106612.0,, +2020-10-01,Chhattisgarh,1121641.0,, +2020-10-02,Chhattisgarh,1137384.0,, +2020-10-03,Chhattisgarh,1155975.0,, +2020-10-04,Chhattisgarh,1168578.0,, +2020-10-05,Chhattisgarh,1191097.0,, +2020-10-06,Chhattisgarh,1212678.0,, +2020-10-07,Chhattisgarh,1238699.0,, +2020-10-08,Chhattisgarh,1266497.0,, +2020-10-09,Chhattisgarh,1297381.0,, +2020-10-10,Chhattisgarh,1328665.0,, +2020-10-11,Chhattisgarh,1353822.0,, +2020-10-12,Chhattisgarh,1387386.0,, +2020-10-13,Chhattisgarh,1414068.0,, +2020-10-14,Chhattisgarh,1441607.0,, +2020-10-15,Chhattisgarh,1466334.0,, +2020-10-16,Chhattisgarh,1489424.0,, +2020-10-17,Chhattisgarh,1511088.0,, +2020-10-18,Chhattisgarh,1526356.0,, +2020-10-19,Chhattisgarh,1547704.0,, +2020-10-20,Chhattisgarh,1569496.0,, +2020-10-21,Chhattisgarh,1593040.0,, +2020-10-22,Chhattisgarh,1617726.0,, +2020-10-23,Chhattisgarh,1642977.0,, +2020-10-24,Chhattisgarh,1664735.0,, +2020-10-25,Chhattisgarh,1679649.0,, +2020-10-26,Chhattisgarh,1698096.0,, +2020-10-27,Chhattisgarh,1719929.0,, +2020-10-28,Chhattisgarh,1742743.0,, +2020-10-29,Chhattisgarh,1767270.0,, +2020-10-30,Chhattisgarh,1786685.0,, +2020-10-31,Chhattisgarh,1809446.0,, +2020-11-01,Chhattisgarh,1827425.0,, +2020-11-02,Chhattisgarh,1847925.0,, +2020-11-03,Chhattisgarh,1868995.0,, +2020-11-04,Chhattisgarh,1894622.0,, +2020-11-05,Chhattisgarh,1920238.0,, +2020-11-06,Chhattisgarh,1947137.0,, +2020-11-07,Chhattisgarh,1973211.0,, +2020-11-08,Chhattisgarh,1991002.0,, +2020-11-09,Chhattisgarh,2017019.0,, +2020-11-10,Chhattisgarh,2042649.0,, +2020-11-11,Chhattisgarh,2068640.0,, +2020-11-12,Chhattisgarh,2094950.0,, +2020-11-13,Chhattisgarh,2117987.0,, +2020-11-14,Chhattisgarh,2127134.0,, +2020-11-15,Chhattisgarh,2135139.0,, +2020-11-16,Chhattisgarh,2148223.0,, +2020-11-17,Chhattisgarh,2171629.0,, +2020-11-18,Chhattisgarh,2199344.0,, +2020-11-19,Chhattisgarh,2230922.0,, +2020-11-20,Chhattisgarh,2258546.0,, +2020-11-21,Chhattisgarh,2290759.0,, +2020-11-22,Chhattisgarh,2314369.0,, +2020-11-23,Chhattisgarh,2347120.0,, +2020-11-24,Chhattisgarh,2380169.0,, +2020-11-25,Chhattisgarh,2414011.0,, +2020-11-26,Chhattisgarh,2448167.0,, +2020-11-27,Chhattisgarh,2481567.0,, +2020-11-28,Chhattisgarh,2513159.0,, +2020-11-29,Chhattisgarh,2537122.0,, +2020-11-30,Chhattisgarh,2563606.0,, +2020-12-01,Chhattisgarh,2597019.0,, +2020-12-02,Chhattisgarh,2631183.0,, +2020-12-03,Chhattisgarh,2667761.0,, +2020-12-04,Chhattisgarh,2702320.0,, +2020-12-05,Chhattisgarh,2735766.0,, +2020-12-06,Chhattisgarh,2760290.0,, +2020-12-07,Chhattisgarh,2793936.0,, +2020-12-08,Chhattisgarh,2828098.0,, +2020-12-09,Chhattisgarh,2862281.0,, +2020-12-10,Chhattisgarh,2897495.0,, +2020-12-11,Chhattisgarh,2932206.0,, +2020-12-12,Chhattisgarh,2964566.0,, +2020-12-13,Chhattisgarh,2988862.0,, +2020-12-14,Chhattisgarh,3023151.0,, +2020-12-15,Chhattisgarh,3057999.0,, +2020-12-16,Chhattisgarh,3092705.0,, +2020-12-17,Chhattisgarh,3125971.0,, +2020-12-18,Chhattisgarh,3153217.0,, +2020-12-19,Chhattisgarh,3182118.0,, +2020-12-20,Chhattisgarh,3204491.0,, +2020-12-21,Chhattisgarh,3236897.0,, +2020-12-22,Chhattisgarh,3268679.0,, +2020-12-23,Chhattisgarh,3300858.0,, +2020-12-24,Chhattisgarh,3331915.0,, +2020-12-25,Chhattisgarh,3355323.0,, +2020-12-26,Chhattisgarh,3380053.0,, +2020-12-27,Chhattisgarh,3397715.0,, +2020-12-28,Chhattisgarh,3427215.0,, +2020-12-29,Chhattisgarh,3457186.0,, +2020-12-30,Chhattisgarh,3486017.0,, +2020-12-31,Chhattisgarh,3514707.0,, +2021-01-01,Chhattisgarh,3537635.0,, +2021-01-02,Chhattisgarh,3563181.0,, +2021-01-03,Chhattisgarh,3580200.0,, +2021-01-04,Chhattisgarh,3608969.0,, +2021-01-05,Chhattisgarh,3638225.0,, +2021-01-06,Chhattisgarh,3666495.0,, +2021-01-07,Chhattisgarh,3696394.0,, +2021-01-08,Chhattisgarh,3725189.0,, +2021-01-09,Chhattisgarh,3754106.0,, +2021-01-10,Chhattisgarh,3772966.0,, +2021-01-11,Chhattisgarh,3803079.0,, +2021-01-12,Chhattisgarh,3829787.0,, +2021-01-13,Chhattisgarh,3854525.0,, +2021-01-14,Chhattisgarh,3877768.0,, +2021-01-15,Chhattisgarh,3902112.0,, +2021-01-16,Chhattisgarh,3922535.0,, +2021-01-17,Chhattisgarh,3936682.0,, +2021-01-18,Chhattisgarh,3961253.0,, +2021-01-19,Chhattisgarh,3983112.0,, +2021-01-20,Chhattisgarh,4006513.0,, +2021-01-21,Chhattisgarh,4031552.0,, +2021-01-22,Chhattisgarh,4056025.0,, +2021-01-23,Chhattisgarh,4076430.0,, +2021-01-24,Chhattisgarh,4089900.0,, +2021-01-25,Chhattisgarh,4111523.0,, +2021-01-26,Chhattisgarh,4120423.0,, +2021-01-27,Chhattisgarh,4142971.0,, +2021-01-28,Chhattisgarh,4163045.0,, +2021-01-29,Chhattisgarh,4183581.0,, +2021-01-30,Chhattisgarh,4207188.0,, +2021-01-31,Chhattisgarh,4220304.0,, +2021-02-01,Chhattisgarh,4241595.0,, +2021-02-02,Chhattisgarh,4265378.0,, +2021-02-03,Chhattisgarh,4289431.0,, +2021-02-04,Chhattisgarh,4313849.0,, +2021-02-05,Chhattisgarh,4336764.0,, +2021-02-06,Chhattisgarh,4357998.0,, +2021-02-07,Chhattisgarh,4367871.0,, +2021-02-08,Chhattisgarh,4392639.0,, +2021-02-09,Chhattisgarh,4415825.0,, +2021-02-10,Chhattisgarh,4440663.0,, +2021-02-11,Chhattisgarh,4464255.0,, +2021-02-12,Chhattisgarh,4487821.0,, +2021-02-13,Chhattisgarh,4509169.0,, +2021-02-14,Chhattisgarh,4520503.0,, +2021-02-15,Chhattisgarh,4541913.0,, +2021-02-16,Chhattisgarh,4564098.0,, +2021-02-17,Chhattisgarh,4584157.0,, +2021-02-18,Chhattisgarh,4606097.0,, +2021-02-19,Chhattisgarh,4628049.0,, +2021-02-20,Chhattisgarh,4650091.0,, +2021-02-21,Chhattisgarh,4661484.0,, +2021-02-22,Chhattisgarh,4684828.0,, +2021-02-23,Chhattisgarh,4708872.0,, +2021-02-24,Chhattisgarh,4734574.0,, +2021-02-25,Chhattisgarh,4754502.0,, +2021-02-26,Chhattisgarh,4778537.0,, +2021-02-27,Chhattisgarh,4802023.0,, +2021-02-28,Chhattisgarh,4812273.0,, +2021-03-01,Chhattisgarh,4839358.0,, +2021-03-02,Chhattisgarh,4866032.0,, +2021-03-03,Chhattisgarh,4893327.0,, +2021-03-04,Chhattisgarh,4918996.0,, +2021-03-05,Chhattisgarh,4947113.0,, +2021-03-06,Chhattisgarh,4975419.0,, +2021-03-07,Chhattisgarh,4990336.0,, +2021-03-08,Chhattisgarh,5018746.0,, +2021-03-09,Chhattisgarh,5046027.0,, +2021-03-10,Chhattisgarh,5072555.0,, +2021-03-11,Chhattisgarh,5092247.0,, +2021-03-12,Chhattisgarh,5120883.0,, +2021-03-13,Chhattisgarh,5152986.0,, +2021-03-14,Chhattisgarh,5177770.0,, +2021-03-15,Chhattisgarh,5217833.0,, +2021-03-16,Chhattisgarh,5256686.0,, +2021-03-17,Chhattisgarh,5294064.0,, +2021-03-18,Chhattisgarh,5334347.0,, +2021-03-19,Chhattisgarh,5371774.0,, +2021-03-20,Chhattisgarh,5408167.0,, +2021-03-21,Chhattisgarh,5429721.0,, +2021-03-22,Chhattisgarh,5465654.0,, +2021-03-23,Chhattisgarh,5505273.0,, +2021-03-24,Chhattisgarh,5542288.0,, +2021-03-25,Chhattisgarh,5580898.0,, +2021-03-26,Chhattisgarh,5619273.0,, +2021-03-27,Chhattisgarh,5658850.0,, +2021-03-28,Chhattisgarh,5683536.0,, +2021-03-29,Chhattisgarh,5691819.0,, +2021-03-30,Chhattisgarh,5719388.0,, +2021-03-31,Chhattisgarh,5757808.0,, +2021-04-01,Chhattisgarh,5798665.0,, +2021-04-02,Chhattisgarh,5832740.0,, +2021-04-03,Chhattisgarh,5873615.0,, +2021-04-04,Chhattisgarh,5900526.0,, +2021-04-05,Chhattisgarh,5940579.0,, +2021-04-06,Chhattisgarh,5988552.0,, +2021-04-07,Chhattisgarh,6030841.0,, +2021-04-08,Chhattisgarh,6079584.0,, +2021-04-09,Chhattisgarh,6126295.0,, +2021-04-10,Chhattisgarh,6176451.0,, +2021-04-11,Chhattisgarh,6216629.0,, +2021-04-12,Chhattisgarh,6262626.0,, +2021-04-13,Chhattisgarh,6316419.0,, +2021-04-14,Chhattisgarh,6362947.0,, +2021-04-15,Chhattisgarh,6416401.0,, +2021-04-16,Chhattisgarh,6465985.0,, +2021-04-17,Chhattisgarh,6519901.0,, +2021-04-18,Chhattisgarh,6562553.0,, +2021-04-19,Chhattisgarh,6611226.0,, +2021-04-20,Chhattisgarh,6661925.0,, +2021-04-21,Chhattisgarh,6707690.0,, +2021-04-22,Chhattisgarh,6762690.0,, +2021-04-23,Chhattisgarh,6819875.0,, +2021-04-24,Chhattisgarh,6877100.0,, +2021-04-25,Chhattisgarh,6918250.0,, +2021-04-26,Chhattisgarh,6972500.0,, +2021-04-27,Chhattisgarh,7026656.0,, +2021-04-28,Chhattisgarh,7086058.0,, +2021-04-29,Chhattisgarh,7147064.0,, +2021-04-30,Chhattisgarh,7206500.0,, +2021-05-01,Chhattisgarh,7267363.0,, +2021-05-02,Chhattisgarh,7309395.0,, +2021-05-03,Chhattisgarh,7367888.0,, +2021-05-04,Chhattisgarh,7424922.0,, +2021-05-05,Chhattisgarh,7484779.0,, +2021-05-06,Chhattisgarh,7546123.0,, +2021-05-07,Chhattisgarh,7608062.0,, +2021-05-08,Chhattisgarh,7669976.0,, +2021-05-09,Chhattisgarh,7718708.0,, +2021-05-10,Chhattisgarh,7783517.0,, +2021-05-11,Chhattisgarh,7847328.0,, +2021-05-12,Chhattisgarh,7918466.0,, +2021-05-13,Chhattisgarh,7986204.0,, +2021-05-14,Chhattisgarh,8049298.0,, +2021-05-15,Chhattisgarh,8119537.0,, +2021-05-16,Chhattisgarh,8171565.0,, +2021-05-17,Chhattisgarh,8236565.0,, +2021-05-18,Chhattisgarh,8306438.0,, +2021-05-19,Chhattisgarh,8375840.0,, +2021-05-20,Chhattisgarh,8442382.0,, +2021-05-21,Chhattisgarh,8508024.0,, +2021-05-22,Chhattisgarh,8575166.0,, +2021-05-23,Chhattisgarh,8625888.0,, +2021-05-24,Chhattisgarh,8700472.0,, +2021-05-25,Chhattisgarh,8772503.0,, +2021-05-26,Chhattisgarh,8832674.0,, +2021-05-27,Chhattisgarh,8897798.0,, +2021-05-28,Chhattisgarh,8961200.0,, +2021-05-29,Chhattisgarh,9023558.0,, +2021-05-30,Chhattisgarh,9066798.0,, +2021-05-31,Chhattisgarh,9125243.0,, +2021-06-01,Chhattisgarh,9185232.0,, +2021-06-02,Chhattisgarh,9240407.0,, +2021-06-03,Chhattisgarh,9294551.0,, +2021-06-04,Chhattisgarh,9343365.0,, +2021-06-05,Chhattisgarh,9396168.0,, +2021-06-06,Chhattisgarh,9433726.0,, +2021-06-07,Chhattisgarh,9483235.0,, +2020-04-09,Dadra and Nagar Haveli and Daman and Diu,80.0,80,0.0 +2020-04-10,Dadra and Nagar Haveli and Daman and Diu,130.0,130,0.0 +2020-04-11,Dadra and Nagar Haveli and Daman and Diu,211.0,211,0.0 +2020-04-15,Dadra and Nagar Haveli and Daman and Diu,356.0,356,0.0 +2020-04-16,Dadra and Nagar Haveli and Daman and Diu,382.0,382,0.0 +2020-04-21,Dadra and Nagar Haveli and Daman and Diu,474.0,474,0.0 +2020-04-22,Dadra and Nagar Haveli and Daman and Diu,674.0,674,0.0 +2020-04-23,Dadra and Nagar Haveli and Daman and Diu,913.0,913,0.0 +2020-04-25,Dadra and Nagar Haveli and Daman and Diu,1386.0,1386,0.0 +2020-04-26,Dadra and Nagar Haveli and Daman and Diu,1901.0,1901,0.0 +2020-04-27,Dadra and Nagar Haveli and Daman and Diu,2379.0,2379,0.0 +2020-04-29,Dadra and Nagar Haveli and Daman and Diu,2921.0,2921,0.0 +2020-04-30,Dadra and Nagar Haveli and Daman and Diu,3464.0,3464,0.0 +2020-05-01,Dadra and Nagar Haveli and Daman and Diu,4003.0,4003,0.0 +2020-05-03,Dadra and Nagar Haveli and Daman and Diu,4328.0,4328,0.0 +2020-05-04,Dadra and Nagar Haveli and Daman and Diu,4434.0,4434,0.0 +2020-05-05,Dadra and Nagar Haveli and Daman and Diu,4781.0,4780,1.0 +2020-05-06,Dadra and Nagar Haveli and Daman and Diu,4967.0,4966,1.0 +2020-05-07,Dadra and Nagar Haveli and Daman and Diu,5272.0,5271,1.0 +2020-05-08,Dadra and Nagar Haveli and Daman and Diu,5430.0,5429,1.0 +2020-05-10,Dadra and Nagar Haveli and Daman and Diu,5581.0,5580,1.0 +2020-05-11,Dadra and Nagar Haveli and Daman and Diu,5763.0,5762,1.0 +2020-05-12,Dadra and Nagar Haveli and Daman and Diu,5977.0,5976,1.0 +2020-05-13,Dadra and Nagar Haveli and Daman and Diu,6294.0,6293,1.0 +2020-05-14,Dadra and Nagar Haveli and Daman and Diu,6554.0,6553,1.0 +2020-05-15,Dadra and Nagar Haveli and Daman and Diu,6916.0,6915,1.0 +2020-05-17,Dadra and Nagar Haveli and Daman and Diu,7157.0,7156,1.0 +2020-05-18,Dadra and Nagar Haveli and Daman and Diu,7571.0,7570,1.0 +2020-05-19,Dadra and Nagar Haveli and Daman and Diu,7829.0,7828,1.0 +2020-05-20,Dadra and Nagar Haveli and Daman and Diu,8137.0,8136,1.0 +2020-05-21,Dadra and Nagar Haveli and Daman and Diu,8456.0,8455,1.0 +2020-05-22,Dadra and Nagar Haveli and Daman and Diu,8979.0,8978,1.0 +2020-05-23,Dadra and Nagar Haveli and Daman and Diu,9298.0,9296,2.0 +2020-05-24,Dadra and Nagar Haveli and Daman and Diu,9678.0,9676,2.0 +2020-05-25,Dadra and Nagar Haveli and Daman and Diu,10085.0,10083,2.0 +2020-05-26,Dadra and Nagar Haveli and Daman and Diu,10388.0,10386,2.0 +2020-05-27,Dadra and Nagar Haveli and Daman and Diu,10872.0,10870,2.0 +2020-05-28,Dadra and Nagar Haveli and Daman and Diu,11177.0,11175,2.0 +2020-05-29,Dadra and Nagar Haveli and Daman and Diu,11477.0,11475,2.0 +2020-06-01,Dadra and Nagar Haveli and Daman and Diu,11693.0,11690,3.0 +2020-06-03,Dadra and Nagar Haveli and Daman and Diu,12064.0,12052,12.0 +2020-06-04,Dadra and Nagar Haveli and Daman and Diu,12375.0,12361,14.0 +2020-06-05,Dadra and Nagar Haveli and Daman and Diu,13667.0,13653,14.0 +2020-06-06,Dadra and Nagar Haveli and Daman and Diu,14780.0,14761,19.0 +2020-06-07,Dadra and Nagar Haveli and Daman and Diu,15546.0,14926,20.0 +2020-06-08,Dadra and Nagar Haveli and Daman and Diu,16277.0,15655,22.0 +2020-06-10,Dadra and Nagar Haveli and Daman and Diu,17179.0,16552,27.0 +2020-06-13,Dadra and Nagar Haveli and Daman and Diu,17649.0,17021,28.0 +2020-06-14,Dadra and Nagar Haveli and Daman and Diu,18445.0,17813,31.0 +2020-06-15,Dadra and Nagar Haveli and Daman and Diu,23835.0,23072,38.0 +2020-06-16,Dadra and Nagar Haveli and Daman and Diu,24492.0,23695,51.0 +2020-06-17,Dadra and Nagar Haveli and Daman and Diu,25575.0,24650,58.0 +2020-06-18,Dadra and Nagar Haveli and Daman and Diu,26752.0,25461,69.0 +2020-06-20,Dadra and Nagar Haveli and Daman and Diu,27617.0,26901,93.0 +2020-06-21,Dadra and Nagar Haveli and Daman and Diu,27839.0,27241,97.0 +2020-06-22,Dadra and Nagar Haveli and Daman and Diu,28364.0,27572,112.0 +2020-06-23,Dadra and Nagar Haveli and Daman and Diu,29072.0,28096,121.0 +2020-06-24,Dadra and Nagar Haveli and Daman and Diu,29403.0,28697,134.0 +2020-06-25,Dadra and Nagar Haveli and Daman and Diu,30188.0,29015,154.0 +2020-06-26,Dadra and Nagar Haveli and Daman and Diu,30602.0,29864,169.0 +2020-06-27,Dadra and Nagar Haveli and Daman and Diu,31015.0,30316,184.0 +2020-06-28,Dadra and Nagar Haveli and Daman and Diu,31321.0,30781,188.0 +2020-06-29,Dadra and Nagar Haveli and Daman and Diu,31602.0,30977,203.0 +2020-06-30,Dadra and Nagar Haveli and Daman and Diu,32031.0,31396,213.0 +2020-07-01,Dadra and Nagar Haveli and Daman and Diu,32435.0,31783,229.0 +2020-07-02,Dadra and Nagar Haveli and Daman and Diu,32834.0,32157,254.0 +2020-07-03,Dadra and Nagar Haveli and Daman and Diu,33618.0,32899,304.0 +2020-07-04,Dadra and Nagar Haveli and Daman and Diu,33995.0,33156,333.0 +2020-07-05,Dadra and Nagar Haveli and Daman and Diu,34179.0,33341,371.0 +2020-07-06,Dadra and Nagar Haveli and Daman and Diu,34444.0,33441,398.0 +2020-07-07,Dadra and Nagar Haveli and Daman and Diu,34761.0,33926,423.0 +2020-07-08,Dadra and Nagar Haveli and Daman and Diu,35234.0,34176,440.0 +2020-07-09,Dadra and Nagar Haveli and Daman and Diu,35391.0,34585,454.0 +2020-07-10,Dadra and Nagar Haveli and Daman and Diu,35829.0,34827,468.0 +2020-07-11,Dadra and Nagar Haveli and Daman and Diu,36166.0,35279,480.0 +2020-07-12,Dadra and Nagar Haveli and Daman and Diu,36310.0,35611,495.0 +2020-07-13,Dadra and Nagar Haveli and Daman and Diu,36621.0,35696,520.0 +2020-07-14,Dadra and Nagar Haveli and Daman and Diu,36905.0,35963,536.0 +2020-07-15,Dadra and Nagar Haveli and Daman and Diu,37392.0,36195,552.0 +2020-07-16,Dadra and Nagar Haveli and Daman and Diu,37880.0,36548,570.0 +2020-07-17,Dadra and Nagar Haveli and Daman and Diu,38176.0,36898,601.0 +2020-07-18,Dadra and Nagar Haveli and Daman and Diu,38313.0,37291,646.0 +2020-07-19,Dadra and Nagar Haveli and Daman and Diu,38640.0,37520,684.0 +2020-07-20,Dadra and Nagar Haveli and Daman and Diu,38880.0,37789,705.0 +2020-07-21,Dadra and Nagar Haveli and Daman and Diu,39199.0,38022,733.0 +2020-07-24,Dadra and Nagar Haveli and Daman and Diu,40425.0,39019,854.0 +2020-07-25,Dadra and Nagar Haveli and Daman and Diu,40881.0,39431,890.0 +2020-07-26,Dadra and Nagar Haveli and Daman and Diu,41143.0,39815,940.0 +2020-07-28,Dadra and Nagar Haveli and Daman and Diu,41588.0,40258,1020.0 +2020-07-29,Dadra and Nagar Haveli and Daman and Diu,41895.0,40411,1058.0 +2020-07-30,Dadra and Nagar Haveli and Daman and Diu,42148.0,40564,1093.0 +2020-07-31,Dadra and Nagar Haveli and Daman and Diu,42403.0,40775,1136.0 +2020-08-01,Dadra and Nagar Haveli and Daman and Diu,42635.0,40916,1181.0 +2020-08-02,Dadra and Nagar Haveli and Daman and Diu,42718.0,41132,1232.0 +2020-08-03,Dadra and Nagar Haveli and Daman and Diu,42926.0,41402,1265.0 +2020-08-04,Dadra and Nagar Haveli and Daman and Diu,43191.0,41514,1304.0 +2020-08-05,Dadra and Nagar Haveli and Daman and Diu,43478.0,41781,1368.0 +2020-08-06,Dadra and Nagar Haveli and Daman and Diu,43899.0,42059,1412.0 +2020-08-07,Dadra and Nagar Haveli and Daman and Diu,44456.0,42608,1456.0 +2020-08-08,Dadra and Nagar Haveli and Daman and Diu,44777.0,42805,1505.0 +2020-08-09,Dadra and Nagar Haveli and Daman and Diu,45253.0,43165, +2020-08-10,Dadra and Nagar Haveli and Daman and Diu,45724.0,43579, +2020-08-11,Dadra and Nagar Haveli and Daman and Diu,46149.0,43919, +2020-08-12,Dadra and Nagar Haveli and Daman and Diu,46516.0,44328, +2020-08-13,Dadra and Nagar Haveli and Daman and Diu,46937.0,44712, +2020-08-14,Dadra and Nagar Haveli and Daman and Diu,47272.0,45021,1797.0 +2020-08-15,Dadra and Nagar Haveli and Daman and Diu,47643.0,45335,1843.0 +2020-08-16,Dadra and Nagar Haveli and Daman and Diu,48212.0,45676,1878.0 +2020-08-17,Dadra and Nagar Haveli and Daman and Diu,48710.0,46224,1908.0 +2020-08-18,Dadra and Nagar Haveli and Daman and Diu,49290.0,46665,1951.0 +2020-08-19,Dadra and Nagar Haveli and Daman and Diu,49879.0,47184,1995.0 +2020-08-20,Dadra and Nagar Haveli and Daman and Diu,50293.0,47703,2030.0 +2020-08-21,Dadra and Nagar Haveli and Daman and Diu,50923.0,48105,2082.0 +2020-08-22,Dadra and Nagar Haveli and Daman and Diu,51285.0,48524,2120.0 +2020-08-23,Dadra and Nagar Haveli and Daman and Diu,51580.0,48995,2161.0 +2020-08-24,Dadra and Nagar Haveli and Daman and Diu,51843.0,49322,2181.0 +2020-08-25,Dadra and Nagar Haveli and Daman and Diu,52160.0,49538,2203.0 +2020-08-26,Dadra and Nagar Haveli and Daman and Diu,52524.0,49806,2228.0 +2020-08-27,Dadra and Nagar Haveli and Daman and Diu,52859.0,50236,2266.0 +2020-08-28,Dadra and Nagar Haveli and Daman and Diu,53227.0,50539,2290.0 +2020-08-29,Dadra and Nagar Haveli and Daman and Diu,53527.0,50809,2306.0 +2020-08-30,Dadra and Nagar Haveli and Daman and Diu,53769.0,51141,2340.0 +2020-08-31,Dadra and Nagar Haveli and Daman and Diu,54194.0,48426, +2020-09-01,Dadra and Nagar Haveli and Daman and Diu,54566.0,51761, +2020-09-02,Dadra and Nagar Haveli and Daman and Diu,54964.0,52110, +2020-09-03,Dadra and Nagar Haveli and Daman and Diu,55345.0,52449, +2020-09-04,Dadra and Nagar Haveli and Daman and Diu,55688.0,52795, +2020-09-05,Dadra and Nagar Haveli and Daman and Diu,56008.0,53134, +2020-09-06,Dadra and Nagar Haveli and Daman and Diu,56174.0,53396, +2020-09-07,Dadra and Nagar Haveli and Daman and Diu,56476.0,53554, +2020-09-08,Dadra and Nagar Haveli and Daman and Diu,56839.0,53816, +2020-09-09,Dadra and Nagar Haveli and Daman and Diu,57220.0,54125, +2020-09-10,Dadra and Nagar Haveli and Daman and Diu,57587.0,54482, +2020-09-11,Dadra and Nagar Haveli and Daman and Diu,57888.0,54827, +2020-09-12,Dadra and Nagar Haveli and Daman and Diu,58336.0,55096, +2020-09-13,Dadra and Nagar Haveli and Daman and Diu,58530.0,55531, +2020-09-14,Dadra and Nagar Haveli and Daman and Diu,59154.0,55686,2763.0 +2020-09-15,Dadra and Nagar Haveli and Daman and Diu,59530.0,56305,2783.0 +2020-09-16,Dadra and Nagar Haveli and Daman and Diu,59771.0,56646,2810.0 +2020-09-17,Dadra and Nagar Haveli and Daman and Diu,60237.0,56905,2831.0 +2020-09-18,Dadra and Nagar Haveli and Daman and Diu,60738.0,57338,2859.0 +2020-09-19,Dadra and Nagar Haveli and Daman and Diu,61270.0,57759,2887.0 +2020-09-20,Dadra and Nagar Haveli and Daman and Diu,61482.0,58254,2924.0 +2020-09-21,Dadra and Nagar Haveli and Daman and Diu,62055.0,58459,2933.0 +2020-09-23,Dadra and Nagar Haveli and Daman and Diu,63047.0,59438,2962.0 +2020-09-24,Dadra and Nagar Haveli and Daman and Diu,63512.0,59995,2977.0 +2020-09-26,Dadra and Nagar Haveli and Daman and Diu,64336.0,60848,2996.0 +2020-09-27,Dadra and Nagar Haveli and Daman and Diu,64691.0,61264,3002.0 +2020-09-28,Dadra and Nagar Haveli and Daman and Diu,65134.0,61618,3012.0 +2020-09-29,Dadra and Nagar Haveli and Daman and Diu,65539.0,62045,3032.0 +2020-09-30,Dadra and Nagar Haveli and Daman and Diu,65953.0,62439,3040.0 +2020-10-01,Dadra and Nagar Haveli and Daman and Diu,66337.0,62840,3054.0 +2020-10-02,Dadra and Nagar Haveli and Daman and Diu,66566.0,63228,3063.0 +2020-10-03,Dadra and Nagar Haveli and Daman and Diu,67029.0,63509,3070.0 +2020-10-04,Dadra and Nagar Haveli and Daman and Diu,67272.0,63873,3087.0 +2020-10-05,Dadra and Nagar Haveli and Daman and Diu,67666.0,64129,3092.0 +2020-10-06,Dadra and Nagar Haveli and Daman and Diu,68056.0,64498,3103.0 +2020-10-07,Dadra and Nagar Haveli and Daman and Diu,68466.0,64888,3120.0 +2020-10-08,Dadra and Nagar Haveli and Daman and Diu,68831.0,65283,3132.0 +2020-10-09,Dadra and Nagar Haveli and Daman and Diu,69192.0,65638,3140.0 +2020-10-10,Dadra and Nagar Haveli and Daman and Diu,69529.0,65980,3152.0 +2020-10-11,Dadra and Nagar Haveli and Daman and Diu,69785.0,66324,3163.0 +2020-10-13,Dadra and Nagar Haveli and Daman and Diu,70514.0,66935,3168.0 +2020-10-14,Dadra and Nagar Haveli and Daman and Diu,70815.0,67297,3171.0 +2020-10-15,Dadra and Nagar Haveli and Daman and Diu,71144.0,67588,3172.0 +2020-10-16,Dadra and Nagar Haveli and Daman and Diu,71386.0,67909,3177.0 +2020-10-17,Dadra and Nagar Haveli and Daman and Diu,71664.0,68164,3180.0 +2020-10-18,Dadra and Nagar Haveli and Daman and Diu,71807.0,68439,3183.0 +2020-10-19,Dadra and Nagar Haveli and Daman and Diu,72136.0,68578,3185.0 +2020-10-20,Dadra and Nagar Haveli and Daman and Diu,72410.0,68894,3194.0 +2020-04-01,Delhi,2621.0,, +2020-04-07,Delhi,9041.0,7308,576.0 +2020-04-09,Delhi,9968.0,8643,720.0 +2020-04-10,Delhi,11061.0,9662,903.0 +2020-04-11,Delhi,11709.0,10218,1069.0 +2020-04-12,Delhi,14036.0,11748,1154.0 +2020-04-13,Delhi,15032.0,12283,1510.0 +2020-04-14,Delhi,16282.0,13748,1561.0 +2020-04-15,Delhi,16605.0,13865,1578.0 +2020-04-16,Delhi,18784.0,14692,1640.0 +2020-04-17,Delhi,21409.0,16899,1707.0 +2020-04-18,Delhi,22283.0,17449,1893.0 +2020-04-19,Delhi,24387.0,19393,2003.0 +2020-04-20,Delhi,25900.0,20712,2081.0 +2020-04-21,Delhi,26627.0,21810,2156.0 +2020-04-22,Delhi,28309.0,22713,2248.0 +2020-04-23,Delhi,30560.0,24538,2375.0 +2020-04-24,Delhi,33672.0,26552,2514.0 +2020-04-25,Delhi,35519.0,28693,2625.0 +2020-04-26,Delhi,37613.0,31919,2918.0 +2020-04-27,Delhi,39911.0,34145,3108.0 +2020-04-28,Delhi,43370.0,36195,3314.0 +2020-04-29,Delhi,47225.0,39920,3439.0 +2020-05-02,Delhi,58210.0,,4122.0 +2020-05-03,Delhi,60246.0,,4549.0 +2020-05-04,Delhi,64108.0,,4898.0 +2020-05-05,Delhi,67852.0,,5104.0 +2020-05-06,Delhi,71934.0,,5532.0 +2020-05-07,Delhi,77234.0,,5980.0 +2020-05-08,Delhi,81367.0,,6318.0 +2020-05-09,Delhi,84226.0,,6542.0 +2020-05-10,Delhi,93810.0,,6923.0 +2020-05-11,Delhi,97678.0,,7233.0 +2020-05-12,Delhi,106109.0,,7639.0 +2020-05-13,Delhi,113345.0,,7998.0 +2020-05-14,Delhi,119736.0,,8470.0 +2020-05-15,Delhi,125189.0,,8895.0 +2020-05-16,Delhi,130845.0,,9333.0 +2020-05-17,Delhi,135791.0,,9755.0 +2020-05-18,Delhi,139727.0,,10054.0 +2020-05-19,Delhi,145854.0,,10554.0 +2020-05-20,Delhi,150282.0,,11088.0 +2020-05-21,Delhi,154385.0,,11659.0 +2020-05-22,Delhi,160255.0,,12319.0 +2020-05-23,Delhi,165047.0,,12910.0 +2020-05-24,Delhi,169873.0,,13418.0 +2020-05-25,Delhi,174469.0,,14053.0 +2020-05-26,Delhi,178579.0,,14465.0 +2020-05-27,Delhi,184362.0,,15257.0 +2020-05-28,Delhi,191977.0,,16281.0 +2020-05-29,Delhi,199626.0,,17386.0 +2020-05-30,Delhi,206739.0,,18549.0 +2020-05-31,Delhi,212784.0,,19844.0 +2020-06-01,Delhi,217537.0,,20834.0 +2020-06-02,Delhi,223607.0,,22132.0 +2020-06-03,Delhi,230145.0,,23645.0 +2020-06-04,Delhi,236506.0,,25004.0 +2020-06-05,Delhi,241693.0,,26334.0 +2020-06-06,Delhi,246873.0,,27654.0 +2020-06-07,Delhi,251915.0,,28936.0 +2020-06-08,Delhi,255615.0,,29943.0 +2020-06-09,Delhi,261079.0,,31309.0 +2020-06-10,Delhi,266156.0,,32810.0 +2020-06-11,Delhi,271516.0,,34687.0 +2020-06-12,Delhi,277463.0,,36824.0 +2020-06-13,Delhi,283239.0,,38958.0 +2020-06-14,Delhi,290592.0,,41182.0 +2020-06-15,Delhi,296697.0,,42829.0 +2020-06-16,Delhi,304483.0,,44688.0 +2020-06-17,Delhi,312576.0,,47102.0 +2020-06-18,Delhi,321302.0,,49979.0 +2020-06-19,Delhi,334376.0,,53116.0 +2020-06-20,Delhi,351909.0,,56746.0 +2020-06-21,Delhi,370014.0,,59746.0 +2020-06-22,Delhi,384696.0,,62655.0 +2020-06-23,Delhi,401648.0,,66602.0 +2020-06-24,Delhi,420707.0,,70390.0 +2020-06-25,Delhi,438012.0,,73780.0 +2020-06-26,Delhi,459156.0,,77240.0 +2020-06-27,Delhi,478336.0,,80188.0 +2020-06-28,Delhi,498416.0,,83077.0 +2020-06-29,Delhi,514573.0,,85161.0 +2020-06-30,Delhi,531752.0,,87360.0 +2020-07-01,Delhi,551708.0,,89802.0 +2020-07-02,Delhi,572530.0,,92175.0 +2020-07-03,Delhi,596695.0,,94695.0 +2020-07-04,Delhi,620368.0,,97200.0 +2020-07-05,Delhi,643504.0,,99444.0 +2020-07-06,Delhi,657383.0,,100823.0 +2020-07-07,Delhi,679831.0,,102831.0 +2020-07-08,Delhi,701859.0,,104864.0 +2020-07-09,Delhi,724148.0,,107051.0 +2020-07-10,Delhi,747109.0,,109140.0 +2020-07-11,Delhi,768617.0,,110921.0 +2020-07-12,Delhi,789853.0,,112494.0 +2020-07-13,Delhi,692845.0,,113740.0 +2020-07-14,Delhi,713908.0,,115346.0 +2020-07-15,Delhi,736436.0,,116993.0 +2020-07-16,Delhi,756661.0,,118645.0 +2020-07-17,Delhi,777125.0,,120107.0 +2020-07-18,Delhi,798783.0,,121582.0 +2020-07-19,Delhi,818989.0,,122793.0 +2020-07-20,Delhi,830459.0,,123747.0 +2020-07-21,Delhi,851311.0,,125096.0 +2020-07-22,Delhi,871371.0,,126323.0 +2020-07-23,Delhi,889597.0,,127364.0 +2020-07-24,Delhi,908735.0,,128389.0 +2020-07-25,Delhi,929244.0,,129531.0 +2020-07-26,Delhi,946777.0,,130606.0 +2020-07-27,Delhi,958283.0,,131219.0 +2020-07-28,Delhi,976827.0,,132275.0 +2020-07-29,Delhi,994219.0,,133310.0 +2020-07-30,Delhi,1013694.0,,134403.0 +2020-07-31,Delhi,1032785.0,, +2020-08-01,Delhi,1050939.0,,136716.0 +2020-08-02,Delhi,1063669.0,,137677.0 +2020-08-03,Delhi,1073802.0,,138482.0 +2020-08-04,Delhi,1083097.0,,139156.0 +2020-08-05,Delhi,1099882.0,,140232.0 +2020-08-06,Delhi,1120318.0,,141531.0 +2020-08-07,Delhi,1143703.0,,142723.0 +2020-08-08,Delhi,1168295.0,,144127.0 +2020-08-09,Delhi,1192082.0,,145427.0 +2020-08-10,Delhi,1204405.0,,146134.0 +2020-08-11,Delhi,1223845.0,, +2020-08-12,Delhi,1242739.0,, +2020-08-13,Delhi,1258095.0,, +2020-08-14,Delhi,1273140.0,, +2020-08-15,Delhi,1291411.0,,151928.0 +2020-08-16,Delhi,1302120.0,, +2020-08-17,Delhi,1317108.0,, +2020-08-18,Delhi,1337374.0,, +2020-08-19,Delhi,1358189.0,, +2020-08-20,Delhi,1375193.0,, +2020-08-21,Delhi,1392928.0,, +2020-08-22,Delhi,1412363.0,, +2020-08-23,Delhi,1431094.0,, +2020-08-24,Delhi,1443004.0,, +2020-08-25,Delhi,1462845.0,, +2020-08-26,Delhi,1482661.0,, +2020-08-27,Delhi,1503722.0,, +2020-08-28,Delhi,1526655.0,, +2020-08-29,Delhi,1548659.0,, +2020-08-30,Delhi,1569096.0,, +2020-08-31,Delhi,1583485.0,, +2020-09-01,Delhi,1607683.0,, +2020-09-02,Delhi,1636518.0,, +2020-09-03,Delhi,1669352.0,, +2020-09-04,Delhi,1705571.0,, +2020-09-05,Delhi,1744466.0,, +2020-09-06,Delhi,1780512.0,, +2020-09-07,Delhi,1803466.0,, +2020-09-08,Delhi,1849263.0,, +2020-09-09,Delhi,1903780.0,, +2020-09-10,Delhi,1962120.0,, +2020-09-11,Delhi,2022700.0,, +2020-09-12,Delhi,2082776.0,, +2020-09-13,Delhi,2139432.0,, +2020-09-14,Delhi,2184316.0,, +2020-09-15,Delhi,2246985.0,, +2020-09-16,Delhi,2309578.0,, +2020-09-17,Delhi,2369592.0,, +2020-09-18,Delhi,2430629.0,, +2020-09-19,Delhi,2492602.0,, +2020-09-20,Delhi,2555007.0,, +2020-09-21,Delhi,2578740.0,, +2020-09-22,Delhi,2637753.0,, +2020-09-23,Delhi,2697333.0,, +2020-09-24,Delhi,2756516.0,, +2020-09-25,Delhi,2815650.0,, +2020-09-26,Delhi,2873338.0,, +2020-09-27,Delhi,2924754.0,, +2020-09-28,Delhi,2961056.0,, +2020-09-29,Delhi,3020158.0,, +2020-09-30,Delhi,3079965.0,, +2020-10-01,Delhi,3135388.0,, +2020-10-02,Delhi,3191646.0,, +2020-10-03,Delhi,3230952.0,, +2020-10-04,Delhi,3281784.0,, +2020-10-05,Delhi,3317377.0,, +2020-10-06,Delhi,3370968.0,, +2020-10-07,Delhi,3422473.0,, +2020-10-08,Delhi,3475795.0,, +2020-10-09,Delhi,3524930.0,, +2020-10-10,Delhi,3574666.0,, +2020-10-11,Delhi,3623419.0,, +2020-10-12,Delhi,3659366.0,, +2020-10-13,Delhi,3714323.0,, +2020-10-14,Delhi,3771273.0,, +2020-10-15,Delhi,3827164.0,, +2020-10-16,Delhi,3885309.0,, +2020-10-17,Delhi,3941024.0,, +2020-10-18,Delhi,3990438.0,, +2020-10-19,Delhi,4026883.0,, +2020-10-20,Delhi,4083476.0,, +2020-10-21,Delhi,4142540.0,, +2020-10-22,Delhi,4201310.0,, +2020-10-23,Delhi,4259878.0,, +2020-10-24,Delhi,4315339.0,, +2020-10-25,Delhi,4364408.0,, +2020-10-26,Delhi,4398819.0,, +2020-10-27,Delhi,4456029.0,, +2020-10-28,Delhi,4516600.0,, +2020-10-29,Delhi,4576724.0,, +2020-10-30,Delhi,4636365.0,, +2020-10-31,Delhi,4680695.0,, +2020-11-01,Delhi,4725318.0,, +2020-11-02,Delhi,4761983.0,, +2020-11-03,Delhi,4821523.0,, +2020-11-04,Delhi,4880433.0,, +2020-11-05,Delhi,4932727.0,, +2020-11-06,Delhi,4991587.0,, +2020-11-07,Delhi,5049020.0,, +2020-11-08,Delhi,5099774.0,, +2020-11-09,Delhi,5138889.0,, +2020-11-10,Delhi,5197924.0,, +2020-11-11,Delhi,5262045.0,, +2020-11-12,Delhi,5322274.0,, +2020-11-13,Delhi,5378827.0,, +2020-11-14,Delhi,5428472.0,, +2020-11-15,Delhi,5449570.0,, +2020-11-16,Delhi,5479391.0,, +2020-11-17,Delhi,5528422.0,, +2020-11-18,Delhi,5590654.0,, +2020-11-19,Delhi,5653091.0,, +2020-11-20,Delhi,5715516.0,, +2020-11-21,Delhi,5761078.0,, +2020-11-22,Delhi,5815971.0,, +2020-11-23,Delhi,5853278.0,, +2020-11-24,Delhi,5914659.0,, +2020-11-25,Delhi,5976437.0,, +2020-11-26,Delhi,6039703.0,, +2020-11-27,Delhi,6104158.0,, +2020-11-28,Delhi,6173209.0,, +2020-11-29,Delhi,6237395.0,, +2020-11-30,Delhi,6288065.0,, +2020-12-01,Delhi,6346521.0,, +2020-12-02,Delhi,6425470.0,, +2020-12-03,Delhi,6500700.0,, +2020-12-04,Delhi,6585703.0,, +2020-12-05,Delhi,6667176.0,, +2020-12-06,Delhi,6740712.0,, +2020-12-07,Delhi,6793919.0,, +2020-12-08,Delhi,6869328.0,, +2020-12-09,Delhi,6941407.0,, +2020-12-10,Delhi,7005476.0,, +2020-12-11,Delhi,7077155.0,, +2020-12-12,Delhi,7150568.0,, +2020-12-13,Delhi,7222903.0,, +2020-12-14,Delhi,7286847.0,, +2020-12-15,Delhi,7371952.0,, +2020-12-16,Delhi,7450994.0,, +2020-12-17,Delhi,7541348.0,, +2020-12-18,Delhi,7629748.0,, +2020-12-19,Delhi,7717078.0,, +2020-12-20,Delhi,7800367.0,, +2020-12-21,Delhi,7862807.0,, +2020-12-22,Delhi,7945193.0,, +2020-12-23,Delhi,8033054.0,, +2020-12-24,Delhi,8122974.0,, +2020-12-25,Delhi,8208723.0,, +2020-12-26,Delhi,8275838.0,, +2020-12-27,Delhi,8351048.0,, +2020-12-28,Delhi,8408511.0,, +2020-12-29,Delhi,8493400.0,, +2020-12-30,Delhi,8578080.0,, +2020-12-31,Delhi,8659830.0,, +2021-01-01,Delhi,8740395.0,, +2021-01-02,Delhi,8807759.0,, +2021-01-03,Delhi,8876518.0,, +2021-01-04,Delhi,8926806.0,, +2021-01-05,Delhi,9006583.0,, +2021-01-06,Delhi,9082133.0,, +2021-01-07,Delhi,9158755.0,, +2021-01-08,Delhi,9234479.0,, +2021-01-09,Delhi,9314754.0,, +2021-01-10,Delhi,9392354.0,, +2021-01-11,Delhi,9448744.0,, +2021-01-12,Delhi,9524657.0,, +2021-01-13,Delhi,9595402.0,, +2021-01-14,Delhi,9666727.0,, +2021-01-15,Delhi,9733648.0,, +2021-01-16,Delhi,9805605.0,, +2021-01-17,Delhi,9873068.0,, +2021-01-18,Delhi,9923591.0,, +2021-01-19,Delhi,9996032.0,, +2021-01-20,Delhi,10059193.0,, +2021-01-21,Delhi,10140743.0,, +2021-01-22,Delhi,10212593.0,, +2021-01-23,Delhi,10289461.0,, +2021-01-24,Delhi,10351768.0,, +2021-01-25,Delhi,10400218.0,, +2021-01-26,Delhi,10465191.0,, +2021-01-27,Delhi,10495046.0,, +2021-01-28,Delhi,10553039.0,, +2021-01-29,Delhi,10611764.0,, +2021-01-30,Delhi,10680731.0,, +2021-01-31,Delhi,10741426.0,, +2021-02-01,Delhi,10785138.0,, +2021-02-02,Delhi,10843736.0,, +2021-02-03,Delhi,10900394.0,, +2021-02-04,Delhi,10967628.0,, +2021-02-05,Delhi,11027592.0,, +2021-02-06,Delhi,11090914.0,, +2021-02-07,Delhi,11145161.0,, +2021-02-08,Delhi,11200551.0,, +2021-02-09,Delhi,11256961.0,, +2021-02-10,Delhi,11323764.0,, +2021-02-11,Delhi,11388092.0,, +2021-02-12,Delhi,11451114.0,, +2021-02-13,Delhi,11511990.0,, +2021-02-14,Delhi,11568892.0,, +2021-02-15,Delhi,11607957.0,, +2021-02-16,Delhi,11664901.0,, +2021-02-17,Delhi,11724787.0,, +2021-02-18,Delhi,11785228.0,, +2021-02-19,Delhi,11846064.0,, +2021-02-20,Delhi,11908127.0,, +2021-02-21,Delhi,11971940.0,, +2021-02-22,Delhi,12014182.0,, +2021-02-23,Delhi,12072509.0,, +2021-02-24,Delhi,12128677.0,, +2021-02-25,Delhi,12192675.0,, +2021-02-26,Delhi,12255443.0,, +2021-02-27,Delhi,12322927.0,, +2021-02-28,Delhi,12380699.0,, +2021-03-01,Delhi,12420432.0,, +2021-03-02,Delhi,12487056.0,, +2021-03-03,Delhi,12555887.0,, +2021-03-04,Delhi,12622319.0,, +2021-03-05,Delhi,12681441.0,, +2021-03-06,Delhi,12734503.0,, +2021-03-07,Delhi,12826117.0,, +2021-03-08,Delhi,12873806.0,, +2021-03-09,Delhi,12940550.0,, +2021-03-10,Delhi,13011703.0,, +2021-03-11,Delhi,13081513.0,, +2021-03-12,Delhi,13153544.0,, +2021-03-13,Delhi,13227870.0,, +2021-03-14,Delhi,13296093.0,, +2021-03-15,Delhi,13358365.0,, +2021-03-16,Delhi,13428414.0,, +2021-03-17,Delhi,13509270.0,, +2021-03-18,Delhi,13589523.0,, +2021-03-19,Delhi,13666875.0,, +2021-03-20,Delhi,13742763.0,, +2021-03-21,Delhi,13822477.0,, +2021-03-22,Delhi,13889895.0,, +2021-03-23,Delhi,13974132.0,, +2021-03-24,Delhi,14056463.0,, +2021-03-25,Delhi,14146299.0,, +2021-03-26,Delhi,14231391.0,, +2021-03-27,Delhi,14323094.0,, +2021-03-28,Delhi,14403030.0,, +2021-03-29,Delhi,14471835.0,, +2021-03-30,Delhi,14508592.0,, +2021-03-31,Delhi,14575662.0,, +2021-04-01,Delhi,14653735.0,, +2021-04-02,Delhi,14741240.0,, +2021-04-03,Delhi,14820857.0,, +2021-04-04,Delhi,14907756.0,, +2021-04-05,Delhi,14971759.0,, +2021-04-06,Delhi,15075212.0,, +2021-04-07,Delhi,15165413.0,, +2021-04-08,Delhi,15257183.0,, +2021-04-09,Delhi,15366581.0,, +2021-04-10,Delhi,15443955.0,, +2021-04-11,Delhi,15558243.0,, +2021-04-12,Delhi,15650640.0,, +2021-04-13,Delhi,15753100.0,, +2021-04-14,Delhi,15861634.0,, +2021-04-15,Delhi,15944203.0,, +2021-04-16,Delhi,16043160.0,, +2021-04-17,Delhi,16142390.0,, +2021-04-18,Delhi,16228010.0,, +2021-04-19,Delhi,16318706.0,, +2021-04-20,Delhi,16405232.0,, +2021-04-21,Delhi,16484000.0,, +2021-04-22,Delhi,16556208.0,, +2021-04-23,Delhi,16631245.0,, +2021-04-24,Delhi,16705947.0,, +2021-04-25,Delhi,16781859.0,, +2021-04-26,Delhi,16839549.0,, +2021-04-27,Delhi,16913360.0,, +2021-04-28,Delhi,16995189.0,, +2021-04-29,Delhi,17069040.0,, +2021-04-30,Delhi,17151785.0,, +2021-05-01,Delhi,17231565.0,, +2021-05-02,Delhi,17303562.0,, +2021-05-03,Delhi,17364607.0,, +2021-05-04,Delhi,17439261.0,, +2021-05-05,Delhi,17518752.0,, +2021-05-06,Delhi,17597532.0,, +2021-05-07,Delhi,17677125.0,, +2021-05-08,Delhi,17751509.0,, +2021-05-09,Delhi,17813061.0,, +2021-05-10,Delhi,17879295.0,, +2021-05-11,Delhi,17949571.0,, +2021-05-12,Delhi,18027606.0,, +2021-05-13,Delhi,18101281.0,, +2021-05-14,Delhi,18169856.0,, +2021-05-15,Delhi,18226667.0,, +2021-05-16,Delhi,18288726.0,, +2021-05-17,Delhi,18342482.0,, +2021-05-18,Delhi,18407486.0,, +2021-05-19,Delhi,18474059.0,, +2021-05-20,Delhi,18532803.0,, +2021-05-21,Delhi,18595993.0,, +2021-05-22,Delhi,18659148.0,, +2021-05-23,Delhi,18727191.0,, +2021-05-24,Delhi,18788697.0,, +2021-05-25,Delhi,18862103.0,, +2021-05-26,Delhi,18939206.0,, +2021-05-27,Delhi,19009274.0,, +2021-05-28,Delhi,19081127.0,, +2021-05-29,Delhi,19161600.0,, +2021-05-30,Delhi,19237040.0,, +2021-05-31,Delhi,19302280.0,, +2021-06-01,Delhi,19373093.0,, +2021-06-02,Delhi,19446544.0,, +2021-06-03,Delhi,19526590.0,, +2021-06-04,Delhi,19603764.0,, +2021-06-05,Delhi,19681458.0,, +2021-06-06,Delhi,19758315.0,, +2021-06-07,Delhi,19821925.0,, +2020-04-02,Goa,220.0,197,5.0 +2020-04-09,Goa,344.0,,7.0 +2020-04-10,Goa,354.0,,7.0 +2020-04-12,Goa,406.0,,7.0 +2020-04-13,Goa,440.0,,7.0 +2020-04-14,Goa,479.0,,7.0 +2020-04-15,Goa,556.0,,7.0 +2020-04-16,Goa,611.0,,7.0 +2020-04-17,Goa,673.0,,7.0 +2020-04-18,Goa,758.0,,7.0 +2020-04-19,Goa,826.0,,7.0 +2020-04-20,Goa,901.0,,7.0 +2020-04-21,Goa,1004.0,,7.0 +2020-04-22,Goa,1116.0,,7.0 +2020-04-23,Goa,1206.0,,7.0 +2020-04-27,Goa,1541.0,,7.0 +2020-04-28,Goa,1776.0,,7.0 +2020-04-29,Goa,1871.0,,7.0 +2020-04-30,Goa,2031.0,,7.0 +2020-05-01,Goa,2181.0,,7.0 +2020-05-02,Goa,2372.0,,7.0 +2020-05-03,Goa,2548.0,,7.0 +2020-05-04,Goa,2899.0,,7.0 +2020-05-05,Goa,3096.0,,7.0 +2020-05-06,Goa,3411.0,,7.0 +2020-05-08,Goa,4140.0,,7.0 +2020-05-09,Goa,4524.0,,7.0 +2020-05-10,Goa,4848.0,,7.0 +2020-05-11,Goa,5307.0,,7.0 +2020-05-14,Goa,6736.0,,7.0 +2020-05-15,Goa,7304.0,,7.0 +2020-05-16,Goa,8011.0,,20.0 +2020-05-17,Goa,8785.0,,29.0 +2020-05-18,Goa,8785.0,,29.0 +2020-05-19,Goa,9549.0,,46.0 +2020-05-20,Goa,10136.0,,50.0 +2020-05-21,Goa,10859.0,,52.0 +2020-05-22,Goa,11362.0,,54.0 +2020-05-23,Goa,11945.0,,55.0 +2020-05-24,Goa,12499.0,,66.0 +2020-05-25,Goa,12860.0,,67.0 +2020-05-26,Goa,13303.0,,67.0 +2020-05-27,Goa,13911.0,,68.0 +2020-05-28,Goa,14782.0,,69.0 +2020-05-29,Goa,16141.0,,69.0 +2020-05-30,Goa,17871.0,,70.0 +2020-05-31,Goa,19491.0,,71.0 +2020-06-01,Goa,20780.0,,73.0 +2020-06-02,Goa,22378.0,,79.0 +2020-06-03,Goa,23816.0,,126.0 +2020-06-04,Goa,25300.0,,166.0 +2020-06-05,Goa,26208.0,,196.0 +2020-06-06,Goa,27402.0,,267.0 +2020-06-07,Goa,29739.0,,300.0 +2020-06-08,Goa,31455.0,,330.0 +2020-06-09,Goa,32194.0,,359.0 +2020-06-10,Goa,35332.0,,387.0 +2020-06-11,Goa,37858.0,,417.0 +2020-06-12,Goa,39298.0,,463.0 +2020-06-13,Goa,40723.0,,523.0 +2020-06-14,Goa,41835.0,,564.0 +2020-06-15,Goa,42703.0,,592.0 +2020-06-16,Goa,44378.0,,629.0 +2020-06-17,Goa,45685.0,,656.0 +2020-06-18,Goa,46996.0,,705.0 +2020-06-19,Goa,49718.0,,725.0 +2020-06-20,Goa,51404.0,,754.0 +2020-06-21,Goa,52301.0,,818.0 +2020-06-22,Goa,53050.0,,864.0 +2020-06-23,Goa,54781.0,,909.0 +2020-06-24,Goa,56925.0,,951.0 +2020-06-25,Goa,58584.0,,995.0 +2020-06-26,Goa,60350.0,,1039.0 +2020-06-27,Goa,61687.0,,1128.0 +2020-06-28,Goa,62945.0,,1198.0 +2020-06-29,Goa,64375.0,,1251.0 +2020-06-30,Goa,66491.0,,1315.0 +2020-07-01,Goa,67822.0,,1387.0 +2020-07-02,Goa,70738.0,,1482.0 +2020-07-03,Goa,72691.0,,1576.0 +2020-07-04,Goa,74314.0,,1684.0 +2020-07-05,Goa,75791.0,,1761.0 +2020-07-06,Goa,77033.0,,1813.0 +2020-07-07,Goa,79864.0,,1903.0 +2020-07-08,Goa,82555.0,,2039.0 +2020-07-09,Goa,84945.0,,2151.0 +2020-07-10,Goa,87865.0,,2251.0 +2020-07-11,Goa,90817.0,,2368.0 +2020-07-12,Goa,92191.0,,2453.0 +2020-07-13,Goa,93968.0,,2583.0 +2020-07-14,Goa,96692.0,,2753.0 +2020-07-15,Goa,99234.0,,2951.0 +2020-07-16,Goa,101554.0,,3108.0 +2020-07-17,Goa,103527.0,,3304.0 +2020-07-18,Goa,105731.0,,3484.0 +2020-07-19,Goa,107266.0,,3657.0 +2020-07-20,Goa,108459.0,,3853.0 +2020-07-21,Goa,111296.0,,4027.0 +2020-07-22,Goa,114309.0,,4176.0 +2020-07-23,Goa,117321.0,,4350.0 +2020-07-24,Goa,119455.0,,4540.0 +2020-07-25,Goa,121771.0,,4686.0 +2020-07-26,Goa,123130.0,,4861.0 +2020-07-27,Goa,124746.0,,5119.0 +2020-07-28,Goa,126655.0,115434,5287.0 +2020-07-29,Goa,128289.0,,5489.0 +2020-07-30,Goa,129719.0,,5704.0 +2020-07-31,Goa,131318.0,,5913.0 +2020-08-01,Goa,132830.0,,6193.0 +2020-08-02,Goa,134395.0,,6530.0 +2020-08-03,Goa,135692.0,,6816.0 +2020-08-04,Goa,137575.0,,7075.0 +2020-08-05,Goa,139566.0,,7423.0 +2020-08-06,Goa,142192.0,,7614.0 +2020-08-07,Goa,144814.0,,7947.0 +2020-08-08,Goa,147138.0,,8206.0 +2020-08-09,Goa,149304.0,,8712.0 +2020-08-10,Goa,151202.0,,9029.0 +2020-08-11,Goa,153792.0,, +2020-08-12,Goa,156498.0,,9924.0 +2020-08-13,Goa,159159.0,,10494.0 +2020-08-14,Goa,162126.0,,10970.0 +2020-08-15,Goa,163874.0,,11339.0 +2020-08-16,Goa,165356.0,,11639.0 +2020-08-17,Goa,167381.0,, +2020-08-18,Goa,170125.0,,12333.0 +2020-08-19,Goa,172549.0,, +2020-08-20,Goa,175100.0,, +2020-08-21,Goa,178175.0,,1348.0 +2020-08-22,Goa,179836.0,, +2020-08-23,Goa,180716.0,, +2020-08-24,Goa,182409.0,, +2020-08-25,Goa,184872.0,, +2020-08-26,Goa,187140.0,, +2020-08-27,Goa,189667.0,, +2020-08-28,Goa,192589.0,, +2020-08-29,Goa,195084.0,, +2020-08-30,Goa,197216.0,, +2020-08-31,Goa,199224.0,, +2020-09-01,Goa,202730.0,, +2020-09-02,Goa,204438.0,, +2020-09-03,Goa,206760.0,, +2020-09-04,Goa,208917.0,, +2020-09-05,Goa,211048.0,, +2020-09-06,Goa,212150.0,, +2020-09-07,Goa,213469.0,, +2020-09-08,Goa,215345.0,, +2020-09-09,Goa,217485.0,, +2020-09-10,Goa,219666.0,, +2020-09-11,Goa,221433.0,, +2020-09-12,Goa,223892.0,, +2020-09-13,Goa,225051.0,, +2020-09-14,Goa,225910.0,, +2020-09-15,Goa,227810.0,, +2020-09-16,Goa,229876.0,, +2020-09-17,Goa,231801.0,, +2020-09-18,Goa,233674.0,, +2020-09-19,Goa,235787.0,, +2020-09-20,Goa,237198.0,, +2020-09-21,Goa,238343.0,, +2020-09-22,Goa,240206.0,, +2020-09-23,Goa,242078.0,, +2020-09-24,Goa,244189.0,, +2020-09-25,Goa,246170.0,, +2020-09-26,Goa,248153.0,, +2020-09-27,Goa,249581.0,, +2020-09-28,Goa,251033.0,, +2020-09-29,Goa,252783.0,, +2020-09-30,Goa,254801.0,, +2020-10-01,Goa,256897.0,, +2020-10-02,Goa,258285.0,, +2020-10-03,Goa,259777.0,, +2020-10-04,Goa,260955.0,, +2020-10-05,Goa,262241.0,, +2020-10-06,Goa,264139.0,, +2020-10-07,Goa,265959.0,, +2020-10-08,Goa,267362.0,, +2020-10-09,Goa,269205.0,, +2020-10-10,Goa,270616.0,, +2020-10-11,Goa,271962.0,, +2020-10-12,Goa,273404.0,, +2020-10-13,Goa,274974.0,, +2020-10-14,Goa,276457.0,, +2020-10-15,Goa,278039.0,, +2020-10-16,Goa,279295.0,, +2020-10-17,Goa,280703.0,, +2020-10-18,Goa,281949.0,, +2020-10-19,Goa,282691.0,, +2020-10-20,Goa,284193.0,, +2020-10-21,Goa,285455.0,, +2020-10-22,Goa,286711.0,, +2020-10-23,Goa,287887.0,, +2020-10-24,Goa,289332.0,, +2020-10-25,Goa,290350.0,, +2020-10-26,Goa,291630.0,, +2020-10-27,Goa,293591.0,, +2020-10-28,Goa,295392.0,, +2020-10-29,Goa,297075.0,, +2020-10-30,Goa,298792.0,, +2020-10-31,Goa,300548.0,, +2020-11-01,Goa,301440.0,, +2020-11-02,Goa,302832.0,, +2020-11-03,Goa,304544.0,, +2020-11-04,Goa,306425.0,, +2020-11-05,Goa,308011.0,, +2020-11-06,Goa,309751.0,, +2020-11-07,Goa,311014.0,, +2020-11-08,Goa,312780.0,, +2020-11-09,Goa,314183.0,, +2020-11-10,Goa,315761.0,, +2020-11-11,Goa,317230.0,, +2020-11-12,Goa,318541.0,, +2020-11-13,Goa,320092.0,, +2020-11-14,Goa,321050.0,, +2020-11-15,Goa,321769.0,, +2020-11-16,Goa,322989.0,, +2020-11-17,Goa,324649.0,, +2020-11-18,Goa,326365.0,, +2020-11-19,Goa,327986.0,, +2020-11-20,Goa,329749.0,, +2020-11-21,Goa,331599.0,, +2020-11-22,Goa,332738.0,, +2020-11-23,Goa,334198.0,, +2020-11-24,Goa,336202.0,, +2020-11-25,Goa,338144.0,, +2020-11-26,Goa,340036.0,, +2020-11-27,Goa,342681.0,, +2020-11-28,Goa,345201.0,, +2020-11-29,Goa,347199.0,, +2020-11-30,Goa,348871.0,, +2020-12-01,Goa,350919.0,, +2020-12-02,Goa,352922.0,, +2020-12-03,Goa,354812.0,, +2020-12-04,Goa,356109.0,, +2020-12-05,Goa,358202.0,, +2020-12-06,Goa,359345.0,, +2020-12-07,Goa,360920.0,, +2020-12-08,Goa,363062.0,, +2020-12-09,Goa,364672.0,, +2020-12-10,Goa,366174.0,, +2020-12-11,Goa,367818.0,, +2020-12-12,Goa,369887.0,, +2020-12-13,Goa,370690.0,, +2020-12-14,Goa,372211.0,, +2020-12-15,Goa,373920.0,, +2020-12-16,Goa,375678.0,, +2020-12-17,Goa,377343.0,, +2020-12-18,Goa,378817.0,, +2020-12-19,Goa,380426.0,, +2020-12-20,Goa,381392.0,, +2020-12-21,Goa,382852.0,, +2020-12-22,Goa,384740.0,, +2020-12-23,Goa,386533.0,, +2020-12-24,Goa,388210.0,, +2020-12-25,Goa,389879.0,, +2020-12-26,Goa,391084.0,, +2020-12-27,Goa,392413.0,, +2020-12-28,Goa,393587.0,, +2020-12-29,Goa,395425.0,, +2020-12-30,Goa,397386.0,, +2020-12-31,Goa,399206.0,, +2021-01-01,Goa,400669.0,, +2021-01-02,Goa,402289.0,, +2021-01-03,Goa,403611.0,, +2021-01-04,Goa,404788.0,, +2021-01-05,Goa,406810.0,, +2021-01-06,Goa,408710.0,, +2021-01-07,Goa,410575.0,, +2021-01-08,Goa,412662.0,, +2021-01-09,Goa,414869.0,, +2021-01-10,Goa,416392.0,, +2021-01-11,Goa,417573.0,, +2021-01-12,Goa,419548.0,, +2021-01-13,Goa,421490.0,, +2021-01-14,Goa,423328.0,, +2021-01-15,Goa,425033.0,, +2021-01-16,Goa,426703.0,, +2021-01-17,Goa,427935.0,, +2021-01-18,Goa,429020.0,, +2021-01-19,Goa,431275.0,, +2021-01-20,Goa,433077.0,, +2021-01-21,Goa,434825.0,, +2021-01-22,Goa,436519.0,, +2021-01-23,Goa,438454.0,, +2021-01-24,Goa,439616.0,, +2021-01-25,Goa,441012.0,, +2021-01-26,Goa,442488.0,, +2021-01-27,Goa,443903.0,, +2021-01-28,Goa,445778.0,, +2021-01-29,Goa,447398.0,, +2021-01-30,Goa,449280.0,, +2021-01-31,Goa,450676.0,, +2021-02-01,Goa,452039.0,, +2021-02-02,Goa,454356.0,, +2021-02-03,Goa,456130.0,, +2021-02-04,Goa,458068.0,, +2021-02-05,Goa,459485.0,, +2021-02-06,Goa,460994.0,, +2021-02-07,Goa,462011.0,, +2021-02-08,Goa,463300.0,, +2021-02-09,Goa,464805.0,, +2021-02-10,Goa,466545.0,, +2021-02-11,Goa,468179.0,, +2021-02-12,Goa,469749.0,, +2021-02-13,Goa,471165.0,, +2021-02-14,Goa,472229.0,, +2021-02-15,Goa,473449.0,, +2021-02-16,Goa,475057.0,, +2021-02-17,Goa,476682.0,, +2021-02-18,Goa,478148.0,, +2021-02-19,Goa,479780.0,, +2021-02-20,Goa,481571.0,, +2021-02-21,Goa,482622.0,, +2021-02-22,Goa,483675.0,, +2021-02-23,Goa,485451.0,, +2021-02-24,Goa,487110.0,, +2021-02-25,Goa,488742.0,, +2021-02-26,Goa,490555.0,, +2021-02-27,Goa,492143.0,, +2021-02-28,Goa,493367.0,, +2021-03-01,Goa,494535.0,, +2021-03-02,Goa,496089.0,, +2021-03-03,Goa,497806.0,, +2021-03-04,Goa,499371.0,, +2021-03-05,Goa,500978.0,, +2021-03-06,Goa,502509.0,, +2021-03-07,Goa,503674.0,, +2021-03-08,Goa,504938.0,, +2021-03-09,Goa,506507.0,, +2021-03-10,Goa,507998.0,, +2021-03-11,Goa,509776.0,, +2021-03-12,Goa,511503.0,, +2021-03-13,Goa,512999.0,, +2021-03-14,Goa,514309.0,, +2021-03-15,Goa,515663.0,, +2021-03-16,Goa,517229.0,, +2021-03-17,Goa,518847.0,, +2021-03-18,Goa,520510.0,, +2021-03-19,Goa,522458.0,, +2021-03-20,Goa,524230.0,, +2021-03-21,Goa,525665.0,, +2021-03-22,Goa,527106.0,, +2021-03-23,Goa,529007.0,, +2021-03-24,Goa,530780.0,, +2021-03-25,Goa,532970.0,, +2021-03-26,Goa,535093.0,, +2021-03-27,Goa,537572.0,, +2021-03-28,Goa,539339.0,, +2021-03-29,Goa,540796.0,, +2021-03-30,Goa,542300.0,, +2021-03-31,Goa,544652.0,, +2021-04-01,Goa,547263.0,, +2021-04-02,Goa,549292.0,, +2021-04-03,Goa,551354.0,, +2021-04-04,Goa,553411.0,, +2021-04-05,Goa,555457.0,, +2021-04-06,Goa,558266.0,, +2021-04-07,Goa,560905.0,, +2021-04-08,Goa,564111.0,, +2021-04-09,Goa,566872.0,, +2021-04-10,Goa,569832.0,, +2021-04-11,Goa,572337.0,, +2021-04-12,Goa,574614.0,, +2021-04-13,Goa,577121.0,, +2021-04-14,Goa,579357.0,, +2021-04-15,Goa,582068.0,, +2021-04-16,Goa,585257.0,, +2021-04-17,Goa,588751.0,, +2021-04-18,Goa,592007.0,, +2021-04-19,Goa,594733.0,, +2021-04-20,Goa,598330.0,, +2021-04-21,Goa,602419.0,, +2021-04-22,Goa,606325.0,, +2021-04-23,Goa,609332.0,, +2021-04-24,Goa,613865.0,, +2021-04-25,Goa,619811.0,, +2021-04-26,Goa,626583.0,, +2021-04-27,Goa,632131.0,, +2021-04-28,Goa,640149.0,, +2021-04-29,Goa,646059.0,, +2021-04-30,Goa,652816.0,, +2021-05-01,Goa,658713.0,, +2021-05-02,Goa,663507.0,, +2021-05-03,Goa,669520.0,, +2021-05-04,Goa,676072.0,, +2021-05-05,Goa,682841.0,, +2021-05-06,Goa,690359.0,, +2021-05-07,Goa,698529.0,, +2021-05-08,Goa,706644.0,, +2021-05-09,Goa,712315.0,, +2021-05-10,Goa,718422.0,, +2021-05-11,Goa,726927.0,, +2021-05-12,Goa,733847.0,, +2021-05-13,Goa,740931.0,, +2021-05-14,Goa,747700.0,, +2021-05-15,Goa,753271.0,, +2021-05-16,Goa,757148.0,, +2021-05-17,Goa,761413.0,, +2021-05-18,Goa,765311.0,, +2021-05-19,Goa,769184.0,, +2021-05-20,Goa,773765.0,, +2021-05-21,Goa,778828.0,, +2021-05-22,Goa,783409.0,, +2021-05-23,Goa,787977.0,, +2021-05-24,Goa,791940.0,, +2021-05-25,Goa,796984.0,, +2021-05-26,Goa,801599.0,, +2021-05-27,Goa,807550.0,, +2021-05-28,Goa,812415.0,, +2021-05-29,Goa,816691.0,, +2021-05-30,Goa,819933.0,, +2021-05-31,Goa,822937.0,, +2021-06-01,Goa,827657.0,, +2021-06-02,Goa,831372.0,, +2021-06-03,Goa,834703.0,, +2021-06-04,Goa,838789.0,, +2021-06-05,Goa,842920.0,, +2021-06-06,Goa,845942.0,, +2021-06-07,Goa,848687.0,, +2020-04-08,Gujarat,4224.0,3905,186.0 +2020-04-10,Gujarat,7718.0,7237,378.0 +2020-04-11,Gujarat,9763.0,8888,468.0 +2020-04-12,Gujarat,11715.0,10867,516.0 +2020-04-13,Gujarat,14251.0,12970,572.0 +2020-04-14,Gujarat,14980.0,14363,617.0 +2020-04-15,Gujarat,19197.0,18431,766.0 +2020-04-16,Gujarat,20903.0,19974,929.0 +2020-04-17,Gujarat,23483.0,22339,1099.0 +2020-04-18,Gujarat,26102.0,24726,1376.0 +2020-04-19,Gujarat,29104.0,27361,1743.0 +2020-04-20,Gujarat,33316.0,31377,1939.0 +2020-04-21,Gujarat,36829.0,34651,2178.0 +2020-04-22,Gujarat,39421.0,37014,2407.0 +2020-04-23,Gujarat,42384.0,39760,2624.0 +2020-04-24,Gujarat,46743.0,41007,2815.0 +2020-04-25,Gujarat,48315.0,45254,3061.0 +2020-04-26,Gujarat,51091.0,47790,3301.0 +2020-04-27,Gujarat,53575.0,50028,3547.0 +2020-04-28,Gujarat,56101.0,52327,3774.0 +2020-04-29,Gujarat,59488.0,55406,4082.0 +2020-04-30,Gujarat,64007.0,59612,4395.0 +2020-05-01,Gujarat,68774.0,64053,4721.0 +2020-05-02,Gujarat,74116.0,69062,5054.0 +2020-05-03,Gujarat,80060.0,74632,5428.0 +2020-05-04,Gujarat,84648.0,78844,5804.0 +2020-05-05,Gujarat,89632.0,83387,6245.0 +2020-05-06,Gujarat,95191.0,88566,6625.0 +2020-05-07,Gujarat,100553.0,93540,7013.0 +2020-05-08,Gujarat,105386.0,97984,7403.0 +2020-05-09,Gujarat,109650.0,101853,7797.0 +2020-05-10,Gujarat,113493.0,105298,8195.0 +2020-05-11,Gujarat,116470.0,107929,8541.0 +2020-05-12,Gujarat,119536.0,110633,8903.0 +2020-05-13,Gujarat,122297.0,113029,9268.0 +2020-05-14,Gujarat,124708.0,115117,9591.0 +2020-05-15,Gujarat,127859.0,117927,9932.0 +2020-05-16,Gujarat,138407.0,127418,10989.0 +2020-05-17,Gujarat,143600.0,132220,11380.0 +2020-05-18,Gujarat,148824.0,137078,11746.0 +2020-05-19,Gujarat,154674.0,142533,12141.0 +2020-05-20,Gujarat,160772.0,148233,12539.0 +2020-05-21,Gujarat,166152.0,153242,12910.0 +2020-05-22,Gujarat,172562.0,159289,13273.0 +2020-05-23,Gujarat,178068.0,164399,13669.0 +2020-05-24,Gujarat,182868.0,168806,14056.0 +2020-05-25,Gujarat,186361.0,171893,14468.0 +2020-05-26,Gujarat,189313.0,,14821.0 +2020-05-27,Gujarat,193863.0,,15203.0 +2020-05-28,Gujarat,198048.0,,15572.0 +2020-05-29,Gujarat,201481.0,,15944.0 +2020-05-30,Gujarat,205780.0,,16356.0 +2020-05-31,Gujarat,211930.0,,16794.0 +2020-06-01,Gujarat,216258.0,,17217.0 +2020-06-02,Gujarat,221610.0,,17632.0 +2020-06-03,Gujarat,227898.0,,18117.0 +2020-06-04,Gujarat,233921.0,,18609.0 +2020-06-05,Gujarat,239911.0,,19119.0 +2020-06-06,Gujarat,245606.0,,19617.0 +2020-06-07,Gujarat,251686.0,,20097.0 +2020-06-08,Gujarat,256289.0,,20574.0 +2020-06-09,Gujarat,261587.0,,21044.0 +2020-06-10,Gujarat,266404.0,,21554.0 +2020-06-11,Gujarat,272924.0,,22067.0 +2020-06-12,Gujarat,278137.0,,22562.0 +2020-06-13,Gujarat,283623.0,,23079.0 +2020-06-14,Gujarat,288565.0,,23590.0 +2020-06-15,Gujarat,292909.0,,24104.0 +2020-06-16,Gujarat,296335.0,,24628.0 +2020-06-17,Gujarat,303671.0,,25148.0 +2020-06-18,Gujarat,308744.0,,25658.0 +2020-06-19,Gujarat,314301.0,,26198.0 +2020-06-20,Gujarat,319414.0,,26737.0 +2020-06-21,Gujarat,324874.0,,27317.0 +2020-06-22,Gujarat,329343.0,,27880.0 +2020-06-23,Gujarat,334326.0,,28429.0 +2020-06-24,Gujarat,340080.0,,29001.0 +2020-06-25,Gujarat,345278.0,,29578.0 +2020-06-26,Gujarat,351179.0,321021,30158.0 +2020-06-27,Gujarat,357148.0,,30773.0 +2020-06-28,Gujarat,363306.0,,31397.0 +2020-06-29,Gujarat,367739.0,,32023.0 +2020-06-30,Gujarat,373613.0,,32643.0 +2020-07-01,Gujarat,380640.0,,33318.0 +2020-07-02,Gujarat,388065.0,,33999.0 +2020-07-03,Gujarat,395873.0,361187,34686.0 +2020-07-04,Gujarat,404354.0,368956,35398.0 +2020-07-05,Gujarat,412124.0,376001,36123.0 +2020-07-06,Gujarat,418464.0,381606,36858.0 +2020-07-07,Gujarat,425830.0,388194,37636.0 +2020-07-08,Gujarat,433864.0,395445,38419.0 +2020-07-09,Gujarat,441692.0,402412,39280.0 +2020-07-10,Gujarat,449349.0,409194,40155.0 +2020-07-11,Gujarat,457066.0,416039,41027.0 +2020-07-12,Gujarat,464646.0,422749,41897.0 +2020-07-13,Gujarat,470265.0,427457,42808.0 +2020-07-14,Gujarat,478367.0,434644,43723.0 +2020-07-15,Gujarat,487707.0,443059,44648.0 +2020-07-16,Gujarat,499170.0,453603,45567.0 +2020-07-17,Gujarat,512000.0,465484,46516.0 +2020-07-18,Gujarat,524297.0,476821,47476.0 +2020-07-19,Gujarat,536122.0,487681,48441.0 +2020-07-20,Gujarat,548989.0,499550,49439.0 +2020-07-21,Gujarat,562682.0,512217,50465.0 +2020-07-22,Gujarat,576706.0,525221,51485.0 +2020-07-23,Gujarat,591561.0,,52563.0 +2020-07-24,Gujarat,606718.0,553087,53631.0 +2020-07-25,Gujarat,620662.0,565950,54712.0 +2020-07-26,Gujarat,642370.0,,55822.0 +2020-07-27,Gujarat,667844.0,610970,56874.0 +2020-07-28,Gujarat,690092.0,632110,57982.0 +2020-07-29,Gujarat,713006.0,653880,59126.0 +2020-07-30,Gujarat,738073.0,677788,60285.0 +2020-07-31,Gujarat,764777.0,703339,61438.0 +2020-08-01,Gujarat,791080.0,728506,62574.0 +2020-08-02,Gujarat,814335.0,750660,63675.0 +2020-08-03,Gujarat,834104.0,769420,64684.0 +2020-08-04,Gujarat,854839.0,789135,65704.0 +2020-08-05,Gujarat,879213.0,812436,66777.0 +2020-08-06,Gujarat,903782.0,835971,67811.0 +2020-08-07,Gujarat,930373.0,861488,68885.0 +2020-08-08,Gujarat,956645.0,886659,69986.0 +2020-08-09,Gujarat,987630.0,916566,71064.0 +2020-08-10,Gujarat,1017234.0,945114,72120.0 +2020-08-11,Gujarat,1058881.0,985643,73238.0 +2020-08-12,Gujarat,1109005.0,1034615,74390.0 +2020-08-13,Gujarat,1159822.0,1084340,75482.0 +2020-08-14,Gujarat,1211047.0,1134478,76569.0 +2020-08-15,Gujarat,1262264.0,1184601,77663.0 +2020-08-16,Gujarat,1312824.0,1234041,78783.0 +2020-08-17,Gujarat,1358364.0,1278548,79816.0 +2020-08-18,Gujarat,1415598.0,,80942.0 +2020-08-19,Gujarat,1478629.0,,82087.0 +2020-08-20,Gujarat,1547120.0,,83262.0 +2020-08-21,Gujarat,1620067.0,,84466.0 +2020-08-22,Gujarat,1695325.0,,85678.0 +2020-08-23,Gujarat,1756133.0,,86779.0 +2020-08-24,Gujarat,1819198.0,,87846.0 +2020-08-25,Gujarat,1891775.0,,88942.0 +2020-08-26,Gujarat,1969724.0,,90139.0 +2020-08-27,Gujarat,2045951.0,,91329.0 +2020-08-28,Gujarat,2121751.0,,92601.0 +2020-08-29,Gujarat,2195985.0,,93883.0 +2020-08-30,Gujarat,2265473.0,,95155.0 +2020-08-31,Gujarat,2331836.0,,96435.0 +2020-09-01,Gujarat,2409906.0,,97745.0 +2020-09-02,Gujarat,2484429.0,,99050.0 +2020-09-03,Gujarat,2559916.0,,100375.0 +2020-09-04,Gujarat,2635369.0,, +2020-09-05,Gujarat,2708120.0,,103006.0 +2020-09-06,Gujarat,2780681.0,2676340,104341.0 +2020-09-07,Gujarat,2853371.0,2747700,105671.0 +2020-09-08,Gujarat,2925447.0,2818481,106966.0 +2020-09-09,Gujarat,3001383.0,,108295.0 +2020-09-10,Gujarat,3073534.0,,109627.0 +2020-09-11,Gujarat,3145202.0,,110971.0 +2020-09-12,Gujarat,3219983.0,,112336.0 +2020-09-13,Gujarat,3288811.0,,113662.0 +2020-09-14,Gujarat,3360318.0,,114996.0 +2020-09-15,Gujarat,3438500.0,,116345.0 +2020-09-16,Gujarat,3523653.0,,117709.0 +2020-09-17,Gujarat,3609273.0,,119088.0 +2020-09-18,Gujarat,3678350.0,,120498.0 +2020-09-19,Gujarat,3739782.0,,121930.0 +2020-09-20,Gujarat,3800469.0,,123337.0 +2020-09-21,Gujarat,3862366.0,,124767.0 +2020-09-22,Gujarat,3924463.0,,126169.0 +2020-09-23,Gujarat,3986370.0,,127541.0 +2020-09-24,Gujarat,4048274.0,, +2020-09-25,Gujarat,4110186.0,,130391.0 +2020-09-26,Gujarat,4172051.0,,131808.0 +2020-09-27,Gujarat,4232408.0,, +2020-09-28,Gujarat,4293724.0,,134623.0 +2020-09-29,Gujarat,4356062.0,,136004.0 +2020-09-30,Gujarat,4418028.0,, +2020-10-01,Gujarat,4474766.0,, +2020-10-02,Gujarat,4531498.0,, +2020-10-03,Gujarat,4588563.0,, +2020-10-04,Gujarat,4645263.0,, +2020-10-05,Gujarat,4702776.0,, +2020-10-06,Gujarat,4754655.0,, +2020-10-07,Gujarat,4806040.0,, +2020-10-08,Gujarat,4858505.0,, +2020-10-09,Gujarat,4910167.0,, +2020-10-10,Gujarat,4961455.0,, +2020-10-11,Gujarat,5012705.0,, +2020-10-12,Gujarat,5063684.0,, +2020-10-13,Gujarat,5114677.0,, +2020-10-14,Gujarat,5165670.0,, +2020-10-15,Gujarat,5216885.0,, +2020-10-16,Gujarat,5269542.0,, +2020-10-17,Gujarat,5322288.0,, +2020-10-18,Gujarat,5374249.0,, +2020-10-19,Gujarat,5426621.0,, +2020-10-20,Gujarat,5479536.0,, +2020-10-21,Gujarat,5532522.0,, +2020-10-22,Gujarat,5585445.0,, +2020-10-23,Gujarat,5638392.0,, +2020-10-24,Gujarat,5691372.0,, +2020-10-25,Gujarat,5742742.0,, +2020-10-26,Gujarat,5793788.0,, +2020-10-27,Gujarat,5845715.0,, +2020-10-28,Gujarat,5897627.0,, +2020-10-29,Gujarat,5950616.0,, +2020-10-30,Gujarat,6002273.0,, +2020-10-31,Gujarat,6053847.0,, +2020-11-01,Gujarat,6104931.0,, +2020-11-02,Gujarat,6157811.0,, +2020-11-03,Gujarat,6210550.0,, +2020-11-04,Gujarat,6262122.0,, +2020-11-05,Gujarat,6304418.0,, +2020-11-06,Gujarat,6365202.0,, +2020-11-07,Gujarat,6416963.0,, +2020-11-08,Gujarat,6468154.0,, +2020-11-09,Gujarat,6519943.0,, +2020-11-10,Gujarat,6572903.0,, +2020-11-11,Gujarat,6625876.0,, +2020-11-12,Gujarat,6680500.0,, +2020-11-13,Gujarat,6734467.0,, +2020-11-14,Gujarat,6787440.0,, +2020-11-15,Gujarat,6837282.0,, +2020-11-16,Gujarat,6876665.0,, +2020-11-17,Gujarat,6923993.0,, +2020-11-18,Gujarat,6978249.0,, +2020-11-19,Gujarat,7033156.0,, +2020-11-20,Gujarat,7101057.0,, +2020-11-21,Gujarat,7171445.0,, +2020-11-22,Gujarat,7235184.0,, +2020-11-23,Gujarat,7304705.0,, +2020-11-24,Gujarat,7389330.0,, +2020-11-25,Gujarat,7480789.0,, +2020-11-26,Gujarat,7551609.0,, +2020-11-27,Gujarat,7620892.0,, +2020-11-28,Gujarat,7690779.0,, +2020-11-29,Gujarat,7759739.0,, +2020-11-30,Gujarat,7825615.0,, +2020-12-01,Gujarat,7894467.0,, +2020-12-02,Gujarat,7963653.0,, +2020-12-03,Gujarat,8033388.0,, +2020-12-04,Gujarat,8102712.0,, +2020-12-05,Gujarat,8172380.0,, +2020-12-06,Gujarat,8241960.0,, +2020-12-07,Gujarat,8310558.0,, +2020-12-08,Gujarat,8371433.0,, +2020-12-09,Gujarat,8432094.0,, +2020-12-10,Gujarat,8492641.0,, +2020-12-11,Gujarat,8553164.0,, +2020-12-12,Gujarat,8613587.0,, +2020-12-13,Gujarat,8669576.0,, +2020-12-14,Gujarat,8725383.0,, +2020-12-15,Gujarat,8780266.0,, +2020-12-16,Gujarat,8835130.0,, +2020-12-17,Gujarat,8889965.0,, +2020-12-18,Gujarat,8944722.0,, +2020-12-19,Gujarat,8999087.0,, +2020-12-20,Gujarat,9053781.0,, +2020-12-21,Gujarat,9108393.0,, +2020-12-22,Gujarat,9162980.0,, +2020-12-23,Gujarat,9217823.0,, +2020-12-24,Gujarat,9273521.0,, +2020-12-25,Gujarat,9330491.0,, +2020-12-26,Gujarat,9384030.0,, +2020-12-27,Gujarat,9437105.0,, +2020-12-28,Gujarat,9490011.0,, +2020-12-29,Gujarat,9543400.0,, +2020-12-30,Gujarat,9598108.0,, +2020-12-31,Gujarat,9652780.0,, +2021-01-01,Gujarat,9706300.0,, +2021-01-02,Gujarat,9759280.0,, +2021-01-03,Gujarat,9810664.0,, +2021-01-04,Gujarat,9858659.0,, +2021-01-05,Gujarat,9906698.0,, +2021-01-06,Gujarat,9955664.0,, +2021-01-07,Gujarat,10003606.0,, +2021-01-08,Gujarat,10053558.0,, +2021-01-09,Gujarat,10101064.0,, +2021-01-10,Gujarat,10106573.0,, +2021-01-11,Gujarat,10151305.0,, +2021-01-12,Gujarat,10196158.0,, +2021-01-13,Gujarat,10238845.0,, +2021-01-14,Gujarat,10276485.0,, +2021-01-15,Gujarat,10308797.0,, +2021-01-16,Gujarat,10344324.0,, +2021-01-17,Gujarat,10379151.0,, +2021-01-18,Gujarat,10413621.0,, +2021-01-19,Gujarat,10447816.0,, +2021-01-20,Gujarat,10483207.0,, +2021-01-21,Gujarat,10518933.0,, +2021-01-22,Gujarat,10557027.0,, +2021-01-23,Gujarat,10557027.0,, +2021-01-25,Gujarat,10655600.0,, +2021-01-26,Gujarat,10655600.0,, +2021-01-27,Gujarat,10655600.0,, +2021-01-28,Gujarat,10751067.0,, +2021-01-29,Gujarat,10751067.0,, +2021-01-30,Gujarat,10813671.0,, +2021-02-01,Gujarat,10871308.0,, +2021-02-02,Gujarat,10900068.0,, +2021-02-03,Gujarat,10933696.0,, +2021-02-04,Gujarat,10966235.0,, +2021-02-05,Gujarat,10998755.0,, +2021-02-06,Gujarat,11030661.0,, +2021-02-07,Gujarat,11060775.0,, +2021-02-08,Gujarat,11089177.0,, +2021-02-09,Gujarat,11120129.0,, +2021-02-10,Gujarat,11151733.0,, +2021-02-11,Gujarat,11184241.0,, +2021-02-12,Gujarat,11216545.0,, +2021-02-13,Gujarat,11246954.0,, +2021-02-14,Gujarat,11273012.0,, +2021-02-15,Gujarat,11301404.0,, +2021-02-16,Gujarat,11332917.0,, +2021-02-17,Gujarat,11364444.0,, +2021-02-18,Gujarat,11395504.0,, +2021-02-19,Gujarat,11426929.0,, +2021-02-20,Gujarat,11457831.0,, +2021-02-21,Gujarat,11486652.0,, +2021-02-22,Gujarat,11516986.0,, +2021-02-23,Gujarat,11550722.0,, +2021-02-24,Gujarat,11586675.0,, +2021-02-25,Gujarat,11626508.0,, +2021-02-26,Gujarat,11666635.0,, +2021-02-27,Gujarat,11706362.0,, +2021-02-28,Gujarat,11739846.0,, +2021-03-01,Gujarat,11772956.0,, +2021-03-02,Gujarat,11812132.0,, +2021-03-03,Gujarat,11851954.0,, +2021-03-04,Gujarat,11894510.0,, +2021-03-05,Gujarat,11937704.0,, +2021-03-06,Gujarat,11979578.0,, +2021-03-07,Gujarat,12016996.0,, +2021-03-08,Gujarat,12054039.0,, +2021-03-09,Gujarat,12098835.0,, +2021-03-10,Gujarat,12145245.0,, +2021-03-11,Gujarat,12187600.0,, +2021-03-12,Gujarat,12230975.0,, +2021-03-13,Gujarat,12275445.0,, +2021-03-14,Gujarat,12321047.0,, +2021-03-15,Gujarat,12367262.0,, +2021-03-16,Gujarat,12419088.0,, +2021-03-17,Gujarat,12477426.0,, +2021-03-18,Gujarat,12536086.0,, +2021-03-19,Gujarat,12598997.0,, +2021-03-20,Gujarat,12661933.0,, +2021-03-21,Gujarat,12722014.0,, +2021-03-22,Gujarat,12781096.0,, +2021-03-23,Gujarat,12849797.0,, +2021-03-24,Gujarat,12926709.0,, +2021-03-25,Gujarat,13008414.0,, +2021-03-26,Gujarat,13096513.0,, +2021-03-27,Gujarat,13182148.0,, +2021-03-28,Gujarat,13263977.0,, +2021-03-29,Gujarat,13334810.0,, +2021-03-30,Gujarat,13406686.0,, +2021-03-31,Gujarat,13497177.0,, +2021-04-01,Gujarat,13598199.0,, +2021-04-02,Gujarat,13705405.0,, +2021-04-03,Gujarat,13819989.0,, +2021-04-04,Gujarat,13932822.0,, +2021-04-05,Gujarat,14049043.0,, +2021-04-06,Gujarat,14174426.0,, +2021-04-07,Gujarat,14298292.0,, +2021-04-08,Gujarat,14433123.0,, +2021-04-09,Gujarat,14567455.0,, +2021-04-10,Gujarat,14716579.0,, +2021-04-11,Gujarat,14861756.0,, +2021-04-12,Gujarat,15005034.0,, +2021-04-13,Gujarat,15154363.0,, +2021-04-14,Gujarat,15307435.0,, +2021-04-15,Gujarat,15466550.0,, +2021-04-16,Gujarat,15627525.0,, +2021-04-17,Gujarat,15801091.0,, +2021-04-18,Gujarat,15966802.0,, +2021-04-19,Gujarat,16125282.0,, +2021-04-20,Gujarat,16298864.0,, +2021-04-21,Gujarat,16480875.0,, +2021-04-22,Gujarat,16670240.0,, +2021-04-23,Gujarat,16860142.0,, +2021-04-24,Gujarat,17045176.0,, +2021-04-25,Gujarat,17213348.0,, +2021-04-26,Gujarat,17372504.0,, +2021-04-27,Gujarat,17535696.0,, +2021-04-28,Gujarat,17709605.0,, +2021-04-29,Gujarat,17878957.0,, +2021-04-30,Gujarat,18039956.0,, +2021-05-01,Gujarat,18190727.0,, +2021-05-02,Gujarat,18328441.0,, +2021-05-03,Gujarat,18460323.0,, +2021-05-04,Gujarat,18601098.0,, +2021-05-05,Gujarat,18746283.0,, +2021-05-06,Gujarat,18884876.0,, +2021-05-07,Gujarat,19023924.0,, +2021-05-08,Gujarat,19158868.0,, +2021-05-09,Gujarat,19286299.0,, +2021-05-10,Gujarat,19422086.0,, +2021-05-11,Gujarat,19565601.0,, +2021-05-12,Gujarat,19709259.0,, +2021-05-13,Gujarat,19849128.0,, +2021-05-14,Gujarat,19978336.0,, +2021-05-15,Gujarat,20106656.0,, +2021-05-16,Gujarat,20230784.0,, +2021-05-17,Gujarat,20352437.0,, +2021-05-18,Gujarat,20467101.0,, +2021-05-19,Gujarat,20557040.0,, +2021-05-20,Gujarat,20653954.0,, +2021-05-21,Gujarat,20763702.0,, +2021-05-22,Gujarat,20870917.0,, +2021-05-23,Gujarat,20973092.0,, +2021-05-24,Gujarat,21072692.0,, +2021-05-25,Gujarat,21170095.0,, +2021-05-26,Gujarat,21272316.0,, +2021-05-27,Gujarat,21375281.0,, +2021-05-28,Gujarat,21478980.0,, +2021-05-29,Gujarat,21579218.0,, +2021-05-30,Gujarat,21671123.0,, +2021-05-31,Gujarat,21759214.0,, +2021-06-01,Gujarat,21842042.0,, +2021-06-02,Gujarat,21926442.0,, +2021-06-03,Gujarat,22009878.0,, +2021-06-04,Gujarat,22092779.0,, +2021-06-05,Gujarat,22171235.0,, +2021-06-06,Gujarat,22244510.0,, +2021-06-07,Gujarat,22309332.0,, +2020-04-03,Haryana,1325.0,938,44.0 +2020-04-07,Haryana,2520.0,1821,141.0 +2020-04-08,Haryana,2650.0,1885,153.0 +2020-04-09,Haryana,2964.0,2017,156.0 +2020-04-10,Haryana,3527.0,2447,162.0 +2020-04-11,Haryana,3663.0,2472,165.0 +2020-04-12,Haryana,3903.0,2513,181.0 +2020-04-13,Haryana,4489.0,2961,182.0 +2020-04-14,Haryana,5210.0,3681,184.0 +2020-04-15,Haryana,7388.0,5581,190.0 +2020-04-16,Haryana,8064.0,6465,214.0 +2020-04-17,Haryana,8884.0,7148,223.0 +2020-04-18,Haryana,10454.0,8093,232.0 +2020-04-19,Haryana,12687.0,10230,250.0 +2020-04-20,Haryana,13894.0,11523,251.0 +2020-04-21,Haryana,14562.0,12253,255.0 +2020-04-22,Haryana,15561.0,13397,264.0 +2020-04-23,Haryana,17582.0,15452,270.0 +2020-04-24,Haryana,18845.0,16642,275.0 +2020-04-25,Haryana,20270.0,17787,287.0 +2020-04-26,Haryana,21467.0,19241,296.0 +2020-04-27,Haryana,22993.0,20702,301.0 +2020-04-28,Haryana,24826.0,22578,308.0 +2020-04-29,Haryana,26148.0,24071,311.0 +2020-04-30,Haryana,28202.0,25929,339.0 +2020-05-01,Haryana,30191.0,27784,357.0 +2020-05-02,Haryana,31200.0,28867,369.0 +2020-05-03,Haryana,35278.0,32583,442.0 +2020-05-04,Haryana,38183.0,34501,517.0 +2020-05-05,Haryana,40982.0,36806,548.0 +2020-05-06,Haryana,43279.0,38590,594.0 +2020-05-07,Haryana,46495.0,41861,625.0 +2020-05-08,Haryana,49746.0,43974,647.0 +2020-05-09,Haryana,53282.0,48468,675.0 +2020-05-10,Haryana,56983.0,51046,703.0 +2020-05-11,Haryana,59735.0,53697,730.0 +2020-05-12,Haryana,62377.0,56440,780.0 +2020-05-13,Haryana,65785.0,59890,793.0 +2020-05-14,Haryana,69191.0,63791,818.0 +2020-05-15,Haryana,72326.0,66687,854.0 +2020-05-16,Haryana,75097.0,69660,887.0 +2020-05-17,Haryana,78029.0,72494,910.0 +2020-05-18,Haryana,80698.0,75045,928.0 +2020-05-19,Haryana,82544.0,77296,964.0 +2020-05-20,Haryana,83944.0,78379,970.0 +2020-05-21,Haryana,88138.0,82372,1031.0 +2020-05-22,Haryana,91119.0,85317,1067.0 +2020-05-23,Haryana,94035.0,88051,1131.0 +2020-05-24,Haryana,97006.0,91138,1184.0 +2020-05-25,Haryana,99987.0,94725,1213.0 +2020-05-26,Haryana,102018.0,97350,1305.0 +2020-05-27,Haryana,104747.0,99555,1381.0 +2020-05-28,Haryana,108031.0,102260,1504.0 +2020-05-29,Haryana,110940.0,105169,1721.0 +2020-05-30,Haryana,114683.0,108385,1923.0 +2020-05-31,Haryana,118138.0,11709,2091.0 +2020-06-01,Haryana,121779.0,114792,2356.0 +2020-06-02,Haryana,124564.0,117340,2652.0 +2020-06-03,Haryana,127895.0,120393,2954.0 +2020-06-04,Haryana,132575.0,124769,3281.0 +2020-06-05,Haryana,137452.0,129027,3597.0 +2020-06-06,Haryana,141688.0,132684,3952.0 +2020-06-07,Haryana,145722.0,136555,4448.0 +2020-06-08,Haryana,150220.0,140081,4854.0 +2020-06-09,Haryana,153692.0,143513,5209.0 +2020-06-10,Haryana,158470.0,147453,5438.0 +2020-06-11,Haryana,162967.0,151060,5968.0 +2020-06-12,Haryana,167501.0,155395,6334.0 +2020-06-13,Haryana,171560.0,159333,6749.0 +2020-06-14,Haryana,185722.0,172678,7208.0 +2020-06-15,Haryana,189914.0,176741,7722.0 +2020-06-16,Haryana,193421.0,180051,8272.0 +2020-06-17,Haryana,197703.0,183395,8832.0 +2020-06-18,Haryana,202808.0,187303,9218.0 +2020-06-19,Haryana,207675.0,192082,9743.0 +2020-06-20,Haryana,212430.0,196836,10223.0 +2020-06-21,Haryana,217797.0,201984,10635.0 +2020-06-22,Haryana,222948.0,206436,11025.0 +2020-06-23,Haryana,226951.0,210998,11520.0 +2020-06-24,Haryana,231673.0,214896,12010.0 +2020-06-25,Haryana,236898.0,219064,12463.0 +2020-06-26,Haryana,241941.0,223797,12884.0 +2020-06-27,Haryana,247139.0,228275,13427.0 +2020-06-28,Haryana,252356.0,233567,13829.0 +2020-06-29,Haryana,260341.0,241356,14210.0 +2020-06-30,Haryana,264203.0,244000,14548.0 +2020-07-01,Haryana,269726.0,249453,14941.0 +2020-07-02,Haryana,277031.0,256053,15509.0 +2020-07-03,Haryana,288478.0,267194,16003.0 +2020-07-04,Haryana,298094.0,275869,16548.0 +2020-07-05,Haryana,307159.0,284570,17005.0 +2020-07-06,Haryana,315853.0,292701,17504.0 +2020-07-07,Haryana,323491.0,300195,17999.0 +2020-07-08,Haryana,332504.0,308289,18690.0 +2020-07-09,Haryana,342404.0,317159,19369.0 +2020-07-10,Haryana,352343.0,326679,19934.0 +2020-07-11,Haryana,363428.0,336790,20582.0 +2020-07-12,Haryana,372621.0,345903,21240.0 +2020-07-13,Haryana,381420.0,353885,21929.0 +2020-07-14,Haryana,388760.0,360991,22628.0 +2020-07-15,Haryana,400155.0,371350,23306.0 +2020-07-16,Haryana,409852.0,380138,24002.0 +2020-07-17,Haryana,424692.0,393627,24797.0 +2020-07-18,Haryana,436535.0,404852,25547.0 +2020-07-19,Haryana,447345.0,414438,26164.0 +2020-07-20,Haryana,457310.0,424137,26858.0 +2020-07-21,Haryana,467740.0,434300,27462.0 +2020-07-22,Haryana,477412.0,443585,28186.0 +2020-07-23,Haryana,490414.0,455864,28975.0 +2020-07-24,Haryana,505220.0,469631,29755.0 +2020-07-25,Haryana,536323.0,500579,30538.0 +2020-07-26,Haryana,549463.0,512734,31332.0 +2020-07-27,Haryana,559326.0,521416,32127.0 +2020-07-28,Haryana,570219.0,531644,32876.0 +2020-07-29,Haryana,582639.0,543201,33631.0 +2020-07-30,Haryana,600893.0,560863,34254.0 +2020-07-31,Haryana,612591.0,571751,34965.0 +2020-08-01,Haryana,628806.0,587418,35758.0 +2020-08-02,Haryana,646286.0,604056,36519.0 +2020-08-03,Haryana,657949.0,615375,37173.0 +2020-08-04,Haryana,671064.0,628013,37796.0 +2020-08-05,Haryana,683500.0,639335,38548.0 +2020-08-06,Haryana,697779.0,652600,39303.0 +2020-08-07,Haryana,713061.0,667244,40054.0 +2020-08-08,Haryana,730036.0,683237,40843.0 +2020-08-09,Haryana,744080.0,696664,41635.0 +2020-08-10,Haryana,753945.0,705790,42429.0 +2020-08-11,Haryana,771769.0,722780,43227.0 +2020-08-12,Haryana,786839.0,736914,44024.0 +2020-08-13,Haryana,801784.0,751225,44817.0 +2020-08-14,Haryana,817509.0,766184,45614.0 +2020-08-15,Haryana,830477.0,778189,46410.0 +2020-08-16,Haryana,844422.0,791184, +2020-08-17,Haryana,854757.0,801232,48040.0 +2020-08-18,Haryana,867458.0,812490,48936.0 +2020-08-19,Haryana,889259.0,833173, +2020-08-20,Haryana,910877.0,853707, +2020-08-21,Haryana,926568.0,868016, +2020-08-22,Haryana,944764.0,885193,53290.0 +2020-08-23,Haryana,964297.0,903523,54386.0 +2020-08-24,Haryana,983187.0,921303,55460.0 +2020-08-25,Haryana,1001781.0,938914,56608.0 +2020-08-26,Haryana,1025524.0,961297,58005.0 +2020-08-27,Haryana,1051189.0,985217,59298.0 +2020-08-28,Haryana,1076063.0,1008916,60596.0 +2020-08-29,Haryana,1103832.0,1035131,61987.0 +2020-08-30,Haryana,1130073.0,1060143,63282.0 +2020-08-31,Haryana,1150126.0,1079232, +2020-09-01,Haryana,1172778.0,1100351,66426.0 +2020-09-02,Haryana,1195800.0,1121546,68218.0 +2020-09-03,Haryana,1220075.0,1143463, +2020-09-04,Haryana,1245640.0,1167167, +2020-09-05,Haryana,1268518.0,1187623,74272.0 +2020-09-06,Haryana,1294598.0,1211295,76549.0 +2020-09-07,Haryana,1317045.0,1231602, +2020-09-08,Haryana,1334010.0,1246370, +2020-09-09,Haryana,1370399.0,1280217, +2020-09-10,Haryana,1399628.0,1306887, +2020-09-11,Haryana,1431602.0,1336477, +2020-09-12,Haryana,1461644.0,1363656, +2020-09-13,Haryana,1490034.0,1389712, +2020-09-14,Haryana,1514575.0,1411692, +2020-09-15,Haryana,1536656.0,1431486, +2020-09-16,Haryana,1565646.0,1457859, +2020-09-17,Haryana,1594079.0,1483521, +2020-09-18,Haryana,1623268.0,1510111, +2020-09-19,Haryana,1651482.0,1536019, +2020-09-20,Haryana,1681221.0,1563516, +2020-09-21,Haryana,1706758.0,1587365, +2020-09-22,Haryana,1729974.0,1608589, +2020-09-23,Haryana,1758243.0,1634605, +2020-09-24,Haryana,1783274.0,1658105, +2020-09-25,Haryana,1803327.0,1676711, +2020-09-26,Haryana,1827148.0,1698337, +2020-09-27,Haryana,1851457.0,1721300, +2020-09-28,Haryana,1872894.0,1741188, +2020-09-29,Haryana,1893886.0,1760914, +2020-09-30,Haryana,1920181.0,1784906, +2020-10-01,Haryana,1947071.0,1810686, +2020-10-02,Haryana,1973593.0,1835720, +2020-10-03,Haryana,1999250.0,1860408, +2020-10-04,Haryana,2021267.0,1881421, +2020-10-05,Haryana,2040177.0,1899393, +2020-10-06,Haryana,2079160.0,1937126, +2020-10-07,Haryana,2103722.0,1960080, +2020-10-08,Haryana,2130281.0,1985376, +2020-10-09,Haryana,2156747.0,2010557, +2020-10-10,Haryana,2184243.0,2037038, +2020-10-11,Haryana,2207900.0,2059967, +2020-10-12,Haryana,2228869.0,2080161, +2020-10-13,Haryana,2249349.0,2099570, +2020-10-14,Haryana,2273580.0,2122372, +2020-10-15,Haryana,2299341.0,2147116, +2020-10-16,Haryana,2324943.0,2171575, +2020-10-17,Haryana,2350871.0,2196371, +2020-10-18,Haryana,2371474.0,2216063, +2020-10-19,Haryana,2387906.0,2231220, +2020-10-20,Haryana,2406566.0,2249081, +2020-10-21,Haryana,2429010.0,2270379, +2020-10-22,Haryana,2455407.0,2295280, +2020-10-23,Haryana,2480029.0,2318573, +2020-10-24,Haryana,2505052.0,2342213, +2020-10-25,Haryana,2527343.0,2363741, +2020-10-26,Haryana,2543257.0,2378724, +2020-10-27,Haryana,2562470.0,2397074, +2020-10-28,Haryana,2587171.0,2419630, +2020-10-29,Haryana,2611412.0,2442239, +2020-10-30,Haryana,2636083.0,2465381, +2020-10-31,Haryana,2660556.0,2487987, +2020-11-01,Haryana,2680435.0,2506822, +2020-11-02,Haryana,2694833.0,2520247, +2020-11-03,Haryana,2714652.0,2537989, +2020-11-04,Haryana,2738375.0,2559356, +2020-11-05,Haryana,2759529.0,2578623, +2020-11-06,Haryana,2782656.0,2599454, +2020-11-07,Haryana,2809277.0,2623750, +2020-11-08,Haryana,2833607.0,2646119, +2020-11-09,Haryana,2852300.0,2662908, +2020-11-10,Haryana,2875690.0,2683493, +2020-11-11,Haryana,2900690.0,2683493, +2020-11-12,Haryana,2930335.0,2732430, +2020-11-13,Haryana,2956315.0,2755864, +2020-11-14,Haryana,2979336.0,2776925, +2020-11-15,Haryana,2995118.0,2791274, +2020-11-16,Haryana,3005801.0,2800445, +2020-11-17,Haryana,3021179.0,2812982, +2020-11-18,Haryana,3046661.0,2835091, +2020-11-19,Haryana,3074194.0,2860380, +2020-11-20,Haryana,3106471.0,2889297, +2020-11-21,Haryana,3141508.0,2921480, +2020-11-22,Haryana,3175091.0,2953103, +2020-11-23,Haryana,3199408.0,2975016, +2020-11-24,Haryana,3232433.0,3005363, +2020-11-25,Haryana,3269677.0,3039676, +2020-11-26,Haryana,3335699.0,3103597, +2020-11-27,Haryana,3378052.0,3143516, +2020-11-28,Haryana,3413893.0,3177814, +2020-11-29,Haryana,3540820.0,3218960, +2020-11-30,Haryana,3571541.0,3254060, +2020-12-01,Haryana,3601262.0,3289802, +2020-12-02,Haryana,3633138.0,3326702, +2020-12-03,Haryana,3669876.0,3366702, +2020-12-04,Haryana,3707439.0,3407802, +2020-12-05,Haryana,3745080.0,3448402, +2020-12-06,Haryana,3782619.0,3486902, +2020-12-07,Haryana,3806770.0,3516402, +2020-12-08,Haryana,3842153.0,3555002, +2020-12-09,Haryana,3871079.0,3588102, +2020-12-10,Haryana,3902258.0,3622002, +2020-12-11,Haryana,3932100.0,3655002, +2020-12-12,Haryana,3959888.0,3686120, +2020-12-13,Haryana,3993810.0,3721620, +2020-12-14,Haryana,4017138.0,3747920, +2020-12-15,Haryana,4044900.0,3776875, +2020-12-16,Haryana,4078507.0,3811475, +2020-12-17,Haryana,4113060.0,3846974, +2020-12-18,Haryana,4148399.0,3882660, +2020-12-19,Haryana,4182937.0,3916941, +2020-12-20,Haryana,4219066.0,3953224, +2020-12-21,Haryana,4239771.0,3974336, +2020-12-22,Haryana,4274666.0,4008514, +2020-12-23,Haryana,4314166.0,4048073, +2020-12-24,Haryana,4355778.0,4089147, +2020-12-25,Haryana,4389000.0,4122313, +2020-12-26,Haryana,4414846.0,4147911, +2020-12-27,Haryana,4444824.0,4177389, +2020-12-28,Haryana,4463557.0,4195934, +2020-12-29,Haryana,4492022.0,4223939, +2020-12-30,Haryana,4524498.0,4255805, +2020-12-31,Haryana,4554156.0,4285090, +2021-01-01,Haryana,4580194.0,4311362, +2021-01-02,Haryana,4602577.0,4333495, +2021-01-03,Haryana,4626828.0,4357464, +2021-01-04,Haryana,4644406.0,4375124, +2021-01-05,Haryana,4668127.0,4398470, +2021-01-06,Haryana,4692088.0,4422094, +2021-01-07,Haryana,4720441.0,4450570, +2021-01-08,Haryana,4747220.0,4477131, +2021-01-09,Haryana,4775390.0,4504789, +2021-01-10,Haryana,4802354.0,4531920, +2021-01-11,Haryana,4819866.0,4549096, +2021-01-12,Haryana,4842407.0,4571835, +2021-01-13,Haryana,4867418.0,4596464, +2021-01-14,Haryana,4890330.0,4619347, +2021-01-15,Haryana,4909834.0,4638878, +2021-01-16,Haryana,4931662.0,4660539, +2021-01-17,Haryana,4951524.0,4680507, +2021-01-18,Haryana,4964553.0,4693781, +2021-01-19,Haryana,4987245.0,4715987, +2021-01-20,Haryana,5008791.0,4737462, +2021-01-21,Haryana,5021965.0,4751239, +2021-01-22,Haryana,5042392.0,4771140, +2021-01-23,Haryana,5061345.0,4789977, +2021-01-24,Haryana,5077344.0,4806200, +2021-01-25,Haryana,5087355.0,4816654, +2021-01-26,Haryana,5103035.0,4831799, +2021-01-27,Haryana,5112331.0,4841513, +2021-01-28,Haryana,5127807.0,4856466, +2021-01-29,Haryana,5144281.0,4872696, +2021-01-30,Haryana,5159788.0,4888338, +2021-01-31,Haryana,5172330.0,4901083, +2021-02-01,Haryana,5180620.0,4909677, +2021-02-02,Haryana,5196412.0,4925048, +2021-02-03,Haryana,5218923.0,4946890, +2021-02-04,Haryana,5249249.0,4977063, +2021-02-05,Haryana,5275675.0,5002998, +2021-02-06,Haryana,5303224.0,5030692, +2021-02-07,Haryana,5325170.0,5052755, +2021-02-08,Haryana,5337267.0,5065497, +2021-02-09,Haryana,5358526.0,5086133, +2021-02-10,Haryana,5380061.0,5107320, +2021-02-11,Haryana,5401015.0,5128092, +2021-02-12,Haryana,5420430.0,5147740, +2021-02-13,Haryana,5439747.0,5166699, +2021-02-14,Haryana,5454514.0,5181772, +2021-02-15,Haryana,5463792.0,5191581, +2021-02-16,Haryana,5478753.0,5205960, +2021-02-17,Haryana,5489096.0,5216454, +2021-02-18,Haryana,5505000.0,5232132, +2021-02-19,Haryana,5523274.0,5249973, +2021-02-20,Haryana,5540336.0,5266993, +2021-02-21,Haryana,5554991.0,5281722, +2021-02-22,Haryana,5563749.0,5291162, +2021-02-23,Haryana,5578079.0,5304693, +2021-02-24,Haryana,5595801.0,5321800, +2021-02-25,Haryana,5614807.0,5340701, +2021-02-26,Haryana,5636043.0,5361950, +2021-02-27,Haryana,5657260.0,5382482, +2021-02-28,Haryana,5669984.0,5396278, +2021-03-01,Haryana,5678599.0,5405118, +2021-03-02,Haryana,5697283.0,5423353, +2021-03-03,Haryana,5717809.0,5443032, +2021-03-04,Haryana,5739426.0,5464313, +2021-03-05,Haryana,5760526.0,5485260, +2021-03-06,Haryana,5780031.0,5504474, +2021-03-07,Haryana,5796997.0,5521598, +2021-03-08,Haryana,5806377.0,5531744, +2021-03-09,Haryana,5823948.0,5540806, +2021-03-10,Haryana,5845979.0,5558672, +2021-03-11,Haryana,5864416.0,5573143, +2021-03-12,Haryana,5877255.0,5588403, +2021-03-13,Haryana,5895777.0,, +2021-03-14,Haryana,5913873.0,,275137.0 +2021-03-15,Haryana,5925266.0,, +2021-03-16,Haryana,5942173.0,, +2021-03-17,Haryana,5961452.0,, +2021-03-18,Haryana,5982315.0,, +2021-03-19,Haryana,6005265.0,, +2021-03-20,Haryana,6028808.0,, +2021-03-21,Haryana,6052876.0,, +2021-03-22,Haryana,6066772.0,, +2021-03-23,Haryana,6088112.0,, +2021-03-24,Haryana,6107247.0,, +2021-03-25,Haryana,6134366.0,, +2021-03-26,Haryana,6162686.0,, +2021-03-27,Haryana,6187507.0,, +2021-03-28,Haryana,6211231.0,, +2021-03-29,Haryana,6224800.0,, +2021-03-30,Haryana,6233290.0,, +2021-03-31,Haryana,6256186.0,, +2021-04-01,Haryana,6282606.0,, +2021-04-02,Haryana,6311734.0,, +2021-04-03,Haryana,6342732.0,, +2021-04-04,Haryana,6371139.0,, +2021-04-05,Haryana,6389802.0,, +2021-04-06,Haryana,6422251.0,, +2021-04-07,Haryana,6454835.0,, +2021-04-08,Haryana,6487798.0,, +2021-04-09,Haryana,6524024.0,, +2021-04-10,Haryana,6558260.0,, +2021-04-11,Haryana,6593116.0,, +2021-04-12,Haryana,6618104.0,, +2021-04-13,Haryana,6652932.0,, +2021-04-14,Haryana,6692475.0,, +2021-04-15,Haryana,6723968.0,, +2021-04-16,Haryana,6765626.0,, +2021-04-17,Haryana,6809613.0,, +2021-04-18,Haryana,6853496.0,, +2021-04-19,Haryana,6885774.0,, +2021-04-20,Haryana,6932530.0,, +2021-04-21,Haryana,6978356.0,, +2021-04-22,Haryana,7019043.0,, +2021-04-23,Haryana,7068195.0,, +2021-04-24,Haryana,7117264.0,, +2021-04-25,Haryana,7164253.0,, +2021-04-26,Haryana,7199776.0,, +2021-04-27,Haryana,7246974.0,, +2021-04-28,Haryana,7295714.0,, +2021-04-29,Haryana,7344419.0,, +2021-04-30,Haryana,7394450.0,, +2021-05-01,Haryana,7445273.0,, +2021-05-02,Haryana,7495503.0,, +2021-05-03,Haryana,7544069.0,, +2021-05-04,Haryana,7602477.0,, +2021-05-05,Haryana,7653930.0,, +2021-05-06,Haryana,7706062.0,, +2021-05-07,Haryana,7758576.0,, +2021-05-08,Haryana,7814131.0,, +2021-05-09,Haryana,7869575.0,, +2021-05-10,Haryana,7919278.0,, +2021-05-11,Haryana,7984152.0,, +2021-05-12,Haryana,8052274.0,, +2021-05-13,Haryana,8117415.0,, +2021-05-14,Haryana,8182327.0,, +2021-05-15,Haryana,8238884.0,, +2021-05-16,Haryana,8299423.0,, +2021-05-17,Haryana,8349357.0,, +2021-05-18,Haryana,8409814.0,, +2021-05-19,Haryana,8479594.0,, +2021-05-20,Haryana,8529816.0,, +2021-05-21,Haryana,8585262.0,, +2021-05-22,Haryana,8639800.0,, +2021-05-23,Haryana,8692082.0,, +2021-05-24,Haryana,8737182.0,, +2021-05-25,Haryana,8787727.0,, +2021-05-26,Haryana,8840489.0,, +2021-05-27,Haryana,8884763.0,, +2021-05-28,Haryana,8931389.0,, +2021-05-29,Haryana,8978383.0,, +2021-05-30,Haryana,9020972.0,, +2021-05-31,Haryana,9050306.0,, +2021-06-01,Haryana,9090941.0,, +2021-06-02,Haryana,9133616.0,, +2021-06-03,Haryana,9177950.0,, +2021-06-04,Haryana,9219033.0,, +2021-06-05,Haryana,9260500.0,, +2021-06-06,Haryana,9297242.0,, +2021-06-07,Haryana,9323986.0,, +2020-04-10,Himachal Pradesh,900.0,870,30.0 +2020-04-11,Himachal Pradesh,900.0,870,30.0 +2020-04-12,Himachal Pradesh,1113.0,944,32.0 +2020-04-13,Himachal Pradesh,1210.0,1109,32.0 +2020-04-14,Himachal Pradesh,1311.0,1232,32.0 +2020-04-15,Himachal Pradesh,1426.0,1391,35.0 +2020-04-16,Himachal Pradesh,1604.0,1559,35.0 +2020-04-17,Himachal Pradesh,1992.0,1740,36.0 +2020-04-18,Himachal Pradesh,2207.0,2091,39.0 +2020-04-19,Himachal Pradesh,2553.0,2337,39.0 +2020-04-20,Himachal Pradesh,2892.0,2714,39.0 +2020-04-21,Himachal Pradesh,3341.0,2933,39.0 +2020-04-22,Himachal Pradesh,3700.0,3510,39.0 +2020-04-23,Himachal Pradesh,4020.0,3943,40.0 +2020-04-24,Himachal Pradesh,4328.0,4160,40.0 +2020-04-25,Himachal Pradesh,4623.0,4363,40.0 +2020-04-26,Himachal Pradesh,4901.0,4794,40.0 +2020-04-27,Himachal Pradesh,5106.0,5022,40.0 +2020-04-28,Himachal Pradesh,5391.0,5344,40.0 +2020-04-29,Himachal Pradesh,5772.0,5726,40.0 +2020-04-30,Himachal Pradesh,6133.0,6091,40.0 +2020-05-01,Himachal Pradesh,6472.0,6432,40.0 +2020-05-02,Himachal Pradesh,6836.0,6791,40.0 +2020-05-03,Himachal Pradesh,7185.0,7133,40.0 +2020-05-04,Himachal Pradesh,7430.0,7320,41.0 +2020-05-05,Himachal Pradesh,7893.0,7800,42.0 +2020-05-06,Himachal Pradesh,8491.0,8055,43.0 +2020-05-07,Himachal Pradesh,9005.0,8833,46.0 +2020-05-08,Himachal Pradesh,9522.0,9434,50.0 +2020-05-09,Himachal Pradesh,10208.0,10047,52.0 +2020-05-10,Himachal Pradesh,10791.0,10343,55.0 +2020-05-11,Himachal Pradesh,11267.0,11016,59.0 +2020-05-12,Himachal Pradesh,12224.0,11846,66.0 +2020-05-13,Himachal Pradesh,13190.0,12867,67.0 +2020-05-14,Himachal Pradesh,14256.0,13307,70.0 +2020-05-15,Himachal Pradesh,15557.0,15076,76.0 +2020-05-16,Himachal Pradesh,16534.0,16079,78.0 +2020-05-17,Himachal Pradesh,17417.0,17049,80.0 +2020-05-18,Himachal Pradesh,18224.0,17946,90.0 +2020-05-19,Himachal Pradesh,19645.0,18994,92.0 +2020-05-20,Himachal Pradesh,21147.0,20449,110.0 +2020-05-21,Himachal Pradesh,22641.0,21812,152.0 +2020-05-22,Himachal Pradesh,24246.0,23307,168.0 +2020-05-23,Himachal Pradesh,25905.0,24625,185.0 +2020-05-24,Himachal Pradesh,27288.0,26524,203.0 +2020-05-25,Himachal Pradesh,28346.0,27596,223.0 +2020-05-26,Himachal Pradesh,29379.0,28989,247.0 +2020-05-27,Himachal Pradesh,30852.0,30019,273.0 +2020-05-28,Himachal Pradesh,32449.0,31655,281.0 +2020-05-29,Himachal Pradesh,33979.0,33486,295.0 +2020-05-30,Himachal Pradesh,35668.0,34933,313.0 +2020-05-31,Himachal Pradesh,37168.0,36618,331.0 +2020-06-01,Himachal Pradesh,37897.0,37233,340.0 +2020-06-02,Himachal Pradesh,39620.0,38993,345.0 +2020-06-03,Himachal Pradesh,41351.0,40621,359.0 +2020-06-04,Himachal Pradesh,42703.0,42081,383.0 +2020-06-05,Himachal Pradesh,43688.0,43149,393.0 +2020-06-06,Himachal Pradesh,44509.0,43942,400.0 +2020-06-07,Himachal Pradesh,45888.0,45254,411.0 +2020-06-08,Himachal Pradesh,46416.0,45956,421.0 +2020-06-09,Himachal Pradesh,47655.0,46541,437.0 +2020-06-10,Himachal Pradesh,48922.0,48123,451.0 +2020-06-11,Himachal Pradesh,50222.0,49465,470.0 +2020-06-12,Himachal Pradesh,51420.0,50793,486.0 +2020-06-13,Himachal Pradesh,52737.0,51106,493.0 +2020-06-14,Himachal Pradesh,53946.0,53301,518.0 +2020-06-15,Himachal Pradesh,54484.0,53923,556.0 +2020-06-16,Himachal Pradesh,56106.0,55333,560.0 +2020-06-17,Himachal Pradesh,57479.0,56861,585.0 +2020-06-18,Himachal Pradesh,59214.0,58063,595.0 +2020-06-19,Himachal Pradesh,60814.0,59675,627.0 +2020-06-20,Himachal Pradesh,62580.0,61662,656.0 +2020-06-21,Himachal Pradesh,64338.0,62882,673.0 +2020-06-22,Himachal Pradesh,65189.0,64324,727.0 +2020-06-23,Himachal Pradesh,67020.0,65803,775.0 +2020-06-24,Himachal Pradesh,68899.0,67420,806.0 +2020-06-25,Himachal Pradesh,71078.0,69917,839.0 +2020-06-26,Himachal Pradesh,72688.0,71426,864.0 +2020-06-27,Himachal Pradesh,74764.0,73722,894.0 +2020-06-28,Himachal Pradesh,76556.0,75285,916.0 +2020-06-29,Himachal Pradesh,77384.0,76413,942.0 +2020-06-30,Himachal Pradesh,79499.0,78335,953.0 +2020-07-01,Himachal Pradesh,81516.0,80387,979.0 +2020-07-02,Himachal Pradesh,83553.0,82435,1014.0 +2020-07-03,Himachal Pradesh,85116.0,83959,1033.0 +2020-07-04,Himachal Pradesh,87019.0,85953,1046.0 +2020-07-05,Himachal Pradesh,88459.0,87369,1063.0 +2020-07-06,Himachal Pradesh,89305.0,88223,1077.0 +2020-07-07,Himachal Pradesh,91175.0,89803,1083.0 +2020-07-08,Himachal Pradesh,93018.0,91736,1101.0 +2020-07-09,Himachal Pradesh,94720.0,93132,1140.0 +2020-07-10,Himachal Pradesh,96268.0,95037,1171.0 +2020-07-11,Himachal Pradesh,98367.0,97104,1182.0 +2020-07-12,Himachal Pradesh,100315.0,98802,1213.0 +2020-07-13,Himachal Pradesh,101200.0,99695,1243.0 +2020-07-14,Himachal Pradesh,103521.0,101677,1309.0 +2020-07-15,Himachal Pradesh,105734.0,103730,1341.0 +2020-07-16,Himachal Pradesh,108157.0,106280,1377.0 +2020-07-17,Himachal Pradesh,110585.0,108954,1417.0 +2020-07-18,Himachal Pradesh,113129.0,111393,1457.0 +2020-07-19,Himachal Pradesh,115298.0,113621,1521.0 +2020-07-20,Himachal Pradesh,116795.0,115063,1631.0 +2020-07-21,Himachal Pradesh,119220.0,116963,1664.0 +2020-07-22,Himachal Pradesh,121688.0,119350,1725.0 +2020-07-23,Himachal Pradesh,124683.0,121543,1834.0 +2020-07-24,Himachal Pradesh,127555.0,124568,1954.0 +2020-07-25,Himachal Pradesh,130253.0,127436,2049.0 +2020-07-26,Himachal Pradesh,132703.0,129501,2176.0 +2020-07-27,Himachal Pradesh,134606.0,131862,2270.0 +2020-07-28,Himachal Pradesh,137251.0,134209,2330.0 +2020-07-29,Himachal Pradesh,139955.0,136536,2403.0 +2020-07-30,Himachal Pradesh,142618.0,138881,2506.0 +2020-07-31,Himachal Pradesh,145154.0,141682,2564.0 +2020-08-01,Himachal Pradesh,147997.0,144814,2634.0 +2020-08-02,Himachal Pradesh,150186.0,146514,2703.0 +2020-08-03,Himachal Pradesh,151574.0,148206,2818.0 +2020-08-04,Himachal Pradesh,152958.0,149644,2879.0 +2020-08-05,Himachal Pradesh,156104.0,151154,2916.0 +2020-08-06,Himachal Pradesh,158537.0,154295,3047.0 +2020-08-07,Himachal Pradesh,161232.0,156956,3150.0 +2020-08-08,Himachal Pradesh,163395.0,159325,3264.0 +2020-08-09,Himachal Pradesh,165496.0,161538,3371.0 +2020-08-10,Himachal Pradesh,166469.0,162567,3463.0 +2020-08-11,Himachal Pradesh,168843.0,164436,3497.0 +2020-08-12,Himachal Pradesh,171538.0,166391,3636.0 +2020-08-13,Himachal Pradesh,172985.0,168454,3816.0 +2020-08-14,Himachal Pradesh,175666.0,170882,3874.0 +2020-08-15,Himachal Pradesh,178075.0,173077,3993.0 +2020-08-16,Himachal Pradesh,179024.0,174580, +2020-08-17,Himachal Pradesh,180357.0,176001, +2020-08-18,Himachal Pradesh,183224.0,177766, +2020-08-19,Himachal Pradesh,185707.0,180434, +2020-08-20,Himachal Pradesh,188344.0,182586, +2020-08-21,Himachal Pradesh,190476.0,185126, +2020-08-22,Himachal Pradesh,192580.0,187102, +2020-08-23,Himachal Pradesh,194380.0,189124, +2020-08-24,Himachal Pradesh,195581.0,190387, +2020-08-25,Himachal Pradesh,198010.0,192044, +2020-08-26,Himachal Pradesh,203825.0,197946, +2020-08-27,Himachal Pradesh,206308.0,200328, +2020-08-28,Himachal Pradesh,208609.0,202471, +2020-08-29,Himachal Pradesh,211028.0,204435, +2020-08-30,Himachal Pradesh,213104.0,206192, +2020-08-31,Himachal Pradesh,214182.0,207603, +2020-09-01,Himachal Pradesh,216608.0,209040, +2020-09-02,Himachal Pradesh,218920.0,211721, +2020-09-03,Himachal Pradesh,221268.0,213781, +2020-09-04,Himachal Pradesh,223383.0,215703, +2020-09-05,Himachal Pradesh,226268.0,217745, +2020-09-06,Himachal Pradesh,228691.0,220203, +2020-09-07,Himachal Pradesh,229966.0,221885, +2020-09-08,Himachal Pradesh,232712.0,223719, +2020-09-09,Himachal Pradesh,235624.0,226301, +2020-09-10,Himachal Pradesh,238427.0,228464, +2020-09-11,Himachal Pradesh,241745.0,231074, +2020-09-12,Himachal Pradesh,244213.0,233647, +2020-09-13,Himachal Pradesh,246579.0,235597, +2020-09-14,Himachal Pradesh,248437.0,237584, +2020-09-15,Himachal Pradesh,251569.0,239548, +2020-09-16,Himachal Pradesh,255031.0,242110, +2020-09-17,Himachal Pradesh,257378.0,244628, +2020-09-18,Himachal Pradesh,261117.0,248456, +2020-09-19,Himachal Pradesh,263580.0,250628, +2020-09-20,Himachal Pradesh,266012.0,252661, +2020-09-21,Himachal Pradesh,268015.0,255109, +2020-09-22,Himachal Pradesh,271449.0,258007, +2020-09-23,Himachal Pradesh,273805.0,260390, +2020-09-24,Himachal Pradesh,276833.0,263188, +2020-09-25,Himachal Pradesh,280048.0,266110, +2020-09-26,Himachal Pradesh,283642.0,269161, +2020-09-27,Himachal Pradesh,285451.0,271004, +2020-09-28,Himachal Pradesh,289165.0,274379, +2020-09-29,Himachal Pradesh,292895.0,277852, +2020-09-30,Himachal Pradesh,295907.0,280632, +2020-10-01,Himachal Pradesh,299179.0,283721, +2020-10-02,Himachal Pradesh,301325.0,285612, +2020-10-03,Himachal Pradesh,303927.0,288189, +2020-10-04,Himachal Pradesh,305971.0,289952, +2020-10-05,Himachal Pradesh,308152.0,292092, +2020-10-06,Himachal Pradesh,311773.0,295234, +2020-10-07,Himachal Pradesh,314347.0,297648, +2020-10-08,Himachal Pradesh,316865.0,299934, +2020-10-09,Himachal Pradesh,319667.0,302581, +2020-10-10,Himachal Pradesh,322427.0,305053, +2020-10-11,Himachal Pradesh,324507.0,306967, +2020-10-12,Himachal Pradesh,326654.0,308962, +2020-10-13,Himachal Pradesh,329973.0,311834, +2020-10-14,Himachal Pradesh,333134.0,314946, +2020-10-15,Himachal Pradesh,336756.0,318275, +2020-10-16,Himachal Pradesh,340119.0,321400, +2020-10-17,Himachal Pradesh,343186.0,324168, +2020-10-18,Himachal Pradesh,345263.0,326193, +2020-10-19,Himachal Pradesh,347411.0,328251, +2020-10-20,Himachal Pradesh,351141.0,331538, +2020-10-21,Himachal Pradesh,354396.0,334657, +2020-10-22,Himachal Pradesh,357860.0,337924, +2020-10-23,Himachal Pradesh,361941.0,341569, +2020-10-24,Himachal Pradesh,365838.0,345469, +2020-10-25,Himachal Pradesh,368371.0,347724, +2020-10-26,Himachal Pradesh,371107.0,350427, +2020-10-27,Himachal Pradesh,375778.0,354522, +2020-10-28,Himachal Pradesh,380415.0,359074, +2020-10-29,Himachal Pradesh,384964.0,363305, +2020-10-30,Himachal Pradesh,389348.0,367221, +2020-10-31,Himachal Pradesh,393502.0,370735, +2020-11-01,Himachal Pradesh,396111.0,372773, +2020-11-02,Himachal Pradesh,399449.0,376315, +2020-11-03,Himachal Pradesh,404958.0,381096, +2020-11-04,Himachal Pradesh,410798.0,385375, +2020-11-05,Himachal Pradesh,413948.0,388804, +2020-11-06,Himachal Pradesh,420648.0,393854, +2020-11-07,Himachal Pradesh,426084.0,398465, +2020-11-08,Himachal Pradesh,431572.0,402130, +2020-11-09,Himachal Pradesh,435604.0,406871, +2020-11-10,Himachal Pradesh,441200.0,411724, +2020-11-11,Himachal Pradesh,446752.0,416399, +2020-11-12,Himachal Pradesh,451647.0,421313, +2020-11-13,Himachal Pradesh,455806.0,425154, +2020-11-14,Himachal Pradesh,457668.0,427871, +2020-11-15,Himachal Pradesh,458629.0,428778, +2020-11-16,Himachal Pradesh,461131.0,430905, +2020-11-17,Himachal Pradesh,465116.0,434016, +2020-11-18,Himachal Pradesh,470540.0,438541, +2020-11-19,Himachal Pradesh,475263.0,442423, +2020-11-20,Himachal Pradesh,479285.0,445751, +2020-11-21,Himachal Pradesh,485095.0,450485, +2020-11-22,Himachal Pradesh,487736.0,452851, +2020-11-23,Himachal Pradesh,490994.0,455796, +2020-11-24,Himachal Pradesh,497066.0,460548, +2020-11-25,Himachal Pradesh,502357.0,464816, +2020-11-26,Himachal Pradesh,508837.0,470456, +2020-11-27,Himachal Pradesh,515434.0,476039, +2020-11-28,Himachal Pradesh,520785.0,480770, +2020-11-29,Himachal Pradesh,525941.0,485245, +2020-11-30,Himachal Pradesh,529355.0,488217, +2020-12-01,Himachal Pradesh,534894.0,493056, +2020-12-02,Himachal Pradesh,543120.0,499173, +2020-12-03,Himachal Pradesh,551239.0,506872, +2020-12-04,Himachal Pradesh,558531.0,513862, +2020-12-05,Himachal Pradesh,566956.0,521359, +2020-12-06,Himachal Pradesh,571177.0,524614, +2020-12-07,Himachal Pradesh,577386.0,531451, +2020-12-08,Himachal Pradesh,584624.0,536467, +2020-12-09,Himachal Pradesh,591912.0,543477, +2020-12-10,Himachal Pradesh,598201.0,549153, +2020-12-11,Himachal Pradesh,605492.0,555894, +2020-12-12,Himachal Pradesh,611569.0,561534, +2020-12-13,Himachal Pradesh,616101.0,566284, +2020-12-14,Himachal Pradesh,622318.0,571623, +2020-12-15,Himachal Pradesh,631549.0,580001, +2020-12-16,Himachal Pradesh,640502.0,588380, +2020-12-17,Himachal Pradesh,649519.0,596143, +2020-12-18,Himachal Pradesh,658733.0,605809, +2020-12-19,Himachal Pradesh,667510.0,613901, +2020-12-20,Himachal Pradesh,674626.0,621047, +2020-12-21,Himachal Pradesh,682152.0,628904, +2020-12-22,Himachal Pradesh,693244.0,638988, +2020-12-23,Himachal Pradesh,704032.0,648532, +2020-12-24,Himachal Pradesh,714560.0,657956, +2020-12-25,Himachal Pradesh,722290.0,666858, +2020-12-26,Himachal Pradesh,730190.0,674977, +2020-12-27,Himachal Pradesh,736376.0,681021, +2020-12-28,Himachal Pradesh,743724.0,688568, +2020-12-29,Himachal Pradesh,752545.0,696847, +2020-12-30,Himachal Pradesh,761753.0,705537, +2020-12-31,Himachal Pradesh,772021.0,715032, +2021-01-01,Himachal Pradesh,780439.0,724060, +2021-01-02,Himachal Pradesh,787707.0,732027, +2021-01-03,Himachal Pradesh,793172.0,737156, +2021-01-04,Himachal Pradesh,800643.0,744606, +2021-01-05,Himachal Pradesh,809088.0,753052, +2021-01-06,Himachal Pradesh,819909.0,761078, +2021-01-07,Himachal Pradesh,828582.0,771450, +2021-01-08,Himachal Pradesh,837932.0,779389, +2021-01-09,Himachal Pradesh,845767.0,787445, +2021-01-10,Himachal Pradesh,849866.0,793080, +2021-01-11,Himachal Pradesh,853916.0,797219, +2021-01-12,Himachal Pradesh,859688.0,802973, +2021-01-13,Himachal Pradesh,866082.0,809214, +2021-01-14,Himachal Pradesh,870733.0,813854, +2021-01-15,Himachal Pradesh,875389.0,818496, +2021-01-16,Himachal Pradesh,881083.0,824025, +2021-01-17,Himachal Pradesh,883146.0,826167, +2021-01-18,Himachal Pradesh,886122.0,829125, +2021-01-19,Himachal Pradesh,889805.0,832720, +2021-01-20,Himachal Pradesh,893797.0,836672, +2021-01-21,Himachal Pradesh,897538.0,840391, +2021-01-22,Himachal Pradesh,901112.0,843940, +2021-01-23,Himachal Pradesh,904865.0,847640, +2021-01-24,Himachal Pradesh,907293.0,849791, +2021-01-25,Himachal Pradesh,909300.0,852034, +2021-01-26,Himachal Pradesh,911204.0,853924, +2021-01-27,Himachal Pradesh,914316.0,856934, +2021-01-28,Himachal Pradesh,918838.0,861441, +2021-01-29,Himachal Pradesh,923426.0,865963, +2021-01-30,Himachal Pradesh,928519.0,870998, +2021-01-31,Himachal Pradesh,931400.0,873809, +2021-02-01,Himachal Pradesh,935674.0,877977, +2021-02-02,Himachal Pradesh,941382.0,883765, +2021-02-03,Himachal Pradesh,945901.0,888235, +2021-02-04,Himachal Pradesh,952997.0,895242, +2021-02-05,Himachal Pradesh,959153.0,901112, +2021-02-06,Himachal Pradesh,965756.0,907774, +2021-02-07,Himachal Pradesh,968162.0,910259, +2021-02-08,Himachal Pradesh,968691.0,910672, +2021-02-09,Himachal Pradesh,980380.0,922199, +2021-02-10,Himachal Pradesh,987583.0,929477, +2021-02-11,Himachal Pradesh,994599.0,936474, +2021-02-12,Himachal Pradesh,1003062.0,944647, +2021-02-13,Himachal Pradesh,1010862.0,952567, +2021-02-14,Himachal Pradesh,1014237.0,955942, +2021-02-15,Himachal Pradesh,1019339.0,961087, +2021-02-16,Himachal Pradesh,1025466.0,967097, +2021-02-17,Himachal Pradesh,1032535.0,973971, +2021-02-18,Himachal Pradesh,1040755.0,981904, +2021-02-19,Himachal Pradesh,1048130.0,989562, +2021-02-20,Himachal Pradesh,1055772.0,997006, +2021-02-21,Himachal Pradesh,1059214.0,1000814, +2021-02-22,Himachal Pradesh,1063922.0,1005504, +2021-02-23,Himachal Pradesh,1070823.0,1012001, +2021-02-24,Himachal Pradesh,1077196.0,1018691, +2021-02-25,Himachal Pradesh,1082828.0,1024300, +2021-02-26,Himachal Pradesh,1090011.0,1031330, +2021-02-27,Himachal Pradesh,1093715.0,1035009, +2021-02-28,Himachal Pradesh,1094709.0,1036024, +2021-03-01,Himachal Pradesh,1099742.0,1040965, +2021-03-02,Himachal Pradesh,1106000.0,1046870, +2021-03-03,Himachal Pradesh,1112759.0,1053744, +2021-03-04,Himachal Pradesh,1119343.0,1060168, +2021-03-05,Himachal Pradesh,1123786.0,1064350, +2021-03-06,Himachal Pradesh,1129177.0,1069559, +2021-03-07,Himachal Pradesh,1131166.0,1071886, +2021-03-08,Himachal Pradesh,1135122.0,1075841, +2021-03-09,Himachal Pradesh,1139563.0,1079714, +2021-03-10,Himachal Pradesh,1143960.0,1084499, +2021-03-11,Himachal Pradesh,1146871.0,1087270, +2021-03-12,Himachal Pradesh,1149732.0,1090202, +2021-03-13,Himachal Pradesh,1154369.0,1094278, +2021-03-14,Himachal Pradesh,1156208.0,1096491, +2021-03-15,Himachal Pradesh,1161506.0,1101551, +2021-03-16,Himachal Pradesh,1168225.0,1107558, +2021-03-17,Himachal Pradesh,1176320.0,1115763, +2021-03-18,Himachal Pradesh,1184160.0,1123626, +2021-03-19,Himachal Pradesh,1189809.0,1128992, +2021-03-20,Himachal Pradesh,1195423.0,1134135, +2021-03-21,Himachal Pradesh,1200601.0,1138056, +2021-03-22,Himachal Pradesh,1204942.0,1143700, +2021-03-23,Himachal Pradesh,1211071.0,1149102, +2021-03-24,Himachal Pradesh,1216320.0,1154148, +2021-03-25,Himachal Pradesh,1223757.0,1160420, +2021-03-26,Himachal Pradesh,1231455.0,1168409, +2021-03-27,Himachal Pradesh,1240468.0,1177050, +2021-03-28,Himachal Pradesh,1244992.0,1181493, +2021-03-29,Himachal Pradesh,1247696.0,1184425, +2021-03-30,Himachal Pradesh,1253169.0,1189618, +2021-03-31,Himachal Pradesh,1260512.0,1195648, +2021-04-01,Himachal Pradesh,1267715.0,1201837, +2021-04-02,Himachal Pradesh,1272632.0,1207524, +2021-04-03,Himachal Pradesh,1278357.0,1212460, +2021-04-04,Himachal Pradesh,1282170.0,1215180, +2021-04-05,Himachal Pradesh,1286940.0,1220895, +2021-04-06,Himachal Pradesh,1294127.0,1226061, +2021-04-07,Himachal Pradesh,1301527.0,1232798, +2021-04-08,Himachal Pradesh,1309967.0,1240512, +2021-04-09,Himachal Pradesh,1318463.0,1244607, +2021-04-10,Himachal Pradesh,1327078.0,1255488, +2021-04-11,Himachal Pradesh,1332264.0,1260392, +2021-04-12,Himachal Pradesh,1338611.0,1267270, +2021-04-13,Himachal Pradesh,1347341.0,, +2021-04-14,Himachal Pradesh,1354979.0,1279298, +2021-04-15,Himachal Pradesh,1360794.0,1285303, +2021-04-16,Himachal Pradesh,1367183.0,1291292, +2021-04-17,Himachal Pradesh,1378090.0,1299416, +2021-04-18,Himachal Pradesh,1386599.0,1304810, +2021-04-19,Himachal Pradesh,1392242.0,1312382, +2021-04-20,Himachal Pradesh,1401986.0,1318687, +2021-04-21,Himachal Pradesh,1411277.0,1325429, +2021-04-22,Himachal Pradesh,1419314.0,1334242, +2021-04-23,Himachal Pradesh,1429699.0,1340858, +2021-04-24,Himachal Pradesh,1440233.0,1349906, +2021-04-25,Himachal Pradesh,1447397.0,1354023, +2021-04-26,Himachal Pradesh,1456795.0,1361455, +2021-04-27,Himachal Pradesh,1467876.0,1369301, +2021-04-28,Himachal Pradesh,1482357.0,1380796, +2021-04-29,Himachal Pradesh,1497617.0,1392000, +2021-04-30,Himachal Pradesh,1509568.0,1398490, +2021-05-01,Himachal Pradesh,1521350.0,1408695, +2021-05-02,Himachal Pradesh,1531034.0,1416323, +2021-05-03,Himachal Pradesh,1539545.0,1424035, +2021-05-04,Himachal Pradesh,1555499.0,1436089, +2021-05-05,Himachal Pradesh,1571240.0,1446837, +2021-05-06,Himachal Pradesh,1590372.0,1459013, +2021-05-07,Himachal Pradesh,1605831.0,1470211, +2021-05-08,Himachal Pradesh,1624556.0,1484123, +2021-05-09,Himachal Pradesh,1633923.0,1491904, +2021-05-10,Himachal Pradesh,1645146.0,1502326, +2021-05-11,Himachal Pradesh,1662432.0,1514018, +2021-05-12,Himachal Pradesh,1679291.0,1527372, +2021-05-13,Himachal Pradesh,1696695.0,1540650, +2021-05-14,Himachal Pradesh,1708083.0,1549618, +2021-05-15,Himachal Pradesh,1723544.0,1562292, +2021-05-16,Himachal Pradesh,1733730.0,1569635, +2021-05-17,Himachal Pradesh,1747264.0,1581759, +2021-05-18,Himachal Pradesh,1763099.0,1592882, +2021-05-19,Himachal Pradesh,1777957.0,1605855, +2021-05-20,Himachal Pradesh,1792460.0,1616797, +2021-05-21,Himachal Pradesh,1806900.0,1629443, +2021-05-22,Himachal Pradesh,1822120.0,1642876, +2021-05-23,Himachal Pradesh,1829865.0,1648850, +2021-05-24,Himachal Pradesh,1841031.0,1659536, +2021-05-25,Himachal Pradesh,1856038.0,1670759, +2021-05-26,Himachal Pradesh,1864817.0,1678501, +2021-05-27,Himachal Pradesh,1875554.0,1688775, +2021-05-28,Himachal Pradesh,1888929.0,1699998, +2021-05-29,Himachal Pradesh,1902322.0,1711309, +2021-05-30,Himachal Pradesh,1910855.0,1720705, +2021-05-31,Himachal Pradesh,1922211.0,1731490, +2021-06-01,Himachal Pradesh,1935704.0,1743195, +2021-06-02,Himachal Pradesh,1950718.0,1756703, +2021-06-03,Himachal Pradesh,1966968.0,1772896, +2021-06-04,Himachal Pradesh,1986041.0,1791377, +2021-06-05,Himachal Pradesh,2005214.0,1809866, +2021-06-06,Himachal Pradesh,2017058.0,1820983, +2021-06-07,Himachal Pradesh,2035502.0,1839411, +2020-04-05,Jammu and Kashmir,1551.0,1429,106.0 +2020-04-10,Jammu and Kashmir,2961.0,2754,207.0 +2020-04-11,Jammu and Kashmir,3206.0,2982,224.0 +2020-04-12,Jammu and Kashmir,3600.0,3355,245.0 +2020-04-13,Jammu and Kashmir,4065.0,3795,270.0 +2020-04-14,Jammu and Kashmir,4619.0,4341,278.0 +2020-04-15,Jammu and Kashmir,5171.0,4871,300.0 +2020-04-16,Jammu and Kashmir,5680.0,5366,314.0 +2020-04-17,Jammu and Kashmir,6438.0,6110,328.0 +2020-04-18,Jammu and Kashmir,6937.0,6596,341.0 +2020-04-19,Jammu and Kashmir,7895.0,7545,350.0 +2020-04-20,Jammu and Kashmir,8612.0,8244,368.0 +2020-04-21,Jammu and Kashmir,9220.0,8840,380.0 +2020-04-22,Jammu and Kashmir,10039.0,9632,407.0 +2020-04-23,Jammu and Kashmir,10977.0,10550,427.0 +2020-04-24,Jammu and Kashmir,11764.0,11310,454.0 +2020-04-25,Jammu and Kashmir,12835.0,12341,494.0 +2020-04-26,Jammu and Kashmir,13959.0,13436,523.0 +2020-04-27,Jammu and Kashmir,14988.0,14442,546.0 +2020-04-28,Jammu and Kashmir,16619.0,16054,565.0 +2020-04-29,Jammu and Kashmir,18450.0,17869,581.0 +2020-04-30,Jammu and Kashmir,19746.0,19132,614.0 +2020-05-01,Jammu and Kashmir,21695.0,21056,639.0 +2020-05-02,Jammu and Kashmir,23406.0,22794,666.0 +2020-05-03,Jammu and Kashmir,26038.0,25337,701.0 +2020-05-04,Jammu and Kashmir,28199.0,27473,726.0 +2020-05-05,Jammu and Kashmir,31312.0,30571,741.0 +2020-05-06,Jammu and Kashmir,34277.0,33502,775.0 +2020-05-07,Jammu and Kashmir,37706.0,36913,793.0 +2020-05-08,Jammu and Kashmir,42427.0,41604,823.0 +2020-05-09,Jammu and Kashmir,44753.0,43917,836.0 +2020-05-10,Jammu and Kashmir,47080.0,46291,861.0 +2020-05-11,Jammu and Kashmir,51334.0,50455,879.0 +2020-05-12,Jammu and Kashmir,53726.0,52792,934.0 +2020-05-13,Jammu and Kashmir,57111.0,56140,971.0 +2020-05-14,Jammu and Kashmir,63515.0,62532,983.0 +2020-05-15,Jammu and Kashmir,70306.0,69293,1013.0 +2020-05-16,Jammu and Kashmir,76191.0,75070,1121.0 +2020-05-17,Jammu and Kashmir,80934.0,79751,1183.0 +2020-05-18,Jammu and Kashmir,88601.0,87312,1289.0 +2020-05-19,Jammu and Kashmir,96826.0,95509,1317.0 +2020-05-20,Jammu and Kashmir,101950.0,100560,1390.0 +2020-05-21,Jammu and Kashmir,107108.0,105659,1449.0 +2020-05-22,Jammu and Kashmir,114859.0,113370,1489.0 +2020-05-23,Jammu and Kashmir,124074.0,122505,1569.0 +2020-05-24,Jammu and Kashmir,130433.0,128812,1621.0 +2020-05-25,Jammu and Kashmir,134188.0,132520,1668.0 +2020-05-26,Jammu and Kashmir,140962.0,139203,1759.0 +2020-05-27,Jammu and Kashmir,145162.0,143241,1921.0 +2020-05-28,Jammu and Kashmir,153522.0,151486,2036.0 +2020-05-29,Jammu and Kashmir,158729.0,156565,2164.0 +2020-05-30,Jammu and Kashmir,164581.0,162240,2341.0 +2020-05-31,Jammu and Kashmir,171045.0,168599,2446.0 +2020-06-01,Jammu and Kashmir,176309.0,173708,2601.0 +2020-06-02,Jammu and Kashmir,183067.0,180349,2718.0 +2020-06-03,Jammu and Kashmir,189364.0,186507,2857.0 +2020-06-04,Jammu and Kashmir,195677.0,192535,3142.0 +2020-06-05,Jammu and Kashmir,202257.0,198933,3324.0 +2020-06-06,Jammu and Kashmir,211880.0,208413,3467.0 +2020-06-07,Jammu and Kashmir,218481.0,214394,4087.0 +2020-06-08,Jammu and Kashmir,227906.0,223621,4285.0 +2020-06-09,Jammu and Kashmir,235816.0,231470,4346.0 +2020-06-10,Jammu and Kashmir,241891.0,237384,4507.0 +2020-06-11,Jammu and Kashmir,247267.0,242693,4574.0 +2020-06-12,Jammu and Kashmir,254059.0,249329,4730.0 +2020-06-13,Jammu and Kashmir,260098.0,255220,4878.0 +2020-06-14,Jammu and Kashmir,266163.0,261122,5041.0 +2020-06-15,Jammu and Kashmir,271416.0,266196,5220.0 +2020-06-16,Jammu and Kashmir,276174.0,270876,5298.0 +2020-06-17,Jammu and Kashmir,282268.0,276862,5406.0 +2020-06-18,Jammu and Kashmir,289027.0,283472,5555.0 +2020-06-19,Jammu and Kashmir,295202.0,289522,5680.0 +2020-06-20,Jammu and Kashmir,301209.0,295375,5834.0 +2020-06-21,Jammu and Kashmir,307638.0,301682,5956.0 +2020-06-22,Jammu and Kashmir,313687.0,307599,6088.0 +2020-06-23,Jammu and Kashmir,319664.0,313428,6236.0 +2020-06-24,Jammu and Kashmir,326430.0,320008,6422.0 +2020-06-25,Jammu and Kashmir,332445.0,325896,6549.0 +2020-06-26,Jammu and Kashmir,338903.0,332141,6762.0 +2020-06-27,Jammu and Kashmir,345426.0,338460,6966.0 +2020-06-28,Jammu and Kashmir,351865.0,344772,7093.0 +2020-06-29,Jammu and Kashmir,358530.0,351293,7237.0 +2020-06-30,Jammu and Kashmir,365058.0,357561,7497.0 +2020-07-01,Jammu and Kashmir,371486.0,363791,7695.0 +2020-07-02,Jammu and Kashmir,377961.0,370112,7849.0 +2020-07-03,Jammu and Kashmir,385501.0,377482,8019.0 +2020-07-04,Jammu and Kashmir,392919.0,384673,8246.0 +2020-07-05,Jammu and Kashmir,399385.0,390956,8429.0 +2020-07-06,Jammu and Kashmir,406212.0,397537,8675.0 +2020-07-07,Jammu and Kashmir,413358.0,404427,8931.0 +2020-07-08,Jammu and Kashmir,421571.0,412310,9261.0 +2020-07-09,Jammu and Kashmir,429787.0,420286,9501.0 +2020-07-10,Jammu and Kashmir,437928.0,428040,9888.0 +2020-07-11,Jammu and Kashmir,445169.0,435013,10156.0 +2020-07-12,Jammu and Kashmir,452455.0,441942,10513.0 +2020-07-13,Jammu and Kashmir,459703.0,448876,10827.0 +2020-07-14,Jammu and Kashmir,466333.0,455160,11173.0 +2020-07-15,Jammu and Kashmir,474149.0,462483,11666.0 +2020-07-16,Jammu and Kashmir,481452.0,469296,12156.0 +2020-07-17,Jammu and Kashmir,489382.0,476625,12757.0 +2020-07-18,Jammu and Kashmir,498007.0,484809,13198.0 +2020-07-19,Jammu and Kashmir,507678.0,493779,13899.0 +2020-07-20,Jammu and Kashmir,518029.0,503379,14650.0 +2020-07-21,Jammu and Kashmir,528946.0,513688,15258.0 +2020-07-22,Jammu and Kashmir,537891.0,522180,15711.0 +2020-07-23,Jammu and Kashmir,548877.0,532448,16429.0 +2020-07-24,Jammu and Kashmir,559399.0,542617,16782.0 +2020-07-25,Jammu and Kashmir,570508.0,553203,17305.0 +2020-07-26,Jammu and Kashmir,581707.0,563787,17920.0 +2020-07-27,Jammu and Kashmir,592482.0,574092,18390.0 +2020-07-28,Jammu and Kashmir,603728.0,584849,18879.0 +2020-07-29,Jammu and Kashmir,615380.0,595961,19419.0 +2020-07-30,Jammu and Kashmir,627387.0,607518,19869.0 +2020-07-31,Jammu and Kashmir,637515.0,617156,20359.0 +2020-08-01,Jammu and Kashmir,647271.0,626299,20972.0 +2020-08-02,Jammu and Kashmir,654117.0,632701,21416.0 +2020-08-03,Jammu and Kashmir,662941.0,640935,22006.0 +2020-08-04,Jammu and Kashmir,671413.0,649017,22396.0 +2020-08-05,Jammu and Kashmir,679415.0,656460,22955.0 +2020-08-06,Jammu and Kashmir,686808.0,663354,23454.0 +2020-08-07,Jammu and Kashmir,695620.0,671693,23927.0 +2020-08-08,Jammu and Kashmir,706780.0,682390,24390.0 +2020-08-09,Jammu and Kashmir,717110.0,692213,24897.0 +2020-08-10,Jammu and Kashmir,725542.0,700175,25367.0 +2020-08-11,Jammu and Kashmir,738203.0,712272, +2020-08-12,Jammu and Kashmir,750847.0,724434,26413.0 +2020-08-13,Jammu and Kashmir,763211.0,736262,26949.0 +2020-08-14,Jammu and Kashmir,775333.0,747844,27489.0 +2020-08-15,Jammu and Kashmir,785475.0,757454,28021.0 +2020-08-16,Jammu and Kashmir,793537.0,765067, +2020-08-17,Jammu and Kashmir,801329.0,772437, +2020-08-18,Jammu and Kashmir,811167.0,781841, +2020-08-19,Jammu and Kashmir,822574.0,792540, +2020-08-20,Jammu and Kashmir,833403.0,802686, +2020-08-21,Jammu and Kashmir,844641.0,813270,31371.0 +2020-08-22,Jammu and Kashmir,855991.0,824010, +2020-08-23,Jammu and Kashmir,868594.0,835947, +2020-08-24,Jammu and Kashmir,877836.0,844761, +2020-08-25,Jammu and Kashmir,888127.0,854351, +2020-08-26,Jammu and Kashmir,902677.0,868197, +2020-08-27,Jammu and Kashmir,915226.0,880091, +2020-08-28,Jammu and Kashmir,929733.0,893902, +2020-08-29,Jammu and Kashmir,943981.0,907604, +2020-08-30,Jammu and Kashmir,956733.0,919570, +2020-08-31,Jammu and Kashmir,966412.0,928714, +2020-09-01,Jammu and Kashmir,978882.0,940659, +2020-09-02,Jammu and Kashmir,996481.0,957617, +2020-09-03,Jammu and Kashmir,1012892.0,972949, +2020-09-04,Jammu and Kashmir,1031316.0,990326, +2020-09-05,Jammu and Kashmir,1051826.0,1009585, +2020-09-06,Jammu and Kashmir,1074998.0,1031441, +2020-09-07,Jammu and Kashmir,1088652.0,1044082, +2020-09-08,Jammu and Kashmir,1107406.0,1061481, +2020-09-09,Jammu and Kashmir,1131076.0,1083534, +2020-09-10,Jammu and Kashmir,1152563.0,1103429, +2020-09-11,Jammu and Kashmir,1177773.0,1127061, +2020-09-12,Jammu and Kashmir,1203799.0,1151389, +2020-09-13,Jammu and Kashmir,1231698.0,1177602, +2020-09-14,Jammu and Kashmir,1248495.0,1193170, +2020-09-15,Jammu and Kashmir,1270310.0,1213656, +2020-09-16,Jammu and Kashmir,1297329.0,1239085, +2020-09-17,Jammu and Kashmir,1320240.0,1260529, +2020-09-18,Jammu and Kashmir,1345750.0,1284709, +2020-09-19,Jammu and Kashmir,1369702.0,1307169, +2020-09-20,Jammu and Kashmir,1396729.0,1332739, +2020-09-21,Jammu and Kashmir,1415364.0,1350338, +2020-09-22,Jammu and Kashmir,1436409.0,1370148, +2020-09-23,Jammu and Kashmir,1464565.0,1397055, +2020-09-24,Jammu and Kashmir,1487962.0,1419348, +2020-09-25,Jammu and Kashmir,1513224.0,1443392, +2020-09-26,Jammu and Kashmir,1539284.0,1468235, +2020-09-27,Jammu and Kashmir,1563309.0,1491119, +2020-09-28,Jammu and Kashmir,1581606.0,1508592, +2020-09-29,Jammu and Kashmir,1600606.0,1526511, +2020-09-30,Jammu and Kashmir,1622775.0,1547705, +2020-10-01,Jammu and Kashmir,1643722.0,1567559, +2020-10-02,Jammu and Kashmir,1667587.0,1590334, +2020-10-03,Jammu and Kashmir,1685809.0,1607581, +2020-10-04,Jammu and Kashmir,1707503.0,1628397, +2020-10-05,Jammu and Kashmir,1723337.0,1643599, +2020-10-06,Jammu and Kashmir,1741300.0,1660824, +2020-10-07,Jammu and Kashmir,1761792.0,1680695, +2020-10-08,Jammu and Kashmir,1780540.0,1698747, +2020-10-09,Jammu and Kashmir,1800252.0,1717823, +2020-10-10,Jammu and Kashmir,1818753.0,1735689, +2020-10-11,Jammu and Kashmir,1839765.0,1756132, +2020-10-12,Jammu and Kashmir,1854486.0,1770455, +2020-10-13,Jammu and Kashmir,1875262.0,1790554, +2020-10-14,Jammu and Kashmir,1902884.0,1817475, +2020-10-15,Jammu and Kashmir,1929126.0,1843069, +2020-10-16,Jammu and Kashmir,1952850.0,1866096, +2020-10-17,Jammu and Kashmir,1978626.0,1891262, +2020-10-18,Jammu and Kashmir,2004113.0,1916171, +2020-10-19,Jammu and Kashmir,2023294.0,1934925, +2020-10-20,Jammu and Kashmir,2048631.0,1959673, +2020-10-21,Jammu and Kashmir,2075701.0,1986119, +2020-10-22,Jammu and Kashmir,2100760.0,2010594, +2020-10-23,Jammu and Kashmir,2125790.0,2035038, +2020-10-24,Jammu and Kashmir,2153529.0,2062200, +2020-10-25,Jammu and Kashmir,2175682.0,2083821, +2020-10-26,Jammu and Kashmir,2194292.0,2102067, +2020-10-27,Jammu and Kashmir,2214645.0,2121968, +2020-10-28,Jammu and Kashmir,2238671.0,2145458, +2020-10-29,Jammu and Kashmir,2261736.0,2167972, +2020-10-30,Jammu and Kashmir,2284588.0,2190258, +2020-10-31,Jammu and Kashmir,2303954.0,2209169, +2020-11-01,Jammu and Kashmir,2324411.0,2229086, +2020-11-02,Jammu and Kashmir,2343543.0,2247833, +2020-11-03,Jammu and Kashmir,2366741.0,2270553, +2020-11-04,Jammu and Kashmir,2391065.0,2294365, +2020-11-05,Jammu and Kashmir,2414248.0,2317024, +2020-11-06,Jammu and Kashmir,2439196.0,2341391, +2020-11-07,Jammu and Kashmir,2461279.0,2362942, +2020-11-08,Jammu and Kashmir,2486241.0,2387349, +2020-11-09,Jammu and Kashmir,2505835.0,2406483, +2020-11-10,Jammu and Kashmir,2529786.0,2429942, +2020-11-11,Jammu and Kashmir,2551946.0,2451595, +2020-11-12,Jammu and Kashmir,2578555.0,2477587, +2020-11-13,Jammu and Kashmir,2603471.0,2501877, +2020-11-14,Jammu and Kashmir,2628297.0,2526138, +2020-11-15,Jammu and Kashmir,2645975.0,2543356, +2020-11-16,Jammu and Kashmir,2660991.0,2557982, +2020-11-17,Jammu and Kashmir,2677771.0,2574190, +2020-11-18,Jammu and Kashmir,2701918.0,2597763, +2020-11-19,Jammu and Kashmir,2729618.0,2624903, +2020-11-20,Jammu and Kashmir,2756552.0,2651176, +2020-11-21,Jammu and Kashmir,2783244.0,2677260, +2020-11-22,Jammu and Kashmir,2810409.0,2703861, +2020-11-23,Jammu and Kashmir,2831855.0,2724956, +2020-11-24,Jammu and Kashmir,2856746.0,2749416, +2020-11-25,Jammu and Kashmir,2885308.0,2777489, +2020-11-26,Jammu and Kashmir,2912826.0,2804520, +2020-11-27,Jammu and Kashmir,2940302.0,2831431, +2020-11-28,Jammu and Kashmir,2969672.0,2860289, +2020-11-29,Jammu and Kashmir,2995668.0,2885814, +2020-11-30,Jammu and Kashmir,3014877.0,2904653, +2020-12-01,Jammu and Kashmir,3037239.0,2926561, +2020-12-02,Jammu and Kashmir,3064139.0,2953009, +2020-12-03,Jammu and Kashmir,3094143.0,2982431, +2020-12-04,Jammu and Kashmir,3121260.0,3009004, +2020-12-05,Jammu and Kashmir,3148894.0,3036137, +2020-12-06,Jammu and Kashmir,3174647.0,3061359, +2020-12-07,Jammu and Kashmir,3194883.0,3081315, +2020-12-08,Jammu and Kashmir,3218875.0,3104837, +2020-12-09,Jammu and Kashmir,3243834.0,3129427, +2020-12-10,Jammu and Kashmir,3269517.0,3154744, +2020-12-11,Jammu and Kashmir,3294008.0,3178801, +2020-12-12,Jammu and Kashmir,3319656.0,3204030, +2020-12-13,Jammu and Kashmir,3345171.0,3229163, +2020-12-14,Jammu and Kashmir,3366391.0,3250137, +2020-12-15,Jammu and Kashmir,3390826.0,3274226, +2020-12-16,Jammu and Kashmir,3420425.0,3303493, +2020-12-17,Jammu and Kashmir,3448733.0,3331416, +2020-12-18,Jammu and Kashmir,3475137.0,3357432, +2020-12-19,Jammu and Kashmir,3503197.0,3385191, +2020-12-20,Jammu and Kashmir,3528248.0,3409985, +2020-12-21,Jammu and Kashmir,3551273.0,3432778, +2020-12-22,Jammu and Kashmir,3581035.0,3462232, +2020-12-23,Jammu and Kashmir,3609605.0,3490552, +2020-12-24,Jammu and Kashmir,3639084.0,3519740, +2020-12-25,Jammu and Kashmir,3667726.0,3548098, +2020-12-26,Jammu and Kashmir,3693803.0,3573926, +2020-12-27,Jammu and Kashmir,3716877.0,3596740, +2020-12-28,Jammu and Kashmir,3739623.0,3619330, +2020-12-29,Jammu and Kashmir,3768849.0,3648322, +2020-12-30,Jammu and Kashmir,3792251.0,3671507, +2020-12-31,Jammu and Kashmir,3822674.0,3701703, +2021-01-01,Jammu and Kashmir,3851827.0,3730600, +2021-01-02,Jammu and Kashmir,3885403.0,3763932, +2021-01-03,Jammu and Kashmir,3916848.0,3795195, +2021-01-04,Jammu and Kashmir,3943822.0,3822036, +2021-01-05,Jammu and Kashmir,3970242.0,3848319, +2021-01-06,Jammu and Kashmir,3989145.0,3867096, +2021-01-07,Jammu and Kashmir,4011893.0,3889717, +2021-01-08,Jammu and Kashmir,4034984.0,3912681, +2021-01-09,Jammu and Kashmir,4059790.0,3937365, +2021-01-10,Jammu and Kashmir,4087291.0,3964753, +2021-01-11,Jammu and Kashmir,4112373.0,3989722, +2021-01-12,Jammu and Kashmir,4138707.0,4015943, +2021-01-13,Jammu and Kashmir,4164847.0,4041962, +2021-01-14,Jammu and Kashmir,4188783.0,4065819, +2021-01-15,Jammu and Kashmir,4211448.0,4088340, +2021-01-16,Jammu and Kashmir,4234239.0,4111022, +2021-01-17,Jammu and Kashmir,4256135.0,4132792, +2021-01-18,Jammu and Kashmir,4274813.0,4151388, +2021-01-19,Jammu and Kashmir,4297224.0,4173686, +2021-01-20,Jammu and Kashmir,4319042.0,4195395, +2021-01-21,Jammu and Kashmir,4339419.0,4215655, +2021-01-22,Jammu and Kashmir,4361420.0,4237568, +2021-01-23,Jammu and Kashmir,4384771.0,4260825, +2021-01-24,Jammu and Kashmir,4402248.0,4278229, +2021-01-25,Jammu and Kashmir,4421013.0,4296930, +2021-01-26,Jammu and Kashmir,4444236.0,4320079, +2021-01-27,Jammu and Kashmir,4461439.0,4337205, +2021-01-28,Jammu and Kashmir,4481723.0,4357426, +2021-01-29,Jammu and Kashmir,4502603.0,4378230, +2021-01-30,Jammu and Kashmir,4524200.0,4399751, +2021-01-31,Jammu and Kashmir,4544387.0,4419881, +2021-02-01,Jammu and Kashmir,4562133.0,4437583, +2021-02-02,Jammu and Kashmir,4580204.0,4455610, +2021-02-03,Jammu and Kashmir,4600637.0,4475978, +2021-02-04,Jammu and Kashmir,4621705.0,4496986, +2021-02-05,Jammu and Kashmir,4643543.0,4518758, +2021-02-06,Jammu and Kashmir,4666171.0,4541321, +2021-02-07,Jammu and Kashmir,4688992.0,4564083, +2021-02-08,Jammu and Kashmir,4710630.0,4585678, +2021-02-09,Jammu and Kashmir,4730411.0,4605404, +2021-02-10,Jammu and Kashmir,4752735.0,4627683, +2021-02-11,Jammu and Kashmir,4776402.0,4651285, +2021-02-12,Jammu and Kashmir,4799891.0,4674683, +2021-02-13,Jammu and Kashmir,4822635.0,4697367, +2021-02-14,Jammu and Kashmir,4846627.0,4721286, +2021-02-15,Jammu and Kashmir,4868541.0,4743136, +2021-02-16,Jammu and Kashmir,4892000.0,4766537, +2021-02-17,Jammu and Kashmir,4917708.0,4792161, +2021-02-18,Jammu and Kashmir,4942425.0,4816791, +2021-02-19,Jammu and Kashmir,4967246.0,4841531, +2021-02-20,Jammu and Kashmir,4993409.0,4867626, +2021-02-21,Jammu and Kashmir,5018612.0,4892745, +2021-02-22,Jammu and Kashmir,5038661.0,4912736, +2021-02-23,Jammu and Kashmir,5062994.0,4936975, +2021-02-24,Jammu and Kashmir,5090890.0,4964797, +2021-02-25,Jammu and Kashmir,5117679.0,4991478, +2021-02-26,Jammu and Kashmir,5147460.0,5021174, +2021-02-27,Jammu and Kashmir,5174945.0,5048562, +2021-02-28,Jammu and Kashmir,5201665.0,5075224, +2021-03-01,Jammu and Kashmir,5226361.0,5099857, +2021-03-02,Jammu and Kashmir,5253071.0,5126482, +2021-03-03,Jammu and Kashmir,5281141.0,5154448, +2021-03-04,Jammu and Kashmir,5309652.0,5182880, +2021-03-05,Jammu and Kashmir,5336858.0,5210005, +2021-03-06,Jammu and Kashmir,5363489.0,5236557, +2021-03-07,Jammu and Kashmir,5389798.0,5262754, +2021-03-08,Jammu and Kashmir,5411801.0,5284687, +2021-03-09,Jammu and Kashmir,5436662.0,5309471, +2021-03-10,Jammu and Kashmir,5462245.0,5334957, +2021-03-11,Jammu and Kashmir,5488910.0,5361547, +2021-03-12,Jammu and Kashmir,5512452.0,5385016, +2021-03-13,Jammu and Kashmir,5534502.0,5406967, +2021-03-14,Jammu and Kashmir,5558779.0,5431139, +2021-03-15,Jammu and Kashmir,5581500.0,5453766, +2021-03-16,Jammu and Kashmir,5606242.0,5478411, +2021-03-17,Jammu and Kashmir,5634811.0,5506854, +2021-03-18,Jammu and Kashmir,5663272.0,5535175, +2021-03-19,Jammu and Kashmir,5690460.0,5562211, +2021-03-20,Jammu and Kashmir,5717093.0,5588704, +2021-03-21,Jammu and Kashmir,5747468.0,5618921, +2021-03-22,Jammu and Kashmir,5773118.0,5644439, +2021-03-23,Jammu and Kashmir,5800849.0,5672013, +2021-03-24,Jammu and Kashmir,5830758.0,5701727, +2021-03-25,Jammu and Kashmir,5858408.0,5729205, +2021-03-26,Jammu and Kashmir,5888075.0,5758662, +2021-03-27,Jammu and Kashmir,5918723.0,5789039, +2021-03-28,Jammu and Kashmir,5950506.0,5820513, +2021-03-29,Jammu and Kashmir,5980072.0,5849844, +2021-03-30,Jammu and Kashmir,6017096.0,5886509, +2021-03-31,Jammu and Kashmir,6051587.0,5920627, +2021-04-01,Jammu and Kashmir,6089662.0,5958241, +2021-04-02,Jammu and Kashmir,6130386.0,5998448, +2021-04-03,Jammu and Kashmir,6168752.0,6036313, +2021-04-04,Jammu and Kashmir,6211099.0,6078087, +2021-04-05,Jammu and Kashmir,6246356.0,6112902, +2021-04-06,Jammu and Kashmir,6286013.0,6151998, +2021-04-07,Jammu and Kashmir,6329888.0,6195061, +2021-04-08,Jammu and Kashmir,6373912.0,6238250, +2021-04-09,Jammu and Kashmir,6416947.0,6280477, +2021-04-10,Jammu and Kashmir,6459007.0,6321532, +2021-04-11,Jammu and Kashmir,6502828.0,6364438, +2021-04-12,Jammu and Kashmir,6536949.0,6397568, +2021-04-13,Jammu and Kashmir,6573965.0,6433315, +2021-04-14,Jammu and Kashmir,6611924.0,6470188, +2021-04-15,Jammu and Kashmir,6648718.0,6505841, +2021-04-16,Jammu and Kashmir,6683730.0,6539709, +2021-04-17,Jammu and Kashmir,6720261.0,6575095, +2021-04-18,Jammu and Kashmir,6760101.0,6613409, +2021-04-19,Jammu and Kashmir,6794193.0,6645985, +2021-04-20,Jammu and Kashmir,6833449.0,6683211, +2021-04-21,Jammu and Kashmir,6877256.0,6725084, +2021-04-22,Jammu and Kashmir,6919992.0,6765585, +2021-04-23,Jammu and Kashmir,6961115.0,6804771, +2021-04-24,Jammu and Kashmir,7001906.0,6843532, +2021-04-25,Jammu and Kashmir,7046228.0,6885473, +2021-04-26,Jammu and Kashmir,7080758.0,6917868, +2021-04-27,Jammu and Kashmir,7125036.0,6958982, +2021-04-28,Jammu and Kashmir,7172458.0,7003381, +2021-04-29,Jammu and Kashmir,7222471.0,7049920, +2021-04-30,Jammu and Kashmir,7268521.0,7092438, +2021-05-01,Jammu and Kashmir,7312926.0,7133011, +2021-05-02,Jammu and Kashmir,7348647.0,7165161, +2021-05-03,Jammu and Kashmir,7380302.0,7193083, +2021-05-04,Jammu and Kashmir,7418169.0,7226300, +2021-05-05,Jammu and Kashmir,7460537.0,7263952, +2021-05-06,Jammu and Kashmir,7507938.0,7306427, +2021-05-07,Jammu and Kashmir,7557656.0,7350702, +2021-05-08,Jammu and Kashmir,7604448.0,7392706, +2021-05-09,Jammu and Kashmir,7653001.0,7436069, +2021-05-10,Jammu and Kashmir,7689823.0,7469277, +2021-05-11,Jammu and Kashmir,7731176.0,7506278, +2021-05-12,Jammu and Kashmir,7775092.0,7545685, +2021-05-13,Jammu and Kashmir,7819421.0,7585658, +2021-05-14,Jammu and Kashmir,7850973.0,7614183, +2021-05-15,Jammu and Kashmir,7884512.0,7644045, +2021-05-16,Jammu and Kashmir,7921228.0,7676620, +2021-05-17,Jammu and Kashmir,7955865.0,7707913, +2021-05-18,Jammu and Kashmir,7996880.0,7744961, +2021-05-19,Jammu and Kashmir,8045445.0,7789557, +2021-05-20,Jammu and Kashmir,8092877.0,7832820, +2021-05-21,Jammu and Kashmir,8140036.0,7876131, +2021-05-22,Jammu and Kashmir,8188640.0,7921327, +2021-05-23,Jammu and Kashmir,8233797.0,7963176, +2021-05-24,Jammu and Kashmir,8270069.0,7997211, +2021-05-25,Jammu and Kashmir,8311463.0,8035641, +2021-05-26,Jammu and Kashmir,8359521.0,8080392, +2021-05-27,Jammu and Kashmir,8403522.0,8121894, +2021-05-28,Jammu and Kashmir,8448327.0,8163896, +2021-05-29,Jammu and Kashmir,8492134.0,8205450, +2021-05-30,Jammu and Kashmir,8533925.0,8244985, +2021-05-31,Jammu and Kashmir,8567159.0,8276694, +2021-06-01,Jammu and Kashmir,8605273.0,8312913, +2021-06-02,Jammu and Kashmir,8651026.0,83561026, +2021-06-03,Jammu and Kashmir,8697398.0,8401519, +2021-06-04,Jammu and Kashmir,8746810.0,8449208, +2021-06-05,Jammu and Kashmir,8797513.0,8498463, +2021-06-06,Jammu and Kashmir,8847766.0,8547276, +2021-06-07,Jammu and Kashmir,8887902.0,8586435, +2020-04-10,Jharkhand,1340.0,1326,14.0 +2020-04-11,Jharkhand,1546.0,1529,17.0 +2020-04-12,Jharkhand,1683.0,1666,17.0 +2020-04-13,Jharkhand,1982.0,1963,19.0 +2020-04-14,Jharkhand,2334.0,2307,27.0 +2020-04-17,Jharkhand,3143.0,3111,32.0 +2020-04-18,Jharkhand,3431.0,3398,33.0 +2020-04-19,Jharkhand,3646.0,3608,38.0 +2020-04-20,Jharkhand,4235.0,4190,45.0 +2020-04-22,Jharkhand,5176.0,5127,49.0 +2020-04-23,Jharkhand,5380.0,5327,53.0 +2020-04-24,Jharkhand,6162.0,6105,57.0 +2020-04-25,Jharkhand,6970.0,6903,67.0 +2020-04-26,Jharkhand,7806.0,7724,82.0 +2020-04-27,Jharkhand,8757.0,8654,103.0 +2020-04-28,Jharkhand,9408.0,9303,105.0 +2020-04-29,Jharkhand,10268.0,10161,107.0 +2020-04-30,Jharkhand,10987.0,10878,109.0 +2020-05-01,Jharkhand,11771.0,11658,113.0 +2020-05-02,Jharkhand,12393.0,12278,115.0 +2020-05-03,Jharkhand,13055.0,12940,115.0 +2020-05-04,Jharkhand,13832.0,13717,115.0 +2020-05-05,Jharkhand,15064.0,14939,125.0 +2020-05-06,Jharkhand,15908.0,15799,127.0 +2020-05-07,Jharkhand,17101.0,16969,132.0 +2020-05-08,Jharkhand,17219.0,17087,132.0 +2020-05-09,Jharkhand,18632.0,18478,154.0 +2020-05-10,Jharkhand,20832.0,20675,157.0 +2020-05-11,Jharkhand,21201.0,21041,160.0 +2020-05-12,Jharkhand,22815.0,22651,164.0 +2020-05-13,Jharkhand,25769.0,25592,177.0 +2020-05-14,Jharkhand,27789.0,27592,197.0 +2020-05-15,Jharkhand,29236.0,29025,211.0 +2020-05-16,Jharkhand,31025.0,30808,217.0 +2020-05-17,Jharkhand,33220.0,32997,223.0 +2020-05-18,Jharkhand,35359.0,35131,228.0 +2020-05-19,Jharkhand,37589.0,37341,248.0 +2020-05-20,Jharkhand,39402.0,39121,281.0 +2020-05-21,Jharkhand,41936.0,41633,303.0 +2020-05-22,Jharkhand,43988.0,43665,323.0 +2020-05-23,Jharkhand,45785.0,45435,350.0 +2020-05-24,Jharkhand,48641.0,48271,370.0 +2020-05-25,Jharkhand,50709.0,50304,405.0 +2020-05-26,Jharkhand,53309.0,52883,426.0 +2020-05-27,Jharkhand,55427.0,54969,458.0 +2020-05-28,Jharkhand,57250.0,56781,469.0 +2020-05-29,Jharkhand,59452.0,58931,521.0 +2020-05-30,Jharkhand,62916.0,62353,563.0 +2020-05-31,Jharkhand,65886.0,65256,610.0 +2020-06-01,Jharkhand,69187.0,68526,661.0 +2020-06-02,Jharkhand,71296.0,70584,712.0 +2020-06-03,Jharkhand,74499.0,73735,764.0 +2020-06-04,Jharkhand,77641.0,76814,827.0 +2020-06-05,Jharkhand,80097.0,79175,922.0 +2020-06-06,Jharkhand,84444.0,83416,1028.0 +2020-06-07,Jharkhand,87721.0,86618,1103.0 +2020-06-08,Jharkhand,92325.0,91035,1290.0 +2020-06-09,Jharkhand,95099.0,93683,1416.0 +2020-06-10,Jharkhand,95500.0,94077,1423.0 +2020-06-11,Jharkhand,99931.0,98332,1599.0 +2020-06-12,Jharkhand,102092.0,100436,1656.0 +2020-06-13,Jharkhand,103905.0,102194,1711.0 +2020-06-14,Jharkhand,106104.0,104343,1761.0 +2020-06-15,Jharkhand,108576.0,106783,1793.0 +2020-06-16,Jharkhand,110813.0,108974,1839.0 +2020-06-17,Jharkhand,113004.0,111109,1895.0 +2020-06-18,Jharkhand,115186.0,113267,1919.0 +2020-06-19,Jharkhand,117569.0,115608,1961.0 +2020-06-20,Jharkhand,120892.0,117722,2024.0 +2020-06-21,Jharkhand,121770.0,119681,2089.0 +2020-06-22,Jharkhand,124008.0,121868,2140.0 +2020-06-23,Jharkhand,126007.0,123814,2193.0 +2020-06-24,Jharkhand,128214.0,125995,2219.0 +2020-06-25,Jharkhand,131169.0,128908,2261.0 +2020-06-26,Jharkhand,133082.0,130788,2294.0 +2020-06-27,Jharkhand,135276.0,132937,2339.0 +2020-06-28,Jharkhand,137438.0,135074,2364.0 +2020-06-29,Jharkhand,139907.0,137481,2426.0 +2020-06-30,Jharkhand,142641.0,140151,2490.0 +2020-07-01,Jharkhand,145692.0,143167,2525.0 +2020-07-02,Jharkhand,148738.0,146153,2585.0 +2020-07-03,Jharkhand,151699.0,149002,2697.0 +2020-07-04,Jharkhand,154618.0,151879,2739.0 +2020-07-05,Jharkhand,156778.0,153971,2807.0 +2020-07-06,Jharkhand,159176.0,156322,2854.0 +2020-07-07,Jharkhand,161564.0,158546,3018.0 +2020-07-08,Jharkhand,164504.0,161370,3134.0 +2020-07-09,Jharkhand,167650.0,164382,3268.0 +2020-07-10,Jharkhand,172032.0,168514,3518.0 +2020-07-11,Jharkhand,176858.0,173195,3663.0 +2020-07-12,Jharkhand,180439.0,176679,3760.0 +2020-07-13,Jharkhand,184656.0,180693,3963.0 +2020-07-14,Jharkhand,189851.0,185626,4225.0 +2020-07-15,Jharkhand,196070.0,191508,4562.0 +2020-07-16,Jharkhand,203279.0,198496,4783.0 +2020-07-17,Jharkhand,208492.0,203396,5096.0 +2020-07-18,Jharkhand,212299.0,206914,5385.0 +2020-07-19,Jharkhand,215661.0,210109,5552.0 +2020-07-20,Jharkhand,222781.0,217004,5777.0 +2020-07-21,Jharkhand,230535.0,224340,6195.0 +2020-07-22,Jharkhand,236438.0,229756,6682.0 +2020-07-23,Jharkhand,243276.0,236110,7166.0 +2020-07-24,Jharkhand,248928.0,241364,7564.0 +2020-07-25,Jharkhand,253411.0,245570,7841.0 +2020-07-26,Jharkhand,259096.0,250747,8349.0 +2020-07-27,Jharkhand,264449.0,255646,8803.0 +2020-07-28,Jharkhand,272713.0,263150,9563.0 +2020-07-29,Jharkhand,277984.0,268090,9894.0 +2020-07-30,Jharkhand,286178.0,275779,10399.0 +2020-07-31,Jharkhand,294476.0,283162,11314.0 +2020-08-01,Jharkhand,307363.0,295259,12104.0 +2020-08-02,Jharkhand,316332.0,303773,12559.0 +2020-08-03,Jharkhand,339560.0,326060,13500.0 +2020-08-04,Jharkhand,345907.0,331837,14070.0 +2020-08-05,Jharkhand,351197.0,336149,15048.0 +2020-08-06,Jharkhand,358208.0,342452,15756.0 +2020-08-07,Jharkhand,367757.0,351275,16482.0 +2020-08-08,Jharkhand,374813.0,357345,17468.0 +2020-08-09,Jharkhand,380330.0,362174,18156.0 +2020-08-10,Jharkhand,387184.0,368398,18786.0 +2020-08-11,Jharkhand,394315.0,374846,19469.0 +2020-08-12,Jharkhand,402072.0,381815,20257.0 +2020-08-13,Jharkhand,411027.0,390077,20950.0 +2020-08-14,Jharkhand,442286.0,420161,22125.0 +2020-08-15,Jharkhand,448188.0,425516,22672.0 +2020-08-16,Jharkhand,455715.0,432491,23224.0 +2020-08-17,Jharkhand,473973.0,449906, +2020-08-18,Jharkhand,502973.0,477640, +2020-08-19,Jharkhand,516123.0,489823, +2020-08-20,Jharkhand,523638.0,496700, +2020-08-21,Jharkhand,539802.0,511606, +2020-08-22,Jharkhand,553356.0,524253, +2020-08-23,Jharkhand,566504.0,536326, +2020-08-24,Jharkhand,580489.0,549371, +2020-08-25,Jharkhand,600322.0,568148, +2020-08-26,Jharkhand,643590.0,610279, +2020-08-27,Jharkhand,673245.0,638569, +2020-08-28,Jharkhand,704554.0,668741, +2020-08-29,Jharkhand,730237.0,693125, +2020-08-30,Jharkhand,755835.0,717400, +2020-08-31,Jharkhand,913265.0,871609, +2020-09-01,Jharkhand,950015.0,906182, +2020-09-02,Jharkhand,980272.0,935410, +2020-09-03,Jharkhand,1017599.0,971119, +2020-09-04,Jharkhand,1047417.0,999378, +2020-09-05,Jharkhand,1080094.0,1030297, +2020-09-06,Jharkhand,1105764.0,1054701, +2020-09-07,Jharkhand,1133454.0,1080834, +2020-09-08,Jharkhand,1236638.0,1181342, +2020-09-09,Jharkhand,1269746.0,1212849, +2020-09-10,Jharkhand,1299565.0,1241486, +2020-09-11,Jharkhand,1320542.0,1261502, +2020-09-12,Jharkhand,1352611.0,1292151, +2020-09-13,Jharkhand,1377573.0,1316099, +2020-09-14,Jharkhand,1407470.0,1344733, +2020-09-15,Jharkhand,1471588.0,1407149, +2020-09-16,Jharkhand,1538529.0,1472455, +2020-09-17,Jharkhand,1587459.0,1520359, +2020-09-18,Jharkhand,1629190.0,1560612, +2020-09-19,Jharkhand,1670943.0,1601083, +2020-09-20,Jharkhand,1765454.0,1694102, +2020-09-21,Jharkhand,1809145.0,1736472, +2020-09-22,Jharkhand,1864421.0,1790473, +2020-09-23,Jharkhand,1908568.0,1833479, +2020-09-24,Jharkhand,1949673.0,1873235, +2020-09-25,Jharkhand,1990078.0,1912369,77709.0 +2020-09-26,Jharkhand,2029744.0,1950809,78935.0 +2020-09-27,Jharkhand,2059696.0,1979787,79909.0 +2020-09-28,Jharkhand,2153151.0,2071734,81417.0 +2020-09-29,Jharkhand,2213350.0,2130810,82540.0 +2020-09-30,Jharkhand,2250439.0,2166788,83651.0 +2020-10-01,Jharkhand,2286107.0,2201443, +2020-10-02,Jharkhand,2320493.0,2235093,85400.0 +2020-10-03,Jharkhand,2363412.0,2277135,86277.0 +2020-10-04,Jharkhand,2394406.0,2307196,87210.0 +2020-10-05,Jharkhand,2418178.0,2330152,88026.0 +2020-10-06,Jharkhand,2465841.0,2376968,88873.0 +2020-10-07,Jharkhand,2496645.0,2406943,89702.0 +2020-10-08,Jharkhand,2538755.0,2448269,90486.0 +2020-10-09,Jharkhand,2576536.0,2485282,91254.0 +2020-10-10,Jharkhand,2615470.0,2523519,91951.0 +2020-10-11,Jharkhand,2640471.0,2547946, +2020-10-12,Jharkhand,2674672.0,2581637,93035.0 +2020-10-13,Jharkhand,2712374.0,2618638,93736.0 +2020-10-14,Jharkhand,2742044.0,2647675,94369.0 +2020-10-15,Jharkhand,2767553.0,2672601,94952.0 +2020-10-16,Jharkhand,2802066.0,2706641,95425.0 +2020-10-17,Jharkhand,2827248.0,2731281,95967.0 +2020-10-18,Jharkhand,2848662.0,2752310,96352.0 +2020-10-19,Jharkhand,2882567.0,2785725,96842.0 +2020-10-20,Jharkhand,2913412.0,2815998,97414.0 +2020-10-21,Jharkhand,2988023.0,2877145,98061.0 +2020-10-22,Jharkhand,3019158.0,2920548,98610.0 +2020-10-23,Jharkhand,3058954.0,2959909,99045.0 +2020-10-24,Jharkhand,3087671.0,2988243,99428.0 +2020-10-25,Jharkhand,3109483.0,3009797,99686.0 +2020-10-26,Jharkhand,3126794.0,3015071,99906.0 +2020-10-27,Jharkhand,3152647.0,3052423,100224.0 +2020-10-28,Jharkhand,3193717.0,3093148,100569.0 +2020-10-29,Jharkhand,3233520.0,3132556,100964.0 +2020-10-30,Jharkhand,3274987.0,3173700,101287.0 +2020-10-31,Jharkhand,3362394.0,3260633,101761.0 +2020-11-01,Jharkhand,3402867.0,3291685,102087.0 +2020-11-02,Jharkhand,3431063.0,3328573,102490.0 +2020-11-03,Jharkhand,3461834.0,3358947,102887.0 +2020-11-04,Jharkhand,3503516.0,3400328,103188.0 +2020-11-05,Jharkhand,3540776.0,3437233,103543.0 +2020-11-06,Jharkhand,3576191.0,3472292,103899.0 +2020-11-07,Jharkhand,3607753.0,3503514,104239.0 +2020-11-08,Jharkhand,3632362.0,3527920,104442.0 +2020-11-09,Jharkhand,3656926.0,3552238,104688.0 +2020-11-10,Jharkhand,3687269.0,3582329,104940.0 +2020-11-11,Jharkhand,3714582.0,3609358,105224.0 +2020-11-12,Jharkhand,3738656.0,3633163,105493.0 +2020-11-13,Jharkhand,3764342.0,3658561,105781.0 +2020-11-14,Jharkhand,3777488.0,3671553,105935.0 +2020-11-15,Jharkhand,3790900.0,3684836,106064.0 +2020-11-16,Jharkhand,3807997.0,3701767,106230.0 +2020-11-17,Jharkhand,3826168.0,3719677,106491.0 +2020-11-18,Jharkhand,3846092.0,3739350,106742.0 +2020-11-19,Jharkhand,3866465.0,3759493,106972.0 +2020-11-20,Jharkhand,3881733.0,3774576,107157.0 +2020-11-21,Jharkhand,3895808.0,3788476,107332.0 +2020-11-22,Jharkhand,3908002.0,3800533,107469.0 +2020-11-23,Jharkhand,3924648.0,3816960, +2020-11-24,Jharkhand,3946256.0,3838335,107921.0 +2020-11-25,Jharkhand,3965685.0,3857527,108158.0 +2020-11-26,Jharkhand,3984496.0,3871608,108388.0 +2020-11-27,Jharkhand,4004056.0,3895479,108577.0 +2020-11-28,Jharkhand,4038983.0,3930197,108786.0 +2020-11-29,Jharkhand,4134660.0,4025676,108984.0 +2020-11-30,Jharkhand,4178915.0,4069764,109151.0 +2020-12-01,Jharkhand,4215824.0,4106492, +2020-12-02,Jharkhand,4230863.0,4130863,109538.0 +2020-12-03,Jharkhand,4265795.0,4156024,109771.0 +2020-12-04,Jharkhand,4292594.0,4182604,109990.0 +2020-12-05,Jharkhand,4319581.0,4209395,110186.0 +2020-12-06,Jharkhand,4336774.0,4226496,110278.0 +2020-12-07,Jharkhand,4355970.0,4245513,110457.0 +2020-12-08,Jharkhand,4382789.0,4272150,110639.0 +2020-12-09,Jharkhand,4404165.0,4293335,110830.0 +2020-12-10,Jharkhand,4433006.0,4322003,111003.0 +2020-12-11,Jharkhand,4457546.0,4346369,111177.0 +2020-12-12,Jharkhand,4478351.0,4366985,111366.0 +2020-12-13,Jharkhand,4469879.0,4385369,111510.0 +2020-12-14,Jharkhand,4513805.0,4402083,111722.0 +2020-12-15,Jharkhand,4533044.0,4421113,111931.0 +2020-12-16,Jharkhand,4551337.0,4439216,112121.0 +2020-12-17,Jharkhand,4571733.0,4459401,112332.0 +2020-12-18,Jharkhand,4590771.0,4478165,112606.0 +2020-12-19,Jharkhand,4609838.0,4496985,112853.0 +2020-12-20,Jharkhand,4624374.0,4511349,113025.0 +2020-12-21,Jharkhand,4644830.0,4531632,113198.0 +2020-12-22,Jharkhand,4660936.0,4547529,113407.0 +2020-12-23,Jharkhand,4678152.0,4564543,113609.0 +2020-12-24,Jharkhand,4697404.0,4583618,113786.0 +2020-12-25,Jharkhand,4709623.0,4595669,113954.0 +2020-12-26,Jharkhand,4726287.0,4612141,114146.0 +2020-12-27,Jharkhand,4737136.0,4622868,114268.0 +2020-12-28,Jharkhand,4753586.0,4639166,114428.0 +2020-12-29,Jharkhand,4767543.0,4652893,114650.0 +2020-12-30,Jharkhand,4783653.0,4668780,114873.0 +2020-12-31,Jharkhand,4799240.0,4684127,115113.0 +2021-01-01,Jharkhand,4813200.0,4697959,115241.0 +2021-01-02,Jharkhand,4826022.0,4710630,115392.0 +2021-01-03,Jharkhand,4838094.0,4722565,115529.0 +2021-01-04,Jharkhand,4851534.0,4735845,115689.0 +2021-01-05,Jharkhand,4867430.0,4751590,115840.0 +2021-01-06,Jharkhand,4885186.0,4769152,116034.0 +2021-01-07,Jharkhand,4900473.0,4784244,116269.0 +2021-01-08,Jharkhand,4916957.0,4800521,116436.0 +2021-01-09,Jharkhand,4931204.0,4814532,116672.0 +2021-01-10,Jharkhand,4946243.0,4829426,116817.0 +2021-01-11,Jharkhand,4962376.0,4845415,116961.0 +2021-01-12,Jharkhand,4975260.0,4858172,117088.0 +2021-01-13,Jharkhand,4989862.0,4872622,117240.0 +2021-01-14,Jharkhand,5006232.0,4888848,117384.0 +2021-01-15,Jharkhand,5020566.0,4903086,117480.0 +2021-01-16,Jharkhand,5035900.0,4918301,117599.0 +2021-01-17,Jharkhand,5046290.0,4928604,117686.0 +2021-01-18,Jharkhand,5057812.0,4940026,117786.0 +2021-01-19,Jharkhand,5072399.0,4954512,117887.0 +2021-01-20,Jharkhand,5084923.0,4966911, +2021-01-21,Jharkhand,5097274.0,4979195,118079.0 +2021-01-22,Jharkhand,5113068.0,4994914,118154.0 +2021-01-23,Jharkhand,5126992.0,5008760,118232.0 +2021-01-24,Jharkhand,5139500.0,5021214,118286.0 +2021-01-25,Jharkhand,5150854.0,5032494,118360.0 +2021-01-27,Jharkhand,5175741.0,5057246,118495.0 +2021-01-28,Jharkhand,5185675.0,5185675,118557.0 +2021-01-29,Jharkhand,5199013.0,5080411,118602.0 +2021-01-30,Jharkhand,5208961.0,5090310, +2021-01-31,Jharkhand,5217119.0,5098427, +2021-02-01,Jharkhand,5225096.0,5106362,118734.0 +2021-02-02,Jharkhand,5233424.0,5114631,118793.0 +2021-02-03,Jharkhand,5243351.0,5124512,118839.0 +2021-02-04,Jharkhand,5252988.0,5134091,118897.0 +2021-02-05,Jharkhand,5265585.0,5146647,118938.0 +2021-02-06,Jharkhand,5275052.0,5156073,118979.0 +2021-02-07,Jharkhand,5282669.0,5163652,119017.0 +2021-02-08,Jharkhand,5290647.0,5171592,119055.0 +2021-02-09,Jharkhand,5300299.0,5181183,119116.0 +2021-02-10,Jharkhand,5311257.0,5192096,119161.0 +2021-02-11,Jharkhand,5322362.0,5203156,119206.0 +2021-02-12,Jharkhand,5334670.0,5215428,119242.0 +2021-02-13,Jharkhand,5344419.0,5225136,119283.0 +2021-02-14,Jharkhand,5352653.0,5233337,119316.0 +2021-02-15,Jharkhand,5360875.0,5241521,119354.0 +2021-02-16,Jharkhand,5371930.0,5252536,119394.0 +2021-02-17,Jharkhand,5382715.0,5263276,119439.0 +2021-02-18,Jharkhand,5397226.0,5277749,119477.0 +2021-02-19,Jharkhand,5415597.0,5296069,119528.0 +2021-02-20,Jharkhand,5431160.0,5311595,119565.0 +2021-02-21,Jharkhand,5445617.0,5326021,119596.0 +2021-02-22,Jharkhand,5457670.0,5338033,119637.0 +2021-02-23,Jharkhand,5468632.0,5348945,119687.0 +2021-02-24,Jharkhand,5483057.0,5363338,119719.0 +2021-02-25,Jharkhand,5495533.0,5375738,119795.0 +2021-02-26,Jharkhand,5505786.0,5385923,119863.0 +2021-02-27,Jharkhand,5518756.0,5398851,119905.0 +2021-02-28,Jharkhand,5528514.0,5408565,119949.0 +2021-03-01,Jharkhand,5538599.0,5418613,119986.0 +2021-03-02,Jharkhand,5550422.0,5430385,120037.0 +2021-03-03,Jharkhand,5561652.0,5441584,120068.0 +2021-03-04,Jharkhand,5570800.0,5450671,120129.0 +2021-03-05,Jharkhand,5583848.0,5463675,120173.0 +2021-03-06,Jharkhand,5596078.0,5475861,120217.0 +2021-03-07,Jharkhand,5605862.0,5485603,120259.0 +2021-03-08,Jharkhand,5625962.0,5494684,120312.0 +2021-03-09,Jharkhand,5625820.0,5505446,120374.0 +2021-03-10,Jharkhand,5638144.0,5517708,120436.0 +2021-03-11,Jharkhand,5649345.0,5528878,120467.0 +2021-03-12,Jharkhand,5660355.0,5539831,120524.0 +2021-03-13,Jharkhand,5672924.0,5552357,120567.0 +2021-03-14,Jharkhand,5683302.0,5562674,120628.0 +2021-03-15,Jharkhand,5692600.0,5571905,120695.0 +2021-03-16,Jharkhand,5704601.0,5583830,120771.0 +2021-03-17,Jharkhand,5716356.0,5595503,120853.0 +2021-03-18,Jharkhand,5730029.0,5609079,120950.0 +2021-03-19,Jharkhand,5740740.0,5619685,121055.0 +2021-03-20,Jharkhand,5752962.0,5631784,121178.0 +2021-03-21,Jharkhand,5763067.0,5641806,121261.0 +2021-03-22,Jharkhand,5777287.0,5655916,121371.0 +2021-03-23,Jharkhand,5791627.0,5670126,121501.0 +2021-03-24,Jharkhand,5802842.0,5681147,121695.0 +2021-03-25,Jharkhand,5814376.0,5692403,121973.0 +2021-03-26,Jharkhand,5825074.0,5702793,122281.0 +2021-03-27,Jharkhand,5835206.0,5712585,122621.0 +2021-03-28,Jharkhand,5846493.0,5723558,122935.0 +2021-03-29,Jharkhand,5855874.0,5732784,123090.0 +2021-03-30,Jharkhand,5867300.0,5743792,123508.0 +2021-03-31,Jharkhand,5881206.0,5757005,124201.0 +2021-04-01,Jharkhand,5897931.0,5773040,124891.0 +2021-04-02,Jharkhand,5916328.0,5790743,125585.0 +2021-04-03,Jharkhand,5936375.0,5809917,126458.0 +2021-04-04,Jharkhand,5950602.0,5823356,127246.0 +2021-04-05,Jharkhand,5969855.0,5841523,128332.0 +2021-04-06,Jharkhand,5997234.0,5867638,129596.0 +2021-04-07,Jharkhand,6019339.0,5888431,130908.0 +2021-04-08,Jharkhand,6049068.0,5916278,132790.0 +2021-04-09,Jharkhand,6074786.0,5940071,134715.0 +2021-04-10,Jharkhand,6103660.0,5966572,137088.0 +2021-04-11,Jharkhand,6142991.0,6003607,139384.0 +2021-04-12,Jharkhand,6180019.0,6038269,141750.0 +2021-04-13,Jharkhand,6216693.0,6072099,144594.0 +2021-04-14,Jharkhand,6254279.0,6106487,147792.0 +2021-04-15,Jharkhand,6292389.0,6141117,151272.0 +2021-04-16,Jharkhand,6327654.0,6172539,155115.0 +2021-04-17,Jharkhand,6368644.0,6209691,158953.0 +2021-04-18,Jharkhand,6410544.0,6247599,162945.0 +2021-04-19,Jharkhand,6448625.0,6281390,167235.0 +2021-04-20,Jharkhand,6482575.0,6310260,172315.0 +2021-04-21,Jharkhand,6525814.0,6348458,177356.0 +2021-04-22,Jharkhand,6599651.0,6414700,184951.0 +2021-04-23,Jharkhand,6642174.0,6451482,190692.0 +2021-04-24,Jharkhand,6678083.0,6482239,195844.0 +2021-04-25,Jharkhand,6708382.0,6506635,201747.0 +2021-04-26,Jharkhand,6744277.0,6536989,207288.0 +2021-04-27,Jharkhand,6777383.0,6563969,213414.0 +2021-04-28,Jharkhand,6848140.0,6626651,221489.0 +2021-04-29,Jharkhand,6884431.0,6656981,227450.0 +2021-04-30,Jharkhand,6921267.0,6687856,233411.0 +2021-05-01,Jharkhand,6952562.0,6712828,239734.0 +2021-05-02,Jharkhand,6977983.0,6733511,244472.0 +2021-05-03,Jharkhand,7029510.0,6778139,251371.0 +2021-05-04,Jharkhand,7065719.0,6808374,257345.0 +2021-05-05,Jharkhand,7101205.0,6838090,263115.0 +2021-05-06,Jharkhand,7192969.0,6922880,270089.0 +2021-05-07,Jharkhand,7240878.0,6964816,276062.0 +2021-05-08,Jharkhand,7286536.0,7004362,282174.0 +2021-05-09,Jharkhand,7324180.0,7037837,286343.0 +2021-05-10,Jharkhand,7424936.0,7132406,292530.0 +2021-05-11,Jharkhand,7477648.0,7180753,296895.0 +2021-05-12,Jharkhand,7525753.0,7224496,301257.0 +2021-05-13,Jharkhand,7584831.0,7278583,306248.0 +2021-05-14,Jharkhand,7639859.0,7329835,310024.0 +2021-05-15,Jharkhand,7692798.0,7379617,313181.0 +2021-05-16,Jharkhand,7735743.0,7420241,315502.0 +2021-05-17,Jharkhand,7788630.0,7470621,318009.0 +2021-05-18,Jharkhand,7845253.0,7524319,320934.0 +2021-05-19,Jharkhand,7894224.0,7571396,322828.0 +2021-05-20,Jharkhand,7944728.0,7619844,324884.0 +2021-05-21,Jharkhand,7998874.0,7671839,327035.0 +2021-05-22,Jharkhand,8059453.0,7730381,329072.0 +2021-05-23,Jharkhand,8100704.0,7770287,330417.0 +2021-05-24,Jharkhand,8148792.0,7816981,331811.0 +2021-05-25,Jharkhand,8207364.0,7874306,333058.0 +2021-05-26,Jharkhand,8249817.0,7915782,334035.0 +2021-05-27,Jharkhand,8278972.0,7944242,334730.0 +2021-05-28,Jharkhand,8335646.0,8000229,335417.0 +2021-05-29,Jharkhand,8389935.0,8053695,336240.0 +2021-05-30,Jharkhand,8434488.0,8097545,336943.0 +2021-05-31,Jharkhand,8490974.0,8147052,337774.0 +2021-06-01,Jharkhand,8544919.0,8198887,338383.0 +2021-06-02,Jharkhand,8604940.0,326597,338915.0 +2021-06-03,Jharkhand,8656065.0,, +2021-06-04,Jharkhand,8716686.0,8368501,340408.0 +2021-06-05,Jharkhand,8773975.0,8424110,340925.0 +2021-06-06,Jharkhand,8814415.0,8466383,341218.0 +2021-06-07,Jharkhand,8861641.0,8511079,341576.0 +2020-04-03,Karnataka,4587.0,4281,128.0 +2020-04-07,Karnataka,6580.0,5942,175.0 +2020-04-08,Karnataka,6967.0,6473,181.0 +2020-04-09,Karnataka,7613.0,7176,197.0 +2020-04-10,Karnataka,7975.0,7673,207.0 +2020-04-11,Karnataka,8560.0,8231,215.0 +2020-04-12,Karnataka,9251.0,8831,232.0 +2020-04-13,Karnataka,10017.0,9572,247.0 +2020-04-14,Karnataka,11107.0,10554,260.0 +2020-04-15,Karnataka,12483.0,11905,279.0 +2020-04-16,Karnataka,13724.0,13074,315.0 +2020-04-17,Karnataka,17594.0,14606,359.0 +2020-04-18,Karnataka,19186.0,15658,384.0 +2020-04-19,Karnataka,21367.0,17662,390.0 +2020-04-20,Karnataka,23460.0,19497,408.0 +2020-04-21,Karnataka,26233.0,22222,418.0 +2020-04-22,Karnataka,29512.0,25424,427.0 +2020-04-23,Karnataka,32122.0,28174,445.0 +2020-04-24,Karnataka,35958.0,31914,474.0 +2020-04-25,Karnataka,39083.0,34888,500.0 +2020-04-26,Karnataka,42964.0,38207,503.0 +2020-04-27,Karnataka,45685.0,43791,512.0 +2020-04-28,Karnataka,50512.0,48508,523.0 +2020-04-29,Karnataka,55404.0,53241,535.0 +2020-04-30,Karnataka,60156.0,57548,565.0 +2020-05-01,Karnataka,64898.0,61855,589.0 +2020-05-02,Karnataka,69730.0,66475,601.0 +2020-05-03,Karnataka,74898.0,70998,614.0 +2020-05-04,Karnataka,79193.0,74664,651.0 +2020-05-05,Karnataka,83806.0,78860,673.0 +2020-05-06,Karnataka,88777.0,83056,693.0 +2020-05-07,Karnataka,93535.0,87756,705.0 +2020-05-08,Karnataka,98081.0,92237,753.0 +2020-05-09,Karnataka,103098.0,97326,794.0 +2020-05-10,Karnataka,107311.0,102266,848.0 +2020-05-11,Karnataka,111595.0,106467,862.0 +2020-05-12,Karnataka,116533.0,111264,925.0 +2020-05-13,Karnataka,121178.0,119420,959.0 +2020-05-14,Karnataka,128373.0,126766,987.0 +2020-05-15,Karnataka,133724.0,132074,1056.0 +2020-05-16,Karnataka,140024.0,138216,1092.0 +2020-05-17,Karnataka,145398.0,143444,1147.0 +2020-05-18,Karnataka,151663.0,149566,1246.0 +2020-05-19,Karnataka,158599.0,156247,1395.0 +2020-05-20,Karnataka,166781.0,164199,1462.0 +2020-05-21,Karnataka,174297.0,171484,1605.0 +2020-05-22,Karnataka,186526.0,183088,1743.0 +2020-05-23,Karnataka,196196.0,192127,1959.0 +2020-05-24,Karnataka,206313.0,201978,2089.0 +2020-05-25,Karnataka,219894.0,215308,2182.0 +2020-05-26,Karnataka,228914.0,223477,2283.0 +2020-05-27,Karnataka,241608.0,235876,2418.0 +2020-05-28,Karnataka,252078.0,246115,2533.0 +2020-05-29,Karnataka,264489.0,258130,2781.0 +2020-05-30,Karnataka,280217.0,273404,2922.0 +2020-05-31,Karnataka,293575.0,286245,3221.0 +2020-06-01,Karnataka,304816.0,297052,3408.0 +2020-06-02,Karnataka,319628.0,310967,3796.0 +2020-06-03,Karnataka,334825.0,325686,4063.0 +2020-06-04,Karnataka,347093.0,337154,4320.0 +2020-06-05,Karnataka,360720.0,349951,4835.0 +2020-06-06,Karnataka,372582.0,361382,5213.0 +2020-06-07,Karnataka,384442.0,372399,5452.0 +2020-06-08,Karnataka,393221.0,380630,5760.0 +2020-06-09,Karnataka,400257.0,387027,5921.0 +2020-06-10,Karnataka,408506.0,394603,6041.0 +2020-06-11,Karnataka,416506.0,402105,6245.0 +2020-06-12,Karnataka,426341.0,411244,6516.0 +2020-06-13,Karnataka,436518.0,420773,6824.0 +2020-06-14,Karnataka,443969.0,427608,7000.0 +2020-06-15,Karnataka,449331.0,432346,7213.0 +2020-06-16,Karnataka,457267.0,439654,7530.0 +2020-06-17,Karnataka,464798.0,446448,7734.0 +2020-06-18,Karnataka,473507.0,454476,7944.0 +2020-06-19,Karnataka,484060.0,464338,8281.0 +2020-06-20,Karnataka,493893.0,473357,8697.0 +2020-06-21,Karnataka,506765.0,485345,9150.0 +2020-06-22,Karnataka,515969.0,493921,9399.0 +2020-06-23,Karnataka,526538.0,503734,9721.0 +2020-06-24,Karnataka,539247.0,515388,10118.0 +2020-06-25,Karnataka,553325.0,527731,10560.0 +2020-06-26,Karnataka,568058.0,541548,11005.0 +2020-06-27,Karnataka,581635.0,554095,11923.0 +2020-06-28,Karnataka,595470.0,566543,13190.0 +2020-06-29,Karnataka,605159.0,575337,14295.0 +2020-06-30,Karnataka,620747.0,589637,15242.0 +2020-07-01,Karnataka,637417.0,604822,16514.0 +2020-07-02,Karnataka,653627.0,619292,18016.0 +2020-07-03,Karnataka,671934.0,635582,19710.0 +2020-07-04,Karnataka,689526.0,650876,21549.0 +2020-07-05,Karnataka,706425.0,665525,23474.0 +2020-07-06,Karnataka,722305.0,679267,25317.0 +2020-07-07,Karnataka,740047.0,694816,26815.0 +2020-07-08,Karnataka,759181.0,711319,28877.0 +2020-07-09,Karnataka,779209.0,728887,31105.0 +2020-07-10,Karnataka,798437.0,745360,33418.0 +2020-07-11,Karnataka,819024.0,746375,36216.0 +2020-07-12,Karnataka,839074.0,779609,38843.0 +2020-07-13,Karnataka,856148.0,793561,41581.0 +2020-07-14,Karnataka,879822.0,813164,44077.0 +2020-07-15,Karnataka,902026.0,831246,47253.0 +2020-07-16,Karnataka,925477.0,850593,51422.0 +2020-07-17,Karnataka,953417.0,870466,55115.0 +2020-07-18,Karnataka,982701.0,899016,59652.0 +2020-07-19,Karnataka,999530.0,927945,63772.0 +2020-07-20,Karnataka,1025420.0,958311,67420.0 +2020-07-21,Karnataka,1051976.0,963725,71069.0 +2020-07-22,Karnataka,1079749.0,1002045,75833.0 +2020-07-23,Karnataka,1110497.0,,80863.0 +2020-07-25,Karnataka,1143262.0,,90942.0 +2020-07-26,Karnataka,1176827.0,,96141.0 +2020-07-27,Karnataka,1205051.0,,101465.0 +2020-07-28,Karnataka,1242771.0,,107001.0 +2020-07-29,Karnataka,1275761.0,,112504.0 +2020-07-30,Karnataka,1313856.0,,118632.0 +2020-07-31,Karnataka,1350792.0,,124115.0 +2020-08-01,Karnataka,1385552.0,,129287.0 +2020-08-02,Karnataka,1418569.0,,134819.0 +2020-08-03,Karnataka,1446558.0,,139571.0 +2020-08-04,Karnataka,1489016.0,,145830.0 +2020-08-05,Karnataka,1532654.0,,151449.0 +2020-08-06,Karnataka,1581075.0,,158254.0 +2020-08-07,Karnataka,1624628.0,,164924.0 +2020-08-08,Karnataka,1668511.0,,172102.0 +2020-08-09,Karnataka,1706447.0,,178087.0 +2020-08-10,Karnataka,1729067.0,,182354.0 +2020-08-11,Karnataka,1772991.0,, +2020-08-12,Karnataka,1826317.0,, +2020-08-13,Karnataka,1882316.0,,203200.0 +2020-08-14,Karnataka,1938954.0,,211108.0 +2020-08-15,Karnataka,1993760.0,,219926.0 +2020-08-16,Karnataka,2037386.0,,226966.0 +2020-08-17,Karnataka,2075086.0,, +2020-08-18,Karnataka,2134174.0,, +2020-08-19,Karnataka,2197259.0,, +2020-08-20,Karnataka,2256862.0,, +2020-08-21,Karnataka,2314485.0,,264546.0 +2020-08-22,Karnataka,2373103.0,, +2020-08-23,Karnataka,2413951.0,, +2020-08-24,Karnataka,2453768.0,, +2020-08-25,Karnataka,2513555.0,, +2020-08-26,Karnataka,2580621.0,, +2020-08-27,Karnataka,2648808.0,, +2020-08-28,Karnataka,2713034.0,, +2020-08-29,Karnataka,2785718.0,, +2020-08-30,Karnataka,2852675.0,, +2020-08-31,Karnataka,2895807.0,, +2020-09-01,Karnataka,2979477.0,, +2020-09-02,Karnataka,3052794.0,, +2020-09-03,Karnataka,3123918.0,, +2020-09-04,Karnataka,3197110.0,, +2020-09-05,Karnataka,3273871.0,, +2020-09-06,Karnataka,3348255.0,, +2020-09-07,Karnataka,3393676.0,, +2020-09-08,Karnataka,3461119.0,, +2020-09-09,Karnataka,3531441.0,, +2020-09-10,Karnataka,3586150.0,, +2020-09-11,Karnataka,3650819.0,, +2020-09-12,Karnataka,3714402.0,, +2020-09-13,Karnataka,3800976.0,, +2020-09-14,Karnataka,3846937.0,, +2020-09-15,Karnataka,3915302.0,, +2020-09-16,Karnataka,3986283.0,, +2020-09-17,Karnataka,4058313.0,, +2020-09-18,Karnataka,4115783.0,, +2020-09-19,Karnataka,4179567.0,, +2020-09-20,Karnataka,4240044.0,, +2020-09-21,Karnataka,4282735.0,, +2020-09-22,Karnataka,4338442.0,, +2020-09-23,Karnataka,4394840.0,, +2020-09-24,Karnataka,4459004.0,, +2020-09-25,Karnataka,4518923.0,, +2020-09-26,Karnataka,4586780.0,, +2020-09-27,Karnataka,4659860.0,, +2020-09-28,Karnataka,4718722.0,, +2020-09-29,Karnataka,4806197.0,, +2020-09-30,Karnataka,4901083.0,, +2020-10-01,Karnataka,4997671.0,, +2020-10-02,Karnataka,5089730.0,, +2020-10-03,Karnataka,5174652.0,, +2020-10-04,Karnataka,5260160.0,, +2020-10-05,Karnataka,5327463.0,, +2020-10-06,Karnataka,5419954.0,, +2020-10-07,Karnataka,5524302.0,, +2020-10-08,Karnataka,5629550.0,, +2020-10-09,Karnataka,5739530.0,, +2020-10-10,Karnataka,5852300.0,, +2020-10-11,Karnataka,5952223.0,, +2020-10-12,Karnataka,6030980.0,, +2020-10-13,Karnataka,6137221.0,, +2020-10-14,Karnataka,6250992.0,, +2020-10-15,Karnataka,6355809.0,, +2020-10-16,Karnataka,6461694.0,, +2020-10-17,Karnataka,6562710.0,, +2020-10-18,Karnataka,6667777.0,, +2020-10-19,Karnataka,6746358.0,, +2020-10-20,Karnataka,6844594.0,, +2020-10-21,Karnataka,6952835.0,, +2020-10-22,Karnataka,7060189.0,, +2020-10-23,Karnataka,7168545.0,, +2020-10-24,Karnataka,7281090.0,, +2020-10-25,Karnataka,7381601.0,, +2020-10-26,Karnataka,7447493.0,, +2020-10-27,Karnataka,7514194.0,, +2020-10-28,Karnataka,7600348.0,, +2020-10-29,Karnataka,7701031.0,, +2020-10-30,Karnataka,7804312.0,, +2020-10-31,Karnataka,7905868.0,, +2020-11-01,Karnataka,8012641.0,, +2020-11-02,Karnataka,8091137.0,, +2020-11-03,Karnataka,8185676.0,, +2020-11-04,Karnataka,8288179.0,, +2020-11-05,Karnataka,8404516.0,, +2020-11-06,Karnataka,8514653.0,, +2020-11-07,Karnataka,8620970.0,, +2020-11-08,Karnataka,8738226.0,, +2020-11-09,Karnataka,8823191.0,, +2020-11-10,Karnataka,8932699.0,, +2020-11-11,Karnataka,9043217.0,, +2020-11-12,Karnataka,9158603.0,, +2020-11-13,Karnataka,9276602.0,, +2020-11-14,Karnataka,9392474.0,, +2020-11-15,Karnataka,9492080.0,, +2020-11-16,Karnataka,9568625.0,, +2020-11-17,Karnataka,9644009.0,, +2020-11-18,Karnataka,9741051.0,, +2020-11-19,Karnataka,9859525.0,, +2020-11-20,Karnataka,9981137.0,, +2020-11-21,Karnataka,10106474.0,, +2020-11-22,Karnataka,10233378.0,, +2020-11-23,Karnataka,10329473.0,, +2020-11-24,Karnataka,10447705.0,, +2020-11-25,Karnataka,10570159.0,, +2020-11-26,Karnataka,10690557.0,, +2020-11-27,Karnataka,10804148.0,, +2020-11-28,Karnataka,10914872.0,, +2020-11-29,Karnataka,11020300.0,, +2020-11-30,Karnataka,11101633.0,, +2020-12-01,Karnataka,11197240.0,, +2020-12-02,Karnataka,11303158.0,, +2020-12-03,Karnataka,11411843.0,, +2020-12-04,Karnataka,11509892.0,, +2020-12-05,Karnataka,11613924.0,, +2020-12-06,Karnataka,11713244.0,, +2020-12-07,Karnataka,11789715.0,, +2020-12-08,Karnataka,11878413.0,, +2020-12-09,Karnataka,11979471.0,, +2020-12-10,Karnataka,12063741.0,, +2020-12-11,Karnataka,12164587.0,, +2020-12-12,Karnataka,12266816.0,, +2020-12-13,Karnataka,12355358.0,, +2020-12-14,Karnataka,12420213.0,, +2020-12-15,Karnataka,12509743.0,, +2020-12-16,Karnataka,12611493.0,, +2020-12-17,Karnataka,12717849.0,, +2020-12-18,Karnataka,12822390.0,, +2020-12-19,Karnataka,12937540.0,, +2020-12-20,Karnataka,13047768.0,, +2020-12-21,Karnataka,13121419.0,, +2020-12-22,Karnataka,13217127.0,, +2020-12-23,Karnataka,13317070.0,, +2020-12-24,Karnataka,13415794.0,, +2020-12-25,Karnataka,13514362.0,, +2020-12-26,Karnataka,13609914.0,, +2020-12-27,Karnataka,13704709.0,, +2020-12-28,Karnataka,13772451.0,, +2020-12-29,Karnataka,13858850.0,, +2020-12-30,Karnataka,13962707.0,, +2020-12-31,Karnataka,14078158.0,, +2021-01-01,Karnataka,14196065.0,, +2021-01-02,Karnataka,14310188.0,, +2021-01-03,Karnataka,14432085.0,, +2021-01-04,Karnataka,14531251.0,, +2021-01-05,Karnataka,14654318.0,, +2021-01-06,Karnataka,14788491.0,, +2021-01-07,Karnataka,14918254.0,, +2021-01-08,Karnataka,15050771.0,, +2021-01-09,Karnataka,15175037.0,, +2021-01-10,Karnataka,15288243.0,, +2021-01-11,Karnataka,15375146.0,, +2021-01-12,Karnataka,15485359.0,, +2021-01-13,Karnataka,15598874.0,, +2021-01-14,Karnataka,15705129.0,, +2021-01-15,Karnataka,15789978.0,, +2021-01-16,Karnataka,15884994.0,, +2021-01-17,Karnataka,15983473.0,, +2021-01-18,Karnataka,16052738.0,, +2021-01-19,Karnataka,16133663.0,, +2021-01-20,Karnataka,16217753.0,, +2021-01-21,Karnataka,16306608.0,, +2021-01-22,Karnataka,16399189.0,, +2021-01-23,Karnataka,16485599.0,, +2021-01-24,Karnataka,16566713.0,, +2021-01-25,Karnataka,16626140.0,, +2021-01-26,Karnataka,16691703.0,, +2021-01-27,Karnataka,16750398.0,, +2021-01-28,Karnataka,16816459.0,, +2021-01-29,Karnataka,16884991.0,, +2021-01-30,Karnataka,16958479.0,, +2021-01-31,Karnataka,17033930.0,, +2021-02-01,Karnataka,17087246.0,, +2021-02-02,Karnataka,17147397.0,, +2021-02-03,Karnataka,17218163.0,, +2021-02-04,Karnataka,17294005.0,, +2021-02-05,Karnataka,17368124.0,, +2021-02-06,Karnataka,17442715.0,, +2021-02-07,Karnataka,17516945.0,, +2021-02-08,Karnataka,17565234.0,, +2021-02-09,Karnataka,17625719.0,, +2021-02-10,Karnataka,17691918.0,, +2021-02-11,Karnataka,17760112.0,, +2021-02-12,Karnataka,17829105.0,, +2021-02-13,Karnataka,17895155.0,, +2021-02-14,Karnataka,17956031.0,, +2021-02-15,Karnataka,17998276.0,, +2021-02-16,Karnataka,18045304.0,, +2021-02-17,Karnataka,18099928.0,, +2021-02-18,Karnataka,18159563.0,, +2021-02-19,Karnataka,18221003.0,, +2021-02-20,Karnataka,18279393.0,, +2021-02-21,Karnataka,18334627.0,, +2021-02-22,Karnataka,18380495.0,, +2021-02-23,Karnataka,18431322.0,, +2021-02-24,Karnataka,18494364.0,, +2021-02-25,Karnataka,18562530.0,, +2021-02-26,Karnataka,18639329.0,, +2021-02-27,Karnataka,18712761.0,, +2021-02-28,Karnataka,18796775.0,, +2021-03-01,Karnataka,18856902.0,, +2021-03-02,Karnataka,18921149.0,, +2021-03-03,Karnataka,18989488.0,, +2021-03-04,Karnataka,19068106.0,, +2021-03-05,Karnataka,19146913.0,, +2021-03-06,Karnataka,19229142.0,, +2021-03-07,Karnataka,19305102.0,, +2021-03-08,Karnataka,19361547.0,, +2021-03-09,Karnataka,19427973.0,, +2021-03-10,Karnataka,19498106.0,, +2021-03-11,Karnataka,19571207.0,, +2021-03-12,Karnataka,19644839.0,, +2021-03-13,Karnataka,19717489.0,, +2021-03-14,Karnataka,19790597.0,, +2021-03-15,Karnataka,19852955.0,, +2021-03-16,Karnataka,19921424.0,, +2021-03-17,Karnataka,20008072.0,, +2021-03-18,Karnataka,20101442.0,, +2021-03-19,Karnataka,20193326.0,, +2021-03-20,Karnataka,20287369.0,, +2021-03-21,Karnataka,20389209.0,, +2021-03-22,Karnataka,20467387.0,, +2021-03-23,Karnataka,20566120.0,, +2021-03-24,Karnataka,20674133.0,, +2021-03-25,Karnataka,20782529.0,, +2021-03-26,Karnataka,20894800.0,, +2021-03-27,Karnataka,21002216.0,, +2021-03-28,Karnataka,21108544.0,, +2021-03-29,Karnataka,21195741.0,, +2021-03-30,Karnataka,21302658.0,, +2021-03-31,Karnataka,21411226.0,, +2021-04-01,Karnataka,21526958.0,, +2021-04-02,Karnataka,21645891.0,, +2021-04-03,Karnataka,21769721.0,, +2021-04-04,Karnataka,21889602.0,, +2021-04-05,Karnataka,21987431.0,, +2021-04-06,Karnataka,22089452.0,, +2021-04-07,Karnataka,22214842.0,, +2021-04-08,Karnataka,22323599.0,, +2021-04-09,Karnataka,22458762.0,, +2021-04-10,Karnataka,22557552.0,, +2021-04-11,Karnataka,22690258.0,, +2021-04-12,Karnataka,22806423.0,, +2021-04-13,Karnataka,22928322.0,, +2021-04-14,Karnataka,23041564.0,, +2021-04-15,Karnataka,23170964.0,, +2021-04-16,Karnataka,23304701.0,, +2021-04-17,Karnataka,23448009.0,, +2021-04-18,Karnataka,23593654.0,, +2021-04-19,Karnataka,23716866.0,, +2021-04-20,Karnataka,23864354.0,, +2021-04-21,Karnataka,24016635.0,, +2021-04-22,Karnataka,24179169.0,, +2021-04-23,Karnataka,24356635.0,, +2021-04-24,Karnataka,24546248.0,, +2021-04-25,Karnataka,24722862.0,, +2021-04-26,Karnataka,24889269.0,, +2021-04-27,Karnataka,25059385.0,, +2021-04-28,Karnataka,25231382.0,, +2021-04-29,Karnataka,25407198.0,, +2021-04-30,Karnataka,25596991.0,, +2021-05-01,Karnataka,25774973.0,, +2021-05-02,Karnataka,25933338.0,, +2021-05-03,Karnataka,26082428.0,, +2021-05-04,Karnataka,26236135.0,, +2021-05-05,Karnataka,26391359.0,, +2021-05-06,Karnataka,26555800.0,, +2021-05-07,Karnataka,26714702.0,, +2021-05-08,Karnataka,26871729.0,, +2021-05-09,Karnataka,27018220.0,, +2021-05-10,Karnataka,27142330.0,, +2021-05-11,Karnataka,27258568.0,, +2021-05-12,Karnataka,27393360.0,, +2021-05-13,Karnataka,27521028.0,, +2021-05-14,Karnataka,27648133.0,, +2021-05-15,Karnataka,27766478.0,, +2021-05-16,Karnataka,27879697.0,, +2021-05-17,Karnataka,27976933.0,, +2021-05-18,Karnataka,28070180.0,, +2021-05-19,Karnataka,28199718.0,, +2021-05-20,Karnataka,28320429.0,, +2021-05-21,Karnataka,28453442.0,, +2021-05-22,Karnataka,28582203.0,, +2021-05-23,Karnataka,28707320.0,, +2021-05-24,Karnataka,28816043.0,, +2021-05-25,Karnataka,28923718.0,, +2021-05-26,Karnataka,29061302.0,, +2021-05-27,Karnataka,29198945.0,, +2021-05-28,Karnataka,29339728.0,, +2021-05-29,Karnataka,29475822.0,, +2021-05-30,Karnataka,29614631.0,, +2021-05-31,Karnataka,29736960.0,, +2021-06-01,Karnataka,29853184.0,, +2021-06-02,Karnataka,29999107.0,, +2021-06-03,Karnataka,30149275.0,, +2021-06-04,Karnataka,30299885.0,, +2021-06-05,Karnataka,30442176.0,, +2021-06-06,Karnataka,30600450.0,, +2021-06-07,Karnataka,30732003.0,, +2020-04-01,Kerala,7965.0,7256,265.0 +2020-04-02,Kerala,8456.0,7622,286.0 +2020-04-03,Kerala,9139.0,8126,295.0 +2020-04-04,Kerala,9744.0,8586,306.0 +2020-04-05,Kerala,10221.0,9300,314.0 +2020-04-06,Kerala,10716.0,9607,327.0 +2020-04-07,Kerala,11232.0,10250,336.0 +2020-04-08,Kerala,11986.0,10906,354.0 +2020-04-09,Kerala,12710.0,11469,357.0 +2020-04-10,Kerala,13339.0,12335,364.0 +2020-04-11,Kerala,14163.0,12818,373.0 +2020-04-12,Kerala,14989.0,13802,375.0 +2020-04-13,Kerala,15683.0,14829,378.0 +2020-04-14,Kerala,16235.0,15488,386.0 +2020-04-15,Kerala,16475.0,16002,387.0 +2020-04-16,Kerala,17400.0,16459,394.0 +2020-04-17,Kerala,18029.0,17279,395.0 +2020-04-18,Kerala,18774.0,17763,399.0 +2020-04-19,Kerala,19351.0,18547,401.0 +2020-04-20,Kerala,19756.0,19074,408.0 +2020-04-21,Kerala,20252.0,19442,426.0 +2020-04-22,Kerala,20821.0,19998,437.0 +2020-04-23,Kerala,21334.0,20326,447.0 +2020-04-24,Kerala,21940.0,20830,450.0 +2020-04-25,Kerala,22360.0,21475,457.0 +2020-04-26,Kerala,22954.0,21997,468.0 +2020-04-27,Kerala,24146.0,23148,481.0 +2020-04-28,Kerala,24855.0,24078,485.0 +2020-04-29,Kerala,25827.0,24681,495.0 +2020-04-30,Kerala,27481.0,26032,497.0 +2020-05-01,Kerala,29012.0,27224,497.0 +2020-05-02,Kerala,33276.0,31592,499.0 +2020-05-03,Kerala,34608.0,33294,499.0 +2020-05-04,Kerala,35441.0,34161,499.0 +2020-05-05,Kerala,36312.0,35244,502.0 +2020-05-06,Kerala,37546.0,36210,502.0 +2020-05-07,Kerala,38206.0,36856,502.0 +2020-05-08,Kerala,39266.0,38294,503.0 +2020-05-09,Kerala,40123.0,39233,505.0 +2020-05-10,Kerala,41279.0,40155,512.0 +2020-05-11,Kerala,41700.0,40889,512.0 +2020-05-12,Kerala,42461.0,41621,524.0 +2020-05-13,Kerala,43648.0,42574,534.0 +2020-05-14,Kerala,45039.0,43868,560.0 +2020-05-15,Kerala,46831.0,45063,576.0 +2020-05-16,Kerala,48433.0,46458,587.0 +2020-05-17,Kerala,50036.0,47964,601.0 +2020-05-18,Kerala,51059.0,49763,630.0 +2020-05-19,Kerala,52588.0,50867,642.0 +2020-05-20,Kerala,54633.0,52689,666.0 +2020-05-21,Kerala,56373.0,54541,690.0 +2020-05-22,Kerala,58382.0,56165,733.0 +2020-05-23,Kerala,60443.0,58192,795.0 +2020-05-24,Kerala,61900.0,59943,848.0 +2020-05-25,Kerala,63009.0,61698,897.0 +2020-05-26,Kerala,65303.0,63010,964.0 +2020-05-27,Kerala,67961.0,65099,1004.0 +2020-05-28,Kerala,70622.0,67677,1089.0 +2020-05-29,Kerala,74214.0,71083,1151.0 +2020-05-30,Kerala,77257.0,73775,1209.0 +2020-05-31,Kerala,77508.0,75697,1270.0 +2020-06-01,Kerala,82449.0,78310,1327.0 +2020-06-02,Kerala,86169.0,81157,1413.0 +2020-06-03,Kerala,95348.0,84870,1495.0 +2020-06-04,Kerala,99692.0,87403,1589.0 +2020-06-05,Kerala,104045.0,92818,1700.0 +2020-06-06,Kerala,107796.0,97114,1808.0 +2020-06-07,Kerala,111930.0,100319,1915.0 +2020-06-08,Kerala,113956.0,103472,2006.0 +2020-06-09,Kerala,126088.0,111892,2097.0 +2020-06-10,Kerala,131006.0,116425,2162.0 +2020-06-11,Kerala,135974.0,130857,2245.0 +2020-06-12,Kerala,140457.0,134743,2323.0 +2020-06-13,Kerala,144842.0,,2408.0 +2020-06-14,Kerala,149164.0,,2462.0 +2020-06-15,Kerala,151686.0,,2544.0 +2020-06-16,Kerala,157117.0,,2623.0 +2020-06-17,Kerala,161829.0,,2698.0 +2020-06-18,Kerala,169035.0,,2795.0 +2020-06-19,Kerala,173729.0,,2913.0 +2020-06-20,Kerala,178559.0,,3040.0 +2020-06-21,Kerala,183201.0,,3173.0 +2020-06-22,Kerala,185903.0,,3311.0 +2020-06-23,Kerala,192059.0,,3452.0 +2020-06-24,Kerala,197567.0,,3604.0 +2020-06-25,Kerala,203574.0,,3727.0 +2020-06-26,Kerala,209456.0,,3877.0 +2020-06-27,Kerala,215243.0,,4072.0 +2020-06-28,Kerala,220821.0,,4190.0 +2020-06-29,Kerala,224737.0,,4311.0 +2020-06-30,Kerala,231570.0,,4442.0 +2020-07-01,Kerala,239017.0,,4593.0 +2020-07-02,Kerala,246799.0,,4753.0 +2020-07-03,Kerala,253011.0,,4965.0 +2020-07-04,Kerala,260011.0,,5205.0 +2020-07-05,Kerala,268218.0,,5430.0 +2020-07-06,Kerala,275823.0,,5623.0 +2020-07-07,Kerala,285968.0,,5895.0 +2020-07-08,Kerala,296183.0,,6196.0 +2020-07-09,Kerala,307219.0,,6535.0 +2020-07-10,Kerala,320485.0,,6951.0 +2020-07-11,Kerala,334849.0,,7439.0 +2020-07-12,Kerala,347529.0,,7874.0 +2020-07-13,Kerala,416282.0,,8323.0 +2020-07-14,Kerala,435043.0,,8931.0 +2020-07-15,Kerala,453716.0,,9554.0 +2020-07-16,Kerala,472271.0,,10276.0 +2020-07-17,Kerala,489395.0,,11067.0 +2020-07-18,Kerala,514140.0,,11660.0 +2020-07-19,Kerala,532505.0,,12481.0 +2020-07-20,Kerala,546000.0,,13275.0 +2020-07-21,Kerala,567278.0,,13995.0 +2020-07-22,Kerala,588930.0,,15033.0 +2020-07-23,Kerala,612266.0,,16111.0 +2020-07-24,Kerala,635272.0,,16996.0 +2020-07-25,Kerala,653982.0,,18099.0 +2020-07-26,Kerala,672748.0,,19026.0 +2020-07-27,Kerala,688163.0,,19728.0 +2020-07-28,Kerala,709348.0,,20895.0 +2020-07-29,Kerala,733413.0,,21798.0 +2020-07-30,Kerala,753485.0,,22304.0 +2020-07-31,Kerala,776268.0,,23614.0 +2020-08-01,Kerala,795919.0,,24743.0 +2020-08-02,Kerala,817078.0,,25912.0 +2020-08-03,Kerala,834215.0,,26874.0 +2020-08-04,Kerala,858960.0,,27957.0 +2020-08-05,Kerala,884056.0,,29152.0 +2020-08-06,Kerala,908355.0,,30450.0 +2020-08-07,Kerala,936651.0,,31701.0 +2020-08-08,Kerala,963632.0,,33121.0 +2020-08-09,Kerala,984208.0,,34332.0 +2020-08-10,Kerala,1000988.0,,35516.0 +2020-08-11,Kerala,1027433.0,,36933.0 +2020-08-12,Kerala,1056360.0,,38145.0 +2020-08-13,Kerala,1087722.0,,39709.0 +2020-08-14,Kerala,1120935.0,,41278.0 +2020-08-15,Kerala,1154365.0,,42886.0 +2020-08-16,Kerala,1182727.0,,44416.0 +2020-08-17,Kerala,1205759.0,,46141.0 +2020-08-18,Kerala,1240076.0,,47899.0 +2020-08-19,Kerala,1276358.0,,50232.0 +2020-08-20,Kerala,1312992.0,,52200.0 +2020-08-21,Kerala,1349071.0,,54183.0 +2020-08-22,Kerala,1386775.0,,56355.0 +2020-08-23,Kerala,1422558.0,,58263.0 +2020-08-24,Kerala,1446380.0,,59505.0 +2020-08-25,Kerala,1484907.0,,61880.0 +2020-08-26,Kerala,1525792.0,,64356.0 +2020-08-27,Kerala,1564783.0,,66762.0 +2020-08-28,Kerala,1608013.0,,69305.0 +2020-08-29,Kerala,1643633.0,,71702.0 +2020-08-30,Kerala,1669779.0,,73856.0 +2020-08-31,Kerala,1685203.0,,75386.0 +2020-09-01,Kerala,1697042.0,,76526.0 +2020-09-02,Kerala,1724658.0,,78073.0 +2020-09-03,Kerala,1755568.0,,79626.0 +2020-09-04,Kerala,1792330.0,,82105.0 +2020-09-05,Kerala,1832275.0,,84760.0 +2020-09-06,Kerala,1872496.0,,87842.0 +2020-09-07,Kerala,1891703.0,,89490.0 +2020-09-08,Kerala,1933294.0,,92516.0 +2020-09-09,Kerala,1978316.0,,95918.0 +2020-09-10,Kerala,2018921.0,,99267.0 +2020-09-11,Kerala,2053801.0,,102255.0 +2020-09-12,Kerala,2099549.0,,105140.0 +2020-09-13,Kerala,2132795.0,,108279.0 +2020-09-14,Kerala,2152585.0,,110819.0 +2020-09-15,Kerala,2198858.0,,114034.0 +2020-09-16,Kerala,2245139.0,,117864.0 +2020-09-17,Kerala,2287796.0,,122215.0 +2020-09-18,Kerala,2336217.0,,126382.0 +2020-09-19,Kerala,2384611.0,,131027.0 +2020-09-20,Kerala,2427374.0,,135723.0 +2020-09-21,Kerala,2450599.0,,138633.0 +2020-09-22,Kerala,2492757.0,,142758.0 +2020-09-23,Kerala,2545385.0,,148134.0 +2020-09-24,Kerala,2600359.0,,154458.0 +2020-09-25,Kerala,2657430.0,,160935.0 +2020-09-26,Kerala,2717040.0,,167941.0 +2020-09-27,Kerala,2770734.0,,175386.0 +2020-09-28,Kerala,2804319.0,,179924.0 +2020-09-29,Kerala,2862094.0,,187278.0 +2020-09-30,Kerala,2925776.0,,196108.0 +2020-10-01,Kerala,2985534.0,,204243.0 +2020-10-02,Kerala,3049791.0,,213501.0 +2020-10-03,Kerala,3104878.0,,221335.0 +2020-10-04,Kerala,3164072.0,,229888.0 +2020-10-05,Kerala,3198423.0,,234930.0 +2020-10-06,Kerala,3263691.0,,242801.0 +2020-10-07,Kerala,3340242.0,,253407.0 +2020-10-08,Kerala,3402903.0,,258852.0 +2020-10-09,Kerala,3471365.0,,268102.0 +2020-10-10,Kerala,3538678.0,,279857.0 +2020-10-11,Kerala,3594320.0,,289204.0 +2020-10-12,Kerala,3628429.0,,295134.0 +2020-10-13,Kerala,3676682.0,,303898.0 +2020-10-14,Kerala,3726738.0,,310142.0 +2020-10-15,Kerala,3776892.0,,317931.0 +2020-10-16,Kerala,3828728.0,,325214.0 +2020-10-17,Kerala,3880795.0,,334230.0 +2020-10-18,Kerala,3939199.0,,341861.0 +2020-10-19,Kerala,3975798.0,,346883.0 +2020-10-20,Kerala,4029699.0,,353474.0 +2020-10-21,Kerala,4091729.0,,361843.0 +2020-10-22,Kerala,4147822.0,,369325.0 +2020-10-23,Kerala,4212611.0,,377836.0 +2020-10-24,Kerala,4280204.0,,386089.0 +2020-10-25,Kerala,4328416.0,,392932.0 +2020-10-26,Kerala,4363557.0,,397219.0 +2020-10-27,Kerala,4409750.0,,402676.0 +2020-10-28,Kerala,4476730.0,,411466.0 +2020-10-29,Kerala,4531069.0,,418486.0 +2020-10-30,Kerala,4585050.0,,425124.0 +2020-10-31,Kerala,4645049.0,,433107.0 +2020-11-01,Kerala,4695059.0,,440132.0 +2020-11-02,Kerala,4728404.0,,444270.0 +2020-11-03,Kerala,4789542.0,,451132.0 +2020-11-04,Kerala,4860812.0,,459648.0 +2020-11-05,Kerala,4922200.0,,466468.0 +2020-11-06,Kerala,4985584.0,,473470.0 +2020-11-07,Kerala,5049635.0,,480671.0 +2020-11-08,Kerala,5098433.0,,486111.0 +2020-11-09,Kerala,5130922.0,,489704.0 +2020-11-10,Kerala,5185673.0,,495714.0 +2020-11-11,Kerala,5249865.0,,502721.0 +2020-11-12,Kerala,5307067.0,,508258.0 +2020-11-13,Kerala,5365288.0,,514062.0 +2020-11-14,Kerala,5426841.0,,520419.0 +2020-11-15,Kerala,5472967.0,,525000.0 +2020-11-16,Kerala,5498108.0,,527710.0 +2020-11-17,Kerala,5554265.0,,533502.0 +2020-11-18,Kerala,5621634.0,,539921.0 +2020-11-19,Kerala,5688651.0,,545643.0 +2020-11-20,Kerala,5749016.0,,551671.0 +2020-11-21,Kerala,5809226.0,,557443.0 +2020-11-22,Kerala,5857241.0,,562697.0 +2020-11-23,Kerala,5892900.0,,566454.0 +2020-11-24,Kerala,5952883.0,,571874.0 +2020-11-25,Kerala,6018925.0,,578365.0 +2020-11-26,Kerala,6074921.0,,583743.0 +2020-11-27,Kerala,6114029.0,,587709.0 +2020-11-28,Kerala,6178012.0,,593959.0 +2020-11-29,Kerala,6227787.0,,599602.0 +2020-11-30,Kerala,6262476.0,,602984.0 +2020-12-01,Kerala,6321285.0,,608359.0 +2020-12-02,Kerala,6378278.0,,614675.0 +2020-12-03,Kerala,6438754.0,,620051.0 +2020-12-04,Kerala,6496210.0,,625769.0 +2020-12-05,Kerala,6556713.0,,631617.0 +2020-12-06,Kerala,6608606.0,,636394.0 +2020-12-07,Kerala,6642364.0,,639666.0 +2020-12-08,Kerala,6702885.0,,644698.0 +2020-12-09,Kerala,6755630.0,,649573.0 +2020-12-10,Kerala,6808399.0,,654043.0 +2020-12-11,Kerala,6861907.0,,658685.0 +2020-12-12,Kerala,6921597.0,,664634.0 +2020-12-13,Kerala,6967972.0,,669332.0 +2020-12-14,Kerala,6999865.0,,672039.0 +2020-12-15,Kerala,7056318.0,,677257.0 +2020-12-16,Kerala,7118200.0,,683442.0 +2020-12-17,Kerala,7179051.0,,688411.0 +2020-12-18,Kerala,7233523.0,,693867.0 +2020-12-19,Kerala,7293518.0,,700160.0 +2020-12-20,Kerala,7347376.0,,705871.0 +2020-12-21,Kerala,7382223.0,,709294.0 +2020-12-22,Kerala,7447052.0,,715343.0 +2020-12-23,Kerala,7508489.0,,721512.0 +2020-12-24,Kerala,7564562.0,,726689.0 +2020-12-25,Kerala,7613415.0,,732086.0 +2020-12-26,Kerala,7649001.0,,735613.0 +2020-12-27,Kerala,7695117.0,,740518.0 +2020-12-28,Kerala,7727986.0,,743565.0 +2020-12-29,Kerala,7789764.0,,749452.0 +2020-12-30,Kerala,7853651.0,,755720.0 +2020-12-31,Kerala,7911934.0,,760935.0 +2021-01-01,Kerala,7964724.0,,765926.0 +2021-01-02,Kerala,8018822.0,,771254.0 +2021-01-03,Kerala,8066113.0,,775854.0 +2021-01-04,Kerala,8099621.0,,778875.0 +2021-01-05,Kerala,8160890.0,,784490.0 +2021-01-06,Kerala,8224781.0,,790884.0 +2021-01-07,Kerala,8285394.0,,795935.0 +2021-01-08,Kerala,8344963.0,,801077.0 +2021-01-09,Kerala,8406202.0,,806605.0 +2021-01-10,Kerala,8451897.0,,811150.0 +2021-01-11,Kerala,8487178.0,,814260.0 +2021-01-12,Kerala,8551792.0,,819767.0 +2021-01-13,Kerala,8620873.0,,825771.0 +2021-01-14,Kerala,8688585.0,,831261.0 +2021-01-15,Kerala,8751519.0,,836885.0 +2021-01-16,Kerala,8816427.0,,842845.0 +2021-01-17,Kerala,8868737.0,,847850.0 +2021-01-18,Kerala,8901830.0,,851196.0 +2021-01-19,Kerala,8968089.0,,857382.0 +2021-01-20,Kerala,9029621.0,,864197.0 +2021-01-21,Kerala,9090900.0,,870531.0 +2021-01-22,Kerala,9148957.0,,877284.0 +2021-01-23,Kerala,9210023.0,,884244.0 +2021-01-24,Kerala,9258401.0,,890280.0 +2021-01-25,Kerala,9289304.0,,893641.0 +2021-01-26,Kerala,9349619.0,,899934.0 +2021-01-27,Kerala,9400749.0,,905593.0 +2021-01-28,Kerala,9459221.0,,911364.0 +2021-01-29,Kerala,9518036.0,,917632.0 +2021-01-30,Kerala,9576795.0,,923914.0 +2021-01-31,Kerala,9625913.0,,929180.0 +2021-02-01,Kerala,9659492.0,,932639.0 +2021-02-02,Kerala,9712432.0,, +2021-02-03,Kerala,9772067.0,, +2021-02-04,Kerala,9856074.0,, +2021-02-05,Kerala,9948005.0,, +2021-02-06,Kerala,10030809.0,, +2021-02-07,Kerala,10096326.0,, +2021-02-08,Kerala,10144253.0,, +2021-02-09,Kerala,10214097.0,, +2021-02-10,Kerala,10294203.0,, +2021-02-11,Kerala,10365859.0,, +2021-02-12,Kerala,10440267.0,, +2021-02-13,Kerala,10526236.0,, +2021-02-14,Kerala,10588079.0,, +2021-02-15,Kerala,10627542.0,, +2021-02-16,Kerala,10701894.0,, +2021-02-17,Kerala,10771847.0,, +2021-02-18,Kerala,10839353.0,, +2021-02-19,Kerala,10906927.0,, +2021-02-20,Kerala,10972895.0,, +2021-02-21,Kerala,11030136.0,, +2021-02-22,Kerala,11068239.0,, +2021-02-23,Kerala,11137843.0,, +2021-02-24,Kerala,11208411.0,, +2021-02-25,Kerala,11271993.0,, +2021-02-26,Kerala,11339805.0,, +2021-02-27,Kerala,11413515.0,, +2021-02-28,Kerala,11476284.0,, +2021-03-01,Kerala,11522279.0,, +2021-03-02,Kerala,11590373.0,, +2021-03-03,Kerala,11650019.0,, +2021-03-04,Kerala,11713060.0,, +2021-03-05,Kerala,11779163.0,, +2021-03-06,Kerala,11840927.0,, +2021-03-07,Kerala,11892875.0,, +2021-03-08,Kerala,11931921.0,, +2021-03-09,Kerala,11997827.0,, +2021-03-10,Kerala,12060313.0,, +2021-03-11,Kerala,12130151.0,, +2021-03-12,Kerala,12182285.0,, +2021-03-13,Kerala,12240629.0,, +2021-03-14,Kerala,12291194.0,, +2021-03-15,Kerala,12329604.0,, +2021-03-16,Kerala,12390578.0,, +2021-03-17,Kerala,12450771.0,, +2021-03-18,Kerala,12505085.0,, +2021-03-19,Kerala,12558269.0,, +2021-03-20,Kerala,12617046.0,, +2021-03-21,Kerala,12661721.0,, +2021-03-22,Kerala,12696542.0,, +2021-03-23,Kerala,12753967.0,, +2021-03-24,Kerala,12810707.0,, +2021-03-25,Kerala,12861734.0,, +2021-03-26,Kerala,12913986.0,, +2021-03-27,Kerala,12966274.0,, +2021-03-28,Kerala,13013503.0,, +2021-03-29,Kerala,13050880.0,, +2021-03-30,Kerala,13109437.0,, +2021-03-31,Kerala,13158864.0,, +2021-04-01,Kerala,13213211.0,, +2021-04-02,Kerala,13264994.0,, +2021-04-03,Kerala,13309773.0,, +2021-04-04,Kerala,13354944.0,, +2021-04-05,Kerala,13395135.0,, +2021-04-06,Kerala,13454186.0,, +2021-04-07,Kerala,13514740.0,, +2021-04-08,Kerala,13578641.0,, +2021-04-09,Kerala,13641881.0,, +2021-04-10,Kerala,13703838.0,, +2021-04-11,Kerala,13768841.0,, +2021-04-12,Kerala,13814258.0,, +2021-04-13,Kerala,13887699.0,, +2021-04-14,Kerala,13952957.0,, +2021-04-15,Kerala,14013857.0,, +2021-04-16,Kerala,14081632.0,, +2021-04-17,Kerala,14162843.0,, +2021-04-18,Kerala,14271741.0,, +2021-04-19,Kerala,14359016.0,, +2021-04-20,Kerala,14471237.0,, +2021-04-21,Kerala,14593000.0,, +2021-04-22,Kerala,14728177.0,, +2021-04-23,Kerala,14858794.0,, +2021-04-24,Kerala,14989949.0,, +2021-04-25,Kerala,15116722.0,, +2021-04-26,Kerala,15213100.0,, +2021-04-27,Kerala,15354299.0,, +2021-04-28,Kerala,15492489.0,, +2021-04-29,Kerala,15650037.0,, +2021-04-30,Kerala,15799524.0,, +2021-05-01,Kerala,15945998.0,, +2021-05-02,Kerala,16058633.0,, +2021-05-03,Kerala,16154929.0,, +2021-05-04,Kerala,16297517.0,, +2021-05-05,Kerala,16460838.0,, +2021-05-06,Kerala,16616470.0,, +2021-05-07,Kerala,16760815.0,, +2021-05-08,Kerala,16909361.0,, +2021-05-09,Kerala,17033341.0,, +2021-05-10,Kerala,17133089.0,, +2021-05-11,Kerala,17272376.0,, +2021-05-12,Kerala,17418696.0,, +2021-05-13,Kerala,17558352.0,, +2021-05-14,Kerala,17689727.0,, +2021-05-15,Kerala,17812355.0,, +2021-05-16,Kerala,17928337.0,, +2021-05-17,Kerala,18014842.0,, +2021-05-18,Kerala,18149395.0,, +2021-05-19,Kerala,18289940.0,, +2021-05-20,Kerala,18421465.0,, +2021-05-21,Kerala,18555023.0,, +2021-05-22,Kerala,18681051.0,, +2021-05-23,Kerala,18794256.0,, +2021-05-24,Kerala,18881587.0,, +2021-05-25,Kerala,19024615.0,, +2021-05-26,Kerala,19168987.0,, +2021-05-27,Kerala,19304219.0,, +2021-05-28,Kerala,19440287.0,, +2021-05-29,Kerala,19582046.0,, +2021-05-30,Kerala,19706583.0,, +2021-05-31,Kerala,19795928.0,, +2021-06-01,Kerala,19926522.0,, +2021-06-02,Kerala,20055047.0,, +2021-06-03,Kerala,20178932.0,, +2021-06-04,Kerala,20288452.0,, +2021-06-05,Kerala,20404806.0,, +2021-06-06,Kerala,20507598.0,, +2021-06-07,Kerala,20578167.0,, +2020-04-13,Ladakh,618.0,,17.0 +2020-04-14,Ladakh,760.0,615,17.0 +2020-04-15,Ladakh,820.0,657,18.0 +2020-04-16,Ladakh,917.0,695,18.0 +2020-04-19,Ladakh,991.0,797,18.0 +2020-04-21,Ladakh,1137.0,896,18.0 +2020-04-29,Ladakh,1949.0,1299,22.0 +2020-04-30,Ladakh,2245.0,1384,22.0 +2020-05-01,Ladakh,2430.0,1545,22.0 +2020-05-02,Ladakh,2434.0,1618,23.0 +2020-05-03,Ladakh,2434.0,1674,41.0 +2020-05-04,Ladakh,2639.0,1879,41.0 +2020-05-09,Ladakh,3503.0,2948,42.0 +2020-05-13,Ladakh,3683.0,3353,43.0 +2020-05-16,Ladakh,4067.0,3571,43.0 +2020-05-18,Ladakh,4219.0,3791,43.0 +2020-05-19,Ladakh,4730.0,3935,43.0 +2020-05-21,Ladakh,5291.0,4081,44.0 +2020-05-22,Ladakh,5505.0,4173,44.0 +2020-05-23,Ladakh,5727.0,4505,49.0 +2020-05-24,Ladakh,5730.0,4733,52.0 +2020-05-25,Ladakh,5896.0,4894,53.0 +2020-05-30,Ladakh,7354.0,6145,74.0 +2020-05-31,Ladakh,7354.0,6167,77.0 +2020-06-02,Ladakh,8310.0,6465,81.0 +2020-06-05,Ladakh,9754.0,7204,97.0 +2020-06-06,Ladakh,10164.0,7214,99.0 +2020-06-09,Ladakh,10249.0,7888,108.0 +2020-06-11,Ladakh,10855.0,8222,135.0 +2020-06-12,Ladakh,10986.0,8460,239.0 +2020-06-13,Ladakh,11135.0,8814,437.0 +2020-06-14,Ladakh,11135.0,9087,539.0 +2020-06-15,Ladakh,11260.0,9456,555.0 +2020-06-16,Ladakh,11537.0,9660,649.0 +2020-06-17,Ladakh,11626.0,9833,687.0 +2020-06-18,Ladakh,12082.0,9901,687.0 +2020-06-19,Ladakh,12516.0,10091,744.0 +2020-06-20,Ladakh,12838.0,10307,836.0 +2020-06-21,Ladakh,12838.0,10398,837.0 +2020-06-22,Ladakh,13018.0,10715,847.0 +2020-06-23,Ladakh,13118.0,10927,932.0 +2020-06-24,Ladakh,13313.0,11191,932.0 +2020-06-25,Ladakh,13521.0,11285,941.0 +2020-06-26,Ladakh,13636.0,11563,946.0 +2020-06-27,Ladakh,13717.0,11775,960.0 +2020-06-29,Ladakh,13886.0,11880,964.0 +2020-07-01,Ladakh,14076.0,12095,990.0 +2020-07-02,Ladakh,14272.0,12142,990.0 +2020-07-03,Ladakh,14361.0,12274,1001.0 +2020-07-04,Ladakh,14537.0,12304,1005.0 +2020-07-05,Ladakh,14537.0,12319,1005.0 +2020-07-07,Ladakh,14833.0,12557,1041.0 +2020-07-08,Ladakh,14938.0,12659,1047.0 +2020-07-09,Ladakh,15067.0,12763,1055.0 +2020-07-10,Ladakh,15186.0,12869,1064.0 +2020-07-11,Ladakh,15293.0,12940,1077.0 +2020-07-12,Ladakh,15295.0,13011,1086.0 +2020-07-13,Ladakh,15393.0,13084,1093.0 +2020-07-14,Ladakh,15603.0,13147,1128.0 +2020-07-16,Ladakh,15830.0,13341,1147.0 +2020-07-18,Ladakh,16192.0,13476,1159.0 +2020-07-19,Ladakh,16225.0,13665,1178.0 +2020-07-20,Ladakh,16467.0,13712,1195.0 +2020-07-21,Ladakh,16639.0,,1198.0 +2020-07-22,Ladakh,16850.0,13846,1206.0 +2020-07-23,Ladakh,16972.0,,1210.0 +2020-07-24,Ladakh,17395.0,14245,1246.0 +2020-07-25,Ladakh,17625.0,14343,1276.0 +2020-07-26,Ladakh,17626.0,14564,1285.0 +2020-07-27,Ladakh,18071.0,14701,1306.0 +2020-07-28,Ladakh,18438.0,14904,1327.0 +2020-07-29,Ladakh,18849.0,14999,1347.0 +2020-07-30,Ladakh,19143.0,15277,1378.0 +2020-07-31,Ladakh,19465.0,15471,1404.0 +2020-08-01,Ladakh,19833.0,15816,1462.0 +2020-08-02,Ladakh,19860.0,15910,1466.0 +2020-08-03,Ladakh,20240.0,15944,1485.0 +2020-08-04,Ladakh,20601.0,16193,1534.0 +2020-08-05,Ladakh,20978.0,16509,1592.0 +2020-08-06,Ladakh,21383.0,16774,1595.0 +2020-08-07,Ladakh,21740.0,17013,1614.0 +2020-08-08,Ladakh,22013.0,17139,1639.0 +2020-08-09,Ladakh,22015.0,17380,1688.0 +2020-08-10,Ladakh,22161.0,17513,1717.0 +2020-08-11,Ladakh,22709.0,17880,1770.0 +2020-08-12,Ladakh,23034.0,18040,1811.0 +2020-08-13,Ladakh,23430.0,18370,1849.0 +2020-08-14,Ladakh,24197.0,18888,1879.0 +2020-08-15,Ladakh,24253.0,19052,1909.0 +2020-08-16,Ladakh,24273.0,19177, +2020-08-17,Ladakh,24702.0,19266, +2020-08-18,Ladakh,25208.0,19611, +2020-08-19,Ladakh,25501.0,19755, +2020-08-20,Ladakh,25947.0,19985, +2020-08-21,Ladakh,26302.0,20354, +2020-08-22,Ladakh,26531.0,, +2020-08-23,Ladakh,26654.0,20881, +2020-08-24,Ladakh,26894.0,21059, +2020-08-25,Ladakh,27735.0,21217, +2020-08-26,Ladakh,28719.0,22431, +2020-08-27,Ladakh,29614.0,23164, +2020-08-28,Ladakh,30311.0,23747, +2020-08-29,Ladakh,30973.0,24305, +2020-08-31,Ladakh,31037.0,, +2020-09-01,Ladakh,31154.0,, +2020-09-02,Ladakh,31196.0,, +2020-09-04,Ladakh,31389.0,, +2020-09-05,Ladakh,36302.0,29590, +2020-09-07,Ladakh,36429.0,, +2020-09-08,Ladakh,36740.0,, +2020-09-09,Ladakh,36875.0,, +2020-09-10,Ladakh,40397.0,33097, +2020-09-11,Ladakh,40478.0,, +2020-09-12,Ladakh,42080.0,34801, +2020-09-13,Ladakh,42621.0,35470, +2020-09-14,Ladakh,43357.0,36278, +2020-09-15,Ladakh,44147.0,37031, +2020-09-21,Ladakh,48490.0,41002, +2020-09-26,Ladakh,52003.0,44243,4093.0 +2020-09-29,Ladakh,53758.0,45828,4195.0 +2020-10-02,Ladakh,56277.0,47893,4429.0 +2020-10-06,Ladakh,58978.0,50484,4720.0 +2020-10-07,Ladakh,59766.0,51158, +2020-10-08,Ladakh,60690.0,51953, +2020-10-23,Ladakh,71063.0,61263, +2020-10-24,Ladakh,71849.0,61971, +2020-10-25,Ladakh,72336.0,62369, +2020-11-01,Ladakh,76512.0,66173, +2020-11-04,Ladakh,78446.0,67800, +2020-11-07,Ladakh,80291.0,69383, +2020-11-08,Ladakh,80731.0,, +2020-11-09,Ladakh,81433.0,, +2020-11-10,Ladakh,82192.0,70943, +2020-11-11,Ladakh,83113.0,71771, +2020-11-12,Ladakh,83893.0,72432, +2020-11-13,Ladakh,84408.0,72856, +2020-11-14,Ladakh,84939.0,73316, +2020-11-15,Ladakh,85438.0,73727, +2020-11-16,Ladakh,85887.0,74103, +2020-11-17,Ladakh,86477.0,74634, +2020-11-18,Ladakh,86897.0,75084, +2020-11-19,Ladakh,87454.0,75550, +2020-11-20,Ladakh,88006.0,75977, +2020-11-21,Ladakh,88444.0,76327, +2020-11-23,Ladakh,89436.0,77121, +2020-11-24,Ladakh,90344.0,77522, +2020-11-25,Ladakh,90815.0,77931, +2020-11-26,Ladakh,91578.0,78584, +2020-11-28,Ladakh,92542.0,79339, +2020-11-29,Ladakh,93077.0,79882, +2020-12-01,Ladakh,94356.0,80955, +2020-12-02,Ladakh,95168.0,81512, +2020-12-03,Ladakh,95672.0,82032, +2020-12-05,Ladakh,96751.0,82977, +2020-12-06,Ladakh,97308.0,83532, +2020-12-08,Ladakh,99110.0,85117, +2020-12-11,Ladakh,99590.0,85507, +2020-12-12,Ladakh,99966.0,85889, +2020-12-13,Ladakh,100315.0,86207, +2020-12-14,Ladakh,100634.0,86375, +2020-12-15,Ladakh,100926.0,86699, +2020-12-16,Ladakh,101224.0,87034, +2020-12-18,Ladakh,101651.0,87440, +2020-12-19,Ladakh,101962.0,87718, +2020-12-20,Ladakh,102236.0,87999, +2020-12-21,Ladakh,102480.0,88195, +2020-12-22,Ladakh,102753.0,88446, +2020-12-23,Ladakh,103073.0,88720, +2020-12-24,Ladakh,103446.0,88984, +2020-12-25,Ladakh,103821.0,89374, +2020-12-26,Ladakh,104165.0,89700, +2020-12-27,Ladakh,104381.0,89946, +2020-12-28,Ladakh,104632.0,90125, +2020-12-30,Ladakh,105350.0,90764, +2020-12-31,Ladakh,105617.0,91049, +2021-01-01,Ladakh,106054.0,91434, +2021-01-02,Ladakh,106411.0,91779, +2021-01-03,Ladakh,106684.0,92080, +2021-01-04,Ladakh,106951.0,92279, +2021-01-05,Ladakh,107274.0,92590, +2021-01-06,Ladakh,107486.0,92810, +2021-01-07,Ladakh,107808.0,93111, +2021-01-08,Ladakh,108152.0,93443, +2021-01-09,Ladakh,108370.0,93677, +2021-01-10,Ladakh,108685.0,93999, +2021-01-11,Ladakh,109004.0,94199, +2021-01-12,Ladakh,109427.0,94637, +2021-01-13,Ladakh,109774.0,94975, +2021-01-14,Ladakh,110068.0,95302, +2021-04-23,Ladakh,191160.0,174597, +2021-04-28,Ladakh,197926.0,178562, +2021-04-29,Ladakh,199107.0,179594, +2021-04-30,Ladakh,200311.0,180664, +2021-05-01,Ladakh,201519.0,181610, +2021-05-02,Ladakh,202708.0,183051, +2021-05-03,Ladakh,203524.0,183406, +2021-05-04,Ladakh,205687.0,185572, +2021-05-05,Ladakh,208361.0,187187, +2021-05-06,Ladakh,210244.0,188954, +2021-05-07,Ladakh,212898.0,190618, +2021-05-08,Ladakh,215228.0,193003, +2021-05-09,Ladakh,216152.0,194806, +2021-05-10,Ladakh,218437.0,196440, +2021-05-11,Ladakh,220429.0,198368, +2021-05-12,Ladakh,224121.0,202001, +2021-05-13,Ladakh,226076.0,203915, +2021-05-14,Ladakh,228133.0,205919, +2021-05-15,Ladakh,229620.0,206945, +2021-05-16,Ladakh,230468.0,208660, +2021-05-17,Ladakh,232702.0,210744, +2021-05-18,Ladakh,234315.0,212148, +2021-05-19,Ladakh,235737.0,213434, +2021-05-20,Ladakh,237486.0,215070, +2021-05-21,Ladakh,239407.0,216861, +2021-05-22,Ladakh,240847.0,218163, +2021-05-23,Ladakh,241657.0,218842, +2021-05-24,Ladakh,244685.0,221738, +2021-05-25,Ladakh,247238.0,224009, +2021-05-26,Ladakh,249642.0,226173, +2021-05-27,Ladakh,252883.0,229269, +2021-05-28,Ladakh,254875.0,229393, +2021-05-29,Ladakh,257146.0,229531, +2021-05-30,Ladakh,259110.0,231446, +2021-05-31,Ladakh,262237.0,231611, +2021-06-01,Ladakh,265523.0,234809, +2021-06-02,Ladakh,267891.0,237082, +2021-06-03,Ladakh,271206.0,240281, +2021-06-04,Ladakh,274174.0,243121, +2021-06-05,Ladakh,276524.0,245398, +2021-06-06,Ladakh,278229.0,247053, +2021-01-21,Lakshadweep,524.0,, +2021-01-24,Lakshadweep,687.0,, +2021-01-25,Lakshadweep,888.0,, +2021-01-31,Lakshadweep,2328.0,, +2021-02-01,Lakshadweep,2919.0,, +2021-02-02,Lakshadweep,4125.0,, +2021-02-03,Lakshadweep,4263.0,, +2021-02-04,Lakshadweep,5321.0,, +2021-02-05,Lakshadweep,6141.0,, +2021-02-06,Lakshadweep,7537.0,, +2021-02-07,Lakshadweep,8160.0,, +2021-02-08,Lakshadweep,9136.0,, +2021-02-09,Lakshadweep,10230.0,, +2021-02-10,Lakshadweep,11391.0,, +2021-02-11,Lakshadweep,12738.0,, +2021-02-12,Lakshadweep,14179.0,, +2021-02-13,Lakshadweep,15895.0,, +2021-02-14,Lakshadweep,16808.0,, +2021-02-15,Lakshadweep,17518.0,, +2021-02-16,Lakshadweep,18510.0,, +2021-02-17,Lakshadweep,19652.0,, +2021-02-18,Lakshadweep,20713.0,, +2021-02-19,Lakshadweep,21702.0,, +2021-02-20,Lakshadweep,22895.0,, +2021-02-21,Lakshadweep,24868.0,, +2021-02-22,Lakshadweep,26676.0,, +2021-02-23,Lakshadweep,27527.0,, +2021-02-24,Lakshadweep,28403.0,, +2021-02-25,Lakshadweep,28881.0,, +2021-02-26,Lakshadweep,29383.0,, +2021-02-27,Lakshadweep,30210.0,, +2021-02-28,Lakshadweep,31207.0,, +2021-03-01,Lakshadweep,32397.0,, +2021-03-02,Lakshadweep,32849.0,, +2021-03-03,Lakshadweep,33417.0,, +2021-03-04,Lakshadweep,34637.0,, +2021-03-05,Lakshadweep,35498.0,, +2021-03-06,Lakshadweep,36349.0,, +2021-03-07,Lakshadweep,36930.0,, +2021-03-08,Lakshadweep,37341.0,, +2021-03-09,Lakshadweep,38175.0,, +2021-03-10,Lakshadweep,38831.0,, +2021-03-11,Lakshadweep,39660.0,, +2021-03-12,Lakshadweep,40152.0,, +2021-03-13,Lakshadweep,41048.0,, +2021-03-14,Lakshadweep,41486.0,, +2021-03-15,Lakshadweep,42114.0,, +2021-03-16,Lakshadweep,42672.0,, +2021-03-17,Lakshadweep,43221.0,, +2021-03-18,Lakshadweep,43602.0,, +2021-03-19,Lakshadweep,43956.0,, +2021-03-20,Lakshadweep,44268.0,, +2021-03-21,Lakshadweep,44549.0,, +2021-03-22,Lakshadweep,45311.0,, +2021-03-23,Lakshadweep,45771.0,, +2021-03-24,Lakshadweep,46119.0,, +2021-03-25,Lakshadweep,46385.0,, +2021-03-26,Lakshadweep,46747.0,, +2021-03-27,Lakshadweep,47215.0,, +2021-03-28,Lakshadweep,47410.0,, +2021-03-29,Lakshadweep,47601.0,, +2021-03-30,Lakshadweep,47971.0,, +2021-03-31,Lakshadweep,48477.0,, +2021-04-01,Lakshadweep,48856.0,, +2021-04-02,Lakshadweep,49048.0,, +2021-04-03,Lakshadweep,49545.0,, +2021-04-04,Lakshadweep,50076.0,, +2021-04-05,Lakshadweep,50450.0,, +2021-04-06,Lakshadweep,50636.0,, +2021-04-07,Lakshadweep,50955.0,, +2021-04-08,Lakshadweep,51231.0,, +2021-04-09,Lakshadweep,51803.0,, +2021-04-10,Lakshadweep,52199.0,, +2021-04-11,Lakshadweep,52412.0,, +2021-04-12,Lakshadweep,52773.0,, +2021-04-13,Lakshadweep,53108.0,, +2021-04-14,Lakshadweep,53552.0,, +2021-04-15,Lakshadweep,54076.0,, +2021-04-16,Lakshadweep,54763.0,, +2021-04-17,Lakshadweep,56009.0,, +2021-04-18,Lakshadweep,57376.0,, +2021-04-19,Lakshadweep,58963.0,, +2021-04-20,Lakshadweep,59445.0,, +2021-04-21,Lakshadweep,61382.0,, +2021-04-22,Lakshadweep,63289.0,, +2021-04-23,Lakshadweep,64484.0,, +2021-04-24,Lakshadweep,66588.0,, +2021-04-25,Lakshadweep,68263.0,, +2021-04-26,Lakshadweep,69296.0,, +2021-04-27,Lakshadweep,71202.0,, +2021-04-28,Lakshadweep,72264.0,, +2021-04-29,Lakshadweep,74480.0,, +2021-04-30,Lakshadweep,75713.0,, +2021-05-01,Lakshadweep,78748.0,, +2021-05-02,Lakshadweep,80697.0,, +2021-05-03,Lakshadweep,81187.0,, +2021-05-04,Lakshadweep,82955.0,, +2021-05-05,Lakshadweep,84262.0,, +2021-05-06,Lakshadweep,86221.0,, +2021-05-07,Lakshadweep,87650.0,, +2021-05-08,Lakshadweep,89009.0,, +2021-05-09,Lakshadweep,89943.0,, +2021-05-10,Lakshadweep,90414.0,, +2021-05-11,Lakshadweep,91126.0,, +2021-05-12,Lakshadweep,92022.0,, +2021-05-13,Lakshadweep,94218.0,, +2021-05-14,Lakshadweep,95371.0,, +2021-05-15,Lakshadweep,95774.0,, +2021-05-16,Lakshadweep,96332.0,, +2021-05-17,Lakshadweep,97383.0,, +2021-05-18,Lakshadweep,99920.0,, +2021-05-19,Lakshadweep,102844.0,, +2021-05-20,Lakshadweep,106045.0,, +2021-05-21,Lakshadweep,108986.0,, +2021-05-22,Lakshadweep,112080.0,, +2021-05-23,Lakshadweep,113934.0,, +2021-05-24,Lakshadweep,117089.0,, +2021-05-25,Lakshadweep,120405.0,, +2021-05-26,Lakshadweep,121681.0,, +2021-05-27,Lakshadweep,124125.0,, +2021-05-28,Lakshadweep,126221.0,, +2021-05-29,Lakshadweep,128123.0,, +2021-05-30,Lakshadweep,131425.0,, +2021-05-31,Lakshadweep,134616.0,, +2021-06-01,Lakshadweep,136822.0,, +2021-06-02,Lakshadweep,139285.0,, +2021-06-03,Lakshadweep,141619.0,, +2021-06-04,Lakshadweep,143494.0,, +2021-06-05,Lakshadweep,145128.0,, +2021-06-06,Lakshadweep,146395.0,, +2021-06-07,Lakshadweep,147208.0,, +2020-04-05,Madhya Pradesh,2812.0,1954,193.0 +2020-04-07,Madhya Pradesh,3770.0,3125,290.0 +2020-04-08,Madhya Pradesh,4056.0,3443,341.0 +2020-04-09,Madhya Pradesh,5135.0,3989,411.0 +2020-04-10,Madhya Pradesh,7049.0,4840,451.0 +2020-04-11,Madhya Pradesh,8516.0,5790,529.0 +2020-04-12,Madhya Pradesh,10481.0,6875,562.0 +2020-04-13,Madhya Pradesh,10481.0,6875,614.0 +2020-04-14,Madhya Pradesh,8105.0,7103,741.0 +2020-04-15,Madhya Pradesh,9596.0,8658,938.0 +2020-04-16,Madhya Pradesh,13492.0,12326,1164.0 +2020-04-17,Madhya Pradesh,15302.0,13992,1310.0 +2020-04-18,Madhya Pradesh,14978.0,13576,1402.0 +2020-04-19,Madhya Pradesh,17835.0,16428,1407.0 +2020-04-20,Madhya Pradesh,19142.0,17657,1485.0 +2020-04-21,Madhya Pradesh,20905.0,19353,1552.0 +2020-04-22,Madhya Pradesh,22664.0,21077,1587.0 +2020-04-23,Madhya Pradesh,24548.0,22861,1687.0 +2020-04-24,Madhya Pradesh,26233.0,24387,1846.0 +2020-04-25,Madhya Pradesh,27866.0,25921,1945.0 +2020-04-26,Madhya Pradesh,25232.0,21716,2090.0 +2020-04-27,Madhya Pradesh,27009.0,23500,2165.0 +2020-04-28,Madhya Pradesh,31060.0,26159,2387.0 +2020-04-29,Madhya Pradesh,33837.0,29261,2560.0 +2020-04-30,Madhya Pradesh,41712.0,29816,2625.0 +2020-05-01,Madhya Pradesh,44116.0,39353,2715.0 +2020-05-02,Madhya Pradesh,46578.0,41460,2788.0 +2020-05-03,Madhya Pradesh,49186.0,43937,2837.0 +2020-05-04,Madhya Pradesh,52095.0,46634,2942.0 +2020-05-05,Madhya Pradesh,54595.0,48931,3049.0 +2020-05-06,Madhya Pradesh,54595.0,51479,3138.0 +2020-05-07,Madhya Pradesh,61020.0,55002,3252.0 +2020-05-08,Madhya Pradesh,63705.0,57528,3341.0 +2020-05-09,Madhya Pradesh,68010.0,61629,3457.0 +2020-05-10,Madhya Pradesh,72069.0,65436,3614.0 +2020-05-11,Madhya Pradesh,76039.0,69187,3785.0 +2020-05-12,Madhya Pradesh,80885.0,73761,3986.0 +2020-05-13,Madhya Pradesh,85903.0,77738,4173.0 +2020-05-14,Madhya Pradesh,89760.0,82028,4426.0 +2020-05-15,Madhya Pradesh,93849.0,85879,4595.0 +2020-05-16,Madhya Pradesh,99677.0,91393,4790.0 +2020-05-17,Madhya Pradesh,103898.0,95355,4977.0 +2020-05-18,Madhya Pradesh,112168.0,100469,5236.0 +2020-05-19,Madhya Pradesh,116473.0,104348,5465.0 +2020-05-20,Madhya Pradesh,120737.0,108744,5735.0 +2020-05-21,Madhya Pradesh,125608.0,112947,5981.0 +2020-05-22,Madhya Pradesh,129060.0,116835,6170.0 +2020-05-23,Madhya Pradesh,132769.0,121033,6371.0 +2020-05-24,Madhya Pradesh,135889.0,124549,6665.0 +2020-05-25,Madhya Pradesh,138584.0,128267,6859.0 +2020-05-26,Madhya Pradesh,141508.0,131415,7024.0 +2020-05-27,Madhya Pradesh,146144.0,134774,7261.0 +2020-05-28,Madhya Pradesh,151182.0,138387,7453.0 +2020-05-29,Madhya Pradesh,155436.0,142383,7645.0 +2020-05-30,Madhya Pradesh,161552.0,146616,7891.0 +2020-05-31,Madhya Pradesh,167808.0,151793,8089.0 +2020-06-01,Madhya Pradesh,172019.0,157790,8283.0 +2020-06-02,Madhya Pradesh,177481.0,163100,8420.0 +2020-06-03,Madhya Pradesh,183662.0,168219,8588.0 +2020-06-04,Madhya Pradesh,189252.0,173392,8762.0 +2020-06-05,Madhya Pradesh,195249.0,179234,8996.0 +2020-06-06,Madhya Pradesh,200913.0,184202,9228.0 +2020-06-07,Madhya Pradesh,208514.0,190155,9401.0 +2020-06-08,Madhya Pradesh,215194.0,196497,9638.0 +2020-06-09,Madhya Pradesh,220936.0,203131,9849.0 +2020-06-10,Madhya Pradesh,228042.0,210081,10049.0 +2020-06-11,Madhya Pradesh,233740.0,217860,10241.0 +2020-06-12,Madhya Pradesh,241461.0,224064,10443.0 +2020-06-13,Madhya Pradesh,246973.0,231123,10641.0 +2020-06-14,Madhya Pradesh,252762.0,236649,10802.0 +2020-06-15,Madhya Pradesh,258040.0,242117,10935.0 +2020-06-16,Madhya Pradesh,263983.0,247196,11083.0 +2020-06-17,Madhya Pradesh,271205.0,253474,11244.0 +2020-06-18,Madhya Pradesh,277451.0,260395,11426.0 +2020-06-19,Madhya Pradesh,282674.0,267247,11582.0 +2020-06-20,Madhya Pradesh,290831.0,273628,11724.0 +2020-06-21,Madhya Pradesh,296943.0,280480,11903.0 +2020-06-22,Madhya Pradesh,302673.0,286516,12078.0 +2020-06-23,Madhya Pradesh,307812.0,291733,12261.0 +2020-06-24,Madhya Pradesh,314978.0,298712,12448.0 +2020-06-25,Madhya Pradesh,321595.0,305182,12595.0 +2020-06-26,Madhya Pradesh,329079.0,312463,12798.0 +2020-06-27,Madhya Pradesh,337041.0,320258,12965.0 +2020-06-28,Madhya Pradesh,344836.0,327832,13186.0 +2020-06-29,Madhya Pradesh,353612.0,336424,13370.0 +2020-06-30,Madhya Pradesh,365467.0,346060,13593.0 +2020-07-01,Madhya Pradesh,372811.0,355136,13861.0 +2020-07-02,Madhya Pradesh,380655.0,362735,14106.0 +2020-07-03,Madhya Pradesh,389180.0,371069,14297.0 +2020-07-04,Madhya Pradesh,398329.0,379911,14604.0 +2020-07-05,Madhya Pradesh,407882.0,389138,14930.0 +2020-07-06,Madhya Pradesh,417402.0,398304,15284.0 +2020-07-07,Madhya Pradesh,427143.0,407702,15627.0 +2020-07-08,Madhya Pradesh,437930.0,418080,16036.0 +2020-07-09,Madhya Pradesh,449680.0,429525,16341.0 +2020-07-10,Madhya Pradesh,460941.0,440470,16657.0 +2020-07-11,Madhya Pradesh,474461.0,453446,17201.0 +2020-07-12,Madhya Pradesh,486176.0,465270,17632.0 +2020-07-13,Madhya Pradesh,509223.0,486956,18207.0 +2020-07-14,Madhya Pradesh,521700.0,498635,19005.0 +2020-07-15,Madhya Pradesh,540483.0,516780,19643.0 +2020-07-16,Madhya Pradesh,553082.0,528644,20378.0 +2020-07-17,Madhya Pradesh,567364.0,542222,21082.0 +2020-07-18,Madhya Pradesh,583655.0,557831,21763.0 +2020-07-19,Madhya Pradesh,599640.0,572979,22600.0 +2020-07-20,Madhya Pradesh,615862.0,588491,23310.0 +2020-07-21,Madhya Pradesh,631067.0,602911,24095.0 +2020-07-22,Madhya Pradesh,645003.0,616100,24842.0 +2020-07-23,Madhya Pradesh,658869.0,629334,25474.0 +2020-07-24,Madhya Pradesh,670155.0,639884,26210.0 +2020-07-25,Madhya Pradesh,684419.0,653432,26926.0 +2020-07-26,Madhya Pradesh,698171.0,666310,27800.0 +2020-07-27,Madhya Pradesh,711982.0,679332,28589.0 +2020-07-28,Madhya Pradesh,724673.0,691395,29217.0 +2020-07-29,Madhya Pradesh,738986.0,704791,30134.0 +2020-07-30,Madhya Pradesh,752924.0,717895,30968.0 +2020-07-31,Madhya Pradesh,767571.0,731704,31806.0 +2020-08-01,Madhya Pradesh,783769.0,747094,32614.0 +2020-08-02,Madhya Pradesh,799500.0,761904,33535.0 +2020-08-03,Madhya Pradesh,812362.0,774016,34285.0 +2020-08-04,Madhya Pradesh,825723.0,786580,35082.0 +2020-08-05,Madhya Pradesh,838041.0,798246,35734.0 +2020-08-06,Madhya Pradesh,846484.0,805859,36564.0 +2020-08-07,Madhya Pradesh,859921.0,818562,37298.0 +2020-08-08,Madhya Pradesh,874678.0,832460,38157.0 +2020-08-09,Madhya Pradesh,891698.0,848394,39025.0 +2020-08-10,Madhya Pradesh,909926.0,865756,39891.0 +2020-08-11,Madhya Pradesh,931143.0,886130, +2020-08-12,Madhya Pradesh,951822.0,905939, +2020-08-13,Madhya Pradesh,972046.0,925149, +2020-08-14,Madhya Pradesh,992172.0,944479, +2020-08-15,Madhya Pradesh,1013332.0,964620,44433.0 +2020-08-16,Madhya Pradesh,1035343.0,985609, +2020-08-17,Madhya Pradesh,1055205.0,1004541, +2020-08-18,Madhya Pradesh,1072575.0,1020921,47375.0 +2020-08-19,Madhya Pradesh,1089939.0,1037309, +2020-08-20,Madhya Pradesh,1111158.0,1057376, +2020-08-21,Madhya Pradesh,1133826.0,1078907,50640.0 +2020-08-22,Madhya Pradesh,1158510.0,1102365, +2020-08-23,Madhya Pradesh,1181280.0,1123872, +2020-08-24,Madhya Pradesh,1203705.0,1145005, +2020-08-25,Madhya Pradesh,1226559.0,1166480, +2020-08-26,Madhya Pradesh,1248021.0,1186878, +2020-08-27,Madhya Pradesh,1271846.0,1209386, +2020-08-28,Madhya Pradesh,1297699.0,1233987, +2020-08-29,Madhya Pradesh,1324851.0,1259697, +2020-08-30,Madhya Pradesh,1349814.0,1283102, +2020-08-31,Madhya Pradesh,1377427.0,1309183, +2020-09-01,Madhya Pradesh,1398277.0,1328508, +2020-09-02,Madhya Pradesh,1419750.0,1348557, +2020-09-03,Madhya Pradesh,1443477.0,1370612, +2020-09-04,Madhya Pradesh,1469459.0,1394936, +2020-09-05,Madhya Pradesh,1494848.0,1418689, +2020-09-06,Madhya Pradesh,1519014.0,1441161, +2020-09-07,Madhya Pradesh,1541356.0,1461618, +2020-09-08,Madhya Pradesh,1563953.0,1482351, +2020-09-09,Madhya Pradesh,1587945.0,1504474, +2020-09-10,Madhya Pradesh,1611639.0,1525981, +2020-09-11,Madhya Pradesh,1635070.0,1547172, +2020-09-12,Madhya Pradesh,1658175.0,1567930, +2020-09-13,Madhya Pradesh,1680074.0,1587548, +2020-09-14,Madhya Pradesh,1700929.0,1605920, +2020-09-15,Madhya Pradesh,1721188.0,1623856, +2020-09-16,Madhya Pradesh,1736474.0,1636680, +2020-09-17,Madhya Pradesh,1762070.0,1659885, +2020-09-18,Madhya Pradesh,1782505.0,1677768, +2020-09-19,Madhya Pradesh,1801714.0,1694370, +2020-09-20,Madhya Pradesh,1822297.0,1712374, +2020-09-21,Madhya Pradesh,1844080.0,1731634, +2020-09-22,Madhya Pradesh,1861778.0,1746788, +2020-09-23,Madhya Pradesh,1884858.0,1767522, +2020-09-24,Madhya Pradesh,1904145.0,1784505, +2020-09-25,Madhya Pradesh,1929748.0,1807881, +2020-09-26,Madhya Pradesh,1952747.0,1828569, +2020-09-27,Madhya Pradesh,1971589.0,1845101, +2020-09-28,Madhya Pradesh,1993227.0,1864782, +2020-09-29,Madhya Pradesh,2011959.0,1881637, +2020-09-30,Madhya Pradesh,2035134.0,1902808, +2020-10-01,Madhya Pradesh,2063765.0,1929398, +2020-10-02,Madhya Pradesh,2093269.0,1956880, +2020-10-03,Madhya Pradesh,2117799.0,1979599, +2020-10-04,Madhya Pradesh,2208006.0,2003105, +2020-10-05,Madhya Pradesh,2232079.0,2025718, +2020-10-06,Madhya Pradesh,2257909.0,2049978, +2020-10-07,Madhya Pradesh,2289634.0,2080064, +2020-10-08,Madhya Pradesh,2320430.0,2109145, +2020-10-09,Madhya Pradesh,2348457.0,2135565, +2020-10-10,Madhya Pradesh,2377711.0,2163203, +2020-10-11,Madhya Pradesh,2404153.0,2188070, +2020-10-12,Madhya Pradesh,2428707.0,2211146, +2020-10-13,Madhya Pradesh,2453709.0,2234685, +2020-10-14,Madhya Pradesh,2481194.0,2261124, +2020-10-15,Madhya Pradesh,2508619.0,2287241, +2020-10-16,Madhya Pradesh,2534366.0,2311636, +2020-10-17,Madhya Pradesh,2560849.0,2336897, +2020-10-18,Madhya Pradesh,2585631.0,2360649, +2020-10-19,Madhya Pradesh,2607185.0,2381188, +2020-10-20,Madhya Pradesh,2630278.0,2403306, +2020-10-21,Madhya Pradesh,2656824.0,2428734, +2020-10-22,Madhya Pradesh,2687838.0,2458703, +2020-10-23,Madhya Pradesh,2718925.0,2488837, +2020-10-24,Madhya Pradesh,2750620.0,2519528, +2020-10-25,Madhya Pradesh,2781721.0,2549678, +2020-10-26,Madhya Pradesh,2807820.0,2575057, +2020-10-27,Madhya Pradesh,2827043.0,2593766, +2020-10-28,Madhya Pradesh,2853030.0,2618965, +2020-10-29,Madhya Pradesh,2879262.0,2644469, +2020-10-30,Madhya Pradesh,2908257.0,2672773, +2020-10-31,Madhya Pradesh,2934314.0,2698161, +2020-11-01,Madhya Pradesh,2958883.0,2722007, +2020-11-02,Madhya Pradesh,2983044.0,2745533, +2020-11-03,Madhya Pradesh,3016456.0,2770446, +2020-11-04,Madhya Pradesh,3042647.0,2795930, +2020-11-05,Madhya Pradesh,3069092.0,2821641, +2020-11-06,Madhya Pradesh,3096294.0,2848065, +2020-11-07,Madhya Pradesh,3123070.0,2873976, +2020-11-08,Madhya Pradesh,3151590.0,2901605, +2020-11-09,Madhya Pradesh,3177147.0,2926353, +2020-11-10,Madhya Pradesh,3202500.0,2950806, +2020-11-11,Madhya Pradesh,3227919.0,2975342, +2020-11-12,Madhya Pradesh,3254457.0,3000834, +2020-11-13,Madhya Pradesh,3280711.0,3026040, +2020-11-14,Madhya Pradesh,3308898.0,3050913, +2020-11-15,Madhya Pradesh,3323954.0,3067401, +2020-11-16,Madhya Pradesh,3336926.0,3079776, +2020-11-17,Madhya Pradesh,3354884.0,3096812, +2020-11-18,Madhya Pradesh,3377699.0,3118418, +2020-11-19,Madhya Pradesh,3404747.0,3144103, +2020-11-20,Madhya Pradesh,3436118.0,3173946, +2020-11-21,Madhya Pradesh,3467809.0,3203937, +2020-11-22,Madhya Pradesh,3500180.0,3234510, +2020-11-23,Madhya Pradesh,3530106.0,3262735, +2020-11-24,Madhya Pradesh,3562371.0,3293234, +2020-11-25,Madhya Pradesh,3595382.0,3324472, +2020-11-26,Madhya Pradesh,3629507.0,3356929, +2020-11-27,Madhya Pradesh,3660907.0,3386684, +2020-11-28,Madhya Pradesh,3691219.0,3415362, +2020-11-29,Madhya Pradesh,3722973.0,3445602, +2020-11-30,Madhya Pradesh,3751131.0,3472377, +2020-12-01,Madhya Pradesh,3779891.0,3499780, +2020-12-02,Madhya Pradesh,3809683.0,3528133, +2020-12-03,Madhya Pradesh,3840006.0,3557006, +2020-12-04,Madhya Pradesh,3869782.0,3585458, +2020-12-05,Madhya Pradesh,3899734.0,3614058, +2020-12-06,Madhya Pradesh,3932230.0,3645099, +2020-12-07,Madhya Pradesh,3961552.0,3673114, +2020-12-08,Madhya Pradesh,3991537.0,3701754, +2020-12-09,Madhya Pradesh,4021034.0,3729979, +2020-12-10,Madhya Pradesh,4052754.0,3760380, +2020-12-11,Madhya Pradesh,4082106.0,3788510, +2020-12-12,Madhya Pradesh,4111413.0,3816535, +2020-12-13,Madhya Pradesh,4138744.0,3842685, +2020-12-14,Madhya Pradesh,4165575.0,3868458, +2020-12-15,Madhya Pradesh,4193126.0,3894936, +2020-12-16,Madhya Pradesh,4222445.0,3923176, +2020-12-17,Madhya Pradesh,4253128.0,3952698, +2020-12-18,Madhya Pradesh,4283008.0,3981397, +2020-12-19,Madhya Pradesh,4310531.0,4007835, +2020-12-20,Madhya Pradesh,4339056.0,4035291, +2020-12-21,Madhya Pradesh,4365507.0,4060707, +2020-12-22,Madhya Pradesh,4393989.0,4088184, +2020-12-23,Madhya Pradesh,4420566.0,4113754, +2020-12-24,Madhya Pradesh,4449846.0,4141996, +2020-12-25,Madhya Pradesh,4479202.0,4113671, +2020-12-26,Madhya Pradesh,4505014.0,4138477, +2020-12-27,Madhya Pradesh,4531859.0,4164376, +2020-12-28,Madhya Pradesh,4558039.0,4189680, +2020-12-29,Madhya Pradesh,4586846.0,4217634, +2020-12-30,Madhya Pradesh,4613927.0,4243849, +2020-12-31,Madhya Pradesh,4641648.0,4270726, +2021-01-01,Madhya Pradesh,4670398.0,4298696, +2021-01-02,Madhya Pradesh,4696542.0,4324109, +2021-01-03,Madhya Pradesh,4722727.0,4349570, +2021-01-04,Madhya Pradesh,4747752.0,4373974, +2021-01-05,Madhya Pradesh,4774127.0,4399678, +2021-01-06,Madhya Pradesh,4800862.0,4425683, +2021-01-07,Madhya Pradesh,4827887.0,4451934, +2021-01-08,Madhya Pradesh,4853211.0,4476644, +2021-01-09,Madhya Pradesh,4877414.0,4500306, +2021-01-10,Madhya Pradesh,4902643.0,4524915, +2021-01-11,Madhya Pradesh,4925860.0,4547647, +2021-01-12,Madhya Pradesh,4949929.0,4571245, +2021-01-13,Madhya Pradesh,4974209.0,4595069, +2021-01-14,Madhya Pradesh,4998536.0,4618976, +2021-01-15,Madhya Pradesh,5021899.0,4641548, +2021-01-16,Madhya Pradesh,5045476.0,4664760, +2021-01-17,Madhya Pradesh,5069292.0,4688221, +2021-01-18,Madhya Pradesh,5089741.0,4708366, +2021-01-19,Madhya Pradesh,5112431.0,4730752, +2021-01-20,Madhya Pradesh,5134816.0,4752857, +2021-01-21,Madhya Pradesh,5159595.0,4777335, +2021-01-22,Madhya Pradesh,5185843.0,4803236, +2021-01-23,Madhya Pradesh,5210434.0,4827536, +2021-01-24,Madhya Pradesh,5234493.0,4851343, +2021-01-25,Madhya Pradesh,5255105.0,4871755, +2021-01-26,Madhya Pradesh,5274424.0,4890856, +2021-01-27,Madhya Pradesh,5290847.0,4907084, +2021-01-28,Madhya Pradesh,5307095.0,4923106, +2021-01-29,Madhya Pradesh,5325107.0,4940947, +2021-01-30,Madhya Pradesh,5343762.0,4959383, +2021-01-31,Madhya Pradesh,5361905.0,4977300, +2021-02-01,Madhya Pradesh,5376922.0,4992166, +2021-02-02,Madhya Pradesh,5392076.0,5007152, +2021-02-03,Madhya Pradesh,5405789.0,5020607, +2021-02-04,Madhya Pradesh,5420927.0,5035579, +2021-02-05,Madhya Pradesh,5437590.0,5052080, +2021-02-06,Madhya Pradesh,5454653.0,5068946, +2021-02-07,Madhya Pradesh,5470099.0,5084208, +2021-02-08,Madhya Pradesh,5483588.0,5097504, +2021-02-09,Madhya Pradesh,5498870.0,5112619, +2021-02-10,Madhya Pradesh,5513312.0,5126920, +2021-02-11,Madhya Pradesh,5528920.0,5142359, +2021-02-12,Madhya Pradesh,5545444.0,5158722, +2021-02-13,Madhya Pradesh,5561115.0,5174199, +2021-02-14,Madhya Pradesh,5575913.0,5188774, +2021-02-15,Madhya Pradesh,5589287.0,5201945, +2021-02-16,Madhya Pradesh,5603016.0,5215441, +2021-02-17,Madhya Pradesh,5618355.0,5230529, +2021-02-18,Madhya Pradesh,5632931.0,5244864, +2021-02-19,Madhya Pradesh,5647841.0,5259477, +2021-02-20,Madhya Pradesh,5662175.0,5273554, +2021-02-21,Madhya Pradesh,5677009.0,5288089, +2021-02-22,Madhya Pradesh,5690292.0,5301078, +2021-02-23,Madhya Pradesh,5704677.0,5315215, +2021-02-24,Madhya Pradesh,5719677.0,5329871, +2021-02-25,Madhya Pradesh,5735516.0,5345342, +2021-02-26,Madhya Pradesh,5751586.0,5361080, +2021-02-27,Madhya Pradesh,5769798.0,5378902, +2021-02-28,Madhya Pradesh,5786018.0,5394759, +2021-03-01,Madhya Pradesh,5798862.0,5407267, +2021-03-02,Madhya Pradesh,5813881.0,5421955, +2021-03-03,Madhya Pradesh,5830433.0,5438090, +2021-03-04,Madhya Pradesh,5846420.0,5453637, +2021-03-05,Madhya Pradesh,5863341.0,5470101, +2021-03-06,Madhya Pradesh,5878898.0,5485191, +2021-03-07,Madhya Pradesh,5895675.0,5501539, +2021-03-08,Madhya Pradesh,5911698.0,5517135, +2021-03-09,Madhya Pradesh,5926584.0,5531564, +2021-03-10,Madhya Pradesh,5943219.0,5547683, +2021-03-11,Madhya Pradesh,5959169.0,5563103, +2021-03-12,Madhya Pradesh,5973547.0,5576878, +2021-03-13,Madhya Pradesh,5989587.0,5592243, +2021-03-14,Madhya Pradesh,6006068.0,5607981, +2021-03-15,Madhya Pradesh,6020673.0,5621789, +2021-03-16,Madhya Pradesh,6036361.0,5636660, +2021-03-17,Madhya Pradesh,6053348.0,5652815, +2021-03-18,Madhya Pradesh,6071681.0,5670231, +2021-03-19,Madhya Pradesh,6092451.0,5689861, +2021-03-20,Madhya Pradesh,6117146.0,5713248, +2021-03-21,Madhya Pradesh,6140126.0,5734906, +2021-03-22,Madhya Pradesh,6165931.0,5759363, +2021-03-23,Madhya Pradesh,6189017.0,5780947, +2021-03-24,Madhya Pradesh,6214522.0,5804740, +2021-03-25,Madhya Pradesh,6241824.0,5830157, +2021-03-26,Madhya Pradesh,6270328.0,5856570, +2021-03-27,Madhya Pradesh,6297029.0,5881129, +2021-03-28,Madhya Pradesh,6322512.0,5904336, +2021-03-29,Madhya Pradesh,6345761.0,5925262, +2021-03-30,Madhya Pradesh,6366180.0,5943508, +2021-03-31,Madhya Pradesh,6389064.0,5964060, +2021-04-01,Madhya Pradesh,6414720.0,5987170, +2021-04-02,Madhya Pradesh,6441234.0,6010907, +2021-04-03,Madhya Pradesh,6468465.0,6035299, +2021-04-04,Madhya Pradesh,6497170.0,6060826, +2021-04-05,Madhya Pradesh,6528559.0,6088817, +2021-04-06,Madhya Pradesh,6562052.0,6118588, +2021-04-07,Madhya Pradesh,6595471.0,6147964, +2021-04-08,Madhya Pradesh,6628934.0,6177103, +2021-04-09,Madhya Pradesh,6666396.0,6209683, +2021-04-10,Madhya Pradesh,6703934.0,6242235, +2021-04-11,Madhya Pradesh,6743222.0,6275584, +2021-04-12,Madhya Pradesh,6781528.0,6307401, +2021-04-13,Madhya Pradesh,6828054.0,6344929, +2021-04-14,Madhya Pradesh,6872786.0,6379941, +2021-04-15,Madhya Pradesh,6920606.0,6417595, +2021-04-16,Madhya Pradesh,6970509.0,6456453, +2021-04-17,Madhya Pradesh,7023077.0,6497752, +2021-04-18,Madhya Pradesh,7076705.0,6539132, +2021-04-19,Madhya Pradesh,7127647.0,6577177, +2021-04-20,Madhya Pradesh,7179032.0,6615835, +2021-04-21,Madhya Pradesh,7233580.0,6657276, +2021-04-22,Madhya Pradesh,7284554.0,6695866, +2021-04-23,Madhya Pradesh,7341730.0,6739452, +2021-04-24,Madhya Pradesh,7397609.0,6782413, +2021-04-25,Madhya Pradesh,7456701.0,6827904, +2021-04-26,Madhya Pradesh,7511683.0,6870200, +2021-04-27,Madhya Pradesh,7570860.0,6915960, +2021-04-28,Madhya Pradesh,7629555.0,6961958, +2021-04-29,Madhya Pradesh,7689004.0,7008584, +2021-04-30,Madhya Pradesh,7747712.0,7054892, +2021-05-01,Madhya Pradesh,7808547.0,7103348, +2021-05-02,Madhya Pradesh,7869034.0,7151173, +2021-05-03,Madhya Pradesh,7926482.0,7198559, +2021-05-04,Madhya Pradesh,7992536.0,7250377, +2021-05-05,Madhya Pradesh,8058819.0,7304323, +2021-05-06,Madhya Pradesh,8126921.0,7360004, +2021-05-07,Madhya Pradesh,8192183.0,7413558, +2021-05-08,Madhya Pradesh,8258708.0,7468485, +2021-05-09,Madhya Pradesh,8323990.0,7522716, +2021-05-10,Madhya Pradesh,8385520.0,7574531, +2021-05-11,Madhya Pradesh,8451536.0,7630793, +2021-05-12,Madhya Pradesh,8516213.0,7686500, +2021-05-13,Madhya Pradesh,8582419.0,7744287, +2021-05-14,Madhya Pradesh,8650770.0,7804551, +2021-05-15,Madhya Pradesh,8710274.0,7865484, +2021-05-16,Madhya Pradesh,8785791.0,7924895, +2021-05-17,Madhya Pradesh,8850532.0,7983715, +2021-05-18,Madhya Pradesh,8919986.0,8047757, +2021-05-19,Madhya Pradesh,8992742.0,8115448, +2021-05-20,Madhya Pradesh,9070235.0,8187989, +2021-05-21,Madhya Pradesh,9148503.0,8261873, +2021-05-22,Madhya Pradesh,9228240.0,, +2021-05-23,Madhya Pradesh,9307323.0,, +2021-05-24,Madhya Pradesh,9383233.0,, +2021-05-25,Madhya Pradesh,9454649.0,, +2021-05-26,Madhya Pradesh,9524844.0,, +2021-05-27,Madhya Pradesh,9594450.0,, +2021-05-28,Madhya Pradesh,9666660.0,, +2021-05-29,Madhya Pradesh,9742593.0,, +2021-05-30,Madhya Pradesh,9821030.0,, +2021-05-31,Madhya Pradesh,9896447.0,, +2021-06-01,Madhya Pradesh,9966096.0,, +2021-06-02,Madhya Pradesh,10045890.0,, +2021-06-03,Madhya Pradesh,10124379.0,, +2021-06-04,Madhya Pradesh,10204296.0,, +2021-06-05,Madhya Pradesh,10286108.0,, +2021-06-06,Madhya Pradesh,10367744.0,, +2021-06-07,Madhya Pradesh,10442778.0,, +2020-04-05,Maharashtra,16008.0,14837, +2020-04-06,Maharashtra,17563.0,15808,868.0 +2020-04-07,Maharashtra,20877.0,19290,1018.0 +2020-04-09,Maharashtra,20877.0,19290,868.0 +2020-04-10,Maharashtra,30000.0,28865,1135.0 +2020-04-11,Maharashtra,31841.0,30477,1761.0 +2020-04-12,Maharashtra,35668.0,34094,1761.0 +2020-04-13,Maharashtra,39725.0,37964,1996.0 +2020-04-14,Maharashtra,41071.0,39089,2340.0 +2020-04-15,Maharashtra,45142.0,42808,2690.0 +2020-04-16,Maharashtra,50882.0,48198,2916.0 +2020-04-17,Maharashtra,55678.0,52762,3204.0 +2020-04-18,Maharashtra,60166.0,56964,3323.0 +2020-04-19,Maharashtra,66796.0,63476,3651.0 +2020-04-20,Maharashtra,71321.0,67673,4204.0 +2020-04-21,Maharashtra,75838.0,71638,4676.0 +2020-04-22,Maharashtra,82304.0,77638,5229.0 +2020-04-23,Maharashtra,89197.0,83979,5218.0 +2020-04-24,Maharashtra,95210.0,89561,6427.0 +2020-04-25,Maharashtra,100912.0,94485,6817.0 +2020-04-26,Maharashtra,107979.0,101162,7928.0 +2020-04-27,Maharashtra,115147.0,107519,8068.0 +2020-04-28,Maharashtra,120620.0,112552,8590.0 +2020-04-29,Maharashtra,128726.0,120136,9318.0 +2020-04-30,Maharashtra,135694.0,126376,9915.0 +2020-05-01,Maharashtra,144159.0,134244,10498.0 +2020-05-02,Maharashtra,151085.0,140587,11506.0 +2020-05-03,Maharashtra,159754.0,148248,12296.0 +2020-05-04,Maharashtra,168374.0,156078,12974.0 +2020-05-05,Maharashtra,175323.0,162349,14541.0 +2020-05-06,Maharashtra,181746.0,167205,15525.0 +2020-05-07,Maharashtra,189220.0,173838,16758.0 +2020-05-08,Maharashtra,200477.0,183862,17974.0 +2020-05-09,Maharashtra,210174.0,192197,19063.0 +2020-05-10,Maharashtra,225524.0,206481,20228.0 +2020-05-11,Maharashtra,218914.0,193457,23401.0 +2020-05-12,Maharashtra,222284.0,196165,23401.0 +2020-05-13,Maharashtra,231061.0,203536,24427.0 +2020-05-14,Maharashtra,240482.0,211082,25922.0 +2020-05-15,Maharashtra,250898.0,219635,27524.0 +2020-05-16,Maharashtra,261815.0,228956,29100.0 +2020-05-17,Maharashtra,274040.0,238476,30706.0 +2020-05-18,Maharashtra,282437.0,245512,33053.0 +2020-05-19,Maharashtra,294272.0,255065,35058.0 +2020-05-20,Maharashtra,307535.0,265872,37136.0 +2020-05-21,Maharashtra,319921.0,276369,39297.0 +2020-05-22,Maharashtra,333087.0,286157,41642.0 +2020-05-23,Maharashtra,348932.0,299107,44582.0 +2020-05-24,Maharashtra,363470.0,310565,47190.0 +2020-05-25,Maharashtra,379185.0,323937,50231.0 +2020-05-26,Maharashtra,390757.0,333468,52667.0 +2020-05-27,Maharashtra,405020.0,345151,54758.0 +2020-05-28,Maharashtra,420473.0,358253,56948.0 +2020-05-29,Maharashtra,434565.0,369442,59546.0 +2020-05-30,Maharashtra,448661.0,380425,62228.0 +2020-05-31,Maharashtra,463177.0,392516,65168.0 +2020-06-01,Maharashtra,472344.0,399419,67655.0 +2020-06-02,Maharashtra,484784.0,409178,70013.0 +2020-06-03,Maharashtra,498577.0,420644,72300.0 +2020-06-04,Maharashtra,511136.0,430100,74860.0 +2020-06-05,Maharashtra,524002.0,440445,77793.0 +2020-06-06,Maharashtra,538009.0,451764,80229.0 +2020-06-07,Maharashtra,553063.0,463723,82968.0 +2020-06-08,Maharashtra,565290.0,473588,85975.0 +2020-06-09,Maharashtra,579294.0,485144,88528.0 +2020-06-10,Maharashtra,595282.0,497990,90787.0 +2020-06-11,Maharashtra,610790.0,509990,94041.0 +2020-06-12,Maharashtra,626521.0,521942,97648.0 +2020-06-13,Maharashtra,643057.0,535252,101141.0 +2020-06-14,Maharashtra,659481.0,548250,104568.0 +2020-06-15,Maharashtra,671348.0,557161,107958.0 +2020-06-16,Maharashtra,686488.0,569863,110744.0 +2020-06-18,Maharashtra,719637.0,595843,123794.0 +2020-06-19,Maharashtra,737597.0,609968,120504.0 +2020-06-20,Maharashtra,756809.0,624869,124331.0 +2020-06-21,Maharashtra,775958.0,639731,128205.0 +2020-06-22,Maharashtra,789016.0,649446,132075.0 +2020-06-23,Maharashtra,804726.0,662098,142628.0 +2020-06-24,Maharashtra,826139.0,679328,146811.0 +2020-06-25,Maharashtra,850410.0,698587,151823.0 +2020-06-26,Maharashtra,873570.0,717113,156457.0 +2020-06-27,Maharashtra,900423.0,738255,162168.0 +2020-06-28,Maharashtra,926934.0,758546,168388.0 +2020-06-29,Maharashtra,946518.0,773291,173227.0 +2020-06-30,Maharashtra,970161.0,792216,177945.0 +2020-07-01,Maharashtra,995343.0,811657,183686.0 +2020-07-02,Maharashtra,1023296.0,833225,190071.0 +2020-07-03,Maharashtra,1052643.0,856238,196405.0 +2020-07-04,Maharashtra,1085160.0,881344,203816.0 +2020-07-05,Maharashtra,1116112.0,905891,210221.0 +2020-07-06,Maharashtra,1138706.0,922627,216079.0 +2020-07-07,Maharashtra,1164860.0,944044,220816.0 +2020-07-08,Maharashtra,1194565.0,966881,227684.0 +2020-07-09,Maharashtra,1225831.0,990978,234853.0 +2020-07-10,Maharashtra,1257564.0,1014697,242867.0 +2020-07-11,Maharashtra,1289325.0,1037883,251442.0 +2020-07-12,Maharashtra,1321715.0,1062678,259037.0 +2020-07-13,Maharashtra,1345128.0,1079404,265724.0 +2020-07-14,Maharashtra,1376203.0,1103811,272392.0 +2020-07-15,Maharashtra,1413185.0,1132434,280751.0 +2020-07-16,Maharashtra,1450129.0,1161433,288696.0 +2020-07-17,Maharashtra,1487738.0,1190958,296780.0 +2020-07-18,Maharashtra,1526037.0,1220496,305541.0 +2020-07-19,Maharashtra,1568229.0,1252842,315387.0 +2020-07-20,Maharashtra,1603802.0,1279592,324210.0 +2020-07-21,Maharashtra,1643981.0,1311150,332831.0 +2020-07-22,Maharashtra,1691546.0,1348610,342936.0 +2020-07-23,Maharashtra,1741992.0,1389232,352760.0 +2020-07-24,Maharashtra,1790610.0,1428194,362416.0 +2020-07-25,Maharashtra,1840445.0,1468714,371731.0 +2020-07-26,Maharashtra,1890256.0,1508804,381452.0 +2020-07-27,Maharashtra,1928333.0,1538461,389872.0 +2020-07-28,Maharashtra,1972346.0,1574833,397513.0 +2020-07-29,Maharashtra,2021437.0,1613560,407877.0 +2020-07-30,Maharashtra,2075528.0,1656194,419334.0 +2020-07-31,Maharashtra,2133720.0,1705036,428684.0 +2020-08-01,Maharashtra,2198423.0,1759503,438920.0 +2020-08-02,Maharashtra,2260160.0,1811742,448418.0 +2020-08-03,Maharashtra,2301514.0,1844038,457476.0 +2020-08-04,Maharashtra,2354414.0,1888263,466151.0 +2020-08-05,Maharashtra,2418299.0,1941132,477167.0 +2020-08-06,Maharashtra,2492194.0,2003524,488670.0 +2020-08-07,Maharashtra,2574594.0,2074571,500023.0 +2020-08-08,Maharashtra,2654681.0,2141453,513228.0 +2020-08-09,Maharashtra,2730285.0,2204204,526081.0 +2020-08-10,Maharashtra,2776849.0,2241214,535635.0 +2020-08-11,Maharashtra,2841240.0,2294458,546782.0 +2020-08-12,Maharashtra,2913686.0,2353630,560056.0 +2020-08-13,Maharashtra,2981077.0,2409582,571495.0 +2020-08-14,Maharashtra,3049468.0,2464684,584784.0 +2020-08-15,Maharashtra,3115716.0,2519062,596654.0 +2020-08-16,Maharashtra,3165550.0,2557919,607631.0 +2020-08-17,Maharashtra,3208735.0,2592249,616486.0 +2020-08-18,Maharashtra,3267625.0,2641156,626469.0 +2020-08-19,Maharashtra,3343052.0,2701358,641694.0 +2020-08-20,Maharashtra,3419643.0,2763170,656473.0 +2020-08-21,Maharashtra,3498166.0,2826129,672037.0 +2020-08-22,Maharashtra,3575566.0,2887721,687845.0 +2020-08-23,Maharashtra,3621321.0,2923183,698138.0 +2020-08-24,Maharashtra,3667937.0,2958512,709425.0 +2020-08-25,Maharashtra,3711123.0,2994256,716867.0 +2020-08-26,Maharashtra,3798306.0,3063444,734862.0 +2020-08-27,Maharashtra,3868755.0,3118343,750412.0 +2020-08-28,Maharashtra,3939761.0,3175205,764556.0 +2020-08-29,Maharashtra,4017175.0,3236218,780957.0 +2020-08-30,Maharashtra,4092620.0,3293650,798970.0 +2020-08-31,Maharashtra,4145123.0,3333326,811797.0 +2020-09-01,Maharashtra,4212148.0,3391525,820623.0 +2020-09-02,Maharashtra,4288999.0,3447952,841047.0 +2020-09-03,Maharashtra,4382985.0,3520973,862012.0 +2020-09-04,Maharashtra,4474971.0,3592421,882550.0 +2020-09-05,Maharashtra,4565368.0,3662248,903120.0 +2020-09-06,Maharashtra,4655545.0,3728267,927278.0 +2020-09-07,Maharashtra,4712017.0,3768353,943664.0 +2020-09-08,Maharashtra,4792351.0,3828396,963955.0 +2020-09-09,Maharashtra,4890086.0,3898872,991214.0 +2020-09-10,Maharashtra,4974558.0,, +2020-09-11,Maharashtra,5072521.0,4056840,1015681.0 +2020-09-12,Maharashtra,5164840.0,4127075,1037765.0 +2020-09-13,Maharashtra,5253676.0,4193368,1060308.0 +2020-09-14,Maharashtra,5321116.0,4243742,1077374.0 +2020-09-15,Maharashtra,5409060.0,4311204,1097856.0 +2020-09-16,Maharashtra,5506276.0,4385055,1121221.0 +2020-09-17,Maharashtra,5604890.0,4459050,1145840.0 +2020-09-18,Maharashtra,5693345.0,4525849,1167496.0 +2020-09-19,Maharashtra,5786147.0,4598132,1188015.0 +2020-09-20,Maharashtra,5872241.0,4663599,1208642.0 +2020-09-21,Maharashtra,5912258.0,4687878,1224380.0 +2020-09-22,Maharashtra,6017284.0,4774514,1242770.0 +2020-09-23,Maharashtra,6106787.0,4842988,1263799.0 +2020-09-24,Maharashtra,6190389.0,4907426,1282963.0 +2020-09-25,Maharashtra,6280788.0,4980031,1300757.0 +2020-09-26,Maharashtra,6376676.0,5055500,1321176.0 +2020-09-27,Maharashtra,6565649.0,5226417,1339232.0 +2020-09-28,Maharashtra,6622384.0,5271231,1351153.0 +2020-09-29,Maharashtra,6698024.0,5331895,1366129.0 +2020-09-30,Maharashtra,6785205.0,5400759,1384446.0 +2020-10-01,Maharashtra,6875451.0,5474529,1400922.0 +2020-10-02,Maharashtra,6960203.0,5543690,1416513.0 +2020-10-03,Maharashtra,7035296.0,5604435,1430861.0 +2020-10-04,Maharashtra,7111204.0,5667795,1443409.0 +2020-10-05,Maharashtra,7169887.0,5716234,1453653.0 +2020-10-06,Maharashtra,7241376.0,5775465,1465911.0 +2020-10-07,Maharashtra,7324188.0,5843699,1480489.0 +2020-10-08,Maharashtra,7404231.0,5910347,1493884.0 +2020-10-09,Maharashtra,7487383.0,5981365,1506018.0 +2020-10-10,Maharashtra,7569447.0,6052013,1517434.0 +2020-10-11,Maharashtra,7643584.0,6115358,1528226.0 +2020-10-12,Maharashtra,7697906.0,6162591,1535315.0 +2020-10-13,Maharashtra,7762005.0,6218168,1543837.0 +2020-10-14,Maharashtra,7838318.0,6283929,1554389.0 +2020-10-15,Maharashtra,7914651.0,6350036,1564615.0 +2020-10-16,Maharashtra,7989693.0,6413631,1576062.0 +2020-10-17,Maharashtra,8069100.0,6482779,1586321.0 +2020-10-18,Maharashtra,8139466.0,6544085,1595381.0 +2020-10-19,Maharashtra,8185778.0,, +2020-10-20,Maharashtra,8251234.0,6641718,1609516.0 +2020-10-21,Maharashtra,8327493.0,, +2020-10-22,Maharashtra,8402559.0,, +2020-10-23,Maharashtra,8479155.0,,1632544.0 +2020-10-24,Maharashtra,8548036.0,,1638961.0 +2020-10-25,Maharashtra,8608928.0,, +2020-10-26,Maharashtra,8645195.0,, +2020-10-27,Maharashtra,8700033.0,, +2020-10-28,Maharashtra,8768879.0,, +2020-10-29,Maharashtra,8837133.0,, +2020-10-30,Maharashtra,8906826.0,, +2020-10-31,Maharashtra,8967403.0,, +2020-11-01,Maharashtra,9024871.0,, +2020-11-02,Maharashtra,9065168.0,, +2020-11-03,Maharashtra,9120515.0,, +2020-11-04,Maharashtra,9185838.0,, +2020-11-05,Maharashtra,9250254.0,, +2020-11-06,Maharashtra,9318544.0,, +2020-11-07,Maharashtra,9378531.0,, +2020-11-08,Maharashtra,9440535.0,, +2020-11-09,Maharashtra,9482940.0,, +2020-11-10,Maharashtra,9536182.0,, +2020-11-11,Maharashtra,9600328.0,, +2020-11-12,Maharashtra,9664275.0,, +2020-11-13,Maharashtra,9722961.0,, +2020-11-16,Maharashtra,9722961.0,, +2020-11-17,Maharashtra,9847478.0,, +2020-11-18,Maharashtra,9900878.0,, +2020-11-19,Maharashtra,9965119.0,, +2020-11-20,Maharashtra,10035665.0,, +2020-11-21,Maharashtra,10120470.0,, +2020-11-22,Maharashtra,10213026.0,, +2020-11-23,Maharashtra,10281543.0,, +2020-11-24,Maharashtra,10366579.0,, +2020-11-25,Maharashtra,10456962.0,, +2020-11-26,Maharashtra,10547333.0,, +2020-11-27,Maharashtra,10635600.0,, +2020-11-28,Maharashtra,10722198.0,, +2020-11-29,Maharashtra,10804422.0,, +2020-11-30,Maharashtra,10856384.0,, +2020-12-01,Maharashtra,10915683.0,, +2020-12-02,Maharashtra,10989496.0,, +2020-12-03,Maharashtra,11059305.0,, +2020-12-04,Maharashtra,11132231.0,, +2020-12-05,Maharashtra,11205118.0,, +2020-12-06,Maharashtra,11273705.0,, +2020-12-07,Maharashtra,11318721.0,, +2020-12-08,Maharashtra,11377074.0,, +2020-12-09,Maharashtra,11447723.0,, +2020-12-10,Maharashtra,11502427.0,, +2020-12-11,Maharashtra,11570137.0,, +2020-12-12,Maharashtra,11638336.0,, +2020-12-13,Maharashtra,11702457.0,, +2020-12-14,Maharashtra,11748362.0,, +2020-12-15,Maharashtra,11806808.0,, +2020-12-16,Maharashtra,11871449.0,, +2020-12-17,Maharashtra,11933956.0,, +2020-12-18,Maharashtra,11996624.0,, +2020-12-19,Maharashtra,12059235.0,, +2020-12-20,Maharashtra,12119196.0,, +2020-12-21,Maharashtra,12157953.0,, +2020-12-22,Maharashtra,12212384.0,, +2020-12-24,Maharashtra,12341204.0,, +2020-12-25,Maharashtra,12401637.0,, +2020-12-26,Maharashtra,12451919.0,, +2020-12-27,Maharashtra,12502554.0,, +2020-12-28,Maharashtra,12543772.0,, +2020-12-29,Maharashtra,12600754.0,, +2020-12-30,Maharashtra,12672259.0,, +2020-12-31,Maharashtra,12747633.0,, +2021-01-01,Maharashtra,12823834.0,, +2021-01-02,Maharashtra,12890441.0,, +2021-01-03,Maharashtra,12958502.0,, +2021-01-04,Maharashtra,13004876.0,, +2021-01-05,Maharashtra,13061976.0,, +2021-01-06,Maharashtra,13134019.0,, +2021-01-07,Maharashtra,13199201.0,, +2021-01-08,Maharashtra,13267917.0,, +2021-01-09,Maharashtra,13338488.0,, +2021-01-10,Maharashtra,13401170.0,, +2021-01-11,Maharashtra,13443229.0,, +2021-01-12,Maharashtra,13500734.0,, +2021-01-13,Maharashtra,13562194.0,, +2021-01-14,Maharashtra,13623298.0,, +2021-01-15,Maharashtra,13684589.0,, +2021-01-16,Maharashtra,13743486.0,, +2021-01-17,Maharashtra,13806387.0,, +2021-01-18,Maharashtra,13845897.0,, +2021-01-19,Maharashtra,13895277.0,, +2021-01-20,Maharashtra,13957469.0,, +2021-01-21,Maharashtra,14019188.0,, +2021-01-22,Maharashtra,14080930.0,, +2021-01-23,Maharashtra,14145829.0,, +2021-01-24,Maharashtra,14207595.0,, +2021-01-25,Maharashtra,14257998.0,, +2021-01-26,Maharashtra,14315227.0,, +2021-01-27,Maharashtra,14367094.0,, +2021-01-28,Maharashtra,14430223.0,, +2021-01-29,Maharashtra,14496359.0,, +2021-01-30,Maharashtra,14559160.0,, +2021-01-31,Maharashtra,14617168.0,, +2021-02-01,Maharashtra,14656223.0,, +2021-02-02,Maharashtra,14706992.0,, +2021-02-03,Maharashtra,14764744.0,, +2021-02-04,Maharashtra,14821561.0,, +2021-02-05,Maharashtra,14875633.0,, +2021-02-06,Maharashtra,14928130.0,, +2021-02-07,Maharashtra,14977683.0,, +2021-02-08,Maharashtra,15010037.0,, +2021-02-09,Maharashtra,15058995.0,, +2021-02-10,Maharashtra,15108645.0,, +2021-02-11,Maharashtra,15163781.0,, +2021-02-12,Maharashtra,15219416.0,, +2021-02-13,Maharashtra,15272826.0,, +2021-02-14,Maharashtra,15321608.0,, +2021-02-15,Maharashtra,15359026.0,, +2021-02-16,Maharashtra,15396444.0,, +2021-02-17,Maharashtra,15455268.0,, +2021-02-18,Maharashtra,15521198.0,, +2021-02-19,Maharashtra,15588324.0,, +2021-02-20,Maharashtra,15652742.0,, +2021-02-21,Maharashtra,15720259.0,, +2021-02-22,Maharashtra,15793424.0,, +2021-02-23,Maharashtra,15860912.0,, +2021-02-24,Maharashtra,15941773.0,, +2021-02-25,Maharashtra,16026587.0,, +2021-02-26,Maharashtra,16112519.0,, +2021-02-27,Maharashtra,16199818.0,, +2021-02-28,Maharashtra,16284612.0,, +2021-03-01,Maharashtra,16346358.0,, +2021-03-02,Maharashtra,16421879.0,, +2021-03-03,Maharashtra,16509506.0,, +2021-03-04,Maharashtra,16596300.0,, +2021-03-05,Maharashtra,16686880.0,, +2021-03-06,Maharashtra,16776051.0,, +2021-03-07,Maharashtra,16867286.0,, +2021-03-08,Maharashtra,16938227.0,, +2021-03-09,Maharashtra,17022315.0,, +2021-03-10,Maharashtra,17115534.0,, +2021-03-11,Maharashtra,17213312.0,, +2021-03-12,Maharashtra,17310586.0,, +2021-03-13,Maharashtra,17408504.0,, +2021-03-14,Maharashtra,17516885.0,, +2021-03-15,Maharashtra,17609248.0,, +2021-03-16,Maharashtra,17715522.0,, +2021-03-17,Maharashtra,17835495.0,, +2021-03-18,Maharashtra,17956830.0,, +2021-03-19,Maharashtra,18083977.0,, +2021-03-20,Maharashtra,18218001.0,, +2021-03-21,Maharashtra,18356200.0,, +2021-03-22,Maharashtra,18462030.0,, +2021-03-23,Maharashtra,18584463.0,, +2021-03-24,Maharashtra,18725307.0,, +2021-03-25,Maharashtra,18878754.0,, +2021-03-26,Maharashtra,19035439.0,, +2021-03-27,Maharashtra,19192750.0,, +2021-03-28,Maharashtra,19358341.0,, +2021-03-29,Maharashtra,19495189.0,, +2021-03-30,Maharashtra,19625065.0,, +2021-03-31,Maharashtra,19792143.0,, +2021-04-01,Maharashtra,19975341.0,, +2021-04-02,Maharashtra,20158719.0,, +2021-04-03,Maharashtra,20343123.0,, +2021-04-04,Maharashtra,20540111.0,, +2021-04-05,Maharashtra,20715793.0,, +2021-04-06,Maharashtra,20917486.0,, +2021-04-07,Maharashtra,21148736.0,, +2021-04-08,Maharashtra,21385551.0,, +2021-04-09,Maharashtra,21631258.0,, +2021-04-10,Maharashtra,21851235.0,, +2021-04-11,Maharashtra,22114372.0,, +2021-04-12,Maharashtra,22322393.0,, +2021-04-13,Maharashtra,22560051.0,, +2021-04-14,Maharashtra,22802200.0,, +2021-04-15,Maharashtra,23036652.0,, +2021-04-16,Maharashtra,23308878.0,, +2021-04-17,Maharashtra,23580913.0,, +2021-04-18,Maharashtra,23854185.0,, +2021-04-19,Maharashtra,24075811.0,, +2021-04-20,Maharashtra,24341736.0,, +2021-04-21,Maharashtra,24614480.0,, +2021-04-22,Maharashtra,24895986.0,, +2021-04-23,Maharashtra,25173596.0,, +2021-04-24,Maharashtra,25460008.0,, +2021-04-25,Maharashtra,25749543.0,, +2021-04-26,Maharashtra,25972018.0,, +2021-04-27,Maharashtra,26254737.0,, +2021-04-28,Maharashtra,26527862.0,, +2021-04-29,Maharashtra,26816075.0,, +2021-04-30,Maharashtra,27106282.0,, +2021-05-01,Maharashtra,27395288.0,, +2021-05-02,Maharashtra,27652758.0,, +2021-05-03,Maharashtra,27864426.0,, +2021-05-04,Maharashtra,28105382.0,, +2021-05-05,Maharashtra,28384582.0,, +2021-05-06,Maharashtra,28661668.0,, +2021-05-07,Maharashtra,28930580.0,, +2021-05-08,Maharashtra,29191331.0,, +2021-05-09,Maharashtra,29438797.0,, +2021-05-10,Maharashtra,29631127.0,, +2021-05-11,Maharashtra,29848791.0,, +2021-05-12,Maharashtra,30100958.0,, +2021-05-13,Maharashtra,30351356.0,, +2021-05-14,Maharashtra,30602140.0,, +2021-05-15,Maharashtra,30839404.0,, +2021-05-16,Maharashtra,31103991.0,, +2021-05-17,Maharashtra,31338407.0,, +2021-05-18,Maharashtra,31588717.0,, +2021-05-19,Maharashtra,31874364.0,, +2021-05-20,Maharashtra,32154275.0,, +2021-05-21,Maharashtra,32441776.0,, +2021-05-22,Maharashtra,32723361.0,, +2021-05-23,Maharashtra,33013516.0,, +2021-05-24,Maharashtra,33277290.0,, +2021-05-25,Maharashtra,33541565.0,, +2021-05-26,Maharashtra,33824959.0,, +2021-05-27,Maharashtra,34086110.0,, +2021-05-28,Maharashtra,34350186.0,, +2021-05-29,Maharashtra,34608945.0,, +2021-05-30,Maharashtra,34861608.0,, +2021-05-31,Maharashtra,35055054.0,, +2021-06-01,Maharashtra,35277653.0,, +2021-06-02,Maharashtra,35514594.0,, +2021-06-03,Maharashtra,35774626.0,, +2021-06-04,Maharashtra,36031395.0,, +2021-06-05,Maharashtra,36271483.0,, +2021-06-06,Maharashtra,36508967.0,, +2021-06-07,Maharashtra,36696139.0,, +2020-04-14,Manipur,276.0,,2.0 +2020-04-17,Manipur,311.0,,2.0 +2020-04-24,Manipur,402.0,,2.0 +2020-04-25,Manipur,416.0,,2.0 +2020-04-30,Manipur,459.0,,2.0 +2020-05-01,Manipur,461.0,,2.0 +2020-05-02,Manipur,468.0,,2.0 +2020-05-04,Manipur,571.0,,2.0 +2020-05-07,Manipur,684.0,,2.0 +2020-05-08,Manipur,756.0,,2.0 +2020-05-09,Manipur,865.0,,2.0 +2020-05-10,Manipur,1096.0,,2.0 +2020-05-11,Manipur,1337.0,,2.0 +2020-05-13,Manipur,1706.0,,2.0 +2020-05-15,Manipur,1799.0,,3.0 +2020-05-16,Manipur,1900.0,,4.0 +2020-05-18,Manipur,2483.0,,7.0 +2020-05-20,Manipur,3087.0,,20.0 +2020-05-22,Manipur,3721.0,,26.0 +2020-05-23,Manipur,4094.0,,29.0 +2020-05-25,Manipur,5041.0,,36.0 +2020-05-26,Manipur,6233.0,,39.0 +2020-05-27,Manipur,6836.0,,44.0 +2020-05-28,Manipur,7758.0,,55.0 +2020-05-29,Manipur,8596.0,,59.0 +2020-06-03,Manipur,12454.0,,118.0 +2020-06-05,Manipur,14629.0,,132.0 +2020-06-07,Manipur,17028.0,,172.0 +2020-06-09,Manipur,18612.0,,304.0 +2020-06-10,Manipur,19756.0,,311.0 +2020-06-11,Manipur,20528.0,,366.0 +2020-06-13,Manipur,24046.0,,449.0 +2020-06-14,Manipur,25226.0,,458.0 +2020-06-15,Manipur,26458.0,,490.0 +2020-06-17,Manipur,29865.0,,552.0 +2020-06-18,Manipur,30476.0,,606.0 +2020-06-19,Manipur,32093.0,,681.0 +2020-06-21,Manipur,35943.0,,841.0 +2020-06-22,Manipur,38286.0,,898.0 +2020-06-23,Manipur,40829.0,,921.0 +2020-06-24,Manipur,43477.0,,970.0 +2020-06-25,Manipur,45253.0,,1056.0 +2020-06-27,Manipur,48220.0,,1092.0 +2020-06-29,Manipur,49882.0,,1227.0 +2020-07-02,Manipur,53030.0,,1279.0 +2020-07-03,Manipur,53608.0,,1316.0 +2020-07-04,Manipur,54483.0,,1325.0 +2020-07-06,Manipur,56584.0,,1390.0 +2020-07-07,Manipur,57769.0,,1430.0 +2020-07-09,Manipur,59740.0,,1450.0 +2020-07-10,Manipur,60887.0,,1582.0 +2020-07-11,Manipur,61897.0,,1593.0 +2020-07-12,Manipur,63534.0,,1609.0 +2020-07-15,Manipur,65866.0,,1700.0 +2020-07-17,Manipur,68554.0,,1800.0 +2020-07-18,Manipur,70195.0,,1891.0 +2020-07-19,Manipur,71016.0,,1911.0 +2020-07-20,Manipur,71703.0,,1925.0 +2020-07-21,Manipur,73053.0,,2015.0 +2020-07-22,Manipur,73866.0,,2060.0 +2020-07-23,Manipur,74614.0,,2115.0 +2020-07-24,Manipur,75932.0,,2146.0 +2020-07-25,Manipur,76992.0,,2176.0 +2020-07-26,Manipur,78368.0,,2235.0 +2020-07-27,Manipur,80055.0,,2286.0 +2020-07-28,Manipur,80603.0,,2317.0 +2020-07-29,Manipur,83111.0,,2458.0 +2020-07-31,Manipur,85441.0,,2621.0 +2020-08-03,Manipur,89403.0,,2920.0 +2020-08-04,Manipur,90901.0,,3018.0 +2020-08-05,Manipur,92617.0,,3093.0 +2020-08-06,Manipur,94808.0,,3217.0 +2020-08-07,Manipur,96837.0,,3466.0 +2020-08-08,Manipur,98819.0,,3635.0 +2020-08-09,Manipur,101230.0,,3753.0 +2020-08-10,Manipur,103268.0,,3853.0 +2020-08-11,Manipur,104263.0,, +2020-08-13,Manipur,107469.0,, +2020-08-14,Manipur,110026.0,,4198.0 +2020-08-15,Manipur,112780.0,,4390.0 +2020-08-16,Manipur,115041.0,,4569.0 +2020-08-18,Manipur,117299.0,,4765.0 +2020-08-19,Manipur,120135.0,, +2020-08-20,Manipur,122778.0,, +2020-08-21,Manipur,125230.0,, +2020-08-22,Manipur,128468.0,, +2020-08-23,Manipur,131709.0,, +2020-08-24,Manipur,135399.0,, +2020-08-25,Manipur,137384.0,, +2020-08-26,Manipur,140610.0,, +2020-08-27,Manipur,142813.0,, +2020-08-28,Manipur,146140.0,, +2020-08-29,Manipur,149155.0,, +2020-08-30,Manipur,152229.0,, +2020-08-31,Manipur,155216.0,, +2020-09-01,Manipur,158098.0,, +2020-09-02,Manipur,160871.0,, +2020-09-05,Manipur,169093.0,, +2020-09-06,Manipur,172650.0,, +2020-09-07,Manipur,174731.0,, +2020-09-08,Manipur,177002.0,, +2020-09-10,Manipur,183083.0,, +2020-09-11,Manipur,185925.0,, +2020-09-12,Manipur,188526.0,, +2020-09-13,Manipur,190914.0,, +2020-09-14,Manipur,193048.0,, +2020-09-15,Manipur,196010.0,, +2020-09-16,Manipur,198837.0,, +2020-09-17,Manipur,201670.0,, +2020-09-18,Manipur,204871.0,, +2020-09-19,Manipur,206986.0,, +2020-09-20,Manipur,209863.0,, +2020-09-21,Manipur,212175.0,, +2020-09-22,Manipur,215614.0,, +2020-09-23,Manipur,217880.0,, +2020-09-24,Manipur,221490.0,, +2020-09-25,Manipur,225166.0,, +2020-09-26,Manipur,228546.0,, +2020-09-27,Manipur,231305.0,, +2020-09-28,Manipur,234066.0,, +2020-09-29,Manipur,238516.0,, +2020-09-30,Manipur,241648.0,, +2020-10-01,Manipur,243870.0,, +2020-10-02,Manipur,246769.0,, +2020-10-03,Manipur,250089.0,, +2020-10-04,Manipur,252437.0,, +2020-10-05,Manipur,254209.0,, +2020-10-06,Manipur,256590.0,, +2020-10-07,Manipur,259735.0,, +2020-10-08,Manipur,271941.0,, +2020-10-09,Manipur,283615.0,, +2020-10-10,Manipur,288908.0,, +2020-10-11,Manipur,292263.0,, +2020-10-12,Manipur,304487.0,, +2020-10-13,Manipur,306863.0,, +2020-10-15,Manipur,311269.0,, +2020-10-16,Manipur,313601.0,, +2020-10-17,Manipur,318036.0,, +2020-10-18,Manipur,320798.0,, +2020-10-19,Manipur,322852.0,, +2020-10-20,Manipur,325782.0,, +2020-10-21,Manipur,327918.0,, +2020-10-23,Manipur,333718.0,, +2020-10-24,Manipur,335995.0,, +2020-10-25,Manipur,337820.0,, +2020-10-27,Manipur,342491.0,, +2020-10-29,Manipur,347026.0,, +2020-10-31,Manipur,351953.0,, +2020-11-01,Manipur,354210.0,, +2020-11-02,Manipur,357004.0,, +2020-11-03,Manipur,358887.0,, +2020-11-04,Manipur,361324.0,, +2020-11-06,Manipur,366212.0,, +2020-11-07,Manipur,368087.0,, +2020-11-08,Manipur,370815.0,, +2020-11-09,Manipur,372932.0,, +2020-11-11,Manipur,377804.0,, +2020-11-12,Manipur,380271.0,, +2020-11-13,Manipur,382429.0,, +2020-11-14,Manipur,384235.0,, +2020-11-16,Manipur,388588.0,, +2020-11-17,Manipur,390552.0,, +2020-11-18,Manipur,391911.0,, +2020-11-19,Manipur,393807.0,, +2020-11-21,Manipur,397854.0,, +2020-11-22,Manipur,400411.0,, +2020-11-24,Manipur,406095.0,, +2020-11-27,Manipur,413240.0,, +2020-11-28,Manipur,415891.0,, +2020-11-29,Manipur,418298.0,, +2020-11-30,Manipur,420342.0,, +2020-12-01,Manipur,423035.0,, +2020-12-02,Manipur,426119.0,, +2020-12-03,Manipur,428199.0,, +2020-12-04,Manipur,430239.0,, +2020-12-05,Manipur,432298.0,, +2020-12-06,Manipur,434752.0,, +2020-12-07,Manipur,437175.0,, +2020-12-08,Manipur,439844.0,, +2020-12-10,Manipur,445505.0,, +2020-12-11,Manipur,447694.0,, +2020-12-12,Manipur,449857.0,, +2020-12-13,Manipur,452528.0,, +2020-12-14,Manipur,454148.0,, +2020-12-15,Manipur,456528.0,, +2020-12-17,Manipur,460665.0,, +2020-12-22,Manipur,468035.0,, +2020-12-23,Manipur,469290.0,, +2020-12-24,Manipur,470469.0,, +2020-12-25,Manipur,471346.0,, +2020-12-26,Manipur,472612.0,, +2020-12-27,Manipur,473660.0,, +2020-12-28,Manipur,474524.0,, +2021-01-05,Manipur,482953.0,, +2021-01-06,Manipur,484557.0,, +2021-01-07,Manipur,486172.0,, +2021-01-08,Manipur,487250.0,, +2021-01-09,Manipur,488690.0,, +2021-01-10,Manipur,489754.0,, +2021-01-11,Manipur,490599.0,, +2021-01-12,Manipur,491958.0,, +2021-01-13,Manipur,493542.0,, +2021-01-14,Manipur,494623.0,, +2021-01-15,Manipur,495868.0,, +2021-01-16,Manipur,496918.0,, +2021-01-17,Manipur,498157.0,, +2021-01-18,Manipur,498979.0,, +2021-01-19,Manipur,499989.0,, +2021-01-20,Manipur,501237.0,, +2021-01-21,Manipur,502426.0,, +2021-01-22,Manipur,503678.0,, +2021-01-23,Manipur,504829.0,, +2021-01-24,Manipur,505699.0,, +2021-01-25,Manipur,506991.0,, +2021-01-26,Manipur,508273.0,, +2021-01-27,Manipur,509108.0,, +2021-01-28,Manipur,510714.0,, +2021-01-29,Manipur,511987.0,, +2021-01-30,Manipur,513812.0,, +2021-01-31,Manipur,515122.0,, +2021-02-02,Manipur,517553.0,, +2021-02-03,Manipur,518960.0,, +2021-02-04,Manipur,520516.0,, +2021-02-05,Manipur,521834.0,, +2021-02-06,Manipur,523291.0,, +2021-02-07,Manipur,524987.0,, +2021-02-08,Manipur,525613.0,, +2021-02-09,Manipur,527458.0,, +2021-02-10,Manipur,529293.0,, +2021-02-11,Manipur,530329.0,, +2021-02-12,Manipur,531521.0,, +2021-02-13,Manipur,532806.0,, +2021-02-14,Manipur,533846.0,, +2021-02-15,Manipur,535045.0,, +2021-02-16,Manipur,536243.0,, +2021-02-17,Manipur,537514.0,, +2021-02-18,Manipur,538938.0,, +2021-02-19,Manipur,540337.0,, +2021-02-20,Manipur,541446.0,, +2021-02-21,Manipur,542337.0,, +2021-02-22,Manipur,543414.0,, +2021-02-23,Manipur,544506.0,, +2021-02-24,Manipur,545722.0,, +2021-02-25,Manipur,546862.0,, +2021-02-26,Manipur,547871.0,, +2021-02-27,Manipur,548903.0,, +2021-02-28,Manipur,549740.0,, +2021-03-01,Manipur,550326.0,, +2021-03-02,Manipur,551409.0,, +2021-03-03,Manipur,552172.0,, +2021-03-04,Manipur,553091.0,, +2021-03-06,Manipur,555138.0,, +2021-03-07,Manipur,556094.0,, +2021-03-11,Manipur,560456.0,, +2021-03-12,Manipur,561270.0,, +2021-03-13,Manipur,562200.0,, +2021-03-14,Manipur,562916.0,, +2021-03-15,Manipur,563479.0,, +2021-03-16,Manipur,564419.0,, +2021-03-17,Manipur,565579.0,, +2021-03-18,Manipur,566178.0,, +2021-03-19,Manipur,567126.0,, +2021-03-20,Manipur,568085.0,, +2021-03-21,Manipur,568814.0,, +2021-03-22,Manipur,569545.0,, +2021-03-23,Manipur,570546.0,, +2021-03-24,Manipur,571447.0,, +2021-03-25,Manipur,572332.0,, +2021-03-26,Manipur,573075.0,, +2021-03-27,Manipur,573820.0,, +2021-03-28,Manipur,574525.0,, +2021-03-29,Manipur,574884.0,, +2021-03-30,Manipur,575412.0,, +2021-03-31,Manipur,576140.0,, +2021-04-01,Manipur,577082.0,, +2021-04-02,Manipur,577941.0,, +2021-04-03,Manipur,578877.0,, +2021-04-04,Manipur,580265.0,, +2021-04-05,Manipur,581304.0,, +2021-04-06,Manipur,582439.0,, +2021-04-07,Manipur,583322.0,, +2021-04-08,Manipur,584391.0,, +2021-04-09,Manipur,585041.0,, +2021-04-10,Manipur,586090.0,, +2021-04-11,Manipur,586817.0,, +2021-04-12,Manipur,587729.0,, +2021-04-13,Manipur,588540.0,, +2021-04-14,Manipur,589389.0,, +2021-04-15,Manipur,590238.0,, +2021-04-16,Manipur,591431.0,, +2021-04-17,Manipur,592588.0,, +2021-04-18,Manipur,593783.0,, +2021-04-19,Manipur,594750.0,, +2021-04-20,Manipur,596703.0,, +2021-04-21,Manipur,598268.0,, +2021-04-22,Manipur,599801.0,, +2021-04-23,Manipur,601600.0,, +2021-04-24,Manipur,602832.0,, +2021-04-25,Manipur,604620.0,, +2021-04-26,Manipur,605708.0,, +2021-04-27,Manipur,607553.0,, +2021-04-28,Manipur,609910.0,, +2021-04-29,Manipur,612489.0,, +2021-04-30,Manipur,614444.0,, +2021-05-01,Manipur,616666.0,, +2021-05-02,Manipur,618926.0,, +2021-05-03,Manipur,621082.0,, +2021-05-04,Manipur,623555.0,, +2021-05-05,Manipur,625498.0,, +2021-05-06,Manipur,627856.0,, +2021-05-07,Manipur,631277.0,, +2021-05-08,Manipur,634101.0,, +2021-05-09,Manipur,637265.0,, +2021-05-10,Manipur,639778.0,, +2021-05-11,Manipur,643220.0,, +2021-05-12,Manipur,646740.0,, +2021-05-13,Manipur,650507.0,, +2021-05-14,Manipur,653736.0,, +2021-05-15,Manipur,657167.0,, +2021-05-16,Manipur,660531.0,, +2021-05-17,Manipur,663079.0,, +2021-05-18,Manipur,666280.0,, +2021-05-19,Manipur,669375.0,, +2021-05-20,Manipur,672488.0,, +2021-05-21,Manipur,675645.0,, +2021-05-22,Manipur,678808.0,, +2021-05-23,Manipur,682417.0,, +2021-05-24,Manipur,685017.0,, +2021-05-25,Manipur,688805.0,, +2021-05-26,Manipur,692880.0,, +2021-05-27,Manipur,697178.0,, +2021-05-28,Manipur,701485.0,, +2021-05-29,Manipur,706385.0,, +2021-05-30,Manipur,712778.0,, +2021-05-31,Manipur,717426.0,, +2021-06-01,Manipur,723146.0,, +2021-06-02,Manipur,730078.0,, +2021-06-03,Manipur,735845.0,, +2021-06-04,Manipur,743534.0,, +2021-06-05,Manipur,751763.0,, +2021-06-06,Manipur,760536.0,, +2021-06-07,Manipur,765523.0,, +2020-04-16,Meghalaya,552.0,299,7.0 +2020-04-17,Meghalaya,617.0,541,9.0 +2020-04-18,Meghalaya,738.0,667,11.0 +2020-04-19,Meghalaya,766.0,678,11.0 +2020-04-20,Meghalaya,838.0,714,11.0 +2020-04-21,Meghalaya,933.0,821,12.0 +2020-04-22,Meghalaya,1046.0,904,12.0 +2020-04-23,Meghalaya,1109.0,1000,12.0 +2020-04-24,Meghalaya,1130.0,1048,12.0 +2020-04-25,Meghalaya,1169.0,1097,12.0 +2020-04-27,Meghalaya,1254.0,1182,12.0 +2020-04-28,Meghalaya,1382.0,1202,12.0 +2020-04-29,Meghalaya,1397.0,1288,12.0 +2020-04-30,Meghalaya,1595.0,1433,12.0 +2020-05-02,Meghalaya,1707.0,1655,12.0 +2020-05-04,Meghalaya,1884.0,1782,12.0 +2020-05-05,Meghalaya,1944.0,1822,12.0 +2020-05-07,Meghalaya,2054.0,1967,12.0 +2020-05-09,Meghalaya,2287.0,2178,12.0 +2020-05-10,Meghalaya,2287.0,2178,13.0 +2020-05-11,Meghalaya,2480.0,2342,13.0 +2020-05-15,Meghalaya,2712.0,2597,13.0 +2020-05-18,Meghalaya,2896.0,,13.0 +2020-05-19,Meghalaya,3104.0,,13.0 +2020-05-20,Meghalaya,3419.0,,13.0 +2020-05-22,Meghalaya,3682.0,,14.0 +2020-05-26,Meghalaya,6553.0,5599,15.0 +2020-05-27,Meghalaya,6685.0,,20.0 +2020-05-31,Meghalaya,7781.0,,27.0 +2020-06-01,Meghalaya,8127.0,,27.0 +2020-06-02,Meghalaya,8734.0,,28.0 +2020-06-03,Meghalaya,9025.0,,28.0 +2020-06-04,Meghalaya,9395.0,,31.0 +2020-06-05,Meghalaya,9592.0,,31.0 +2020-06-06,Meghalaya,10066.0,,33.0 +2020-06-07,Meghalaya,10066.0,,33.0 +2020-06-08,Meghalaya,10746.0,,36.0 +2020-06-09,Meghalaya,11247.0,,40.0 +2020-06-10,Meghalaya,11505.0,,44.0 +2020-06-11,Meghalaya,11889.0,,44.0 +2020-06-12,Meghalaya,12219.0,,44.0 +2020-06-13,Meghalaya,12560.0,,44.0 +2020-06-15,Meghalaya,13353.0,,44.0 +2020-06-16,Meghalaya,13878.0,,44.0 +2020-06-17,Meghalaya,14316.0,,43.0 +2020-06-18,Meghalaya,14647.0,,43.0 +2020-06-19,Meghalaya,15104.0,,43.0 +2020-06-20,Meghalaya,15346.0,,43.0 +2020-06-22,Meghalaya,16296.0,,44.0 +2020-06-23,Meghalaya,16637.0,,46.0 +2020-06-24,Meghalaya,17115.0,,46.0 +2020-06-25,Meghalaya,17591.0,,46.0 +2020-06-26,Meghalaya,18103.0,,48.0 +2020-06-27,Meghalaya,18288.0,17741,48.0 +2020-06-28,Meghalaya,18441.0,17741,50.0 +2020-06-29,Meghalaya,18707.0,18651,51.0 +2020-06-30,Meghalaya,19294.0,18651,52.0 +2020-07-01,Meghalaya,19494.0,,55.0 +2020-07-02,Meghalaya,19732.0,,55.0 +2020-07-03,Meghalaya,20329.0,,58.0 +2020-07-04,Meghalaya,20744.0,,70.0 +2020-07-05,Meghalaya,20950.0,,72.0 +2020-07-06,Meghalaya,21502.0,,80.0 +2020-07-07,Meghalaya,21847.0,,90.0 +2020-07-08,Meghalaya,22000.0,,99.0 +2020-07-09,Meghalaya,22544.0,,104.0 +2020-07-10,Meghalaya,23108.0,,186.0 +2020-07-11,Meghalaya,23633.0,,262.0 +2020-07-12,Meghalaya,23876.0,,295.0 +2020-07-13,Meghalaya,24436.0,,309.0 +2020-07-14,Meghalaya,24899.0,,318.0 +2020-07-15,Meghalaya,24942.0,,346.0 +2020-07-16,Meghalaya,25263.0,24597,377.0 +2020-07-17,Meghalaya,25981.0,25178,403.0 +2020-07-18,Meghalaya,26940.0,26000,418.0 +2020-07-19,Meghalaya,26940.0,26000,450.0 +2020-07-20,Meghalaya,28163.0,26000,469.0 +2020-07-21,Meghalaya,29274.0,28167,490.0 +2020-07-22,Meghalaya,30009.0,28167,514.0 +2020-07-23,Meghalaya,30796.0,28967,534.0 +2020-07-24,Meghalaya,31367.0,,582.0 +2020-07-25,Meghalaya,32470.0,31085,595.0 +2020-07-26,Meghalaya,33076.0,,702.0 +2020-07-27,Meghalaya,34127.0,32766,738.0 +2020-07-28,Meghalaya,34362.0,33492,794.0 +2020-07-29,Meghalaya,34903.0,34239,794.0 +2020-07-30,Meghalaya,35572.0,34657,803.0 +2020-07-31,Meghalaya,35572.0,34657,818.0 +2020-08-01,Meghalaya,36341.0,,856.0 +2020-08-02,Meghalaya,37728.0,,868.0 +2020-08-03,Meghalaya,38596.0,37004,902.0 +2020-08-04,Meghalaya,38977.0,37004,913.0 +2020-08-05,Meghalaya,38977.0,37004,929.0 +2020-08-06,Meghalaya,39553.0,38412,990.0 +2020-08-07,Meghalaya,39782.0,39008,1006.0 +2020-08-08,Meghalaya,40631.0,39008,1023.0 +2020-08-09,Meghalaya,40700.0,39008,1062.0 +2020-08-10,Meghalaya,41734.0,,1114.0 +2020-08-11,Meghalaya,41734.0,,1136.0 +2020-08-13,Meghalaya,42084.0,,1165.0 +2020-08-14,Meghalaya,42706.0,,1191.0 +2020-08-15,Meghalaya,42910.0,,1292.0 +2020-08-16,Meghalaya,43800.0,,1374.0 +2020-08-18,Meghalaya,44234.0,,1454.0 +2020-08-19,Meghalaya,44695.0,,1506.0 +2020-08-20,Meghalaya,45151.0,43020, +2020-08-21,Meghalaya,70413.0,,1718.0 +2020-08-22,Meghalaya,72409.0,70019, +2020-08-24,Meghalaya,75239.0,72824, +2020-08-25,Meghalaya,76762.0,74293, +2020-08-26,Meghalaya,79126.0,76645, +2020-08-27,Meghalaya,81012.0,78431, +2020-08-28,Meghalaya,84038.0,81146, +2020-08-29,Meghalaya,86214.0,83499, +2020-08-31,Meghalaya,88963.0,85924, +2020-09-01,Meghalaya,90477.0,87455, +2020-09-02,Meghalaya,92453.0,89162, +2020-09-03,Meghalaya,93817.0,90516, +2020-09-04,Meghalaya,95457.0,91989, +2020-09-05,Meghalaya,97550.0,, +2020-09-07,Meghalaya,100071.0,, +2020-09-08,Meghalaya,102487.0,98345, +2020-09-09,Meghalaya,104090.0,99640, +2020-09-10,Meghalaya,106064.0,102477, +2020-09-11,Meghalaya,109518.0,104937, +2020-09-12,Meghalaya,112221.0,107737, +2020-09-14,Meghalaya,115901.0,111073, +2020-09-15,Meghalaya,117518.0,113184, +2020-09-16,Meghalaya,120576.0,115611, +2020-09-17,Meghalaya,127571.0,122348, +2020-09-18,Meghalaya,129503.0,124315, +2020-09-19,Meghalaya,131433.0,126022, +2020-09-21,Meghalaya,133259.0,127589, +2020-09-22,Meghalaya,135571.0,130096, +2020-09-23,Meghalaya,136932.0,131971, +2020-09-24,Meghalaya,138942.0,133864, +2020-09-26,Meghalaya,142426.0,, +2020-09-28,Meghalaya,145681.0,, +2020-09-29,Meghalaya,148298.0,142835, +2020-09-30,Meghalaya,150809.0,145170, +2020-10-01,Meghalaya,153177.0,147375, +2020-10-05,Meghalaya,160779.0,154012, +2020-10-06,Meghalaya,163061.0,156074, +2020-10-07,Meghalaya,164879.0,157709, +2020-10-08,Meghalaya,167265.0,160004, +2020-10-09,Meghalaya,169449.0,162061, +2020-10-10,Meghalaya,171415.0,163871, +2020-10-12,Meghalaya,174756.0,166985, +2020-10-13,Meghalaya,176348.0,168500, +2020-10-14,Meghalaya,178894.0,170903, +2020-10-16,Meghalaya,183808.0,175505, +2020-10-17,Meghalaya,185467.0,177063, +2020-10-19,Meghalaya,188256.0,179720, +2020-10-20,Meghalaya,189783.0,181190, +2020-10-21,Meghalaya,191490.0,182869, +2020-10-22,Meghalaya,193190.0,184470, +2020-10-23,Meghalaya,194818.0,186017, +2020-10-25,Meghalaya,198343.0,189277, +2020-10-26,Meghalaya,198343.0,189277, +2020-10-27,Meghalaya,198790.0,189654, +2020-10-28,Meghalaya,199611.0,190385, +2020-10-29,Meghalaya,200391.0,191088, +2020-10-30,Meghalaya,201296.0,191914, +2020-10-31,Meghalaya,202056.0,192604, +2020-11-02,Meghalaya,203556.0,193878, +2020-11-03,Meghalaya,204462.0,194721, +2020-11-04,Meghalaya,205879.0,196078, +2020-11-05,Meghalaya,207471.0,197578, +2020-11-06,Meghalaya,208730.0,198751, +2020-11-07,Meghalaya,210079.0,200032, +2020-11-09,Meghalaya,212448.0,202218, +2020-11-10,Meghalaya,213973.0,203677, +2020-11-11,Meghalaya,215624.0,205256, +2020-11-12,Meghalaya,217077.0,206566, +2020-11-13,Meghalaya,218315.0,207734, +2020-11-14,Meghalaya,219427.0,208795, +2020-11-16,Meghalaya,220717.0,210011, +2020-11-17,Meghalaya,223084.0,212293, +2020-11-18,Meghalaya,224381.0,213511, +2020-11-19,Meghalaya,225659.0,214680, +2020-11-20,Meghalaya,227199.0,216047, +2020-11-21,Meghalaya,228455.0,217186, +2020-11-23,Meghalaya,231117.0,219720, +2020-11-24,Meghalaya,232602.0,221148, +2020-11-25,Meghalaya,234160.0,222647, +2020-11-26,Meghalaya,235838.0,224257, +2020-11-27,Meghalaya,237388.0,225755, +2020-11-28,Meghalaya,239176.0,227472, +2020-11-30,Meghalaya,241631.0,229821, +2020-12-01,Meghalaya,243668.0,231793, +2020-12-02,Meghalaya,245177.0,233223, +2020-12-03,Meghalaya,247928.0,235923, +2020-12-04,Meghalaya,250430.0,238363, +2020-12-05,Meghalaya,252594.0,240430, +2020-12-07,Meghalaya,256221.0,243907, +2020-12-08,Meghalaya,258439.0,246029, +2020-12-09,Meghalaya,260267.0,247756, +2020-12-10,Meghalaya,261625.0,249039, +2020-12-11,Meghalaya,263433.0,250788, +2020-12-12,Meghalaya,265057.0,252314, +2020-12-14,Meghalaya,267771.0,254830, +2020-12-15,Meghalaya,269808.0,256801, +2020-12-16,Meghalaya,271896.0,258824, +2020-12-18,Meghalaya,275934.0,262745, +2020-12-19,Meghalaya,277791.0,264570, +2020-12-21,Meghalaya,280244.0,266986, +2020-12-22,Meghalaya,281866.0,268567, +2020-12-23,Meghalaya,283632.0,270304, +2020-12-24,Meghalaya,285139.0,271779, +2020-12-28,Meghalaya,289092.0,275713, +2020-12-29,Meghalaya,290360.0,276973, +2020-12-30,Meghalaya,291959.0,278551, +2021-01-04,Meghalaya,298554.0,285072, +2021-01-06,Meghalaya,301969.0,288444, +2021-01-07,Meghalaya,303590.0,290054, +2021-01-08,Meghalaya,305124.0,291564, +2021-01-09,Meghalaya,306472.0,292880, +2021-01-11,Meghalaya,309055.0,295424, +2021-01-12,Meghalaya,310487.0,296836, +2021-01-13,Meghalaya,312221.0,298552, +2021-01-14,Meghalaya,313914.0,300227, +2021-01-15,Meghalaya,315290.0,301599, +2021-01-16,Meghalaya,316632.0,302939, +2021-01-18,Meghalaya,318901.0,305194, +2021-01-20,Meghalaya,321819.0,308102, +2021-01-21,Meghalaya,323284.0,309563, +2021-01-22,Meghalaya,324588.0,310865, +2021-01-23,Meghalaya,325872.0,312145, +2021-01-27,Meghalaya,330810.0,317069, +2021-01-29,Meghalaya,333315.0,319562, +2021-01-30,Meghalaya,334713.0,320952, +2021-02-01,Meghalaya,337242.0,323478, +2021-02-02,Meghalaya,338615.0,324847, +2021-02-03,Meghalaya,340228.0,326454, +2021-02-04,Meghalaya,341580.0,327786, +2021-02-05,Meghalaya,342795.0,328974, +2021-02-06,Meghalaya,344070.0,330225, +2021-02-07,Meghalaya,345293.0,331408, +2021-02-08,Meghalaya,346146.0,332260, +2021-02-09,Meghalaya,347510.0,333617, +2021-02-10,Meghalaya,348913.0,334989, +2021-02-11,Meghalaya,350493.0,336562, +2021-02-12,Meghalaya,351714.0,337782, +2021-02-13,Meghalaya,352900.0,339053, +2021-02-14,Meghalaya,354157.0,340251, +2021-02-15,Meghalaya,354931.0,340989, +2021-02-16,Meghalaya,355905.0,341961, +2021-02-17,Meghalaya,356663.0,342718, +2021-02-19,Meghalaya,358903.0,344952, +2021-02-20,Meghalaya,360092.0,346140, +2021-02-22,Meghalaya,361857.0,347903, +2021-02-23,Meghalaya,363076.0,349121, +2021-02-24,Meghalaya,364517.0,350559, +2021-02-25,Meghalaya,365778.0,351817, +2021-02-28,Meghalaya,369262.0,355300, +2021-03-01,Meghalaya,370067.0,356104, +2021-03-02,Meghalaya,371538.0,357572, +2021-03-04,Meghalaya,374169.0,360203, +2021-03-06,Meghalaya,375245.0,361277, +2021-03-07,Meghalaya,377326.0,363354, +2021-03-08,Meghalaya,377949.0,363976, +2021-03-09,Meghalaya,379237.0,365260, +2021-03-11,Meghalaya,381349.0,367364, +2021-03-13,Meghalaya,383450.0,369458, +2021-03-15,Meghalaya,384524.0,370527, +2021-03-16,Meghalaya,386593.0,372593, +2021-03-17,Meghalaya,387629.0,373627, +2021-03-18,Meghalaya,388592.0,374587, +2021-03-19,Meghalaya,389679.0,375671, +2021-03-20,Meghalaya,390648.0,376628, +2021-03-22,Meghalaya,392474.0,378458, +2021-03-23,Meghalaya,393744.0,379727, +2021-03-24,Meghalaya,395112.0,381093, +2021-03-25,Meghalaya,396300.0,382278, +2021-03-26,Meghalaya,397634.0,383605, +2021-03-28,Meghalaya,400173.0,, +2021-03-30,Meghalaya,401189.0,387155, +2021-03-31,Meghalaya,402571.0,388515, +2021-04-01,Meghalaya,403861.0,389796, +2021-04-02,Meghalaya,406446.0,392364, +2021-04-03,Meghalaya,407216.0,393110, +2021-04-04,Meghalaya,408884.0,394762, +2021-04-05,Meghalaya,409992.0,395866, +2021-04-06,Meghalaya,411344.0,397209, +2021-04-07,Meghalaya,413109.0,398969, +2021-04-08,Meghalaya,414890.0,400725, +2021-04-09,Meghalaya,417459.0,403252, +2021-04-10,Meghalaya,419769.0,405523, +2021-04-11,Meghalaya,421655.0,407381, +2021-04-12,Meghalaya,422738.0,408438, +2021-04-13,Meghalaya,424940.0,410553, +2021-04-14,Meghalaya,427651.0,413166, +2021-04-15,Meghalaya,429358.0,414776, +2021-04-16,Meghalaya,431805.0,417102, +2021-04-17,Meghalaya,433687.0,418889, +2021-04-18,Meghalaya,435552.0,420681, +2021-04-19,Meghalaya,436898.0,421919, +2021-04-20,Meghalaya,438825.0,423709, +2021-04-21,Meghalaya,441749.0,426441, +2021-04-22,Meghalaya,443730.0,428243, +2021-04-23,Meghalaya,445913.0,430282, +2021-04-24,Meghalaya,447985.0,432199, +2021-04-25,Meghalaya,449420.0,433426, +2021-04-26,Meghalaya,451828.0,435704, +2021-04-27,Meghalaya,453972.0,437701, +2021-04-28,Meghalaya,456470.0,440040, +2021-04-29,Meghalaya,459023.0,442406, +2021-04-30,Meghalaya,461570.0,444724, +2021-05-01,Meghalaya,464863.0,447755, +2021-05-02,Meghalaya,467645.0,450216, +2021-05-03,Meghalaya,469686.0,452011, +2021-05-04,Meghalaya,471988.0,453974, +2021-05-05,Meghalaya,474680.0,456397, +2021-05-06,Meghalaya,477676.0,459046, +2021-05-07,Meghalaya,480778.0,461851, +2021-05-08,Meghalaya,483733.0,464431, +2021-05-09,Meghalaya,486058.0,466338, +2021-05-10,Meghalaya,487843.0,467714, +2021-05-11,Meghalaya,490677.0,470098, +2021-05-12,Meghalaya,495358.0,474373, +2021-05-13,Meghalaya,498727.0,477151, +2021-05-14,Meghalaya,501466.0,479263, +2021-05-15,Meghalaya,504687.0,481924, +2021-05-16,Meghalaya,508574.0,485242, +2021-05-17,Meghalaya,510902.0,486936, +2021-05-18,Meghalaya,515062.0,490190, +2021-05-19,Meghalaya,519311.0,493567, +2021-05-20,Meghalaya,523287.0,496360, +2021-05-21,Meghalaya,527955.0,500200, +2021-05-22,Meghalaya,532756.0,503878, +2021-05-23,Meghalaya,536905.0,507224, +2021-05-24,Meghalaya,539538.0,509046, +2021-05-25,Meghalaya,544951.0,513502, +2021-05-26,Meghalaya,552324.0,520029, +2021-05-28,Meghalaya,562661.0,528826, +2021-05-29,Meghalaya,567966.0,533518, +2021-05-30,Meghalaya,572812.0,537622, +2021-05-31,Meghalaya,575001.0,539403, +2021-06-01,Meghalaya,578167.0,542102, +2021-06-02,Meghalaya,583183.0,546586, +2021-06-03,Meghalaya,587391.0,550242, +2021-06-04,Meghalaya,591464.0,553731, +2021-06-05,Meghalaya,595501.0,557271, +2021-06-06,Meghalaya,599057.0,560339, +2021-06-07,Meghalaya,600888.0,561732, +2020-04-06,Mizoram,58.0,0,1.0 +2020-04-07,Mizoram,58.0,0,1.0 +2020-04-08,Mizoram,74.0,,1.0 +2020-04-09,Mizoram,84.0,,1.0 +2020-04-12,Mizoram,87.0,,1.0 +2020-04-13,Mizoram,89.0,,1.0 +2020-04-14,Mizoram,91.0,,1.0 +2020-04-15,Mizoram,94.0,,1.0 +2020-04-16,Mizoram,94.0,,1.0 +2020-04-18,Mizoram,102.0,,1.0 +2020-04-19,Mizoram,116.0,,1.0 +2020-04-20,Mizoram,132.0,,1.0 +2020-04-21,Mizoram,135.0,,1.0 +2020-04-22,Mizoram,135.0,,1.0 +2020-04-23,Mizoram,137.0,,1.0 +2020-04-26,Mizoram,146.0,,1.0 +2020-04-27,Mizoram,146.0,,1.0 +2020-04-28,Mizoram,158.0,,1.0 +2020-04-29,Mizoram,179.0,,1.0 +2020-04-30,Mizoram,180.0,,1.0 +2020-05-01,Mizoram,180.0,,1.0 +2020-05-02,Mizoram,183.0,,1.0 +2020-05-03,Mizoram,183.0,,1.0 +2020-05-04,Mizoram,183.0,,1.0 +2020-05-05,Mizoram,188.0,,1.0 +2020-05-06,Mizoram,195.0,,1.0 +2020-05-07,Mizoram,197.0,,1.0 +2020-05-08,Mizoram,199.0,,1.0 +2020-05-09,Mizoram,201.0,,1.0 +2020-05-10,Mizoram,201.0,,1.0 +2020-05-11,Mizoram,206.0,,1.0 +2020-05-12,Mizoram,224.0,,1.0 +2020-05-13,Mizoram,224.0,,1.0 +2020-05-14,Mizoram,273.0,,1.0 +2020-05-15,Mizoram,273.0,,1.0 +2020-05-16,Mizoram,282.0,,1.0 +2020-05-17,Mizoram,282.0,,1.0 +2020-05-18,Mizoram,301.0,,1.0 +2020-05-19,Mizoram,313.0,,1.0 +2020-05-20,Mizoram,315.0,,1.0 +2020-05-21,Mizoram,320.0,,1.0 +2020-05-22,Mizoram,324.0,,1.0 +2020-05-23,Mizoram,336.0,,1.0 +2020-05-24,Mizoram,342.0,,1.0 +2020-05-25,Mizoram,359.0,,1.0 +2020-05-26,Mizoram,438.0,,1.0 +2020-05-28,Mizoram,516.0,,1.0 +2020-05-29,Mizoram,529.0,,1.0 +2020-05-30,Mizoram,686.0,,1.0 +2020-05-31,Mizoram,777.0,,1.0 +2020-06-01,Mizoram,896.0,,1.0 +2020-06-02,Mizoram,1012.0,,13.0 +2020-06-03,Mizoram,1095.0,,14.0 +2020-06-04,Mizoram,1346.0,,17.0 +2020-06-05,Mizoram,1687.0,,22.0 +2020-06-06,Mizoram,1991.0,,24.0 +2020-06-07,Mizoram,2252.0,,34.0 +2020-06-08,Mizoram,2496.0,,42.0 +2020-06-09,Mizoram,2747.0,,88.0 +2020-06-10,Mizoram,2747.0,,102.0 +2020-06-11,Mizoram,3152.0,,104.0 +2020-06-13,Mizoram,3727.0,,107.0 +2020-06-14,Mizoram,4327.0,,112.0 +2020-06-15,Mizoram,4919.0,,117.0 +2020-06-16,Mizoram,5524.0,,121.0 +2020-06-17,Mizoram,6035.0,,121.0 +2020-06-18,Mizoram,6661.0,,130.0 +2020-06-19,Mizoram,7496.0,,130.0 +2020-06-20,Mizoram,8284.0,,140.0 +2020-06-21,Mizoram,8718.0,,141.0 +2020-06-22,Mizoram,9277.0,,142.0 +2020-06-23,Mizoram,9840.0,,142.0 +2020-06-24,Mizoram,10486.0,,145.0 +2020-06-25,Mizoram,11672.0,,145.0 +2020-06-26,Mizoram,12753.0,,147.0 +2020-06-27,Mizoram,12846.0,,150.0 +2020-06-28,Mizoram,13012.0,,151.0 +2020-06-29,Mizoram,13072.0,,151.0 +2020-06-30,Mizoram,13746.0,,151.0 +2020-07-01,Mizoram,13886.0,,160.0 +2020-07-02,Mizoram,13931.0,,160.0 +2020-07-03,Mizoram,14370.0,,162.0 +2020-07-04,Mizoram,14509.0,,164.0 +2020-07-05,Mizoram,14981.0,,186.0 +2020-07-06,Mizoram,15006.0,,191.0 +2020-07-07,Mizoram,15058.0,,197.0 +2020-07-08,Mizoram,15183.0,,201.0 +2020-07-09,Mizoram,15523.0,,203.0 +2020-07-10,Mizoram,15868.0,,226.0 +2020-07-11,Mizoram,16396.0,,226.0 +2020-07-12,Mizoram,16696.0,,227.0 +2020-07-13,Mizoram,16914.0,,233.0 +2020-07-14,Mizoram,16914.0,,233.0 +2020-07-15,Mizoram,17168.0,,238.0 +2020-07-16,Mizoram,17489.0,,267.0 +2020-07-17,Mizoram,17760.0,,272.0 +2020-07-18,Mizoram,17963.0,,282.0 +2020-07-19,Mizoram,18147.0,,284.0 +2020-07-20,Mizoram,18147.0,,284.0 +2020-07-21,Mizoram,18297.0,,297.0 +2020-07-22,Mizoram,18603.0,,317.0 +2020-07-23,Mizoram,19014.0,,326.0 +2020-07-24,Mizoram,19238.0,,332.0 +2020-07-25,Mizoram,19781.0,,361.0 +2020-07-26,Mizoram,20053.0,,361.0 +2020-07-27,Mizoram,20053.0,,361.0 +2020-07-28,Mizoram,20442.0,,384.0 +2020-07-29,Mizoram,20597.0,,395.0 +2020-07-30,Mizoram,20798.0,,397.0 +2020-07-31,Mizoram,21118.0,,408.0 +2020-08-01,Mizoram,21294.0,,413.0 +2020-08-02,Mizoram,21523.0,,468.0 +2020-08-03,Mizoram,21583.0,,482.0 +2020-08-04,Mizoram,21845.0,,501.0 +2020-08-05,Mizoram,21956.0,,504.0 +2020-08-06,Mizoram,22211.0,,537.0 +2020-08-07,Mizoram,22211.0,,537.0 +2020-08-08,Mizoram,22211.0,,537.0 +2020-08-09,Mizoram,23324.0,,608.0 +2020-08-10,Mizoram,23702.0,,620.0 +2020-08-11,Mizoram,23848.0,,623.0 +2020-08-12,Mizoram,24895.0,,648.0 +2020-08-13,Mizoram,25054.0,,649.0 +2020-08-14,Mizoram,25472.0,,656.0 +2020-08-15,Mizoram,25929.0,,713.0 +2020-08-16,Mizoram,26611.0,, +2020-08-17,Mizoram,27115.0,, +2020-08-18,Mizoram,27388.0,, +2020-08-19,Mizoram,28076.0,, +2020-08-20,Mizoram,28976.0,, +2020-08-21,Mizoram,30753.0,, +2020-08-22,Mizoram,32391.0,, +2020-08-23,Mizoram,33486.0,, +2020-08-24,Mizoram,33507.0,, +2020-08-25,Mizoram,35214.0,, +2020-08-26,Mizoram,36240.0,, +2020-08-27,Mizoram,37452.0,, +2020-08-28,Mizoram,38534.0,, +2020-08-29,Mizoram,38906.0,, +2020-08-30,Mizoram,40383.0,, +2020-08-31,Mizoram,40797.0,, +2020-09-01,Mizoram,41683.0,, +2020-09-02,Mizoram,42332.0,, +2020-09-03,Mizoram,42977.0,, +2020-09-04,Mizoram,43846.0,, +2020-09-05,Mizoram,44803.0,, +2020-09-06,Mizoram,45073.0,, +2020-09-07,Mizoram,45153.0,, +2020-09-08,Mizoram,45925.0,, +2020-09-09,Mizoram,46414.0,, +2020-09-10,Mizoram,46638.0,, +2020-09-11,Mizoram,47214.0,, +2020-09-12,Mizoram,49091.0,, +2020-09-13,Mizoram,50259.0,, +2020-09-14,Mizoram,51316.0,, +2020-09-15,Mizoram,52622.0,, +2020-09-16,Mizoram,54199.0,, +2020-09-17,Mizoram,55463.0,, +2020-09-18,Mizoram,57012.0,, +2020-09-19,Mizoram,59015.0,, +2020-09-20,Mizoram,60759.0,, +2020-09-21,Mizoram,62407.0,, +2020-09-22,Mizoram,64312.0,, +2020-09-23,Mizoram,66320.0,, +2020-09-24,Mizoram,68340.0,, +2020-09-25,Mizoram,70483.0,, +2020-09-26,Mizoram,72410.0,, +2020-09-27,Mizoram,74326.0,, +2020-09-28,Mizoram,75552.0,, +2020-09-29,Mizoram,76976.0,, +2020-09-30,Mizoram,78491.0,, +2020-10-01,Mizoram,79743.0,, +2020-10-02,Mizoram,80859.0,, +2020-10-03,Mizoram,81967.0,, +2020-10-04,Mizoram,82667.0,, +2020-10-05,Mizoram,83092.0,, +2020-10-06,Mizoram,83965.0,, +2020-10-07,Mizoram,84822.0,, +2020-10-08,Mizoram,85701.0,, +2020-10-09,Mizoram,85986.0,, +2020-10-10,Mizoram,87240.0,, +2020-10-11,Mizoram,87699.0,, +2020-10-12,Mizoram,88551.0,, +2020-10-13,Mizoram,89795.0,, +2020-10-14,Mizoram,90748.0,, +2020-10-15,Mizoram,92151.0,, +2020-10-16,Mizoram,93584.0,, +2020-10-17,Mizoram,95288.0,, +2020-10-19,Mizoram,96427.0,, +2020-10-20,Mizoram,97664.0,, +2020-10-21,Mizoram,99424.0,, +2020-10-22,Mizoram,100553.0,, +2020-10-23,Mizoram,101868.0,, +2020-10-24,Mizoram,102952.0,, +2020-10-25,Mizoram,104131.0,, +2020-10-26,Mizoram,104545.0,, +2020-10-27,Mizoram,106304.0,, +2020-10-28,Mizoram,107811.0,, +2020-10-29,Mizoram,109476.0,, +2020-10-30,Mizoram,111058.0,, +2020-10-31,Mizoram,112216.0,, +2020-11-01,Mizoram,113915.0,, +2020-11-02,Mizoram,114065.0,, +2020-11-03,Mizoram,115980.0,, +2020-11-04,Mizoram,117038.0,, +2020-11-05,Mizoram,118253.0,, +2020-11-06,Mizoram,119661.0,, +2020-11-07,Mizoram,121633.0,, +2020-11-08,Mizoram,123015.0,, +2020-11-09,Mizoram,123185.0,, +2020-11-10,Mizoram,124730.0,, +2020-11-11,Mizoram,126142.0,, +2020-11-12,Mizoram,127101.0,, +2020-11-13,Mizoram,128261.0,, +2020-11-14,Mizoram,129407.0,, +2020-11-15,Mizoram,129990.0,, +2020-11-16,Mizoram,130825.0,, +2020-11-17,Mizoram,132404.0,, +2020-11-18,Mizoram,134538.0,, +2020-11-19,Mizoram,135926.0,, +2020-11-20,Mizoram,137933.0,, +2020-11-21,Mizoram,139021.0,, +2020-11-22,Mizoram,140073.0,, +2020-11-23,Mizoram,140387.0,, +2020-11-24,Mizoram,142133.0,, +2020-11-25,Mizoram,143687.0,, +2020-11-26,Mizoram,145189.0,, +2020-11-27,Mizoram,146556.0,, +2020-11-28,Mizoram,148003.0,, +2020-11-29,Mizoram,149061.0,, +2020-11-30,Mizoram,150119.0,, +2020-12-01,Mizoram,151056.0,, +2020-12-02,Mizoram,152137.0,, +2020-12-03,Mizoram,153180.0,, +2020-12-04,Mizoram,154157.0,, +2020-12-05,Mizoram,155507.0,, +2020-12-06,Mizoram,156651.0,, +2020-12-07,Mizoram,157292.0,, +2020-12-08,Mizoram,158844.0,, +2020-12-09,Mizoram,159714.0,, +2020-12-10,Mizoram,161036.0,, +2020-12-11,Mizoram,162246.0,, +2020-12-12,Mizoram,163202.0,, +2020-12-13,Mizoram,164318.0,, +2020-12-14,Mizoram,164617.0,, +2020-12-15,Mizoram,165763.0,, +2020-12-16,Mizoram,167275.0,, +2020-12-17,Mizoram,168082.0,, +2020-12-18,Mizoram,169138.0,, +2020-12-19,Mizoram,170231.0,, +2020-12-20,Mizoram,171122.0,, +2020-12-21,Mizoram,171305.0,, +2020-12-22,Mizoram,172481.0,, +2020-12-23,Mizoram,173567.0,, +2020-12-24,Mizoram,174742.0,, +2020-12-25,Mizoram,175756.0,, +2020-12-27,Mizoram,176131.0,, +2020-12-28,Mizoram,176234.0,, +2020-12-29,Mizoram,177387.0,, +2020-12-31,Mizoram,179594.0,, +2021-01-01,Mizoram,180519.0,, +2021-01-02,Mizoram,180620.0,, +2021-01-03,Mizoram,181165.0,, +2021-01-04,Mizoram,181351.0,, +2021-01-05,Mizoram,182272.0,, +2021-01-06,Mizoram,183145.0,, +2021-01-07,Mizoram,184069.0,, +2021-01-08,Mizoram,185161.0,, +2021-01-09,Mizoram,186098.0,, +2021-01-10,Mizoram,186887.0,, +2021-01-11,Mizoram,187097.0,, +2021-01-12,Mizoram,188118.0,, +2021-01-13,Mizoram,189196.0,, +2021-01-14,Mizoram,190060.0,, +2021-01-15,Mizoram,191096.0,, +2021-01-16,Mizoram,191982.0,, +2021-01-17,Mizoram,192766.0,, +2021-01-18,Mizoram,193034.0,, +2021-01-19,Mizoram,194415.0,, +2021-01-20,Mizoram,195534.0,, +2021-01-21,Mizoram,197674.0,, +2021-01-22,Mizoram,198999.0,, +2021-01-23,Mizoram,200128.0,, +2021-01-24,Mizoram,201240.0,, +2021-01-25,Mizoram,201360.0,, +2021-01-27,Mizoram,203378.0,, +2021-01-28,Mizoram,204491.0,, +2021-01-29,Mizoram,205361.0,, +2021-01-30,Mizoram,206095.0,, +2021-01-31,Mizoram,207303.0,, +2021-02-01,Mizoram,207778.0,, +2021-02-02,Mizoram,209012.0,, +2021-02-03,Mizoram,209716.0,, +2021-02-04,Mizoram,211423.0,, +2021-02-05,Mizoram,212732.0,, +2021-02-06,Mizoram,214309.0,, +2021-02-07,Mizoram,214776.0,, +2021-02-08,Mizoram,215331.0,, +2021-02-09,Mizoram,216510.0,, +2021-02-10,Mizoram,217442.0,, +2021-02-11,Mizoram,218043.0,, +2021-02-12,Mizoram,219250.0,, +2021-02-14,Mizoram,220482.0,, +2021-02-15,Mizoram,220610.0,, +2021-02-16,Mizoram,221744.0,, +2021-02-17,Mizoram,222475.0,, +2021-02-18,Mizoram,223448.0,, +2021-02-19,Mizoram,224471.0,, +2021-02-20,Mizoram,225762.0,, +2021-02-21,Mizoram,226402.0,, +2021-02-22,Mizoram,226729.0,, +2021-02-23,Mizoram,227698.0,, +2021-02-24,Mizoram,228634.0,, +2021-02-25,Mizoram,229425.0,, +2021-02-26,Mizoram,230420.0,, +2021-02-27,Mizoram,231396.0,, +2021-02-28,Mizoram,232060.0,, +2021-03-01,Mizoram,232293.0,, +2021-03-02,Mizoram,233304.0,, +2021-03-03,Mizoram,234742.0,, +2021-03-04,Mizoram,235319.0,, +2021-03-05,Mizoram,236334.0,, +2021-03-06,Mizoram,237047.0,, +2021-03-08,Mizoram,237957.0,, +2021-03-09,Mizoram,239090.0,, +2021-03-10,Mizoram,239750.0,, +2021-03-11,Mizoram,240444.0,, +2021-03-12,Mizoram,240960.0,, +2021-03-13,Mizoram,241471.0,, +2021-03-14,Mizoram,242331.0,, +2021-03-15,Mizoram,242541.0,, +2021-03-16,Mizoram,243076.0,, +2021-03-18,Mizoram,244539.0,, +2021-03-19,Mizoram,245225.0,, +2021-03-20,Mizoram,245679.0,, +2021-03-21,Mizoram,246189.0,, +2021-03-22,Mizoram,246527.0,, +2021-03-23,Mizoram,247247.0,, +2021-03-24,Mizoram,247878.0,, +2021-03-25,Mizoram,248310.0,, +2021-03-26,Mizoram,249029.0,, +2021-03-27,Mizoram,249659.0,, +2021-03-28,Mizoram,251064.0,, +2021-03-29,Mizoram,251302.0,, +2021-03-30,Mizoram,251722.0,, +2021-03-31,Mizoram,252400.0,, +2021-04-01,Mizoram,253203.0,, +2021-04-02,Mizoram,253938.0,, +2021-04-03,Mizoram,254324.0,, +2021-04-04,Mizoram,254871.0,, +2021-04-05,Mizoram,255297.0,, +2021-04-06,Mizoram,256032.0,, +2021-04-07,Mizoram,257181.0,, +2021-04-08,Mizoram,258555.0,, +2021-04-09,Mizoram,259943.0,, +2021-04-10,Mizoram,260728.0,, +2021-04-11,Mizoram,262310.0,, +2021-04-12,Mizoram,262830.0,, +2021-04-13,Mizoram,264490.0,, +2021-04-14,Mizoram,266380.0,, +2021-04-15,Mizoram,268697.0,, +2021-04-16,Mizoram,271178.0,, +2021-04-17,Mizoram,273248.0,, +2021-04-19,Mizoram,273855.0,, +2021-04-21,Mizoram,280243.0,, +2021-04-22,Mizoram,282502.0,, +2021-04-23,Mizoram,285702.0,, +2021-04-24,Mizoram,287694.0,, +2021-04-25,Mizoram,289994.0,, +2021-04-26,Mizoram,290416.0,, +2021-04-27,Mizoram,293905.0,, +2021-04-28,Mizoram,297210.0,, +2021-04-29,Mizoram,300922.0,, +2021-04-30,Mizoram,303922.0,, +2021-05-01,Mizoram,306714.0,, +2021-05-02,Mizoram,308827.0,, +2021-05-03,Mizoram,310058.0,, +2021-05-04,Mizoram,313575.0,, +2021-05-05,Mizoram,316793.0,, +2021-05-06,Mizoram,320041.0,, +2021-05-07,Mizoram,323271.0,, +2021-05-08,Mizoram,326234.0,, +2021-05-10,Mizoram,329805.0,, +2021-05-11,Mizoram,333364.0,, +2021-05-12,Mizoram,337104.0,, +2021-05-14,Mizoram,341916.0,, +2021-05-16,Mizoram,346042.0,, +2021-05-17,Mizoram,346641.0,, +2021-05-19,Mizoram,352904.0,, +2021-05-20,Mizoram,354526.0,, +2021-05-23,Mizoram,367090.0,, +2021-05-26,Mizoram,375843.0,, +2021-05-27,Mizoram,377806.0,, +2021-05-29,Mizoram,384898.0,, +2021-05-30,Mizoram,389007.0,, +2021-05-31,Mizoram,389751.0,, +2021-06-01,Mizoram,393681.0,, +2021-06-03,Mizoram,400698.0,, +2021-06-04,Mizoram,403676.0,, +2021-06-05,Mizoram,406982.0,, +2021-06-06,Mizoram,409868.0,, +2021-06-07,Mizoram,410614.0,, +2020-04-06,Nagaland,60.0,47,0.0 +2020-04-10,Nagaland,70.0,69,0.0 +2020-04-11,Nagaland,70.0,70,0.0 +2020-04-12,Nagaland,74.0,70,0.0 +2020-04-14,Nagaland,174.0,97,0.0 +2020-04-15,Nagaland,184.0,174,0.0 +2020-04-17,Nagaland,274.0,222,0.0 +2020-04-18,Nagaland,392.0,292,0.0 +2020-04-19,Nagaland,404.0,345,0.0 +2020-04-20,Nagaland,434.0,404,0.0 +2020-04-21,Nagaland,537.0,456,0.0 +2020-04-22,Nagaland,543.0,481,0.0 +2020-04-23,Nagaland,607.0,543,0.0 +2020-04-25,Nagaland,613.0,607,0.0 +2020-04-26,Nagaland,613.0,613,0.0 +2020-04-27,Nagaland,629.0,613,0.0 +2020-04-28,Nagaland,639.0,620,0.0 +2020-04-29,Nagaland,644.0,631,0.0 +2020-04-30,Nagaland,653.0,640,0.0 +2020-05-01,Nagaland,664.0,650,0.0 +2020-05-02,Nagaland,674.0,661,0.0 +2020-05-03,Nagaland,684.0,663,0.0 +2020-05-04,Nagaland,708.0,679,0.0 +2020-05-05,Nagaland,724.0,771,0.0 +2020-05-06,Nagaland,763.0,712,0.0 +2020-05-07,Nagaland,786.0,728,0.0 +2020-05-08,Nagaland,805.0,775,0.0 +2020-05-09,Nagaland,848.0,786,0.0 +2020-05-10,Nagaland,862.0,806,0.0 +2020-05-11,Nagaland,875.0,848,0.0 +2020-05-12,Nagaland,882.0,872,0.0 +2020-05-13,Nagaland,889.0,872,0.0 +2020-05-14,Nagaland,891.0,873,0.0 +2020-05-15,Nagaland,910.0,889,0.0 +2020-05-16,Nagaland,917.0,891,0.0 +2020-05-17,Nagaland,952.0,914,0.0 +2020-05-18,Nagaland,961.0,914,0.0 +2020-05-19,Nagaland,978.0,948,0.0 +2020-05-20,Nagaland,985.0,952,0.0 +2020-05-21,Nagaland,1001.0,978,0.0 +2020-05-22,Nagaland,1035.0,1012,0.0 +2020-05-23,Nagaland,1065.0,1015,0.0 +2020-05-24,Nagaland,1097.0,1032,0.0 +2020-05-25,Nagaland,1366.0,1078,3.0 +2020-05-26,Nagaland,1366.0,1080,4.0 +2020-05-27,Nagaland,1554.0,1224,9.0 +2020-05-28,Nagaland,1765.0,1317,18.0 +2020-05-29,Nagaland,1997.0,1409,25.0 +2020-05-30,Nagaland,2210.0,1496,36.0 +2020-05-31,Nagaland,2576.0,1596,43.0 +2020-06-01,Nagaland,2870.0,1744,43.0 +2020-06-02,Nagaland,3257.0,1836,49.0 +2020-06-03,Nagaland,3414.0,2002,58.0 +2020-06-04,Nagaland,3739.0,2151,80.0 +2020-06-05,Nagaland,3974.0,2372,94.0 +2020-06-06,Nagaland,4061.0,2614,107.0 +2020-06-07,Nagaland,4371.0,2956,118.0 +2020-06-08,Nagaland,4729.0,3176,123.0 +2020-06-09,Nagaland,4896.0,3512,127.0 +2020-06-10,Nagaland,5220.0,3867,128.0 +2020-06-11,Nagaland,5667.0,4198,130.0 +2020-06-12,Nagaland,6104.0,4593,156.0 +2020-06-13,Nagaland,6466.0,4904,163.0 +2020-06-14,Nagaland,6478.0,5155,168.0 +2020-06-15,Nagaland,7132.0,5642,177.0 +2020-06-16,Nagaland,7835.0,6232,179.0 +2020-06-17,Nagaland,8387.0,,193.0 +2020-06-18,Nagaland,9039.0,7567,193.0 +2020-06-19,Nagaland,10102.0,8213,198.0 +2020-06-20,Nagaland,9128.0, ,201.0 +2020-06-21,Nagaland,9971.0,,211.0 +2020-06-22,Nagaland,10599.0,,280.0 +2020-06-23,Nagaland,11173.0,,330.0 +2020-06-24,Nagaland,11867.0,,347.0 +2020-06-25,Nagaland,12546.0,,355.0 +2020-06-26,Nagaland,13085.0,,371.0 +2020-06-27,Nagaland,14217.0,,387.0 +2020-06-28,Nagaland,15240.0,,415.0 +2020-06-29,Nagaland,15905.0,,434.0 +2020-06-30,Nagaland,16563.0,,459.0 +2020-07-01,Nagaland,17177.0,,501.0 +2020-07-02,Nagaland,17887.0,,535.0 +2020-07-03,Nagaland,18635.0,,539.0 +2020-07-04,Nagaland,19263.0,,563.0 +2020-07-05,Nagaland,19867.0,,590.0 +2020-07-06,Nagaland,20484.0,,625.0 +2020-07-07,Nagaland,21209.0,,644.0 +2020-07-08,Nagaland,21980.0,,657.0 +2020-07-09,Nagaland,22697.0,,673.0 +2020-07-10,Nagaland,23402.0,,732.0 +2020-07-11,Nagaland,24065.0,,748.0 +2020-07-12,Nagaland,24985.0,,774.0 +2020-07-13,Nagaland,26151.0,,845.0 +2020-07-14,Nagaland,26927.0,,896.0 +2020-07-15,Nagaland,27421.0,,902.0 +2020-07-16,Nagaland,28020.0,,916.0 +2020-07-17,Nagaland,28472.0,,956.0 +2020-07-18,Nagaland,29092.0,,978.0 +2020-07-19,Nagaland,29326.0,,988.0 +2020-07-20,Nagaland,29994.0,,1021.0 +2020-07-21,Nagaland,30574.0,,1030.0 +2020-07-22,Nagaland,31503.0,,1084.0 +2020-07-23,Nagaland,32169.0,,1174.0 +2020-07-24,Nagaland,32909.0,,1238.0 +2020-07-25,Nagaland,33704.0,,1289.0 +2020-07-26,Nagaland,34389.0,,1339.0 +2020-07-27,Nagaland,34968.0,,1385.0 +2020-07-28,Nagaland,35676.0,,1460.0 +2020-07-29,Nagaland,36355.0,,1513.0 +2020-07-30,Nagaland,37156.0,,1566.0 +2020-07-31,Nagaland,37895.0,,1693.0 +2020-08-01,Nagaland,38634.0,,1831.0 +2020-08-02,Nagaland,39292.0,,1935.0 +2020-08-03,Nagaland,40293.0,,2129.0 +2020-08-04,Nagaland,41367.0,,2405.0 +2020-08-05,Nagaland,42029.0,,2498.0 +2020-08-06,Nagaland,42900.0,,2580.0 +2020-08-07,Nagaland,43911.0,,2657.0 +2020-08-08,Nagaland,44566.0,,2688.0 +2020-08-09,Nagaland,45564.0,,2781.0 +2020-08-10,Nagaland,46518.0,,3011.0 +2020-08-11,Nagaland,47008.0,,3031.0 +2020-08-12,Nagaland,47939.0,,3113.0 +2020-08-13,Nagaland,48445.0,,3168.0 +2020-08-14,Nagaland,49534.0,,3322.0 +2020-08-15,Nagaland,50200.0,,3340.0 +2020-08-16,Nagaland,50946.0,,3394.0 +2020-08-17,Nagaland,51483.0,,3455.0 +2020-08-18,Nagaland,52139.0,,3520.0 +2020-08-19,Nagaland,52672.0,,3558.0 +2020-08-20,Nagaland,54047.0,, +2020-08-21,Nagaland,54660.0,, +2020-08-22,Nagaland,55479.0,, +2020-08-23,Nagaland,56340.0,, +2020-08-24,Nagaland,56901.0,, +2020-08-25,Nagaland,57426.0,, +2020-08-26,Nagaland,58053.0,, +2020-08-27,Nagaland,58431.0,, +2020-08-28,Nagaland,58782.0,, +2020-08-29,Nagaland,59413.0,, +2020-08-30,Nagaland,60225.0,, +2020-08-31,Nagaland,60865.0,, +2020-09-01,Nagaland,61539.0,, +2020-09-02,Nagaland,62404.0,, +2020-09-03,Nagaland,63159.0,, +2020-09-04,Nagaland,64092.0,, +2020-09-05,Nagaland,64803.0,, +2020-09-06,Nagaland,65555.0,, +2020-09-07,Nagaland,66061.0,, +2020-09-08,Nagaland,66444.0,, +2020-09-09,Nagaland,67268.0,, +2020-09-10,Nagaland,68141.0,, +2020-09-11,Nagaland,69050.0,, +2020-09-12,Nagaland,69666.0,, +2020-09-13,Nagaland,70171.0,, +2020-09-14,Nagaland,70622.0,, +2020-09-15,Nagaland,70994.0,, +2020-09-16,Nagaland,71631.0,, +2020-09-17,Nagaland,72077.0,, +2020-09-18,Nagaland,72596.0,, +2020-09-19,Nagaland,72807.0,, +2020-09-20,Nagaland,73611.0,, +2020-09-21,Nagaland,74423.0,, +2020-09-22,Nagaland,74978.0,, +2020-09-23,Nagaland,75435.0,, +2020-09-24,Nagaland,76072.0,, +2020-09-25,Nagaland,76682.0,, +2020-09-26,Nagaland,77364.0,, +2020-09-27,Nagaland,77953.0,, +2020-09-28,Nagaland,78280.0,, +2020-09-29,Nagaland,78853.0,, +2020-09-30,Nagaland,79713.0,, +2020-10-01,Nagaland,80426.0,, +2020-10-02,Nagaland,81109.0,, +2020-10-03,Nagaland,81538.0,, +2020-10-04,Nagaland,81989.0,, +2020-10-05,Nagaland,82417.0,, +2020-10-06,Nagaland,82968.0,, +2020-10-07,Nagaland,83560.0,, +2020-10-08,Nagaland,84033.0,, +2020-10-09,Nagaland,84777.0,, +2020-10-10,Nagaland,85196.0,, +2020-10-11,Nagaland,85973.0,, +2020-10-12,Nagaland,87014.0,, +2020-10-13,Nagaland,87666.0,, +2020-10-14,Nagaland,88447.0,, +2020-10-15,Nagaland,88459.0,, +2020-10-16,Nagaland,89203.0,, +2020-10-17,Nagaland,89735.0,, +2020-10-18,Nagaland,90407.0,, +2020-10-19,Nagaland,91154.0,, +2020-10-20,Nagaland,91678.0,, +2020-10-21,Nagaland,92889.0,, +2020-10-22,Nagaland,93381.0,, +2020-10-23,Nagaland,93929.0,, +2020-10-24,Nagaland,94496.0,, +2020-10-25,Nagaland,95168.0,, +2020-10-26,Nagaland,95524.0,, +2020-10-27,Nagaland,95968.0,, +2020-10-28,Nagaland,96714.0,, +2020-10-29,Nagaland,97298.0,, +2020-10-30,Nagaland,97719.0,, +2020-10-31,Nagaland,98271.0,, +2020-11-01,Nagaland,98575.0,, +2020-11-02,Nagaland,98836.0,, +2020-11-03,Nagaland,99362.0,, +2020-11-04,Nagaland,100002.0,, +2020-11-05,Nagaland,100534.0,, +2020-11-06,Nagaland,102234.0,, +2020-11-07,Nagaland,102862.0,, +2020-11-08,Nagaland,101801.0,, +2020-11-09,Nagaland,102210.0,, +2020-11-10,Nagaland,102562.0,, +2020-11-11,Nagaland,103037.0,, +2020-11-12,Nagaland,103513.0,, +2020-11-13,Nagaland,103856.0,, +2020-11-14,Nagaland,104157.0,, +2020-11-15,Nagaland,104878.0,, +2020-11-16,Nagaland,105213.0,, +2020-11-17,Nagaland,124809.0,, +2020-11-18,Nagaland,106738.0,, +2020-11-19,Nagaland,107276.0,, +2020-11-20,Nagaland,108054.0,, +2020-11-21,Nagaland,108781.0,, +2020-11-22,Nagaland,109416.0,, +2020-11-23,Nagaland,109931.0,, +2020-11-24,Nagaland,110382.0,, +2020-11-25,Nagaland,110864.0,, +2020-11-26,Nagaland,111551.0,, +2020-11-27,Nagaland,112061.0,, +2020-11-28,Nagaland,112347.0,, +2020-11-29,Nagaland,112820.0,, +2020-11-30,Nagaland,113046.0,, +2020-12-01,Nagaland,113371.0,, +2020-12-02,Nagaland,113727.0,, +2020-12-03,Nagaland,113952.0,, +2020-12-04,Nagaland,114232.0,, +2020-12-05,Nagaland,114417.0,, +2020-12-06,Nagaland,114555.0,, +2020-12-07,Nagaland,114809.0,, +2020-12-08,Nagaland,115224.0,, +2020-12-09,Nagaland,115583.0,, +2020-12-10,Nagaland,116033.0,, +2020-12-11,Nagaland,116359.0,, +2020-12-12,Nagaland,116685.0,, +2020-12-13,Nagaland,116880.0,, +2020-12-14,Nagaland,117267.0,, +2020-12-15,Nagaland,117545.0,, +2020-12-16,Nagaland,117886.0,, +2020-12-17,Nagaland,118202.0,, +2020-12-18,Nagaland,118324.0,, +2020-12-19,Nagaland,118485.0,, +2020-12-20,Nagaland,118579.0,, +2020-12-21,Nagaland,118937.0,, +2020-12-22,Nagaland,119085.0,, +2020-12-23,Nagaland,119229.0,, +2020-12-24,Nagaland,119498.0,, +2020-12-25,Nagaland,119611.0,, +2020-12-26,Nagaland,119641.0,, +2020-12-27,Nagaland,119713.0,, +2020-12-28,Nagaland,119858.0,, +2020-12-29,Nagaland,119959.0,, +2020-12-30,Nagaland,120071.0,, +2020-12-31,Nagaland,120246.0,, +2021-01-01,Nagaland,120397.0,, +2021-01-02,Nagaland,120496.0,, +2021-01-03,Nagaland,120626.0,, +2021-01-04,Nagaland,120771.0,, +2021-01-05,Nagaland,121009.0,, +2021-01-06,Nagaland,121268.0,, +2021-01-07,Nagaland,121428.0,, +2021-01-08,Nagaland,121586.0,, +2021-01-09,Nagaland,121763.0,, +2021-01-10,Nagaland,121851.0,, +2021-01-11,Nagaland,121976.0,, +2021-01-12,Nagaland,122223.0,, +2021-01-13,Nagaland,122366.0,, +2021-01-14,Nagaland,122578.0,, +2021-01-15,Nagaland,122708.0,, +2021-01-16,Nagaland,122899.0,, +2021-01-17,Nagaland,123029.0,, +2021-01-18,Nagaland,123166.0,, +2021-01-19,Nagaland,123350.0,, +2021-01-20,Nagaland,123470.0,, +2021-01-21,Nagaland,123635.0,, +2021-01-22,Nagaland,123806.0,, +2021-01-23,Nagaland,123935.0,, +2021-01-24,Nagaland,123999.0,, +2021-01-25,Nagaland,124078.0,, +2021-01-26,Nagaland,124186.0,, +2021-01-27,Nagaland,124326.0,, +2021-01-28,Nagaland,124466.0,, +2021-01-29,Nagaland,124658.0,, +2021-01-30,Nagaland,124820.0,, +2021-01-31,Nagaland,124945.0,, +2021-02-01,Nagaland,125075.0,, +2021-02-02,Nagaland,125210.0,, +2021-02-03,Nagaland,125331.0,, +2021-02-04,Nagaland,125521.0,, +2021-02-05,Nagaland,125667.0,, +2021-02-06,Nagaland,126187.0,, +2021-02-07,Nagaland,126597.0,, +2021-02-08,Nagaland,126877.0,, +2021-02-09,Nagaland,127149.0,, +2021-02-10,Nagaland,127320.0,, +2021-02-11,Nagaland,127552.0,, +2021-02-12,Nagaland,127722.0,, +2021-02-13,Nagaland,127927.0,, +2021-02-14,Nagaland,128108.0,, +2021-02-15,Nagaland,128241.0,, +2021-02-16,Nagaland,128499.0,, +2021-02-17,Nagaland,128623.0,, +2021-02-18,Nagaland,128754.0,, +2021-02-19,Nagaland,128898.0,, +2021-02-20,Nagaland,129050.0,, +2021-02-21,Nagaland,129164.0,, +2021-02-22,Nagaland,129228.0,, +2021-02-23,Nagaland,129522.0,, +2021-02-24,Nagaland,129711.0,, +2021-02-25,Nagaland,129815.0,, +2021-02-26,Nagaland,129926.0,, +2021-02-27,Nagaland,130147.0,, +2021-02-28,Nagaland,130265.0,, +2021-03-01,Nagaland,130436.0,, +2021-03-02,Nagaland,130743.0,, +2021-03-03,Nagaland,131010.0,, +2021-03-04,Nagaland,131243.0,, +2021-03-05,Nagaland,131491.0,, +2021-03-06,Nagaland,131612.0,, +2021-03-07,Nagaland,131788.0,, +2021-03-08,Nagaland,131916.0,, +2021-03-09,Nagaland,132242.0,, +2021-03-10,Nagaland,132779.0,, +2021-03-11,Nagaland,133252.0,, +2021-03-12,Nagaland,133437.0,, +2021-03-13,Nagaland,133696.0,, +2021-03-14,Nagaland,133812.0,, +2021-03-15,Nagaland,133942.0,, +2021-03-16,Nagaland,134241.0,, +2021-03-17,Nagaland,134419.0,, +2021-03-18,Nagaland,134580.0,, +2021-03-19,Nagaland,134721.0,, +2021-03-20,Nagaland,134822.0,, +2021-03-21,Nagaland,134886.0,, +2021-03-22,Nagaland,134968.0,, +2021-03-23,Nagaland,135304.0,, +2021-03-24,Nagaland,135549.0,, +2021-03-25,Nagaland,135646.0,, +2021-03-26,Nagaland,135648.0,, +2021-03-27,Nagaland,135859.0,, +2021-03-28,Nagaland,135936.0,, +2021-03-29,Nagaland,135981.0,, +2021-03-30,Nagaland,136126.0,, +2021-03-31,Nagaland,136361.0,, +2021-04-01,Nagaland,136586.0,, +2021-04-02,Nagaland,136754.0,, +2021-04-03,Nagaland,136843.0,, +2021-04-04,Nagaland,137007.0,, +2021-04-05,Nagaland,137112.0,, +2021-04-06,Nagaland,137282.0,, +2021-04-07,Nagaland,137507.0,, +2021-04-08,Nagaland,137712.0,, +2021-04-10,Nagaland,138300.0,, +2021-04-11,Nagaland,138515.0,, +2021-04-12,Nagaland,138701.0,, +2021-04-13,Nagaland,138968.0,, +2021-04-14,Nagaland,139312.0,, +2021-04-15,Nagaland,139558.0,, +2021-04-16,Nagaland,139828.0,, +2021-04-17,Nagaland,140194.0,, +2021-04-18,Nagaland,140449.0,, +2021-04-19,Nagaland,140601.0,, +2021-04-20,Nagaland,141093.0,, +2021-04-21,Nagaland,141806.0,, +2021-04-22,Nagaland,142072.0,, +2021-04-23,Nagaland,142528.0,, +2021-04-24,Nagaland,143272.0,, +2021-04-25,Nagaland,143918.0,, +2021-04-26,Nagaland,144226.0,, +2021-04-27,Nagaland,144871.0,, +2021-04-28,Nagaland,145547.0,, +2021-04-29,Nagaland,146190.0,, +2021-04-30,Nagaland,146937.0,, +2021-05-01,Nagaland,147577.0,, +2021-05-02,Nagaland,148118.0,, +2021-05-03,Nagaland,148556.0,, +2021-05-05,Nagaland,150142.0,, +2021-05-06,Nagaland,151050.0,, +2021-05-07,Nagaland,151718.0,, +2021-05-08,Nagaland,163892.0,, +2021-05-09,Nagaland,165028.0,, +2021-05-10,Nagaland,165550.0,, +2021-05-11,Nagaland,166895.0,, +2021-05-12,Nagaland,168633.0,, +2021-05-13,Nagaland,170119.0,, +2021-05-14,Nagaland,171234.0,, +2021-05-15,Nagaland,172161.0,, +2021-05-16,Nagaland,173084.0,, +2021-05-17,Nagaland,174303.0,, +2021-05-18,Nagaland,176026.0,, +2021-05-19,Nagaland,177472.0,, +2021-05-20,Nagaland,179511.0,, +2021-05-21,Nagaland,181052.0,, +2021-05-22,Nagaland,182509.0,, +2021-05-23,Nagaland,183703.0,, +2021-05-24,Nagaland,184709.0,, +2021-05-25,Nagaland,185746.0,, +2021-05-26,Nagaland,185944.0,, +2021-05-27,Nagaland,188446.0,, +2021-05-28,Nagaland,189650.0,, +2021-05-29,Nagaland,190696.0,, +2021-05-30,Nagaland,191564.0,, +2021-05-31,Nagaland,192253.0,, +2021-06-01,Nagaland,193465.0,, +2021-06-02,Nagaland,194525.0,, +2021-06-03,Nagaland,195893.0,, +2021-06-04,Nagaland,197054.0,, +2021-06-05,Nagaland,198514.0,, +2021-06-06,Nagaland,199356.0,, +2021-06-07,Nagaland,200370.0,, +2020-04-03,Odisha,1395.0,1108,20.0 +2020-04-07,Odisha,2441.0,,42.0 +2020-04-08,Odisha,2441.0,2399,42.0 +2020-04-09,Odisha,3249.0,3201,48.0 +2020-04-10,Odisha,3547.0,3497,50.0 +2020-04-11,Odisha,3551.0,3497,51.0 +2020-04-12,Odisha,3862.0,3808,54.0 +2020-04-13,Odisha,4170.0,4116,54.0 +2020-04-14,Odisha,4734.0,4678,56.0 +2020-04-15,Odisha,5537.0,5477,60.0 +2020-04-16,Odisha,6734.0,6674,60.0 +2020-04-17,Odisha,7577.0,7517,60.0 +2020-04-18,Odisha,8619.0,8559,60.0 +2020-04-19,Odisha,9690.0,9629,61.0 +2020-04-20,Odisha,10641.0,,68.0 +2020-04-21,Odisha,11748.0,,79.0 +2020-04-22,Odisha,13775.0,,83.0 +2020-04-23,Odisha,15984.0,,89.0 +2020-04-24,Odisha,18458.0,,94.0 +2020-04-25,Odisha,20599.0,,94.0 +2020-04-26,Odisha,22816.0,,103.0 +2020-04-27,Odisha,25103.0,,111.0 +2020-04-28,Odisha,26687.0,,118.0 +2020-04-29,Odisha,29108.0,,122.0 +2020-04-30,Odisha,31696.0,,142.0 +2020-05-01,Odisha,34133.0,,149.0 +2020-05-02,Odisha,36593.0,,157.0 +2020-05-03,Odisha,38658.0,,162.0 +2020-05-04,Odisha,41128.0,,169.0 +2020-05-05,Odisha,44663.0,,170.0 +2020-05-06,Odisha,47454.0,,185.0 +2020-05-07,Odisha,50514.0,,209.0 +2020-05-08,Odisha,52974.0,,271.0 +2020-05-09,Odisha,56322.0,,294.0 +2020-05-10,Odisha,59780.0,,362.0 +2020-05-11,Odisha,63478.0,,414.0 +2020-05-12,Odisha,68057.0,,437.0 +2020-05-13,Odisha,72756.0,,538.0 +2020-05-14,Odisha,77150.0,,611.0 +2020-05-15,Odisha,81919.0,,672.0 +2020-05-16,Odisha,86140.0,,737.0 +2020-05-17,Odisha,91223.0,,828.0 +2020-05-18,Odisha,95766.0,,876.0 +2020-05-19,Odisha,100302.0,,978.0 +2020-05-20,Odisha,105914.0,,1052.0 +2020-05-21,Odisha,108432.0,,1103.0 +2020-05-22,Odisha,113437.0,,1189.0 +2020-05-23,Odisha,118446.0,,1269.0 +2020-05-24,Odisha,123834.0,,1335.0 +2020-05-25,Odisha,127776.0,,1438.0 +2020-05-26,Odisha,131595.0,,1517.0 +2020-05-27,Odisha,136274.0,,1593.0 +2020-05-28,Odisha,139311.0,,1660.0 +2020-05-29,Odisha,143570.0,,1723.0 +2020-05-30,Odisha,147490.0,,1819.0 +2020-05-31,Odisha,152131.0,,1948.0 +2020-06-01,Odisha,155690.0,,2104.0 +2020-06-02,Odisha,159567.0,,2245.0 +2020-06-03,Odisha,162891.0,,2388.0 +2020-06-04,Odisha,165824.0,,2478.0 +2020-06-05,Odisha,169010.0,,2608.0 +2020-06-06,Odisha,172598.0,,2781.0 +2020-06-07,Odisha,176098.0,,2856.0 +2020-06-08,Odisha,179415.0,,2994.0 +2020-06-09,Odisha,182384.0,,3140.0 +2020-06-10,Odisha,185401.0,,3250.0 +2020-06-11,Odisha,188743.0,,3386.0 +2020-06-12,Odisha,192576.0,,3477.0 +2020-06-13,Odisha,196456.0,,3723.0 +2020-06-14,Odisha,200014.0,,3909.0 +2020-06-15,Odisha,202513.0,,4055.0 +2020-06-16,Odisha,205501.0,,4163.0 +2020-06-17,Odisha,208472.0,,4338.0 +2020-06-18,Odisha,212224.0,,4512.0 +2020-06-19,Odisha,216607.0,,4677.0 +2020-06-20,Odisha,219774.0,,4856.0 +2020-06-21,Odisha,224402.0,,5160.0 +2020-06-22,Odisha,227860.0,,5303.0 +2020-06-23,Odisha,231356.0,,5470.0 +2020-06-24,Odisha,235627.0,,5752.0 +2020-06-25,Odisha,239815.0,,5962.0 +2020-06-26,Odisha,244588.0,,6180.0 +2020-06-27,Odisha,249902.0,,6350.0 +2020-06-28,Odisha,255809.0,,6614.0 +2020-06-29,Odisha,260428.0,,6859.0 +2020-06-30,Odisha,265431.0,,7065.0 +2020-07-01,Odisha,270678.0,,7316.0 +2020-07-02,Odisha,274672.0,,7545.0 +2020-07-03,Odisha,281523.0,,8106.0 +2020-07-04,Odisha,287090.0,,8601.0 +2020-07-05,Odisha,292407.0,,9070.0 +2020-07-06,Odisha,297234.0,,9526.0 +2020-07-07,Odisha,302780.0,,10097.0 +2020-07-08,Odisha,308698.0,,10624.0 +2020-07-09,Odisha,314987.0,,11201.0 +2020-07-10,Odisha,321443.0,,11956.0 +2020-07-11,Odisha,327288.0,,12526.0 +2020-07-12,Odisha,334527.0,,13121.0 +2020-07-13,Odisha,341537.0,,13737.0 +2020-07-14,Odisha,347226.0,,14280.0 +2020-07-15,Odisha,353824.0,,14898.0 +2020-07-16,Odisha,361920.0,,15392.0 +2020-07-17,Odisha,369738.0,,16110.0 +2020-07-18,Odisha,377893.0,,16701.0 +2020-07-19,Odisha,386102.0,,17437.0 +2020-07-20,Odisha,393602.0,,18110.0 +2020-07-21,Odisha,401644.0,,18757.0 +2020-07-22,Odisha,410921.0,,19835.0 +2020-07-23,Odisha,421931.0,,21099.0 +2020-07-24,Odisha,433578.0,,22693.0 +2020-07-25,Odisha,446311.0,,24013.0 +2020-07-26,Odisha,458120.0,,25389.0 +2020-07-27,Odisha,467447.0,,26892.0 +2020-07-28,Odisha,476560.0,,28107.0 +2020-07-29,Odisha,487310.0,,29175.0 +2020-07-30,Odisha,500238.0,,30378.0 +2020-07-31,Odisha,514573.0,,31877.0 +2020-08-01,Odisha,528708.0,,33479.0 +2020-08-02,Odisha,543316.0,,34913.0 +2020-08-03,Odisha,556588.0,,36297.0 +2020-08-04,Odisha,570590.0,,37681.0 +2020-08-05,Odisha,585505.0,,39018.0 +2020-08-06,Odisha,600591.0,,40717.0 +2020-08-07,Odisha,616646.0,,42550.0 +2020-08-08,Odisha,634090.0,,44193.0 +2020-08-09,Odisha,650183.0,,45927.0 +2020-08-10,Odisha,669266.0,,47455.0 +2020-08-11,Odisha,692301.0,,48796.0 +2020-08-12,Odisha,724354.0,, +2020-08-13,Odisha,765065.0,, +2020-08-14,Odisha,807826.0,, +2020-08-15,Odisha,855713.0,,57126.0 +2020-08-16,Odisha,908508.0,,60050.0 +2020-08-17,Odisha,958929.0,, +2020-08-18,Odisha,1009454.0,,64533.0 +2020-08-19,Odisha,1062469.0,,67122.0 +2020-08-20,Odisha,1115947.0,,70020.0 +2020-08-21,Odisha,1172426.0,,72718.0 +2020-08-22,Odisha,1233805.0,,75537.0 +2020-08-23,Odisha,1302711.0,,78530.0 +2020-08-24,Odisha,1363620.0,,81479.0 +2020-08-25,Odisha,1421958.0,,84231.0 +2020-08-26,Odisha,1485167.0,,87602.0 +2020-08-27,Odisha,1553257.0,,90986.0 +2020-08-28,Odisha,1612097.0,,94668.0 +2020-08-29,Odisha,1670910.0,,97920.0 +2020-08-30,Odisha,1731556.0,, +2020-08-31,Odisha,1789433.0,, +2020-09-01,Odisha,1839854.0,, +2020-09-02,Odisha,1891099.0,, +2020-09-03,Odisha,1950591.0,, +2020-09-04,Odisha,1997345.0,, +2020-09-05,Odisha,2048008.0,, +2020-09-06,Odisha,2098401.0,, +2020-09-07,Odisha,2143566.0,, +2020-09-08,Odisha,2184841.0,, +2020-09-09,Odisha,2226436.0,, +2020-09-10,Odisha,2273597.0,, +2020-09-11,Odisha,2323641.0,, +2020-09-12,Odisha,2374620.0,, +2020-09-13,Odisha,2423124.0,, +2020-09-14,Odisha,2472517.0,, +2020-09-15,Odisha,2516457.0,, +2020-09-16,Odisha,2567777.0,, +2020-09-17,Odisha,2619601.0,, +2020-09-18,Odisha,2667747.0,, +2020-09-19,Odisha,2715822.0,, +2020-09-20,Odisha,2766976.0,, +2020-09-21,Odisha,2814734.0,, +2020-09-22,Odisha,2860410.0,, +2020-09-23,Odisha,2905731.0,, +2020-09-24,Odisha,2956301.0,, +2020-09-25,Odisha,3009183.0,, +2020-09-26,Odisha,3062717.0,, +2020-09-27,Odisha,3111766.0,, +2020-09-28,Odisha,3159400.0,, +2020-09-29,Odisha,3200852.0,, +2020-09-30,Odisha,3250999.0,, +2020-10-01,Odisha,3300644.0,, +2020-10-02,Odisha,3348861.0,, +2020-10-03,Odisha,3395265.0,, +2020-10-04,Odisha,3440835.0,, +2020-10-05,Odisha,3482402.0,, +2020-10-06,Odisha,3524242.0,, +2020-10-07,Odisha,3569600.0,, +2020-10-08,Odisha,3619509.0,, +2020-10-09,Odisha,3664678.0,, +2020-10-10,Odisha,3710592.0,, +2020-10-11,Odisha,3755671.0,, +2020-10-12,Odisha,3796767.0,, +2020-10-13,Odisha,3836825.0,, +2020-10-14,Odisha,3878992.0,, +2020-10-15,Odisha,3921140.0,, +2020-10-16,Odisha,3959712.0,, +2020-10-17,Odisha,4001065.0,, +2020-10-18,Odisha,4043323.0,, +2020-10-19,Odisha,4082063.0,, +2020-10-20,Odisha,4117090.0,, +2020-10-21,Odisha,4159394.0,, +2020-10-22,Odisha,4199508.0,, +2020-10-23,Odisha,4240241.0,, +2020-10-24,Odisha,4280274.0,, +2020-10-25,Odisha,4318075.0,, +2020-10-26,Odisha,4354956.0,, +2020-10-27,Odisha,4385259.0,, +2020-10-28,Odisha,4422164.0,, +2020-10-29,Odisha,4463559.0,, +2020-10-30,Odisha,4508065.0,, +2020-10-31,Odisha,4555815.0,, +2020-11-01,Odisha,4601860.0,, +2020-11-02,Odisha,4645192.0,, +2020-11-03,Odisha,4687272.0,, +2020-11-04,Odisha,4736246.0,, +2020-11-05,Odisha,4787026.0,, +2020-11-06,Odisha,4838124.0,, +2020-11-07,Odisha,4888509.0,, +2020-11-08,Odisha,4939390.0,, +2020-11-09,Odisha,4984550.0,, +2020-11-10,Odisha,5027959.0,, +2020-11-11,Odisha,5077119.0,, +2020-11-12,Odisha,5122938.0,, +2020-11-13,Odisha,5171184.0,, +2020-11-14,Odisha,5219014.0,, +2020-11-15,Odisha,5259675.0,, +2020-11-16,Odisha,5294726.0,, +2020-11-17,Odisha,5330938.0,, +2020-11-18,Odisha,5376393.0,, +2020-11-19,Odisha,5424761.0,, +2020-11-20,Odisha,5471180.0,, +2020-11-21,Odisha,5518644.0,, +2020-11-22,Odisha,5563926.0,, +2020-11-23,Odisha,5604532.0,, +2020-11-24,Odisha,5642407.0,, +2020-11-25,Odisha,5685860.0,, +2020-11-26,Odisha,5732590.0,, +2020-11-27,Odisha,5777570.0,, +2020-11-28,Odisha,5819584.0,, +2020-11-29,Odisha,5863199.0,, +2020-11-30,Odisha,5904570.0,, +2020-12-01,Odisha,5940901.0,, +2020-12-02,Odisha,5977970.0,, +2020-12-03,Odisha,6019855.0,, +2020-12-04,Odisha,6060791.0,, +2020-12-05,Odisha,6102651.0,, +2020-12-06,Odisha,6143761.0,, +2020-12-07,Odisha,6181992.0,, +2020-12-08,Odisha,6214174.0,, +2020-12-09,Odisha,6250593.0,, +2020-12-10,Odisha,6281162.0,, +2020-12-11,Odisha,6312707.0,, +2020-12-12,Odisha,6345705.0,, +2020-12-13,Odisha,6378784.0,, +2020-12-14,Odisha,6409675.0,, +2020-12-15,Odisha,6437365.0,, +2020-12-16,Odisha,6468957.0,, +2020-12-17,Odisha,6502451.0,, +2020-12-18,Odisha,6536212.0,, +2020-12-19,Odisha,6560279.0,, +2020-12-20,Odisha,6603613.0,, +2020-12-21,Odisha,6635980.0,, +2020-12-22,Odisha,6665701.0,, +2020-12-23,Odisha,6700524.0,, +2020-12-24,Odisha,6737322.0,, +2020-12-25,Odisha,6770104.0,, +2020-12-26,Odisha,6799952.0,, +2020-12-27,Odisha,6827177.0,, +2020-12-28,Odisha,6855829.0,, +2020-12-29,Odisha,6882552.0,, +2020-12-30,Odisha,6915438.0,, +2020-12-31,Odisha,6946965.0,, +2021-01-01,Odisha,6976108.0,, +2021-01-02,Odisha,7000844.0,, +2021-01-03,Odisha,7012893.0,, +2021-01-04,Odisha,7028873.0,, +2021-01-05,Odisha,7044783.0,, +2021-01-06,Odisha,7064978.0,, +2021-01-07,Odisha,7086730.0,, +2021-01-08,Odisha,7111212.0,, +2021-01-09,Odisha,7140339.0,, +2021-01-10,Odisha,7172090.0,, +2021-01-11,Odisha,7201736.0,, +2021-01-12,Odisha,7229948.0,, +2021-01-13,Odisha,7261900.0,, +2021-01-14,Odisha,7292068.0,, +2021-01-15,Odisha,7319608.0,, +2021-01-16,Odisha,7346098.0,, +2021-01-17,Odisha,7376896.0,, +2021-01-18,Odisha,7402538.0,, +2021-01-19,Odisha,7426091.0,, +2021-01-20,Odisha,7452020.0,, +2021-01-21,Odisha,7477757.0,, +2021-01-22,Odisha,7501691.0,, +2021-01-23,Odisha,7525703.0,, +2021-01-24,Odisha,7548428.0,, +2021-01-25,Odisha,7568216.0,, +2021-01-26,Odisha,7588603.0,, +2021-01-27,Odisha,7612713.0,, +2021-01-28,Odisha,7635887.0,, +2021-01-29,Odisha,7660563.0,, +2021-01-30,Odisha,7685776.0,, +2021-01-31,Odisha,7709606.0,, +2021-02-01,Odisha,7731759.0,, +2021-02-02,Odisha,7751480.0,, +2021-02-03,Odisha,7774477.0,, +2021-02-04,Odisha,7796219.0,, +2021-02-05,Odisha,7819907.0,, +2021-02-06,Odisha,7840772.0,, +2021-02-07,Odisha,7864557.0,, +2021-02-08,Odisha,7884898.0,, +2021-02-09,Odisha,7905339.0,, +2021-02-10,Odisha,7930729.0,, +2021-02-11,Odisha,7955917.0,, +2021-02-12,Odisha,7979312.0,, +2021-02-13,Odisha,8001701.0,, +2021-02-14,Odisha,8023978.0,, +2021-02-15,Odisha,8043817.0,, +2021-02-16,Odisha,8061146.0,, +2021-02-17,Odisha,8081375.0,, +2021-02-18,Odisha,8100749.0,, +2021-02-19,Odisha,8123235.0,, +2021-02-20,Odisha,8147058.0,, +2021-02-21,Odisha,8167772.0,, +2021-02-22,Odisha,8189910.0,, +2021-02-23,Odisha,8207302.0,, +2021-02-24,Odisha,8230442.0,, +2021-02-25,Odisha,8255081.0,, +2021-02-26,Odisha,8277713.0,, +2021-02-27,Odisha,8300449.0,, +2021-02-28,Odisha,8321641.0,, +2021-03-01,Odisha,8341917.0,, +2021-03-02,Odisha,8360145.0,, +2021-03-03,Odisha,8383192.0,, +2021-03-04,Odisha,8405042.0,, +2021-03-05,Odisha,8427174.0,, +2021-03-06,Odisha,8451396.0,, +2021-03-07,Odisha,8472230.0,, +2021-03-08,Odisha,8492151.0,, +2021-03-09,Odisha,8512232.0,, +2021-03-10,Odisha,8535657.0,, +2021-03-11,Odisha,8558112.0,, +2021-03-12,Odisha,8580019.0,, +2021-03-13,Odisha,8598542.0,, +2021-03-14,Odisha,8621715.0,, +2021-03-15,Odisha,8642121.0,, +2021-03-16,Odisha,8661732.0,, +2021-03-17,Odisha,8687133.0,, +2021-03-18,Odisha,8712117.0,, +2021-03-19,Odisha,8736689.0,, +2021-03-20,Odisha,8762607.0,, +2021-03-21,Odisha,8788844.0,, +2021-03-22,Odisha,8814159.0,, +2021-03-23,Odisha,8835551.0,, +2021-03-24,Odisha,8861380.0,, +2021-03-25,Odisha,8892109.0,, +2021-03-26,Odisha,8920771.0,, +2021-03-27,Odisha,8949599.0,, +2021-03-28,Odisha,8975095.0,, +2021-03-29,Odisha,9001450.0,, +2021-03-30,Odisha,9023098.0,, +2021-03-31,Odisha,9043972.0,, +2021-04-01,Odisha,9073232.0,, +2021-04-02,Odisha,9103948.0,, +2021-04-03,Odisha,9130648.0,, +2021-04-04,Odisha,9159929.0,, +2021-04-05,Odisha,9188038.0,, +2021-04-06,Odisha,9213043.0,, +2021-04-07,Odisha,9244574.0,, +2021-04-08,Odisha,9275631.0,, +2021-04-09,Odisha,9304712.0,, +2021-04-10,Odisha,9338708.0,, +2021-04-11,Odisha,9370359.0,, +2021-04-12,Odisha,9400456.0,, +2021-04-13,Odisha,9428469.0,, +2021-04-14,Odisha,9461720.0,, +2021-04-15,Odisha,9496291.0,, +2021-04-16,Odisha,9528182.0,, +2021-04-17,Odisha,9565427.0,, +2021-04-18,Odisha,9599877.0,, +2021-04-19,Odisha,9636052.0,, +2021-04-20,Odisha,9668401.0,, +2021-04-21,Odisha,9706949.0,, +2021-04-22,Odisha,9751932.0,, +2021-04-23,Odisha,9793470.0,, +2021-04-24,Odisha,9834487.0,, +2021-04-25,Odisha,9878252.0,, +2021-04-26,Odisha,9917894.0,, +2021-04-27,Odisha,9954739.0,, +2021-04-28,Odisha,9997140.0,, +2021-04-29,Odisha,10041204.0,, +2021-04-30,Odisha,10086656.0,, +2021-05-01,Odisha,10134118.0,, +2021-05-02,Odisha,10180678.0,, +2021-05-03,Odisha,10227321.0,, +2021-05-04,Odisha,10271003.0,, +2021-05-05,Odisha,10319104.0,, +2021-05-06,Odisha,10367418.0,, +2021-05-07,Odisha,10418217.0,, +2021-05-08,Odisha,10469081.0,, +2021-05-09,Odisha,10517838.0,, +2021-05-10,Odisha,10566215.0,, +2021-05-11,Odisha,10612456.0,, +2021-05-12,Odisha,10661647.0,, +2021-05-13,Odisha,10713098.0,, +2021-05-14,Odisha,10769312.0,, +2021-05-15,Odisha,10826314.0,, +2021-05-16,Odisha,10882756.0,, +2021-05-17,Odisha,10941192.0,, +2021-05-18,Odisha,10997876.0,, +2021-05-19,Odisha,11058386.0,, +2021-05-20,Odisha,11118984.0,, +2021-05-21,Odisha,11180649.0,, +2021-05-22,Odisha,11241408.0,, +2021-05-23,Odisha,11308564.0,, +2021-05-24,Odisha,11375076.0,, +2021-05-25,Odisha,11437337.0,, +2021-05-26,Odisha,11506744.0,, +2021-05-27,Odisha,11552985.0,, +2021-05-28,Odisha,11596753.0,, +2021-05-29,Odisha,11645402.0,, +2021-05-30,Odisha,11711459.0,, +2021-05-31,Odisha,11773072.0,, +2021-06-01,Odisha,11835365.0,, +2021-06-02,Odisha,11902048.0,, +2021-06-03,Odisha,11972226.0,, +2021-06-04,Odisha,12040830.0,, +2021-06-05,Odisha,12111143.0,, +2021-06-06,Odisha,12183116.0,, +2021-06-07,Odisha,12250294.0,, +2020-04-18,Puducherry,1207.0,1159,7.0 +2020-04-19,Puducherry,1245.0,1214,7.0 +2020-04-20,Puducherry,1272.0,1232,7.0 +2020-04-21,Puducherry,1319.0,1272,7.0 +2020-04-22,Puducherry,1473.0,1354,7.0 +2020-04-23,Puducherry,1548.0,1513,7.0 +2020-04-24,Puducherry,1704.0,1657,7.0 +2020-04-25,Puducherry,1864.0,1793,8.0 +2020-04-26,Puducherry,1977.0,1902,8.0 +2020-04-27,Puducherry,2014.0,1942,8.0 +2020-04-28,Puducherry,2156.0,2099,8.0 +2020-04-29,Puducherry,2228.0,2150,8.0 +2020-04-30,Puducherry,2353.0,2292,8.0 +2020-05-01,Puducherry,2698.0,2583,9.0 +2020-05-02,Puducherry,2990.0,2902,12.0 +2020-05-03,Puducherry,3155.0,3097,12.0 +2020-05-04,Puducherry,3281.0,3220,12.0 +2020-05-05,Puducherry,3560.0,3444,12.0 +2020-05-06,Puducherry,3641.0,3554,12.0 +2020-05-07,Puducherry,3866.0,3766,13.0 +2020-05-08,Puducherry,4111.0,3866,15.0 +2020-05-09,Puducherry,4266.0,4028,16.0 +2020-05-10,Puducherry,4364.0,4273,17.0 +2020-05-11,Puducherry,4486.0,4416,17.0 +2020-05-13,Puducherry,4919.0,4832,18.0 +2020-05-14,Puducherry,5112.0,4963,18.0 +2020-05-15,Puducherry,5312.0,5162,21.0 +2020-05-16,Puducherry,5484.0,5320,22.0 +2020-05-17,Puducherry,5619.0,5501,22.0 +2020-05-18,Puducherry,5754.0,5709,22.0 +2020-05-19,Puducherry,5829.0,5762,22.0 +2020-05-20,Puducherry,5960.0,5889,24.0 +2020-05-21,Puducherry,6106.0,5995,31.0 +2020-05-22,Puducherry,6233.0,6143,32.0 +2020-05-23,Puducherry,6349.0,6254,39.0 +2020-05-24,Puducherry,6536.0,6444,45.0 +2020-05-25,Puducherry,6606.0,6537,47.0 +2020-05-26,Puducherry,6677.0,6593,52.0 +2020-05-27,Puducherry,6808.0,6711,60.0 +2020-05-28,Puducherry,6917.0,6286,61.0 +2020-05-29,Puducherry,7043.0,6910,65.0 +2020-05-30,Puducherry,7164.0,7004,71.0 +2020-05-31,Puducherry,7255.0,7116,81.0 +2020-06-01,Puducherry,7354.0,7198,81.0 +2020-06-02,Puducherry,7444.0,7339,91.0 +2020-06-03,Puducherry,7576.0,7447,98.0 +2020-06-04,Puducherry,7794.0,7647,109.0 +2020-06-05,Puducherry,7963.0,7791,115.0 +2020-06-06,Puducherry,8118.0,7968,118.0 +2020-06-07,Puducherry,8274.0,8112,130.0 +2020-06-08,Puducherry,8472.0,8293,139.0 +2020-06-09,Puducherry,8752.0,8548,143.0 +2020-06-10,Puducherry,8954.0,8712,156.0 +2020-06-11,Puducherry,9250.0,8979,168.0 +2020-06-12,Puducherry,9658.0,9351,175.0 +2020-06-13,Puducherry,10008.0,9636,193.0 +2020-06-14,Puducherry,10321.0,9872,206.0 +2020-06-15,Puducherry,10486.0,10231,214.0 +2020-06-16,Puducherry,10929.0,10511,233.0 +2020-06-17,Puducherry,11356.0,10920,257.0 +2020-06-18,Puducherry,11679.0,11230,285.0 +2020-06-19,Puducherry,11992.0,11486,301.0 +2020-06-20,Puducherry,12409.0,11866,353.0 +2020-06-21,Puducherry,12781.0,12233,389.0 +2020-06-22,Puducherry,13037.0,12526,407.0 +2020-06-23,Puducherry,13435.0,12835,426.0 +2020-06-24,Puducherry,13861.0,13171,489.0 +2020-06-25,Puducherry,14267.0,13474,532.0 +2020-06-26,Puducherry,14689.0,13908,565.0 +2020-06-27,Puducherry,15225.0,14380,654.0 +2020-06-28,Puducherry,15892.0,14969,682.0 +2020-06-29,Puducherry,16479.0,15596,690.0 +2020-06-30,Puducherry,17281.0,16180,714.0 +2020-07-01,Puducherry,18092.0,16984,739.0 +2020-07-02,Puducherry,18791.0,17645,802.0 +2020-07-03,Puducherry,19560.0,18375,824.0 +2020-07-04,Puducherry,20186.0,18848,904.0 +2020-07-05,Puducherry,20778.0,19324,946.0 +2020-07-06,Puducherry,21382.0,19996,1009.0 +2020-07-07,Puducherry,22055.0,20480,1041.0 +2020-07-08,Puducherry,22743.0,21242,1151.0 +2020-07-09,Puducherry,23515.0,21982,1200.0 +2020-07-10,Puducherry,24485.0,22819,1272.0 +2020-07-11,Puducherry,25342.0,23697,1337.0 +2020-07-12,Puducherry,26208.0,24461,1418.0 +2020-07-13,Puducherry,26592.0,24863,1468.0 +2020-07-14,Puducherry,27229.0,25264,1531.0 +2020-07-15,Puducherry,27916.0,25907,1596.0 +2020-07-16,Puducherry,28995.0,26781,1743.0 +2020-07-17,Puducherry,29851.0,27542,1832.0 +2020-07-18,Puducherry,30652.0,28214,1894.0 +2020-07-19,Puducherry,31420.0,28975,1999.0 +2020-07-20,Puducherry,31947.0,29495,2092.0 +2020-07-21,Puducherry,32468.0,29675,2183.0 +2020-07-22,Puducherry,33096.0,30260,2300.0 +2020-07-23,Puducherry,33658.0,30648,2420.0 +2020-07-24,Puducherry,34305.0,31142,2515.0 +2020-07-25,Puducherry,35080.0,31894,2654.0 +2020-07-26,Puducherry,35704.0,32291,2787.0 +2020-07-27,Puducherry,36288.0,32837,2872.0 +2020-07-28,Puducherry,37162.0,33369,3011.0 +2020-07-29,Puducherry,37999.0,33991,3177.0 +2020-07-30,Puducherry,38734.0,34606,3298.0 +2020-07-31,Puducherry,39707.0,35345,3472.0 +2020-08-01,Puducherry,40652.0,36142,3606.0 +2020-08-02,Puducherry,41540.0,36894,3806.0 +2020-08-03,Puducherry,41485.0,37000,3982.0 +2020-08-04,Puducherry,43134.0,38073,4147.0 +2020-08-05,Puducherry,44158.0,38854,4433.0 +2020-08-06,Puducherry,45098.0,39554,4621.0 +2020-08-07,Puducherry,45954.0,39960,4862.0 +2020-08-08,Puducherry,46878.0,40575,5123.0 +2020-08-09,Puducherry,47836.0,41075,5382.0 +2020-08-10,Puducherry,48748.0,41941,5624.0 +2020-08-11,Puducherry,49715.0,42371, +2020-08-12,Puducherry,50942.0,43135, +2020-08-13,Puducherry,52022.0,44028, +2020-08-14,Puducherry,53503.0,44714,6995.0 +2020-08-15,Puducherry,54852.0,45803,7354.0 +2020-08-16,Puducherry,55937.0,46456,7732.0 +2020-08-17,Puducherry,57025.0,47202, +2020-08-18,Puducherry,58535.0,48158, +2020-08-19,Puducherry,59757.0,48902,8752.0 +2020-08-20,Puducherry,61343.0,50170,9292.0 +2020-08-21,Puducherry,62413.0,50769, +2020-08-22,Puducherry,63590.0,51422,10112.0 +2020-08-23,Puducherry,64652.0,52169, +2020-08-24,Puducherry,65769.0,52857, +2020-08-25,Puducherry,67301.0,53950, +2020-08-26,Puducherry,68888.0,55120, +2020-08-27,Puducherry,70226.0,55823, +2020-08-28,Puducherry,71723.0,56819, +2020-08-29,Puducherry,73165.0,57839, +2020-08-30,Puducherry,75031.0,59102, +2020-08-31,Puducherry,76105.0,60051, +2020-09-01,Puducherry,77428.0,60902, +2020-09-02,Puducherry,78734.0,61653, +2020-09-03,Puducherry,80201.0,62654, +2020-09-04,Puducherry,81705.0,63545, +2020-09-05,Puducherry,83142.0,64655, +2020-09-06,Puducherry,84833.0,65657, +2020-09-07,Puducherry,85906.0,66500, +2020-09-08,Puducherry,88060.0,67745, +2020-09-09,Puducherry,90643.0,69541, +2020-09-10,Puducherry,92904.0,71196, +2020-09-11,Puducherry,95919.0,74136, +2020-09-12,Puducherry,99480.0,77060, +2020-09-13,Puducherry,103743.0,80424, +2020-09-14,Puducherry,107771.0,83944, +2020-09-15,Puducherry,113664.0,88166, +2020-09-16,Puducherry,119720.0,92383, +2020-09-17,Puducherry,124821.0,97716,23526.0 +2020-09-18,Puducherry,130099.0,101462,24016.0 +2020-09-19,Puducherry,135259.0,107765,24559.0 +2020-09-20,Puducherry,140107.0,111514,25030.0 +2020-09-21,Puducherry,143901.0,115426,25303.0 +2020-09-22,Puducherry,149501.0,120366,25796.0 +2020-09-23,Puducherry,155025.0,125215,26339.0 +2020-09-24,Puducherry,161030.0,130548,27007.0 +2020-09-25,Puducherry,166535.0,137054,27615.0 +2020-09-26,Puducherry,171561.0,141679,28109.0 +2020-09-27,Puducherry,176184.0,145800,28481.0 +2020-09-28,Puducherry,179780.0,149327,28773.0 +2020-09-29,Puducherry,184810.0,153736,29160.0 +2020-09-30,Puducherry,189568.0,158206,29651.0 +2020-10-01,Puducherry,194718.0,162652,30140.0 +2020-10-02,Puducherry,199374.0,166911,30654.0 +2020-10-03,Puducherry,202784.0,170172,30869.0 +2020-10-04,Puducherry,206509.0,173957,31222.0 +2020-10-05,Puducherry,209900.0,177219,31416.0 +2020-10-06,Puducherry,215155.0,181563,31823.0 +2020-10-07,Puducherry,220349.0,186349,32310.0 +2020-10-08,Puducherry,225018.0,190598,32658.0 +2020-10-09,Puducherry,230024.0,195147,33029.0 +2020-10-10,Puducherry,234858.0,199583, +2020-10-11,Puducherry,239208.0,203658,33686.0 +2020-10-12,Puducherry,241787.0,206294,33875.0 +2020-10-13,Puducherry,246059.0,210412,34143.0 +2020-10-14,Puducherry,250582.0,214793,34389.0 +2020-10-15,Puducherry,255195.0,218965,34634.0 +2020-10-16,Puducherry,259482.0,223094,34921.0 +2020-10-17,Puducherry,263481.0,226851,35133.0 +2020-10-18,Puducherry,267656.0,230990,35310.0 +2020-10-19,Puducherry,270189.0,233824,35418.0 +2020-10-20,Puducherry,274238.0,237011,35624.0 +2020-10-21,Puducherry,278193.0,241023,35799.0 +2020-10-22,Puducherry,282040.0,244463,36011.0 +2020-10-23,Puducherry,285824.0,248100,36169.0 +2020-10-24,Puducherry,289689.0,251888,36297.0 +2020-10-25,Puducherry,292567.0,254963,36380.0 +2020-10-26,Puducherry,293626.0,256349,36524.0 +2020-10-27,Puducherry,297195.0,259158,36671.0 +2020-10-28,Puducherry,301167.0,262971,36773.0 +2020-10-29,Puducherry,305068.0,266632,36954.0 +2020-10-30,Puducherry,308629.0,270003,37103.0 +2020-10-31,Puducherry,311807.0,273523,37208.0 +2020-11-01,Puducherry,314989.0,276367,37304.0 +2020-11-02,Puducherry,317809.0,279253,37374.0 +2020-11-03,Puducherry,321813.0,282776,37523.0 +2020-11-04,Puducherry,325632.0,286377,37631.0 +2020-11-05,Puducherry,329907.0,288479,39772.0 +2020-11-06,Puducherry,333733.0,292192,39898.0 +2020-11-07,Puducherry,337714.0,295971,39971.0 +2020-11-08,Puducherry,341534.0,300426,40066.0 +2020-11-09,Puducherry,344064.0,302901,40129.0 +2020-11-10,Puducherry,347785.0,306196,40231.0 +2020-11-11,Puducherry,351706.0,309883,40346.0 +2020-11-12,Puducherry,355251.0,313419,40412.0 +2020-11-13,Puducherry,358606.0,317003,40487.0 +2020-11-14,Puducherry,361101.0,319812,40535.0 +2020-11-15,Puducherry,361570.0,320265,40560.0 +2020-11-16,Puducherry,363331.0,321971,40573.0 +2020-11-17,Puducherry,366689.0,325636,40645.0 +2020-11-18,Puducherry,370307.0,329504,40701.0 +2020-11-19,Puducherry,373826.0,332979,40770.0 +2020-11-20,Puducherry,377294.0,336376,40824.0 +2020-11-21,Puducherry,380831.0,339854,40889.0 +2020-11-22,Puducherry,384417.0,343301,40935.0 +2020-11-23,Puducherry,387618.0,346460, +2020-11-24,Puducherry,391854.0,350749,41014.0 +2020-11-25,Puducherry,395113.0,353900,41065.0 +2020-11-26,Puducherry,395810.0,354623,41086.0 +2020-11-27,Puducherry,397419.0,356234,41102.0 +2020-11-28,Puducherry,400323.0,359129,41148.0 +2020-11-29,Puducherry,403249.0,361956,41181.0 +2020-11-30,Puducherry,405325.0,364043,41214.0 +2020-12-01,Puducherry,408641.0,367318,41267.0 +2020-12-02,Puducherry,412072.0,370672,41327.0 +2020-12-03,Puducherry,414952.0,373481, +2020-12-04,Puducherry,417259.0,375783,41415.0 +2020-12-05,Puducherry,419060.0,377553,41459.0 +2020-12-06,Puducherry,421165.0,379564,41494.0 +2020-12-07,Puducherry,422816.0,381224,41520.0 +2020-12-08,Puducherry,425700.0,384043,41562.0 +2020-12-09,Puducherry,428947.0,386699,41580.0 +2020-12-10,Puducherry,430517.0,388831,41604.0 +2020-12-11,Puducherry,431982.0,390299,41647.0 +2020-12-12,Puducherry,433791.0,392046,41668.0 +2020-12-13,Puducherry,435570.0,393744,41717.0 +2020-12-14,Puducherry,437551.0,395743,41738.0 +2020-12-15,Puducherry,440944.0,399050,41776.0 +2020-12-16,Puducherry,444444.0,402434,41886.0 +2020-12-17,Puducherry,447588.0,405562,41886.0 +2020-12-18,Puducherry,450501.0,408468,41937.0 +2020-12-19,Puducherry,453627.0,411613,41982.0 +2020-12-20,Puducherry,456079.0,414017,42018.0 +2020-12-21,Puducherry,458050.0,415945,42032.0 +2020-12-22,Puducherry,461245.0,419078,42081.0 +2020-12-23,Puducherry,464220.0,422024,42115.0 +2020-12-24,Puducherry,467228.0,424989,42155.0 +2020-12-25,Puducherry,470201.0,427942,42184.0 +2020-12-26,Puducherry,473586.0,431289,42217.0 +2020-12-27,Puducherry,476570.0,434181,42265.0 +2020-12-28,Puducherry,478398.0,436047,42298.0 +2020-12-29,Puducherry,481987.0,439591,42340.0 +2020-12-30,Puducherry,485332.0,442895,42366.0 +2020-12-31,Puducherry,488451.0,445976,42402.0 +2021-01-01,Puducherry,491519.0,448882,42434.0 +2021-01-02,Puducherry,493897.0,451332,42444.0 +2021-01-03,Puducherry,496376.0,453709,42494.0 +2021-01-04,Puducherry,498724.0,455972,42523.0 +2021-01-05,Puducherry,502458.0,459609,42570.0 +2021-01-06,Puducherry,506015.0,463049,42604.0 +2021-01-07,Puducherry,509392.0,466413,42639.0 +2021-01-08,Puducherry,512803.0,469855,42659.0 +2021-01-09,Puducherry,516036.0,473048,42695.0 +2021-01-10,Puducherry,519086.0,476095,42725.0 +2021-01-11,Puducherry,521149.0,478069,42747.0 +2021-01-12,Puducherry,524786.0,481741,42765.0 +2021-01-13,Puducherry,527788.0,484725,42794.0 +2021-01-14,Puducherry,527780.0,484588,42837.0 +2021-01-15,Puducherry,532468.0,489402,42865.0 +2021-01-16,Puducherry,534617.0,491694,42881.0 +2021-01-17,Puducherry,537161.0,493994,42916.0 +2021-01-18,Puducherry,538745.0,495682,42939.0 +2021-01-19,Puducherry,542508.0,499330,42976.0 +2021-01-20,Puducherry,546187.0,502913,43007.0 +2021-01-21,Puducherry,550551.0,507218,43042.0 +2021-01-22,Puducherry,553893.0,510503,43064.0 +2021-01-23,Puducherry,557189.0,513820, +2021-01-24,Puducherry,560235.0,516778, +2021-01-25,Puducherry,562668.0,519016,43145.0 +2021-01-26,Puducherry,565731.0,522262, +2021-01-27,Puducherry,567923.0,524343, +2021-01-28,Puducherry,570695.0,527286, +2021-01-29,Puducherry,573656.0,530084, +2021-01-30,Puducherry,576341.0,532712, +2021-01-31,Puducherry,578693.0,535037, +2021-02-01,Puducherry,579841.0,536222, +2021-02-02,Puducherry,579548.0,535914,43390.0 +2021-02-03,Puducherry,584300.0,540540,43413.0 +2021-02-04,Puducherry,586350.0,542580,43452.0 +2021-02-05,Puducherry,588451.0,544590,43502.0 +2021-02-06,Puducherry,590466.0,546611,43537.0 +2021-02-07,Puducherry,592495.0,548537,43559.0 +2021-02-08,Puducherry,593841.0,549891,43585.0 +2021-02-09,Puducherry,596527.0,552590,43620.0 +2021-02-10,Puducherry,599234.0,555120,43639.0 +2021-02-11,Puducherry,601600.0,531772,43664.0 +2021-02-12,Puducherry,603831.0,560001,43683.0 +2021-02-13,Puducherry,606413.0,562583,43683.0 +2021-02-14,Puducherry,608343.0,564491,43691.0 +2021-02-15,Puducherry,609743.0,566026,43711.0 +2021-02-16,Puducherry,611825.0,568003,43731.0 +2021-02-17,Puducherry,613649.0,569669,43749.0 +2021-02-18,Puducherry,615362.0,571377,43769.0 +2021-02-19,Puducherry,617198.0,573117,43783.0 +2021-02-20,Puducherry,618788.0,574693,43812.0 +2021-02-21,Puducherry,620331.0,576227,43835.0 +2021-02-22,Puducherry,621084.0,576657,43840.0 +2021-02-23,Puducherry,622216.0,578102,43871.0 +2021-02-24,Puducherry,624285.0,580101,43899.0 +2021-02-25,Puducherry,625920.0,581752,43920.0 +2021-02-26,Puducherry,627975.0,583800, +2021-02-27,Puducherry,629389.0,585151,43960.0 +2021-02-28,Puducherry,630827.0,586422,43968.0 +2021-03-01,Puducherry,631520.0,587139,43977.0 +2021-03-02,Puducherry,633005.0,588788,44006.0 +2021-03-03,Puducherry,634561.0,590179,44020.0 +2021-03-04,Puducherry,635847.0,591471,44037.0 +2021-03-05,Puducherry,637161.0,592586, +2021-03-06,Puducherry,638483.0,593770, +2021-03-07,Puducherry,639753.0,594831, +2021-03-08,Puducherry,640132.0,595226, +2021-03-09,Puducherry,641718.0,596501, +2021-03-10,Puducherry,643126.0,597776, +2021-03-11,Puducherry,644328.0,598224, +2021-03-12,Puducherry,645530.0,599124, +2021-03-14,Puducherry,646395.0,600310, +2021-03-15,Puducherry,646998.0,600867, +2021-03-16,Puducherry,648349.0,, +2021-03-17,Puducherry,649639.0,, +2021-03-18,Puducherry,650992.0,603214, +2021-03-19,Puducherry,652339.0,604397, +2021-03-20,Puducherry,653684.0,605614, +2021-03-21,Puducherry,654922.0,606756, +2021-03-22,Puducherry,655441.0,607818, +2021-03-23,Puducherry,657413.0,608337, +2021-03-24,Puducherry,659537.0,610055, +2021-03-25,Puducherry,661576.0,611920, +2021-03-26,Puducherry,663740.0,613703, +2021-03-27,Puducherry,665762.0,615229, +2021-03-28,Puducherry,667782.0,, +2021-03-29,Puducherry,669246.0,617934, +2021-03-30,Puducherry,671689.0,619231, +2021-03-31,Puducherry,673821.0,620922, +2021-04-01,Puducherry,676176.0,622708, +2021-04-02,Puducherry,678772.0,624223, +2021-04-03,Puducherry,680074.0,, +2021-04-04,Puducherry,682490.0,627106, +2021-04-05,Puducherry,685192.0,628512, +2021-04-06,Puducherry,688210.0,630675, +2021-04-07,Puducherry,689359.0,632738, +2021-04-08,Puducherry,692810.0,633708, +2021-04-09,Puducherry,696561.0,636073, +2021-04-10,Puducherry,700382.0,638735, +2021-04-11,Puducherry,703730.0,641594, +2021-04-12,Puducherry,707181.0,644023, +2021-04-13,Puducherry,712231.0,646445, +2021-04-14,Puducherry,716607.0,650282, +2021-04-15,Puducherry,719418.0,653668, +2021-04-16,Puducherry,724132.0,655565, +2021-04-17,Puducherry,728880.0,659076, +2021-04-18,Puducherry,733950.0,662541, +2021-04-19,Puducherry,737514.0,666405, +2021-04-20,Puducherry,743184.0,669341, +2021-04-21,Puducherry,748791.0,673536, +2021-04-22,Puducherry,753466.0,677819, +2021-04-23,Puducherry,758547.0,680750, +2021-04-24,Puducherry,764577.0,684081, +2021-04-25,Puducherry,770209.0,688469, +2021-04-26,Puducherry,773660.0,692936, +2021-04-27,Puducherry,780162.0,695574, +2021-04-28,Puducherry,786995.0,700035, +2021-04-29,Puducherry,796722.0,704594, +2021-04-30,Puducherry,803173.0,, +2021-05-01,Puducherry,809704.0,, +2021-05-02,Puducherry,814877.0,742031, +2021-05-03,Puducherry,818210.0,745430, +2021-05-04,Puducherry,825030.0,747952, +2021-05-05,Puducherry,831923.0,752684, +2021-05-06,Puducherry,839073.0,752684, +2021-05-07,Puducherry,847293.0,762176, +2021-05-08,Puducherry,856425.0,767568, +2021-05-09,Puducherry,865447.0,773923, +2021-05-10,Puducherry,871273.0,780257, +2021-05-11,Puducherry,880331.0,784226, +2021-05-12,Puducherry,889507.0,789822, +2021-05-13,Puducherry,898799.0,795654, +2021-05-14,Puducherry,907947.0,801649, +2021-05-15,Puducherry,917086.0,807568, +2021-05-16,Puducherry,926532.0,814097, +2021-05-17,Puducherry,934588.0,820357, +2021-05-18,Puducherry,944147.0,825199, +2021-05-19,Puducherry,953154.0,831526, +2021-05-20,Puducherry,962501.0,837900, +2021-05-21,Puducherry,971544.0,844423, +2021-05-22,Puducherry,980636.0,850822, +2021-05-23,Puducherry,989673.0,857441, +2021-05-24,Puducherry,997347.0,863943, +2021-05-25,Puducherry,1006495.0,869700, +2021-05-26,Puducherry,1015527.0,876459, +2021-05-27,Puducherry,1025000.0,883006, +2021-05-28,Puducherry,1034012.0,889718, +2021-05-29,Puducherry,1043130.0,896432, +2021-05-30,Puducherry,1051567.0,903558, +2021-05-31,Puducherry,1058568.0,, +2021-06-01,Puducherry,1067108.0,922012, +2021-06-02,Puducherry,1076259.0,, +2021-06-03,Puducherry,1085293.0,929317, +2021-06-04,Puducherry,1094751.0,936516, +2021-06-05,Puducherry,1103837.0,944264, +2021-06-06,Puducherry,1113052.0,951695, +2021-06-07,Puducherry,1120783.0,959332, +2020-04-02,Punjab,1434.0,,37.0 +2020-04-08,Punjab,2937.0,2614,106.0 +2020-04-09,Punjab,3192.0,2777,130.0 +2020-04-10,Punjab,3461.0,2972,151.0 +2020-04-11,Punjab,3909.0,3249,158.0 +2020-04-12,Punjab,4281.0,3590,170.0 +2020-04-13,Punjab,4480.0,3858,176.0 +2020-04-14,Punjab,4844.0,4047,184.0 +2020-04-15,Punjab,5193.0,4404,186.0 +2020-04-16,Punjab,5524.0,4727,197.0 +2020-04-17,Punjab,5988.0,5113,211.0 +2020-04-18,Punjab,6167.0,5354,234.0 +2020-04-19,Punjab,6607.0,5949,244.0 +2020-04-20,Punjab,6797.0,6273,245.0 +2020-04-21,Punjab,7355.0,6769,251.0 +2020-04-22,Punjab,7887.0,7100,257.0 +2020-04-23,Punjab,8757.0,7433,283.0 +2020-04-24,Punjab,10611.0,8310,298.0 +2020-04-25,Punjab,13270.0,9392,308.0 +2020-04-26,Punjab,14317.0,10497,322.0 +2020-04-27,Punjab,15516.0,12333,330.0 +2020-04-28,Punjab,17021.0,13966,342.0 +2020-04-29,Punjab,18670.0,15690,375.0 +2020-04-30,Punjab,21205.0,17286,480.0 +2020-05-01,Punjab,23176.0,18222,585.0 +2020-05-02,Punjab,24868.0,19316,772.0 +2020-05-03,Punjab,26439.0,20197,1102.0 +2020-05-04,Punjab,28545.0,21295,1232.0 +2020-05-05,Punjab,30199.0,23352,1451.0 +2020-05-06,Punjab,32060.0,24303,1526.0 +2020-05-07,Punjab,34701.0,28933,1644.0 +2020-05-08,Punjab,37950.0,31219,1731.0 +2020-05-09,Punjab,39462.0,33639,1762.0 +2020-05-10,Punjab,40962.0,35293,1823.0 +2020-05-11,Punjab,42306.0,37993,1877.0 +2020-05-12,Punjab,43999.0,39060,1914.0 +2020-05-13,Punjab,46026.0,40637,1924.0 +2020-05-14,Punjab,47408.0,42425,1935.0 +2020-05-15,Punjab,49301.0,44319,1932.0 +2020-05-16,Punjab,50613.0,46028,1946.0 +2020-05-17,Punjab,51812.0,47484,1964.0 +2020-05-18,Punjab,52955.0,48813,1980.0 +2020-05-19,Punjab,55634.0,50070,2002.0 +2020-05-20,Punjab,57737.0,51956,2005.0 +2020-05-21,Punjab,59618.0,53871,2028.0 +2020-05-22,Punjab,62399.0,55777,2029.0 +2020-05-23,Punjab,63567.0,57899,2045.0 +2020-05-24,Punjab,66142.0,60114,2060.0 +2020-05-25,Punjab,67213.0,62686,2081.0 +2020-05-26,Punjab,69818.0,64160,2106.0 +2020-05-27,Punjab,72468.0,66417,2139.0 +2020-05-28,Punjab,72468.0,67325,2158.0 +2020-05-29,Punjab,81021.0,,2197.0 +2020-05-30,Punjab,84497.0,,2233.0 +2020-05-31,Punjab,87852.0,,2263.0 +2020-06-01,Punjab,91113.0,,2301.0 +2020-06-02,Punjab,96329.0,,2342.0 +2020-06-03,Punjab,101036.0,,2376.0 +2020-06-04,Punjab,106933.0,,2415.0 +2020-06-05,Punjab,113542.0,,2461.0 +2020-06-06,Punjab,115974.0,,2515.0 +2020-06-07,Punjab,124266.0,,2608.0 +2020-06-08,Punjab,129821.0,,2663.0 +2020-06-09,Punjab,136343.0,,2719.0 +2020-06-10,Punjab,144467.0,,2805.0 +2020-06-11,Punjab,154498.0,,2887.0 +2020-06-12,Punjab,165548.0,,2986.0 +2020-06-13,Punjab,176533.0,,3063.0 +2020-06-14,Punjab,182225.0,,3140.0 +2020-06-15,Punjab,188699.0,,3267.0 +2020-06-16,Punjab,198211.0,,3371.0 +2020-06-17,Punjab,208408.0,,3497.0 +2020-06-18,Punjab,219528.0,,3615.0 +2020-06-19,Punjab,227012.0,,3832.0 +2020-06-20,Punjab,235700.0,,3952.0 +2020-06-21,Punjab,240803.0,,4074.0 +2020-06-22,Punjab,246760.0,,4235.0 +2020-06-23,Punjab,255380.0,,4397.0 +2020-06-24,Punjab,260857.0,,4627.0 +2020-06-25,Punjab,269037.0,,4769.0 +2020-06-26,Punjab,276919.0,,4957.0 +2020-06-27,Punjab,284431.0,,5056.0 +2020-06-28,Punjab,289923.0,,5216.0 +2020-06-29,Punjab,294448.0,,5418.0 +2020-06-30,Punjab,301830.0,,5568.0 +2020-07-01,Punjab,308998.0,,5668.0 +2020-07-02,Punjab,317802.0,,5784.0 +2020-07-03,Punjab,324054.0,,5937.0 +2020-07-04,Punjab,331585.0,,6109.0 +2020-07-05,Punjab,337789.0,,6283.0 +2020-07-06,Punjab,342524.0,,6491.0 +2020-07-07,Punjab,352363.0,,6749.0 +2020-07-08,Punjab,360189.0,,6907.0 +2020-07-09,Punjab,369425.0,,7140.0 +2020-07-10,Punjab,378045.0,,7357.0 +2020-07-11,Punjab,388494.0,,7587.0 +2020-07-12,Punjab,395185.0,,7821.0 +2020-07-13,Punjab,400944.0,,8178.0 +2020-07-14,Punjab,409643.0,,8511.0 +2020-07-15,Punjab,421593.0,,8799.0 +2020-07-16,Punjab,429832.0,,9094.0 +2020-07-17,Punjab,438793.0,,9442.0 +2020-07-18,Punjab,450732.0,,9792.0 +2020-07-19,Punjab,459900.0,,10100.0 +2020-07-20,Punjab,466057.0,,10510.0 +2020-07-21,Punjab,478421.0,,10889.0 +2020-07-22,Punjab,489836.0,,11301.0 +2020-07-23,Punjab,500562.0,,11739.0 +2020-07-24,Punjab,509267.0,,12216.0 +2020-07-25,Punjab,521906.0,,12684.0 +2020-07-26,Punjab,531336.0,,13218.0 +2020-07-27,Punjab,539371.0,,13769.0 +2020-07-28,Punjab,550267.0,,14378.0 +2020-07-29,Punjab,561121.0,,14946.0 +2020-07-30,Punjab,572067.0,,15456.0 +2020-07-31,Punjab,582573.0,,16119.0 +2020-08-01,Punjab,592392.0,,17063.0 +2020-08-02,Punjab,599651.0,,17853.0 +2020-08-03,Punjab,603912.0,,18527.0 +2020-08-04,Punjab,611609.0,,19015.0 +2020-08-05,Punjab,622127.0,,19856.0 +2020-08-06,Punjab,634271.0,,20891.0 +2020-08-07,Punjab,646439.0,,21930.0 +2020-08-08,Punjab,659284.0,,22928.0 +2020-08-09,Punjab,672761.0,,23903.0 +2020-08-10,Punjab,681321.0,,24889.0 +2020-08-11,Punjab,697327.0,,25889.0 +2020-08-12,Punjab,711260.0,, +2020-08-13,Punjab,723357.0,, +2020-08-14,Punjab,741834.0,,29013.0 +2020-08-15,Punjab,759990.0,,30041.0 +2020-08-16,Punjab,770873.0,, +2020-08-17,Punjab,782463.0,, +2020-08-18,Punjab,801990.0,,34400.0 +2020-08-19,Punjab,819657.0,, +2020-08-20,Punjab,839947.0,, +2020-08-21,Punjab,863840.0,,39327.0 +2020-08-22,Punjab,885950.0,, +2020-08-23,Punjab,907160.0,, +2020-08-24,Punjab,919614.0,, +2020-08-25,Punjab,941939.0,, +2020-08-26,Punjab,964051.0,, +2020-08-27,Punjab,988119.0,, +2020-08-28,Punjab,1007852.0,, +2020-08-29,Punjab,1026465.0,, +2020-08-30,Punjab,1046132.0,, +2020-08-31,Punjab,1062667.0,, +2020-09-01,Punjab,1081671.0,, +2020-09-02,Punjab,1101912.0,, +2020-09-03,Punjab,1121016.0,, +2020-09-04,Punjab,1144008.0,, +2020-09-05,Punjab,1168106.0,, +2020-09-06,Punjab,1193260.0,, +2020-09-07,Punjab,1212432.0,, +2020-09-08,Punjab,1241120.0,, +2020-09-09,Punjab,1269052.0,, +2020-09-10,Punjab,1298969.0,, +2020-09-11,Punjab,1332564.0,, +2020-09-12,Punjab,1364940.0,, +2020-09-13,Punjab,1391662.0,, +2020-09-14,Punjab,1410759.0,, +2020-09-15,Punjab,1439583.0,, +2020-09-16,Punjab,1467301.0,, +2020-09-17,Punjab,1496340.0,, +2020-09-18,Punjab,1524012.0,, +2020-09-19,Punjab,1552393.0,, +2020-09-20,Punjab,1579113.0,, +2020-09-21,Punjab,1599134.0,, +2020-09-22,Punjab,1627821.0,, +2020-09-23,Punjab,1654508.0,, +2020-09-24,Punjab,1682723.0,, +2020-09-25,Punjab,1713652.0,, +2020-09-26,Punjab,1740183.0,, +2020-09-27,Punjab,1763498.0,, +2020-09-28,Punjab,1786627.0,, +2020-09-29,Punjab,1810086.0,, +2020-09-30,Punjab,1841955.0,, +2020-10-01,Punjab,1872887.0,, +2020-10-02,Punjab,1902976.0,, +2020-10-03,Punjab,1928289.0,, +2020-10-04,Punjab,1951623.0,, +2020-10-05,Punjab,1973958.0,, +2020-10-06,Punjab,1996719.0,, +2020-10-07,Punjab,2025935.0,, +2020-10-08,Punjab,2053875.0,, +2020-10-09,Punjab,2084554.0,, +2020-10-10,Punjab,2117713.0,, +2020-10-11,Punjab,2145369.0,, +2020-10-12,Punjab,2167731.0,,124535.0 +2020-10-13,Punjab,2189467.0,, +2020-10-14,Punjab,2218914.0,, +2020-10-15,Punjab,2247431.0,, +2020-10-16,Punjab,2274772.0,, +2020-10-17,Punjab,2300669.0,, +2020-10-18,Punjab,2321084.0,, +2020-10-19,Punjab,2339398.0,, +2020-10-20,Punjab,2359842.0,, +2020-10-21,Punjab,2385846.0,, +2020-10-22,Punjab,2409686.0,, +2020-10-23,Punjab,2433133.0,, +2020-10-24,Punjab,2457574.0,, +2020-10-25,Punjab,2478710.0,, +2020-10-26,Punjab,2493748.0,, +2020-10-27,Punjab,2515967.0,, +2020-10-28,Punjab,2538610.0,, +2020-10-29,Punjab,2561105.0,, +2020-10-30,Punjab,2582787.0,, +2020-10-31,Punjab,2604208.0,, +2020-11-01,Punjab,2620786.0,, +2020-11-02,Punjab,2630382.0,, +2020-11-03,Punjab,2650809.0,, +2020-11-04,Punjab,2669626.0,, +2020-11-05,Punjab,2687429.0,, +2020-11-06,Punjab,2706741.0,, +2020-11-07,Punjab,2726398.0,, +2020-11-08,Punjab,2747106.0,, +2020-11-09,Punjab,2756807.0,, +2020-11-10,Punjab,2779972.0,, +2020-11-11,Punjab,2801305.0,, +2020-11-12,Punjab,2822668.0,, +2020-11-13,Punjab,2843699.0,, +2020-11-14,Punjab,2864299.0,, +2020-11-15,Punjab,2868278.0,, +2020-11-16,Punjab,2878477.0,, +2020-11-17,Punjab,2901513.0,, +2020-11-18,Punjab,2922722.0,, +2020-11-19,Punjab,2946382.0,, +2020-11-20,Punjab,2970682.0,, +2020-11-21,Punjab,2995244.0,, +2020-11-22,Punjab,3015699.0,, +2020-11-23,Punjab,3024921.0,, +2020-11-24,Punjab,3051542.0,, +2020-11-25,Punjab,3075865.0,, +2020-11-26,Punjab,3103006.0,, +2020-11-27,Punjab,3128711.0,, +2020-11-28,Punjab,3156767.0,, +2020-11-29,Punjab,3181773.0,, +2020-11-30,Punjab,3193166.0,, +2020-12-01,Punjab,3208209.0,, +2020-12-02,Punjab,3237858.0,, +2020-12-03,Punjab,3265505.0,, +2020-12-04,Punjab,3295141.0,, +2020-12-05,Punjab,3324621.0,, +2020-12-06,Punjab,3352671.0,, +2020-12-07,Punjab,3365119.0,, +2020-12-08,Punjab,3395729.0,, +2020-12-09,Punjab,3423632.0,, +2020-12-10,Punjab,3442386.0,, +2020-12-11,Punjab,3468629.0,, +2020-12-12,Punjab,3494393.0,, +2020-12-13,Punjab,3522061.0,, +2020-12-14,Punjab,3533856.0,, +2020-12-15,Punjab,3558306.0,, +2020-12-16,Punjab,3583661.0,, +2020-12-17,Punjab,3609574.0,, +2020-12-18,Punjab,3634626.0,, +2020-12-19,Punjab,3659116.0,, +2020-12-20,Punjab,3675493.0,, +2020-12-21,Punjab,3687114.0,, +2020-12-22,Punjab,3712608.0,, +2020-12-23,Punjab,3736616.0,, +2020-12-24,Punjab,3762120.0,, +2020-12-25,Punjab,3786885.0,, +2020-12-26,Punjab,3802080.0,, +2020-12-27,Punjab,3821222.0,, +2020-12-28,Punjab,3832411.0,, +2020-12-29,Punjab,3856388.0,, +2020-12-30,Punjab,3878599.0,, +2020-12-31,Punjab,3900473.0,, +2021-01-01,Punjab,3921171.0,, +2021-01-02,Punjab,3937741.0,, +2021-01-03,Punjab,3955383.0,, +2021-01-04,Punjab,3966071.0,, +2021-01-05,Punjab,3988705.0,, +2021-01-06,Punjab,4011514.0,, +2021-01-07,Punjab,4033992.0,, +2021-01-08,Punjab,4058814.0,, +2021-01-09,Punjab,4080787.0,, +2021-01-10,Punjab,4101234.0,, +2021-01-11,Punjab,4111108.0,, +2021-01-12,Punjab,4134274.0,, +2021-01-13,Punjab,4158855.0,, +2021-01-14,Punjab,4177959.0,, +2021-01-15,Punjab,4197346.0,, +2021-01-16,Punjab,4218130.0,, +2021-01-17,Punjab,4238428.0,, +2021-01-18,Punjab,4249101.0,, +2021-01-19,Punjab,4271814.0,, +2021-01-20,Punjab,4292764.0,, +2021-01-21,Punjab,4307614.0,, +2021-01-22,Punjab,4328277.0,, +2021-01-23,Punjab,4348641.0,, +2021-01-24,Punjab,4366353.0,, +2021-01-25,Punjab,4376767.0,, +2021-01-26,Punjab,4395884.0,, +2021-01-27,Punjab,4404889.0,, +2021-01-28,Punjab,4425238.0,, +2021-01-29,Punjab,4444257.0,, +2021-01-30,Punjab,4463437.0,, +2021-01-31,Punjab,4482617.0,, +2021-02-01,Punjab,4490598.0,, +2021-02-02,Punjab,4506064.0,, +2021-02-03,Punjab,4520789.0,, +2021-02-04,Punjab,4538121.0,, +2021-02-05,Punjab,4556670.0,, +2021-02-06,Punjab,4576958.0,, +2021-02-07,Punjab,4594107.0,, +2021-02-08,Punjab,4603909.0,, +2021-02-09,Punjab,4625667.0,, +2021-02-10,Punjab,4646808.0,, +2021-02-11,Punjab,4669167.0,, +2021-02-12,Punjab,4689490.0,, +2021-02-13,Punjab,4709119.0,, +2021-02-14,Punjab,4726971.0,, +2021-02-15,Punjab,4735787.0,, +2021-02-16,Punjab,4755811.0,, +2021-02-17,Punjab,4774987.0,, +2021-02-18,Punjab,4794887.0,, +2021-02-19,Punjab,4813220.0,, +2021-02-20,Punjab,4833218.0,, +2021-02-21,Punjab,4850347.0,, +2021-02-22,Punjab,4860435.0,, +2021-02-23,Punjab,4882164.0,, +2021-02-24,Punjab,4902624.0,, +2021-02-25,Punjab,4926621.0,, +2021-02-26,Punjab,4953750.0,, +2021-02-27,Punjab,4982773.0,, +2021-02-28,Punjab,4999390.0,, +2021-03-01,Punjab,5013117.0,, +2021-03-02,Punjab,5041833.0,, +2021-03-03,Punjab,5069381.0,, +2021-03-04,Punjab,5097802.0,, +2021-03-05,Punjab,5126962.0,, +2021-03-06,Punjab,5159683.0,, +2021-03-07,Punjab,5190528.0,, +2021-03-08,Punjab,5205020.0,, +2021-03-09,Punjab,5236903.0,, +2021-03-10,Punjab,5263900.0,, +2021-03-11,Punjab,5294288.0,, +2021-03-12,Punjab,5313932.0,, +2021-03-13,Punjab,5347572.0,, +2021-03-14,Punjab,5378531.0,, +2021-03-15,Punjab,5393825.0,, +2021-03-16,Punjab,5427097.0,, +2021-03-17,Punjab,5460889.0,, +2021-03-18,Punjab,5493673.0,, +2021-03-19,Punjab,5528559.0,, +2021-03-20,Punjab,5566330.0,, +2021-03-21,Punjab,5603286.0,, +2021-03-22,Punjab,5626458.0,, +2021-03-23,Punjab,5666257.0,, +2021-03-24,Punjab,5703944.0,, +2021-03-25,Punjab,5744842.0,, +2021-03-26,Punjab,5782674.0,, +2021-03-27,Punjab,5810694.0,, +2021-03-28,Punjab,5848083.0,, +2021-03-29,Punjab,5870655.0,, +2021-03-30,Punjab,5894441.0,, +2021-03-31,Punjab,5932096.0,, +2021-04-01,Punjab,5972667.0,, +2021-04-02,Punjab,6014612.0,, +2021-04-03,Punjab,6043312.0,, +2021-04-04,Punjab,6080083.0,, +2021-04-05,Punjab,6101688.0,, +2021-04-06,Punjab,6145532.0,, +2021-04-07,Punjab,6189014.0,, +2021-04-08,Punjab,6235386.0,, +2021-04-09,Punjab,6270878.0,, +2021-04-10,Punjab,6308652.0,, +2021-04-11,Punjab,6346316.0,, +2021-04-12,Punjab,6368902.0,, +2021-04-13,Punjab,6407939.0,, +2021-04-14,Punjab,6440181.0,, +2021-04-15,Punjab,6473869.0,, +2021-04-16,Punjab,6517986.0,, +2021-04-17,Punjab,6561028.0,, +2021-04-18,Punjab,6607723.0,, +2021-04-19,Punjab,6639409.0,, +2021-04-20,Punjab,6690798.0,, +2021-04-21,Punjab,6744906.0,, +2021-04-22,Punjab,6792211.0,, +2021-04-23,Punjab,6848790.0,, +2021-04-24,Punjab,6903246.0,, +2021-04-25,Punjab,6961532.0,, +2021-04-26,Punjab,6996890.0,, +2021-04-27,Punjab,7054436.0,, +2021-04-28,Punjab,7107801.0,, +2021-04-29,Punjab,7163789.0,, +2021-04-30,Punjab,7221431.0,, +2021-05-01,Punjab,7281978.0,, +2021-05-02,Punjab,7340768.0,, +2021-05-03,Punjab,7377560.0,, +2021-05-04,Punjab,7443337.0,, +2021-05-05,Punjab,7510673.0,, +2021-05-06,Punjab,7574249.0,, +2021-05-07,Punjab,7642667.0,, +2021-05-08,Punjab,7707585.0,, +2021-05-09,Punjab,7767351.0,, +2021-05-10,Punjab,7805157.0,, +2021-05-11,Punjab,7868067.0,, +2021-05-12,Punjab,7932936.0,, +2021-05-13,Punjab,8001745.0,, +2021-05-14,Punjab,8072800.0,, +2021-05-15,Punjab,8140404.0,, +2021-05-16,Punjab,8212826.0,, +2021-05-17,Punjab,8273820.0,, +2021-05-18,Punjab,8337236.0,, +2021-05-19,Punjab,8410481.0,, +2021-05-20,Punjab,8482144.0,, +2021-05-21,Punjab,8556117.0,, +2021-05-22,Punjab,8636245.0,, +2021-05-23,Punjab,8719503.0,, +2021-05-24,Punjab,8775622.0,, +2021-05-25,Punjab,8850305.0,, +2021-05-26,Punjab,8925740.0,, +2021-05-27,Punjab,9001438.0,, +2021-05-28,Punjab,9074280.0,, +2021-05-29,Punjab,9142425.0,, +2021-05-30,Punjab,9209841.0,, +2021-05-31,Punjab,9256146.0,, +2021-06-01,Punjab,9325491.0,, +2021-06-02,Punjab,9393735.0,, +2021-06-03,Punjab,9462776.0,, +2021-06-04,Punjab,9530712.0,, +2021-06-05,Punjab,9598059.0,, +2021-06-06,Punjab,9660801.0,, +2021-06-07,Punjab,9698676.0,, +2020-04-07,Rajasthan,17638.0,16401,363.0 +2020-04-08,Rajasthan,17638.0,16401,363.0 +2020-04-09,Rajasthan,19107.0,17851,463.0 +2020-04-10,Rajasthan,22349.0,20698,561.0 +2020-04-11,Rajasthan,24857.0,22583,678.0 +2020-04-12,Rajasthan,28505.0,25105,796.0 +2020-04-13,Rajasthan,31804.0,28657,847.0 +2020-04-14,Rajasthan,34928.0,29376,1005.0 +2020-04-15,Rajasthan,37860.0,31902,1076.0 +2020-04-16,Rajasthan,40778.0,33739,1101.0 +2020-04-17,Rajasthan,42847.0,36153,1229.0 +2020-04-18,Rajasthan,47197.0,39092,1282.0 +2020-04-19,Rajasthan,51614.0,43537,1478.0 +2020-04-20,Rajasthan,57290.0,47657,1576.0 +2020-04-21,Rajasthan,61492.0,54100,1735.0 +2020-04-22,Rajasthan,66257.0,58552,1888.0 +2020-04-23,Rajasthan,69764.0,63485,1964.0 +2020-04-24,Rajasthan,74484.0,68133,2034.0 +2020-04-25,Rajasthan,78993.0,71806,2083.0 +2020-04-26,Rajasthan,82942.0,75670,2185.0 +2020-04-27,Rajasthan,87777.0,80830,2262.0 +2020-04-28,Rajasthan,92506.0,85834,2364.0 +2020-04-29,Rajasthan,97790.0,90108,2438.0 +2020-04-30,Rajasthan,103704.0,,2584.0 +2020-05-01,Rajasthan,108543.0,100277,2666.0 +2020-05-02,Rajasthan,113934.0,104705,2720.0 +2020-05-03,Rajasthan,120240.0,112345,2886.0 +2020-05-04,Rajasthan,129258.0,122513,3061.0 +2020-05-05,Rajasthan,134987.0,128297,3158.0 +2020-05-06,Rajasthan,139580.0,134172,3317.0 +2020-05-07,Rajasthan,145510.0,139830,3427.0 +2020-05-08,Rajasthan,152245.0,146198,3579.0 +2020-05-09,Rajasthan,159157.0,152296,3708.0 +2020-05-10,Rajasthan,166424.0,158830,3814.0 +2020-05-11,Rajasthan,176130.0,168546,3988.0 +2020-05-12,Rajasthan,185610.0,,4126.0 +2020-05-13,Rajasthan,194683.0,186125,4328.0 +2020-05-14,Rajasthan,204243.0,197269,4534.0 +2020-05-15,Rajasthan,212317.0,203770,4747.0 +2020-05-16,Rajasthan,221439.0,213395,4960.0 +2020-05-17,Rajasthan,231946.0,221764,5202.0 +2020-05-18,Rajasthan,243476.0,234165,5375.0 +2020-05-19,Rajasthan,254533.0,244955,5845.0 +2020-05-20,Rajasthan,265555.0,254128,6015.0 +2020-05-21,Rajasthan,275974.0,266687,6227.0 +2020-05-22,Rajasthan,287164.0,277744,6494.0 +2020-05-23,Rajasthan,303935.0,292384,6657.0 +2020-05-24,Rajasthan,317067.0,306209,7028.0 +2020-05-25,Rajasthan,327836.0,318146,7300.0 +2020-05-26,Rajasthan,337159.0,326368,7536.0 +2020-05-27,Rajasthan,350600.0,338611,7816.0 +2020-05-28,Rajasthan,365556.0,351861,8067.0 +2020-05-29,Rajasthan,379315.0,365925,8365.0 +2020-05-30,Rajasthan,395490.0,382315,8617.0 +2020-05-31,Rajasthan,409777.0,396789,8831.0 +2020-06-01,Rajasthan,425184.0,411965,9100.0 +2020-06-02,Rajasthan,440789.0,428471,9373.0 +2020-06-03,Rajasthan,454788.0,440850,9652.0 +2020-06-04,Rajasthan,467129.0,451826,9862.0 +2020-06-05,Rajasthan,480910.0,465349,10084.0 +2020-06-06,Rajasthan,494480.0,478366,10337.0 +2020-06-07,Rajasthan,506784.0,491233,10599.0 +2020-06-08,Rajasthan,518350.0,503208,10876.0 +2020-06-09,Rajasthan,530031.0,515872,11245.0 +2020-06-10,Rajasthan,543312.0,527864,11600.0 +2020-06-11,Rajasthan,558064.0,542256,11838.0 +2020-06-12,Rajasthan,571543.0,556040,12068.0 +2020-06-13,Rajasthan,584954.0,569314,12401.0 +2020-06-14,Rajasthan,598920.0,583279,12694.0 +2020-06-15,Rajasthan,609296.0,594991,12981.0 +2020-06-16,Rajasthan,622334.0,606279,13216.0 +2020-06-17,Rajasthan,637937.0,620217,13542.0 +2020-06-18,Rajasthan,654816.0,636216,13857.0 +2020-06-19,Rajasthan,667643.0,650510,14156.0 +2020-06-20,Rajasthan,683017.0,664383,14537.0 +2020-06-21,Rajasthan,699126.0,680233,14930.0 +2020-06-22,Rajasthan,709592.0,691507,15232.0 +2020-06-23,Rajasthan,726077.0,706363,15627.0 +2020-06-24,Rajasthan,740855.0,721511,16009.0 +2020-06-25,Rajasthan,757137.0,737395,16296.0 +2020-06-26,Rajasthan,770174.0,750535,16660.0 +2020-06-27,Rajasthan,784803.0,764966,16944.0 +2020-06-28,Rajasthan,800214.0,780247,17271.0 +2020-06-29,Rajasthan,809777.0,789921,17660.0 +2020-06-30,Rajasthan,824213.0,803554,18014.0 +2020-07-01,Rajasthan,839370.0,818485,18312.0 +2020-07-02,Rajasthan,854274.0,832738,18662.0 +2020-07-03,Rajasthan,869602.0,846953,19052.0 +2020-07-04,Rajasthan,889355.0,865371,19532.0 +2020-07-05,Rajasthan,909132.0,884457,20164.0 +2020-07-06,Rajasthan,920600.0,896508,20688.0 +2020-07-07,Rajasthan,940758.0,915326,21404.0 +2020-07-08,Rajasthan,963454.0,936065,22063.0 +2020-07-09,Rajasthan,987272.0,960369,22563.0 +2020-07-10,Rajasthan,1009195.0,981938,23174.0 +2020-07-11,Rajasthan,1032198.0,1003903,23748.0 +2020-07-12,Rajasthan,1054080.0,1025295,24392.0 +2020-07-13,Rajasthan,1068283.0,1039250,24936.0 +2020-07-14,Rajasthan,1096696.0,1065910,25571.0 +2020-07-15,Rajasthan,1123902.0,1091930,26437.0 +2020-07-16,Rajasthan,1151952.0,1119188,27174.0 +2020-07-17,Rajasthan,1175379.0,1142148,27789.0 +2020-07-18,Rajasthan,1204676.0,1169662,28500.0 +2020-07-19,Rajasthan,1231760.0,1195328,29434.0 +2020-07-20,Rajasthan,1244387.0,1207571,30390.0 +2020-07-21,Rajasthan,1270376.0,1232900,31373.0 +2020-07-22,Rajasthan,1298218.0,1259602,32334.0 +2020-07-23,Rajasthan,1325580.0,1285878,33220.0 +2020-07-24,Rajasthan,1349544.0,1309112,34178.0 +2020-07-25,Rajasthan,1377850.0,1335929,35298.0 +2020-07-26,Rajasthan,1403124.0,1361480,36430.0 +2020-07-27,Rajasthan,1417882.0,1374679,37564.0 +2020-07-28,Rajasthan,1445240.0,1402268,38636.0 +2020-07-29,Rajasthan,1473098.0,1429523,39780.0 +2020-07-30,Rajasthan,1500693.0,1455427,40936.0 +2020-07-31,Rajasthan,1526962.0,1481949,42083.0 +2020-08-01,Rajasthan,1553942.0,1507518,43243.0 +2020-08-02,Rajasthan,1570989.0,1525094,44410.0 +2020-08-03,Rajasthan,1584925.0,1538352,45555.0 +2020-08-04,Rajasthan,1592318.0,1545391,46679.0 +2020-08-05,Rajasthan,1619744.0,1570626,47272.0 +2020-08-06,Rajasthan,1651221.0,1600732,48996.0 +2020-08-07,Rajasthan,1678314.0,1626488,50157.0 +2020-08-08,Rajasthan,1710963.0,1656370,51328.0 +2020-08-09,Rajasthan,1740732.0,1683981,52497.0 +2020-08-10,Rajasthan,1754897.0,1699840,53670.0 +2020-08-11,Rajasthan,1784992.0,1727722, +2020-08-12,Rajasthan,1820131.0,1759088,56100.0 +2020-08-13,Rajasthan,1839445.0,1778894,57414.0 +2020-08-14,Rajasthan,1868534.0,1807490,58692.0 +2020-08-15,Rajasthan,1898595.0,1835625,59979.0 +2020-08-16,Rajasthan,1913726.0,1850043,61296.0 +2020-08-17,Rajasthan,1930842.0,1865936,62630.0 +2020-08-18,Rajasthan,1966178.0,1899725,63977.0 +2020-08-19,Rajasthan,1998912.0,1930213, +2020-08-20,Rajasthan,2033646.0,1963754, +2020-08-21,Rajasthan,2062109.0,1990256,67954.0 +2020-08-22,Rajasthan,2093850.0,2021945, +2020-08-23,Rajasthan,2122395.0,2048693, +2020-08-24,Rajasthan,2137137.0,2063202, +2020-08-25,Rajasthan,2166744.0,2091316, +2020-08-26,Rajasthan,2196353.0,2118295, +2020-08-27,Rajasthan,2228662.0,2148920, +2020-08-28,Rajasthan,2254613.0,2174174, +2020-08-29,Rajasthan,2274901.0,2193549, +2020-08-30,Rajasthan,2302023.0,2218765, +2020-08-31,Rajasthan,2314603.0,2230754, +2020-09-01,Rajasthan,2343369.0,2257909, +2020-09-02,Rajasthan,2364613.0,2277602, +2020-09-03,Rajasthan,2392144.0,2302972, +2020-09-04,Rajasthan,2416268.0,2326326, +2020-09-05,Rajasthan,2443995.0,2352305, +2020-09-06,Rajasthan,2471540.0,2378102, +2020-09-07,Rajasthan,2483715.0,2389258, +2020-09-08,Rajasthan,2513910.0,2417075, +2020-09-09,Rajasthan,2542632.0,2444289, +2020-09-10,Rajasthan,2572191.0,2472374, +2020-09-11,Rajasthan,2599477.0,2498205, +2020-09-12,Rajasthan,2630771.0,2527228, +2020-09-13,Rajasthan,2658373.0,2553839, +2020-09-14,Rajasthan,2672224.0,2566267, +2020-09-15,Rajasthan,2705303.0,2595594, +2020-09-16,Rajasthan,2738444.0,2626768, +2020-09-17,Rajasthan,2767508.0,2654216, +2020-09-18,Rajasthan,2795479.0,2680626, +2020-09-19,Rajasthan,2826262.0,2709269, +2020-09-20,Rajasthan,2856718.0,2739391, +2020-09-21,Rajasthan,2870267.0,2751165, +2020-09-22,Rajasthan,2904053.0,2782179, +2020-09-23,Rajasthan,2935751.0,2811835, +2020-09-24,Rajasthan,2968083.0,2842797, +2020-09-25,Rajasthan,2994763.0,2867910, +2020-09-26,Rajasthan,3024341.0,2893933, +2020-09-27,Rajasthan,3051135.0,2920018, +2020-09-28,Rajasthan,3062603.0,2929621, +2020-09-29,Rajasthan,3091105.0,2955369, +2020-09-30,Rajasthan,3118797.0,2980551, +2020-10-01,Rajasthan,3143572.0,3003442, +2020-10-02,Rajasthan,3165902.0,3023628, +2020-10-03,Rajasthan,3182409.0,3038596, +2020-10-04,Rajasthan,3207733.0,3061376, +2020-10-05,Rajasthan,3219068.0,3071195, +2020-10-06,Rajasthan,3245268.0,3094311, +2020-10-07,Rajasthan,3267575.0,3112877, +2020-10-08,Rajasthan,3291115.0,3136383, +2020-10-09,Rajasthan,3311811.0,3154680, +2020-10-10,Rajasthan,3335785.0,3176313, +2020-10-11,Rajasthan,3356935.0,3195594, +2020-10-12,Rajasthan,3366071.0,3203020, +2020-10-13,Rajasthan,3392097.0,3226089, +2020-10-14,Rajasthan,3414166.0,3246485, +2020-10-15,Rajasthan,3436121.0,3266766, +2020-10-16,Rajasthan,3456029.0,3284844, +2020-10-17,Rajasthan,3478430.0,3304360, +2020-10-18,Rajasthan,3490719.0,3315575, +2020-10-19,Rajasthan,3499421.0,3322097, +2020-10-20,Rajasthan,3524088.0,3343985, +2020-10-21,Rajasthan,3546683.0,3365283, +2020-10-22,Rajasthan,3568198.0,3385209, +2020-10-23,Rajasthan,3587537.0,3402531, +2020-10-24,Rajasthan,3609151.0,3422631, +2020-10-25,Rajasthan,3623031.0,3434999, +2020-10-26,Rajasthan,3631465.0,3441260, +2020-10-27,Rajasthan,3654738.0,3462427, +2020-10-28,Rajasthan,3677569.0,3483561, +2020-10-29,Rajasthan,3699339.0,3503822, +2020-10-30,Rajasthan,3718493.0,3521044, +2020-10-31,Rajasthan,3732880.0,3533901, +2020-11-01,Rajasthan,3753254.0,3551617, +2020-11-02,Rajasthan,3761961.0,3559145, +2020-11-03,Rajasthan,3785407.0,3580198, +2020-11-04,Rajasthan,3806335.0,3599886, +2020-11-05,Rajasthan,3825035.0,3617138, +2020-11-06,Rajasthan,3844472.0,3634205, +2020-11-07,Rajasthan,3865194.0,3652769, +2020-11-08,Rajasthan,3885562.0,3671577, +2020-11-09,Rajasthan,3896209.0,3682224, +2020-11-10,Rajasthan,3921623.0,3703657, +2020-11-11,Rajasthan,3943942.0,3724338, +2020-11-12,Rajasthan,3966824.0,3744714, +2020-11-13,Rajasthan,3988281.0,3764423, +2020-11-14,Rajasthan,4007392.0,3781300, +2020-11-15,Rajasthan,4015598.0,3787906, +2020-11-16,Rajasthan,4022884.0,3793329, +2020-11-17,Rajasthan,4035833.0,3803680, +2020-11-18,Rajasthan,4059776.0,3824525, +2020-11-19,Rajasthan,4091779.0,3854940, +2020-11-20,Rajasthan,4119378.0,3880547, +2020-11-21,Rajasthan,4149854.0,3907807, +2020-11-22,Rajasthan,4179816.0,3934715, +2020-11-23,Rajasthan,4194121.0,3946080, +2020-11-24,Rajasthan,4225732.0,3973287, +2020-11-25,Rajasthan,4259050.0,4002961, +2020-11-26,Rajasthan,4290454.0,4030640, +2020-11-27,Rajasthan,4322512.0,4059687, +2020-11-28,Rajasthan,4358971.0,4093818, +2020-11-29,Rajasthan,4395899.0,4127832, +2020-11-30,Rajasthan,4411509.0,4140463, +2020-12-01,Rajasthan,4435119.0,4162364, +2020-12-02,Rajasthan,4472909.0,4196748, +2020-12-03,Rajasthan,4512399.0,4233930, +2020-12-04,Rajasthan,4549574.0,4269390, +2020-12-05,Rajasthan,4586151.0,4303968, +2020-12-06,Rajasthan,4617606.0,4333657, +2020-12-07,Rajasthan,4630233.0,4344758, +2020-12-08,Rajasthan,4664755.0,4376876, +2020-12-09,Rajasthan,4694145.0,4404887, +2020-12-10,Rajasthan,4724809.0,4434303, +2020-12-11,Rajasthan,4752183.0,4460507, +2020-12-12,Rajasthan,4778273.0,4485147, +2020-12-13,Rajasthan,4807770.0,4513102, +2020-12-14,Rajasthan,4821740.0,4526438, +2020-12-15,Rajasthan,4855362.0,4558033, +2020-12-16,Rajasthan,4886577.0,4588095, +2020-12-17,Rajasthan,4917294.0,4617374, +2020-12-18,Rajasthan,4944021.0,4643895, +2020-12-19,Rajasthan,4973056.0,4671821, +2020-12-20,Rajasthan,5000134.0,4698043, +2020-12-21,Rajasthan,5010313.0,4707734, +2020-12-22,Rajasthan,5041704.0,4737642, +2020-12-23,Rajasthan,5071192.0,4765887, +2020-12-24,Rajasthan,5101937.0,4796004, +2020-12-25,Rajasthan,5129178.0,4823245, +2020-12-26,Rajasthan,5145231.0,4838513, +2020-12-27,Rajasthan,5173485.0,4866322, +2020-12-28,Rajasthan,5183831.0,, +2020-12-29,Rajasthan,5213762.0,, +2020-12-30,Rajasthan,5239812.0,, +2020-12-31,Rajasthan,5265204.0,, +2021-01-01,Rajasthan,5285777.0,, +2021-01-02,Rajasthan,5304141.0,, +2021-01-03,Rajasthan,5325309.0,, +2021-01-04,Rajasthan,5333805.0,, +2021-01-05,Rajasthan,5358544.0,, +2021-01-06,Rajasthan,5382172.0,, +2021-01-07,Rajasthan,5405423.0,, +2021-01-08,Rajasthan,5427159.0,, +2021-01-09,Rajasthan,5450256.0,, +2021-01-10,Rajasthan,5475101.0,, +2021-01-11,Rajasthan,5485004.0,, +2021-01-12,Rajasthan,5510518.0,, +2021-01-13,Rajasthan,5533802.0,, +2021-01-14,Rajasthan,5555674.0,, +2021-01-15,Rajasthan,5568441.0,, +2021-01-16,Rajasthan,5591844.0,, +2021-01-17,Rajasthan,5613209.0,, +2021-01-18,Rajasthan,5622315.0,, +2021-01-19,Rajasthan,5647780.0,, +2021-01-20,Rajasthan,5670615.0,, +2021-01-21,Rajasthan,5683441.0,, +2021-01-22,Rajasthan,5705383.0,, +2021-01-23,Rajasthan,5726754.0,, +2021-01-24,Rajasthan,5744724.0,, +2021-01-25,Rajasthan,5751640.0,, +2021-01-26,Rajasthan,5771559.0,, +2021-01-27,Rajasthan,5778472.0,, +2021-01-28,Rajasthan,5797355.0,, +2021-01-29,Rajasthan,5814009.0,, +2021-01-30,Rajasthan,5832977.0,, +2021-01-31,Rajasthan,5851737.0,, +2021-02-01,Rajasthan,5858590.0,, +2021-02-02,Rajasthan,5872507.0,, +2021-02-03,Rajasthan,5889518.0,, +2021-02-04,Rajasthan,5908302.0,, +2021-02-05,Rajasthan,5925867.0,, +2021-02-06,Rajasthan,5945084.0,, +2021-02-07,Rajasthan,5963644.0,, +2021-02-08,Rajasthan,5970645.0,, +2021-02-09,Rajasthan,5992501.0,, +2021-02-10,Rajasthan,6012115.0,, +2021-02-11,Rajasthan,6031403.0,, +2021-02-12,Rajasthan,6049608.0,, +2021-02-13,Rajasthan,6068008.0,, +2021-02-14,Rajasthan,6087241.0,, +2021-02-15,Rajasthan,6093518.0,, +2021-02-16,Rajasthan,6111693.0,, +2021-02-17,Rajasthan,6126862.0,, +2021-02-18,Rajasthan,6142865.0,, +2021-02-19,Rajasthan,6161092.0,, +2021-02-20,Rajasthan,6178593.0,, +2021-02-21,Rajasthan,6196348.0,, +2021-02-22,Rajasthan,6202897.0,, +2021-02-23,Rajasthan,6221798.0,, +2021-02-24,Rajasthan,6238864.0,, +2021-02-25,Rajasthan,6255821.0,, +2021-02-26,Rajasthan,6272778.0,, +2021-02-27,Rajasthan,6288702.0,, +2021-02-28,Rajasthan,6304465.0,, +2021-03-01,Rajasthan,6311140.0,, +2021-03-02,Rajasthan,6328173.0,, +2021-03-03,Rajasthan,6343717.0,, +2021-03-04,Rajasthan,6360150.0,, +2021-03-05,Rajasthan,6376085.0,, +2021-03-06,Rajasthan,6393132.0,, +2021-03-07,Rajasthan,6410889.0,, +2021-03-08,Rajasthan,6418664.0,, +2021-03-09,Rajasthan,6438485.0,, +2021-03-10,Rajasthan,6456572.0,, +2021-03-11,Rajasthan,6474600.0,, +2021-03-12,Rajasthan,6484022.0,, +2021-03-13,Rajasthan,6500997.0,, +2021-03-14,Rajasthan,6515985.0,, +2021-03-15,Rajasthan,6523039.0,, +2021-03-16,Rajasthan,6540217.0,, +2021-03-17,Rajasthan,6556622.0,, +2021-03-18,Rajasthan,6574421.0,, +2021-03-19,Rajasthan,6595443.0,, +2021-03-20,Rajasthan,6620036.0,, +2021-03-21,Rajasthan,6646073.0,, +2021-03-22,Rajasthan,6657689.0,, +2021-03-23,Rajasthan,6692252.0,, +2021-03-24,Rajasthan,6726815.0,, +2021-03-25,Rajasthan,6756641.0,, +2021-03-26,Rajasthan,6789888.0,, +2021-03-27,Rajasthan,6824876.0,, +2021-03-28,Rajasthan,6858264.0,, +2021-03-29,Rajasthan,6869625.0,, +2021-03-30,Rajasthan,6873806.0,, +2021-03-31,Rajasthan,6908881.0,, +2021-04-01,Rajasthan,6945497.0,, +2021-04-02,Rajasthan,6983623.0,, +2021-04-03,Rajasthan,7010397.0,, +2021-04-04,Rajasthan,7056864.0,, +2021-04-05,Rajasthan,7076638.0,, +2021-04-06,Rajasthan,7128353.0,, +2021-04-07,Rajasthan,7178301.0,, +2021-04-08,Rajasthan,7230603.0,, +2021-04-09,Rajasthan,7285519.0,, +2021-04-10,Rajasthan,7341539.0,, +2021-04-11,Rajasthan,7398952.0,, +2021-04-12,Rajasthan,7425270.0,, +2021-04-13,Rajasthan,7484479.0,, +2021-04-14,Rajasthan,7524365.0,, +2021-04-15,Rajasthan,7567748.0,, +2021-04-16,Rajasthan,7628646.0,, +2021-04-17,Rajasthan,7695207.0,, +2021-04-18,Rajasthan,7760082.0,, +2021-04-19,Rajasthan,7800262.0,, +2021-04-20,Rajasthan,7886105.0,, +2021-04-21,Rajasthan,7967086.0,, +2021-04-22,Rajasthan,8025721.0,, +2021-04-23,Rajasthan,8111760.0,, +2021-04-24,Rajasthan,8197849.0,, +2021-04-25,Rajasthan,8277809.0,, +2021-04-26,Rajasthan,8322104.0,, +2021-04-27,Rajasthan,8411797.0,, +2021-04-28,Rajasthan,8497418.0,, +2021-04-29,Rajasthan,8582791.0,, +2021-04-30,Rajasthan,8664982.0,, +2021-05-01,Rajasthan,8749162.0,, +2021-05-02,Rajasthan,8833897.0,, +2021-05-03,Rajasthan,8882698.0,, +2021-05-04,Rajasthan,8982116.0,, +2021-05-05,Rajasthan,9074803.0,, +2021-05-06,Rajasthan,9164902.0,, +2021-05-07,Rajasthan,9242688.0,, +2021-05-08,Rajasthan,9322119.0,, +2021-05-09,Rajasthan,9397607.0,, +2021-05-10,Rajasthan,9438776.0,, +2021-05-11,Rajasthan,9522627.0,, +2021-05-12,Rajasthan,9599659.0,, +2021-05-13,Rajasthan,9672129.0,, +2021-05-14,Rajasthan,9739918.0,, +2021-05-15,Rajasthan,9790123.0,, +2021-05-16,Rajasthan,9862902.0,, +2021-05-17,Rajasthan,9899078.0,, +2021-05-18,Rajasthan,9973974.0,, +2021-05-19,Rajasthan,10028661.0,, +2021-05-20,Rajasthan,10070385.0,, +2021-05-21,Rajasthan,10118617.0,, +2021-05-22,Rajasthan,10181510.0,, +2021-05-23,Rajasthan,10234346.0,, +2021-05-24,Rajasthan,10258716.0,, +2021-05-25,Rajasthan,10317471.0,, +2021-05-26,Rajasthan,10366512.0,, +2021-05-27,Rajasthan,10423214.0,, +2021-05-28,Rajasthan,10469750.0,, +2021-05-29,Rajasthan,10521951.0,, +2021-05-30,Rajasthan,10571388.0,, +2021-05-31,Rajasthan,10591428.0,, +2021-06-01,Rajasthan,10643099.0,, +2021-06-02,Rajasthan,10692001.0,, +2021-06-03,Rajasthan,10743824.0,, +2021-06-04,Rajasthan,10795522.0,, +2021-06-05,Rajasthan,10849466.0,, +2021-06-06,Rajasthan,10902750.0,, +2021-06-07,Rajasthan,10922837.0,, +2020-05-04,Sikkim,170.0,169, +2020-05-05,Sikkim,181.0,171,0.0 +2020-05-06,Sikkim,189.0,189,0.0 +2020-05-07,Sikkim,216.0,207,0.0 +2020-05-08,Sikkim,216.0,214,0.0 +2020-05-09,Sikkim,219.0,219,0.0 +2020-05-10,Sikkim,219.0,219,0.0 +2020-05-11,Sikkim,219.0,219,0.0 +2020-05-12,Sikkim,348.0,229,0.0 +2020-05-13,Sikkim,439.0,268,0.0 +2020-05-14,Sikkim,579.0,292,0.0 +2020-05-15,Sikkim,348.0,229,0.0 +2020-05-16,Sikkim,840.0,424,0.0 +2020-05-17,Sikkim,947.0,449,0.0 +2020-05-18,Sikkim,1087.0,536,0.0 +2020-05-19,Sikkim,1204.0,827,0.0 +2020-05-20,Sikkim,1342.0,955,0.0 +2020-05-22,Sikkim,1637.0,1347,0.0 +2020-05-23,Sikkim,1707.0,1398,0.0 +2020-05-24,Sikkim,1855.0,1471,1.0 +2020-05-25,Sikkim,2103.0,1508,1.0 +2020-05-26,Sikkim,2255.0,1508,1.0 +2020-05-27,Sikkim,2417.0,1665,1.0 +2020-05-28,Sikkim,2626.0,1801,1.0 +2020-05-29,Sikkim,2759.0,1880,1.0 +2020-05-30,Sikkim,2829.0,2015,1.0 +2020-05-31,Sikkim,2925.0,2173,1.0 +2020-06-01,Sikkim,3525.0,2601,1.0 +2020-06-02,Sikkim,3788.0,2857,1.0 +2020-06-03,Sikkim,4102.0,3062,2.0 +2020-06-04,Sikkim,4358.0,3894,2.0 +2020-06-05,Sikkim,4761.0,4143,3.0 +2020-06-06,Sikkim,5005.0,4273,3.0 +2020-06-08,Sikkim,5547.0,4953,6.0 +2020-06-09,Sikkim,5815.0,5508,12.0 +2020-06-10,Sikkim,6161.0,5850,12.0 +2020-06-11,Sikkim,6692.0,6063,12.0 +2020-06-12,Sikkim,5157.0,4830,26.0 +2020-06-13,Sikkim,5377.0,5029,62.0 +2020-06-14,Sikkim,5664.0,5177,67.0 +2020-06-15,Sikkim,5762.0,5521,68.0 +2020-06-16,Sikkim,6192.0,5715,68.0 +2020-06-17,Sikkim,6349.0,6004,70.0 +2020-06-19,Sikkim,6882.0,6500,70.0 +2020-06-20,Sikkim,7183.0,6932,70.0 +2020-06-21,Sikkim,9354.0,8803,70.0 +2020-06-22,Sikkim,9449.0,,78.0 +2020-06-23,Sikkim,9594.0,,79.0 +2020-06-24,Sikkim,9849.0,,83.0 +2020-06-25,Sikkim,10025.0,,85.0 +2020-06-26,Sikkim,10212.0,,86.0 +2020-06-27,Sikkim,10219.0,,87.0 +2020-06-28,Sikkim,10364.0,,88.0 +2020-06-29,Sikkim,10440.0,,88.0 +2020-06-30,Sikkim,10535.0,,88.0 +2020-07-01,Sikkim,10723.0,,88.0 +2020-07-02,Sikkim,10900.0,,88.0 +2020-07-03,Sikkim,11072.0,,101.0 +2020-07-04,Sikkim,11242.0,,103.0 +2020-07-05,Sikkim,11387.0,,125.0 +2020-07-06,Sikkim,11407.0,,125.0 +2020-07-07,Sikkim,11581.0,,125.0 +2020-07-08,Sikkim,11820.0,,129.0 +2020-07-09,Sikkim,12012.0,,130.0 +2020-07-10,Sikkim,12119.0,,130.0 +2020-07-11,Sikkim,12246.0,,156.0 +2020-07-12,Sikkim,12531.0,,160.0 +2020-07-13,Sikkim,12636.0,10636,162.0 +2020-07-14,Sikkim,12939.0,,211.0 +2020-07-15,Sikkim,13352.0,11355, +2020-07-16,Sikkim,13762.0,11751,235.0 +2020-07-17,Sikkim,14373.0,12322,254.0 +2020-07-18,Sikkim,15139.0,13051,273.0 +2020-07-19,Sikkim,15957.0,13857,283.0 +2020-07-20,Sikkim,16906.0,14787,305.0 +2020-07-21,Sikkim,17564.0,15418,330.0 +2020-07-22,Sikkim,19484.0,17218,438.0 +2020-07-23,Sikkim,20050.0,18267,460.0 +2020-07-24,Sikkim,20785.0,18748,477.0 +2020-07-25,Sikkim,21272.0,,512.0 +2020-07-27,Sikkim,22410.0,,545.0 +2020-07-28,Sikkim,22993.0,20465,579.0 +2020-07-29,Sikkim,23637.0,,596.0 +2020-07-30,Sikkim,24150.0,21560,610.0 +2020-07-31,Sikkim,24939.0,22220,639.0 +2020-08-01,Sikkim,25916.0,23282,650.0 +2020-08-02,Sikkim,26473.0,23804,658.0 +2020-08-03,Sikkim,27115.0,24431,688.0 +2020-08-04,Sikkim,28089.0,25310,783.0 +2020-08-05,Sikkim,29035.0,,788.0 +2020-08-06,Sikkim,29467.0,,829.0 +2020-08-07,Sikkim,29958.0,,854.0 +2020-08-08,Sikkim,30533.0,,854.0 +2020-08-09,Sikkim,30732.0,,866.0 +2020-08-10,Sikkim,31193.0,,910.0 +2020-08-11,Sikkim,31604.0,, +2020-08-12,Sikkim,31974.0,, +2020-08-13,Sikkim,32421.0,, +2020-08-14,Sikkim,32762.0,, +2020-08-15,Sikkim,32926.0,, +2020-08-16,Sikkim,33810.0,, +2020-08-17,Sikkim,34813.0,, +2020-08-18,Sikkim,34553.0,, +2020-08-19,Sikkim,35062.0,, +2020-08-20,Sikkim,35449.0,, +2020-08-21,Sikkim,36111.0,, +2020-08-22,Sikkim,36744.0,, +2020-08-24,Sikkim,37798.0,, +2020-08-25,Sikkim,38296.0,, +2020-08-26,Sikkim,38951.0,, +2020-08-28,Sikkim,40035.0,, +2020-08-29,Sikkim,40515.0,, +2020-08-30,Sikkim,41069.0,, +2020-08-31,Sikkim,41270.0,, +2020-09-01,Sikkim,41558.0,, +2020-09-02,Sikkim,42019.0,, +2020-09-03,Sikkim,42331.0,, +2020-09-04,Sikkim,42772.0,, +2020-09-05,Sikkim,43125.0,, +2020-09-06,Sikkim,43345.0,, +2020-09-07,Sikkim,43661.0,, +2020-09-08,Sikkim,43828.0,, +2020-09-09,Sikkim,44122.0,, +2020-09-10,Sikkim,44323.0,, +2020-09-11,Sikkim,44520.0,, +2020-09-12,Sikkim,44790.0,, +2020-09-13,Sikkim,45075.0,, +2020-09-14,Sikkim,45210.0,, +2020-09-15,Sikkim,45502.0,, +2020-09-16,Sikkim,45762.0,, +2020-09-17,Sikkim,46065.0,, +2020-09-18,Sikkim,46292.0,, +2020-09-19,Sikkim,46690.0,, +2020-09-20,Sikkim,47044.0,, +2020-09-21,Sikkim,47269.0,, +2020-09-22,Sikkim,47530.0,, +2020-09-23,Sikkim,47893.0,, +2020-09-24,Sikkim,48291.0,, +2020-09-25,Sikkim,48655.0,, +2020-09-26,Sikkim,49099.0,, +2020-09-27,Sikkim,49338.0,, +2020-09-28,Sikkim,49495.0,, +2020-09-29,Sikkim,49858.0,, +2020-09-30,Sikkim,50232.0,, +2020-10-01,Sikkim,50654.0,, +2020-10-02,Sikkim,50987.0,, +2020-10-03,Sikkim,51333.0,, +2020-10-04,Sikkim,51634.0,, +2020-10-05,Sikkim,51741.0,, +2020-10-06,Sikkim,51935.0,, +2020-10-07,Sikkim,51991.0,, +2020-10-08,Sikkim,52043.0,, +2020-10-09,Sikkim,52383.0,, +2020-10-10,Sikkim,52682.0,, +2020-10-11,Sikkim,52906.0,, +2020-10-12,Sikkim,52944.0,, +2020-10-13,Sikkim,53180.0,, +2020-10-14,Sikkim,53417.0,, +2020-10-15,Sikkim,53635.0,, +2020-10-16,Sikkim,53814.0,, +2020-10-17,Sikkim,54107.0,, +2020-10-18,Sikkim,54282.0,, +2020-10-19,Sikkim,54310.0,, +2020-10-20,Sikkim,54631.0,, +2020-10-21,Sikkim,54836.0,, +2020-10-23,Sikkim,55320.0,, +2020-10-24,Sikkim,55611.0,, +2020-10-25,Sikkim,55797.0,, +2020-10-26,Sikkim,55817.0,, +2020-10-27,Sikkim,55898.0,, +2020-10-28,Sikkim,56022.0,, +2020-10-29,Sikkim,56150.0,, +2020-10-30,Sikkim,56319.0,, +2020-10-31,Sikkim,56566.0,, +2020-11-01,Sikkim,56699.0,, +2020-11-02,Sikkim,56731.0,, +2020-11-03,Sikkim,56938.0,, +2020-11-04,Sikkim,57243.0,, +2020-11-05,Sikkim,57421.0,, +2020-11-06,Sikkim,57670.0,, +2020-11-07,Sikkim,57963.0,, +2020-11-08,Sikkim,58173.0,, +2020-11-09,Sikkim,58224.0,, +2020-11-10,Sikkim,58540.0,, +2020-11-11,Sikkim,58792.0,, +2020-11-12,Sikkim,58984.0,, +2020-11-13,Sikkim,59211.0,, +2020-11-14,Sikkim,59499.0,, +2020-11-15,Sikkim,59650.0,, +2020-11-16,Sikkim,59836.0,, +2020-11-17,Sikkim,60015.0,, +2020-11-18,Sikkim,60211.0,, +2020-11-19,Sikkim,60375.0,, +2020-11-20,Sikkim,60557.0,, +2020-11-22,Sikkim,61087.0,, +2020-11-23,Sikkim,61135.0,, +2020-11-24,Sikkim,61366.0,, +2020-11-26,Sikkim,61863.0,, +2020-11-27,Sikkim,62084.0,, +2020-11-28,Sikkim,62363.0,, +2020-11-29,Sikkim,62566.0,, +2020-11-30,Sikkim,62596.0,, +2020-12-01,Sikkim,62809.0,, +2020-12-02,Sikkim,63147.0,, +2020-12-03,Sikkim,63338.0,, +2020-12-04,Sikkim,63607.0,, +2020-12-05,Sikkim,63780.0,, +2020-12-06,Sikkim,63986.0,, +2020-12-07,Sikkim,64029.0,, +2020-12-08,Sikkim,64280.0,, +2020-12-09,Sikkim,64544.0,, +2020-12-10,Sikkim,64836.0,, +2020-12-11,Sikkim,65079.0,, +2020-12-12,Sikkim,65261.0,, +2020-12-13,Sikkim,65444.0,, +2020-12-14,Sikkim,65499.0,, +2020-12-16,Sikkim,65997.0,, +2020-12-17,Sikkim,66130.0,, +2020-12-21,Sikkim,66888.0,, +2020-12-22,Sikkim,67108.0,, +2020-12-23,Sikkim,67256.0,, +2020-12-24,Sikkim,67575.0,, +2020-12-25,Sikkim,67774.0,, +2020-12-26,Sikkim,68044.0,, +2020-12-27,Sikkim,68247.0,, +2020-12-28,Sikkim,68269.0,, +2020-12-29,Sikkim,68543.0,, +2020-12-30,Sikkim,68674.0,, +2020-12-31,Sikkim,68828.0,, +2021-01-01,Sikkim,68909.0,, +2021-01-02,Sikkim,69114.0,, +2021-01-03,Sikkim,69260.0,, +2021-01-04,Sikkim,69285.0,, +2021-01-05,Sikkim,69556.0,, +2021-01-06,Sikkim,69759.0,, +2021-01-07,Sikkim,70151.0,, +2021-01-08,Sikkim,70386.0,, +2021-01-09,Sikkim,70567.0,, +2021-01-10,Sikkim,70813.0,, +2021-01-11,Sikkim,70842.0,, +2021-01-12,Sikkim,71032.0,, +2021-01-13,Sikkim,71409.0,, +2021-01-14,Sikkim,71626.0,, +2021-01-15,Sikkim,71832.0,, +2021-01-16,Sikkim,72038.0,, +2021-01-17,Sikkim,72278.0,, +2021-01-18,Sikkim,72297.0,, +2021-01-19,Sikkim,72544.0,, +2021-01-20,Sikkim,72821.0,, +2021-01-21,Sikkim,73062.0,, +2021-01-22,Sikkim,73227.0,, +2021-01-23,Sikkim,73368.0,, +2021-01-24,Sikkim,73565.0,, +2021-01-25,Sikkim,73604.0,, +2021-01-26,Sikkim,73775.0,, +2021-01-28,Sikkim,74110.0,, +2021-01-29,Sikkim,74289.0,, +2021-01-30,Sikkim,74457.0,, +2021-01-31,Sikkim,74692.0,, +2021-02-03,Sikkim,75142.0,, +2021-02-04,Sikkim,75367.0,, +2021-02-05,Sikkim,75516.0,, +2021-02-06,Sikkim,75644.0,, +2021-02-08,Sikkim,75843.0,, +2021-02-09,Sikkim,76040.0,, +2021-02-10,Sikkim,76216.0,, +2021-02-11,Sikkim,76386.0,, +2021-02-12,Sikkim,76541.0,, +2021-02-13,Sikkim,76624.0,, +2021-02-15,Sikkim,76756.0,, +2021-02-16,Sikkim,76903.0,, +2021-02-17,Sikkim,77097.0,, +2021-02-18,Sikkim,77263.0,, +2021-02-19,Sikkim,77410.0,, +2021-02-20,Sikkim,77573.0,, +2021-02-21,Sikkim,77760.0,, +2021-02-24,Sikkim,78135.0,, +2021-02-25,Sikkim,78309.0,, +2021-02-26,Sikkim,78485.0,, +2021-02-28,Sikkim,78771.0,, +2021-03-01,Sikkim,78786.0,, +2021-03-02,Sikkim,78883.0,, +2021-03-03,Sikkim,79092.0,, +2021-03-04,Sikkim,79197.0,, +2021-03-05,Sikkim,79348.0,, +2021-03-07,Sikkim,79724.0,, +2021-03-08,Sikkim,79739.0,, +2021-03-09,Sikkim,79895.0,, +2021-03-10,Sikkim,80088.0,, +2021-03-12,Sikkim,80379.0,, +2021-03-13,Sikkim,80532.0,, +2021-03-14,Sikkim,80684.0,, +2021-03-16,Sikkim,80939.0,, +2021-03-17,Sikkim,81072.0,, +2021-03-18,Sikkim,81229.0,, +2021-03-19,Sikkim,81376.0,, +2021-03-20,Sikkim,81576.0,, +2021-03-21,Sikkim,81749.0,, +2021-03-22,Sikkim,81777.0,, +2021-03-24,Sikkim,82162.0,, +2021-03-25,Sikkim,82286.0,, +2021-03-26,Sikkim,82475.0,, +2021-03-28,Sikkim,82729.0,, +2021-03-29,Sikkim,82757.0,, +2021-03-30,Sikkim,82848.0,, +2021-03-31,Sikkim,83021.0,, +2021-04-03,Sikkim,83701.0,, +2021-04-27,Sikkim,91591.0,, +2021-04-28,Sikkim,92106.0,, +2021-04-29,Sikkim,92840.0,, +2021-04-30,Sikkim,93658.0,, +2021-05-01,Sikkim,94455.0,, +2021-05-02,Sikkim,95254.0,, +2021-05-03,Sikkim,95365.0,, +2021-05-04,Sikkim,96164.0,, +2021-05-05,Sikkim,96965.0,, +2021-05-06,Sikkim,97863.0,, +2021-05-07,Sikkim,98670.0,, +2021-05-08,Sikkim,99352.0,, +2021-05-09,Sikkim,100160.0,, +2021-05-10,Sikkim,100295.0,, +2021-05-11,Sikkim,101002.0,, +2021-05-12,Sikkim,101732.0,, +2021-05-13,Sikkim,102413.0,, +2021-05-14,Sikkim,103161.0,, +2021-05-15,Sikkim,104009.0,, +2021-05-16,Sikkim,104955.0,, +2021-05-17,Sikkim,105145.0,, +2021-05-18,Sikkim,105725.0,, +2021-05-19,Sikkim,106563.0,, +2021-05-20,Sikkim,107239.0,, +2021-05-21,Sikkim,108170.0,, +2021-05-22,Sikkim,109173.0,, +2021-05-23,Sikkim,110183.0,, +2021-05-24,Sikkim,110589.0,, +2021-05-25,Sikkim,111529.0,, +2021-05-26,Sikkim,112724.0,, +2021-05-27,Sikkim,114219.0,, +2021-05-28,Sikkim,115641.0,, +2021-05-29,Sikkim,117336.0,, +2021-05-30,Sikkim,118543.0,, +2021-05-31,Sikkim,119475.0,, +2021-06-01,Sikkim,122147.0,, +2021-06-02,Sikkim,124912.0,, +2021-06-03,Sikkim,126629.0,, +2021-06-04,Sikkim,130615.0,, +2021-06-05,Sikkim,133270.0,, +2021-06-06,Sikkim,135818.0,, +2021-06-07,Sikkim,136524.0,, +2020-04-03,Tamil Nadu,3684.0,2789,411.0 +2020-04-08,Tamil Nadu,5305.0,4414,690.0 +2020-04-09,Tamil Nadu,7267.0,5824,834.0 +2020-04-10,Tamil Nadu,8410.0,6838,911.0 +2020-04-11,Tamil Nadu,9842.0,7779,969.0 +2020-04-12,Tamil Nadu,10655.0,,1075.0 +2020-04-13,Tamil Nadu,12746.0,,1173.0 +2020-04-14,Tamil Nadu,19255.0,13234,1204.0 +2020-04-15,Tamil Nadu,21994.0,15210,1242.0 +2020-04-16,Tamil Nadu,26005.0,18743,1267.0 +2020-04-17,Tamil Nadu,29673.0,21628,1323.0 +2020-04-18,Tamil Nadu,35036.0,27192,1372.0 +2020-04-19,Tamil Nadu,40876.0,31853,1477.0 +2020-04-20,Tamil Nadu,46985.0,38082,1520.0 +2020-04-21,Tamil Nadu,53045.0,43582,1596.0 +2020-04-22,Tamil Nadu,59023.0,49506,1629.0 +2020-04-23,Tamil Nadu,65977.0,56836,1683.0 +2020-04-24,Tamil Nadu,72403.0,62596,1755.0 +2020-04-25,Tamil Nadu,80110.0,69390,1821.0 +2020-04-26,Tamil Nadu,87605.0,77133,1885.0 +2020-04-27,Tamil Nadu,94781.0,83021,1937.0 +2020-04-28,Tamil Nadu,101874.0,97908,2058.0 +2020-04-29,Tamil Nadu,109961.0,105864,2162.0 +2020-04-30,Tamil Nadu,119748.0,115761,2323.0 +2020-05-01,Tamil Nadu,129363.0,124852,2526.0 +2020-05-02,Tamil Nadu,139490.0,135698,2757.0 +2020-05-03,Tamil Nadu,150107.0,145520,3023.0 +2020-05-04,Tamil Nadu,162970.0,158558,3550.0 +2020-05-05,Tamil Nadu,174828.0,170174,4058.0 +2020-05-06,Tamil Nadu,188241.0,182541,4829.0 +2020-05-07,Tamil Nadu,202436.0,195831,5409.0 +2020-05-08,Tamil Nadu,216416.0,209495,6009.0 +2020-05-09,Tamil Nadu,229670.0,222576,6535.0 +2020-05-10,Tamil Nadu,243037.0,235157,7204.0 +2020-05-11,Tamil Nadu,254899.0,245562,8002.0 +2020-05-12,Tamil Nadu,266687.0,256720,8718.0 +2020-05-13,Tamil Nadu,279467.0,269758,9227.0 +2020-05-14,Tamil Nadu,291432.0,281001,9674.0 +2020-05-15,Tamil Nadu,303104.0,292045,10108.0 +2020-05-16,Tamil Nadu,313639.0,302523,10585.0 +2020-05-17,Tamil Nadu,326720.0,315019,11224.0 +2020-05-18,Tamil Nadu,337841.0,325546,11760.0 +2020-05-19,Tamil Nadu,348174.0,334839,12448.0 +2020-05-20,Tamil Nadu,360068.0,346311,13191.0 +2020-05-21,Tamil Nadu,372532.0,357898,13967.0 +2020-05-22,Tamil Nadu,385185.0,369929,14735.0 +2020-05-23,Tamil Nadu,397340.0,381216,15512.0 +2020-05-24,Tamil Nadu,409615.0,392690,16277.0 +2020-05-25,Tamil Nadu,421450.0,403762,17082.0 +2020-05-26,Tamil Nadu,431739.0,413455,17728.0 +2020-05-27,Tamil Nadu,442970.0,423775,18545.0 +2020-05-28,Tamil Nadu,455216.0,435279,19372.0 +2020-05-29,Tamil Nadu,466550.0,445668,20246.0 +2020-05-30,Tamil Nadu,479155.0,457405,21184.0 +2020-05-31,Tamil Nadu,491962.0,468940,22333.0 +2020-06-01,Tamil Nadu,503339.0,479208,23495.0 +2020-06-02,Tamil Nadu,514433.0,489258,24586.0 +2020-06-03,Tamil Nadu,528534.0,502173,25872.0 +2020-06-04,Tamil Nadu,544981.0,517137,27256.0 +2020-06-05,Tamil Nadu,560673.0,535254,28694.0 +2020-06-06,Tamil Nadu,576695.0,545896,30152.0 +2020-06-07,Tamil Nadu,592970.0,560890,31667.0 +2020-06-08,Tamil Nadu,607952.0,574209,33229.0 +2020-06-09,Tamil Nadu,621171.0,585678,34914.0 +2020-06-10,Tamil Nadu,638846.0,601363,36841.0 +2020-06-11,Tamil Nadu,655675.0,616395,38716.0 +2020-06-12,Tamil Nadu,673906.0,632656,40698.0 +2020-06-13,Tamil Nadu,691817.0,648545,42687.0 +2020-06-14,Tamil Nadu,710599.0,665401,44661.0 +2020-06-15,Tamil Nadu,729002.0,681961,46504.0 +2020-06-16,Tamil Nadu,748244.0,699645,48019.0 +2020-06-17,Tamil Nadu,773707.0,722830,50193.0 +2020-06-18,Tamil Nadu,800443.0,747428,52334.0 +2020-06-19,Tamil Nadu,827980.0,772937,54449.0 +2020-06-20,Tamil Nadu,861211.0,803824,56845.0 +2020-06-21,Tamil Nadu,892612.0,832720,59377.0 +2020-06-22,Tamil Nadu,919204.0,856475,62087.0 +2020-06-23,Tamil Nadu,944352.0,879176,64603.0 +2020-06-24,Tamil Nadu,976431.0,908292,67468.0 +2020-06-25,Tamil Nadu,1008974.0,937412,70977.0 +2020-06-26,Tamil Nadu,1042649.0,967356,74622.0 +2020-06-27,Tamil Nadu,1077454.0,998543,78335.0 +2020-06-28,Tamil Nadu,1110402.0,1028127,82275.0 +2020-06-29,Tamil Nadu,1140441.0,1054217,86224.0 +2020-06-30,Tamil Nadu,1170683.0,1080516,90167.0 +2020-07-01,Tamil Nadu,1202204.0,,94049.0 +2020-07-02,Tamil Nadu,1235692.0,,98392.0 +2020-07-03,Tamil Nadu,1270720.0,,102721.0 +2020-07-04,Tamil Nadu,1306884.0,,107001.0 +2020-07-05,Tamil Nadu,1341715.0,,111151.0 +2020-07-06,Tamil Nadu,1376497.0,,114978.0 +2020-07-07,Tamil Nadu,1413435.0,,118594.0 +2020-07-08,Tamil Nadu,1449414.0,,122350.0 +2020-07-09,Tamil Nadu,1491783.0,,126581.0 +2020-07-10,Tamil Nadu,1529092.0,,130261.0 +2020-07-11,Tamil Nadu,1566917.0,,134226.0 +2020-07-12,Tamil Nadu,1609448.0,,138470.0 +2020-07-13,Tamil Nadu,1654008.0,,142798.0 +2020-07-14,Tamil Nadu,1695365.0,,147324.0 +2020-07-15,Tamil Nadu,1736747.0,,151820.0 +2020-07-16,Tamil Nadu,1782635.0,,156369.0 +2020-07-17,Tamil Nadu,1831304.0,,160907.0 +2020-07-18,Tamil Nadu,1879499.0,,165714.0 +2020-07-19,Tamil Nadu,1932492.0,,170693.0 +2020-07-20,Tamil Nadu,1984579.0,,175678.0 +2020-07-21,Tamil Nadu,2035645.0,,180643.0 +2020-07-22,Tamil Nadu,2095757.0,,186492.0 +2020-07-23,Tamil Nadu,2157869.0,,192964.0 +2020-07-24,Tamil Nadu,2223019.0,,199749.0 +2020-07-25,Tamil Nadu,2287334.0,,206737.0 +2020-07-26,Tamil Nadu,2351463.0,,213723.0 +2020-07-27,Tamil Nadu,2414713.0,,220716.0 +2020-07-28,Tamil Nadu,2475866.0,,227688.0 +2020-07-29,Tamil Nadu,2536660.0,,234114.0 +2020-07-30,Tamil Nadu,2597862.0,,239978.0 +2020-07-31,Tamil Nadu,2658138.0,,245859.0 +2020-08-01,Tamil Nadu,2718718.0,,251738.0 +2020-08-02,Tamil Nadu,2779062.0,,257613.0 +2020-08-03,Tamil Nadu,2837273.0,,263222.0 +2020-08-04,Tamil Nadu,2892395.0,,268285.0 +2020-08-05,Tamil Nadu,2953561.0,,273460.0 +2020-08-06,Tamil Nadu,3020714.0,,279144.0 +2020-08-07,Tamil Nadu,3088066.0,,285024.0 +2020-08-08,Tamil Nadu,3155619.0,,290907.0 +2020-08-09,Tamil Nadu,3225805.0,,296901.0 +2020-08-10,Tamil Nadu,3292958.0,,302815.0 +2020-08-11,Tamil Nadu,3360450.0,, +2020-08-12,Tamil Nadu,3432025.0,, +2020-08-13,Tamil Nadu,3499300.0,,320355.0 +2020-08-14,Tamil Nadu,3569453.0,,326245.0 +2020-08-15,Tamil Nadu,3640796.0,,332105.0 +2020-08-16,Tamil Nadu,3711246.0,,338055.0 +2020-08-17,Tamil Nadu,3778778.0,,343945.0 +2020-08-18,Tamil Nadu,3845803.0,,349654.0 +2020-08-19,Tamil Nadu,3913523.0,,355449.0 +2020-08-20,Tamil Nadu,3988599.0,,361435.0 +2020-08-21,Tamil Nadu,4062943.0,,367430.0 +2020-08-22,Tamil Nadu,4136490.0,, +2020-08-23,Tamil Nadu,4206617.0,, +2020-08-24,Tamil Nadu,4276640.0,, +2020-08-25,Tamil Nadu,4346861.0,, +2020-08-26,Tamil Nadu,4422361.0,, +2020-08-27,Tamil Nadu,4498706.0,, +2020-08-28,Tamil Nadu,4573809.0,, +2020-08-29,Tamil Nadu,4654797.0,, +2020-08-30,Tamil Nadu,4738047.0,, +2020-08-31,Tamil Nadu,4813147.0,, +2020-09-01,Tamil Nadu,4888312.0,, +2020-09-02,Tamil Nadu,4964141.0,, +2020-09-03,Tamil Nadu,5047042.0,, +2020-09-04,Tamil Nadu,5130741.0,, +2020-09-05,Tamil Nadu,5212534.0,, +2020-09-06,Tamil Nadu,5298508.0,, +2020-09-07,Tamil Nadu,5379011.0,, +2020-09-08,Tamil Nadu,5462277.0,, +2020-09-09,Tamil Nadu,5544850.0,, +2020-09-10,Tamil Nadu,5630323.0,, +2020-09-11,Tamil Nadu,5715216.0,, +2020-09-12,Tamil Nadu,5803778.0,, +2020-09-13,Tamil Nadu,5888086.0,, +2020-09-14,Tamil Nadu,5968209.0,, +2020-09-15,Tamil Nadu,6048832.0,, +2020-09-16,Tamil Nadu,6133399.0,, +2020-09-17,Tamil Nadu,6217923.0,, +2020-09-18,Tamil Nadu,6303466.0,, +2020-09-19,Tamil Nadu,6388583.0,, +2020-09-20,Tamil Nadu,6474656.0,, +2020-09-21,Tamil Nadu,6555328.0,, +2020-09-22,Tamil Nadu,6640058.0,, +2020-09-23,Tamil Nadu,6725037.0,, +2020-09-24,Tamil Nadu,6815644.0,, +2020-09-25,Tamil Nadu,6910521.0,, +2020-09-26,Tamil Nadu,7004558.0,, +2020-09-27,Tamil Nadu,7100660.0,, +2020-09-28,Tamil Nadu,7181125.0,, +2020-09-29,Tamil Nadu,7267122.0,, +2020-09-30,Tamil Nadu,7354050.0,, +2020-10-01,Tamil Nadu,7441697.0,, +2020-10-02,Tamil Nadu,7526688.0,, +2020-10-03,Tamil Nadu,7613999.0,, +2020-10-04,Tamil Nadu,7700011.0,, +2020-10-05,Tamil Nadu,7782736.0,, +2020-10-06,Tamil Nadu,7863864.0,, +2020-10-07,Tamil Nadu,7957106.0,, +2020-10-08,Tamil Nadu,8044447.0,, +2020-10-09,Tamil Nadu,8141534.0,, +2020-10-10,Tamil Nadu,8232725.0,, +2020-10-11,Tamil Nadu,8322832.0,, +2020-10-12,Tamil Nadu,8402994.0,, +2020-10-13,Tamil Nadu,8488503.0,, +2020-10-14,Tamil Nadu,8584041.0,, +2020-10-15,Tamil Nadu,8674793.0,, +2020-10-16,Tamil Nadu,8766038.0,, +2020-10-17,Tamil Nadu,8856280.0,, +2020-10-18,Tamil Nadu,8946566.0,, +2020-10-19,Tamil Nadu,9031696.0,, +2020-10-20,Tamil Nadu,9112067.0,, +2020-10-21,Tamil Nadu,9193849.0,, +2020-10-22,Tamil Nadu,9275108.0,, +2020-10-23,Tamil Nadu,9356580.0,, +2020-10-24,Tamil Nadu,9436817.0,, +2020-10-25,Tamil Nadu,9517507.0,, +2020-10-26,Tamil Nadu,9589743.0,, +2020-10-27,Tamil Nadu,9660430.0,, +2020-10-28,Tamil Nadu,9732863.0,, +2020-10-29,Tamil Nadu,9808087.0,, +2020-10-30,Tamil Nadu,9885443.0,, +2020-10-31,Tamil Nadu,9956210.0,, +2020-11-01,Tamil Nadu,10029222.0,, +2020-11-02,Tamil Nadu,10099519.0,, +2020-11-03,Tamil Nadu,10169917.0,, +2020-11-04,Tamil Nadu,10245248.0,, +2020-11-05,Tamil Nadu,10325440.0,, +2020-11-06,Tamil Nadu,10406226.0,, +2020-11-07,Tamil Nadu,10486338.0,, +2020-11-08,Tamil Nadu,10561722.0,, +2020-11-09,Tamil Nadu,10636999.0,, +2020-11-10,Tamil Nadu,10709256.0,, +2020-11-11,Tamil Nadu,10786565.0,, +2020-11-12,Tamil Nadu,10863921.0,, +2020-11-13,Tamil Nadu,10937407.0,, +2020-11-14,Tamil Nadu,11007832.0,, +2020-11-15,Tamil Nadu,11072885.0,, +2020-11-16,Tamil Nadu,11136662.0,, +2020-11-17,Tamil Nadu,11199077.0,, +2020-11-18,Tamil Nadu,11266091.0,, +2020-11-19,Tamil Nadu,11333206.0,, +2020-11-20,Tamil Nadu,11401239.0,, +2020-11-21,Tamil Nadu,11470429.0,, +2020-11-22,Tamil Nadu,11541238.0,, +2020-11-23,Tamil Nadu,11606250.0,, +2020-11-24,Tamil Nadu,11673521.0,, +2020-11-25,Tamil Nadu,11741603.0,, +2020-11-26,Tamil Nadu,11802567.0,, +2020-11-27,Tamil Nadu,11864177.0,, +2020-11-28,Tamil Nadu,11930240.0,, +2020-11-29,Tamil Nadu,11997385.0,, +2020-11-30,Tamil Nadu,12060001.0,, +2020-12-01,Tamil Nadu,12125059.0,, +2020-12-02,Tamil Nadu,12193913.0,, +2020-12-03,Tamil Nadu,12264069.0,, +2020-12-04,Tamil Nadu,12334447.0,, +2020-12-05,Tamil Nadu,12405328.0,, +2020-12-06,Tamil Nadu,12476093.0,, +2020-12-07,Tamil Nadu,12540103.0,, +2020-12-08,Tamil Nadu,12605289.0,, +2020-12-09,Tamil Nadu,12675551.0,, +2020-12-10,Tamil Nadu,12744479.0,, +2020-12-11,Tamil Nadu,12814915.0,, +2020-12-12,Tamil Nadu,12887037.0,, +2020-12-13,Tamil Nadu,12956605.0,, +2020-12-14,Tamil Nadu,13020594.0,, +2020-12-15,Tamil Nadu,13086807.0,, +2020-12-16,Tamil Nadu,13159822.0,, +2020-12-17,Tamil Nadu,13235354.0,, +2020-12-18,Tamil Nadu,13310701.0,, +2020-12-19,Tamil Nadu,13387049.0,, +2020-12-20,Tamil Nadu,13460016.0,, +2020-12-21,Tamil Nadu,13523032.0,, +2020-12-22,Tamil Nadu,13588389.0,, +2020-12-23,Tamil Nadu,13659300.0,, +2020-12-24,Tamil Nadu,13730293.0,, +2020-12-25,Tamil Nadu,13795803.0,, +2020-12-26,Tamil Nadu,13860244.0,, +2020-12-27,Tamil Nadu,13924527.0,, +2020-12-28,Tamil Nadu,13987769.0,, +2020-12-29,Tamil Nadu,14052537.0,, +2020-12-30,Tamil Nadu,14122733.0,, +2020-12-31,Tamil Nadu,14191494.0,, +2021-01-01,Tamil Nadu,14258645.0,, +2021-01-02,Tamil Nadu,14321046.0,, +2021-01-03,Tamil Nadu,14382123.0,, +2021-01-04,Tamil Nadu,14442625.0,, +2021-01-05,Tamil Nadu,14502929.0,, +2021-01-06,Tamil Nadu,14566511.0,, +2021-01-07,Tamil Nadu,14630875.0,, +2021-01-08,Tamil Nadu,14695106.0,, +2021-01-09,Tamil Nadu,14760619.0,, +2021-01-10,Tamil Nadu,14824699.0,, +2021-01-11,Tamil Nadu,14885013.0,, +2021-01-12,Tamil Nadu,14945576.0,, +2021-01-13,Tamil Nadu,15008259.0,, +2021-01-14,Tamil Nadu,15068940.0,, +2021-01-15,Tamil Nadu,15124787.0,, +2021-01-16,Tamil Nadu,15177094.0,, +2021-01-17,Tamil Nadu,15229307.0,, +2021-01-18,Tamil Nadu,15279808.0,, +2021-01-19,Tamil Nadu,15331269.0,, +2021-01-20,Tamil Nadu,15391518.0,, +2021-01-21,Tamil Nadu,15452541.0,, +2021-01-22,Tamil Nadu,15514693.0,, +2021-01-23,Tamil Nadu,15577766.0,, +2021-01-24,Tamil Nadu,15640385.0,, +2021-01-25,Tamil Nadu,15696304.0,, +2021-01-26,Tamil Nadu,15752119.0,, +2021-01-27,Tamil Nadu,15808217.0,, +2021-01-28,Tamil Nadu,15860674.0,, +2021-01-29,Tamil Nadu,15913194.0,, +2021-01-30,Tamil Nadu,15965919.0,, +2021-01-31,Tamil Nadu,16019962.0,, +2021-02-01,Tamil Nadu,16071626.0,, +2021-02-02,Tamil Nadu,16123270.0,, +2021-02-03,Tamil Nadu,16176919.0,, +2021-02-04,Tamil Nadu,16228801.0,, +2021-02-05,Tamil Nadu,16281457.0,, +2021-02-06,Tamil Nadu,16334713.0,, +2021-02-07,Tamil Nadu,16388243.0,, +2021-02-08,Tamil Nadu,16439856.0,, +2021-02-09,Tamil Nadu,16491030.0,, +2021-02-10,Tamil Nadu,16544106.0,, +2021-02-11,Tamil Nadu,16599861.0,, +2021-02-12,Tamil Nadu,16655151.0,, +2021-02-13,Tamil Nadu,16709185.0,, +2021-02-14,Tamil Nadu,16762668.0,, +2021-02-15,Tamil Nadu,16813020.0,, +2021-02-16,Tamil Nadu,16863820.0,, +2021-02-17,Tamil Nadu,16916170.0,, +2021-02-18,Tamil Nadu,16967271.0,, +2021-02-19,Tamil Nadu,17019551.0,, +2021-02-20,Tamil Nadu,17070597.0,, +2021-02-21,Tamil Nadu,17120745.0,, +2021-02-22,Tamil Nadu,17170947.0,, +2021-02-23,Tamil Nadu,17222248.0,, +2021-02-24,Tamil Nadu,17272643.0,, +2021-02-25,Tamil Nadu,17323383.0,, +2021-02-26,Tamil Nadu,17376129.0,, +2021-02-27,Tamil Nadu,17428757.0,, +2021-02-28,Tamil Nadu,17479572.0,, +2021-03-01,Tamil Nadu,17529663.0,, +2021-03-02,Tamil Nadu,17579872.0,, +2021-03-03,Tamil Nadu,17630655.0,, +2021-03-04,Tamil Nadu,17681361.0,, +2021-03-05,Tamil Nadu,17736224.0,, +2021-03-06,Tamil Nadu,17791275.0,, +2021-03-07,Tamil Nadu,17846391.0,, +2021-03-08,Tamil Nadu,17900716.0,, +2021-03-09,Tamil Nadu,17955850.0,, +2021-03-10,Tamil Nadu,18020932.0,, +2021-03-11,Tamil Nadu,18086877.0,, +2021-03-12,Tamil Nadu,18151986.0,, +2021-03-13,Tamil Nadu,18217281.0,, +2021-03-14,Tamil Nadu,18284550.0,, +2021-03-15,Tamil Nadu,18349379.0,, +2021-03-16,Tamil Nadu,18413572.0,, +2021-03-17,Tamil Nadu,18485460.0,, +2021-03-18,Tamil Nadu,18557485.0,, +2021-03-19,Tamil Nadu,18630686.0,, +2021-03-20,Tamil Nadu,18705851.0,, +2021-03-21,Tamil Nadu,18781109.0,, +2021-03-22,Tamil Nadu,18854356.0,, +2021-03-23,Tamil Nadu,18930484.0,, +2021-03-24,Tamil Nadu,19011118.0,, +2021-03-25,Tamil Nadu,19092221.0,, +2021-03-26,Tamil Nadu,19177274.0,, +2021-03-27,Tamil Nadu,19262447.0,, +2021-03-28,Tamil Nadu,19347797.0,, +2021-03-29,Tamil Nadu,19428501.0,, +2021-03-30,Tamil Nadu,19511655.0,, +2021-03-31,Tamil Nadu,19595368.0,, +2021-04-01,Tamil Nadu,19681244.0,, +2021-04-02,Tamil Nadu,19767310.0,, +2021-04-03,Tamil Nadu,19849388.0,, +2021-04-04,Tamil Nadu,19932179.0,, +2021-04-05,Tamil Nadu,20012235.0,, +2021-04-06,Tamil Nadu,20093091.0,, +2021-04-07,Tamil Nadu,20173626.0,, +2021-04-08,Tamil Nadu,20258907.0,, +2021-04-09,Tamil Nadu,20347042.0,, +2021-04-10,Tamil Nadu,20431588.0,, +2021-04-11,Tamil Nadu,20520126.0,, +2021-04-12,Tamil Nadu,20603108.0,, +2021-04-13,Tamil Nadu,20686440.0,, +2021-04-14,Tamil Nadu,20784108.0,, +2021-04-15,Tamil Nadu,20879495.0,, +2021-04-16,Tamil Nadu,20976696.0,, +2021-04-17,Tamil Nadu,21077500.0,, +2021-04-18,Tamil Nadu,21187630.0,, +2021-04-19,Tamil Nadu,21299220.0,, +2021-04-20,Tamil Nadu,21400549.0,, +2021-04-21,Tamil Nadu,21513210.0,, +2021-04-22,Tamil Nadu,21628863.0,, +2021-04-23,Tamil Nadu,21754456.0,, +2021-04-24,Tamil Nadu,21880174.0,, +2021-04-25,Tamil Nadu,22006472.0,, +2021-04-26,Tamil Nadu,22126656.0,, +2021-04-27,Tamil Nadu,22248205.0,, +2021-04-28,Tamil Nadu,22378247.0,, +2021-04-29,Tamil Nadu,22518836.0,, +2021-04-30,Tamil Nadu,22662407.0,, +2021-05-01,Tamil Nadu,22813859.0,, +2021-05-02,Tamil Nadu,22956942.0,, +2021-05-03,Tamil Nadu,23097963.0,, +2021-05-04,Tamil Nadu,23238475.0,, +2021-05-05,Tamil Nadu,23393857.0,, +2021-05-06,Tamil Nadu,23545987.0,, +2021-05-07,Tamil Nadu,23698799.0,, +2021-05-08,Tamil Nadu,23854797.0,, +2021-05-09,Tamil Nadu,24008587.0,, +2021-05-10,Tamil Nadu,24154820.0,, +2021-05-11,Tamil Nadu,24310931.0,, +2021-05-12,Tamil Nadu,24467287.0,, +2021-05-13,Tamil Nadu,24625416.0,, +2021-05-14,Tamil Nadu,24785458.0,, +2021-05-15,Tamil Nadu,24950403.0,, +2021-05-16,Tamil Nadu,25117215.0,, +2021-05-17,Tamil Nadu,25273492.0,, +2021-05-18,Tamil Nadu,25433956.0,, +2021-05-19,Tamil Nadu,25604311.0,, +2021-05-20,Tamil Nadu,25775405.0,, +2021-05-21,Tamil Nadu,25949517.0,, +2021-05-22,Tamil Nadu,26124748.0,, +2021-05-23,Tamil Nadu,26301572.0,, +2021-05-24,Tamil Nadu,26469766.0,, +2021-05-25,Tamil Nadu,26641632.0,, +2021-05-26,Tamil Nadu,26814056.0,, +2021-05-27,Tamil Nadu,26988201.0,, +2021-05-28,Tamil Nadu,27163743.0,, +2021-05-29,Tamil Nadu,27338092.0,, +2021-05-30,Tamil Nadu,27511443.0,, +2021-05-31,Tamil Nadu,27675115.0,, +2021-06-01,Tamil Nadu,27842512.0,, +2021-06-02,Tamil Nadu,28016841.0,, +2021-06-03,Tamil Nadu,28196279.0,, +2021-06-04,Tamil Nadu,28371312.0,, +2021-06-05,Tamil Nadu,28546677.0,, +2021-06-06,Tamil Nadu,28721659.0,, +2021-06-07,Tamil Nadu,28892497.0,, +2020-04-19,Telangana,14962.0,14104,858.0 +2020-04-28,Telangana,19063.0,,1009.0 +2020-04-29,Telangana,19278.0,,1016.0 +2020-05-16,Telangana,23388.0,,1551.0 +2020-06-16,Telangana,44431.0,39025,5406.0 +2020-06-17,Telangana,45911.0,40236,5675.0 +2020-06-19,Telangana,50569.0,44043,6526.0 +2020-06-20,Telangana,53757.0,46685,7072.0 +2020-06-21,Telangana,57054.0,49252,7802.0 +2020-06-22,Telangana,60243.0,51569,8674.0 +2020-06-23,Telangana,63249.0,53696,9553.0 +2020-06-24,Telangana,67318.0,56874,10444.0 +2020-06-25,Telangana,70934.0,59570,11364.0 +2020-06-26,Telangana,75308.0,62959,12349.0 +2020-06-27,Telangana,79231.0,65795,13436.0 +2020-06-28,Telangana,82458.0,68039,14419.0 +2020-06-29,Telangana,85106.0,69712,15394.0 +2020-06-30,Telangana,88563.0,72224,16339.0 +2020-07-01,Telangana,92797.0,75440,17357.0 +2020-07-02,Telangana,98153.0,79583,18570.0 +2020-07-03,Telangana,104118.0,83656,20462.0 +2020-07-04,Telangana,110545.0,83656,22312.0 +2020-07-05,Telangana,115835.0,91933,23902.0 +2020-07-06,Telangana,122218.0,96485,25733.0 +2020-07-07,Telangana,128438.0,100826,27612.0 +2020-07-08,Telangana,134801.0,105265,29536.0 +2020-07-09,Telangana,140755.0,109809,30946.0 +2020-07-10,Telangana,151109.0,118885,32224.0 +2020-07-11,Telangana,162171.0,128769,33402.0 +2020-07-12,Telangana,170324.0,135653,34671.0 +2020-07-13,Telangana,181849.0,145628,36221.0 +2020-07-14,Telangana,195024.0,157279,37745.0 +2020-07-15,Telangana,208666.0,169324,39342.0 +2020-07-16,Telangana,222693.0,,41018.0 +2020-07-17,Telangana,237817.0,,42496.0 +2020-07-18,Telangana,252700.0,,43780.0 +2020-07-19,Telangana,265219.0,,45076.0 +2020-07-20,Telangana,276222.0,,46274.0 +2020-07-21,Telangana,293077.0,,47705.0 +2020-07-22,Telangana,308959.0,,49259.0 +2020-07-23,Telangana,322326.0,,50826.0 +2020-07-24,Telangana,337771.0,,52466.0 +2020-07-25,Telangana,353425.0,,54059.0 +2020-07-27,Telangana,363242.0,,55532.0 +2020-07-28,Telangana,379081.0,,57142.0 +2020-07-29,Telangana,397939.0,,58906.0 +2020-07-30,Telangana,416202.0,,60717.0 +2020-07-31,Telangana,437582.0,,62703.0 +2020-08-01,Telangana,458593.0,,64786.0 +2020-08-02,Telangana,477795.0,,66677.0 +2020-08-03,Telangana,487238.0,,67660.0 +2020-08-04,Telangana,501025.0,,68946.0 +2020-08-05,Telangana,522143.0,,70958.0 +2020-08-06,Telangana,543489.0,,73050.0 +2020-08-07,Telangana,566984.0,,75257.0 +2020-08-08,Telangana,590306.0,,77513.0 +2020-08-09,Telangana,613231.0,,79495.0 +2020-08-10,Telangana,624840.0,,80751.0 +2020-08-11,Telangana,642875.0,,82647.0 +2020-08-12,Telangana,665847.0,, +2020-08-13,Telangana,689150.0,, +2020-08-14,Telangana,711196.0,, +2020-08-15,Telangana,732435.0,,90259.0 +2020-08-16,Telangana,744555.0,,91361.0 +2020-08-17,Telangana,753349.0,, +2020-08-18,Telangana,772928.0,,93937.0 +2020-08-19,Telangana,797470.0,,95700.0 +2020-08-20,Telangana,821311.0,,97424.0 +2020-08-21,Telangana,848078.0,,99391.0 +2020-08-22,Telangana,891173.0,,101865.0 +2020-08-23,Telangana,931839.0,,104249.0 +2020-08-24,Telangana,968121.0,,106091.0 +2020-08-25,Telangana,1021054.0,,108670.0 +2020-08-26,Telangana,1082094.0,,111688.0 +2020-08-27,Telangana,1142480.0,,114483.0 +2020-08-28,Telangana,1204343.0,,117415.0 +2020-08-29,Telangana,1266643.0,,120166.0 +2020-08-30,Telangana,1327791.0,,123090.0 +2020-08-31,Telangana,1365582.0,,124963.0 +2020-09-01,Telangana,1423846.0,, +2020-09-02,Telangana,1483267.0,, +2020-09-03,Telangana,1542978.0,, +2020-09-04,Telangana,1605521.0,, +2020-09-05,Telangana,1667653.0,, +2020-09-06,Telangana,1730389.0,, +2020-09-07,Telangana,1766982.0,, +2020-09-08,Telangana,1827905.0,, +2020-09-09,Telangana,1890554.0,, +2020-09-10,Telangana,1953571.0,, +2020-09-11,Telangana,2016461.0,, +2020-09-12,Telangana,2078695.0,, +2020-09-13,Telangana,2134912.0,, +2020-09-14,Telangana,2169339.0,, +2020-09-15,Telangana,2220586.0,, +2020-09-16,Telangana,2276222.0,, +2020-09-17,Telangana,2329316.0,, +2020-09-18,Telangana,2379950.0,, +2020-09-19,Telangana,2434409.0,, +2020-09-20,Telangana,2488220.0,, +2020-09-21,Telangana,2519315.0,, +2020-09-22,Telangana,2573005.0,, +2020-09-23,Telangana,2628897.0,, +2020-09-24,Telangana,2684215.0,, +2020-09-25,Telangana,2741836.0,, +2020-09-26,Telangana,2800761.0,, +2020-09-27,Telangana,2850869.0,, +2020-09-28,Telangana,2886334.0,, +2020-09-29,Telangana,2940642.0,, +2020-09-30,Telangana,2996001.0,, +2020-10-01,Telangana,3050444.0,, +2020-10-02,Telangana,3104542.0,, +2020-10-03,Telangana,3153626.0,, +2020-10-04,Telangana,3205249.0,, +2020-10-05,Telangana,3241597.0,, +2020-10-06,Telangana,3292195.0,, +2020-10-07,Telangana,3346472.0,, +2020-10-08,Telangana,3396839.0,, +2020-10-09,Telangana,3449925.0,, +2020-10-10,Telangana,3500394.0,, +2020-10-11,Telangana,3547051.0,, +2020-10-12,Telangana,3577261.0,, +2020-10-13,Telangana,3624096.0,, +2020-10-14,Telangana,3664152.0,, +2020-10-15,Telangana,3703047.0,, +2020-10-16,Telangana,3746963.0,, +2020-10-17,Telangana,3789460.0,, +2020-10-18,Telangana,3830503.0,, +2020-10-19,Telangana,3856530.0,, +2020-10-20,Telangana,3898829.0,, +2020-10-21,Telangana,3940304.0,, +2020-10-22,Telangana,3978869.0,, +2020-10-23,Telangana,4017353.0,, +2020-10-24,Telangana,4052633.0,, +2020-10-25,Telangana,4079688.0,, +2020-10-26,Telangana,4094417.0,, +2020-10-27,Telangana,4115516.0,, +2020-10-28,Telangana,4155597.0,, +2020-10-29,Telangana,4196958.0,, +2020-10-30,Telangana,4240748.0,, +2020-10-31,Telangana,4281991.0,, +2020-11-01,Telangana,4323666.0,, +2020-11-02,Telangana,4349309.0,, +2020-11-03,Telangana,4394330.0,, +2020-11-04,Telangana,4439856.0,, +2020-11-05,Telangana,4484183.0,, +2020-11-06,Telangana,4531153.0,, +2020-11-07,Telangana,4575797.0,, +2020-11-08,Telangana,4618470.0,, +2020-11-09,Telangana,4642276.0,, +2020-11-10,Telangana,4684766.0,, +2020-11-11,Telangana,4729401.0,, +2020-11-12,Telangana,4770004.0,, +2020-11-13,Telangana,4812167.0,, +2020-11-14,Telangana,4853169.0,, +2020-11-15,Telangana,4874433.0,, +2020-11-16,Telangana,4891729.0,, +2020-11-17,Telangana,4929974.0,, +2020-11-18,Telangana,4972407.0,, +2020-11-19,Telangana,5011164.0,, +2020-11-20,Telangana,5050612.0,, +2020-11-21,Telangana,5092689.0,, +2020-11-22,Telangana,5134335.0,, +2020-11-23,Telangana,5158474.0,, +2020-11-24,Telangana,5201214.0,, +2020-11-25,Telangana,5248807.0,, +2020-11-26,Telangana,5289908.0,, +2020-11-27,Telangana,5332150.0,, +2020-11-28,Telangana,5374141.0,, +2020-11-29,Telangana,5420421.0,, +2020-11-30,Telangana,5453461.0,, +2020-12-01,Telangana,5500058.0,, +2020-12-02,Telangana,5551620.0,, +2020-12-03,Telangana,5605306.0,, +2020-12-04,Telangana,5662711.0,, +2020-12-05,Telangana,5722182.0,, +2020-12-06,Telangana,5779490.0,, +2020-12-07,Telangana,5812588.0,, +2020-12-08,Telangana,5868233.0,, +2020-12-09,Telangana,5919635.0,, +2020-12-10,Telangana,5973031.0,, +2020-12-11,Telangana,6029209.0,, +2020-12-13,Telangana,6128703.0,, +2020-12-14,Telangana,6157683.0,, +2020-12-15,Telangana,6205688.0,, +2020-12-16,Telangana,6257745.0,, +2020-12-17,Telangana,6306397.0,, +2020-12-18,Telangana,6354388.0,, +2020-12-19,Telangana,6401082.0,, +2020-12-20,Telangana,6443052.0,, +2020-12-21,Telangana,6475766.0,, +2020-12-22,Telangana,6520993.0,, +2020-12-23,Telangana,6566602.0,, +2020-12-24,Telangana,6611118.0,, +2020-12-25,Telangana,6655987.0,, +2020-12-26,Telangana,6686363.0,, +2020-12-27,Telangana,6723710.0,, +2020-12-28,Telangana,6750954.0,, +2020-12-29,Telangana,6793691.0,, +2020-12-30,Telangana,6839281.0,, +2020-12-31,Telangana,6882694.0,, +2021-01-01,Telangana,6924707.0,, +2021-01-02,Telangana,6951297.0,, +2021-01-03,Telangana,6991487.0,, +2021-01-04,Telangana,7018564.0,, +2021-01-05,Telangana,7061049.0,, +2021-01-06,Telangana,7104367.0,, +2021-01-07,Telangana,7145613.0,, +2021-01-08,Telangana,7184598.0,, +2021-01-09,Telangana,7215785.0,, +2021-01-10,Telangana,7253236.0,, +2021-01-11,Telangana,7278021.0,, +2021-01-12,Telangana,7312452.0,, +2021-01-13,Telangana,7350644.0,, +2021-01-14,Telangana,7379538.0,, +2021-01-15,Telangana,7399436.0,, +2021-01-16,Telangana,7428389.0,, +2021-01-17,Telangana,7461687.0,, +2021-01-18,Telangana,7483580.0,, +2021-01-19,Telangana,7515066.0,, +2021-01-20,Telangana,7542537.0,, +2021-01-21,Telangana,7574184.0,, +2021-01-22,Telangana,7602975.0,, +2021-01-23,Telangana,7632980.0,, +2021-01-24,Telangana,7662540.0,, +2021-01-25,Telangana,7682361.0,, +2021-01-26,Telangana,7711810.0,, +2021-01-27,Telangana,7728296.0,, +2021-01-28,Telangana,7759415.0,, +2021-01-29,Telangana,7790901.0,, +2021-01-30,Telangana,7823989.0,, +2021-01-31,Telangana,7861361.0,, +2021-02-01,Telangana,7879047.0,, +2021-02-02,Telangana,7915105.0,, +2021-02-03,Telangana,7955308.0,, +2021-02-04,Telangana,7996651.0,, +2021-02-05,Telangana,8034038.0,, +2021-02-06,Telangana,8069459.0,, +2021-02-07,Telangana,8104264.0,, +2021-02-08,Telangana,8122516.0,, +2021-02-09,Telangana,8154347.0,, +2021-02-10,Telangana,8184013.0,, +2021-02-11,Telangana,8213768.0,, +2021-02-12,Telangana,8242105.0,, +2021-02-13,Telangana,8269364.0,, +2021-02-14,Telangana,8295638.0,, +2021-02-15,Telangana,8311404.0,, +2021-02-16,Telangana,8336255.0,, +2021-02-17,Telangana,8360950.0,, +2021-02-18,Telangana,8385870.0,, +2021-02-19,Telangana,8409631.0,, +2021-02-20,Telangana,8433333.0,, +2021-02-21,Telangana,8456940.0,, +2021-02-22,Telangana,8471684.0,, +2021-02-26,Telangana,8618845.0,, +2021-02-27,Telangana,8659666.0,, +2021-02-28,Telangana,8700651.0,, +2021-03-01,Telangana,8721026.0,, +2021-03-02,Telangana,8761207.0,, +2021-03-03,Telangana,8801651.0,, +2021-03-04,Telangana,8842852.0,, +2021-03-05,Telangana,8883295.0,, +2021-03-06,Telangana,8924007.0,, +2021-03-07,Telangana,8964623.0,, +2021-03-08,Telangana,8984552.0,, +2021-03-09,Telangana,9016741.0,, +2021-03-10,Telangana,9055741.0,, +2021-03-11,Telangana,9093645.0,, +2021-03-12,Telangana,9114985.0,, +2021-03-13,Telangana,9149467.0,, +2021-03-14,Telangana,9200465.0,, +2021-03-15,Telangana,9238982.0,, +2021-03-16,Telangana,9299245.0,, +2021-03-17,Telangana,9359772.0,, +2021-03-18,Telangana,9419677.0,, +2021-03-19,Telangana,9482649.0,, +2021-03-20,Telangana,9548685.0,, +2021-03-21,Telangana,9613583.0,, +2021-03-22,Telangana,9650662.0,, +2021-03-23,Telangana,9718833.0,, +2021-03-24,Telangana,9789113.0,, +2021-03-25,Telangana,9845577.0,, +2021-03-26,Telangana,9903125.0,, +2021-03-27,Telangana,9961154.0,, +2021-03-28,Telangana,10019096.0,, +2021-03-29,Telangana,10053026.0,, +2021-03-30,Telangana,10095487.0,, +2021-03-31,Telangana,10151609.0,, +2021-04-01,Telangana,10210906.0,, +2021-04-02,Telangana,10270249.0,, +2021-04-03,Telangana,10329954.0,, +2021-04-04,Telangana,10392927.0,, +2021-04-05,Telangana,10435997.0,, +2021-04-06,Telangana,10498347.0,, +2021-04-07,Telangana,10572621.0,, +2021-04-08,Telangana,10659953.0,, +2021-04-09,Telangana,10761939.0,, +2021-04-10,Telangana,10873665.0,, +2021-04-11,Telangana,10988976.0,, +2021-04-12,Telangana,11068003.0,, +2021-04-13,Telangana,11181010.0,, +2021-04-14,Telangana,11253374.0,, +2021-04-15,Telangana,11360001.0,, +2021-04-16,Telangana,11481881.0,, +2021-04-17,Telangana,11608116.0,, +2021-04-18,Telangana,11737753.0,, +2021-04-19,Telangana,11820842.0,, +2021-04-20,Telangana,11942985.0,, +2021-04-21,Telangana,12073090.0,, +2021-04-22,Telangana,12175425.0,, +2021-04-23,Telangana,12281027.0,, +2021-04-24,Telangana,12384797.0,, +2021-04-25,Telangana,12493399.0,, +2021-04-26,Telangana,12566674.0,, +2021-04-27,Telangana,12666312.0,, +2021-04-28,Telangana,12748582.0,, +2021-04-29,Telangana,12828763.0,, +2021-04-30,Telangana,12905854.0,, +2021-05-01,Telangana,12983784.0,, +2021-05-02,Telangana,13060114.0,, +2021-05-03,Telangana,13118856.0,, +2021-05-04,Telangana,13189817.0,, +2021-05-05,Telangana,13267252.0,, +2021-05-06,Telangana,13347076.0,, +2021-05-07,Telangana,13488498.0,, +2021-05-08,Telangana,13557646.0,, +2021-05-09,Telangana,13613004.0,, +2021-05-10,Telangana,13678927.0,, +2021-05-11,Telangana,13754216.0,, +2021-05-12,Telangana,13823741.0,, +2021-05-13,Telangana,13894962.0,, +2021-05-14,Telangana,13952378.0,, +2021-05-15,Telangana,14016740.0,, +2021-05-16,Telangana,14061725.0,, +2021-05-17,Telangana,14124316.0,, +2021-05-18,Telangana,14195932.0,, +2021-05-19,Telangana,14267002.0,, +2021-05-20,Telangana,14336254.0,, +2021-05-21,Telangana,14402251.0,, +2021-05-22,Telangana,14465371.0,, +2021-05-23,Telangana,14507897.0,, +2021-05-24,Telangana,14567606.0,, +2021-05-25,Telangana,14648809.0,, +2021-05-26,Telangana,14739857.0,, +2021-05-27,Telangana,14830083.0,, +2021-05-28,Telangana,14927319.0,, +2021-05-29,Telangana,15027996.0,, +2021-05-30,Telangana,15089049.0,, +2021-05-31,Telangana,15176159.0,, +2021-06-01,Telangana,15270348.0,, +2021-06-02,Telangana,15379044.0,, +2021-06-03,Telangana,15489213.0,, +2021-06-04,Telangana,15625309.0,, +2021-06-05,Telangana,15763491.0,, +2021-06-06,Telangana,15861242.0,, +2021-06-07,Telangana,15994238.0,, +2020-04-11,Tripura,337.0,335,2.0 +2020-04-15,Tripura,738.0,,2.0 +2020-04-16,Tripura,762.0,760,2.0 +2020-04-21,Tripura,2604.0,2602,2.0 +2020-04-22,Tripura,3215.0,3123,2.0 +2020-05-01,Tripura,4828.0,4825,3.0 +2020-05-02,Tripura,4955.0,4950,5.0 +2020-05-03,Tripura,5162.0,5157,5.0 +2020-05-04,Tripura,5394.0,5377,17.0 +2020-05-05,Tripura,5850.0,5820,30.0 +2020-05-06,Tripura,6228.0,6185,43.0 +2020-05-07,Tripura,6917.0,6828,89.0 +2020-05-08,Tripura,7448.0,7359,89.0 +2020-05-09,Tripura,8340.0,8221,119.0 +2020-05-10,Tripura,9091.0,8955,136.0 +2020-05-11,Tripura,9596.0,9442,154.0 +2020-05-12,Tripura,10344.0,10189,155.0 +2020-05-13,Tripura,11146.0,10991,155.0 +2020-05-14,Tripura,11804.0,11648,156.0 +2020-05-15,Tripura,12561.0,12405,156.0 +2020-05-16,Tripura,13178.0,13011,167.0 +2020-05-17,Tripura,13750.0,13583,167.0 +2020-05-18,Tripura,14286.0,14119,167.0 +2020-05-19,Tripura,15083.0,14914,169.0 +2020-05-20,Tripura,15822.0,15694,173.0 +2020-05-21,Tripura,16873.0,16610,173.0 +2020-05-22,Tripura,17721.0,17546,175.0 +2020-05-23,Tripura,18737.0,18546,191.0 +2020-05-24,Tripura,19278.0,19537,191.0 +2020-05-25,Tripura,20871.0,20637,198.0 +2020-05-26,Tripura,22049.0,21840,209.0 +2020-05-27,Tripura,23264.0,23032,232.0 +2020-05-28,Tripura,24126.0,23884,242.0 +2020-05-29,Tripura,25403.0,25159,244.0 +2020-05-30,Tripura,26376.0,26105,271.0 +2020-05-31,Tripura,27475.0,27159,316.0 +2020-06-01,Tripura,28360.0,27937,423.0 +2020-06-02,Tripura,29066.0,28595,471.0 +2020-06-03,Tripura,30481.0,29859,622.0 +2020-06-04,Tripura,31138.0,30492,646.0 +2020-06-05,Tripura,32300.0,31606,694.0 +2020-06-06,Tripura,33331.0,32582,749.0 +2020-06-07,Tripura,35263.0,34461,802.0 +2020-06-08,Tripura,37453.0,36613,840.0 +2020-06-09,Tripura,38572.0,37706,866.0 +2020-06-10,Tripura,40027.0,39130,897.0 +2020-06-11,Tripura,41389.0,40474,915.0 +2020-06-12,Tripura,40837.0,39877,960.0 +2020-06-13,Tripura,43972.0,42930,1042.0 +2020-06-14,Tripura,46015.0,44940,1075.0 +2020-06-15,Tripura,47683.0,46599,1084.0 +2020-06-16,Tripura,49208.0,48118,1090.0 +2020-06-17,Tripura,50268.0,49135,1133.0 +2020-06-18,Tripura,51495.0,50341,1154.0 +2020-06-19,Tripura,52752.0,51571,1181.0 +2020-06-20,Tripura,53905.0,52716,1189.0 +2020-06-21,Tripura,54983.0,53759,1224.0 +2020-06-22,Tripura,56035.0,54795,1240.0 +2020-06-23,Tripura,56901.0,55638,1263.0 +2020-06-24,Tripura,57753.0,56490,1263.0 +2020-06-25,Tripura,59025.0,57730,1295.0 +2020-06-26,Tripura,60199.0,58869,1330.0 +2020-06-27,Tripura,61194.0,59855,1339.0 +2020-06-28,Tripura,62278.0,60927,1351.0 +2020-06-29,Tripura,63364.0,61979,1385.0 +2020-06-30,Tripura,64478.0,63085,1393.0 +2020-07-01,Tripura,65549.0,64148,1401.0 +2020-07-02,Tripura,67255.0,65815,1440.0 +2020-07-03,Tripura,68634.0,67101,1533.0 +2020-07-04,Tripura,69891.0,68333,1558.0 +2020-07-05,Tripura,71338.0,69757,1581.0 +2020-07-06,Tripura,73058.0,71366,1692.0 +2020-07-07,Tripura,74230.0,72514,1716.0 +2020-07-08,Tripura,75641.0,73868,1773.0 +2020-07-09,Tripura,77439.0,75650,1789.0 +2020-07-10,Tripura,79429.0,77498,1931.0 +2020-07-11,Tripura,81631.0,79669,1962.0 +2020-07-12,Tripura,83353.0,81286,2067.0 +2020-07-13,Tripura,86211.0,84118,2093.0 +2020-07-14,Tripura,88677.0,86494,2183.0 +2020-07-15,Tripura,92313.0,90032,2281.0 +2020-07-16,Tripura,95328.0,,2379.0 +2020-07-17,Tripura,97471.0,95092,2497.0 +2020-07-18,Tripura,105058.0,102390,2668.0 +2020-07-19,Tripura,109290.0,106398,2892.0 +2020-07-20,Tripura,114165.0,111072,3093.0 +2020-07-21,Tripura,119046.0,115701,3345.0 +2020-07-22,Tripura,123269.0,119801,3471.0 +2020-07-23,Tripura,127742.0,,3677.0 +2020-07-24,Tripura,131485.0,127708,3777.0 +2020-07-25,Tripura,135436.0,131554,3882.0 +2020-07-26,Tripura,138100.0,134181,3919.0 +2020-07-27,Tripura,142275.0,138209,4066.0 +2020-07-28,Tripura,148877.0,144590,4287.0 +2020-07-29,Tripura,156382.0,151879,4503.0 +2020-07-30,Tripura,163640.0,158918,4722.0 +2020-07-31,Tripura,170834.0,165838,4996.0 +2020-08-01,Tripura,176171.0,170923,5248.0 +2020-08-02,Tripura,180684.0,175295,5389.0 +2020-08-04,Tripura,184227.0,178707,5520.0 +2020-08-05,Tripura,187848.0,182205,5643.0 +2020-08-06,Tripura,190492.0,184752,5740.0 +2020-08-07,Tripura,193268.0,187400,5868.0 +2020-08-08,Tripura,196440.0,190426,6014.0 +2020-08-09,Tripura,199937.0,193776,6161.0 +2020-08-10,Tripura,202004.0,195781,6223.0 +2020-08-11,Tripura,205125.0,198738,6387.0 +2020-08-12,Tripura,208165.0,201668,6497.0 +2020-08-13,Tripura,210678.0,204060,6618.0 +2020-08-14,Tripura,213730.0,206948,6782.0 +2020-08-15,Tripura,217119.0,210170,6949.0 +2020-08-16,Tripura,218981.0,211905,7076.0 +2020-08-17,Tripura,220789.0,213570,7219.0 +2020-08-18,Tripura,223966.0,216542,7424.0 +2020-08-19,Tripura,228003.0,220343,7660.0 +2020-08-20,Tripura,230716.0,222866,7850.0 +2020-08-21,Tripura,233713.0,225607,8106.0 +2020-08-22,Tripura,237750.0,229364,8386.0 +2020-08-23,Tripura,241101.0,232384,8717.0 +2020-08-24,Tripura,243613.0,234696,8917.0 +2020-08-25,Tripura,247299.0,238089,9210.0 +2020-08-26,Tripura,251657.0,242118,9539.0 +2020-08-27,Tripura,255877.0,245953,9924.0 +2020-08-28,Tripura,260373.0,249940,10433.0 +2020-08-29,Tripura,264655.0,253779,10876.0 +2020-08-30,Tripura,268276.0,256953,11323.0 +2020-08-31,Tripura,271170.0,259526,11644.0 +2020-09-01,Tripura,274199.0,262046,12153.0 +2020-09-02,Tripura,277951.0,265232,12719.0 +2020-09-03,Tripura,282798.0,269489,13309.0 +2020-09-04,Tripura,287018.0,273185,13833.0 +2020-09-05,Tripura,292269.0,277745, +2020-09-06,Tripura,297100.0,281973,15127.0 +2020-09-07,Tripura,300486.0,284960,15526.0 +2020-09-08,Tripura,304758.0,288604,16154.0 +2020-09-09,Tripura,308922.0,292186,16736.0 +2020-09-10,Tripura,313816.0,296545,17271.0 +2020-09-11,Tripura,318581.0,300751,17830.0 +2020-09-12,Tripura,323628.0,305328,18300.0 +2020-09-13,Tripura,327843.0,308914,18929.0 +2020-09-14,Tripura,331371.0,312187,19184.0 +2020-09-15,Tripura,335686.0,315971,19715.0 +2020-09-16,Tripura,340002.0,319833,20169.0 +2020-09-17,Tripura,344918.0,324222,20696.0 +2020-09-18,Tripura,347959.0,326990,20969.0 +2020-09-19,Tripura,352004.0,330500, +2020-09-20,Tripura,356354.0,334325,22029.0 +2020-09-21,Tripura,358876.0,336604,22272.0 +2020-09-22,Tripura,362478.0,339647,22831.0 +2020-09-23,Tripura,366835.0,343500,23335.0 +2020-09-24,Tripura,371699.0,347913,23786.0 +2020-09-25,Tripura,374960.0,350833,24127.0 +2020-09-26,Tripura,378120.0,353715,24405.0 +2020-09-27,Tripura,380779.0,356054,24725.0 +2020-09-28,Tripura,382589.0,357671,24918.0 +2020-09-29,Tripura,385690.0,360340,25350.0 +2020-09-30,Tripura,388672.0,362941,25731.0 +2020-10-01,Tripura,391684.0,365621,26063.0 +2020-10-02,Tripura,394382.0,368023,26359.0 +2020-10-03,Tripura,396413.0,369864,26549.0 +2020-10-04,Tripura,398609.0,371738,26871.0 +2020-10-05,Tripura,399915.0,372885,27030.0 +2020-10-06,Tripura,402294.0,374989,27305.0 +2020-10-07,Tripura,404688.0,377146,27542.0 +2020-10-08,Tripura,406747.0,378991,27756.0 +2020-10-09,Tripura,409037.0,381058,27979.0 +2020-10-10,Tripura,411567.0,383417,28150.0 +2020-10-11,Tripura,414550.0,386201,28349.0 +2020-10-12,Tripura,416489.0,388031,28458.0 +2020-10-13,Tripura,418985.0,390310,28675.0 +2020-10-14,Tripura,421575.0,392719,28856.0 +2020-10-15,Tripura,424147.0,395119,29028.0 +2020-10-16,Tripura,426745.0,397555,29190.0 +2020-10-17,Tripura,428975.0,399651,29324.0 +2020-10-18,Tripura,431581.0,402116,29465.0 +2020-10-19,Tripura,433688.0,404138, +2020-10-20,Tripura,435868.0,406183,29685.0 +2020-10-21,Tripura,438334.0,408537,29797.0 +2020-10-22,Tripura,441342.0,411420,29922.0 +2020-10-23,Tripura,443478.0,413411,30067.0 +2020-10-24,Tripura,446317.0,416185,30132.0 +2020-10-25,Tripura,448279.0,418061,30218.0 +2020-10-26,Tripura,449199.0,418945, +2020-10-27,Tripura,449911.0,419621,30290.0 +2020-10-28,Tripura,452230.0,421780,30450.0 +2020-10-29,Tripura,454388.0,423825,30563.0 +2020-10-30,Tripura,456957.0,426297,30660.0 +2020-10-31,Tripura,458380.0,427666,30714.0 +2020-11-01,Tripura,459891.0,429100,30791.0 +2020-11-02,Tripura,461315.0,430466,30849.0 +2020-11-03,Tripura,464003.0,433017, +2020-11-04,Tripura,467012.0,435910, +2020-11-05,Tripura,469890.0,438656,31234.0 +2020-11-06,Tripura,472762.0,441418,31344.0 +2020-11-07,Tripura,475245.0,443814,31431.0 +2020-11-08,Tripura,477455.0,445941,31514.0 +2020-11-09,Tripura,479015.0,447475,31540.0 +2020-11-10,Tripura,481806.0,450187,31619.0 +2020-11-11,Tripura,484797.0,453094,31703.0 +2020-11-12,Tripura,487389.0,455627,31762.0 +2020-11-13,Tripura,489812.0,457974,31838.0 +2020-11-14,Tripura,492248.0,460332, +2020-11-15,Tripura,493895.0,461953,31942.0 +2020-11-16,Tripura,494627.0,462668,31959.0 +2020-11-17,Tripura,497045.0,465009,32036.0 +2020-11-18,Tripura,500015.0,467906,32109.0 +2020-11-19,Tripura,502948.0,470734,32214.0 +2020-11-20,Tripura,505954.0,473665,32289.0 +2020-11-21,Tripura,508813.0,476449,32364.0 +2020-11-22,Tripura,511457.0,479045,32412.0 +2020-11-23,Tripura,513037.0,480606,32431.0 +2020-11-24,Tripura,515452.0,482962,32490.0 +2020-11-25,Tripura,517834.0,485309,32525.0 +2020-11-26,Tripura,519862.0,487287,32575.0 +2020-11-27,Tripura,521455.0,488848,32607.0 +2020-11-28,Tripura,523099.0,490461,32638.0 +2020-11-30,Tripura,526407.0,493715,32692.0 +2020-12-01,Tripura,528241.0,495518,32723.0 +2020-12-02,Tripura,530422.0,497661,32761.0 +2020-12-03,Tripura,533103.0,500303,32800.0 +2020-12-04,Tripura,535379.0,502546,32833.0 +2020-12-05,Tripura,537733.0,504876,32857.0 +2020-12-06,Tripura,540088.0,507200,32888.0 +2020-12-07,Tripura,541546.0,508652,32894.0 +2020-12-08,Tripura,543721.0,510799,32922.0 +2020-12-09,Tripura,545848.0,512906,32942.0 +2020-12-10,Tripura,548028.0,515055,32973.0 +2020-12-11,Tripura,550158.0,517164, +2020-12-12,Tripura,551648.0,518636, +2020-12-13,Tripura,553446.0,520411, +2020-12-14,Tripura,554621.0,521576, +2020-12-15,Tripura,556623.0,523569,33054.0 +2020-12-16,Tripura,559048.0,525970,33078.0 +2020-12-17,Tripura,560965.0,527870,33095.0 +2020-12-18,Tripura,562613.0,529497,33116.0 +2020-12-19,Tripura,564129.0,530987,33142.0 +2020-12-20,Tripura,565682.0,532518,33164.0 +2020-12-21,Tripura,566644.0,533472,33172.0 +2020-12-22,Tripura,568104.0,534919,33185.0 +2020-12-23,Tripura,569607.0,536407,33200.0 +2020-12-24,Tripura,570872.0,537659,33213.0 +2020-12-25,Tripura,572189.0,538967,33222.0 +2020-12-26,Tripura,572917.0,539694,33223.0 +2020-12-27,Tripura,573971.0,540737,33234.0 +2020-12-28,Tripura,574733.0,541492,33241.0 +2020-12-29,Tripura,575976.0,542733,33243.0 +2020-12-30,Tripura,577343.0,544088,33255.0 +2020-12-31,Tripura,578723.0,545462,33261.0 +2021-01-01,Tripura,580269.0,547004,33265.0 +2021-01-02,Tripura,581550.0,548277, +2021-01-03,Tripura,582957.0,549678, +2021-01-04,Tripura,583819.0,550539,33280.0 +2021-01-05,Tripura,585181.0,551900,33281.0 +2021-01-06,Tripura,586639.0,553356,33283.0 +2021-01-07,Tripura,587806.0,554515,33291.0 +2021-01-08,Tripura,588991.0,555695,33296.0 +2021-01-10,Tripura,590867.0,557563,33304.0 +2021-01-11,Tripura,591518.0,558214,33304.0 +2021-01-12,Tripura,593224.0,559918,33306.0 +2021-01-13,Tripura,595168.0,561856,33312.0 +2021-01-14,Tripura,596668.0,563351,33317.0 +2021-01-15,Tripura,597659.0,564337,33322.0 +2021-01-16,Tripura,598570.0,565244,33326.0 +2021-01-18,Tripura,599890.0,566561,33329.0 +2021-01-19,Tripura,600698.0,567366,33332.0 +2021-01-20,Tripura,601506.0,568173, +2021-01-21,Tripura,602298.0,568963,33335.0 +2021-01-22,Tripura,602883.0,569544,33339.0 +2021-01-23,Tripura,603530.0,570189,33341.0 +2021-01-25,Tripura,604330.0,570988,33342.0 +2021-01-26,Tripura,604952.0,571609,33343.0 +2021-01-27,Tripura,605314.0,571971,33343.0 +2021-01-28,Tripura,605866.0,572523,33343.0 +2021-01-29,Tripura,606523.0,573178,33345.0 +2021-01-30,Tripura,606978.0,573631,33347.0 +2021-02-01,Tripura,607566.0,574218,33348.0 +2021-02-02,Tripura,607962.0,574614,33348.0 +2021-02-04,Tripura,608947.0,575599,33348.0 +2021-02-05,Tripura,609412.0,576063,33349.0 +2021-02-06,Tripura,609909.0,576560,33349.0 +2021-02-08,Tripura,610893.0,577544,33349.0 +2021-02-09,Tripura,611468.0,578118,33350.0 +2021-02-10,Tripura,612192.0,578842,33350.0 +2021-02-11,Tripura,612813.0,579463,33350.0 +2021-02-12,Tripura,613231.0,579881,33350.0 +2021-02-13,Tripura,614152.0,580802,33350.0 +2021-02-14,Tripura,614394.0,581044,33350.0 +2021-02-15,Tripura,614394.0,581044,33350.0 +2021-02-17,Tripura,615180.0,581828,33352.0 +2021-02-18,Tripura,615776.0,582422,33354.0 +2021-02-19,Tripura,616899.0,583510,33389.0 +2021-02-20,Tripura,618010.0,584619,33391.0 +2021-02-22,Tripura,618010.0,584619,33391.0 +2021-02-23,Tripura,618747.0,585352,32939.0 +2021-02-24,Tripura,619392.0,585995,33397.0 +2021-02-25,Tripura,619842.0,586445,33397.0 +2021-02-26,Tripura,620416.0,587012,33404.0 +2021-03-01,Tripura,621754.0,588340,33414.0 +2021-03-03,Tripura,622896.0,589479,33417.0 +2021-03-04,Tripura,622887.0,589468,33419.0 +2021-03-06,Tripura,624612.0,591191,33421.0 +2021-03-08,Tripura,625498.0,592077,33421.0 +2021-03-11,Tripura,627447.0,594025,33422.0 +2021-03-13,Tripura,628216.0,594792,33424.0 +2021-03-14,Tripura,628767.0,595341,33426.0 +2021-03-15,Tripura,629661.0,596224, +2021-03-17,Tripura,630274.0,596836,33438.0 +2021-03-18,Tripura,631045.0,597604,33441.0 +2021-03-19,Tripura,631809.0,598358,33451.0 +2021-03-20,Tripura,632636.0,599180,33456.0 +2021-03-21,Tripura,633540.0,600079,33461.0 +2021-03-22,Tripura,633806.0,600345,33461.0 +2021-03-23,Tripura,634572.0,601105,33467.0 +2021-03-24,Tripura,635381.0,601905,33476.0 +2021-03-25,Tripura,636356.0,602879,33477.0 +2021-03-27,Tripura,637843.0,604356,33487.0 +2021-03-30,Tripura,639614.0,606124,33490.0 +2021-04-01,Tripura,641498.0,607984,33514.0 +2021-04-02,Tripura,642551.0,609033,33518.0 +2021-04-03,Tripura,643050.0,609530,33520.0 +2021-04-04,Tripura,644275.0,610741,33534.0 +2021-04-05,Tripura,644784.0,611247,33537.0 +2021-04-06,Tripura,646186.0,612635,33551.0 +2021-04-07,Tripura,647320.0,613748,33572.0 +2021-04-08,Tripura,648832.0,615223,33609.0 +2021-04-09,Tripura,650518.0,616877,33641.0 +2021-04-10,Tripura,651965.0,618283,33682.0 +2021-04-11,Tripura,653832.0,620102,33730.0 +2021-04-12,Tripura,654703.0,620963,33740.0 +2021-04-13,Tripura,656802.0,623000,33802.0 +2021-04-14,Tripura,658885.0,625044,33841.0 +2021-04-16,Tripura,660465.0,626593,33872.0 +2021-04-17,Tripura,662606.0,628676,33930.0 +2021-04-18,Tripura,665194.0,631195,33999.0 +2021-04-19,Tripura,666583.0,632552,34031.0 +2021-04-20,Tripura,669149.0,635058,34091.0 +2021-04-22,Tripura,674440.0,640181,34259.0 +2021-04-23,Tripura,675862.0,641563,34299.0 +2021-04-24,Tripura,679298.0,644872,34426.0 +2021-04-25,Tripura,683472.0,648946,34526.0 +2021-04-26,Tripura,686814.0,652190,34624.0 +2021-04-27,Tripura,691184.0,656449,34735.0 +2021-04-28,Tripura,695782.0,660923,34859.0 +2021-04-29,Tripura,700857.0,665832,35025.0 +2021-04-30,Tripura,705279.0,670113,35166.0 +2021-05-01,Tripura,709639.0,674300,33622.0 +2021-05-02,Tripura,714957.0,679371,35586.0 +2021-05-03,Tripura,717664.0,681944,35720.0 +2021-05-04,Tripura,723049.0,687058,35991.0 +2021-05-05,Tripura,727535.0,691304,36231.0 +2021-05-06,Tripura,732887.0,696356,36531.0 +2021-05-07,Tripura,738070.0,701224,36846.0 +2021-05-08,Tripura,744022.0,706817,37205.0 +2021-05-09,Tripura,750382.0,712826,37556.0 +2021-05-10,Tripura,753842.0,716153,37689.0 +2021-05-11,Tripura,760130.0,721975,38155.0 +2021-05-12,Tripura,765518.0,726947,38571.0 +2021-05-13,Tripura,771752.0,732701,39051.0 +2021-05-14,Tripura,777407.0,737804,39603.0 +2021-05-15,Tripura,782257.0,742205,40052.0 +2021-05-16,Tripura,789881.0,749068,40813.0 +2021-05-17,Tripura,794518.0,753370,41148.0 +2021-05-18,Tripura,804307.0,762413,41894.0 +2021-05-19,Tripura,814492.0,771719,42773.0 +2021-05-20,Tripura,825191.0,781698,43493.0 +2021-05-21,Tripura,836629.0,792273,44356.0 +2021-05-22,Tripura,851218.0,805998,45220.0 +2021-05-23,Tripura,864018.0,817922,46096.0 +2021-05-24,Tripura,871202.0,824680,38039.0 +2021-05-25,Tripura,881469.0,834174,47295.0 +2021-05-26,Tripura,891157.0,843195,47962.0 +2021-05-27,Tripura,899078.0,850574,48504.0 +2021-05-28,Tripura,910315.0,861028,49287.0 +2021-05-29,Tripura,918746.0,868864,49882.0 +2021-05-30,Tripura,932117.0,881381,50736.0 +2021-05-31,Tripura,947800.0,896670,51130.0 +2021-06-01,Tripura,964718.0,912747,51971.0 +2021-06-02,Tripura,975840.0,923298,52542.0 +2021-06-03,Tripura,990028.0,936809,53219.0 +2021-06-04,Tripura,1006421.0,952552,53869.0 +2021-06-05,Tripura,1031194.0,976617,54577.0 +2021-06-06,Tripura,1047299.0,992068,55231.0 +2021-06-07,Tripura,1056126.0,1000660,55466.0 +2020-04-05,Uttar Pradesh,5255.0,4796,278.0 +2020-04-05,Uttar Pradesh,5255.0,4796,278.0 +2020-04-09,Uttar Pradesh,8402.0,7898,410.0 +2020-04-10,Uttar Pradesh,9332.0,8798,433.0 +2020-04-11,Uttar Pradesh,10595.0,10012,452.0 +2020-04-12,Uttar Pradesh,11855.0,11250,483.0 +2020-04-13,Uttar Pradesh,13287.0,12542,558.0 +2020-04-14,Uttar Pradesh,15914.0,15134,660.0 +2020-04-15,Uttar Pradesh,19506.0,18595,727.0 +2020-04-16,Uttar Pradesh,21384.0,20374,805.0 +2020-04-17,Uttar Pradesh,24643.0,23648,849.0 +2020-04-18,Uttar Pradesh,28484.0,27262,974.0 +2020-04-19,Uttar Pradesh,31767.0,,1100.0 +2020-04-20,Uttar Pradesh,34326.0,32874,1184.0 +2020-04-21,Uttar Pradesh,37933.0,36378,1337.0 +2020-04-22,Uttar Pradesh,42192.0,40263,1449.0 +2020-04-23,Uttar Pradesh,45483.0,43495,1510.0 +2020-04-24,Uttar Pradesh,53166.0,51161,1621.0 +2020-04-25,Uttar Pradesh,56851.0,54216,1793.0 +2020-04-26,Uttar Pradesh,61799.0,58492,1873.0 +2020-04-27,Uttar Pradesh,67145.0,64139,1896.0 +2020-04-28,Uttar Pradesh,70307.0,67266,2053.0 +2020-04-29,Uttar Pradesh,73716.0,70436,2134.0 +2020-04-30,Uttar Pradesh,78013.0,74864,2211.0 +2020-05-01,Uttar Pradesh,82459.0,79091,2328.0 +2020-05-02,Uttar Pradesh,85729.0,82356,2487.0 +2020-05-03,Uttar Pradesh,95841.0,91828,2645.0 +2020-05-04,Uttar Pradesh,98300.0,94682,2766.0 +2020-05-05,Uttar Pradesh,105234.0,101389,2880.0 +2020-05-06,Uttar Pradesh,109888.0,106043,2998.0 +2020-05-07,Uttar Pradesh,113670.0,109628,3071.0 +2020-05-08,Uttar Pradesh,119688.0,115646,3214.0 +2020-05-09,Uttar Pradesh,124791.0,120764,3373.0 +2020-05-10,Uttar Pradesh,129955.0,125696,3467.0 +2020-05-11,Uttar Pradesh,135760.0,131293,3573.0 +2020-05-12,Uttar Pradesh,140166.0,135754,3664.0 +2020-05-13,Uttar Pradesh,145637.0,141068,3578.0 +2020-05-14,Uttar Pradesh,153139.0,147755,3902.0 +2020-05-15,Uttar Pradesh,159282.0,153588,4057.0 +2020-05-16,Uttar Pradesh,163105.0,157001,4258.0 +2020-05-17,Uttar Pradesh,172219.0,165832,4464.0 +2020-05-18,Uttar Pradesh,176479.0,170132,4605.0 +2020-05-19,Uttar Pradesh,182184.0,175412,4926.0 +2020-05-20,Uttar Pradesh,191164.0,184209,5175.0 +2020-05-21,Uttar Pradesh,206811.0,199469,5515.0 +2020-05-22,Uttar Pradesh,214060.0,207079,5735.0 +2020-05-23,Uttar Pradesh,217867.0,210864,6017.0 +2020-05-24,Uttar Pradesh,229621.0,222341,6268.0 +2020-05-25,Uttar Pradesh,235622.0,228173,6497.0 +2020-05-26,Uttar Pradesh,240588.0,232290,6724.0 +2020-05-27,Uttar Pradesh,240588.0,239592,6991.0 +2020-05-28,Uttar Pradesh,256267.0,247747,7170.0 +2020-05-29,Uttar Pradesh,270920.0,261911,7445.0 +2020-05-30,Uttar Pradesh,279288.0,270160,7701.0 +2020-05-31,Uttar Pradesh,289892.0,279569,8075.0 +2020-06-01,Uttar Pradesh,297903.0,287806,8361.0 +2020-06-02,Uttar Pradesh,307621.0,296705,8729.0 +2020-06-03,Uttar Pradesh,317780.0,306672,8870.0 +2020-06-04,Uttar Pradesh,330663.0,318562,9237.0 +2020-06-05,Uttar Pradesh,344717.0,332126,9733.0 +2020-06-06,Uttar Pradesh,355085.0,342360,10103.0 +2020-06-07,Uttar Pradesh,360258.0,346684,10536.0 +2020-06-08,Uttar Pradesh,380723.0,366630,10947.0 +2020-06-09,Uttar Pradesh,391286.0,377667,11335.0 +2020-06-10,Uttar Pradesh,404637.0,390841,11610.0 +2020-06-11,Uttar Pradesh,420669.0,405442,12088.0 +2020-06-12,Uttar Pradesh,435601.0,421499,12619.0 +2020-06-13,Uttar Pradesh,449616.0,433754,13118.0 +2020-06-14,Uttar Pradesh,467702.0,442598,13615.0 +2020-06-15,Uttar Pradesh,466081.0,,14091.0 +2020-06-16,Uttar Pradesh,480047.0,,14598.0 +2020-06-17,Uttar Pradesh,496206.0,,15181.0 +2020-06-18,Uttar Pradesh,515280.0,,15785.0 +2020-06-19,Uttar Pradesh,532505.0,,16594.0 +2020-06-20,Uttar Pradesh,542972.0,,17135.0 +2020-06-21,Uttar Pradesh,560697.0,,17731.0 +2020-06-22,Uttar Pradesh,574304.0,,18322.0 +2020-06-23,Uttar Pradesh,588186.0,,18893.0 +2020-06-24,Uttar Pradesh,603390.0,,19557.0 +2020-06-25,Uttar Pradesh,620954.0,,20193.0 +2020-06-26,Uttar Pradesh,642833.0,,20943.0 +2020-06-27,Uttar Pradesh,663096.0,,21549.0 +2020-06-28,Uttar Pradesh,684296.0,,22147.0 +2020-06-29,Uttar Pradesh,707839.0,,22828.0 +2020-06-30,Uttar Pradesh,727793.0,,23492.0 +2020-07-01,Uttar Pradesh,758915.0,,24056.0 +2020-07-02,Uttar Pradesh,781584.0,,24825.0 +2020-07-03,Uttar Pradesh,810991.0,,25797.0 +2020-07-04,Uttar Pradesh,834991.0,,26554.0 +2020-07-05,Uttar Pradesh,887997.0,,27707.0 +2020-07-06,Uttar Pradesh,917114.0,,28636.0 +2020-07-07,Uttar Pradesh,947453.0,,29968.0 +2020-07-08,Uttar Pradesh,1003280.0,,31156.0 +2020-07-09,Uttar Pradesh,1036106.0,,32362.0 +2020-07-10,Uttar Pradesh,1074112.0,,33700.0 +2020-07-11,Uttar Pradesh,1116466.0,,35092.0 +2020-07-12,Uttar Pradesh,1156089.0,,36476.0 +2020-07-13,Uttar Pradesh,1192089.0,,38130.0 +2020-07-14,Uttar Pradesh,1231939.0,,39724.0 +2020-07-15,Uttar Pradesh,1277241.0,,41383.0 +2020-07-16,Uttar Pradesh,1325327.0,,43441.0 +2020-07-17,Uttar Pradesh,1379534.0,, +2020-07-18,Uttar Pradesh,1426303.0,,47036.0 +2020-07-19,Uttar Pradesh,1470426.0,,49286.0 +2020-07-20,Uttar Pradesh,1513827.0,,51160.0 +2020-07-21,Uttar Pradesh,1554116.0,, +2020-07-22,Uttar Pradesh,1600000.0,,55588.0 +2020-07-23,Uttar Pradesh,1654651.0,,58104.0 +2020-07-24,Uttar Pradesh,1705348.0,,60771.0 +2020-07-25,Uttar Pradesh,1762416.0,,63742.0 +2020-07-26,Uttar Pradesh,1834297.0,,67048.0 +2020-07-27,Uttar Pradesh,1941259.0,,70493.0 +2020-07-28,Uttar Pradesh,2033089.0,,73951.0 +2020-07-29,Uttar Pradesh,2120843.0,,77334.0 +2020-07-30,Uttar Pradesh,2209810.0,,81039.0 +2020-07-31,Uttar Pradesh,2325428.0,, +2020-08-01,Uttar Pradesh,2418809.0,,89068.0 +2020-08-02,Uttar Pradesh,2533631.0,,92921.0 +2020-08-03,Uttar Pradesh,2623260.0,,97362.0 +2020-08-04,Uttar Pradesh,2689973.0,,100310.0 +2020-08-06,Uttar Pradesh,2797687.0,,108974.0 +2020-08-07,Uttar Pradesh,2893424.0,,113440.0 +2020-08-08,Uttar Pradesh,2996406.0,,118038.0 +2020-08-09,Uttar Pradesh,3118567.0,, +2020-08-10,Uttar Pradesh,3209587.0,,126722.0 +2020-08-11,Uttar Pradesh,3314435.0,, +2020-08-12,Uttar Pradesh,3412346.0,, +2020-08-13,Uttar Pradesh,3501127.0,, +2020-08-14,Uttar Pradesh,3598210.0,, +2020-08-15,Uttar Pradesh,3695700.0,, +2020-08-16,Uttar Pradesh,3786633.0,, +2020-08-17,Uttar Pradesh,3872640.0,, +2020-08-18,Uttar Pradesh,3966848.0,, +2020-08-19,Uttar Pradesh,4075174.0,, +2020-08-20,Uttar Pradesh,4184690.0,, +2020-08-21,Uttar Pradesh,4294980.0,, +2020-08-22,Uttar Pradesh,4420101.0,, +2020-08-23,Uttar Pradesh,4551619.0,, +2020-08-24,Uttar Pradesh,4674620.0,, +2020-08-25,Uttar Pradesh,4796488.0,, +2020-08-26,Uttar Pradesh,4941679.0,, +2020-08-27,Uttar Pradesh,5080205.0,, +2020-08-28,Uttar Pradesh,5202557.0,, +2020-08-29,Uttar Pradesh,5350704.0,, +2020-08-30,Uttar Pradesh,5490354.0,, +2020-08-31,Uttar Pradesh,5626897.0,, +2020-09-01,Uttar Pradesh,5776664.0,, +2020-09-02,Uttar Pradesh,5913584.0,, +2020-09-03,Uttar Pradesh,6050449.0,, +2020-09-04,Uttar Pradesh,6196994.0,, +2020-09-05,Uttar Pradesh,6345223.0,, +2020-09-06,Uttar Pradesh,6500969.0,, +2020-09-07,Uttar Pradesh,6631318.0,, +2020-09-08,Uttar Pradesh,6773289.0,, +2020-09-09,Uttar Pradesh,6917773.0,, +2020-09-10,Uttar Pradesh,7067208.0,, +2020-09-11,Uttar Pradesh,7217980.0,, +2020-09-12,Uttar Pradesh,7358472.0,, +2020-09-13,Uttar Pradesh,7505653.0,, +2020-09-14,Uttar Pradesh,7636000.0,, +2020-09-15,Uttar Pradesh,7784281.0,, +2020-09-16,Uttar Pradesh,7938533.0,, +2020-09-17,Uttar Pradesh,8089882.0,, +2020-09-18,Uttar Pradesh,8245710.0,, +2020-09-19,Uttar Pradesh,8399785.0,, +2020-09-20,Uttar Pradesh,8540604.0,, +2020-09-21,Uttar Pradesh,8676627.0,, +2020-09-22,Uttar Pradesh,8826726.0,, +2020-09-23,Uttar Pradesh,8992424.0,, +2020-09-24,Uttar Pradesh,9145828.0,, +2020-09-25,Uttar Pradesh,9310258.0,, +2020-09-26,Uttar Pradesh,9467186.0,, +2020-09-27,Uttar Pradesh,9625076.0,, +2020-09-28,Uttar Pradesh,9776894.0,, +2020-09-29,Uttar Pradesh,9937675.0,, +2020-09-30,Uttar Pradesh,10098896.0,, +2020-10-01,Uttar Pradesh,10263709.0,, +2020-10-02,Uttar Pradesh,10426042.0,, +2020-10-03,Uttar Pradesh,10579701.0,, +2020-10-04,Uttar Pradesh,10739169.0,, +2020-10-05,Uttar Pradesh,10888520.0,, +2020-10-06,Uttar Pradesh,11044860.0,, +2020-10-07,Uttar Pradesh,11208621.0,, +2020-10-08,Uttar Pradesh,11375818.0,, +2020-10-09,Uttar Pradesh,11549475.0,, +2020-10-10,Uttar Pradesh,11726075.0,, +2020-10-11,Uttar Pradesh,11898777.0,, +2020-10-12,Uttar Pradesh,12041107.0,, +2020-10-13,Uttar Pradesh,12192619.0,, +2020-10-14,Uttar Pradesh,12355046.0,, +2020-10-15,Uttar Pradesh,12509210.0,, +2020-10-16,Uttar Pradesh,12679476.0,, +2020-10-17,Uttar Pradesh,12841878.0,, +2020-10-18,Uttar Pradesh,13011893.0,, +2020-10-19,Uttar Pradesh,13147388.0,, +2020-10-20,Uttar Pradesh,13298742.0,, +2020-10-21,Uttar Pradesh,13445758.0,, +2020-10-22,Uttar Pradesh,13603679.0,, +2020-10-23,Uttar Pradesh,13756000.0,, +2020-10-24,Uttar Pradesh,13908303.0,, +2020-10-25,Uttar Pradesh,14025713.0,, +2020-10-26,Uttar Pradesh,14138340.0,, +2020-10-27,Uttar Pradesh,14276788.0,, +2020-10-28,Uttar Pradesh,14431272.0,, +2020-10-29,Uttar Pradesh,14569242.0,, +2020-10-30,Uttar Pradesh,14717483.0,, +2020-10-31,Uttar Pradesh,14863388.0,, +2020-11-01,Uttar Pradesh,15013388.0,, +2020-11-02,Uttar Pradesh,15149160.0,, +2020-11-03,Uttar Pradesh,15307285.0,, +2020-11-04,Uttar Pradesh,15454280.0,, +2020-11-05,Uttar Pradesh,15609500.0,, +2020-11-06,Uttar Pradesh,15762543.0,, +2020-11-07,Uttar Pradesh,15923624.0,, +2020-11-08,Uttar Pradesh,16089592.0,, +2020-11-09,Uttar Pradesh,16227845.0,, +2020-11-10,Uttar Pradesh,16377058.0,, +2020-11-11,Uttar Pradesh,16532078.0,, +2020-11-12,Uttar Pradesh,16684729.0,, +2020-11-13,Uttar Pradesh,16841812.0,, +2020-11-14,Uttar Pradesh,16967468.0,, +2020-11-15,Uttar Pradesh,17049440.0,, +2020-11-16,Uttar Pradesh,17122647.0,, +2020-11-17,Uttar Pradesh,17210174.0,, +2020-11-18,Uttar Pradesh,17321490.0,, +2020-11-19,Uttar Pradesh,17474973.0,, +2020-11-20,Uttar Pradesh,17636904.0,, +2020-11-21,Uttar Pradesh,17810564.0,, +2020-11-22,Uttar Pradesh,17985811.0,, +2020-11-23,Uttar Pradesh,18121693.0,, +2020-11-24,Uttar Pradesh,18292171.0,, +2020-11-25,Uttar Pradesh,18470887.0,, +2020-11-26,Uttar Pradesh,18636313.0,, +2020-11-27,Uttar Pradesh,18819807.0,, +2020-11-28,Uttar Pradesh,18994692.0,, +2020-11-29,Uttar Pradesh,19170240.0,, +2020-11-30,Uttar Pradesh,19322658.0,, +2020-12-01,Uttar Pradesh,19466684.0,, +2020-12-02,Uttar Pradesh,19618283.0,, +2020-12-03,Uttar Pradesh,19788497.0,, +2020-12-04,Uttar Pradesh,19960393.0,, +2020-12-05,Uttar Pradesh,20128312.0,, +2020-12-06,Uttar Pradesh,20308636.0,, +2020-12-07,Uttar Pradesh,20453616.0,, +2020-12-08,Uttar Pradesh,20621452.0,, +2020-12-09,Uttar Pradesh,20766011.0,, +2020-12-10,Uttar Pradesh,20934735.0,, +2020-12-11,Uttar Pradesh,21103633.0,, +2020-12-12,Uttar Pradesh,21258877.0,, +2020-12-13,Uttar Pradesh,21415257.0,, +2020-12-14,Uttar Pradesh,21538320.0,, +2020-12-15,Uttar Pradesh,21687063.0,, +2020-12-16,Uttar Pradesh,21844458.0,, +2020-12-17,Uttar Pradesh,21999031.0,, +2020-12-18,Uttar Pradesh,22149067.0,, +2020-12-19,Uttar Pradesh,22304404.0,, +2020-12-20,Uttar Pradesh,22439369.0,, +2020-12-21,Uttar Pradesh,22564828.0,, +2020-12-22,Uttar Pradesh,22692833.0,, +2020-12-23,Uttar Pradesh,22832382.0,, +2020-12-24,Uttar Pradesh,22972685.0,, +2020-12-25,Uttar Pradesh,23116081.0,, +2020-12-26,Uttar Pradesh,23239796.0,, +2020-12-27,Uttar Pradesh,23382697.0,, +2020-12-28,Uttar Pradesh,23508431.0,, +2020-12-29,Uttar Pradesh,23640902.0,, +2020-12-30,Uttar Pradesh,23793270.0,, +2020-12-31,Uttar Pradesh,23943169.0,, +2021-01-01,Uttar Pradesh,24087257.0,, +2021-01-02,Uttar Pradesh,24216483.0,, +2021-01-03,Uttar Pradesh,24348477.0,, +2021-01-04,Uttar Pradesh,24468207.0,, +2021-01-05,Uttar Pradesh,24594871.0,, +2021-01-06,Uttar Pradesh,24741829.0,, +2021-01-07,Uttar Pradesh,24887930.0,, +2021-01-08,Uttar Pradesh,25034039.0,, +2021-01-09,Uttar Pradesh,25178712.0,, +2021-01-10,Uttar Pradesh,25317134.0,, +2021-01-11,Uttar Pradesh,25440392.0,, +2021-01-12,Uttar Pradesh,25569666.0,, +2021-01-13,Uttar Pradesh,25707811.0,, +2021-01-14,Uttar Pradesh,25841533.0,, +2021-01-15,Uttar Pradesh,25963058.0,, +2021-01-16,Uttar Pradesh,26086641.0,, +2021-01-17,Uttar Pradesh,26214905.0,, +2021-01-18,Uttar Pradesh,26325197.0,, +2021-01-19,Uttar Pradesh,26446710.0,, +2021-01-20,Uttar Pradesh,26576008.0,, +2021-01-21,Uttar Pradesh,26715060.0,, +2021-01-22,Uttar Pradesh,26853170.0,, +2021-01-23,Uttar Pradesh,26975577.0,, +2021-01-24,Uttar Pradesh,27099309.0,, +2021-01-25,Uttar Pradesh,27205975.0,, +2021-01-26,Uttar Pradesh,27320329.0,, +2021-01-27,Uttar Pradesh,27424012.0,, +2021-01-28,Uttar Pradesh,27536763.0,, +2021-01-29,Uttar Pradesh,27657436.0,, +2021-01-30,Uttar Pradesh,27769217.0,, +2021-01-31,Uttar Pradesh,27888620.0,, +2021-02-01,Uttar Pradesh,27989752.0,, +2021-02-02,Uttar Pradesh,28092122.0,, +2021-02-03,Uttar Pradesh,28211459.0,, +2021-02-04,Uttar Pradesh,28340622.0,, +2021-02-05,Uttar Pradesh,28453058.0,, +2021-02-06,Uttar Pradesh,28578777.0,, +2021-02-07,Uttar Pradesh,28693975.0,, +2021-02-08,Uttar Pradesh,28796828.0,, +2021-02-09,Uttar Pradesh,28912704.0,, +2021-02-10,Uttar Pradesh,29040824.0,, +2021-02-11,Uttar Pradesh,29167417.0,, +2021-02-12,Uttar Pradesh,29302186.0,, +2021-02-13,Uttar Pradesh,29439862.0,, +2021-02-14,Uttar Pradesh,29561480.0,, +2021-02-15,Uttar Pradesh,29672959.0,, +2021-02-16,Uttar Pradesh,29793515.0,, +2021-02-17,Uttar Pradesh,29916634.0,, +2021-02-18,Uttar Pradesh,30037025.0,, +2021-02-19,Uttar Pradesh,30173226.0,, +2021-02-20,Uttar Pradesh,30308030.0,, +2021-02-21,Uttar Pradesh,30434156.0,, +2021-02-22,Uttar Pradesh,30546056.0,, +2021-02-23,Uttar Pradesh,30669496.0,, +2021-02-24,Uttar Pradesh,30789576.0,, +2021-02-25,Uttar Pradesh,30930489.0,, +2021-02-26,Uttar Pradesh,31053915.0,, +2021-02-27,Uttar Pradesh,31171541.0,, +2021-02-28,Uttar Pradesh,31287226.0,, +2021-03-01,Uttar Pradesh,31395891.0,, +2021-03-02,Uttar Pradesh,31505760.0,, +2021-03-03,Uttar Pradesh,31631238.0,, +2021-03-04,Uttar Pradesh,31749776.0,, +2021-03-05,Uttar Pradesh,31868690.0,, +2021-03-06,Uttar Pradesh,31977811.0,, +2021-03-07,Uttar Pradesh,32086306.0,, +2021-03-08,Uttar Pradesh,32170019.0,, +2021-03-09,Uttar Pradesh,32270637.0,, +2021-03-10,Uttar Pradesh,32375774.0,, +2021-03-11,Uttar Pradesh,32481124.0,, +2021-03-12,Uttar Pradesh,32571317.0,, +2021-03-13,Uttar Pradesh,32661290.0,, +2021-03-14,Uttar Pradesh,32757452.0,, +2021-03-15,Uttar Pradesh,32848018.0,, +2021-03-16,Uttar Pradesh,32948378.0,, +2021-03-17,Uttar Pradesh,33067774.0,, +2021-03-18,Uttar Pradesh,33192152.0,, +2021-03-19,Uttar Pradesh,33315662.0,, +2021-03-20,Uttar Pradesh,33450709.0,, +2021-03-21,Uttar Pradesh,33580378.0,, +2021-03-22,Uttar Pradesh,33715631.0,, +2021-03-23,Uttar Pradesh,33835134.0,, +2021-03-24,Uttar Pradesh,33972718.0,, +2021-03-25,Uttar Pradesh,34115701.0,, +2021-03-26,Uttar Pradesh,34260584.0,, +2021-03-27,Uttar Pradesh,34400505.0,, +2021-03-28,Uttar Pradesh,34546987.0,, +2021-03-29,Uttar Pradesh,34666170.0,, +2021-03-30,Uttar Pradesh,34730690.0,, +2021-03-31,Uttar Pradesh,34798213.0,, +2021-04-01,Uttar Pradesh,34922434.0,, +2021-04-02,Uttar Pradesh,35070062.0,, +2021-04-03,Uttar Pradesh,35236205.0,, +2021-04-04,Uttar Pradesh,35413966.0,, +2021-04-05,Uttar Pradesh,35575232.0,, +2021-04-06,Uttar Pradesh,35754807.0,, +2021-04-07,Uttar Pradesh,35942111.0,, +2021-04-08,Uttar Pradesh,36147340.0,, +2021-04-09,Uttar Pradesh,36344993.0,, +2021-04-10,Uttar Pradesh,36557245.0,, +2021-04-11,Uttar Pradesh,36761069.0,, +2021-04-12,Uttar Pradesh,36954537.0,, +2021-04-13,Uttar Pradesh,37173548.0,, +2021-04-14,Uttar Pradesh,37384344.0,, +2021-04-15,Uttar Pradesh,37590753.0,, +2021-04-16,Uttar Pradesh,37814182.0,, +2021-04-17,Uttar Pradesh,38029865.0,, +2021-04-18,Uttar Pradesh,38266474.0,, +2021-04-19,Uttar Pradesh,38467016.0,, +2021-04-20,Uttar Pradesh,38666846.0,, +2021-04-21,Uttar Pradesh,38892416.0,, +2021-04-22,Uttar Pradesh,39089449.0,, +2021-04-23,Uttar Pradesh,39314905.0,, +2021-04-24,Uttar Pradesh,39540989.0,, +2021-04-25,Uttar Pradesh,39780573.0,, +2021-04-26,Uttar Pradesh,39957293.0,, +2021-04-27,Uttar Pradesh,40141354.0,, +2021-04-28,Uttar Pradesh,40328141.0,, +2021-04-29,Uttar Pradesh,40553875.0,, +2021-04-30,Uttar Pradesh,40798042.0,, +2021-05-01,Uttar Pradesh,41064661.0,, +2021-05-02,Uttar Pradesh,41362046.0,, +2021-05-03,Uttar Pradesh,41591659.0,, +2021-05-04,Uttar Pradesh,41800223.0,, +2021-05-05,Uttar Pradesh,42032261.0,, +2021-05-06,Uttar Pradesh,42258373.0,, +2021-05-07,Uttar Pradesh,42499776.0,, +2021-05-08,Uttar Pradesh,42724305.0,, +2021-05-09,Uttar Pradesh,42953900.0,, +2021-05-10,Uttar Pradesh,43169533.0,, +2021-05-11,Uttar Pradesh,43404184.0,, +2021-05-12,Uttar Pradesh,43651487.0,, +2021-05-13,Uttar Pradesh,43906523.0,, +2021-05-14,Uttar Pradesh,44170366.0,, +2021-05-15,Uttar Pradesh,44427447.0,, +2021-05-16,Uttar Pradesh,44695189.0,, +2021-05-17,Uttar Pradesh,44950523.0,, +2021-05-18,Uttar Pradesh,45231090.0,, +2021-05-19,Uttar Pradesh,45531018.0,, +2021-05-20,Uttar Pradesh,45822509.0,, +2021-05-21,Uttar Pradesh,46111719.0,, +2021-05-22,Uttar Pradesh,46419134.0,, +2021-05-23,Uttar Pradesh,46736818.0,, +2021-05-24,Uttar Pradesh,47063616.0,, +2021-05-25,Uttar Pradesh,47362430.0,, +2021-05-26,Uttar Pradesh,47720703.0,, +2021-05-27,Uttar Pradesh,48068524.0,, +2021-05-28,Uttar Pradesh,48426572.0,, +2021-05-29,Uttar Pradesh,48756628.0,, +2021-05-30,Uttar Pradesh,49096724.0,, +2021-05-31,Uttar Pradesh,49409401.0,, +2021-06-01,Uttar Pradesh,49733196.0,, +2021-06-02,Uttar Pradesh,50064707.0,, +2021-06-03,Uttar Pradesh,50405118.0,, +2021-06-04,Uttar Pradesh,50723832.0,, +2021-06-05,Uttar Pradesh,51032849.0,, +2021-06-06,Uttar Pradesh,51342537.0,, +2021-06-07,Uttar Pradesh,51622903.0,, +2020-04-02,Uttarakhand,678.0,554,7.0 +2020-04-07,Uttarakhand,1289.0,1092,32.0 +2020-04-09,Uttarakhand,1531.0,1235,35.0 +2020-04-10,Uttarakhand,1688.0,1320,35.0 +2020-04-11,Uttarakhand,1705.0,1340,35.0 +2020-04-12,Uttarakhand,1820.0,1452,35.0 +2020-04-13,Uttarakhand,1998.0,1665,35.0 +2020-04-14,Uttarakhand,2174.0,1838,35.0 +2020-04-15,Uttarakhand,2413.0,2022,37.0 +2020-04-16,Uttarakhand,2593.0,2210,37.0 +2020-04-17,Uttarakhand,2831.0,2420,40.0 +2020-04-18,Uttarakhand,3158.0,2710,42.0 +2020-04-19,Uttarakhand,3344.0,3046,44.0 +2020-04-20,Uttarakhand,3677.0,3228,46.0 +2020-04-21,Uttarakhand,4061.0,3445,46.0 +2020-04-22,Uttarakhand,4275.0,3664,46.0 +2020-04-23,Uttarakhand,4473.0,3879,47.0 +2020-04-24,Uttarakhand,4767.0,4239,48.0 +2020-04-25,Uttarakhand,5194.0,4423,48.0 +2020-04-26,Uttarakhand,5277.0,4675,50.0 +2020-04-27,Uttarakhand,5463.0,4912,51.0 +2020-04-28,Uttarakhand,5739.0,5212,52.0 +2020-04-29,Uttarakhand,6046.0,5547,54.0 +2020-04-30,Uttarakhand,6565.0,6100,57.0 +2020-05-01,Uttarakhand,7042.0,6533,57.0 +2020-05-02,Uttarakhand,7369.0,6786,59.0 +2020-05-03,Uttarakhand,7578.0,6986,60.0 +2020-05-04,Uttarakhand,7806.0,7134,60.0 +2020-05-05,Uttarakhand,8060.0,7357,61.0 +2020-05-06,Uttarakhand,8346.0,7698,61.0 +2020-05-07,Uttarakhand,8783.0,8138,61.0 +2020-05-08,Uttarakhand,9116.0,8485,61.0 +2020-05-09,Uttarakhand,9386.0,8659,67.0 +2020-05-10,Uttarakhand,9668.0,8990,68.0 +2020-05-11,Uttarakhand,9915.0,9151,68.0 +2020-05-12,Uttarakhand,10471.0,9390,68.0 +2020-05-13,Uttarakhand,10792.0,9750,70.0 +2020-05-14,Uttarakhand,11294.0,10157,75.0 +2020-05-15,Uttarakhand,12045.0,10523,79.0 +2020-05-16,Uttarakhand,12597.0,10990,88.0 +2020-05-17,Uttarakhand,13212.0,11316,92.0 +2020-05-18,Uttarakhand,13870.0,11812,93.0 +2020-05-19,Uttarakhand,14691.0,12242,104.0 +2020-05-20,Uttarakhand,15503.0,12945,120.0 +2020-05-21,Uttarakhand,16528.0,13808,132.0 +2020-05-22,Uttarakhand,18008.0,14960,151.0 +2020-05-23,Uttarakhand,19248.0,15757,173.0 +2020-05-24,Uttarakhand,20969.0,16640,293.0 +2020-05-25,Uttarakhand,22117.0,17315,332.0 +2020-05-26,Uttarakhand,23076.0,18193,400.0 +2020-05-27,Uttarakhand,23975.0,18645,438.0 +2020-05-28,Uttarakhand,25380.0,19702,493.0 +2020-05-29,Uttarakhand,26951.0,20636,602.0 +2020-05-30,Uttarakhand,28433.0,21512,727.0 +2020-05-31,Uttarakhand,30438.0,22546,802.0 +2020-06-01,Uttarakhand,31703.0,23400,929.0 +2020-06-02,Uttarakhand,33081.0,24262,999.0 +2020-06-03,Uttarakhand,34413.0,25385,1066.0 +2020-06-04,Uttarakhand,35117.0,26093,1145.0 +2020-06-05,Uttarakhand,35967.0,27184,1215.0 +2020-06-06,Uttarakhand,36638.0,28172,1245.0 +2020-06-07,Uttarakhand,37166.0,28945,1341.0 +2020-06-08,Uttarakhand,39133.0,30620,1380.0 +2020-06-09,Uttarakhand,40264.0,31945,1488.0 +2020-06-10,Uttarakhand,40872.0,33369,1560.0 +2020-06-11,Uttarakhand,41888.0,34604,1637.0 +2020-06-12,Uttarakhand,42783.0,35670,1692.0 +2020-06-13,Uttarakhand,44040.0,36834,1759.0 +2020-06-14,Uttarakhand,45344.0,37554,1816.0 +2020-06-15,Uttarakhand,46573.0,38643,1836.0 +2020-06-16,Uttarakhand,47870.0,39552,1912.0 +2020-06-17,Uttarakhand,49462.0,40434,1985.0 +2020-06-18,Uttarakhand,50796.0,42008,2079.0 +2020-06-19,Uttarakhand,53155.0,43438,2127.0 +2020-06-20,Uttarakhand,54512.0,45131,2278.0 +2020-06-21,Uttarakhand,55819.0,46286,2324.0 +2020-06-22,Uttarakhand,56724.0,47852,2401.0 +2020-06-23,Uttarakhand,58338.0,49478,2505.0 +2020-06-24,Uttarakhand,59616.0,50950,2568.0 +2020-06-25,Uttarakhand,61165.0,52289,2642.0 +2020-06-26,Uttarakhand,62500.0,54007,2725.0 +2020-06-27,Uttarakhand,63960.0,54918,2791.0 +2020-06-28,Uttarakhand,64984.0,55892,2823.0 +2020-06-29,Uttarakhand,66396.0,56715,2831.0 +2020-06-30,Uttarakhand,69024.0,57862,2881.0 +2020-07-01,Uttarakhand,70032.0,59350,2947.0 +2020-07-02,Uttarakhand,72104.0,60555,2984.0 +2020-07-03,Uttarakhand,73738.0,62340,3048.0 +2020-07-04,Uttarakhand,76878.0,64801,3093.0 +2020-07-05,Uttarakhand,78306.0,66407,3124.0 +2020-07-06,Uttarakhand,79605.0,67731,3161.0 +2020-07-07,Uttarakhand,81447.0,69926,3230.0 +2020-07-08,Uttarakhand,83900.0,72862,3258.0 +2020-07-09,Uttarakhand,86458.0,74975,3305.0 +2020-07-10,Uttarakhand,89179.0,77553,3373.0 +2020-07-11,Uttarakhand,92198.0,80882,3417.0 +2020-07-12,Uttarakhand,94121.0,83089,3537.0 +2020-07-13,Uttarakhand,96123.0,84912,3608.0 +2020-07-14,Uttarakhand,98878.0,86747,3686.0 +2020-07-15,Uttarakhand,102529.0,89212,3785.0 +2020-07-16,Uttarakhand,109784.0,95745,3982.0 +2020-07-17,Uttarakhand,113846.0,98551,4102.0 +2020-07-18,Uttarakhand,116694.0,101613,4276.0 +2020-07-19,Uttarakhand,119345.0,104118,4515.0 +2020-07-20,Uttarakhand,123000.0,106350,4642.0 +2020-07-21,Uttarakhand,127098.0,108488,4849.0 +2020-07-22,Uttarakhand,129783.0,112210,5300.0 +2020-07-23,Uttarakhand,132840.0,115683,5445.0 +2020-07-24,Uttarakhand,135447.0,119647,5717.0 +2020-07-25,Uttarakhand,139229.0,124153,5961.0 +2020-07-26,Uttarakhand,141431.0,126505,6104.0 +2020-07-27,Uttarakhand,145627.0,130531,6328.0 +2020-07-28,Uttarakhand,150065.0,134376,6587.0 +2020-07-29,Uttarakhand,154984.0,138706,6866.0 +2020-07-30,Uttarakhand,163683.0,146230,7065.0 +2020-07-31,Uttarakhand,168113.0,149507,7183.0 +2020-08-01,Uttarakhand,172477.0,153471,7447.0 +2020-08-02,Uttarakhand,175881.0,156823,7593.0 +2020-08-03,Uttarakhand,178595.0,159414,7800.0 +2020-08-04,Uttarakhand,182335.0,162715,8008.0 +2020-08-05,Uttarakhand,186966.0,165690,8254.0 +2020-08-06,Uttarakhand,190898.0,169634,8552.0 +2020-08-07,Uttarakhand,199081.0,177042,8901.0 +2020-08-08,Uttarakhand,205565.0,183248,9402.0 +2020-08-09,Uttarakhand,209627.0,186531,9632.0 +2020-08-10,Uttarakhand,218838.0,193925,10021.0 +2020-08-11,Uttarakhand,225618.0,200671, +2020-08-12,Uttarakhand,232259.0,206898, +2020-08-13,Uttarakhand,242150.0,214203,11302.0 +2020-08-14,Uttarakhand,251236.0,221085,11615.0 +2020-08-15,Uttarakhand,256008.0,225614,11940.0 +2020-08-16,Uttarakhand,260790.0,229387,12175.0 +2020-08-17,Uttarakhand,265748.0,235055, +2020-08-18,Uttarakhand,273357.0,240454, +2020-08-19,Uttarakhand,279961.0,245055, +2020-08-20,Uttarakhand,286330.0,250500, +2020-08-21,Uttarakhand,294279.0,258971,14083.0 +2020-08-22,Uttarakhand,301813.0,266862, +2020-08-23,Uttarakhand,307803.0,273208, +2020-08-24,Uttarakhand,316265.0,281202, +2020-08-25,Uttarakhand,325384.0,288263, +2020-08-26,Uttarakhand,334979.0,296427, +2020-08-27,Uttarakhand,348897.0,308314, +2020-08-28,Uttarakhand,361389.0,316968, +2020-08-29,Uttarakhand,376747.0,330242, +2020-08-30,Uttarakhand,384796.0,337445, +2020-08-31,Uttarakhand,394015.0,347554, +2020-09-01,Uttarakhand,403955.0,357681, +2020-09-02,Uttarakhand,413595.0,367512, +2020-09-03,Uttarakhand,424156.0,378265, +2020-09-04,Uttarakhand,435449.0,387943, +2020-09-05,Uttarakhand,445277.0,397563, +2020-09-06,Uttarakhand,454027.0,405264, +2020-09-07,Uttarakhand,462803.0,414526, +2020-09-08,Uttarakhand,472111.0,422151, +2020-09-09,Uttarakhand,482663.0,431315, +2020-09-10,Uttarakhand,491505.0,440687, +2020-09-11,Uttarakhand,501880.0,448924, +2020-09-12,Uttarakhand,511129.0,456585, +2020-09-13,Uttarakhand,519869.0,465673, +2020-09-14,Uttarakhand,528897.0,474247, +2020-09-15,Uttarakhand,541910.0,484436, +2020-09-16,Uttarakhand,555071.0,494971, +2020-09-17,Uttarakhand,567169.0,505858, +2020-09-18,Uttarakhand,579582.0,517125, +2020-09-19,Uttarakhand,594476.0,531500, +2020-09-20,Uttarakhand,605236.0,541592, +2020-09-21,Uttarakhand,616986.0,551414, +2020-09-22,Uttarakhand,630448.0,561570, +2020-09-23,Uttarakhand,638707.0,571585, +2020-09-24,Uttarakhand,648140.0,580667, +2020-09-25,Uttarakhand,656974.0,587884, +2020-09-26,Uttarakhand,668282.0,599199, +2020-09-27,Uttarakhand,679596.0,610241, +2020-09-28,Uttarakhand,690421.0,619649, +2020-09-29,Uttarakhand,701139.0,628736, +2020-09-30,Uttarakhand,712124.0,637547,65.0 +2020-10-01,Uttarakhand,721019.0,645323, +2020-10-02,Uttarakhand,728436.0,650742, +2020-10-03,Uttarakhand,736371.0,658307, +2020-10-04,Uttarakhand,743551.0,664251, +2020-10-05,Uttarakhand,753224.0,670728, +2020-10-06,Uttarakhand,763884.0,681486, +2020-10-07,Uttarakhand,776868.0,694433, +2020-10-08,Uttarakhand,789115.0,705798, +2020-10-09,Uttarakhand,801966.0,719475, +2020-10-10,Uttarakhand,814616.0,730323, +2020-10-11,Uttarakhand,822184.0,738954, +2020-10-12,Uttarakhand,831812.0,748703, +2020-10-13,Uttarakhand,845333.0,759156, +2020-10-14,Uttarakhand,858167.0,769584, +2020-10-15,Uttarakhand,870458.0,781170, +2020-10-16,Uttarakhand,883120.0,792432, +2020-10-17,Uttarakhand,894553.0,803877, +2020-10-18,Uttarakhand,902182.0,813404, +2020-10-19,Uttarakhand,914976.0,825036, +2020-10-20,Uttarakhand,927422.0,838830, +2020-10-21,Uttarakhand,941156.0,850517, +2020-10-22,Uttarakhand,953487.0,861814, +2020-10-23,Uttarakhand,967258.0,874177, +2020-10-24,Uttarakhand,979025.0,886480, +2020-10-25,Uttarakhand,987364.0,892561, +2020-10-26,Uttarakhand,996525.0,900959, +2020-10-27,Uttarakhand,1008758.0,913053, +2020-10-28,Uttarakhand,1021965.0,924796, +2020-10-29,Uttarakhand,1034819.0,936728, +2020-10-30,Uttarakhand,1010617.0,948702, +2020-10-31,Uttarakhand,1022780.0,960452, +2020-11-01,Uttarakhand,1033417.0,970867, +2020-11-02,Uttarakhand,1042666.0,979785, +2020-11-03,Uttarakhand,1055463.0,992266, +2020-11-04,Uttarakhand,1067295.0,1003710, +2020-11-05,Uttarakhand,1078499.0,1014434, +2020-11-06,Uttarakhand,1090119.0,1025581, +2020-11-07,Uttarakhand,1099557.0,1034521, +2020-11-08,Uttarakhand,1110511.0,1045232, +2020-11-09,Uttarakhand,1120019.0,1054342, +2020-11-10,Uttarakhand,1132143.0,1066138, +2020-11-11,Uttarakhand,1144534.0,1077746, +2020-11-12,Uttarakhand,1155651.0,1088412, +2020-11-13,Uttarakhand,1167497.0,1099791, +2020-11-14,Uttarakhand,1171730.0,1103728, +2020-11-15,Uttarakhand,1175816.0,1107601, +2020-11-16,Uttarakhand,1183449.0,1114991, +2020-11-17,Uttarakhand,1192023.0,1123136, +2020-11-18,Uttarakhand,1202152.0,1132845, +2020-11-19,Uttarakhand,1212717.0,1143024, +2020-11-20,Uttarakhand,1224223.0,1154018, +2020-11-21,Uttarakhand,1236008.0,1165218, +2020-11-22,Uttarakhand,1245090.0,1173834, +2020-11-23,Uttarakhand,1256524.0,1184892, +2020-11-24,Uttarakhand,1267525.0,1195365, +2020-11-25,Uttarakhand,1277786.0,1205144, +2020-11-26,Uttarakhand,1288946.0,1215949, +2020-11-27,Uttarakhand,1303595.0,1228441, +2020-11-28,Uttarakhand,1315525.0,1241574, +2020-11-29,Uttarakhand,1327314.0,1252974, +2020-11-30,Uttarakhand,1340279.0,1265484, +2020-12-01,Uttarakhand,1352453.0,1277185, +2020-12-02,Uttarakhand,1367575.0,1291791, +2020-12-03,Uttarakhand,1380312.0,1304037, +2020-12-04,Uttarakhand,1396331.0,1319438, +2020-12-05,Uttarakhand,1409056.0,1331483, +2020-12-06,Uttarakhand,1424389.0,1346392, +2020-12-07,Uttarakhand,1437538.0,1359029, +2020-12-08,Uttarakhand,1453671.0,1374530, +2020-12-09,Uttarakhand,1464857.0,1385201, +2020-12-10,Uttarakhand,1475936.0,1395450, +2020-12-11,Uttarakhand,1489651.0,1408440, +2020-12-12,Uttarakhand,1503731.0,1421792, +2020-12-13,Uttarakhand,1514002.0,1413573, +2020-12-14,Uttarakhand,1527416.0,1444410, +2020-12-15,Uttarakhand,1540117.0,1456615, +2020-12-16,Uttarakhand,1553462.0,1469393, +2020-12-17,Uttarakhand,1567251.0,1482562, +2020-12-18,Uttarakhand,1586410.0,1501141, +2020-12-19,Uttarakhand,1602656.0,1516803, +2020-12-20,Uttarakhand,1616842.0,1530525, +2020-12-21,Uttarakhand,1633039.0,1546274, +2020-12-22,Uttarakhand,1650000.0,1562624, +2020-12-23,Uttarakhand,1666855.0,1578915, +2020-12-24,Uttarakhand,1681063.0,1592687, +2020-12-25,Uttarakhand,1695770.0,1606926, +2020-12-26,Uttarakhand,1711094.0,1621876, +2020-12-27,Uttarakhand,1722762.0,1633182, +2020-12-28,Uttarakhand,1734682.0,1644382, +2020-12-29,Uttarakhand,1749909.0,1659742, +2020-12-30,Uttarakhand,1764992.0,1674376, +2020-12-31,Uttarakhand,1777371.0,1686451, +2021-01-01,Uttarakhand,1791371.0,1700090, +2021-01-02,Uttarakhand,1805057.0,1713513, +2021-01-03,Uttarakhand,1817112.0,1725301, +2021-01-04,Uttarakhand,1830267.0,1738155, +2021-01-05,Uttarakhand,1842877.0,1750511, +2021-01-06,Uttarakhand,1856630.0,1764037, +2021-01-07,Uttarakhand,1867428.0,1774586, +2021-01-08,Uttarakhand,1881487.0,1788376, +2021-01-09,Uttarakhand,1894977.0,1801579, +2021-01-10,Uttarakhand,1905558.0,1811937, +2021-01-11,Uttarakhand,1915738.0,1821961, +2021-01-12,Uttarakhand,1928509.0,1834548, +2021-01-13,Uttarakhand,1939315.0,1845145, +2021-01-14,Uttarakhand,1947524.0,1853200, +2021-01-15,Uttarakhand,1958238.0,1863773, +2021-01-16,Uttarakhand,1974851.0,1880160, +2021-01-17,Uttarakhand,1983478.0,1888675, +2021-01-18,Uttarakhand,1995328.0,1900405, +2021-01-19,Uttarakhand,2005841.0,1910802, +2021-01-20,Uttarakhand,2019442.0,1924250, +2021-01-21,Uttarakhand,2030241.0,1934887, +2021-01-22,Uttarakhand,2043087.0,1947623, +2021-01-23,Uttarakhand,2057076.0,1961490, +2021-01-24,Uttarakhand,2067575.0,1971935, +2021-01-25,Uttarakhand,2078868.0,1983166, +2021-01-26,Uttarakhand,2086012.0,1990271, +2021-01-27,Uttarakhand,2095086.0,1999260, +2021-01-28,Uttarakhand,2104208.0,2008300, +2021-01-29,Uttarakhand,2116001.0,2020015, +2021-01-30,Uttarakhand,2127358.0,2031290, +2021-01-31,Uttarakhand,2134552.0,2038423, +2021-02-01,Uttarakhand,2142303.0,2046123, +2021-02-02,Uttarakhand,2150398.0,2054171, +2021-02-03,Uttarakhand,2159724.0,2063443, +2021-02-04,Uttarakhand,2167413.0,2071029, +2021-02-05,Uttarakhand,2175808.0,2079377, +2021-02-06,Uttarakhand,2184998.0,2088520, +2021-02-07,Uttarakhand,2190489.0,2093996, +2021-02-08,Uttarakhand,2195969.0,2099433, +2021-02-09,Uttarakhand,2203190.0,2106600, +2021-02-10,Uttarakhand,2210318.0,2113693, +2021-02-11,Uttarakhand,2220621.0,2123948, +2021-02-12,Uttarakhand,2230515.0,2133793, +2021-02-13,Uttarakhand,2240181.0,2143415, +2021-02-14,Uttarakhand,2247287.0,2150467, +2021-02-15,Uttarakhand,2255193.0,2158326, +2021-02-16,Uttarakhand,2266583.0,2169663, +2021-02-17,Uttarakhand,2286792.0,2189828, +2021-02-18,Uttarakhand,2294135.0,2197130, +2021-02-19,Uttarakhand,2303686.0,2206655, +2021-02-20,Uttarakhand,2312851.0,2216194, +2021-02-21,Uttarakhand,2319133.0,2222446, +2021-02-22,Uttarakhand,2325000.0,2228281, +2021-02-23,Uttarakhand,2333530.0,2236757, +2021-02-24,Uttarakhand,2341175.0,2244355, +2021-02-25,Uttarakhand,2359483.0,2262646, +2021-02-26,Uttarakhand,2369727.0,2272837, +2021-02-27,Uttarakhand,2384737.0,2287788, +2021-02-28,Uttarakhand,2406703.0,2309111, +2021-03-01,Uttarakhand,2417419.0,2320400, +2021-03-02,Uttarakhand,2426085.0,2328996, +2021-03-03,Uttarakhand,2436780.0,2339646, +2021-03-04,Uttarakhand,2445312.0,2348078, +2021-03-05,Uttarakhand,2454398.0,2357113, +2021-03-06,Uttarakhand,2463762.0,2366399, +2021-03-07,Uttarakhand,2471096.0,2373674, +2021-03-08,Uttarakhand,2479995.0,2382515, +2021-03-09,Uttarakhand,2487980.0,2390451, +2021-03-10,Uttarakhand,2500644.0,2403079, +2021-03-11,Uttarakhand,2520835.0,2423201, +2021-03-12,Uttarakhand,2536247.0,2438547, +2021-03-13,Uttarakhand,2551295.0,2453541, +2021-03-14,Uttarakhand,2560427.0,2462621, +2021-03-15,Uttarakhand,2569444.0,2471578, +2021-03-16,Uttarakhand,2577879.0,2479948, +2021-03-17,Uttarakhand,2590074.0,2492033, +2021-03-18,Uttarakhand,2599595.0,2501466, +2021-03-19,Uttarakhand,2610397.0,2512169, +2021-03-20,Uttarakhand,2621706.0,2523395, +2021-03-21,Uttarakhand,2631682.0,2533234, +2021-03-22,Uttarakhand,2643518.0,2544966, +2021-03-23,Uttarakhand,2657619.0,2558973, +2021-03-24,Uttarakhand,2669701.0,2570821, +2021-03-25,Uttarakhand,2678962.0,2579890, +2021-03-26,Uttarakhand,2692394.0,2593136, +2021-03-27,Uttarakhand,2699095.0,2599580, +2021-03-28,Uttarakhand,2714881.0,2615000, +2021-03-29,Uttarakhand,2719648.0,2619658, +2021-03-30,Uttarakhand,2728555.0,2628437, +2021-03-31,Uttarakhand,2739909.0,2639498, +2021-04-01,Uttarakhand,2757779.0,2656868, +2021-04-02,Uttarakhand,2767434.0,2666159, +2021-04-03,Uttarakhand,2776528.0,2674814, +2021-04-04,Uttarakhand,2811646.0,2709382, +2021-04-05,Uttarakhand,2840027.0,2737216, +2021-04-06,Uttarakhand,2888890.0,2785288, +2021-04-07,Uttarakhand,2920139.0,2815428, +2021-04-08,Uttarakhand,2950213.0,2844715, +2021-04-09,Uttarakhand,2982382.0,2876136, +2021-04-10,Uttarakhand,3016050.0,2908571, +2021-04-11,Uttarakhand,3048668.0,2939856, +2021-04-12,Uttarakhand,3085100.0,2974954, +2021-04-13,Uttarakhand,3131226.0,3019155, +2021-04-14,Uttarakhand,3176482.0,3062458, +2021-04-15,Uttarakhand,3215093.0,3098449, +2021-04-16,Uttarakhand,3248037.0,3129391, +2021-04-17,Uttarakhand,3300338.0,3178935, +2021-04-18,Uttarakhand,3333159.0,3209126, +2021-04-19,Uttarakhand,3363489.0,3237296, +2021-04-20,Uttarakhand,3391513.0,3262308, +2021-04-21,Uttarakhand,3428170.0,3294158, +2021-04-22,Uttarakhand,3464616.0,3326606, +2021-04-23,Uttarakhand,3500685.0,3358336, +2021-04-24,Uttarakhand,3536994.0,3389561, +2021-04-25,Uttarakhand,3574574.0,3422773, +2021-04-26,Uttarakhand,3637694.0,3480835, +2021-04-27,Uttarakhand,3675568.0,3513006, +2021-04-28,Uttarakhand,3718006.0,3549390, +2021-04-29,Uttarakhand,3752603.0,3577716, +2021-04-30,Uttarakhand,3782632.0,3602111, +2021-05-01,Uttarakhand,3815200.0,3629186, +2021-05-02,Uttarakhand,3841463.0,3649843, +2021-05-03,Uttarakhand,3874678.0,3677655, +2021-05-04,Uttarakhand,3912724.0,3708673, +2021-05-05,Uttarakhand,3918586.0,3706752, +2021-05-06,Uttarakhand,3954321.0,3733970, +2021-05-07,Uttarakhand,3991171.0,3761178, +2021-05-08,Uttarakhand,4030481.0,3792098, +2021-05-09,Uttarakhand,4057194.0,3812921, +2021-05-10,Uttarakhand,4083756.0,3833942, +2021-05-11,Uttarakhand,4111684.0,3854750, +2021-05-12,Uttarakhand,4146577.0,3881894, +2021-05-13,Uttarakhand,4175285.0,3903475, +2021-05-14,Uttarakhand,4204379.0,3926794, +2021-05-15,Uttarakhand,4228389.0,3945150, +2021-05-16,Uttarakhand,4262233.0,3974947, +2021-05-17,Uttarakhand,4291896.0,4000891, +2021-05-18,Uttarakhand,4329896.0,4034106, +2021-05-19,Uttarakhand,4366657.0,4066375, +2021-05-20,Uttarakhand,4401501.0,4097561, +2021-05-21,Uttarakhand,4443937.0,4136371, +2021-05-22,Uttarakhand,4475669.0,4165200, +2021-05-23,Uttarakhand,4516781.0,4203262, +2021-05-24,Uttarakhand,4548874.0,4233284, +2021-05-25,Uttarakhand,4585942.0,4267596, +2021-05-26,Uttarakhand,4622698.0,4301361, +2021-05-27,Uttarakhand,4659648.0,4336165, +2021-05-28,Uttarakhand,4697243.0,4371818, +2021-05-29,Uttarakhand,4734270.0,4407158, +2021-05-30,Uttarakhand,4764419.0,4436081, +2021-05-31,Uttarakhand,4794885.0,4465391, +2021-06-01,Uttarakhand,4825524.0,4495049, +2021-06-02,Uttarakhand,4858215.0,4526737, +2021-06-03,Uttarakhand,4886352.0,4554285, +2021-06-04,Uttarakhand,4913184.0,4580225, +2021-06-05,Uttarakhand,4937242.0,4603118, +2021-06-06,Uttarakhand,4957645.0,4623621, +2021-06-07,Uttarakhand,4979584.0,4645165, +2020-04-01,West Bengal,659.0,568,37.0 +2020-04-04,West Bengal,1042.0,, +2020-04-06,West Bengal,1301.0,, +2020-04-07,West Bengal,1487.0,, +2020-04-09,West Bengal,1889.0,, +2020-04-10,West Bengal,2095.0,, +2020-04-11,West Bengal,2286.0,,126.0 +2020-04-12,West Bengal,2523.0,,134.0 +2020-04-13,West Bengal,2793.0,,152.0 +2020-04-14,West Bengal,3081.0,,190.0 +2020-04-15,West Bengal,3470.0,,213.0 +2020-04-16,West Bengal,3811.0,,231.0 +2020-04-17,West Bengal,4212.0,,255.0 +2020-04-18,West Bengal,4630.0,,287.0 +2020-04-19,West Bengal,5045.0,,310.0 +2020-04-20,West Bengal,5469.0,,339.0 +2020-04-21,West Bengal,6182.0,,392.0 +2020-04-22,West Bengal,7037.0,,423.0 +2020-04-23,West Bengal,7990.0,,456.0 +2020-04-24,West Bengal,8933.0,,514.0 +2020-04-25,West Bengal,9880.0,,571.0 +2020-04-26,West Bengal,10893.0,,611.0 +2020-04-27,West Bengal,12043.0,,649.0 +2020-04-28,West Bengal,13223.0,,697.0 +2020-04-29,West Bengal,14620.0,,725.0 +2020-04-30,West Bengal,16525.0,,758.0 +2020-05-01,West Bengal,18566.0,, +2020-05-02,West Bengal,20976.0,,795.0 +2020-05-03,West Bengal,22915.0,,922.0 +2020-05-04,West Bengal,25116.0,,1259.0 +2020-05-05,West Bengal,27571.0,,1344.0 +2020-05-06,West Bengal,30141.0,,1456.0 +2020-05-07,West Bengal,32752.0,,1548.0 +2020-05-08,West Bengal,35767.0,,1678.0 +2020-05-09,West Bengal,39368.0,,1786.0 +2020-05-10,West Bengal,43414.0,,1939.0 +2020-05-11,West Bengal,47615.0,,2063.0 +2020-05-12,West Bengal,52622.0,,2173.0 +2020-05-13,West Bengal,57632.0,,2290.0 +2020-05-14,West Bengal,62837.0,,2377.0 +2020-05-15,West Bengal,69543.0,,2461.0 +2020-05-16,West Bengal,77288.0,,2576.0 +2020-05-17,West Bengal,85956.0,,2677.0 +2020-05-18,West Bengal,93570.0,,2825.0 +2020-05-19,West Bengal,102282.0,,2961.0 +2020-05-20,West Bengal,111002.0,,3103.0 +2020-05-21,West Bengal,115244.0,,3197.0 +2020-05-22,West Bengal,120599.0,,3332.0 +2020-05-23,West Bengal,129608.0,,3459.0 +2020-05-24,West Bengal,138824.0,,3667.0 +2020-05-25,West Bengal,148049.0,,3816.0 +2020-05-26,West Bengal,157277.0,,4009.0 +2020-05-27,West Bengal,166513.0,,4192.0 +2020-05-28,West Bengal,175769.0,,4536.0 +2020-05-29,West Bengal,185051.0,,4813.0 +2020-05-30,West Bengal,194397.0,,5130.0 +2020-05-31,West Bengal,203751.0,,5501.0 +2020-06-01,West Bengal,213231.0,,5772.0 +2020-06-02,West Bengal,222726.0,,6168.0 +2020-06-03,West Bengal,232225.0,,6508.0 +2020-06-04,West Bengal,241831.0,,6876.0 +2020-06-05,West Bengal,251517.0,,7303.0 +2020-06-06,West Bengal,261288.0,,7738.0 +2020-06-07,West Bengal,271074.0,,8187.0 +2020-06-08,West Bengal,280098.0,,8613.0 +2020-06-09,West Bengal,287900.0,,8985.0 +2020-06-10,West Bengal,297419.0,,9328.0 +2020-06-11,West Bengal,306941.0,,9768.0 +2020-06-12,West Bengal,315699.0,,10244.0 +2020-06-13,West Bengal,324707.0,,10698.0 +2020-06-14,West Bengal,333733.0,,11087.0 +2020-06-15,West Bengal,343242.0,,11494.0 +2020-06-16,West Bengal,351754.0,,11909.0 +2020-06-17,West Bengal,360976.0,,12300.0 +2020-06-18,West Bengal,370291.0,,12735.0 +2020-06-19,West Bengal,380612.0,,13090.0 +2020-06-20,West Bengal,390942.0,,13531.0 +2020-06-21,West Bengal,401491.0,,13945.0 +2020-06-22,West Bengal,410854.0,,14358.0 +2020-06-23,West Bengal,420277.0,,14728.0 +2020-06-24,West Bengal,429766.0,,15173.0 +2020-06-25,West Bengal,439258.0,,15648.0 +2020-06-26,West Bengal,448795.0,,16190.0 +2020-06-27,West Bengal,458343.0,,16711.0 +2020-06-28,West Bengal,468906.0,,17283.0 +2020-06-29,West Bengal,478419.0,,17907.0 +2020-06-30,West Bengal,488038.0,,18559.0 +2020-07-01,West Bengal,497596.0,,19170.0 +2020-07-02,West Bengal,508001.0,,19819.0 +2020-07-03,West Bengal,519054.0,,20488.0 +2020-07-04,West Bengal,530072.0,,21231.0 +2020-07-05,West Bengal,541088.0,,22126.0 +2020-07-06,West Bengal,552007.0,,22987.0 +2020-07-07,West Bengal,562137.0,,23837.0 +2020-07-08,West Bengal,572523.0,,24823.0 +2020-07-09,West Bengal,583328.0,,25911.0 +2020-07-10,West Bengal,593967.0,,27109.0 +2020-07-11,West Bengal,605370.0,,28453.0 +2020-07-12,West Bengal,617079.0,,30013.0 +2020-07-13,West Bengal,627438.0,,31448.0 +2020-07-14,West Bengal,638540.0,,32838.0 +2020-07-15,West Bengal,649928.0,,34427.0 +2020-07-16,West Bengal,663108.0,,36117.0 +2020-07-17,West Bengal,676348.0,,38011.0 +2020-07-18,West Bengal,689813.0,,40209.0 +2020-07-19,West Bengal,703284.0,,42487.0 +2020-07-20,West Bengal,716365.0,,44769.0 +2020-07-21,West Bengal,729429.0,,47030.0 +2020-07-22,West Bengal,743469.0,,49321.0 +2020-07-23,West Bengal,758027.0,,51757.0 +2020-07-24,West Bengal,773512.0,,53973.0 +2020-07-25,West Bengal,789140.0,,56377.0 +2020-07-26,West Bengal,805185.0,,58718.0 +2020-07-27,West Bengal,822190.0,,60830.0 +2020-07-28,West Bengal,839211.0,,62964.0 +2020-07-29,West Bengal,856355.0,,65258.0 +2020-07-30,West Bengal,874397.0,,67692.0 +2020-07-31,West Bengal,893400.0,,70188.0 +2020-08-01,West Bengal,913465.0,,72777.0 +2020-08-02,West Bengal,934537.0,,75516.0 +2020-08-03,West Bengal,956659.0,,78232.0 +2020-08-04,West Bengal,978980.0,,80984.0 +2020-08-05,West Bengal,1003027.0,,83800.0 +2020-08-06,West Bengal,1028251.0,,86754.0 +2020-08-07,West Bengal,1054509.0,,89666.0 +2020-08-08,West Bengal,1079657.0,,92615.0 +2020-08-09,West Bengal,1105899.0,,95554.0 +2020-08-10,West Bengal,1132196.0,,98459.0 +2020-08-11,West Bengal,1159211.0,, +2020-08-12,West Bengal,1186923.0,, +2020-08-13,West Bengal,1216955.0,,107323.0 +2020-08-14,West Bengal,1248272.0,,110358.0 +2020-08-15,West Bengal,1282486.0,,113432.0 +2020-08-16,West Bengal,1314772.0,,116498.0 +2020-08-17,West Bengal,1347091.0,,119578.0 +2020-08-18,West Bengal,1382198.0,,122753.0 +2020-08-19,West Bengal,1416556.0,, +2020-08-20,West Bengal,1451615.0,, +2020-08-21,West Bengal,1487844.0,,132364.0 +2020-08-22,West Bengal,1524162.0,,135596.0 +2020-08-23,West Bengal,1561311.0,, +2020-08-24,West Bengal,1596578.0,, +2020-08-25,West Bengal,1634102.0,, +2020-08-26,West Bengal,1674133.0,, +2020-08-27,West Bengal,1716607.0,, +2020-08-28,West Bengal,1758728.0,, +2020-08-29,West Bengal,1801960.0,, +2020-08-30,West Bengal,1845396.0,, +2020-08-31,West Bengal,1887635.0,, +2020-09-01,West Bengal,1931373.0,, +2020-09-02,West Bengal,1975493.0,, +2020-09-03,West Bengal,2020784.0,, +2020-09-04,West Bengal,2066404.0,, +2020-09-05,West Bengal,2112185.0,, +2020-09-06,West Bengal,2158690.0,, +2020-09-07,West Bengal,2200906.0,, +2020-09-08,West Bengal,2243294.0,, +2020-09-09,West Bengal,2285936.0,, +2020-09-10,West Bengal,2330283.0,, +2020-09-11,West Bengal,2375609.0,, +2020-09-12,West Bengal,2422740.0,, +2020-09-13,West Bengal,2470058.0,, +2020-09-14,West Bengal,2517595.0,, +2020-09-15,West Bengal,2562821.0,, +2020-09-16,West Bengal,2608534.0,, +2020-09-17,West Bengal,2654070.0,, +2020-09-18,West Bengal,2699299.0,, +2020-09-19,West Bengal,2744862.0,, +2020-09-20,West Bengal,2790518.0,, +2020-09-21,West Bengal,2833831.0,, +2020-09-22,West Bengal,2879278.0,, +2020-09-23,West Bengal,2924507.0,, +2020-09-24,West Bengal,2967939.0,, +2020-09-25,West Bengal,3011754.0,, +2020-09-26,West Bengal,3055039.0,, +2020-09-27,West Bengal,3098657.0,, +2020-09-28,West Bengal,3139938.0,, +2020-09-29,West Bengal,3183697.0,, +2020-09-30,West Bengal,3227462.0,, +2020-10-01,West Bengal,3271316.0,, +2020-10-02,West Bengal,3314598.0,, +2020-10-03,West Bengal,3355726.0,, +2020-10-04,West Bengal,3397988.0,, +2020-10-05,West Bengal,3438128.0,, +2020-10-06,West Bengal,3480510.0,, +2020-10-07,West Bengal,3523161.0,, +2020-10-08,West Bengal,3565602.0,, +2020-10-09,West Bengal,3608134.0,, +2020-10-10,West Bengal,3650989.0,, +2020-10-11,West Bengal,3693600.0,, +2020-10-12,West Bengal,3733656.0,, +2020-10-13,West Bengal,3775893.0,, +2020-10-14,West Bengal,3818442.0,, +2020-10-15,West Bengal,3861095.0,, +2020-10-16,West Bengal,3904322.0,, +2020-10-17,West Bengal,3947750.0,, +2020-10-18,West Bengal,3991270.0,, +2020-10-19,West Bengal,4034889.0,, +2020-10-20,West Bengal,4078651.0,, +2020-10-21,West Bengal,4122243.0,, +2020-10-22,West Bengal,4166495.0,, +2020-10-23,West Bengal,4211077.0,, +2020-10-24,West Bengal,4255801.0,, +2020-10-25,West Bengal,4298339.0,, +2020-10-26,West Bengal,4340570.0,, +2020-10-27,West Bengal,4382678.0,, +2020-10-28,West Bengal,4425231.0,, +2020-10-29,West Bengal,4468496.0,, +2020-10-30,West Bengal,4512270.0,, +2020-10-31,West Bengal,4556425.0,, +2020-11-01,West Bengal,4600882.0,, +2020-11-02,West Bengal,4644119.0,, +2020-11-03,West Bengal,4688295.0,, +2020-11-04,West Bengal,4733508.0,, +2020-11-05,West Bengal,4778975.0,, +2020-11-06,West Bengal,4824327.0,, +2020-11-07,West Bengal,4869554.0,, +2020-11-08,West Bengal,4914741.0,, +2020-11-09,West Bengal,4959087.0,, +2020-11-10,West Bengal,5003204.0,, +2020-11-11,West Bengal,5047335.0,, +2020-11-12,West Bengal,5091700.0,, +2020-11-13,West Bengal,5136012.0,, +2020-11-14,West Bengal,5180139.0,, +2020-11-15,West Bengal,5218797.0,, +2020-11-16,West Bengal,5256924.0,, +2020-11-17,West Bengal,5301162.0,, +2020-11-18,West Bengal,5345681.0,, +2020-11-19,West Bengal,5389944.0,, +2020-11-20,West Bengal,5434103.0,, +2020-11-21,West Bengal,5478311.0,, +2020-11-22,West Bengal,5522964.0,, +2020-11-23,West Bengal,5565331.0,, +2020-11-24,West Bengal,5609893.0,, +2020-11-25,West Bengal,5654524.0,, +2020-11-26,West Bengal,5699237.0,, +2020-11-27,West Bengal,5744364.0,, +2020-11-28,West Bengal,5789547.0,, +2020-11-29,West Bengal,5834755.0,, +2020-11-30,West Bengal,5872933.0,, +2020-12-01,West Bengal,5916174.0,, +2020-12-02,West Bengal,5958798.0,, +2020-12-03,West Bengal,6002928.0,, +2020-12-04,West Bengal,6047279.0,, +2020-12-05,West Bengal,6091668.0,, +2020-12-06,West Bengal,6135854.0,, +2020-12-07,West Bengal,6167307.0,, +2020-12-08,West Bengal,6211537.0,, +2020-12-09,West Bengal,6255888.0,, +2020-12-10,West Bengal,6298040.0,, +2020-12-11,West Bengal,6340171.0,, +2020-12-12,West Bengal,6382278.0,, +2020-12-13,West Bengal,6423496.0,, +2020-12-14,West Bengal,6455167.0,, +2020-12-15,West Bengal,6496736.0,, +2020-12-16,West Bengal,6538992.0,, +2020-12-17,West Bengal,6581465.0,, +2020-12-18,West Bengal,6623820.0,, +2020-12-19,West Bengal,6666077.0,, +2020-12-20,West Bengal,6706320.0,, +2020-12-21,West Bengal,6735742.0,, +2020-12-22,West Bengal,6775898.0,, +2020-12-23,West Bengal,6816965.0,, +2020-12-24,West Bengal,6856878.0,, +2020-12-25,West Bengal,6896967.0,, +2020-12-26,West Bengal,6927608.0,, +2020-12-27,West Bengal,6965726.0,, +2020-12-28,West Bengal,6993821.0,, +2020-12-29,West Bengal,7031066.0,, +2020-12-30,West Bengal,7070176.0,, +2020-12-31,West Bengal,7110430.0,, +2021-01-01,West Bengal,7149539.0,, +2021-01-02,West Bengal,7177814.0,, +2021-01-03,West Bengal,7210070.0,, +2021-01-04,West Bengal,7235326.0,, +2021-01-05,West Bengal,7266038.0,, +2021-01-06,West Bengal,7300154.0,, +2021-01-07,West Bengal,7336021.0,, +2021-01-08,West Bengal,7372156.0,, +2021-01-09,West Bengal,7406377.0,, +2021-01-10,West Bengal,7441500.0,, +2021-01-11,West Bengal,7464813.0,, +2021-01-12,West Bengal,7497837.0,, +2021-01-13,West Bengal,7527944.0,, +2021-01-14,West Bengal,7560561.0,, +2021-01-15,West Bengal,7591121.0,, +2021-01-16,West Bengal,7621132.0,, +2021-01-17,West Bengal,7647363.0,, +2021-01-18,West Bengal,7666238.0,, +2021-01-19,West Bengal,7696272.0,, +2021-01-20,West Bengal,7723376.0,, +2021-01-21,West Bengal,7751669.0,, +2021-01-22,West Bengal,7779840.0,, +2021-01-23,West Bengal,7808082.0,, +2021-01-24,West Bengal,7833289.0,, +2021-01-25,West Bengal,7851532.0,, +2021-01-26,West Bengal,7876899.0,, +2021-01-27,West Bengal,7894508.0,, +2021-01-28,West Bengal,7919637.0,, +2021-01-29,West Bengal,7944701.0,, +2021-01-30,West Bengal,7970808.0,, +2021-01-31,West Bengal,7995854.0,, +2021-02-01,West Bengal,8014022.0,, +2021-02-02,West Bengal,8036329.0,, +2021-02-03,West Bengal,8058141.0,, +2021-02-04,West Bengal,8081172.0,, +2021-02-05,West Bengal,8104339.0,, +2021-02-06,West Bengal,8128350.0,, +2021-02-07,West Bengal,8150715.0,, +2021-02-08,West Bengal,8167828.0,, +2021-02-09,West Bengal,8188284.0,, +2021-02-10,West Bengal,8209892.0,, +2021-02-11,West Bengal,8231998.0,, +2021-02-12,West Bengal,8256108.0,, +2021-02-13,West Bengal,8278163.0,, +2021-02-14,West Bengal,8300367.0,, +2021-02-15,West Bengal,8315899.0,, +2021-02-16,West Bengal,8335250.0,, +2021-02-17,West Bengal,8349281.0,, +2021-02-18,West Bengal,8368326.0,, +2021-02-19,West Bengal,8388854.0,, +2021-02-20,West Bengal,8409392.0,, +2021-02-21,West Bengal,8429395.0,, +2021-02-22,West Bengal,8444507.0,, +2021-02-23,West Bengal,8462809.0,, +2021-02-24,West Bengal,8483021.0,, +2021-02-25,West Bengal,8503417.0,, +2021-02-26,West Bengal,8523501.0,, +2021-02-27,West Bengal,8543514.0,, +2021-02-28,West Bengal,8563278.0,, +2021-03-01,West Bengal,8579292.0,, +2021-03-02,West Bengal,8598257.0,, +2021-03-03,West Bengal,8618587.0,, +2021-03-04,West Bengal,8638078.0,, +2021-03-05,West Bengal,8658929.0,, +2021-03-06,West Bengal,8678594.0,, +2021-03-07,West Bengal,8698853.0,, +2021-03-08,West Bengal,8713265.0,, +2021-03-09,West Bengal,8730503.0,, +2021-03-10,West Bengal,8748775.0,, +2021-03-11,West Bengal,8768585.0,, +2021-03-12,West Bengal,8787961.0,, +2021-03-13,West Bengal,8805796.0,, +2021-03-14,West Bengal,8826974.0,, +2021-03-15,West Bengal,8840344.0,, +2021-03-16,West Bengal,8857386.0,, +2021-03-17,West Bengal,8875277.0,, +2021-03-18,West Bengal,8894786.0,, +2021-03-19,West Bengal,8915211.0,, +2021-03-20,West Bengal,8937990.0,, +2021-03-21,West Bengal,8958655.0,, +2021-03-22,West Bengal,8974663.0,, +2021-03-23,West Bengal,8992906.0,, +2021-03-24,West Bengal,9015071.0,, +2021-03-25,West Bengal,9038085.0,, +2021-03-26,West Bengal,9062119.0,, +2021-03-27,West Bengal,9086532.0,, +2021-03-28,West Bengal,9113077.0,, +2021-03-29,West Bengal,9131193.0,, +2021-03-30,West Bengal,9149062.0,, +2021-03-31,West Bengal,9172599.0,, +2021-04-01,West Bengal,9198365.0,, +2021-04-02,West Bengal,9225351.0,, +2021-04-03,West Bengal,9251465.0,, +2021-04-04,West Bengal,9278233.0,, +2021-04-05,West Bengal,9304407.0,, +2021-04-06,West Bengal,9333801.0,, +2021-04-07,West Bengal,9363195.0,, +2021-04-08,West Bengal,9396694.0,, +2021-04-09,West Bengal,9432811.0,, +2021-04-10,West Bengal,9469676.0,, +2021-04-11,West Bengal,9510048.0,, +2021-04-12,West Bengal,9547164.0,, +2021-04-13,West Bengal,9589378.0,, +2021-04-14,West Bengal,9632841.0,, +2021-04-15,West Bengal,9674962.0,, +2021-04-16,West Bengal,9715115.0,, +2021-04-17,West Bengal,9762086.0,, +2021-04-18,West Bengal,9808160.0,, +2021-04-19,West Bengal,9850278.0,, +2021-04-20,West Bengal,9900322.0,, +2021-04-21,West Bengal,9950336.0,, +2021-04-22,West Bengal,10003490.0,, +2021-04-23,West Bengal,10056136.0,, +2021-04-24,West Bengal,10111196.0,, +2021-04-25,West Bengal,10166796.0,, +2021-04-26,West Bengal,10215358.0,, +2021-04-27,West Bengal,10270645.0,, +2021-04-28,West Bengal,10325581.0,, +2021-04-29,West Bengal,10379305.0,, +2021-04-30,West Bengal,10432553.0,, +2021-05-01,West Bengal,10488850.0,, +2021-05-02,West Bengal,10545059.0,, +2021-05-03,West Bengal,10600346.0,, +2021-05-04,West Bengal,10658094.0,, +2021-05-05,West Bengal,10717613.0,, +2021-05-06,West Bengal,10777718.0,, +2021-05-07,West Bengal,10842269.0,, +2021-05-08,West Bengal,10905646.0,, +2021-05-09,West Bengal,10968741.0,, +2021-05-10,West Bengal,11030927.0,, +2021-05-11,West Bengal,11099069.0,, +2021-05-12,West Bengal,11168943.0,, +2021-05-13,West Bengal,11239416.0,, +2021-05-14,West Bengal,11309467.0,, +2021-05-15,West Bengal,11376030.0,, +2021-05-16,West Bengal,11440579.0,, +2021-05-17,West Bengal,11500373.0,, +2021-05-18,West Bengal,11567999.0,, +2021-05-19,West Bengal,11638132.0,, +2021-05-20,West Bengal,11708770.0,, +2021-05-21,West Bengal,11786397.0,, +2021-05-22,West Bengal,11856416.0,, +2021-05-23,West Bengal,11925561.0,, +2021-05-24,West Bengal,11991849.0,, +2021-05-25,West Bengal,12057972.0,, +2021-05-26,West Bengal,12121948.0,, +2021-05-27,West Bengal,12179113.0,, +2021-05-28,West Bengal,12238301.0,, +2021-05-29,West Bengal,12301819.0,, +2021-05-30,West Bengal,12372134.0,, +2021-05-31,West Bengal,12430977.0,, +2021-06-01,West Bengal,12496018.0,, +2021-06-02,West Bengal,12571179.0,, +2021-06-03,West Bengal,12645747.0,, +2021-06-04,West Bengal,12716953.0,, +2021-06-05,West Bengal,12789625.0,, +2021-06-06,West Bengal,12859678.0,, +2021-06-07,West Bengal,12919787.0,, diff --git a/Module 2/Tidyverse.Rmd b/Module 2/Tidyverse.Rmd new file mode 100644 index 00000000..31a2c756 --- /dev/null +++ b/Module 2/Tidyverse.Rmd @@ -0,0 +1,207 @@ +--- +title: "Working with Packages -- Tidyverse" +output: html_notebook +--- + +This notebook aims to explain installing and working with tidyverse packages with some example functions implemented on data frames. Have fun! + +### What's a package in R? + +> In R, the fundamental unit of shareable code is the package. A package bundles together code, data, documentation, and tests, and is easy to share with others. - [Chapter 1: Introduction, R packages (2nd edition)](https://r-pkgs.org/Introduction.html) + +If you need to use a package, you need to first download it using `install.packages('package_name')` and then load the package using `library(package_name)`. This makes sure the installed package is fetched from **C**omprehensive **R** **A**rchive **N**etwork, or [**CRAN**](https://cran.r-project.org). + +*Q1. How would you install a package from a GitHub repository?* + +### Handling data using base R functions + +```{r} +# Importing covid testing data +covid_testdata <- read.csv('StatewiseTestingDetails.csv') +``` + +```{r} +# Using head function to view first few rows of the data +head(covid_testdata) +``` + +```{r} +# Using nrow() and ncol() base R functions to view the number of rows and columns for the data +nrow(covid_testdata) +ncol(covid_testdata) +``` + +*Q2. How would you check the number of `NA` rows in the `Negative` column?* + +```{r Q2} +sum(is.na(covid_testdata$Negative)) +``` + +### [Tidyverse package](https://www.tidyverse.org) + +Tidyverse package contains a list of packages useful for working with data. + +```{r} +# install.packages("tidyverse") +library(tidyverse) +``` + +We are going to use `tibble` package from `tidyverse`: \`tibble is a modern package to work with data frames in a better way than base R functions. + +```{r} +# converting the data to tibble +covid_data <- as_tibble(covid_testdata) +covid_data +``` + +We saw here that using *tibble* package made things easier: we had to separately use base R functions such as *head*, *nrow* and *ncol* functions to get the necessary information from our data frame, but these features are by default shown by *as_tibble*. + +So, you might ask how could I directly read a file as a tibble? Easy: all you have to do is use read_csv (instead of read.csv) + +```{r} +covid_data <- read_csv('StatewiseTestingDetails.csv') +covid_data +``` + +Now we will look at another tidyverse package, [**dplyr**](https://dplyr.tidyverse.org): it is used for editing tibbles. + +```{r} +# library(dplyr) +``` + +We will look at `filter` and `select` functions from the dplyr package: + +> `filter` function works on rows e.g., if we want to reduce our data only to the days when there were more than 5000 covid positive cases, we can do that using: + +```{r} +filter(covid_data, Positive > 5000) +``` + +Let's try `filter` to view data only for the state of Uttarakhand: + +```{r} +filter(covid_data, State == 'Uttarakhand') +``` + +```{r} +filter(covid_data, State == 'Uttarakhand' & Positive > 5000) +``` + +> `select` function is used to select columns e.g., if we just want to view the states and the total Samples collected + +```{r} +select(covid_data, State, TotalSamples) +select(covid_data, c(State, TotalSamples)) +``` + +If we want to view all columns other than the column `Negative`, we can use '-' minus to eliminate that column: + +```{r} +select(covid_data, -Negative) +``` + +Or you can select a few contiguous coloumns using `:` operator: + +```{r} +select(covid_data, State:Positive) +``` + +> `rename` can be used to easily rename columns with an argument suggesting that *new_column_name* = *old_column_name*. + +```{r} +rename(covid_data, Neg = Negative) +covid_data +``` + +*Q3. Oops, what did go wrong here? Why can't we see the column name changed?* + +> `mutate` can be used to edit/manipulate the content of the tibble. + +Let's say if we want the proportion of positive cases, we can use `mutate` as shown below: + +```{r} +newdata <- mutate(covid_data, prop = Positive/TotalSamples) +newdata +``` + +*Q4. Can you add a new column in the tibble without using `mutate`? If you can, why do you think we'll still need `mutate` for editing tibble?* + +> `arrange` function from dplyr package is used to arrange tibble data in an order. + +Let's arrange rows in the ascending order of `Date`. + +```{r} +arrange(covid_data, Date) +``` + +By looking at the output of the above code, it seems like `arrange` function sorts the column in an ascending order. *Q5. How will you confirm that the default sorting order of `arrange` function?* + +Let's arrange the rows in the descending order of number of positive cases: + +```{r} +arrange(covid_data, desc(Positive)) +``` + +### Writing and reading files + +Now you may want to save this modified file for future use. Make sure you have saved the changes made in the file by using the assignment operator. + +To save this file, you can simply use the write command: + +```{r} +write.csv(covid_data, file= "covid_data_copy.csv") +``` + +You may then later want to read the file into your workspace. For this you can use the read command. + +```{r} +covid_data <- read.csv(file= "covid_data_copy.csv") +``` + +To find your current working directory and see the files in the directory: + +```{r} +getwd() #current directory +list.files() # list all files in the directory +``` + +### What's in a package for you? + +> But packages are useful even if you never share your code. As Hilary Parker says in her [introduction to packages](https://hilaryparker.com/2014/04/29/writing-an-r-package-from-scratch/): "Seriously, it doesn't have to be about sharing your code (although that is an added benefit!). It is about saving yourself time." Organising code in a package makes your life easier because packages come with conventions. For example, you put R code in `R/`, you put tests in `tests/` and you put data in `data/`... - [Chapter 1: Introduction, R packages (2nd edition)](https://r-pkgs.org/Introduction.html) + +### The pipe operator, `%>%`: + +Imagine an ordered set of manipulations you would want to do on your data frame stored in the current work space as a tibble. Would you really like to save the output of each one of those manipulations as a new (or maybe the same) variable? May be not. The pipe operator `%>%` helps you to do such a one-shot ordered manipulation. + +Let's directly take a look at an example: + +```{r} +covid_data %>% + filter(State == 'Mizoram') +``` + +Whoa! It seems like `%>%` (referred as pipe operator) connects or pours the tibble to the function as an input. + +```{r} +covid_data %>% + filter(State == "Mizoram") %>% + select(Date, Positive) +``` + +You can use the assignment operator to store the *product* of these manipulations: + +```{r} +covid_data %>% + filter(State == "Mizoram") %>% + select(Date, Positive) -> + new_df +``` + +*Q6. Sometimes, it's better to use the variable name of the product in the first line of code chunk in which `%>%` is used multiple times. How would you do that?* + +### References: + +- [What are the differences between "=" and "\<-" assignment operators?](https://stackoverflow.com/questions/1741820/what-are-the-differences-between-and-assignment-operators) +- [Understanding basic data types in R](https://resbaz.github.io/2014-r-materials/lessons/01-intro_r/data-structures.html) +- [Tidyverse](https://www.tidyverse.org) +- [Statistics from Linguists: An Introduction Using R](https://appliedstatisticsforlinguists.org/bwinter_stats_proofs.pdf) diff --git a/Module 2/Tidyverse.nb.html b/Module 2/Tidyverse.nb.html new file mode 100644 index 00000000..df1af17e --- /dev/null +++ b/Module 2/Tidyverse.nb.html @@ -0,0 +1,2309 @@ + + + + + + + + + + + + + +Working with Packages – Tidyverse + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + +

    This notebook aims to explain installing and working with tidyverse +packages with some example functions implemented on data frames. Have +fun!

    +
    +

    What’s a package in R?

    +
    +

    In R, the fundamental unit of shareable code is the package. A +package bundles together code, data, documentation, and tests, and is +easy to share with others. - Chapter 1: Introduction, R +packages (2nd edition)

    +
    +

    If you need to use a package, you need to first download it using +install.packages('package_name') and then load the package +using library(package_name). This makes sure the installed +package is fetched from Comprehensive +R Archive Network, or +CRAN.

    +

    Q1. How would you install a package from a GitHub +repository?

    +
    +
    +

    Handling data using base R functions

    + + + +
    # Importing covid testing data 
    +covid_testdata <- read.csv('StatewiseTestingDetails.csv')
    + + + + + + +
    # Using head function to view first few rows of the data
    +head(covid_testdata)
    + + +
    + +
    + + + + + + +
    # Using nrow()  and ncol() base R functions to view the number of rows and columns for the data
    +nrow(covid_testdata)
    + + +
    [1] 14098
    + + +
    ncol(covid_testdata)
    + + +
    [1] 5
    + + + +

    Q2. How would you check the number of NA rows in the +Negative column?

    + + + +
    sum(is.na(covid_testdata$Negative))
    + + +
    [1] 7751
    + + + +
    +
    +

    Tidyverse package

    +

    Tidyverse package contains a list of packages useful for working with +data.

    + + + +
    # install.packages("tidyverse")
    +library(tidyverse)
    + + + +

    We are going to use tibble package from +tidyverse: `tibble is a modern package to work with data +frames in a better way than base R functions.

    + + + +
    # converting the data to tibble
    +covid_data <- as_tibble(covid_testdata)
    +covid_data
    + + +
    + +
    + + + +

    We saw here that using tibble package made things easier: we +had to separately use base R functions such as head, +nrow and ncol functions to get the necessary +information from our data frame, but these features are by default shown +by as_tibble.

    +

    So, you might ask how could I directly read a file as a tibble? Easy: +all you have to do is use read_csv (instead of read.csv)

    + + + +
    covid_data <- read_csv('StatewiseTestingDetails.csv')
    + + +
    Rows: 14098 Columns: 5── Column specification ──────────────────────────────────────────────────────────────────────────────────────────
    +Delimiter: ","
    +chr  (1): State
    +dbl  (3): TotalSamples, Negative, Positive
    +date (1): Date
    +ℹ Use `spec()` to retrieve the full column specification for this data.
    +ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
    + + +
    covid_data
    + + +
    + +
    + + + +

    Now we will look at another tidyverse package, dplyr: it is +used for editing tibbles.

    + + + +
    # library(dplyr)
    + + + +

    We will look at filter and select functions +from the dplyr package:

    +
    +

    filter function works on rows e.g., if we want to reduce +our data only to the days when there were more than 5000 covid positive +cases, we can do that using:

    +
    + + + +
    filter(covid_data, Positive > 5000)
    + + +
    + +
    + + + +

    Let’s try filter to view data only for the state of +Uttarakhand:

    + + + +
    filter(covid_data, State == 'Uttarakhand')
    + + +
    + +
    + + + + + + +
    filter(covid_data, State == 'Uttarakhand' & Positive > 5000)
    + + +
    + +
    + + + +
    +

    select function is used to select columns e.g., if we +just want to view the states and the total Samples collected

    +
    + + + +
    select(covid_data, State, TotalSamples)
    + + +
    + +
    + + +
    select(covid_data, c(State, TotalSamples))
    + + +
    + +
    + + + +

    If we want to view all columns other than the column +Negative, we can use ‘-’ minus to eliminate that +column:

    + + + +
    select(covid_data, -Negative)
    + + +
    + +
    + + + +

    Or you can select a few contiguous coloumns using : +operator:

    + + + +
    select(covid_data, State:Positive)
    + + +
    + +
    + + + +
    +

    rename can be used to easily rename columns with an +argument suggesting that new_column_name = +old_column_name.

    +
    + + + +
    rename(covid_data, Neg = Negative)
    + + +
    + +
    + + +
    covid_data
    + + +
    + +
    + + + +

    Q3. Oops, what did go wrong here? Why can’t we see the column +name changed?

    +
    +

    mutate can be used to edit/manipulate the content of the +tibble.

    +
    +

    Let’s say if we want the proportion of positive cases, we can use +mutate as shown below:

    + + + +
    newdata <- mutate(covid_data, prop = Positive/TotalSamples)
    +newdata
    + + +
    + +
    + + + +

    Q4. Can you add a new column in the tibble without using +mutate? If you can, why do you think we’ll still need +mutate for editing tibble?

    +
    +

    arrange function from dplyr package is used to arrange +tibble data in an order.

    +
    +

    Let’s arrange rows in the ascending order of Date.

    + + + +
    arrange(covid_data, Date)
    + + +
    + +
    + + + +

    By looking at the output of the above code, it seems like +arrange function sorts the column in an ascending order. +Q5. How will you confirm that the default sorting order of +arrange function?

    +

    Let’s arrange the rows in the descending order of number of positive +cases:

    + + + +
    arrange(covid_data, desc(Positive))
    + + +
    + +
    + + + +
    +
    +

    Writing and reading files

    +

    Now you may want to save this modified file for future use. Make sure +you have saved the changes made in the file by using the assignment +operator.

    +

    To save this file, you can simply use the write command:

    + + + +
    write.csv(covid_data, file= "covid_data_copy.csv")
    + + + +

    You may then later want to read the file into your workspace. For +this you can use the read command.

    + + + +
    covid_data <- read.csv(file= "covid_data_copy.csv")
    + + + +

    To find your current working directory and see the files in the +directory:

    + + + +
    getwd() #current directory
    + + +
    [1] "/Users/takhil/Lab-related/BSE658_chapter2"
    + + +
    list.files() # list all files in the directory
    + + +
    [1] "BSE658_Chapter1.Rmd"         "covid_data_copy.csv"         "project.Rproj"              
    +[4] "README.md"                   "StatewiseTestingDetails.csv" "Tidyverse.nb.html"          
    +[7] "Tidyverse.Rmd"               "using ggplot.Rmd"            "using-ggplot.html"          
    + + + +
    +
    +

    What’s in a package for you?

    +
    +

    But packages are useful even if you never share your code. As Hilary +Parker says in her introduction +to packages: “Seriously, it doesn’t have to be about sharing your +code (although that is an added benefit!). It is about saving yourself +time.” Organising code in a package makes your life easier because +packages come with conventions. For example, you put R code in +R/, you put tests in tests/ and you put data +in data/… - Chapter 1: Introduction, R +packages (2nd edition)

    +
    +
    +
    +

    The pipe operator, %>%:

    +

    Imagine an ordered set of manipulations you would want to do on your +data frame stored in the current work space as a tibble. Would you +really like to save the output of each one of those manipulations as a +new (or maybe the same) variable? May be not. The pipe operator +%>% helps you to do such a one-shot ordered +manipulation.

    +

    Let’s directly take a look at an example:

    + + + +
    + +
    + + + +

    Whoa! It seems like %>% (referred as pipe operator) +connects or pours the tibble to the function as an input.

    + + + +
    covid_data %>%
    +  filter(State == "Mizoram") %>%
    +  select(Date, Positive)
    + + + +

    You can use the assignment operator to store the product of +these manipulations:

    + + + +
    covid_data %>%
    +  filter(State == "Mizoram") %>%
    +  select(Date, Positive) ->
    +  new_df
    + + + +

    Q6. Sometimes, it’s better to use the variable name of the +product in the first line of code chunk in which %>% is +used multiple times. How would you do that?

    +
    + + +
    LS0tCnRpdGxlOiAiV29ya2luZyB3aXRoIFBhY2thZ2VzIC0tIFRpZHl2ZXJzZSIKb3V0cHV0OiBodG1sX25vdGVib29rCi0tLQoKVGhpcyBub3RlYm9vayBhaW1zIHRvIGV4cGxhaW4gaW5zdGFsbGluZyBhbmQgd29ya2luZyB3aXRoIHRpZHl2ZXJzZSBwYWNrYWdlcyB3aXRoIHNvbWUgZXhhbXBsZSBmdW5jdGlvbnMgaW1wbGVtZW50ZWQgb24gZGF0YSBmcmFtZXMuIEhhdmUgZnVuIQoKIyMjIFdoYXQncyBhIHBhY2thZ2UgaW4gUj8KCj4gSW4gUiwgdGhlIGZ1bmRhbWVudGFsIHVuaXQgb2Ygc2hhcmVhYmxlIGNvZGUgaXMgdGhlIHBhY2thZ2UuIEEgcGFja2FnZSBidW5kbGVzIHRvZ2V0aGVyIGNvZGUsIGRhdGEsIGRvY3VtZW50YXRpb24sIGFuZCB0ZXN0cywgYW5kIGlzIGVhc3kgdG8gc2hhcmUgd2l0aCBvdGhlcnMuIC0gW0NoYXB0ZXIgMTogSW50cm9kdWN0aW9uLCBSIHBhY2thZ2VzICgybmQgZWRpdGlvbildKGh0dHBzOi8vci1wa2dzLm9yZy9JbnRyb2R1Y3Rpb24uaHRtbCkKCklmIHlvdSBuZWVkIHRvIHVzZSBhIHBhY2thZ2UsIHlvdSBuZWVkIHRvIGZpcnN0IGRvd25sb2FkIGl0IHVzaW5nIGBpbnN0YWxsLnBhY2thZ2VzKCdwYWNrYWdlX25hbWUnKWAgYW5kIHRoZW4gbG9hZCB0aGUgcGFja2FnZSB1c2luZyBgbGlicmFyeShwYWNrYWdlX25hbWUpYC4gVGhpcyBtYWtlcyBzdXJlIHRoZSBpbnN0YWxsZWQgcGFja2FnZSBpcyBmZXRjaGVkIGZyb20gKipDKipvbXByZWhlbnNpdmUgKipSKiogKipBKipyY2hpdmUgKipOKipldHdvcmssIG9yIFsqKkNSQU4qKl0oaHR0cHM6Ly9jcmFuLnItcHJvamVjdC5vcmcpLgoKKlExLiBIb3cgd291bGQgeW91IGluc3RhbGwgYSBwYWNrYWdlIGZyb20gYSBHaXRIdWIgcmVwb3NpdG9yeT8qCgojIyMgSGFuZGxpbmcgZGF0YSB1c2luZyBiYXNlIFIgZnVuY3Rpb25zCgpgYGB7cn0KIyBJbXBvcnRpbmcgY292aWQgdGVzdGluZyBkYXRhIApjb3ZpZF90ZXN0ZGF0YSA8LSByZWFkLmNzdignU3RhdGV3aXNlVGVzdGluZ0RldGFpbHMuY3N2JykKYGBgCgpgYGB7cn0KIyBVc2luZyBoZWFkIGZ1bmN0aW9uIHRvIHZpZXcgZmlyc3QgZmV3IHJvd3Mgb2YgdGhlIGRhdGEKaGVhZChjb3ZpZF90ZXN0ZGF0YSkKYGBgCgpgYGB7cn0KIyBVc2luZyBucm93KCkgIGFuZCBuY29sKCkgYmFzZSBSIGZ1bmN0aW9ucyB0byB2aWV3IHRoZSBudW1iZXIgb2Ygcm93cyBhbmQgY29sdW1ucyBmb3IgdGhlIGRhdGEKbnJvdyhjb3ZpZF90ZXN0ZGF0YSkKbmNvbChjb3ZpZF90ZXN0ZGF0YSkKYGBgCgoqUTIuIEhvdyB3b3VsZCB5b3UgY2hlY2sgdGhlIG51bWJlciBvZiBgTkFgIHJvd3MgaW4gdGhlIGBOZWdhdGl2ZWAgY29sdW1uPyoKCmBgYHtyIFEyfQpzdW0oaXMubmEoY292aWRfdGVzdGRhdGEkTmVnYXRpdmUpKQpgYGAKCiMjIyBbVGlkeXZlcnNlIHBhY2thZ2VdKGh0dHBzOi8vd3d3LnRpZHl2ZXJzZS5vcmcpCgpUaWR5dmVyc2UgcGFja2FnZSBjb250YWlucyBhIGxpc3Qgb2YgcGFja2FnZXMgdXNlZnVsIGZvciB3b3JraW5nIHdpdGggZGF0YS4KCmBgYHtyfQojIGluc3RhbGwucGFja2FnZXMoInRpZHl2ZXJzZSIpCmxpYnJhcnkodGlkeXZlcnNlKQpgYGAKCldlIGFyZSBnb2luZyB0byB1c2UgYHRpYmJsZWAgcGFja2FnZSBmcm9tIGB0aWR5dmVyc2VgOiBcYHRpYmJsZSBpcyBhIG1vZGVybiBwYWNrYWdlIHRvIHdvcmsgd2l0aCBkYXRhIGZyYW1lcyBpbiBhIGJldHRlciB3YXkgdGhhbiBiYXNlIFIgZnVuY3Rpb25zLgoKYGBge3J9CiMgY29udmVydGluZyB0aGUgZGF0YSB0byB0aWJibGUKY292aWRfZGF0YSA8LSBhc190aWJibGUoY292aWRfdGVzdGRhdGEpCmNvdmlkX2RhdGEKYGBgCgpXZSBzYXcgaGVyZSB0aGF0IHVzaW5nICp0aWJibGUqIHBhY2thZ2UgbWFkZSB0aGluZ3MgZWFzaWVyOiB3ZSBoYWQgdG8gc2VwYXJhdGVseSB1c2UgYmFzZSBSIGZ1bmN0aW9ucyBzdWNoIGFzICpoZWFkKiwgKm5yb3cqIGFuZCAqbmNvbCogZnVuY3Rpb25zIHRvIGdldCB0aGUgbmVjZXNzYXJ5IGluZm9ybWF0aW9uIGZyb20gb3VyIGRhdGEgZnJhbWUsIGJ1dCB0aGVzZSBmZWF0dXJlcyBhcmUgYnkgZGVmYXVsdCBzaG93biBieSAqYXNfdGliYmxlKi4KClNvLCB5b3UgbWlnaHQgYXNrIGhvdyBjb3VsZCBJIGRpcmVjdGx5IHJlYWQgYSBmaWxlIGFzIGEgdGliYmxlPyBFYXN5OiBhbGwgeW91IGhhdmUgdG8gZG8gaXMgdXNlIHJlYWRfY3N2IChpbnN0ZWFkIG9mIHJlYWQuY3N2KQoKYGBge3J9CmNvdmlkX2RhdGEgPC0gcmVhZF9jc3YoJ1N0YXRld2lzZVRlc3RpbmdEZXRhaWxzLmNzdicpCmNvdmlkX2RhdGEKYGBgCgpOb3cgd2Ugd2lsbCBsb29rIGF0IGFub3RoZXIgdGlkeXZlcnNlIHBhY2thZ2UsIFsqKmRwbHlyKipdKGh0dHBzOi8vZHBseXIudGlkeXZlcnNlLm9yZyk6IGl0IGlzIHVzZWQgZm9yIGVkaXRpbmcgdGliYmxlcy4KCmBgYHtyfQojIGxpYnJhcnkoZHBseXIpCmBgYAoKV2Ugd2lsbCBsb29rIGF0IGBmaWx0ZXJgIGFuZCBgc2VsZWN0YCBmdW5jdGlvbnMgZnJvbSB0aGUgZHBseXIgcGFja2FnZToKCj4gYGZpbHRlcmAgZnVuY3Rpb24gd29ya3Mgb24gcm93cyBlLmcuLCBpZiB3ZSB3YW50IHRvIHJlZHVjZSBvdXIgZGF0YSBvbmx5IHRvIHRoZSBkYXlzIHdoZW4gdGhlcmUgd2VyZSBtb3JlIHRoYW4gNTAwMCBjb3ZpZCBwb3NpdGl2ZSBjYXNlcywgd2UgY2FuIGRvIHRoYXQgdXNpbmc6CgpgYGB7cn0KZmlsdGVyKGNvdmlkX2RhdGEsIFBvc2l0aXZlID4gNTAwMCkKYGBgCgpMZXQncyB0cnkgYGZpbHRlcmAgdG8gdmlldyBkYXRhIG9ubHkgZm9yIHRoZSBzdGF0ZSBvZiBVdHRhcmFraGFuZDoKCmBgYHtyfQpmaWx0ZXIoY292aWRfZGF0YSwgU3RhdGUgPT0gJ1V0dGFyYWtoYW5kJykKYGBgCgpgYGB7cn0KZmlsdGVyKGNvdmlkX2RhdGEsIFN0YXRlID09ICdVdHRhcmFraGFuZCcgJiBQb3NpdGl2ZSA+IDUwMDApCmBgYAoKPiBgc2VsZWN0YCBmdW5jdGlvbiBpcyB1c2VkIHRvIHNlbGVjdCBjb2x1bW5zIGUuZy4sIGlmIHdlIGp1c3Qgd2FudCB0byB2aWV3IHRoZSBzdGF0ZXMgYW5kIHRoZSB0b3RhbCBTYW1wbGVzIGNvbGxlY3RlZAoKYGBge3J9CnNlbGVjdChjb3ZpZF9kYXRhLCBTdGF0ZSwgVG90YWxTYW1wbGVzKQpzZWxlY3QoY292aWRfZGF0YSwgYyhTdGF0ZSwgVG90YWxTYW1wbGVzKSkKYGBgCgpJZiB3ZSB3YW50IHRvIHZpZXcgYWxsIGNvbHVtbnMgb3RoZXIgdGhhbiB0aGUgY29sdW1uIGBOZWdhdGl2ZWAsIHdlIGNhbiB1c2UgJy0nIG1pbnVzIHRvIGVsaW1pbmF0ZSB0aGF0IGNvbHVtbjoKCmBgYHtyfQpzZWxlY3QoY292aWRfZGF0YSwgLU5lZ2F0aXZlKQpgYGAKCk9yIHlvdSBjYW4gc2VsZWN0IGEgZmV3IGNvbnRpZ3VvdXMgY29sb3VtbnMgdXNpbmcgYDpgIG9wZXJhdG9yOgoKYGBge3J9CnNlbGVjdChjb3ZpZF9kYXRhLCBTdGF0ZTpQb3NpdGl2ZSkKYGBgCgo+IGByZW5hbWVgIGNhbiBiZSB1c2VkIHRvIGVhc2lseSByZW5hbWUgY29sdW1ucyB3aXRoIGFuIGFyZ3VtZW50IHN1Z2dlc3RpbmcgdGhhdCAqbmV3X2NvbHVtbl9uYW1lKiA9ICpvbGRfY29sdW1uX25hbWUqLgoKYGBge3J9CnJlbmFtZShjb3ZpZF9kYXRhLCBOZWcgPSBOZWdhdGl2ZSkKY292aWRfZGF0YQpgYGAKCipRMy4gT29wcywgd2hhdCBkaWQgZ28gd3JvbmcgaGVyZT8gV2h5IGNhbid0IHdlIHNlZSB0aGUgY29sdW1uIG5hbWUgY2hhbmdlZD8qCgo+IGBtdXRhdGVgIGNhbiBiZSB1c2VkIHRvIGVkaXQvbWFuaXB1bGF0ZSB0aGUgY29udGVudCBvZiB0aGUgdGliYmxlLgoKTGV0J3Mgc2F5IGlmIHdlIHdhbnQgdGhlIHByb3BvcnRpb24gb2YgcG9zaXRpdmUgY2FzZXMsIHdlIGNhbiB1c2UgYG11dGF0ZWAgYXMgc2hvd24gYmVsb3c6CgpgYGB7cn0KbmV3ZGF0YSA8LSBtdXRhdGUoY292aWRfZGF0YSwgcHJvcCA9IFBvc2l0aXZlL1RvdGFsU2FtcGxlcykKbmV3ZGF0YQpgYGAKCipRNC4gQ2FuIHlvdSBhZGQgYSBuZXcgY29sdW1uIGluIHRoZSB0aWJibGUgd2l0aG91dCB1c2luZyBgbXV0YXRlYD8gSWYgeW91IGNhbiwgd2h5IGRvIHlvdSB0aGluayB3ZSdsbCBzdGlsbCBuZWVkIGBtdXRhdGVgIGZvciBlZGl0aW5nIHRpYmJsZT8qCgo+IGBhcnJhbmdlYCBmdW5jdGlvbiBmcm9tIGRwbHlyIHBhY2thZ2UgaXMgdXNlZCB0byBhcnJhbmdlIHRpYmJsZSBkYXRhIGluIGFuIG9yZGVyLgoKTGV0J3MgYXJyYW5nZSByb3dzIGluIHRoZSBhc2NlbmRpbmcgb3JkZXIgb2YgYERhdGVgLgoKYGBge3J9CmFycmFuZ2UoY292aWRfZGF0YSwgRGF0ZSkKYGBgCgpCeSBsb29raW5nIGF0IHRoZSBvdXRwdXQgb2YgdGhlIGFib3ZlIGNvZGUsIGl0IHNlZW1zIGxpa2UgYGFycmFuZ2VgIGZ1bmN0aW9uIHNvcnRzIHRoZSBjb2x1bW4gaW4gYW4gYXNjZW5kaW5nIG9yZGVyLiAqUTUuIEhvdyB3aWxsIHlvdSBjb25maXJtIHRoYXQgdGhlIGRlZmF1bHQgc29ydGluZyBvcmRlciBvZiBgYXJyYW5nZWAgZnVuY3Rpb24/KgoKTGV0J3MgYXJyYW5nZSB0aGUgcm93cyBpbiB0aGUgZGVzY2VuZGluZyBvcmRlciBvZiBudW1iZXIgb2YgcG9zaXRpdmUgY2FzZXM6CgpgYGB7cn0KYXJyYW5nZShjb3ZpZF9kYXRhLCBkZXNjKFBvc2l0aXZlKSkKYGBgCgojIyMgV3JpdGluZyBhbmQgcmVhZGluZyBmaWxlcwoKTm93IHlvdSBtYXkgd2FudCB0byBzYXZlIHRoaXMgbW9kaWZpZWQgZmlsZSBmb3IgZnV0dXJlIHVzZS4gTWFrZSBzdXJlIHlvdSBoYXZlIHNhdmVkIHRoZSBjaGFuZ2VzIG1hZGUgaW4gdGhlIGZpbGUgYnkgdXNpbmcgdGhlIGFzc2lnbm1lbnQgb3BlcmF0b3IuCgpUbyBzYXZlIHRoaXMgZmlsZSwgeW91IGNhbiBzaW1wbHkgdXNlIHRoZSB3cml0ZSBjb21tYW5kOgoKYGBge3J9CndyaXRlLmNzdihjb3ZpZF9kYXRhLCBmaWxlPSAiY292aWRfZGF0YV9jb3B5LmNzdiIpCmBgYAoKWW91IG1heSB0aGVuIGxhdGVyIHdhbnQgdG8gcmVhZCB0aGUgZmlsZSBpbnRvIHlvdXIgd29ya3NwYWNlLiBGb3IgdGhpcyB5b3UgY2FuIHVzZSB0aGUgcmVhZCBjb21tYW5kLgoKYGBge3J9CmNvdmlkX2RhdGEgPC0gcmVhZC5jc3YoZmlsZT0gImNvdmlkX2RhdGFfY29weS5jc3YiKQpgYGAKClRvIGZpbmQgeW91ciBjdXJyZW50IHdvcmtpbmcgZGlyZWN0b3J5IGFuZCBzZWUgdGhlIGZpbGVzIGluIHRoZSBkaXJlY3Rvcnk6CgpgYGB7cn0KZ2V0d2QoKSAjY3VycmVudCBkaXJlY3RvcnkKbGlzdC5maWxlcygpICMgbGlzdCBhbGwgZmlsZXMgaW4gdGhlIGRpcmVjdG9yeQpgYGAKCiMjIyBXaGF0J3MgaW4gYSBwYWNrYWdlIGZvciB5b3U/Cgo+IEJ1dCBwYWNrYWdlcyBhcmUgdXNlZnVsIGV2ZW4gaWYgeW91IG5ldmVyIHNoYXJlIHlvdXIgY29kZS4gQXMgSGlsYXJ5IFBhcmtlciBzYXlzIGluIGhlciBbaW50cm9kdWN0aW9uIHRvIHBhY2thZ2VzXShodHRwczovL2hpbGFyeXBhcmtlci5jb20vMjAxNC8wNC8yOS93cml0aW5nLWFuLXItcGFja2FnZS1mcm9tLXNjcmF0Y2gvKTogIlNlcmlvdXNseSwgaXQgZG9lc24ndCBoYXZlIHRvIGJlIGFib3V0IHNoYXJpbmcgeW91ciBjb2RlIChhbHRob3VnaCB0aGF0IGlzIGFuIGFkZGVkIGJlbmVmaXQhKS4gSXQgaXMgYWJvdXQgc2F2aW5nIHlvdXJzZWxmIHRpbWUuIiBPcmdhbmlzaW5nIGNvZGUgaW4gYSBwYWNrYWdlIG1ha2VzIHlvdXIgbGlmZSBlYXNpZXIgYmVjYXVzZSBwYWNrYWdlcyBjb21lIHdpdGggY29udmVudGlvbnMuIEZvciBleGFtcGxlLCB5b3UgcHV0IFIgY29kZSBpbiBgUi9gLCB5b3UgcHV0IHRlc3RzIGluIGB0ZXN0cy9gIGFuZCB5b3UgcHV0IGRhdGEgaW4gYGRhdGEvYC4uLiAtIFtDaGFwdGVyIDE6IEludHJvZHVjdGlvbiwgUiBwYWNrYWdlcyAoMm5kIGVkaXRpb24pXShodHRwczovL3ItcGtncy5vcmcvSW50cm9kdWN0aW9uLmh0bWwpCgojIyMgVGhlIHBpcGUgb3BlcmF0b3IsIGAlPiVgOgoKSW1hZ2luZSBhbiBvcmRlcmVkIHNldCBvZiBtYW5pcHVsYXRpb25zIHlvdSB3b3VsZCB3YW50IHRvIGRvIG9uIHlvdXIgZGF0YSBmcmFtZSBzdG9yZWQgaW4gdGhlIGN1cnJlbnQgd29yayBzcGFjZSBhcyBhIHRpYmJsZS4gV291bGQgeW91IHJlYWxseSBsaWtlIHRvIHNhdmUgdGhlIG91dHB1dCBvZiBlYWNoIG9uZSBvZiB0aG9zZSBtYW5pcHVsYXRpb25zIGFzIGEgbmV3IChvciBtYXliZSB0aGUgc2FtZSkgdmFyaWFibGU/IE1heSBiZSBub3QuIFRoZSBwaXBlIG9wZXJhdG9yIGAlPiVgIGhlbHBzIHlvdSB0byBkbyBzdWNoIGEgb25lLXNob3Qgb3JkZXJlZCBtYW5pcHVsYXRpb24uCgpMZXQncyBkaXJlY3RseSB0YWtlIGEgbG9vayBhdCBhbiBleGFtcGxlOgoKYGBge3J9CmNvdmlkX2RhdGEgJT4lCiAgZmlsdGVyKFN0YXRlID09ICdNaXpvcmFtJykKYGBgCgpXaG9hISBJdCBzZWVtcyBsaWtlIGAlPiVgIChyZWZlcnJlZCBhcyBwaXBlIG9wZXJhdG9yKSBjb25uZWN0cyBvciBwb3VycyB0aGUgdGliYmxlIHRvIHRoZSBmdW5jdGlvbiBhcyBhbiBpbnB1dC4KCmBgYHtyfQpjb3ZpZF9kYXRhICU+JQogIGZpbHRlcihTdGF0ZSA9PSAiTWl6b3JhbSIpICU+JQogIHNlbGVjdChEYXRlLCBQb3NpdGl2ZSkKYGBgCgpZb3UgY2FuIHVzZSB0aGUgYXNzaWdubWVudCBvcGVyYXRvciB0byBzdG9yZSB0aGUgKnByb2R1Y3QqIG9mIHRoZXNlIG1hbmlwdWxhdGlvbnM6CgpgYGB7cn0KY292aWRfZGF0YSAlPiUKICBmaWx0ZXIoU3RhdGUgPT0gIk1pem9yYW0iKSAlPiUKICBzZWxlY3QoRGF0ZSwgUG9zaXRpdmUpIC0+CiAgbmV3X2RmCmBgYAoKKlE2LiBTb21ldGltZXMsIGl0J3MgYmV0dGVyIHRvIHVzZSB0aGUgdmFyaWFibGUgbmFtZSBvZiB0aGUgcHJvZHVjdCBpbiB0aGUgZmlyc3QgbGluZSBvZiBjb2RlIGNodW5rIGluIHdoaWNoIGAlPiVgIGlzIHVzZWQgbXVsdGlwbGUgdGltZXMuIEhvdyB3b3VsZCB5b3UgZG8gdGhhdD8qCgojIyMgUmVmZXJlbmNlczoKCi0gICBbV2hhdCBhcmUgdGhlIGRpZmZlcmVuY2VzIGJldHdlZW4gIj0iIGFuZCAiXDwtIiBhc3NpZ25tZW50IG9wZXJhdG9ycz9dKGh0dHBzOi8vc3RhY2tvdmVyZmxvdy5jb20vcXVlc3Rpb25zLzE3NDE4MjAvd2hhdC1hcmUtdGhlLWRpZmZlcmVuY2VzLWJldHdlZW4tYW5kLWFzc2lnbm1lbnQtb3BlcmF0b3JzKQotICAgW1VuZGVyc3RhbmRpbmcgYmFzaWMgZGF0YSB0eXBlcyBpbiBSXShodHRwczovL3Jlc2Jhei5naXRodWIuaW8vMjAxNC1yLW1hdGVyaWFscy9sZXNzb25zLzAxLWludHJvX3IvZGF0YS1zdHJ1Y3R1cmVzLmh0bWwpCi0gICBbVGlkeXZlcnNlXShodHRwczovL3d3dy50aWR5dmVyc2Uub3JnKQotICAgW1N0YXRpc3RpY3MgZnJvbSBMaW5ndWlzdHM6IEFuIEludHJvZHVjdGlvbiBVc2luZyBSXShodHRwczovL2FwcGxpZWRzdGF0aXN0aWNzZm9ybGluZ3Vpc3RzLm9yZy9id2ludGVyX3N0YXRzX3Byb29mcy5wZGYpCg==
    + + + +
    + + + + + + + + + + + + + + + + diff --git a/Module 2/project.Rproj b/Module 2/project.Rproj new file mode 100644 index 00000000..8e3c2ebc --- /dev/null +++ b/Module 2/project.Rproj @@ -0,0 +1,13 @@ +Version: 1.0 + +RestoreWorkspace: Default +SaveWorkspace: Default +AlwaysSaveHistory: Default + +EnableCodeIndexing: Yes +UseSpacesForTab: Yes +NumSpacesForTab: 2 +Encoding: UTF-8 + +RnwWeave: Sweave +LaTeX: pdfLaTeX diff --git a/Module 2/using ggplot.Rmd b/Module 2/using ggplot.Rmd new file mode 100644 index 00000000..3676edc4 --- /dev/null +++ b/Module 2/using ggplot.Rmd @@ -0,0 +1,59 @@ +--- +title: "ggplot" +output: html_document +--- + +```{r setup, include=FALSE} +knitr::opts_chunk$set(echo = TRUE) +``` +### This notebook aims to explore working with ggplot2 package, ggplot enables fast and efficient plotting. + +```{r} +# Loading the packages +library(tidyverse) +library(dplyr) +library(tibble) +library(ggplot2) +``` + + +```{r} +# Importing covid testing data using tibble read_csv function +covid_data <- read_csv('StatewiseTestingDetails.csv') +``` +```{r} +covid_data +``` +### We will use ggplot2 to view the trend in covid positive cases in delhi state +```{r} +state_data = filter(covid_data, State=='Uttarakhand') +state_data = arrange(state_data,Date) +state_data +``` +### Now that we have the data for Delhi arranged in ascending order of date, we will plot the number of cases +```{r} +ggplot(state_data) + geom_point(mapping = aes(x=Date, y=Positive)) +``` + + +```{r} +ggplot(state_data) + geom_text(mapping = aes(x=Date, y=Positive, label = Positive)) +``` +### Saving a plot +```{r} +ggsave('UK.png', width = 8, height = 6) +``` + +### Creating double plots +#### For creating double plot we need to load an additional library _gridExtra_ +#### Let's create two plots for total samples and total positive cases for a particular state + +```{r} +plot1 <- ggplot(state_data) + geom_point(mapping = aes(x=Date, y=TotalSamples)) +plot2 <- ggplot(state_data) + geom_point(mapping = aes(x=Date, y=Positive)) +library(gridExtra) +grid.arrange(plot1, plot2, ncol = 2) +``` + + + diff --git a/Module 2/using-ggplot.html b/Module 2/using-ggplot.html new file mode 100644 index 00000000..d183d0ec --- /dev/null +++ b/Module 2/using-ggplot.html @@ -0,0 +1,311 @@ + + + + + + + + + + + + + +ggplot + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + +
    +

    This notebook aims to explore working with ggplot2 package, ggplot enables fast and efficient plotting.

    +
    # Loading the packages
    +library(tidyverse)
    +
    ## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──
    +
    ## ✓ ggplot2 3.3.4     ✓ purrr   0.3.4
    +## ✓ tibble  3.1.2     ✓ dplyr   1.0.6
    +## ✓ tidyr   1.1.3     ✓ stringr 1.4.0
    +## ✓ readr   1.4.0     ✓ forcats 0.5.1
    +
    ## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
    +## x dplyr::filter() masks stats::filter()
    +## x dplyr::lag()    masks stats::lag()
    +
    library(dplyr)
    +library(tibble)
    +library(ggplot2)
    +
    # Importing covid testing data using tibble read_csv function
    +covid_data <- read_csv('../StatewiseTestingDetails.csv')
    +
    ## 
    +## ── Column specification ────────────────────────────────────────────────────────
    +## cols(
    +##   Date = col_date(format = ""),
    +##   State = col_character(),
    +##   TotalSamples = col_double(),
    +##   Negative = col_double(),
    +##   Positive = col_double()
    +## )
    +
    covid_data
    +
    ## # A tibble: 14,098 x 5
    +##    Date       State                       TotalSamples Negative Positive
    +##    <date>     <chr>                              <dbl>    <dbl>    <dbl>
    +##  1 2020-04-17 Andaman and Nicobar Islands         1403     1210       12
    +##  2 2020-04-24 Andaman and Nicobar Islands         2679       NA       27
    +##  3 2020-04-27 Andaman and Nicobar Islands         2848       NA       33
    +##  4 2020-05-01 Andaman and Nicobar Islands         3754       NA       33
    +##  5 2020-05-16 Andaman and Nicobar Islands         6677       NA       33
    +##  6 2020-05-19 Andaman and Nicobar Islands         6965       NA       33
    +##  7 2020-05-20 Andaman and Nicobar Islands         7082       NA       33
    +##  8 2020-05-21 Andaman and Nicobar Islands         7167       NA       33
    +##  9 2020-05-22 Andaman and Nicobar Islands         7263       NA       33
    +## 10 2020-05-23 Andaman and Nicobar Islands         7327       NA       33
    +## # … with 14,088 more rows
    +
    +
    +

    We will use ggplot2 to view the trend in covid positive cases in delhi state

    +
    state_data = filter(covid_data, State=='Uttarakhand')
    +state_data = arrange(state_data,Date)
    +state_data
    +
    ## # A tibble: 427 x 5
    +##    Date       State       TotalSamples Negative Positive
    +##    <date>     <chr>              <dbl>    <dbl>    <dbl>
    +##  1 2020-04-02 Uttarakhand          678      554        7
    +##  2 2020-04-07 Uttarakhand         1289     1092       32
    +##  3 2020-04-09 Uttarakhand         1531     1235       35
    +##  4 2020-04-10 Uttarakhand         1688     1320       35
    +##  5 2020-04-11 Uttarakhand         1705     1340       35
    +##  6 2020-04-12 Uttarakhand         1820     1452       35
    +##  7 2020-04-13 Uttarakhand         1998     1665       35
    +##  8 2020-04-14 Uttarakhand         2174     1838       35
    +##  9 2020-04-15 Uttarakhand         2413     2022       37
    +## 10 2020-04-16 Uttarakhand         2593     2210       37
    +## # … with 417 more rows
    +
    +
    +

    Now that we have the data for Delhi arranged in ascending order of date, we will plot the number of cases

    +
    ggplot(state_data) + geom_point(mapping = aes(x=Date, y=Positive))
    +
    ## Warning: Removed 295 rows containing missing values (geom_point).
    +

    +
    ggplot(state_data) + geom_text(mapping = aes(x=Date, y=Positive, label = Positive))
    +
    ## Warning: Removed 295 rows containing missing values (geom_text).
    +

    ### Saving a plot

    +
    ggsave('UK.png', width = 8, height = 6)
    +
    ## Warning: Removed 295 rows containing missing values (geom_text).
    +
    +
    +

    Creating double plots

    +
    +

    For creating double plot we need to load an additional library gridExtra

    +
    +
    +

    Let’s create two plots for total samples and total positive cases for a particular state

    +
    plot1 <- ggplot(state_data) + geom_point(mapping = aes(x=Date, y=TotalSamples))
    +plot2 <- ggplot(state_data) + geom_point(mapping = aes(x=Date, y=Positive))
    +library(gridExtra)
    +
    ## 
    +## Attaching package: 'gridExtra'
    +
    ## The following object is masked from 'package:dplyr':
    +## 
    +##     combine
    +
    grid.arrange(plot1, plot2, ncol = 2)
    +
    ## Warning: Removed 295 rows containing missing values (geom_point).
    +

    +
    +
    + + + + +
    + + + + + + + + + + + + + + + From a1d15e622713674ee8477c26857feef9e3ac9a19 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Fri, 18 Aug 2023 09:03:29 +0530 Subject: [PATCH 41/55] Module 6 last set of changes Done last year --- Module 6/ANOVA.Rmd | 32 + Module 6/Regression.Rmd | 2 + Module 6/linearMixedModels.Rmd | 1 - Module 6/linearMixedModels.nb.html | 118 +- Module 6/testcode.Rmd | 268 +++ Module 6/testcode.nb.html | 2429 ++++++++++++++++++++++++++++ 6 files changed, 2740 insertions(+), 110 deletions(-) create mode 100644 Module 6/testcode.Rmd create mode 100644 Module 6/testcode.nb.html diff --git a/Module 6/ANOVA.Rmd b/Module 6/ANOVA.Rmd index 0c1b8478..d9cc960c 100644 --- a/Module 6/ANOVA.Rmd +++ b/Module 6/ANOVA.Rmd @@ -329,4 +329,36 @@ summary(model.3) etaSquared( model.3 ) ``` +```{r} +data(ToothGrowth) +ToothGrowth$dose <- as.factor(ToothGrowth$dose) +head(ToothGrowth) +``` + + + +```{r} +model.3a <- aov( len ~ supp + dose + supp:dose, ToothGrowth ) +summary(model.3a) +``` + +```{r} +TukeyHSD( model.3a ) +``` + +```{r} +etaSquared( model.3a ) +``` + +```{r} +my.anova.residuals <- residuals( object = model.3a ) # extract the residuals +hist( x = my.anova.residuals ) # plot a histogram (similar to Figure @ref{fig:normalityanova}a) +qqnorm( y = my.anova.residuals ) # draw a QQ plot (similar to Figure @ref{fig:normalityanova}b) +shapiro.test( x = my.anova.residuals ) # run Shapiro-Wilk test +``` +```{r} +library(car) +leveneTest(y = len ~ dose, data = ToothGrowth) # y is a formula in this case +``` + diff --git a/Module 6/Regression.Rmd b/Module 6/Regression.Rmd index 0a9c0d3d..a55fa92b 100644 --- a/Module 6/Regression.Rmd +++ b/Module 6/Regression.Rmd @@ -201,3 +201,5 @@ AIC( M0, M1 ) anova( M0, M1 ) ``` + + diff --git a/Module 6/linearMixedModels.Rmd b/Module 6/linearMixedModels.Rmd index e401d899..8909613f 100644 --- a/Module 6/linearMixedModels.Rmd +++ b/Module 6/linearMixedModels.Rmd @@ -121,7 +121,6 @@ head(data) Convert attitude, gender, subject into factors. ```{r} data = data %>% mutate(attitude=as.factor(attitude), gender=as.factor(gender), subject=as.factor(subject)) - ``` diff --git a/Module 6/linearMixedModels.nb.html b/Module 6/linearMixedModels.nb.html index dc575050..20345add 100644 --- a/Module 6/linearMixedModels.nb.html +++ b/Module 6/linearMixedModels.nb.html @@ -2046,48 +2046,18 @@

    R Notebook

    Convert attitude, gender, subject into factors.

    - -
    data = data %>% mutate(attitude=as.factor(attitude), gender=as.factor(gender), subject=as.factor(subject))
    -
    + +
    data = data %>% mutate(attitude=as.factor(attitude), gender=as.factor(gender), subject=as.factor(subject))

    Random Intercept Models

    - -
    summary(politeness.model0)
    -
    + +
    politeness.model0 = lmer(frequency ~ attitude + (1|subject) + (1|scenario), data=data)
    +summary(politeness.model0)
    - -
    Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
    -Formula: frequency ~ attitude + (1 | subject) + (1 | scenario)
    -   Data: data
    -
    -REML criterion at convergence: 793.5
    -
    -Scaled residuals: 
    -    Min      1Q  Median      3Q     Max 
    --2.2006 -0.5817 -0.0639  0.5625  3.4385 
    -
    -Random effects:
    - Groups   Name        Variance Std.Dev.
    - scenario (Intercept)  219     14.80   
    - subject  (Intercept) 4015     63.36   
    - Residual              646     25.42   
    -Number of obs: 83, groups:  scenario, 7; subject, 6
    -
    -Fixed effects:
    -            Estimate Std. Error      df t value Pr(>|t|)    
    -(Intercept)  202.588     26.754   5.575   7.572 0.000389 ***
    -attitudepol  -19.695      5.585  70.022  -3.527 0.000748 ***
    ----
    -Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    -
    -Correlation of Fixed Effects:
    -            (Intr)
    -attitudepol -0.103
    - @@ -2096,37 +2066,6 @@

    R Notebook

    politeness.model = lmer(frequency ~ attitude + gender + (1|subject) + (1|scenario), data=data)
     summary(politeness.model)
    - -
    Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest']
    -Formula: frequency ~ attitude + gender + (1 | subject) + (1 | scenario)
    -   Data: data
    -
    -REML criterion at convergence: 775.5
    -
    -Scaled residuals: 
    -    Min      1Q  Median      3Q     Max 
    --2.2591 -0.6236 -0.0772  0.5388  3.4795 
    -
    -Random effects:
    - Groups   Name        Variance Std.Dev.
    - scenario (Intercept) 219.5    14.81   
    - subject  (Intercept) 615.6    24.81   
    - Residual             645.9    25.41   
    -Number of obs: 83, groups:  scenario, 7; subject, 6
    -
    -Fixed effects:
    -            Estimate Std. Error       df t value Pr(>|t|)    
    -(Intercept)  256.846     16.116    5.432  15.938 9.06e-06 ***
    -attitudepol  -19.721      5.584   70.054  -3.532 0.000735 ***
    -genderM     -108.516     21.013    4.007  -5.164 0.006647 ** 
    ----
    -Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    -
    -Correlation of Fixed Effects:
    -            (Intr) atttdp
    -attitudepol -0.173       
    -genderM     -0.652  0.004
    -

    Likelihood Ratio Test

    @@ -2137,59 +2076,20 @@

    R Notebook

    politeness.full = lmer(frequency ~ attitude + gender + (1|subject) + (1|scenario), data=data, REML=FALSE) anova(politeness.null, politeness.full)
    - -
    Data: data
    -Models:
    -politeness.null: frequency ~ gender + (1 | subject) + (1 | scenario)
    -politeness.full: frequency ~ attitude + gender + (1 | subject) + (1 | scenario)
    -                npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
    -politeness.null    5 816.72 828.81 -403.36   806.72                         
    -politeness.full    6 807.10 821.61 -397.55   795.10 11.618  1  0.0006532 ***
    ----
    -Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    -

    Random Slope Model

    - -
    politeness.model1 = lmer(frequency~attitude + gender + (1+attitude|subject) + (1+attitude|scenario), data = data)
    - - -
    boundary (singular) fit: see help('isSingular')
    - - -
    coef(politeness.model1)
    + +
    politeness.model1 = lmer(frequency~attitude + gender + (1+attitude|subject) + (1+attitude|scenario), data = data)
    +coef(politeness.model1)
    - -
    $scenario
    -  (Intercept) attitudepol   genderM
    -1    244.4740   -19.00296 -111.1058
    -2    261.9447   -12.87473 -111.1058
    -3    270.9290   -23.46233 -111.1058
    -4    277.0651   -15.90595 -111.1058
    -5    255.8277   -18.72597 -111.1058
    -6    247.0421   -22.37916 -111.1058
    -7    249.7042   -25.93003 -111.1058
    -
    -$subject
    -   (Intercept) attitudepol   genderM
    -F1    243.2804   -20.49940 -111.1058
    -F2    267.1173   -19.30447 -111.1058
    -F3    260.2849   -19.64697 -111.1058
    -M3    287.1024   -18.30263 -111.1058
    -M4    264.6698   -19.42716 -111.1058
    -M7    226.3911   -21.34605 -111.1058
    -
    -attr(,"class")
    -[1] "coef.mer"
    - -
    LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpMaW5lYXIgTWl4ZWQgTW9kZWxzDQpBZGFwdGVkIGZyb206IGh0dHBzOi8vY2hlbnppeHUucmJpbmQuaW8vc2xpZGVzL2xtZS9sbWVyLmh0bWwNCg0KDQpgYGB7cn0NCmxpYnJhcnkobG1lNCkNCmxpYnJhcnkobWFncml0dHIpDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkobG1lclRlc3QpDQpgYGANCg0KYGBge3J9DQpkYXRhKCJzbGVlcHN0dWR5IikNCmhlYWQoc2xlZXBzdHVkeSkNCmBgYA0KDQpQbG90dGluZyBzdWJqZWN0d2lzZSBkYXRhDQoNCmBgYHtyfQ0Kc2xlZXAyIDwtIHNsZWVwc3R1ZHkgJT4lDQogIGZpbHRlcihEYXlzID49IDIpICU+JQ0KICBtdXRhdGUoZGF5c19kZXByaXZlZCA9IERheXMgLSAyKQ0KZ2dwbG90KHNsZWVwMiwgYWVzKHggPSBkYXlzX2RlcHJpdmVkLCANCiAgICAgICAgICAgICAgICAgICB5ID0gUmVhY3Rpb24pKSArDQogIGdlb21fcG9pbnQoKSArDQogIHNjYWxlX3hfY29udGludW91cyhicmVha3MgPSAwOjcpICsNCiAgZmFjZXRfd3JhcCh+U3ViamVjdCkgKw0KICBsYWJzKHkgPSAiUmVhY3Rpb24gVGltZSIsIA0KICAgICAgIHggPSAiRGF5cyBkZXByaXZlZCBvZiBzbGVlcCAoMCA9IGJhc2VsaW5lKSIpDQpgYGANCg0KDQpDb21wbGV0ZSBQb29saW5nIG1vZGVsDQoNCg0KYGBge3J9DQpjcF9tb2RlbCA8LSBsbShSZWFjdGlvbiB+IGRheXNfZGVwcml2ZWQsIHNsZWVwMikNCnN1bW1hcnkoY3BfbW9kZWwpDQpnZ3Bsb3Qoc2xlZXAyLCBhZXMoeCA9IGRheXNfZGVwcml2ZWQsIHkgPSBSZWFjdGlvbikpICsNCiAgZ2VvbV9hYmxpbmUoaW50ZXJjZXB0ID0gY29lZihjcF9tb2RlbClbMV0sDQogICAgICAgICAgICAgIHNsb3BlID0gY29lZihjcF9tb2RlbClbMl0sDQogICAgICAgICAgICAgIGNvbG9yID0gJyNmNGNhZTInLCBzaXplID0gMS41KSArDQogIGdlb21fcG9pbnQoKSArDQogIHNjYWxlX3hfY29udGludW91cyhicmVha3MgPSAwOjcpICsNCiAgZmFjZXRfd3JhcCh+U3ViamVjdCwgbnJvdyA9IDMpICsNCiAgbGFicyh5ID0gIlJlYWN0aW9uIFRpbWUiLCANCiAgICAgICB4ID0gIkRheXMgZGVwcml2ZWQgb2Ygc2xlZXAgKDAgPSBiYXNlbGluZSkiKQ0KYGBgDQoNCk5vIFBvb2xpbmcgTW9kZWwNCg0KYGBge3J9DQpzbGVlcDIgJT4lIHB1bGwoU3ViamVjdCkgJT4lIGlzLmZhY3RvcigpDQpucF9tb2RlbCA8LSBsbShSZWFjdGlvbiB+IGRheXNfZGVwcml2ZWQgKyBTdWJqZWN0ICsgZGF5c19kZXByaXZlZDpTdWJqZWN0LA0KICAgICAgICAgICAgICAgZGF0YSA9IHNsZWVwMikNCiAgc3VtbWFyeShucF9tb2RlbCkNCmFsbF9pbnRlcmNlcHRzIDwtIGMoY29lZihucF9tb2RlbClbIihJbnRlcmNlcHQpIl0sDQogICAgICAgICAgICAgICAgICAgIGNvZWYobnBfbW9kZWwpWzM6MTldICsgY29lZihucF9tb2RlbClbIihJbnRlcmNlcHQpIl0pDQphbGxfc2xvcGVzICA8LSBjKGNvZWYobnBfbW9kZWwpWyJkYXlzX2RlcHJpdmVkIl0sDQogICAgICAgICAgICAgICAgIGNvZWYobnBfbW9kZWwpWzIwOjM2XSArIGNvZWYobnBfbW9kZWwpWyJkYXlzX2RlcHJpdmVkIl0pDQppZHMgPC0gc2xlZXAyICU+JSBwdWxsKFN1YmplY3QpICU+JSBsZXZlbHMoKSAlPiUgZmFjdG9yKCkNCm5wX2NvZWYgPC0gdGliYmxlKFN1YmplY3QgPSBpZHMsDQogICAgICAgICAgICAgICAgICBpbnRlcmNlcHQgPSBhbGxfaW50ZXJjZXB0cywNCiAgICAgICAgICAgICAgICAgIHNsb3BlID0gYWxsX3Nsb3BlcykNCmBgYA0KDQpgYGB7cn0NCmdncGxvdChzbGVlcDIsIGFlcyh4ID0gZGF5c19kZXByaXZlZCwgeSA9IFJlYWN0aW9uKSkgKw0KICBnZW9tX2FibGluZShkYXRhID0gbnBfY29lZiwNCiAgICAgICAgICAgICAgbWFwcGluZyA9IGFlcyhpbnRlcmNlcHQgPSBpbnRlcmNlcHQsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgc2xvcGUgPSBzbG9wZSksDQogICAgICAgICAgICAgIGNvbG9yID0gJyNmNGNhZTInLCBzaXplID0gMS41KSArDQogIGdlb21fcG9pbnQoKSArIHRoZW1lX2J3KCkgKw0KICBzY2FsZV94X2NvbnRpbnVvdXMoYnJlYWtzID0gMDo3KSArDQogIGZhY2V0X3dyYXAoflN1YmplY3QsIG5yb3c9MykgKw0KICBsYWJzKHkgPSAiUmVhY3Rpb24gVGltZSIsIA0KICAgICAgIHggPSAiRGF5cyBkZXByaXZlZCBvZiBzbGVlcCAoMCA9IGJhc2VsaW5lKSIpDQpgYGANCg0KUGFydGlhbCBQb29saW5nIE1vZGVsDQoNCmBgYHtyfQ0KcHBfbW9kIDwtIGxtZXIoUmVhY3Rpb24gfiBkYXlzX2RlcHJpdmVkICsgKGRheXNfZGVwcml2ZWQgfCBTdWJqZWN0KSwgc2xlZXAyKQ0Kc3VtbWFyeShwcF9tb2QpDQpuZXdkYXRhIDwtIGNyb3NzaW5nKA0KICBTdWJqZWN0ID0gc2xlZXAyICU+JSBwdWxsKFN1YmplY3QpICU+JSBsZXZlbHMoKSAlPiUgZmFjdG9yKCksDQogIGRheXNfZGVwcml2ZWQgPSAwOjcpDQpuZXdkYXRhMiA8LSBuZXdkYXRhICU+JQ0KICBtdXRhdGUoUmVhY3Rpb24gPSBwcmVkaWN0KHBwX21vZCwgbmV3ZGF0YSkpDQpgYGANCg0KDQpgYGB7cn0NCmdncGxvdChzbGVlcDIsIGFlcyh4ID0gZGF5c19kZXByaXZlZCwgeSA9IFJlYWN0aW9uKSkgKw0KICBnZW9tX2xpbmUoZGF0YSA9IG5ld2RhdGEyLA0KICAgICAgICAgICAgY29sb3IgPSAnI2Y0Y2FlMicsIHNpemUgPSAxLjUpICsNCiAgZ2VvbV9wb2ludCgpICsgdGhlbWVfYncoKSArDQogIHNjYWxlX3hfY29udGludW91cyhicmVha3MgPSAwOjcpICsNCiAgZmFjZXRfd3JhcCh+U3ViamVjdCwgbnJvdyA9IDMpICsNCiAgbGFicyh5ID0gIlJlYWN0aW9uIFRpbWUiLCANCiAgICAgICB4ID0gIkRheXMgZGVwcml2ZWQgb2Ygc2xlZXAgKDAgPSBiYXNlbGluZSkiKQ0KYGBgDQoNCiMjUmVzZWFyY2ggUXVlc3Rpb24NCldlJ3JlIGludGVyZXN0ZWQgaW4gdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHBpdGNoIGFuZCBwb2xpdGVuZXNzIChXaW50ZXIgJiBHcmF3dW5kZXIsIDIwMTIpLg0KDQpQb2xpdGVuZXNzOiBmb3JtYWwvcG9saXRlIGFuZCBpbmZvcm1hbCByZWdpc3RlciAoY2F0ZWdvcmljYWwgZmFjdG9yKQ0KbXVsdGlwbGUgbWVhc3VyZXMgcGVyIHN1YmplY3QgKGludGVyLWRlcGVuZGVudCEpDQoNCmBgYHtyfQ0KZGF0YSA9IHJlYWQuY3N2KCJodHRwOi8vd3d3LmJvZG93aW50ZXIuY29tL3R1dG9yaWFsL3BvbGl0ZW5lc3NfZGF0YS5jc3YiKQ0KaGVhZChkYXRhKQ0KYGBgDQoNCkNvbnZlcnQgYXR0aXR1ZGUsIGdlbmRlciwgc3ViamVjdCBpbnRvIGZhY3RvcnMuDQpgYGB7cn0NCmRhdGEgPSBkYXRhICU+JSBtdXRhdGUoYXR0aXR1ZGU9YXMuZmFjdG9yKGF0dGl0dWRlKSwgZ2VuZGVyPWFzLmZhY3RvcihnZW5kZXIpLCBzdWJqZWN0PWFzLmZhY3RvcihzdWJqZWN0KSkNCg0KYGBgDQoNCg0KUmFuZG9tIEludGVyY2VwdCBNb2RlbHMNCg0KYGBge3J9DQpwb2xpdGVuZXNzLm1vZGVsMCA9IGxtZXIoZnJlcXVlbmN5IH4gYXR0aXR1ZGUgKyAoMXxzdWJqZWN0KSArICgxfHNjZW5hcmlvKSwgZGF0YT1kYXRhKQ0Kc3VtbWFyeShwb2xpdGVuZXNzLm1vZGVsMCkNCmBgYA0KDQpgYGB7cn0NCnBvbGl0ZW5lc3MubW9kZWwgPSBsbWVyKGZyZXF1ZW5jeSB+IGF0dGl0dWRlICsgZ2VuZGVyICsgKDF8c3ViamVjdCkgKyAoMXxzY2VuYXJpbyksIGRhdGE9ZGF0YSkNCnN1bW1hcnkocG9saXRlbmVzcy5tb2RlbCkNCmBgYA0KTGlrZWxpaG9vZCBSYXRpbyBUZXN0DQoNCmBgYHtyfQ0KcG9saXRlbmVzcy5udWxsID0gbG1lcihmcmVxdWVuY3kgfiBnZW5kZXIgKyAoMXxzdWJqZWN0KSArICgxfHNjZW5hcmlvKSwgZGF0YT1kYXRhLCBSRU1MPUZBTFNFKQ0KcG9saXRlbmVzcy5mdWxsID0gbG1lcihmcmVxdWVuY3kgfiBhdHRpdHVkZSArIGdlbmRlciArICgxfHN1YmplY3QpICsgKDF8c2NlbmFyaW8pLCBkYXRhPWRhdGEsIFJFTUw9RkFMU0UpDQphbm92YShwb2xpdGVuZXNzLm51bGwsIHBvbGl0ZW5lc3MuZnVsbCkNCmBgYA0KDQpSYW5kb20gU2xvcGUgTW9kZWwNCg0KYGBge3J9DQpwb2xpdGVuZXNzLm1vZGVsMSA9IGxtZXIoZnJlcXVlbmN5fmF0dGl0dWRlICsgZ2VuZGVyICsgKDErYXR0aXR1ZGV8c3ViamVjdCkgKyAoMSthdHRpdHVkZXxzY2VuYXJpbyksIGRhdGEgPSBkYXRhKQ0KY29lZihwb2xpdGVuZXNzLm1vZGVsMSkNCmBgYA0KDQoNCg==
    +
    LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpMaW5lYXIgTWl4ZWQgTW9kZWxzDQpBZGFwdGVkIGZyb206IGh0dHBzOi8vY2hlbnppeHUucmJpbmQuaW8vc2xpZGVzL2xtZS9sbWVyLmh0bWwNCg0KDQpgYGB7cn0NCmxpYnJhcnkobG1lNCkNCmxpYnJhcnkobWFncml0dHIpDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkobG1lclRlc3QpDQpgYGANCg0KYGBge3J9DQpkYXRhKCJzbGVlcHN0dWR5IikNCmhlYWQoc2xlZXBzdHVkeSkNCmBgYA0KDQpQbG90dGluZyBzdWJqZWN0d2lzZSBkYXRhDQoNCmBgYHtyfQ0Kc2xlZXAyIDwtIHNsZWVwc3R1ZHkgJT4lDQogIGZpbHRlcihEYXlzID49IDIpICU+JQ0KICBtdXRhdGUoZGF5c19kZXByaXZlZCA9IERheXMgLSAyKQ0KZ2dwbG90KHNsZWVwMiwgYWVzKHggPSBkYXlzX2RlcHJpdmVkLCANCiAgICAgICAgICAgICAgICAgICB5ID0gUmVhY3Rpb24pKSArDQogIGdlb21fcG9pbnQoKSArDQogIHNjYWxlX3hfY29udGludW91cyhicmVha3MgPSAwOjcpICsNCiAgZmFjZXRfd3JhcCh+U3ViamVjdCkgKw0KICBsYWJzKHkgPSAiUmVhY3Rpb24gVGltZSIsIA0KICAgICAgIHggPSAiRGF5cyBkZXByaXZlZCBvZiBzbGVlcCAoMCA9IGJhc2VsaW5lKSIpDQpgYGANCg0KDQpDb21wbGV0ZSBQb29saW5nIG1vZGVsDQoNCg0KYGBge3J9DQpjcF9tb2RlbCA8LSBsbShSZWFjdGlvbiB+IGRheXNfZGVwcml2ZWQsIHNsZWVwMikNCnN1bW1hcnkoY3BfbW9kZWwpDQpnZ3Bsb3Qoc2xlZXAyLCBhZXMoeCA9IGRheXNfZGVwcml2ZWQsIHkgPSBSZWFjdGlvbikpICsNCiAgZ2VvbV9hYmxpbmUoaW50ZXJjZXB0ID0gY29lZihjcF9tb2RlbClbMV0sDQogICAgICAgICAgICAgIHNsb3BlID0gY29lZihjcF9tb2RlbClbMl0sDQogICAgICAgICAgICAgIGNvbG9yID0gJyNmNGNhZTInLCBzaXplID0gMS41KSArDQogIGdlb21fcG9pbnQoKSArDQogIHNjYWxlX3hfY29udGludW91cyhicmVha3MgPSAwOjcpICsNCiAgZmFjZXRfd3JhcCh+U3ViamVjdCwgbnJvdyA9IDMpICsNCiAgbGFicyh5ID0gIlJlYWN0aW9uIFRpbWUiLCANCiAgICAgICB4ID0gIkRheXMgZGVwcml2ZWQgb2Ygc2xlZXAgKDAgPSBiYXNlbGluZSkiKQ0KYGBgDQoNCk5vIFBvb2xpbmcgTW9kZWwNCg0KYGBge3J9DQpzbGVlcDIgJT4lIHB1bGwoU3ViamVjdCkgJT4lIGlzLmZhY3RvcigpDQpucF9tb2RlbCA8LSBsbShSZWFjdGlvbiB+IGRheXNfZGVwcml2ZWQgKyBTdWJqZWN0ICsgZGF5c19kZXByaXZlZDpTdWJqZWN0LA0KICAgICAgICAgICAgICAgZGF0YSA9IHNsZWVwMikNCiAgc3VtbWFyeShucF9tb2RlbCkNCmFsbF9pbnRlcmNlcHRzIDwtIGMoY29lZihucF9tb2RlbClbIihJbnRlcmNlcHQpIl0sDQogICAgICAgICAgICAgICAgICAgIGNvZWYobnBfbW9kZWwpWzM6MTldICsgY29lZihucF9tb2RlbClbIihJbnRlcmNlcHQpIl0pDQphbGxfc2xvcGVzICA8LSBjKGNvZWYobnBfbW9kZWwpWyJkYXlzX2RlcHJpdmVkIl0sDQogICAgICAgICAgICAgICAgIGNvZWYobnBfbW9kZWwpWzIwOjM2XSArIGNvZWYobnBfbW9kZWwpWyJkYXlzX2RlcHJpdmVkIl0pDQppZHMgPC0gc2xlZXAyICU+JSBwdWxsKFN1YmplY3QpICU+JSBsZXZlbHMoKSAlPiUgZmFjdG9yKCkNCm5wX2NvZWYgPC0gdGliYmxlKFN1YmplY3QgPSBpZHMsDQogICAgICAgICAgICAgICAgICBpbnRlcmNlcHQgPSBhbGxfaW50ZXJjZXB0cywNCiAgICAgICAgICAgICAgICAgIHNsb3BlID0gYWxsX3Nsb3BlcykNCmBgYA0KDQpgYGB7cn0NCmdncGxvdChzbGVlcDIsIGFlcyh4ID0gZGF5c19kZXByaXZlZCwgeSA9IFJlYWN0aW9uKSkgKw0KICBnZW9tX2FibGluZShkYXRhID0gbnBfY29lZiwNCiAgICAgICAgICAgICAgbWFwcGluZyA9IGFlcyhpbnRlcmNlcHQgPSBpbnRlcmNlcHQsDQogICAgICAgICAgICAgICAgICAgICAgICAgICAgc2xvcGUgPSBzbG9wZSksDQogICAgICAgICAgICAgIGNvbG9yID0gJyNmNGNhZTInLCBzaXplID0gMS41KSArDQogIGdlb21fcG9pbnQoKSArIHRoZW1lX2J3KCkgKw0KICBzY2FsZV94X2NvbnRpbnVvdXMoYnJlYWtzID0gMDo3KSArDQogIGZhY2V0X3dyYXAoflN1YmplY3QsIG5yb3c9MykgKw0KICBsYWJzKHkgPSAiUmVhY3Rpb24gVGltZSIsIA0KICAgICAgIHggPSAiRGF5cyBkZXByaXZlZCBvZiBzbGVlcCAoMCA9IGJhc2VsaW5lKSIpDQpgYGANCg0KUGFydGlhbCBQb29saW5nIE1vZGVsDQoNCmBgYHtyfQ0KcHBfbW9kIDwtIGxtZXIoUmVhY3Rpb24gfiBkYXlzX2RlcHJpdmVkICsgKGRheXNfZGVwcml2ZWQgfCBTdWJqZWN0KSwgc2xlZXAyKQ0Kc3VtbWFyeShwcF9tb2QpDQpuZXdkYXRhIDwtIGNyb3NzaW5nKA0KICBTdWJqZWN0ID0gc2xlZXAyICU+JSBwdWxsKFN1YmplY3QpICU+JSBsZXZlbHMoKSAlPiUgZmFjdG9yKCksDQogIGRheXNfZGVwcml2ZWQgPSAwOjcpDQpuZXdkYXRhMiA8LSBuZXdkYXRhICU+JQ0KICBtdXRhdGUoUmVhY3Rpb24gPSBwcmVkaWN0KHBwX21vZCwgbmV3ZGF0YSkpDQpgYGANCg0KDQpgYGB7cn0NCmdncGxvdChzbGVlcDIsIGFlcyh4ID0gZGF5c19kZXByaXZlZCwgeSA9IFJlYWN0aW9uKSkgKw0KICBnZW9tX2xpbmUoZGF0YSA9IG5ld2RhdGEyLA0KICAgICAgICAgICAgY29sb3IgPSAnI2Y0Y2FlMicsIHNpemUgPSAxLjUpICsNCiAgZ2VvbV9wb2ludCgpICsgdGhlbWVfYncoKSArDQogIHNjYWxlX3hfY29udGludW91cyhicmVha3MgPSAwOjcpICsNCiAgZmFjZXRfd3JhcCh+U3ViamVjdCwgbnJvdyA9IDMpICsNCiAgbGFicyh5ID0gIlJlYWN0aW9uIFRpbWUiLCANCiAgICAgICB4ID0gIkRheXMgZGVwcml2ZWQgb2Ygc2xlZXAgKDAgPSBiYXNlbGluZSkiKQ0KYGBgDQoNCiMjUmVzZWFyY2ggUXVlc3Rpb24NCldlJ3JlIGludGVyZXN0ZWQgaW4gdGhlIHJlbGF0aW9uc2hpcCBiZXR3ZWVuIHBpdGNoIGFuZCBwb2xpdGVuZXNzIChXaW50ZXIgJiBHcmF3dW5kZXIsIDIwMTIpLg0KDQpQb2xpdGVuZXNzOiBmb3JtYWwvcG9saXRlIGFuZCBpbmZvcm1hbCByZWdpc3RlciAoY2F0ZWdvcmljYWwgZmFjdG9yKQ0KbXVsdGlwbGUgbWVhc3VyZXMgcGVyIHN1YmplY3QgKGludGVyLWRlcGVuZGVudCEpDQoNCmBgYHtyfQ0KZGF0YSA9IHJlYWQuY3N2KCJodHRwOi8vd3d3LmJvZG93aW50ZXIuY29tL3R1dG9yaWFsL3BvbGl0ZW5lc3NfZGF0YS5jc3YiKQ0KaGVhZChkYXRhKQ0KYGBgDQoNCkNvbnZlcnQgYXR0aXR1ZGUsIGdlbmRlciwgc3ViamVjdCBpbnRvIGZhY3RvcnMuDQpgYGB7cn0NCmRhdGEgPSBkYXRhICU+JSBtdXRhdGUoYXR0aXR1ZGU9YXMuZmFjdG9yKGF0dGl0dWRlKSwgZ2VuZGVyPWFzLmZhY3RvcihnZW5kZXIpLCBzdWJqZWN0PWFzLmZhY3RvcihzdWJqZWN0KSkNCmBgYA0KDQoNClJhbmRvbSBJbnRlcmNlcHQgTW9kZWxzDQoNCmBgYHtyfQ0KcG9saXRlbmVzcy5tb2RlbDAgPSBsbWVyKGZyZXF1ZW5jeSB+IGF0dGl0dWRlICsgKDF8c3ViamVjdCkgKyAoMXxzY2VuYXJpbyksIGRhdGE9ZGF0YSkNCnN1bW1hcnkocG9saXRlbmVzcy5tb2RlbDApDQpgYGANCg0KYGBge3J9DQpwb2xpdGVuZXNzLm1vZGVsID0gbG1lcihmcmVxdWVuY3kgfiBhdHRpdHVkZSArIGdlbmRlciArICgxfHN1YmplY3QpICsgKDF8c2NlbmFyaW8pLCBkYXRhPWRhdGEpDQpzdW1tYXJ5KHBvbGl0ZW5lc3MubW9kZWwpDQpgYGANCkxpa2VsaWhvb2QgUmF0aW8gVGVzdA0KDQpgYGB7cn0NCnBvbGl0ZW5lc3MubnVsbCA9IGxtZXIoZnJlcXVlbmN5IH4gZ2VuZGVyICsgKDF8c3ViamVjdCkgKyAoMXxzY2VuYXJpbyksIGRhdGE9ZGF0YSwgUkVNTD1GQUxTRSkNCnBvbGl0ZW5lc3MuZnVsbCA9IGxtZXIoZnJlcXVlbmN5IH4gYXR0aXR1ZGUgKyBnZW5kZXIgKyAoMXxzdWJqZWN0KSArICgxfHNjZW5hcmlvKSwgZGF0YT1kYXRhLCBSRU1MPUZBTFNFKQ0KYW5vdmEocG9saXRlbmVzcy5udWxsLCBwb2xpdGVuZXNzLmZ1bGwpDQpgYGANCg0KUmFuZG9tIFNsb3BlIE1vZGVsDQoNCmBgYHtyfQ0KcG9saXRlbmVzcy5tb2RlbDEgPSBsbWVyKGZyZXF1ZW5jeX5hdHRpdHVkZSArIGdlbmRlciArICgxK2F0dGl0dWRlfHN1YmplY3QpICsgKDErYXR0aXR1ZGV8c2NlbmFyaW8pLCBkYXRhID0gZGF0YSkNCmNvZWYocG9saXRlbmVzcy5tb2RlbDEpDQpgYGANCg0KDQo=
    diff --git a/Module 6/testcode.Rmd b/Module 6/testcode.Rmd new file mode 100644 index 00000000..828769c9 --- /dev/null +++ b/Module 6/testcode.Rmd @@ -0,0 +1,268 @@ +--- +title: "R Notebook" +output: html_notebook +--- + +Testing + +```{r} +data() +``` + + +```{r} +data(package = .packages(all.available = TRUE)) +``` + +```{r} +library(lme4) +data("InstEval") +head(InstEval) + +``` +```{r} +library(lmerTest) +``` +```{r} +InstEval$studage <- as.numeric(InstEval$studage) +InstEval$lectage <- as.numeric(InstEval$lectage) +InstEval$service <- as.numeric(InstEval$service) +InstEval$dept <- as.numeric(InstEval$dept) +``` + + + + + +```{r} +m1 <- lmer( formula = y ~ studage + lectage + service + dept + (1|s) + (1|d), + data = InstEval ) +summary( m1 ) +``` + +```{r} +library(lme4) +data("sleepstudy") +head(sleepstudy) + +``` + +```{r} +library(tidyverse) +library(magrittr) +``` + + +```{r} +dep_1 <- sleepstudy %>% filter(Days == 1) %>% select(Reaction) +dep_2 <- sleepstudy %>% filter(Days == 2) %>% select(Reaction) +dep_3 <- sleepstudy %>% filter(Days == 3) %>% select(Reaction) +dep_4 <- sleepstudy %>% filter(Days == 4) %>% select(Reaction) +dep_5 <- sleepstudy %>% filter(Days == 5) %>% select(Reaction) +dep_6 <- sleepstudy %>% filter(Days == 6) %>% select(Reaction) +dep_7 <- sleepstudy %>% filter(Days == 7) %>% select(Reaction) +dep_8 <- sleepstudy %>% filter(Days == 8) %>% select(Reaction) +dep_9 <- sleepstudy %>% filter(Days == 9) %>% select(Reaction) +df <- data.frame(dep_1,dep_2, dep_3, dep_4, dep_5, dep_6, dep_7, dep_8, dep_9) +``` + +```{r} +df2 <- sleepstudy %>% filter(Days %in% c(1, 5)) +``` + + +```{r} +diff <- df$Reaction.5 - df$Reaction +shapiro.test(diff) +``` +```{r} +df2$Days <- as.factor(df2$Days) +leveneTest(Reaction ~ Days, df2) +``` + + +```{r} +t.test(df$Reaction, df$Reaction.5, paired = TRUE, alternative = "two.sided", var.equal = TRUE) +``` + +```{r} +m2 <- lmer( formula = Reaction ~ Days + (1|Subject), + data = sleepstudy ) +summary( m2 ) +``` + +```{r} +m3 <- lmer( formula = Reaction ~ Days + (1 + Days|Subject), + data = sleepstudy ) +summary( m3 ) +``` +```{r} +AIC(m2, m3) +``` + +```{r} +anova(m2,m3) +``` + + + + +```{r} +library(easystats) + +``` + + +```{r} +check_model(m2) +``` + +```{r} +check_heteroscedasticity(m3) +``` + +```{r} +library(MASS) +data("HairEyeColor") +head(HairEyeColor) +``` +```{r} +tab_n <- c(124,151,105,149) +``` + +```{r} +library(lsr) +cramersV( tab_n ) +``` + + +```{r} +chisq.test( tab_n ) + +``` +```{r} +library(pwr) +pwr.chisq.test(w = 0.08, df = 3, sig.level = 0.05, power = 0.8 ) +``` + + + + + + + + + + +```{r} +data("mtcars") +head(mtcars) +``` + +```{r} +m2 <- lm( formula = mpg ~ hp + wt, + data = mtcars ) +summary( m2 ) +``` +```{r} +library(car) +``` +```{r} +plot(x = m1, which = 3) + +``` + +```{r} +ncvTest( m1 ) +``` + + +```{r} +vif( mod = m1 ) +``` +```{r} +residualPlots( model = m1 ) +``` +```{r} +plot( x = m2, which = 2) + +``` +```{r} +shapiro.test(residuals( m1 )) +``` + + + + + +```{r} + +m3 <- lm( formula = log(mpg) ~ log(hp) + log(wt), + data = mtcars ) +summary( m3 ) +``` +```{r} +residualPlots( model = m3 ) +``` +```{r} +ncvTest( m3 ) +``` + + +```{r} +vif( mod = m3 ) +``` + +```{r} +library(MASS) +``` + + +```{r} +#bc <- boxcox(m3) +bc.car <- powerTransform(m2) +lambda <- bc.car$lambda + +#lambda <- bc$x[which.max(bc$y)] +#lambda +``` + +fit new linear regression model using the Box-Cox transformation + +```{r} +m4 <- lm(((mpg^lambda-1)/lambda) ~ hp + wt,data = mtcars) +summary(m4) +``` + +```{r} +residualPlots( model = m4 ) +``` + +```{r} +ncvTest( m4 ) +``` + + +```{r} +vif( mod = m4 ) +``` + +```{r} +plot( x = m3, which = 2) + +``` +```{r} +shapiro.test(residuals( m4 )) +``` + + +```{r} +data() +``` + +```{r} +library(lme4) +data("sleepstudy") +head(sleepstudy) +``` + diff --git a/Module 6/testcode.nb.html b/Module 6/testcode.nb.html new file mode 100644 index 00000000..618e0c45 --- /dev/null +++ b/Module 6/testcode.nb.html @@ -0,0 +1,2429 @@ + + + + + + + + + + + + + +R Notebook + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + +

    Testing

    + + + +
    data()
    + + + + + + +
    data(package = .packages(all.available = TRUE))
    + + + + + + +
    + +
    + + +
    head(InstEval)
    +
    + + + + +
    library(lmerTest)
    + + +
    Warning: package ‘lmerTest’ was built under R version 4.2.2
    +Attaching package: ‘lmerTest’
    +
    +The following object is masked from ‘package:lme4’:
    +
    +    lmer
    +
    +The following object is masked from ‘package:stats’:
    +
    +    step
    + + + + +
    InstEval$studage <- as.numeric(InstEval$studage)
    +InstEval$lectage <- as.numeric(InstEval$lectage)
    +InstEval$service <- as.numeric(InstEval$service) 
    +InstEval$dept <- as.numeric(InstEval$dept)
    + + + + + + +
    m1 <- lmer( formula = y ~ studage + lectage + service + dept + (1|s) + (1|d),  
    +                     data = InstEval )
    +summary( m1 )
    + + +
    Linear mixed model fit by REML. t-tests use Satterthwaite's method [lmerModLmerTest
    +]
    +Formula: y ~ studage + lectage + service + dept + (1 | s) + (1 | d)
    +   Data: InstEval
    +
    +REML criterion at convergence: 237616.9
    +
    +Scaled residuals: 
    +     Min       1Q   Median       3Q      Max 
    +-3.08727 -0.74646  0.04076  0.77073  3.15558 
    +
    +Random effects:
    + Groups   Name        Variance Std.Dev.
    + s        (Intercept) 0.1065   0.3264  
    + d        (Intercept) 0.2673   0.5170  
    + Residual             1.3837   1.1763  
    +Number of obs: 73421, groups:  s, 2972; d, 1128
    +
    +Fixed effects:
    +              Estimate Std. Error         df t value Pr(>|t|)    
    +(Intercept)  3.342e+00  4.427e-02  2.661e+03  75.492  < 2e-16 ***
    +studage      4.383e-02  8.393e-03  5.304e+03   5.222 1.84e-07 ***
    +lectage     -4.683e-02  3.787e-03  5.433e+04 -12.367  < 2e-16 ***
    +service     -7.086e-02  1.344e-02  5.901e+04  -5.273 1.35e-07 ***
    +dept         8.121e-04  4.655e-03  1.255e+03   0.174    0.862    
    +---
    +Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    +
    +Correlation of Fixed Effects:
    +        (Intr) studag lectag servic
    +studage -0.442                     
    +lectage  0.085 -0.448              
    +service -0.330  0.066 -0.120       
    +dept    -0.690  0.028 -0.032 -0.109
    + + + + + + +
    library(lme4)
    +data("sleepstudy")
    +head(sleepstudy)
    + + +
    + +
    + + +
    NA
    + + + + + + +
    library(magrittr)
    +
    + + +
    
    +Attaching package: ‘magrittr’
    +
    +The following object is masked from ‘package:purrr’:
    +
    +    set_names
    +
    +The following object is masked from ‘package:tidyr’:
    +
    +    extract
    + + + + + + +
    df <- dataframe(dep_1,dep_2, dep_3)
    +
    + + +
    Error in dataframe(dep_1, dep_2, dep_3) : 
    +  could not find function "dataframe"
    + + + + + + +
    df2 <- sleepstudy %>% filter(Days %in% c(1, 5))
    + + + + + + +
    diff <- df$Reaction.5 - df$Reaction
    +shapiro.test(diff)
    + + +
    
    +    Shapiro-Wilk normality test
    +
    +data:  diff
    +W = 0.9041, p-value = 0.06775
    + + + + +
    leveneTest(Reaction ~ Days, df2)
    +
    + + +
    Levene's Test for Homogeneity of Variance (center = median)
    +      Df F value Pr(>F)
    +group  1  2.0914 0.1573
    +      34               
    + + + + + + +
    t.test(df$Reaction, df$Reaction.5, paired = TRUE, alternative = "two.sided", var.equal = TRUE)
    + + +
    
    +    Paired t-test
    +
    +data:  df$Reaction and df$Reaction.5
    +t = -3.2912, df = 17, p-value = 0.004311
    +alternative hypothesis: true mean difference is not equal to 0
    +95 percent confidence interval:
    + -78.24917 -17.11583
    +sample estimates:
    +mean difference 
    +       -47.6825 
    + + + + + + +
    m2 <- lmer( formula = Reaction ~ Days + (1|Subject),  
    +                     data = sleepstudy )
    +summary( m2 )
    + + +
    Linear mixed model fit by REML. t-tests use Satterthwaite's method [
    +lmerModLmerTest]
    +Formula: Reaction ~ Days + (1 | Subject)
    +   Data: sleepstudy
    +
    +REML criterion at convergence: 1786.5
    +
    +Scaled residuals: 
    +    Min      1Q  Median      3Q     Max 
    +-3.2257 -0.5529  0.0109  0.5188  4.2506 
    +
    +Random effects:
    + Groups   Name        Variance Std.Dev.
    + Subject  (Intercept) 1378.2   37.12   
    + Residual              960.5   30.99   
    +Number of obs: 180, groups:  Subject, 18
    +
    +Fixed effects:
    +            Estimate Std. Error       df t value Pr(>|t|)    
    +(Intercept) 251.4051     9.7467  22.8102   25.79   <2e-16 ***
    +Days         10.4673     0.8042 161.0000   13.02   <2e-16 ***
    +---
    +Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    +
    +Correlation of Fixed Effects:
    +     (Intr)
    +Days -0.371
    + + + + + + +
    m3 <- lmer( formula = Reaction ~ Days + (1 + Days|Subject),  
    +                     data = sleepstudy )
    +summary( m3 )
    + + +
    Linear mixed model fit by REML. t-tests use Satterthwaite's method [
    +lmerModLmerTest]
    +Formula: Reaction ~ Days + (1 + Days | Subject)
    +   Data: sleepstudy
    +
    +REML criterion at convergence: 1743.6
    +
    +Scaled residuals: 
    +    Min      1Q  Median      3Q     Max 
    +-3.9536 -0.4634  0.0231  0.4634  5.1793 
    +
    +Random effects:
    + Groups   Name        Variance Std.Dev. Corr
    + Subject  (Intercept) 612.10   24.741       
    +          Days         35.07    5.922   0.07
    + Residual             654.94   25.592       
    +Number of obs: 180, groups:  Subject, 18
    +
    +Fixed effects:
    +            Estimate Std. Error      df t value Pr(>|t|)    
    +(Intercept)  251.405      6.825  17.000  36.838  < 2e-16 ***
    +Days          10.467      1.546  17.000   6.771 3.26e-06 ***
    +---
    +Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    +
    +Correlation of Fixed Effects:
    +     (Intr)
    +Days -0.138
    + + + + +
    AIC(m2, m3)
    + + +
    + +
    + + + + + + +
    anova(m2,m3)
    + + +
    refitting model(s) with ML (instead of REML)
    + + +
    Data: sleepstudy
    +Models:
    +m2: Reaction ~ Days + (1 | Subject)
    +m3: Reaction ~ Days + (1 + Days | Subject)
    +   npar    AIC    BIC  logLik deviance  Chisq Df Pr(>Chisq)    
    +m2    4 1802.1 1814.8 -897.04   1794.1                         
    +m3    6 1763.9 1783.1 -875.97   1751.9 42.139  2  7.072e-10 ***
    +---
    +Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    + + + + + + +
    library(easystats)
    + + +
    Warning: package ‘easystats’ was built under R version 4.2.2# Attaching packages: easystats 0.5.2
    +✔ insight     0.18.7   ✔ datawizard  0.6.4 
    +✔ bayestestR  0.13.0   ✔ parameters  0.19.0
    +✔ effectsize  0.8.2    ✔ modelbased  0.8.5 
    +✔ correlation 0.8.3    ✔ see         0.7.3 
    +✔ report      0.5.5    
    + + + + + + +
    check_model(m2)
    + + +

    + + +

    + + + + + + +
    check_heteroscedasticity(m3)
    + + +
    Warning: Heteroscedasticity (non-constant error variance) detected (p < .001).
    + + + + + + +
    data("HairEyeColor")
    +head(HairEyeColor)
    +
    + + +
    , , Sex = Male
    +
    +       Eye
    +Hair    Brown Blue Hazel Green
    +  Black    32   11    10     3
    +  Brown    53   50    25    15
    +  Red      10   10     7     7
    +  Blond     3   30     5     8
    +
    +, , Sex = Female
    +
    +       Eye
    +Hair    Brown Blue Hazel Green
    +  Black    36    9     5     2
    +  Brown    66   34    29    14
    +  Red      16    7     7     7
    +  Blond     4   64     5     8
    + + + + +
    tab_n <- c(124,151,105,149)
    + + + + + + +
    library(lsr)
    +cramersV( tab_n )
    + + +
    [1] 0.08291044
    + + + + + + +
    chisq.test( tab_n  )
    + + +
    
    +    Chi-squared test for given probabilities
    +
    +data:  tab_n
    +X-squared = 10.909, df = 3, p-value = 0.01223
    + + + + +
    library(pwr)
    +pwr.chisq.test(w = 0.08, df = 3, sig.level = 0.05, power = 0.8 )
    + + +
    
    +     Chi squared power calculation 
    +
    +              w = 0.08
    +              N = 1703.526
    +             df = 3
    +      sig.level = 0.05
    +          power = 0.8
    +
    +NOTE: N is the number of observations
    + + + + + + +
    data("mtcars")
    +head(mtcars)
    + + + + + + +
    m2 <- lm( formula = mpg ~ hp + wt,  
    +                     data = mtcars )
    +summary( m2 )
    + + + + +
    library(car)
    + + + + +
    plot(x = m1, which = 3)
    +
    + + + + + + +
    ncvTest( m1 )
    + + + + + + +
    vif( mod = m1 )
    + + + + +
    residualPlots( model = m1 ) 
    + + + + +
    plot( x = m2, which = 2) 
    +
    + + + + +
    shapiro.test(residuals( m1 ))
    + + + + + + +
    
    +m3 <- lm( formula = log(mpg) ~ log(hp) + log(wt),  
    +                     data = mtcars )
    +summary( m3 )
    + + + + +
    residualPlots( model = m3 ) 
    + + + + +
    ncvTest( m3 )
    + + + + + + +
    vif( mod = m3 )
    + + + + + + +
    library(MASS)
    + + + + + + +
    #bc <- boxcox(m3)
    +bc.car <- powerTransform(m2)
    +lambda <- bc.car$lambda
    +
    +#lambda <- bc$x[which.max(bc$y)]
    +#lambda
    + + + +

    fit new linear regression model using the Box-Cox transformation

    + + + +
    m4 <- lm(((mpg^lambda-1)/lambda) ~ hp + wt,data = mtcars)
    +summary(m4)
    + + + + + + +
    residualPlots( model = m4 ) 
    + + + + + + +
    ncvTest( m4 )
    + + + + + + +
    vif( mod = m4 )
    + + + + + + +
    plot( x = m3, which = 2) 
    +
    + + + + +
    shapiro.test(residuals( m4 ))
    + + + + + + +
    data()
    + + + + + + +
    library(lme4)
    +data("sleepstudy")
    +head(sleepstudy)
    + + + + + +
    LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpUZXN0aW5nDQoNCmBgYHtyfQ0KZGF0YSgpDQpgYGANCg0KDQpgYGB7cn0NCmRhdGEocGFja2FnZSA9IC5wYWNrYWdlcyhhbGwuYXZhaWxhYmxlID0gVFJVRSkpDQpgYGANCg0KYGBge3J9DQpsaWJyYXJ5KGxtZTQpDQpkYXRhKCJJbnN0RXZhbCIpDQpoZWFkKEluc3RFdmFsKQ0KDQpgYGANCmBgYHtyfQ0KbGlicmFyeShsbWVyVGVzdCkNCmBgYA0KYGBge3J9DQpJbnN0RXZhbCRzdHVkYWdlIDwtIGFzLm51bWVyaWMoSW5zdEV2YWwkc3R1ZGFnZSkNCkluc3RFdmFsJGxlY3RhZ2UgPC0gYXMubnVtZXJpYyhJbnN0RXZhbCRsZWN0YWdlKQ0KSW5zdEV2YWwkc2VydmljZSA8LSBhcy5udW1lcmljKEluc3RFdmFsJHNlcnZpY2UpIA0KSW5zdEV2YWwkZGVwdCA8LSBhcy5udW1lcmljKEluc3RFdmFsJGRlcHQpDQpgYGANCg0KDQoNCg0KDQpgYGB7cn0NCm0xIDwtIGxtZXIoIGZvcm11bGEgPSB5IH4gc3R1ZGFnZSArIGxlY3RhZ2UgKyBzZXJ2aWNlICsgZGVwdCArICgxfHMpICsgKDF8ZCksICANCiAgICAgICAgICAgICAgICAgICAgIGRhdGEgPSBJbnN0RXZhbCApDQpzdW1tYXJ5KCBtMSApDQpgYGANCg0KYGBge3J9DQpsaWJyYXJ5KGxtZTQpDQpkYXRhKCJzbGVlcHN0dWR5IikNCmhlYWQoc2xlZXBzdHVkeSkNCg0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KG1hZ3JpdHRyKQ0KYGBgDQoNCg0KYGBge3J9DQpkZXBfMSA8LSBzbGVlcHN0dWR5ICU+JSBmaWx0ZXIoRGF5cyA9PSAxKSAlPiUgc2VsZWN0KFJlYWN0aW9uKQ0KZGVwXzIgPC0gc2xlZXBzdHVkeSAlPiUgZmlsdGVyKERheXMgPT0gMikgJT4lIHNlbGVjdChSZWFjdGlvbikNCmRlcF8zIDwtIHNsZWVwc3R1ZHkgJT4lIGZpbHRlcihEYXlzID09IDMpICU+JSBzZWxlY3QoUmVhY3Rpb24pDQpkZXBfNCA8LSBzbGVlcHN0dWR5ICU+JSBmaWx0ZXIoRGF5cyA9PSA0KSAlPiUgc2VsZWN0KFJlYWN0aW9uKQ0KZGVwXzUgPC0gc2xlZXBzdHVkeSAlPiUgZmlsdGVyKERheXMgPT0gNSkgJT4lIHNlbGVjdChSZWFjdGlvbikNCmRlcF82IDwtIHNsZWVwc3R1ZHkgJT4lIGZpbHRlcihEYXlzID09IDYpICU+JSBzZWxlY3QoUmVhY3Rpb24pDQpkZXBfNyA8LSBzbGVlcHN0dWR5ICU+JSBmaWx0ZXIoRGF5cyA9PSA3KSAlPiUgc2VsZWN0KFJlYWN0aW9uKQ0KZGVwXzggPC0gc2xlZXBzdHVkeSAlPiUgZmlsdGVyKERheXMgPT0gOCkgJT4lIHNlbGVjdChSZWFjdGlvbikNCmRlcF85IDwtIHNsZWVwc3R1ZHkgJT4lIGZpbHRlcihEYXlzID09IDkpICU+JSBzZWxlY3QoUmVhY3Rpb24pDQpkZiA8LSBkYXRhLmZyYW1lKGRlcF8xLGRlcF8yLCBkZXBfMywgZGVwXzQsIGRlcF81LCBkZXBfNiwgZGVwXzcsIGRlcF84LCBkZXBfOSkNCmBgYA0KDQpgYGB7cn0NCmRmMiA8LSBzbGVlcHN0dWR5ICU+JSBmaWx0ZXIoRGF5cyAlaW4lIGMoMSwgNSkpDQpgYGANCg0KDQpgYGB7cn0NCmRpZmYgPC0gZGYkUmVhY3Rpb24uNSAtIGRmJFJlYWN0aW9uDQpzaGFwaXJvLnRlc3QoZGlmZikNCmBgYA0KYGBge3J9DQpkZjIkRGF5cyA8LSBhcy5mYWN0b3IoZGYyJERheXMpDQpsZXZlbmVUZXN0KFJlYWN0aW9uIH4gRGF5cywgZGYyKQ0KYGBgDQoNCg0KYGBge3J9DQp0LnRlc3QoZGYkUmVhY3Rpb24sIGRmJFJlYWN0aW9uLjUsIHBhaXJlZCA9IFRSVUUsIGFsdGVybmF0aXZlID0gInR3by5zaWRlZCIsIHZhci5lcXVhbCA9IFRSVUUpDQpgYGANCg0KYGBge3J9DQptMiA8LSBsbWVyKCBmb3JtdWxhID0gUmVhY3Rpb24gfiBEYXlzICsgKDF8U3ViamVjdCksICANCiAgICAgICAgICAgICAgICAgICAgIGRhdGEgPSBzbGVlcHN0dWR5ICkNCnN1bW1hcnkoIG0yICkNCmBgYA0KDQpgYGB7cn0NCm0zIDwtIGxtZXIoIGZvcm11bGEgPSBSZWFjdGlvbiB+IERheXMgKyAoMSArIERheXN8U3ViamVjdCksICANCiAgICAgICAgICAgICAgICAgICAgIGRhdGEgPSBzbGVlcHN0dWR5ICkNCnN1bW1hcnkoIG0zICkNCmBgYA0KYGBge3J9DQpBSUMobTIsIG0zKQ0KYGBgDQoNCmBgYHtyfQ0KYW5vdmEobTIsbTMpDQpgYGANCg0KDQoNCg0KYGBge3J9DQpsaWJyYXJ5KGVhc3lzdGF0cykNCg0KYGBgDQoNCg0KYGBge3J9DQpjaGVja19tb2RlbChtMikNCmBgYA0KDQpgYGB7cn0NCmNoZWNrX2hldGVyb3NjZWRhc3RpY2l0eShtMykNCmBgYA0KDQpgYGB7cn0NCmxpYnJhcnkoTUFTUykNCmRhdGEoIkhhaXJFeWVDb2xvciIpDQpoZWFkKEhhaXJFeWVDb2xvcikNCmBgYA0KYGBge3J9DQp0YWJfbiA8LSBjKDEyNCwxNTEsMTA1LDE0OSkNCmBgYA0KDQpgYGB7cn0NCmxpYnJhcnkobHNyKQ0KY3JhbWVyc1YoIHRhYl9uICkNCmBgYA0KDQoNCmBgYHtyfQ0KY2hpc3EudGVzdCggdGFiX24gICkNCg0KYGBgDQpgYGB7cn0NCmxpYnJhcnkocHdyKQ0KcHdyLmNoaXNxLnRlc3QodyA9IDAuMDgsIGRmID0gMywgc2lnLmxldmVsID0gMC4wNSwgcG93ZXIgPSAwLjggKQ0KYGBgDQoNCg0KDQoNCg0KDQoNCg0KDQoNCmBgYHtyfQ0KZGF0YSgibXRjYXJzIikNCmhlYWQobXRjYXJzKQ0KYGBgDQoNCmBgYHtyfQ0KbTIgPC0gbG0oIGZvcm11bGEgPSBtcGcgfiBocCArIHd0LCAgDQogICAgICAgICAgICAgICAgICAgICBkYXRhID0gbXRjYXJzICkNCnN1bW1hcnkoIG0yICkNCmBgYA0KYGBge3J9DQpsaWJyYXJ5KGNhcikNCmBgYA0KYGBge3J9DQpwbG90KHggPSBtMSwgd2hpY2ggPSAzKQ0KDQpgYGANCg0KYGBge3J9DQpuY3ZUZXN0KCBtMSApDQpgYGANCg0KDQpgYGB7cn0NCnZpZiggbW9kID0gbTEgKQ0KYGBgDQpgYGB7cn0NCnJlc2lkdWFsUGxvdHMoIG1vZGVsID0gbTEgKSANCmBgYA0KYGBge3J9DQpwbG90KCB4ID0gbTIsIHdoaWNoID0gMikgDQoNCmBgYA0KYGBge3J9DQpzaGFwaXJvLnRlc3QocmVzaWR1YWxzKCBtMSApKQ0KYGBgDQoNCg0KDQoNCg0KYGBge3J9DQoNCm0zIDwtIGxtKCBmb3JtdWxhID0gbG9nKG1wZykgfiBsb2coaHApICsgbG9nKHd0KSwgIA0KICAgICAgICAgICAgICAgICAgICAgZGF0YSA9IG10Y2FycyApDQpzdW1tYXJ5KCBtMyApDQpgYGANCmBgYHtyfQ0KcmVzaWR1YWxQbG90cyggbW9kZWwgPSBtMyApIA0KYGBgDQpgYGB7cn0NCm5jdlRlc3QoIG0zICkNCmBgYA0KDQoNCmBgYHtyfQ0KdmlmKCBtb2QgPSBtMyApDQpgYGANCg0KYGBge3J9DQpsaWJyYXJ5KE1BU1MpDQpgYGANCg0KDQpgYGB7cn0NCiNiYyA8LSBib3hjb3gobTMpDQpiYy5jYXIgPC0gcG93ZXJUcmFuc2Zvcm0obTIpDQpsYW1iZGEgPC0gYmMuY2FyJGxhbWJkYQ0KDQojbGFtYmRhIDwtIGJjJHhbd2hpY2gubWF4KGJjJHkpXQ0KI2xhbWJkYQ0KYGBgDQoNCmZpdCBuZXcgbGluZWFyIHJlZ3Jlc3Npb24gbW9kZWwgdXNpbmcgdGhlIEJveC1Db3ggdHJhbnNmb3JtYXRpb24NCg0KYGBge3J9DQptNCA8LSBsbSgoKG1wZ15sYW1iZGEtMSkvbGFtYmRhKSB+IGhwICsgd3QsZGF0YSA9IG10Y2FycykNCnN1bW1hcnkobTQpDQpgYGANCg0KYGBge3J9DQpyZXNpZHVhbFBsb3RzKCBtb2RlbCA9IG00ICkgDQpgYGANCg0KYGBge3J9DQpuY3ZUZXN0KCBtNCApDQpgYGANCg0KDQpgYGB7cn0NCnZpZiggbW9kID0gbTQgKQ0KYGBgDQoNCmBgYHtyfQ0KcGxvdCggeCA9IG0zLCB3aGljaCA9IDIpIA0KDQpgYGANCmBgYHtyfQ0Kc2hhcGlyby50ZXN0KHJlc2lkdWFscyggbTQgKSkNCmBgYA0KDQoNCmBgYHtyfQ0KZGF0YSgpDQpgYGANCg0KYGBge3J9DQpsaWJyYXJ5KGxtZTQpDQpkYXRhKCJzbGVlcHN0dWR5IikNCmhlYWQoc2xlZXBzdHVkeSkNCmBgYA0KDQo=
    + + + +
    + + + + + + + + + + + + + + + + From 461b084cd8ee10f29a08e9e371aae880f41c5e49 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Fri, 1 Sep 2023 13:33:15 +0530 Subject: [PATCH 42/55] Changes to distribution parameters --- Module 3/Notebooks/Distributions.Rmd | 37 +- Module 3/Notebooks/Distributions.nb.html | 2126 ++++++++++++++++-- Module 3/Notebooks/Module3_Nb2.Rmd | 20 +- Module 3/Notebooks/Module3_Nb2.nb.html | 2539 +++++++++++++++++++--- 4 files changed, 4232 insertions(+), 490 deletions(-) diff --git a/Module 3/Notebooks/Distributions.Rmd b/Module 3/Notebooks/Distributions.Rmd index f38d5a7e..0225228d 100644 --- a/Module 3/Notebooks/Distributions.Rmd +++ b/Module 3/Notebooks/Distributions.Rmd @@ -107,8 +107,10 @@ Some basic terminology - We’ll let `N` denote the number of dice rolls in our Let's generate a binomial distribution in R: ```{r} -dbinom( x = 1, size = 20, prob = 1/6) +dbinom( x = 4, size = 10, prob = 1/2) ``` + + The above command calculates the probability of getting x = 4 skulls, from an experiment of size = 20 trials, in which the probability of getting a skull on any one trial is prob = 1/6. What if the dice is replaced by a coin in the above example? How will the probability change? @@ -122,7 +124,7 @@ If we want to find the probability of obtaining an outcome smaller than or equal ```{r} #Find the probability of rolling 0 skulls or 1 skull or 2 skulls or 3 skulls or 4 skulls -pbinom( q= 3, size = 20, prob = 1/6) +pbinom( q= 4, size = 10, prob = 1/2) #Practice - Find probability of getting 0-5 heads in 50 trials of coin flip ``` @@ -131,7 +133,7 @@ In other words, value of 4 is actually the 76.9th percentile of this binomial di Now let’s say we want to calculate the 75th percentile of the binomial distribution. ```{r} -qbinom( p = 0.566, size = 20, prob = 1/6 ) +qbinom( p = 0.376, size = 10, prob = 1/2 ) #Practice - Find the 40th percentile ``` @@ -139,9 +141,9 @@ qbinom( p = 0.566, size = 20, prob = 1/6 ) We've found different quantities. What if we want to simulate the above experiments. We specify how many times R should “simulate” the experiment using the n argument, and it will generate random outcomes from the binomial distribution using the `rbinom` function. ```{r} -z <- rbinom( n = 1000000, size = 100, prob = 1/2 ) +z <- rbinom( n = 10000, size = 10, prob = 1/2 ) #Let's also plot this and see how it looks -hist(z, breaks=15, col = 'steelblue') +hist(z, breaks=25, col = 'steelblue') ``` #Try plotting the distributions in above examples and vary the size, trial number and probability to generate different plots. ```{r} @@ -165,7 +167,7 @@ qbinom(p = 0.025, size = 10, prob = 1/2) ``` ```{r} -binom.test( x=62, n=100, p=.5 ) +binom.test( x=6, n=10, p=1/2 ) ``` @@ -232,7 +234,7 @@ Basically, whenever you have accumulation of data at the center, fewer extreme v mean = 0; sd = 1 -> standard normal distribution ```{r} -normal_distribution <- rnorm(10000, mean = 10, sd = 5) +normal_distribution <- rnorm(10000, mean = 165, sd = 20) histogram_normal_distribution <- hist(normal_distribution) plot(histogram_normal_distribution$mids,histogram_normal_distribution$density, type="l", col="blue", lwd=1) @@ -243,32 +245,41 @@ Note: Normal distribution is sometimes referred to as the bell curve or Gaussian The notation for a normal distribution is: X ∼ Normal(μ,σ) +```{r} +no_test <- rnorm(10000, mean = 165, sd = 20) + +``` + + dnorm tells you the probability of getting a particular outcome ```{r} -dnorm(x=10, mean=10, sd=5) +dnorm(x=165, mean=165, sd=20) ``` Cumulative normal distribution ```{r} -pnorm(q = 19.8, mean = 10, sd = 5) +pnorm(q = 175, mean = 165, sd = 20) ``` ```{r} -qnorm(0.25 ,mean = 0 , sd = 1) +qnorm(0.75 ,mean = 165 , sd = 20) ``` *Checking for normality using the Shapiro-Wilk Test* ```{r} -norm <- rnorm(50, mean = 0, sd = 1) +norm <- rnorm(1000, mean = 0, sd = 1) shapiro.test(norm) -binom <- rbinom(100, 20, 1/6) -shapiro.test(binom) + ``` +```{r} +binom <- rbinom(100, 10, 1/2) +shapiro.test(binom) +``` diff --git a/Module 3/Notebooks/Distributions.nb.html b/Module 3/Notebooks/Distributions.nb.html index 97a872b7..d40c7fa8 100644 --- a/Module 3/Notebooks/Distributions.nb.html +++ b/Module 3/Notebooks/Distributions.nb.html @@ -13,13 +13,49 @@ Inferential Statistics: Probability & Distributions - 1 - - + + - - - - + + + + - - - - - - + + + + + + + + + - - - - - - + + + + + + + + + - - - - - - + + + + + + + + + - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + +

    This is an R Markdown +Notebook. When you execute code within the notebook, the results appear +beneath the code.

    +

    Try executing this chunk by clicking the Run button within +the chunk or by placing your cursor inside it and pressing +Ctrl+Shift+Enter.

    +

    Regression with categorical predictors: Basically, using regression +for a t-test!

    +

    Reference: Bodo Winter Chapter 7

    + + + +
    library(tidyverse)
    +library(broom)
    + + + + + + +
    senses <- read_csv('winter_2016_senses_valence.csv')
    + + +
    Rows: 405 Columns: 6── Column specification ──────────────────────────────────────────────────────────────────────────────────────────
    +Delimiter: ","
    +chr (2): Word, DominantModality
    +dbl (4): Val, AbsVal, Sent, AbsSent
    +ℹ Use `spec()` to retrieve the full column specification for this data.
    +ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
    + + +
    senses
    + + +
    + +
    + + + +

    Preprocessing and visualization to get only the Taste and Smell +data

    + + + +
    chem <- filter(senses, DominantModality %in% c('Taste', 'Smell'))
    +table(chem$DominantModality)
    + + +
    
    +Smell Taste 
    +   25    47 
    + + + + + + +
    chem %>% group_by(DominantModality) %>%
    +summarize(M = mean(Val), SD = sd(Val))
    + + +
    + +
    + + + + + + +
    chem %>% ggplot(aes(x = DominantModality, y = Val, fill = DominantModality)) +
    +geom_boxplot() + theme_minimal() +
    +scale_fill_brewer(palette = 'Accent')
    + + +

    + + + +

    If you are interested in choosing the right colors for your plots, +then here’s a good resource https://ggplot2-book.org/scales-colour

    + + + +
    chem_mdl <- lm(Val ~ DominantModality, data = chem)
    +summary(chem_mdl)
    + + +
    
    +Call:
    +lm(formula = Val ~ DominantModality, data = chem)
    +
    +Residuals:
    +     Min       1Q   Median       3Q      Max 
    +-0.99315 -0.20870  0.04343  0.19115  0.62788 
    +
    +Coefficients:
    +                      Estimate Std. Error t value Pr(>|t|)    
    +(Intercept)            5.47101    0.06297  86.889  < 2e-16 ***
    +DominantModalityTaste  0.33711    0.07793   4.326 4.95e-05 ***
    +---
    +Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    +
    +Residual standard error: 0.3148 on 70 degrees of freedom
    +Multiple R-squared:  0.2109,    Adjusted R-squared:  0.1997 
    +F-statistic: 18.71 on 1 and 70 DF,  p-value: 4.951e-05
    + + + +

    Using the predict() to determine the values associated with each +predictor

    + + + +
    chem_preds <- tibble(DominantModality = unique(chem$DominantModality))
    +chem_preds$fit <- predict(chem_mdl, chem_preds)
    +chem_preds
    + + +
    + +
    + + + +

    Change the reference - from Smell to Taste.

    + + + +
    chem <- mutate(chem,
    +DominantModality = factor(DominantModality),
    +ModRe = relevel(DominantModality, ref = 'Taste'))
    + + + +

    Verify reference levels

    + + + +
    levels(chem$DominantModality)
    +levels(chem$ModRe)
    + + + +

    Rerun the regression

    + + + +
    lm(Val ~ ModRe, data = chem)
    + + +
    
    +Call:
    +lm(formula = Val ~ ModRe, data = chem)
    +
    +Coefficients:
    +(Intercept)   ModReSmell  
    +     5.8081      -0.3371  
    + + + +

    Treatment Coding vs Sum Coding:

    +

    Treatment Coding: Taste = 0; Smell = 1

    +

    Sum Coding: Taste = -1; Smell = 1

    +

    Sum Coding is useful esepcially for interpreting interactions.

    +
    +

    Fitting categorical data with more than two levels

    + + + +
    unique(senses$DominantModality)
    + + +
    [1] "Touch" "Sight" "Taste" "Smell" "Sound"
    + + + + + + +
    sense_all <- lm(Val ~ DominantModality, data = senses)
    +summary(sense_all)
    + + +
    
    +Call:
    +lm(formula = Val ~ DominantModality, data = senses)
    +
    +Residuals:
    +     Min       1Q   Median       3Q      Max 
    +-0.99315 -0.16482 -0.02158  0.15920  1.15734 
    +
    +Coefficients:
    +                      Estimate Std. Error t value Pr(>|t|)    
    +(Intercept)            5.57966    0.01889 295.308  < 2e-16 ***
    +DominantModalitySmell -0.10865    0.05643  -1.925   0.0549 .  
    +DominantModalitySound -0.17447    0.03758  -4.643 4.66e-06 ***
    +DominantModalityTaste  0.22846    0.04314   5.296 1.96e-07 ***
    +DominantModalityTouch -0.04523    0.03737  -1.210   0.2269    
    +---
    +Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
    +
    +Residual standard error: 0.2659 on 400 degrees of freedom
    +Multiple R-squared:  0.1455,    Adjusted R-squared:  0.137 
    +F-statistic: 17.03 on 4 and 400 DF,  p-value: 6.616e-13
    + + + +

    Using predict to help with interpretation

    + + + +
    sense_preds <- tibble(DominantModality = sort(unique(senses$DominantModality))) 
    +sense_preds$fit <- predict(sense_all, sense_preds)
    +sense_preds
    + + +
    + +
    + + + +

    Lastly, check assumptions:

    +

    Normality test:

    + + + +
    library(car)
    + + +
    Loading required package: carData
    +
    +Attaching package: ‘car’
    +
    +The following object is masked from ‘package:dplyr’:
    +
    +    recode
    +
    +The following object is masked from ‘package:purrr’:
    +
    +    some
    + + + + + + +
    shapiro.test(residuals(sense_all))
    + + +
    
    +    Shapiro-Wilk normality test
    +
    +data:  residuals(sense_all)
    +W = 0.98434, p-value = 0.0002282
    + + + + +
     hist( x = residuals( sense_all ))
    +
    + + +

    + + + + +
    plot( x = sense_all, which = 2 )
    + + +

    + + + + + + +
    ncvTest( sense_all )
    + + +
    Non-constant Variance Score Test 
    +Variance formula: ~ fitted.values 
    +Chisquare = 0.07688406, Df = 1, p = 0.78157
    + + + +

    Linearity test

    + + + +
    library(carData)
    + + + + + + +
    residualPlots( model = sense_all ) 
    + + +

    + + + +

    Lastly, we assess the variance inflation factor – to diagnose for +collinearity

    + + + +
    car::vif( mod = sense_all )
    + + +
    Error in vif.default(mod = sense_all) : model contains fewer than 2 terms
    + + + +

    Add a new chunk by clicking the Insert Chunk button on the +toolbar or by pressing Ctrl+Alt+I.

    +

    When you save the notebook, an HTML file containing the code and +output will be saved alongside it (click the Preview button or +press Ctrl+Shift+K to preview the HTML file).

    +

    The preview shows you a rendered HTML copy of the contents of the +editor. Consequently, unlike Knit, Preview does not +run any R code chunks. Instead, the output of the chunk when it was last +run in the editor is displayed.

    + + +
    LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpUaGlzIGlzIGFuIFtSIE1hcmtkb3duXShodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tKSBOb3RlYm9vay4gV2hlbiB5b3UgZXhlY3V0ZSBjb2RlIHdpdGhpbiB0aGUgbm90ZWJvb2ssIHRoZSByZXN1bHRzIGFwcGVhciBiZW5lYXRoIHRoZSBjb2RlLiANCg0KVHJ5IGV4ZWN1dGluZyB0aGlzIGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqUnVuKiBidXR0b24gd2l0aGluIHRoZSBjaHVuayBvciBieSBwbGFjaW5nIHlvdXIgY3Vyc29yIGluc2lkZSBpdCBhbmQgcHJlc3NpbmcgKkN0cmwrU2hpZnQrRW50ZXIqLiANCg0KUmVncmVzc2lvbiB3aXRoIGNhdGVnb3JpY2FsIHByZWRpY3RvcnM6IA0KQmFzaWNhbGx5LCB1c2luZyByZWdyZXNzaW9uIGZvciBhIHQtdGVzdCEgIA0KDQpSZWZlcmVuY2U6IEJvZG8gV2ludGVyIENoYXB0ZXIgNw0KDQoNCmBgYHtyfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KGJyb29tKQ0KYGBgDQoNCmBgYHtyfQ0Kc2Vuc2VzIDwtIHJlYWRfY3N2KCd3aW50ZXJfMjAxNl9zZW5zZXNfdmFsZW5jZS5jc3YnKQ0Kc2Vuc2VzDQpgYGANClByZXByb2Nlc3NpbmcgYW5kIHZpc3VhbGl6YXRpb24gdG8gZ2V0IG9ubHkgdGhlIFRhc3RlIGFuZCBTbWVsbCBkYXRhDQoNCmBgYHtyfQ0KY2hlbSA8LSBmaWx0ZXIoc2Vuc2VzLCBEb21pbmFudE1vZGFsaXR5ICVpbiUgYygnVGFzdGUnLCAnU21lbGwnKSkNCnRhYmxlKGNoZW0kRG9taW5hbnRNb2RhbGl0eSkNCmBgYA0KDQoNCmBgYHtyfQ0KY2hlbSAlPiUgZ3JvdXBfYnkoRG9taW5hbnRNb2RhbGl0eSkgJT4lDQpzdW1tYXJpemUoTSA9IG1lYW4oVmFsKSwgU0QgPSBzZChWYWwpKQ0KYGBgDQoNCmBgYHtyfQ0KY2hlbSAlPiUgZ2dwbG90KGFlcyh4ID0gRG9taW5hbnRNb2RhbGl0eSwgeSA9IFZhbCwgZmlsbCA9IERvbWluYW50TW9kYWxpdHkpKSArDQpnZW9tX2JveHBsb3QoKSArIHRoZW1lX21pbmltYWwoKSArDQpzY2FsZV9maWxsX2JyZXdlcihwYWxldHRlID0gJ0FjY2VudCcpDQpgYGANCklmIHlvdSBhcmUgaW50ZXJlc3RlZCBpbiBjaG9vc2luZyB0aGUgcmlnaHQgY29sb3JzIGZvciB5b3VyIHBsb3RzLCB0aGVuIGhlcmUncyBhIGdvb2QgcmVzb3VyY2UNCmh0dHBzOi8vZ2dwbG90Mi1ib29rLm9yZy9zY2FsZXMtY29sb3VyDQoNCg0KYGBge3J9DQpjaGVtX21kbCA8LSBsbShWYWwgfiBEb21pbmFudE1vZGFsaXR5LCBkYXRhID0gY2hlbSkNCnN1bW1hcnkoY2hlbV9tZGwpDQpgYGANCg0KDQpVc2luZyB0aGUgcHJlZGljdCgpIHRvIGRldGVybWluZSB0aGUgdmFsdWVzIGFzc29jaWF0ZWQgd2l0aCBlYWNoIHByZWRpY3Rvcg0KDQpgYGB7cn0NCmNoZW1fcHJlZHMgPC0gdGliYmxlKERvbWluYW50TW9kYWxpdHkgPSB1bmlxdWUoY2hlbSREb21pbmFudE1vZGFsaXR5KSkNCmNoZW1fcHJlZHMkZml0IDwtIHByZWRpY3QoY2hlbV9tZGwsIGNoZW1fcHJlZHMpDQpjaGVtX3ByZWRzDQpgYGANCg0KQ2hhbmdlIHRoZSByZWZlcmVuY2UgLSBmcm9tIFNtZWxsIHRvIFRhc3RlLg0KDQpgYGB7cn0NCmNoZW0gPC0gbXV0YXRlKGNoZW0sDQpEb21pbmFudE1vZGFsaXR5ID0gZmFjdG9yKERvbWluYW50TW9kYWxpdHkpLA0KTW9kUmUgPSByZWxldmVsKERvbWluYW50TW9kYWxpdHksIHJlZiA9ICdUYXN0ZScpKQ0KYGBgDQoNClZlcmlmeSByZWZlcmVuY2UgbGV2ZWxzDQpgYGB7cn0NCmxldmVscyhjaGVtJERvbWluYW50TW9kYWxpdHkpDQpsZXZlbHMoY2hlbSRNb2RSZSkNCmBgYA0KDQpSZXJ1biB0aGUgcmVncmVzc2lvbg0KYGBge3J9DQpsbShWYWwgfiBNb2RSZSwgZGF0YSA9IGNoZW0pDQpgYGANCg0KDQpUcmVhdG1lbnQgQ29kaW5nIHZzIFN1bSBDb2Rpbmc6DQoNClRyZWF0bWVudCBDb2Rpbmc6DQpUYXN0ZSA9IDA7IFNtZWxsID0gMQ0KDQpTdW0gQ29kaW5nOiANClRhc3RlID0gLTE7IFNtZWxsID0gMQ0KDQpTdW0gQ29kaW5nIGlzIHVzZWZ1bCBlc2VwY2lhbGx5IGZvciBpbnRlcnByZXRpbmcgaW50ZXJhY3Rpb25zLg0KDQpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fDQoNCg0KRml0dGluZyBjYXRlZ29yaWNhbCBkYXRhIHdpdGggbW9yZSB0aGFuIHR3byBsZXZlbHMNCg0KYGBge3J9DQp1bmlxdWUoc2Vuc2VzJERvbWluYW50TW9kYWxpdHkpDQpgYGANCg0KDQoNCmBgYHtyfQ0Kc2Vuc2VfYWxsIDwtIGxtKFZhbCB+IERvbWluYW50TW9kYWxpdHksIGRhdGEgPSBzZW5zZXMpDQpzdW1tYXJ5KHNlbnNlX2FsbCkNCmBgYA0KDQoNClVzaW5nIHByZWRpY3QgdG8gaGVscCB3aXRoIGludGVycHJldGF0aW9uDQpgYGB7cn0NCnNlbnNlX3ByZWRzIDwtIHRpYmJsZShEb21pbmFudE1vZGFsaXR5ID0gc29ydCh1bmlxdWUoc2Vuc2VzJERvbWluYW50TW9kYWxpdHkpKSkgDQpzZW5zZV9wcmVkcyRmaXQgPC0gcHJlZGljdChzZW5zZV9hbGwsIHNlbnNlX3ByZWRzKQ0Kc2Vuc2VfcHJlZHMNCmBgYA0KDQogDQpMYXN0bHksIGNoZWNrIGFzc3VtcHRpb25zOiANCg0KTm9ybWFsaXR5IHRlc3Q6IA0KDQpgYGB7cn0NCmxpYnJhcnkoY2FyKQ0KYGBgDQoNCmBgYHtyfQ0Kc2hhcGlyby50ZXN0KHJlc2lkdWFscyhzZW5zZV9hbGwpKQ0KYGBgDQpgYGB7cn0NCiBoaXN0KCB4ID0gcmVzaWR1YWxzKCBzZW5zZV9hbGwgKSkNCg0KYGBgDQpgYGB7cn0NCnBsb3QoIHggPSBzZW5zZV9hbGwsIHdoaWNoID0gMiApDQpgYGANCg0KYGBge3J9DQpuY3ZUZXN0KCBzZW5zZV9hbGwgKQ0KDQpgYGANCkxpbmVhcml0eSB0ZXN0DQoNCmBgYHtyfQ0KbGlicmFyeShjYXJEYXRhKQ0KYGBgDQoNCmBgYHtyfQ0KcmVzaWR1YWxQbG90cyggbW9kZWwgPSBzZW5zZV9hbGwgKSANCmBgYA0KTGFzdGx5LCB3ZSBhc3Nlc3MgdGhlIHZhcmlhbmNlIGluZmxhdGlvbiBmYWN0b3IgLS0gdG8gZGlhZ25vc2UgZm9yIGNvbGxpbmVhcml0eQ0KDQpgYGB7cn0NCmNhcjo6dmlmKCBtb2QgPSBzZW5zZV9hbGwgKQ0KYGBgDQoNCg0KQWRkIGEgbmV3IGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqSW5zZXJ0IENodW5rKiBidXR0b24gb24gdGhlIHRvb2xiYXIgb3IgYnkgcHJlc3NpbmcgKkN0cmwrQWx0K0kqLg0KDQpXaGVuIHlvdSBzYXZlIHRoZSBub3RlYm9vaywgYW4gSFRNTCBmaWxlIGNvbnRhaW5pbmcgdGhlIGNvZGUgYW5kIG91dHB1dCB3aWxsIGJlIHNhdmVkIGFsb25nc2lkZSBpdCAoY2xpY2sgdGhlICpQcmV2aWV3KiBidXR0b24gb3IgcHJlc3MgKkN0cmwrU2hpZnQrSyogdG8gcHJldmlldyB0aGUgSFRNTCBmaWxlKS4NCg0KVGhlIHByZXZpZXcgc2hvd3MgeW91IGEgcmVuZGVyZWQgSFRNTCBjb3B5IG9mIHRoZSBjb250ZW50cyBvZiB0aGUgZWRpdG9yLiBDb25zZXF1ZW50bHksIHVubGlrZSAqS25pdCosICpQcmV2aWV3KiBkb2VzIG5vdCBydW4gYW55IFIgY29kZSBjaHVua3MuIEluc3RlYWQsIHRoZSBvdXRwdXQgb2YgdGhlIGNodW5rIHdoZW4gaXQgd2FzIGxhc3QgcnVuIGluIHRoZSBlZGl0b3IgaXMgZGlzcGxheWVkLg0K
    + + + +
    + + + + + + + + + + + + + + + + diff --git a/Module 6/winter_2016_senses_valence.csv b/Module 6/winter_2016_senses_valence.csv new file mode 100644 index 00000000..171c3852 --- /dev/null +++ b/Module 6/winter_2016_senses_valence.csv @@ -0,0 +1,406 @@ +Word,Val,AbsVal,Sent,AbsSent,DominantModality +abrasive,5.398113208,0.843700622,0.194851852,0.486741904,Touch +absorbent,5.876666667,0.886794227,0.147041667,0.517712259,Sight +aching,5.233369565,1.187834297,0.054022989,0.581149967,Touch +acidic,5.539591837,1.094426701,0.140979167,0.550524759,Taste +acrid,5.173947368,1.198603117,0.27927027,0.752406679,Smell +adhesive,5.24,0.704821556,0.191047619,0.427764896,Touch +alcoholic,5.557227723,1.297204591,0.319635417,0.589180028,Taste +alive,6.040952381,1.15744753,-0.081378788,0.436801603,Sight +amber,5.720549451,0.98872315,0.509806818,0.679473047,Sight +angular,5.477615894,0.771201857,0.082993056,0.50379992,Sight +antiseptic,5.511794872,1.034930669,0.08225641,0.634669083,Smell +aromatic,5.952941176,1.153099047,0.528716418,0.638933108,Smell +astringent,5.965,1.184922458,0.409052632,0.842423532,Taste +audible,5.351283784,1.052645342,-0.020659574,0.558118006,Sound +banging,5.706666667,1.172051024,0.247222222,0.318783012,Sound +barbecued,6.052777778,1.240213159,0.645368421,0.917268943,Taste +barking,5.696315789,1.211740606,0.240058824,0.618296889,Sound +beautiful,5.819057493,1.094074032,0.30241619,0.609696419,Sight +beeping,4.898,0.681538771,-0.0416,0.407190578,Sound +beery,6.072142857,1.711373184,0.300266667,0.859998953,Taste +beige,5.585794393,0.775966532,0.250476636,0.501792238,Sight +bent,5.382307692,0.644934697,0.148606299,0.410828379,Sight +big,5.279962335,1.010275059,0.073129602,0.630690464,Sight +bitter,5.124433249,1.295432917,-0.088536082,0.712386112,Taste +black,5.314124016,0.946227064,0.082560516,0.654928223,Sight +bland,5.752285714,1.030387858,0.230095238,0.720230815,Taste +blaring,5.275555556,1.121794786,-0.285444444,0.926338568,Sound +bleeping,5.12,0.838717691,-0.075,0.200338568,Sound +blonde,5.523850932,1.080950505,0.196423313,0.541344811,Sight +bloody,5.062922201,1.14708936,0.067457364,0.61476454,Sight +blotchy,5.692,0.805691843,0.0684,0.163596859,Sight +blue,5.57398622,0.870116971,0.30159042,0.591372228,Sight +blunt,5.225740741,0.940279923,-0.14087013,0.56955579,Touch +boiling,5.467142857,0.968486549,0.443638298,0.710686865,Sight +booming,5.528,0.94826207,0.13847561,0.635381496,Sound +bouncy,6.130857143,1.174746656,0.225705882,0.432004619,Touch +brackish,5.846363636,1.278461046,0.41875,0.891917975,Touch +branching,5.616551724,0.733182624,0.083285714,0.501002243,Sight +breakable,5.778333333,0.715768715,0.3748,0.424009422,Sight +breezy,5.993287671,1.080252315,0.137514706,0.554991298,Sight +bright,5.744751381,0.975360081,0.292201818,0.58953661,Sight +brilliant,5.725644531,1.040307563,0.153002012,0.575518398,Sight +briny,5.854210526,1.410930726,0.601631579,0.860166986,Taste +bristly,5.487931034,0.710079175,0.21075,0.394683058,Touch +brittle,5.687473684,0.989100864,0.129706522,0.53992562,Touch +broad,5.507315951,0.902034811,0.073175079,0.604878549,Sight +broken,5.542655678,0.83361053,0.210868472,0.539069318,Sight +brown,5.470278638,0.905534344,0.2127366,0.565539475,Sight +bulky,5.424375,0.804525698,-0.013833333,0.509406535,Sight +bumpy,5.566727273,0.779691843,0.411571429,0.459580963,Touch +burning,5.284299287,1.023708932,0.191967419,0.55767471,Smell +burnt,5.688061224,1.067432949,0.395278351,0.671138715,Smell +bursting,5.030666667,0.697897281,0.158214286,0.3746451,Sight +buttery,5.981587302,1.137374319,0.710060606,0.777586702,Taste +buzzing,5.304186047,1.024132181,0.1234,0.529800349,Sound +charred,5.445233645,0.932745857,0.07051,0.61749157,Sight +cheesy,5.712931034,1.050198459,-0.023553571,0.776446989,Taste +chewy,6.031666667,1.19535851,0.844375,0.862762759,Taste +chilly,5.646640625,1.112145094,0.354584746,0.638912635,Touch +chubby,5.797,1.128784089,0.113319149,0.484297538,Sight +circular,5.500909091,0.806298707,0.236855124,0.573049099,Sight +citrusy,6.394166667,1.404294227,0.767166667,1.068507852,Taste +clammy,5.379714286,0.88707668,0.249882353,0.549476131,Touch +clamorous,5.485882353,1.151357147,0.316588235,0.53894949,Touch +clean,5.519521989,0.928112601,0.123771203,0.500923913,Sight +clear,5.441101591,0.985005812,-0.007715006,0.613408866,Sight +cloudy,5.802820513,1.018914711,0.382493333,0.547138568,Sight +cloying,5.882222222,1.263218829,0.277192308,0.798193516,Taste +cold,5.441072797,1.06014217,0.289351105,0.65307916,Touch +colorful,5.733112245,0.899834659,0.17256266,0.54775181,Sight +colossal,4.809586207,1.172870021,-0.147886525,0.695813041,Sight +compact,5.610840336,0.739411342,0.187937778,0.458038836,Sight +conical,5.315897436,0.743648618,0.114947368,0.420424359,Sight +contoured,5.273809524,0.563589412,-0.028590909,0.38749429,Sight +cooing,5.44625,1.227788268,0.239125,0.815128926,Sound +cool,5.733410138,1.028034568,0.252304075,0.576385448,Touch +crackling,5.406304348,0.927474714,0.442822222,0.649450377,Sound +craggy,5.613863636,0.836940172,0.405756098,0.510248882,Sight +crashing,5.431944444,1.142115084,0.257647059,0.536945795,Sight +creaking,5.258,0.758856855,0.057939394,0.510667143,Sound +creamy,5.915211268,0.969966952,0.596403974,0.759087894,Taste +creased,5.638333333,0.775512477,0.4309,0.564307852,Sight +crimson,5.701768707,0.99066938,0.442277778,0.649005453,Sight +crinkled,5.62125,0.68634567,0.051533333,0.471932286,Sight +crisp,5.792485207,0.992061413,0.416251429,0.70875958,Touch +crooked,5.554246575,0.864583454,0.119426573,0.540757331,Sight +crowded,5.491034483,0.859884711,0.260286822,0.506067006,Sight +crunching,5.56875,1.014326536,-0.498888889,0.9944427,Sound +curly,5.797142857,0.908094759,0.377977778,0.595180918,Sight +curved,5.403806818,0.681708608,0.302923077,0.494359397,Sight +cute,5.948918919,1.087993251,0.069875,0.440716279,Sight +damp,5.563317073,0.863320414,0.28277561,0.550488366,Touch +dank,5.300655738,1.085611411,0.294472727,0.683277581,Sight +dappled,6.320952381,1.464138494,0.466090909,0.657007138,Sight +dark,5.51117395,0.993654002,0.261747615,0.585279711,Sight +dazzling,6.0021875,1.109678899,0.373535135,0.626189471,Sight +dead,5.540287443,1.069409696,0.131922039,0.556985792,Sight +deafening,5.128783784,0.946372037,0.186716418,0.600361256,Sound +deep,5.276958525,1.152975692,0.037859085,0.65502942,Sight +delicious,5.820344828,1.248790013,0.393941176,0.700223481,Taste +dim,5.670717949,0.911754952,0.308666667,0.577072356,Sight +dirty,5.396744186,1.041647502,0.095174935,0.51469587,Sight +downy,5.875882353,1.152216694,0.4662,0.537807328,Sight +drab,5.702307692,0.942307176,0.171114286,0.498316529,Sight +dry,5.469625668,0.913745739,0.243444056,0.625744773,Touch +dull,5.377754386,1.130005194,0.092355072,0.558965361,Sight +dusty,5.498056426,0.848374421,0.216871287,0.54573326,Sight +earthy,5.9436,1.270230212,0.379395833,0.765985383,Sight +echoing,5.227454545,1.043776069,0.108236364,0.465400857,Sound +eggy,6.436,1.777691843,1.07675,1.327757852,Taste +elastic,5.487065217,0.834874229,-0.028510638,0.557829787,Touch +elegant,5.783939394,0.971478009,0.285729437,0.623574023,Sight +empty,5.501381669,0.871316108,0.242671491,0.592348224,Sight +enormous,5.308307692,1.10687257,0.012227683,0.646293771,Sight +faint,5.395808581,1.107087866,0.193757475,0.644357725,Sight +falling,5.42992,0.970258208,0.172983471,0.542554108,Sight +fat,5.380684932,1.036814433,0.045331429,0.629380683,Sight +fatty,5.365283019,0.945268198,0.203791667,0.693666667,Taste +fetid,5.210606061,1.234871678,-0.060294118,0.840940253,Smell +feverish,5.6364,1.145830413,0.180381443,0.502096183,Touch +filthy,5.32619883,1.025456323,0.107319277,0.555008294,Sight +fishy,5.7956,1.158830212,0.143425926,0.649982063,Smell +flaky,5.906,1.082109337,0.118486486,0.632595868,Touch +flat,5.48552809,0.841512204,0.138405286,0.591208709,Sight +fleshy,5.603472222,0.875181129,0.1761,0.464273223,Sight +flickering,5.691851852,0.949068915,0.296746835,0.659257339,Sight +floppy,5.60125,0.742339292,0.211272727,0.42054831,Sight +floral,5.783373494,1.030435094,0.394339506,0.751000031,Sight +flowery,5.849807692,1.109452127,0.27892,0.625002513,Sight +fluffy,5.941969697,0.943600812,0.410217391,0.567992107,Touch +foamy,5.396153846,1.188323134,0.335842105,0.770318269,Sight +foggy,5.673283582,0.909850296,0.425439394,0.629839995,Sight +forked,5.738125,0.857211103,0.3503,0.544639615,Sight +fragrant,5.860545455,1.172167354,0.637763636,0.796209993,Smell +freezing,5.465164835,0.920878789,0.107438202,0.527103417,Touch +fresh,5.453644159,1.058009421,0.247532468,0.677849549,Smell +frosty,5.83578125,1.050444204,0.302692308,0.581189689,Sight +fruity,5.958382353,1.080191784,0.570310811,0.75977791,Taste +fuzzy,5.703173432,0.951345024,0.167674157,0.522680196,Sight +garlicky,5.971944444,1.211602048,0.610111111,0.797176263,Taste +gigantic,5.379981618,1.009014184,0.14768785,0.628786025,Sight +giggling,5.805238095,1.316776004,0.0212,0.497596859,Sound +glamorous,5.867992126,1.031383504,0.239468,0.495542513,Sight +gleaming,5.567815385,0.861000852,0.29075625,0.560880202,Sight +glistening,5.636195122,0.913354261,0.28328934,0.601567198,Sight +glittery,5.607974684,0.94395286,0.192556962,0.53871065,Sight +globular,5.597142857,0.697252194,0.0773,0.501095289,Sight +glossy,5.69556213,0.870905272,0.267028902,0.582871863,Sight +glowing,5.707633588,0.926597737,0.262279373,0.569102784,Sight +gold,5.510550459,0.832349659,0.212587156,0.508773668,Sight +gooey,5.731956522,1.142809011,0.239909091,0.670343407,Touch +gorgeous,5.921105882,1.104730692,0.426390995,0.643675677,Sight +grainy,5.741573034,0.986248459,0.0854,0.592579174,Touch +grassy,5.638606061,0.81696927,0.219238994,0.474903618,Sight +gray,5.377326944,0.879013424,0.269956943,0.584393368,Sight +greasy,5.462868852,0.986809305,0.209275424,0.567668315,Touch +green,5.522520516,0.918839048,0.229263521,0.637912524,Sight +gritty,5.712488889,1.063397874,0.246355856,0.537953987,Touch +groaning,5.3925,1.069697526,0.184928571,0.385146222,Sound +grotesque,5.153974359,1.224296357,-0.214844749,0.756568267,Sight +growling,5.283823529,0.979162668,0.049911765,0.529089159,Sound +grubby,5.602173913,0.973087701,0.169742424,0.426079089,Sight +gurgling,5.121621622,1.49070684,-0.169567568,0.781133013,Sound +hairy,5.195744681,0.996947462,-0.020716578,0.509164852,Sight +handsome,5.71040153,0.990935016,0.145710983,0.537131908,Sight +happy,5.628561644,1.141903416,0.112581655,0.580655176,Sight +hard,5.441934884,0.979582548,0.110767956,0.558275558,Touch +harsh,5.249680171,1.02297013,-0.032264317,0.623418018,Sound +hazy,5.745,1.064040557,0.384396104,0.66664714,Sight +heavy,5.205227119,0.939753686,0.099854583,0.633693484,Touch +high,5.436636829,0.993667823,0.050994819,0.678831267,Sight +hissing,5.35704918,0.999381903,0.253857143,0.684685282,Sound +hoarse,5.390217391,1.22841127,-0.056588235,0.696941484,Sound +hollow,5.444704433,0.933684833,0.134235897,0.517545684,Sight +honeyed,5.940416667,1.101602048,0.292130435,0.922658319,Taste +hot,5.528398719,0.999291429,0.264069477,0.631770058,Touch +howling,4.933522727,1.280970315,0.104747126,0.695069507,Sound +huge,5.262619254,1.000398121,0.065123412,0.678684885,Sight +humid,5.586162791,1.110831519,0.338202247,0.562118182,Touch +hushed,5.672018349,1.247903675,0.122443396,0.691862046,Sound +husky,5.609876543,1.120711897,0.137644737,0.453882819,Sound +icy,5.434382022,1.015641898,0.339471698,0.716037537,Sight +immense,5.405320122,1.139663207,0.044130159,0.664061265,Sight +insipid,6.155227273,1.431870137,-0.1328,0.669553113,Sight +itchy,5.224848485,1.02463853,0.142447761,0.460451277,Touch +jagged,5.306728972,0.843802882,0.246238806,0.538531348,Touch +jammy,5.517142857,1.41087901,0.192,0.636890634,Taste +jingling,5.798,1.248461229,0.6238,0.758206281,Sound +juicy,5.674646465,1.117233463,0.243393204,0.600307655,Taste +khaki,5.744918033,0.831512721,0.25284127,0.480498793,Sight +large,5.371699427,0.883640211,0.188187581,0.649644371,Sight +laughing,5.542653061,1.155933782,-0.030636364,0.51146195,Sound +leathery,5.649411765,0.746696286,0.337411765,0.524886972,Touch +lemony,6.201777778,1.355127672,0.780625,0.91405279,Taste +light,5.461285831,0.901889698,0.230668023,0.61965099,Sight +lilting,6.17125,1.297114804,0.5034,0.637672948,Sight +lithe,5.680909091,0.924559004,0.252862745,0.526514423,Sight +little,5.248460458,1.006403959,0.087386576,0.715857707,Sight +long,5.283406473,0.923859872,0.134224957,0.63314965,Sight +loose,5.419716088,0.774770396,0.065110749,0.579434708,Sight +loud,5.208567639,1.017706465,-0.009465608,0.623614089,Sound +low,5.38074108,0.946057895,0.014958716,0.651570243,Sight +lukewarm,6.003924051,1.174507757,0.3914125,0.741891818,Touch +lumpy,5.75376,0.932042538,0.184432,0.494883392,Touch +lush,5.970545455,1.049936465,0.354795349,0.669462314,Sight +malty,5.87,0.967252194,0.71625,1.344011777,Taste +meaty,5.502743363,0.929706976,0.306575221,0.684809062,Taste +medicinal,5.528715596,0.978404705,0.125419048,0.558867115,Sight +mellow,5.997295082,1.073284385,0.412645669,0.78016255,Sight +melodious,5.941627907,1.300428816,0.319854167,0.648107438,Sound +melted,5.526966292,0.96280865,0.368268817,0.742424927,Sight +meowing,5.53,0.466153072,-0.609,0.672984297,Sound +mild,4.81497553,1.299486783,-0.01188551,0.76000724,Taste +miniature,5.61950783,0.974394723,0.375247059,0.668382272,Sight +minty,6.074827586,1.194800501,0.5178,0.750003141,Taste +misty,5.768053691,1.100541644,0.386066667,0.623565025,Sight +moaning,5.2115,0.889345922,-0.02215,0.499245289,Sound +moist,5.59518018,1.02707171,0.324640553,0.625281636,Touch +motionless,5.533119266,0.9117992,0.102981982,0.408316589,Sight +mottled,5.611685393,0.938971,0.17777381,0.498183058,Sight +muddy,5.317741935,0.897597765,0.152627586,0.538589672,Sight +muffled,5.111319444,1.142815053,0.078992908,0.560651925,Sound +muggy,6.271428571,1.249559776,0.616875,0.585261777,Sight +mumbling,5.153846154,0.782781006,0.177416667,0.607583333,Sound +murky,5.51844898,0.988750067,0.159689362,0.596984783,Sight +murmuring,5.677307692,1.067543962,0.42872,0.533206909,Sound +mushroomy,5.5,1.013691843,0.0712,0.244796859,Taste +mushy,5.556268657,0.867003202,0.128294118,0.555443486,Touch +musky,5.776756757,1.327421682,0.542472222,0.872534757,Smell +musty,5.468288288,0.919022527,0.176432692,0.589609997,Smell +mute,5.380520231,1.216780528,-0.067005814,0.617864271,Sound +muttering,6.056666667,0.992819739,0.462,0.628507852,Sound +narrow,5.395671141,0.7570011,0.089992916,0.577221873,Sight +noisy,5.364528302,1.057078363,0.130005525,0.583427757,Sound +noxious,4.849032258,1.110612134,0.002,0.677447373,Smell +nutty,6.013333333,1.128756244,0.327776699,0.626130025,Taste +odorous,5.362857143,1.060769194,0.153619048,0.520100473,Smell +oily,5.468781726,1.00021056,0.278619792,0.576499208,Sight +oniony,5.8725,1.495576536,0.463125,1.133378926,Taste +open,5.32737931,0.951692065,0.090132427,0.639734764,Sight +orange,5.591410959,0.878637132,0.354780521,0.620530353,Sight +oval,5.605567568,0.835400833,0.309716578,0.562866925,Sight +painful,5.002169391,1.153607197,-0.041280125,0.654378152,Touch +palatable,5.721764706,0.975338843,-0.117984375,0.461166968,Taste +pale,5.593280632,0.986369369,0.292592742,0.559286754,Sight +patterned,5.686810345,0.771969042,0.33604386,0.573558417,Sight +peachy,6.249565217,1.18571829,0.63812,0.711728166,Taste +peppery,5.613488372,1.088246563,0.64148,0.880566909,Taste +perfumed,5.936666667,1.217066264,0.560642857,0.646564321,Smell +petite,5.988045977,1.120255814,0.354597938,0.654620985,Sight +pink,5.613787529,0.924535048,0.346882151,0.622891435,Sight +plain,5.499516729,1.15646522,0.069840074,0.699625298,Sight +polished,5.67347541,0.895167319,0.154309764,0.668340137,Sight +popping,5.0285,0.6495,0.234,0.570844585,Sound +portly,5.631935484,0.881438782,-0.034467742,0.492371474,Sight +prickly,5.739300699,1.112667695,0.201934783,0.505675051,Touch +puffy,5.876375,1.049182151,0.359865854,0.52331024,Sight +pulsing,5.612375,1.046893883,0.239727273,0.510068402,Touch +pungent,5.657480916,1.064579769,0.345969231,0.791636567,Smell +puny,5.683370787,1.076620162,0.012376344,0.586010922,Sight +purple,5.5071777,0.894631129,0.32635163,0.63989033,Sight +purring,5.850555556,1.124401365,0.185722222,0.515612856,Sound +putrid,5.175081967,1.324022584,-0.031576271,0.739303754,Smell +quiet,5.609460133,1.152530329,0.136330465,0.669146768,Sound +radiant,6.145970874,1.30921152,0.417542289,0.625538354,Sight +rancid,5.129649123,1.254790728,0.064018519,0.766541108,Smell +raspy,5.282380952,1.064505347,0.12175,0.502524155,Sound +raucous,5.646625,1.163470796,0.173163522,0.656211201,Sound +rectangular,5.426,0.709204217,0.173286996,0.473801093,Sight +red,5.414637416,0.88615028,0.235629563,0.642456415,Sight +reddish,5.48795082,0.877193882,0.230172131,0.554633979,Sight +reeking,4.63047619,1.290073371,-0.255,0.776364289,Smell +resounding,5.319145299,1.107080676,-0.053423423,0.512518986,Sound +reverberating,5.211578947,0.996639635,0.190944444,0.6600573,Sound +rhythmic,5.621275168,0.972054313,0.105539474,0.598217415,Sound +ripe,5.779674797,1.190499841,0.360181818,0.80877701,Taste +rippled,5.636756757,0.706797856,0.303235294,0.480770248,Sight +rippling,5.553186813,0.999720682,0.272690476,0.599385813,Sight +roasted,5.898198198,1.000643968,0.59590678,0.769676145,Taste +roasting,5.4925,0.788801418,0.350222222,0.521932324,Sight +rotten,5.583674912,1.151858843,0.0804947,0.662255249,Sight +rotund,5.673243243,0.906402929,0.053848485,0.439544979,Sight +rough,5.512853224,0.901873678,0.125721992,0.546612152,Touch +round,5.523026052,0.835260955,0.227340771,0.509112878,Sight +rubbery,5.532705882,0.883447663,0.201414634,0.500146724,Touch +rumbling,5.144545455,1.049678111,0.257403509,0.475266188,Sound +rustling,5.909444444,1.336196151,0.742411765,0.683719738,Sound +rusty,5.322663934,0.722808801,0.19217094,0.507610193,Sight +salty,5.693988764,1.125207068,0.366546961,0.661932775,Taste +savory,5.915,1.112931422,0.554269231,0.767600039,Taste +scaly,5.411454545,0.89876902,0.064358491,0.636096414,Touch +scented,5.828333333,1.142618569,0.429034483,0.719776793,Smell +scentless,5.755,0.691153072,0.2435,0.7045,Smell +scratchy,5.722638889,0.909796493,0.266861111,0.579059918,Touch +scrawny,5.616933333,1.007302182,0.0185,0.428858169,Sight +screaming,5.282484472,1.21198739,0.054046358,0.50125176,Sound +screeching,5.503548387,1.158163597,0.082896552,0.375656797,Sound +searing,5.215639535,1.17758033,0.057058824,0.678516539,Sight +shadowy,5.466477273,0.904985085,0.140469636,0.536082943,Sight +shaggy,5.620693069,0.872337751,0.123040816,0.467633935,Sight +shallow,5.515985222,0.868690464,0.117414392,0.619009821,Sight +sharp,5.202479241,0.992634241,0.006454545,0.609432201,Touch +sheer,5.299710366,1.319592897,-0.011308442,0.801039573,Sight +shimmering,5.891686747,0.961673846,0.436939759,0.61227206,Sight +shiny,5.413979058,0.765299716,0.233790761,0.528342746,Sight +short,5.433436929,0.843992132,0.113323801,0.550142679,Sight +shrieking,5.240377358,1.14245264,0.067137255,0.508392465,Sound +shrill,5.087352941,1.123069427,-0.042845361,0.625938954,Sound +silent,5.331201672,1.142956937,0.085399784,0.614644774,Sound +silky,5.740194805,0.893441036,0.479698718,0.637077156,Touch +silver,5.784931507,0.927533833,0.314506849,0.518128665,Sight +skinny,5.533890909,0.945719894,0.141282528,0.537469978,Sight +slick,5.504644068,0.871806749,0.158537162,0.547499593,Sight +slimy,5.19446281,0.995778632,0.097826087,0.534714272,Touch +slippery,5.446836364,0.802833288,0.134652985,0.616811342,Touch +slushy,5.309310345,0.923288884,0.241576923,0.477427909,Sight +small,5.314277127,0.931466118,0.137467971,0.669430168,Sight +smelly,5.176338028,0.971852545,0.100293233,0.523363618,Smell +smoky,5.538823529,1.023393333,0.366246753,0.737585865,Smell +smooth,5.540558003,0.844622963,0.255969343,0.607529147,Touch +snarling,5.163188406,1.083689887,-0.100161765,0.565746767,Sound +snorting,5.395,1.555384357,-0.012818182,0.347546882,Sound +soapy,5.916444444,1.197076424,0.355914894,0.616217778,Sight +sodden,5.409310345,0.894654825,0.126973214,0.477117754,Sight +soft,5.454473925,0.931899914,0.150204896,0.618303033,Touch +soggy,5.44441989,0.952430661,0.186431034,0.553433561,Touch +solid,5.527763272,0.878413683,0.061660494,0.549814071,Touch +sonorous,5.874878049,0.965215288,0.131911111,0.602532984,Sound +sore,5.056132075,0.855290144,-0.166278846,0.614837746,Touch +soundless,5.229795918,1.007393798,0.043431818,0.661751428,Sound +sour,5.491092437,1.20917879,0.140840164,0.693063406,Taste +sparkly,5.738867925,0.877604743,0.201641509,0.493681319,Sight +speckled,5.589193548,0.867456226,0.334540984,0.519923954,Sight +spicy,5.843225806,1.037600841,0.680765854,0.838365366,Taste +spiky,5.707368421,0.977206057,0.35095082,0.62302077,Touch +spilling,5.7,0.984065602,0.388857143,0.475149587,Sight +spotless,5.9184,0.971784089,0.386662162,0.573155439,Sight +spotted,5.405044248,1.033491877,0.159948276,0.53057059,Sight +square,5.54826087,0.838554082,0.20334058,0.499822406,Sight +squeaking,5.32,0.710180677,0.3355,0.572130889,Sound +squealing,5.372142857,1.165439505,0.10156,0.308041884,Sound +stagnant,5.371034483,0.950353394,0.120012195,0.594745434,Sight +stale,5.518959538,1.181044654,0.208488506,0.656731871,Taste +steep,5.228913043,0.811227243,0.168665198,0.595416103,Sight +stenchy,5.62,0.556153072,5,4.936015703,Smell +sticky,5.337,0.882716138,0.106022508,0.606300197,Touch +stinging,4.847368421,1.156811761,0.063704698,0.672684037,Touch +stinky,5.485862069,1.090875091,0.092655172,0.603621231,Smell +stormy,5.501052632,1.272739351,0.173115044,0.524603576,Sight +straight,5.43860735,0.919301883,-0.047220307,0.578728983,Sight +strange,5.480895296,1.077857751,0.074687943,0.612033559,Sight +striped,5.579267016,0.807011278,0.350292308,0.623508926,Sight +strong,5.430486233,0.952014954,0.005910628,0.640922269,Sight +sturdy,5.644059946,0.819068987,0.160066852,0.493155434,Touch +sunny,5.931320132,1.069463838,0.366020134,0.571214588,Sight +sweaty,5.453203883,1.09066436,0.115298507,0.527757547,Smell +sweet,5.681452671,1.170262758,0.237406452,0.647960889,Taste +swift,5.248944282,1.059052399,0.012349112,0.605774776,Sight +swinging,5.463868613,0.820224271,0.223940741,0.442790187,Sight +tall,5.5425,0.852785801,0.163086614,0.55195898,Sight +tangerine,5.902564103,1.116705658,0.577333333,0.687245573,Sight +tangy,5.876625,1.07847067,0.563788235,0.830056111,Taste +tapering,5.485172414,0.60896517,0.124241379,0.419897093,Sight +tart,5.990337079,1.209947611,0.428849462,0.709952146,Taste +tasteless,5.661060606,1.089008972,0.015242424,0.750545455,Taste +tasty,5.894336735,1.117012917,0.481465347,0.71510554,Taste +tender,5.712243437,1.13440756,0.289879012,0.682746506,Touch +tepid,5.940707071,1.267179042,0.35543299,0.741623899,Touch +thorny,5.458902439,0.98477452,0.037209877,0.556272574,Touch +thudding,4.881333333,1.362410205,0.253357143,0.542930815,Sound +thumping,5.002413793,1.092095357,0.185733333,0.649404188,Sound +thunderous,5.203923077,1.123603455,0.106540323,0.603171128,Sound +ticklish,5.367419355,0.822332132,-0.0604375,0.474496074,Touch +tight,5.378703704,0.75882593,0.055315589,0.531305436,Touch +tinkling,6.292962963,1.515611876,0.549466667,0.600540662,Sound +tiny,5.37049417,0.901232817,0.204778036,0.60715513,Sight +tough,5.355045872,0.932766152,-0.023501699,0.545038517,Touch +translucent,5.597755102,0.904458043,0.322663102,0.583639639,Sight +transparent,5.49226506,0.862375933,0.064519802,0.564797185,Sight +triangular,5.473554502,0.739806418,0.136162437,0.456692348,Sight +ugly,5.146509972,1.082317404,-0.01544919,0.565952247,Sight +uneven,5.636811594,0.872340733,0.100157895,0.534096665,Sight +unpalatable,5.535185185,1.118233188,-0.113962963,0.444034129,Taste +unripe,6.737,1.673153072,0.767166667,1.074841185,Sight +vegetal,5.915652174,0.995752004,0.746043478,0.867964032,Sight +vinegary,6.248095238,1.53904714,0.434545455,0.680369347,Taste +vivid,5.823141892,1.066446988,0.056786942,0.596107231,Sight +wailing,5.548043478,1.300350935,0.074711111,0.563155207,Sound +warbling,5.17,0.893286643,0.348083333,0.557585951,Sound +warm,5.774844398,1.061902707,0.375366701,0.675182277,Touch +waxy,5.73527027,0.987639831,0.389679487,0.567326553,Touch +weak,5.453759178,0.930084439,-0.045140762,0.630720118,Sight +weightless,5.756875,1.074879469,0.471691176,0.780638819,Touch +wet,5.415122898,0.894773336,0.199112113,0.566535373,Touch +whimpering,4.9045,1.5575,-0.352045455,0.615036889,Sound +whining,5.29097561,1.009455702,-0.056097561,0.616146724,Sound +whispering,5.8955,1.115191843,0.033121951,0.635998851,Sound +whistling,5.827142857,1.086373184,0.235384615,0.588152638,Sound +white,5.353693765,0.938191723,0.131610348,0.656168893,Sight +wide,5.450415677,0.824700038,0.096359509,0.588883461,Sight +wiry,5.665333333,0.832443997,0.078242424,0.542486911,Sight +wispy,5.67872093,0.981546992,0.135094118,0.628858639,Sight +wizened,5.733333333,1.133247399,0.099627907,0.568882625,Sight +woolly,5.503770492,0.857805458,0.267328358,0.485987653,Touch +yellow,5.451604376,0.891756232,0.252861261,0.639369331,Sight \ No newline at end of file From 0d22dbb79df67b0f4d7e68a92521137797d68317 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Fri, 1 Nov 2024 11:40:22 +0530 Subject: [PATCH 50/55] predict() Mainly added predict function Also, included relationship between r and R^2 --- Module 6/Regression.Rmd | 39 ++++++++++++++++++++++++++++++++++++++- 1 file changed, 38 insertions(+), 1 deletion(-) diff --git a/Module 6/Regression.Rmd b/Module 6/Regression.Rmd index 5f6d2fb5..f2c68e87 100644 --- a/Module 6/Regression.Rmd +++ b/Module 6/Regression.Rmd @@ -37,6 +37,12 @@ summary(regression.1) cor.test( x = parenthood$dan.sleep, y = parenthood$dan.grump ) ``` +```{r} +R <-0.903^2 +R +``` + + ## Multiple linear regression dan.grump ~ dan.sleep + baby.sleep (Is Dan's sleep and the baby's sleep both together leading to grumpiness the next day?) @@ -50,6 +56,8 @@ print( regression.2 ) summary(regression.2) ``` + + ```{r} library(lsr) correlate(parenthood, test=TRUE) @@ -141,6 +149,7 @@ plot(x = regression.2, which = 1) ```{r} +library(carData) residualPlots( model = regression.2 ) ``` @@ -164,7 +173,7 @@ vif( mod = regression.2 ) ``` - +MODEL SELECTION Backward elimination @@ -202,6 +211,32 @@ anova( M0, M1 ) ``` +Using predict() function to interpret the model +```{r} +regression.1 <- lm( formula = dan.grump ~ dan.sleep, + data = parenthood ) +``` + + + +```{r} +xvals <- seq(from = 0, to = 10, by = 1) +mypreds <- tibble(dan.sleep = xvals) +``` + + +```{r} +mypreds$fit <- predict(regression.1, newdata = mypreds) +mypreds +``` + + + + + + + + Using the performance package from easystats for model checking ```{r} @@ -213,6 +248,8 @@ model_performance(M1) ``` + + ```{r} # checking model assumptions check_model(M1) From a58b6273c1da947640a7c23bf7986751d6668cc2 Mon Sep 17 00:00:00 2001 From: juneeybug Date: Fri, 1 Nov 2024 12:25:56 +0530 Subject: [PATCH 51/55] Assumptions checks modified Added Normality check. Loaded Car and CatData for linearity check --- Module 6/Regression.Rmd | 22 ++++++++++++++++++++++ 1 file changed, 22 insertions(+) diff --git a/Module 6/Regression.Rmd b/Module 6/Regression.Rmd index f2c68e87..aa95b841 100644 --- a/Module 6/Regression.Rmd +++ b/Module 6/Regression.Rmd @@ -97,6 +97,10 @@ ckd <- cooks.distance( model = regression.2 ) ckd ``` + + + + Directly plotting Cook's distance using plot from car package ```{r} plot(regression.2,which=4) @@ -130,6 +134,17 @@ Directly make the QQ plot of residuals plot( x = regression.2, which = 2 ) ``` +Normality Test +```{r} +shapiro.test(residuals(regression.2)) +``` + + + + + + + Checking linearity of relationship ```{r} yhat.2 <- fitted.values( object = regression.2 ) @@ -148,11 +163,18 @@ plot(x = regression.2, which = 1) ``` +Linearity test + ```{r} +library(car) library(carData) +``` + +```{r} residualPlots( model = regression.2 ) ``` + If the curvature is significant, then you might want to transform the predictor using Box Cox Transformation. Or use the powerTransform() in the car package. From 021451766063df14ed654168f8a19d64a297f18c Mon Sep 17 00:00:00 2001 From: juneeybug Date: Fri, 1 Nov 2024 15:36:11 +0530 Subject: [PATCH 52/55] Dummy coding Added description --- Module 6/CategoricalRegression.Rmd | 8 ++++++++ Module 6/CategoricalRegression.nb.html | 10 ++++++---- 2 files changed, 14 insertions(+), 4 deletions(-) diff --git a/Module 6/CategoricalRegression.Rmd b/Module 6/CategoricalRegression.Rmd index eec3f61f..0bc8f10d 100644 --- a/Module 6/CategoricalRegression.Rmd +++ b/Module 6/CategoricalRegression.Rmd @@ -44,6 +44,14 @@ If you are interested in choosing the right colors for your plots, then here's a https://ggplot2-book.org/scales-colour +Coding the variables +Referred to as Dummy Coding or Treatment Coding +Smell - 0 +Taste - 1 + + + + ```{r} chem_mdl <- lm(Val ~ DominantModality, data = chem) summary(chem_mdl) diff --git a/Module 6/CategoricalRegression.nb.html b/Module 6/CategoricalRegression.nb.html index c3d10c57..77393d21 100644 --- a/Module 6/CategoricalRegression.nb.html +++ b/Module 6/CategoricalRegression.nb.html @@ -1790,8 +1790,8 @@

    R Notebook

    senses <- read_csv('winter_2016_senses_valence.csv')
    - -
    Rows: 405 Columns: 6── Column specification ──────────────────────────────────────────────────────────────────────────────────────────
    +
    +
    Rows: 405 Columns: 6── Column specification ─────────────────────────────────────────────────────────────────────────────────────────
     Delimiter: ","
     chr (2): Word, DominantModality
     dbl (4): Val, AbsVal, Sent, AbsSent
    @@ -1801,7 +1801,7 @@ 

    R Notebook

    senses
    - +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    + + + + + + + + +

    This is an R Markdown +Notebook. When you execute code within the notebook, the results appear +beneath the code.

    +

    Try executing this chunk by clicking the Run button within +the chunk or by placing your cursor inside it and pressing +Ctrl+Shift+Enter.

    + + + +
    library(lsr)
    + + + + + + +
    library(magrittr)
    +library(tidyverse)
    +library(ggplot2)
    + + + +

    For linear mixed models, load these libraries

    + + + +
    library(lme4)
    +library(lmerTest)
    + + + +

    Add a new chunk by clicking the Insert Chunk button on the +toolbar or by pressing Ctrl+Alt+I.

    +

    When you save the notebook, an HTML file containing the code and +output will be saved alongside it (click the Preview button or +press Ctrl+Shift+K to preview the HTML file).

    +

    The preview shows you a rendered HTML copy of the contents of the +editor. Consequently, unlike Knit, Preview does not +run any R code chunks. Instead, the output of the chunk when it was last +run in the editor is displayed.

    + + +
    LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpUaGlzIGlzIGFuIFtSIE1hcmtkb3duXShodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tKSBOb3RlYm9vay4gV2hlbiB5b3UgZXhlY3V0ZSBjb2RlIHdpdGhpbiB0aGUgbm90ZWJvb2ssIHRoZSByZXN1bHRzIGFwcGVhciBiZW5lYXRoIHRoZSBjb2RlLiANCg0KVHJ5IGV4ZWN1dGluZyB0aGlzIGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqUnVuKiBidXR0b24gd2l0aGluIHRoZSBjaHVuayBvciBieSBwbGFjaW5nIHlvdXIgY3Vyc29yIGluc2lkZSBpdCBhbmQgcHJlc3NpbmcgKkN0cmwrU2hpZnQrRW50ZXIqLiANCg0KYGBge3J9DQpsaWJyYXJ5KGxzcikNCmBgYA0KDQpgYGB7cn0NCmxpYnJhcnkobWFncml0dHIpDQpsaWJyYXJ5KHRpZHl2ZXJzZSkNCmxpYnJhcnkoZ2dwbG90MikNCmBgYA0KDQpGb3IgbGluZWFyIG1peGVkIG1vZGVscywgbG9hZCB0aGVzZSBsaWJyYXJpZXMNCmBgYHtyfQ0KbGlicmFyeShsbWU0KQ0KbGlicmFyeShsbWVyVGVzdCkNCmBgYA0KDQoNCg0KDQoNCg0KDQoNCg0KQWRkIGEgbmV3IGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqSW5zZXJ0IENodW5rKiBidXR0b24gb24gdGhlIHRvb2xiYXIgb3IgYnkgcHJlc3NpbmcgKkN0cmwrQWx0K0kqLg0KDQpXaGVuIHlvdSBzYXZlIHRoZSBub3RlYm9vaywgYW4gSFRNTCBmaWxlIGNvbnRhaW5pbmcgdGhlIGNvZGUgYW5kIG91dHB1dCB3aWxsIGJlIHNhdmVkIGFsb25nc2lkZSBpdCAoY2xpY2sgdGhlICpQcmV2aWV3KiBidXR0b24gb3IgcHJlc3MgKkN0cmwrU2hpZnQrSyogdG8gcHJldmlldyB0aGUgSFRNTCBmaWxlKS4NCg0KVGhlIHByZXZpZXcgc2hvd3MgeW91IGEgcmVuZGVyZWQgSFRNTCBjb3B5IG9mIHRoZSBjb250ZW50cyBvZiB0aGUgZWRpdG9yLiBDb25zZXF1ZW50bHksIHVubGlrZSAqS25pdCosICpQcmV2aWV3KiBkb2VzIG5vdCBydW4gYW55IFIgY29kZSBjaHVua3MuIEluc3RlYWQsIHRoZSBvdXRwdXQgb2YgdGhlIGNodW5rIHdoZW4gaXQgd2FzIGxhc3QgcnVuIGluIHRoZSBlZGl0b3IgaXMgZGlzcGxheWVkLg0K
    + + + +
    + + + + + + + + + + + + + + + +

    Sh#A;4y*5`SKU7cwalqvGaJVENcIX+Nu7UX_m%<$s^9#*$r; zUAQjXI958wE<2C_j0j=|8}Tl3hx-_?*Wj^em0_EsC#@-ITrSagy!&DeVIj$kzC!vB z8T^U4?e85MMMiT%6AFKfjnht5KSJ?czVQoYUAz+}p6)Z7S@C?bvO(~GbiJ&jA3v4{ zqOGp}Zc2@fbIs%cCs01E#p?#(W2c056- zCJT!`s4)_#f|0ymUoQj&o#hb(>y& zvdYB$j~VH4ygcI^_4_4wbMz5SE=427bw29NS=7Fl>I?1~XC+D{#1;TPb+_`RHvj%h zm9B6T6Ih*Z{yL%uj0m>e54|PvV5Q{&hY7JuVDoGPq64FlX#!%;oK|0dVc8?y?k#-B zYKQZELAa-3*ti5xo-UuXDZg zup>hoB98tnp?C3PMl*U#@uxQE9UGe%a!-IJbE-rZsXPY*gmompm7CJb7 z(6Vt3OUaCXJdniVBUxCJgjx0Lnr)%-!M%abC^6lxEroglW4ZR19oVfP1X}+)pdxz? zx52(gGYlo)UVeE1V!7niM;wR`m*|Zb{kzcST!vCobnvNc0i;tcz%fKfTby#Xad3oy zCVTob_tXb$PcWLgkhe-mdG60(@JXHNJb7rJyQ9Y`y1CXoz56c!5Zi&b4U!;+t z2-7v@pG%2Uf)aPYqdESZYyhm|0V|O>##IVVM&xJk^!mEH#ZZ*RU%l8F9(<|=mm|bh z95PzYE>V_}1O|!#y9I=(a9n0EoIg)ri_X!A_tH8BDj={TQm~4j+-~Pn`h`{pggs#3 z@-o8xMWl_e7FRFKKs%9YS=-{ak8=10A8~N zB@GDNmQcsOe*NkQu~@8%aOMP0#^T3Z&R8YfFL!)eCi zG+_dPf(QPWTJOE0{9bfg9Al$y*Zi(Do#h$K>JGBL6HhrE7;s!$9hD?kG@<_U@Qj3Z zuP2;kt>8X(F2ZN=bHz>Nt#zYo^2MICbXIq@!nHKUC0i}&82Gfzbq8bCtdpj?Zfz}| zr}2Sk5qDkHrOQ$xQ9ZNVN$&>((cPj{dyO+pA=eHs{~l^;cG^%axmj(^VIcR$kH_Yk z6(tSVPyl(ob_~xdWj2aMOP}94C@L|f1$2Bk;W+i(S~Z1FUF-`-MDO*yEajyZ{zNzq2&e)l1-fQiFp-7rhBW@j#NxZ6C4n))mNn%dppl z6ICbNh=X%hu=foMp)5#Hx6l89Mjhb;Lyr&Ot9Gz3eId*#$S4PzZJ36ER?~; zbosw0bdwQ++blrFdkkyWT%az24W@Dys=RFyX>r1HVQf%o}o`SwK=} z05?K@ATY3kA6(YwJ;Y5p^#f`7O)GFL4i{5P#(G%Y&WL+8_cjNyin(#>+35I~T1=!X z*xyR5dBk0PSu&3{Cji_dt0yL2^?oPN{Zi&B=M@lOH$uM1He#kJ?mLUBZXQTbLj1Tc zW4jg+v?NmXJmhY0AI)zYrm@YX3DX^hj^%AU>;9|XgQGI{lIyRwJ`7WzIJe`pVYmt{ zDQ^xAwYl8{W=2&gM*SwG0dryQiaJKYN_D?X2}i#9-BWkxu+~V~zJZ6b_zu^S%u63p z<@1F43Resp^te1NY24272Nou7)g3^rfS2>9Ut;hNz*dJ3pY0^4>}yeob^$m;cIM&+ z;%;DwEIvU24nzxrpqb}D;)I_5eRl)a2{F6^Ad@085FoDzng}*N@c$Zj$&-UC6Pc|* zKA>hs{iYL%3I(m$8xLmKZ9zmfjCD-Mt-&>NB-=FzgMMj**c-T$mKNHGhr87I@`sDa zr1*~6`C6q#ruEK0nB1GmC0&xP6bQXU7y&?a14!-Q!fH`*XI2fafxdnM=rczjszR&_ zQ2HY84mmkG+K%1$=8-WAqCF5S?<1%ZiiDHx#&0anckju!r?63xW`4}E|N0o{XlO9Y z1^U78P^9HJ0)`Y|G8w|?3?l;);5{L1Rp0$p^$cpe&VA@`9e0_*QISVb8FOV)d7lJb zcA1$-=szEW|D~w*oBluuP{;v@WtPwdyTq^YG9qvXvE5qEn@(+GzK$;3x2Tuqwj?^c z=bc9HYiQ4hQk?5eES~K0qXyctKj0pKxv;@52`FT*KFNPb&dNFj4{D%66aw|Stxx9s zd4r1%%NK??DXy?J(^SYa7&__UJtNJkc|?*^h9B8r*p!rrg_BHSNhoa95Bo4{|E7Ce zC!f6s=W&;=8)*NZm`_k=A@Kn`JUyhJc&liMhkD)BZU_&7W!`k5m2@Y{+ifH2fuU0s zRg~q|ex;D{9+w)3X|V-5&cQ{3FGCdnkY)$A7->`i4h`x>JwrN@;x~dflVDY@2+00Y zjSFz9bS}+=omK;ruSj7v#<=MLAO}e3;}4zm)%RrCb%C@ce2-7le+;5h*BLL9%d%xh zBp8XS)OqSsiBBvVCcXDvx zXQ7KL=i&ky70sntJcImQk<`y^Nle`FK9qgA>9Im~kKN=vQG8LA4*H_ZJj|!k-TcWr z>L!dnQeB3{8kwBJQe8ZpBMSl3Xv;^kjFRTD3iclaSx3gdRi(2yE6Sk!JE!rh#5#8? z?p~Yv!+fxpO9zz)`9Oa1WHS= z=0f+5l=9#ux-YXpi0MHGSJI0bEZ^ z1q2&PoecE$7kpI<4OOJow{8(cdq&bJ~I?$Rb!o-RT)<*)qB2+M;sEQtoYAf9~d zA;w3h!51ThzZ&h!-%w~oVkvYcYI}&b{kLaiOq@BPy!G!PRP~PXvZkF5Rn`z$tLxYW zbV_Pey}mk;15VgJcKZ;*K1-&fM9n`t|=~VS4R6C<~NL05ntXU}$GdWB^2f`2}DqJKv4F+PlK8nK*Ei-R`>F#rLy9k5 zO%E47S3|3AC>l*HX?(4gsqBEW+AZdtOq8hK(3b=dzY!;TBdnYxA%hhkyFUbqMy*ejcBn0}yvTT)PySa9}dYvv0ksJ0N=N`;JEA_WWrjXILZu<8t zuw_!Kc>mg}V*J{kB@%ZG)aG1>1a3QVckd{f36s~h%QfSZ?N)2%6)L2Bn?hG@YJ48m zep!Kc1&vbAtnUuQ5~k&EsTN2`CPHyY4)$=}DWVdtHoP!i9pPfV#YAHqv8U18?Oz>W zsUe(7cxJV=I&oI;vk9Y7pXOVJm1+~Nt|l#|1#)hpE^0KrIzL57k3ORjZPg^I&^Uzh znw$|y;OA*>8qMg?iHLH#h3X_Rtx3{k!R(Sw4&LLE@ekBjAJK{3jg(yTPQ}R)>te{X zVM@&heHnb}YY-F)Jo6V{9^5~%F9Q-1I9$~IdS;>sr3x(g7GSX?m+oQu621;_-`obZ z(cbG~NwN;HfBtck-QRO-cz1s!#Tr^2aGy*EeVGe112xY~A`F@n*?14S2CTOZO=R!( zQfBwtdxU2ML>?#{g^Fx%uTkTS8yTr+u%+}kRLIWp>6DPP*mpi9S?)P|Nd(_WS5P!J zbZ^X@Dq?!flDjqhhL&vjZ9bvGJldF-CfD1N!_E}l6h`g#{X{dUONA@Fb0iL@xxb(<65F!e3pHUT@F8{W{t`mFNi&rOftWRc-IkUTYv|X5J1gs zl$gVnA7Ymw&LJcgOM;k&Q?N=~K(Y<;A;6a84I)l}@($nw#pyd63$I4iwW&J3?@91A z(J>?d)W_=8&B2d|A)%L9viR@mkQENtSXYf3nAf}90hIR_D1uGi99}=LzI7(Tz+K(n zD=yVcu1iF8gD0Ck{tDH^{qsxVSR7P39O}l;eC`YJ4@r`pSA23^QOcT4W*^IkJM{v# zAihGJb1zjymN+XhNBfLoIWfk7q}^a)kui3UmuoTJ6h)-mqZUNLK$M@16LUG4o7^F; za?zi?y0^3-R+*7>K9Dj~Ezf?L>0_FOoL%`J)4eqg)R-12J`w&)Hz^;<90KyIs z?O#K596-lIzzI3m3jQ6g&`U!7M7-n?(*fWm{6_i*Sp9ZVod4f1=@NWNdqv#s`2Gb@ zWk21l`v58Oo&driLTYFEBfxh)SPY28PDlQ-F@I`iWR#+D@Oj9a$tzD+(fjIDAE~T^ zt|2x`Ld$_Gg6=a;WH;Am)$JEU%ZVv2RTHF&lQ>=*_#+G0Y@WPljEeJl>1yz=llac7 zSu9Nw)o6BKR~cK(&Goa5_pIfe&L3l_y}$VT%2_e55c8C5aJR1 zh*}ti06jkz4gTHN1}hPAmR$vgm1eN;qzpdj0I!%)sJhK6L@CaGI!+(5vM1IB>YIpYCakJ))S}hncXPhEz$H-eAh0NA% zd{*R2OlZe_a1eN-pYVDwjBL@fy5(8NPlz}gTqTGIU0z{{ zUAQ1?RBMi9sXSNxPLS%2K%3|7&W{g|)qnj+g49mBOB}n?T5G( z%@~3e@#wQCkJcL3M9L=ZmOifihsC9$0ucoqRJ9?IPSNJH?!0J@5G7;nkhxx}G6t5h zYO)k4qTTow*P!@lAI1cS!*RL=-xVTGMckd?;2;U>jWs|#y8+)3;?M*ON)zY*?j_qX z*^Tv&Yg$0DMd&FAk9{k34zcI~{0TJjAA!dV>YSZ>Z;obQ3Vs37cF>1B2X(`3z78=r z)}3qSlR`>IL^&ijHKcS;QMT8Cfa%8h#OzR)bq_@#n6&9{k?fVc%`Q z73Qc@sCVEQ%Tl6EeRfR4&Q#Dx#T%#EowBSYJ2WkJk-pJYKuG8&d|hxjs=w{Dmj7?# zvR)(8v8DxZXtU31?fs=m1k#-KckTy=IU|@AZq&P=Yxc`~#nyNO!{V+#b^Q7a{RF_wa)dN<Nz*JIZpy{UvqxtNI6?SRHE z&dDK9BLipQKEACwhT2n!2w57C$Hguesf!BU>S??abMa`12 z&XuQ1)D&(eWf#yzmbe$l?lhL;doJ!}P6V&+FN=Qaf1ybbiqR!O6CfgU19dv z4H;f!3bZaCS~0Q3ESEn*Yr~8wE}aG^ofm z3775qmp7+*iVq_w*-ikM(uI2j)&-Rx{%t(q-q={b-XRuiu5q9q5VSKPvEY0znePfe zWul!&SG~54Dl5x z8}MfECgZz0Gl+3_x6iMYZ(O<-Ny1@$!*|q_6YXK~{;G<7pkQ)`Ld{Dmb1MI^FyK}JGLju?# zyc`5ACV-z9c!KgD?CO5P_>IJ$!^k;9_urjCR!CuQUBv>W->JoUbmxKv9w~Q!IA(c9 zbC^??YDv?ok zdU6wOl4T)x3@hPe5R7Qg)iC?+h4IslV)1auT?*(W5k1mYr~O=DD5RlQwc zz*m#2{$ImBIZ+1xwSjqS%4eg4eK4JYXy*Id^106&KY697c6kI*l?%)2lkNI!atx~@ zsgAza&w0qO^AY0@@eb`}nX>V!-qfrO({*|r_B$jC-@;WhdWG1^B$bn}qj=W$f+bas z!2T66`(q!eDR&2^58kgI2u3pEMC{rpitFJexo^Z4KS%SqRxCQ|2!q&)!5$B zv+#1d@(Bk`-1@B?4&szMjWJwIBhS8NkuFtSiZw-uR$y)N891_tPX^3t?;f+g0q#dZ z0jEV;B_|q87XUQO^8+_#xX{jl%}K?}S;RsF9@511|G5mA?ou8Fe1uaHiKeXGEA(uq zQs|@Y!CXz=tud@lOwXQYjBBV2|p zL(IQs($t=R(N&V#{W0m4e&`@8MV%?n8T#7?sqOmDh?Mr-uJDn`@-d9B2M+?7JoB!@PGd#NEczaP;SPjp(&LDFT@8QP&Sj?L6=XrULtfM z2vD%NIYtE+$PXadW(Vz0k^LY>4AKy*W933)aUc%E@S2yGHwU=%XK0DG?Nv^>r^BD9m?-rk;+L{q$L>(@SnCW;b{sYvggWI&r07)=w-|DoHB@BEa`F}nsD{y!i9 z&k%RiJUux^=)vH&)EMn04w5*8#|d;}gi{J4fXKo4PyR=trjOcxMpgb2NLE`toXlKR zH`xf(u>BAuHB0rUJ{S%R7y*Gx?0X=SRs&8Z;(W~>>5FH8qYOJQ*@Z|h3h9+RU?KJn zQnd@BQ`YTBt3)18;snh{4J?s0o#(ztYLt!fwU`7kUWbSMb}|Ocy&xx47vyM`17coZ z!Q-{_)adb`Shmk9FNA3NSd@Ar@aT~7w14U(WhjBcQh2-nOtek z@dgz{qBJ-ku5COz*PgbsaQA%wO*ZX5i$H2Jdv`;H!pdi9t{f;-hdR#0M>wM3{2kvC z{E|e>^Kf?+_SV*8lxPagPET4nb@JHO_g^?NN#Y!n8JyPYjQIP1 z>*hF13Z^AGjzv@>9dr(&=y*Bh@1p{gzew~_Nmn?fF$D8vM65GfiUk@)YX0#qw*uHx zk7P3MJHArCY_$;`4twt|9a+W{<_cwqb6SB8Gb(}Q`%4X4(~Cce+<8s zkFDDT}d(~>?$?>&g*{*q$yyQH(yMQsiDC@hVF*hxtJWCWa<-biK`~soOG^1N za^}KuYf{>7t=mq-v)qgCCvY(A`>cIIx=X|_^O9fR-KdE(fB0+FWaF!diOHd87}aIl zLy^_=^9jD!Xd)sEM4(h4c757e7kav|LB%o+G;Sog1aX(ka<5#4?I?)Uhw7a5%ISa< zcMPhMWyI_Cnf$RU>`+Nb7PfMhKRo#b0u$|AxtXs2`90KF+y3d0!@E0NFj5MLo=VBmQQCOIF80L7Y4BJ3Bqe`&qHsvqWzMd%eb@CO zzd3r|Ih*8opFYutV2UnOda2$}yG1O`!tFw)a>~afFC|Q5OkEg7q+}e6N@i}}>$LXu zUT-P#vdC`V6@3;CqI$Z>WKt_fL$2dpVLP1;eo=7o2f)P2z#uV3YZS!wAjV&Z=#FOC z$RQ4nC-VRSY@0saf9oxQ-p zShxE>ogbi0#?~9dNw!S%ynzAdj<{6i=ZdkKOp+IqJsU&RMEi!$WXQd-z-a4Uc3w)H zpFHnqBr4dZEp3&w^343R;Q8RtD7`uY?ICH&?_a6kqO8fCs=rgkmS{P~8ig@}Xs(Bq5=`arD zg*$UBH)uofHc$ zXr|v->0ka3F$yB!AXs=<0G|cu{<^34t|Pw4h_mAZfOWQj?Ki*F6!?1wJOhURe%k*` zKqWGNdmpeUN9ciI81Ta}-7;bip@73~qt6k=&p&AwBP@OIJ3`q2HWfBJHsvX#Dj=r4 z2)*of^DTf4>`qhj040I&Kqo|_g>nWH`VqL3Fu~s4VzDfW2MS^V#jHQ|Wq$Fk8WMA4 zNjTzb+ZMgcDvhzxlzGK|pLoF!#hP|6J(~KdFvD5iE0kyJ`|yayhir|T>M0bX8>QmK zNf){KX@w(ci?RAm-z0?*Qryd@ZEei3f9Semx~8Wn9Zb;#2W;qqo*(f4*N(ZfL= z1q6rOtRMBHygsW{27`k<(wOX(SvTDJG;U@FRLnYu9_XZL7|%4Yp3I5=TjmQz?5$I; zTYKUL1A@J``RNyMY)-mF9}Jh9Nu)QQOrb(`0-3*h={Xla^uJORej3Ioa&HXA{2Kn!fXOo5>KzLoF;w z`Jm4lhK1;-N6jv(@ZEL(_Ixmko@<~c69tL{1@{FJaYQWI7aITJ+Q zhH)~sHrLibtG!e&QO(Q~7y71fXtC#irRCa%!3L^BsL9b>770br6s8#Ix&qGDb@F5w z$}}4w+kjA(#nb^Yp&VGGl`wVx^VnjW9>PwjqST~n77iaG2!O<;Euc7>*Vy47BdEB~ zkYX_Od64S_k!*UAfV^$Ob#w&#r3Z_k7rHxUfWVhX10jFBs&{F|XH@v*=N(XiAqMy! z)AguN*xygV>}VX=F5oxvE%b9+0zjUp?n8O#Gq98)M^heEFDz?(Lp21nROVVM$84d? zji{}dJE||eh&eO-gXBs^Tm>;-U%%-{-5Kn2?5hn}TVa_K$z5jDRx2D+yS1j`GNq!t ztwyVKL*{N_{dqfVc@}<;Y)edN90TjL{T|FM;9&^LW+Qo{G{w~;Qzb)$HPo3UKfqt7 zRuRTXfG>ija8=2PSlg*IGnGY}24{F$n~$a1mR&W|(|z1Km1DTY;@+iL?t{VdMt0KM zk^4Zc_>A|e@lQQ4p@57%TV!QwItji*Iwzv9n9js~4j%vSPByqvQ)N;n1MMqNK(-*N z?j@*Qr2!=Uv#J+74Iu$qK(|M9v~aFRasr{{^!$l0n#%=GeabUHKpWE9cfNZ_KsoydynoFZD0P?m_5C8!r+ zz=U@V$C8WUsYk2JcKEc2?;ENZNkkG;^=g(BsVQ;t9{-^kzY??sA_&PUW@oEE>Ff}fMw#FnYE1RdQj1V@pYQrz z)7+-wXi9a1EGe)f65qrG6sw+viwibCNmm|H$c6#t0 z{!Q)ofFmj6pHnU@>KC#6Dyy(;C(5U@CuaR4l0te-v&$826i{5bsmL-=dg>*Eiv=n=OiOg{p1$7x($+UL0dZ zE=AJY(*PA9mZ{yjH}IiPyu4msMtBTDOP z8#FY)C2^Q5scO;c>hsic=bt^i9#&2l;8e`dS!cAv(1w3`?n7cvKx8FaRPws!fk5Xl z4&QL9msnMfoVF5el<;C2I--5_Vxxk|!o2WN~evVU?}oJAj% zBilPzKzaT*j6pw-EcVMpf&CK<0STa}T3U#NCBN_bxXwxZ7q4M(v;rv|;zTxaYP$z? zm@nY5g+L6*{(qcSzBt5ZlFwddYOm(q z@^e-zVI96gY%J|nU2+9i88s*1NToeIG4y_I;dA7-TT-~;>=b)3i)HR}q?43SQ*Qn&WwUhY_Faj{Mk9eJbYPKF8E-k<%+3bj4^yrIDa z4*P5ub>quJm_`vAB4ax3=e!{B$D`%d_PnD4qNHE2<=)oo{a@IjfeD%E#KAxT)P%us z5JloAq3d`t?IyVOrhOm>RtyZ6P7gikt$>RN?CqMw6Ny?tB6$xc1L`(LZ~0%-QB20q zTpOu=hhKDq$u0k0{wn!|S$l#RH4RPJ^be)CPtJ0_$I?*VQ959ey*kI7P?VtGuTR>< zl$HOi4=+`GeBCZ1lb+*@flc_pn4^v;9@)>B*d^cEkzY!8A|3AXcb=Op<7lFhenFjQ z;=K1dj6;E(bzB1fZMlLq5ozo+I}bFDPoW%?a-?=62*cSL(DR%g zZv`WQKKMo@+2oSOw+$Ld$GC20&{?3Aa{Rk1UZ3RmTvw7dn2(4nDSB!~#WQ2-)`pY$ zj!sG1N?rWeO-aa*EjsS;%{Y7I^^SET4P!YNm4-7)CI-4g{K`x;8Dxde4f*m> zD2DaWmWRT-z6IF(8l>nPIYsdbp!$`+bc#$3RSBoqRH#nMZ)2IWEA*WYTKJRa zy5mh~@UG~JzJ_&G$m2uI7j}6fTbIg_%ueVOU|k7!;nr#&!bwJK3gGBM8UAnVF5&vy-GU^vyP{eD z+BLeYr2-I(9)&VUK&lC(Z)-Ec3jNctyjqDp+l`Lcz1CbMX_Zzo%yzBmyh}2NQGkrD zO|;wvqjMT^HiZmInkFBqpFVn@kWS1r!pLOjh*q%H7VQu3Pn!y;K#!lBjJ)q(9X{n^ zN>Kb9=R3~Z)FVyxJXg2QM9mq_u(+&h)ivd}_EPjbEG#`chRcQKPD>UQia@BCD^9vIE7R(bo*MPAP4g{XVyGAZd{~Tz5JiRPd%)^b zX;cV>VitGkhKXGsB$q&ag()Zg0ZpR`lEVQ@%wV|0Wg+?k`r4w$Xc*z8fx)B)8Wd=( zhA;g0pv2aQkR7ojbheGZ??wXL~Dc~CB~~Z)3A?59D-q3bdx)L z7IsB1tcP%X`mJWNE)Bo>b48guH3G$`vP*B>hdG6GIkQ*e9Ql>1e)H_NO-AbXMK4ra z^_OrJlNHk`RI6Pui7xrPS!9cC6RC;wzLdx~+QzXs|AIK7Iy0WF)=hh!`9Qbt{6`~n zKGBhS9M!Sr&P#u&3W(eLJBg$@L-u7S)yd!17`&1ZRuUG!OLC_@rOm4FTRY{%QRI@n zPSeHR<;p7B100^2Y5MFTuOAK4vfaq7OVO;_y!Mf4Y4q+3TGlhZeTzUCk!37 z8AaX(V5V;%{TI~#s0o_sE!d$TuFrrE{DHOy489TlG>F)t0XqBA+;q4B?5#h?2SJ+& z+{w34>HYp6Ro@-Y_1^x^$DV!cEqkww$X?lGW$%$y*(D)l%idD9h%%xOWtLDzLXuFj zk`WDw-}UNypL5^8$K(8QpL2IQdB0!p>vdhv>pA}HO{qX8d;rT?W8+b{34r483juY& zy!HBT2@EDeB{2G3gtE;zvTj88COlhvJ0nmu@QsS2(}x6qI}X zColM$0ixAmzd*aVX3O|KMjI) z7}wHly*<@E?#Jnvg`{5OEEBZSm=7tfqlLv{?IRPplvH{X$?KPzeJA{puKUB$;blmK z8Ts@KI6e$o5<$@W}#cx4u2ue3;@FlfUton!9@Vp5HA!=vC<#~wE+O$ zJcrO#n0rUzB7#S)`5{^cE*2OSkRv=`Jb(m)r(*{!K=Y*jd)jgSG9tjUe~ueR0(L{l z+ZNUY?uRlKoUjE#PMq-SSq>F67CtbZ2ilf%_^PkZ?sZ@9dK^wawMg?O!dkfk|F_!9 zv^E+}boZ!;tnWLNYuD+fyX1CGP@9gvHQ(Z~x)l%1|ecWg$6A)C9xC3g!a72G*jU0S z>=VgeCgbC&PUBry@ajCT%xDgNm04x5m2TMyCMz7Z54CyGcU4cmd7RAW7lIQ`?Ohi` z8LK_fxj^9J?wTDW;l>o}S<&IbLHWRxJin|rdvbWKP++r|Kh3F$e5&xb=_u@9hMGsM zy@|ccWT^OsX1983NZ4?s?!HtlR+o-EC!Q>*=^7h{P01N8#a@`;>o`MiBZgDO=t4kT zQyxZmqNY)DI4Jjt6Sm3fx8F2x2tjoAiDctJ;GFhG`MC(8y5Pd@i}Z0(98>ar=)-OGC+AlLz_7I41jrIUt$Fw z7XYf9g783CU#WvT@5!aZ<2B%$4g6|EZGo7R5LjUL@{>Uyk0N5}ZO*hY5_y5G7D25e<@;b)1PL-5!{ z#TIjl+VG{cDNd)QT#B-DrRNzAf|n9fMl#-}rf8AH+JcvotY(3el^6fhr1Ux;0UHOO zWsgH0Exxj4zR6iFVE5>pXtEOQOVpdiT9c3^h!GYDde>EWG7~l=cmI3Hra%2XWN@I3;^WbZ79?0*)+#J}l^Kic*HZ`!O#DU&~vYrHG z)yG=>KO+1Pu1M6CpX5?8_*q>zQs*_!xho@9s>;C9<{dA(cy;vo-RGhG@&rMX`Z;kO$MER(d7WMXp41YHvM?V@BUN{y}*a>lCi-yOtx=~CC# zc7^Lw$rmx}uSWMW%y8wg?{?Cx*Op&?6#*SnTP+4gydRRSd9kKR}bwQV&`1jFxJkTMY3A08&P^!o=^j zp=|%*t*#2#qC>ooEzHvZm1*6(K2qP9IqIfUToF^i|Dm!toco3(CA}(#eqUY=pGAy` zZk#~|Ce`g0op!!EnJm{RdGDf-`X$;Rf#=xLbuX@pt)$>&hR_m8LXx!-gw#Vx2Yh#5|5y!HcZe*V0@0nDUkZGiIa!1l_ zP0x~9CVP71#6jOGvCau$8SH-hcvl`RK}mvSWqY$$l5lMLYTBRx&L6C_q;Pbh>Q(DH zgD8WVf4?+9e`I=rlKX^~p8gOX&qc^QP5vk#CdLjSmjfBxM3k(sN|!wZtm%m&W)b2a zt^l9n1N<|<5bo(8TH36?seJ_EsN;Y_{XIQR4oa#-I~=x6^1DruowQAQc`>xA_y#@L z6_R!Xi$$+E(_)NI#pxouP~pTcjM3SbBUd5|LhlbWMG6~IS@p+{ijI=+F_R_TO4V6|B8QAmgSX20VezKCIR=jGd%V2M&{P_6O7M2-Hkizqi0si?1yfk4W)Vd`out~2>KTFk8ydhCMM@x!?FBtA99heIuW>6of17I}6_Cil7u4g(SazRa=` zU7`e%?i}arpper4c{0!VfF^Wr@&F!-GQb|-`SEG7$qHsNfDeFOWM@Zz^TNZoFcJgd z#*G{XFbY4bYaTu$UMhQ8d@ z5&ITBE_v&af{{e3i99eCFs!Ab9O91tG16yzb zf$GdNp!+=sE|DrgF|volf1&%Tjp*pH<5oV;eMrX6bd3!-C==b`3r(GDf5!d1DJX>6 zo0O?`*%#mRJH;_VPZxqrOj(PrqV|u_nru$b1!kkHvyXalvC?~b`Tc8)2i*k)DdiiC zp)4m(XEyUyDut1RYMXm6Z1ktse&rfpiFHtl)$&fT}83HG&+eJnM@@G zW%On-Wiic@LV?MO1V+Q8pZZiO|N6h zwW5yE4)6;Ui-&hfu_g!)Qyje4i< zb@jczh`ygpnBsxg-rj{lWiu4f5ec+dwkBTY)gO9#7SWe*;sZN!)Yney-~zJC>X4wd zdQZN?kmSc{p(PxhRR@xmRXRC1o8R^fh`s9^n8HbKmF1o%Hk&;?h;2HtIdG{+{PDmf zd*hQJTzjlx%Bhpy#2Ph;qVzO-4!9cj^Reyh@((Katx5|d*C^+B)$HoTI63m-X%ldU z^(gS2b;?e#g!W?mTlE_AX%}%OC58>s)bI0n3&~LE6u43Jmcs=GPoYpbd>>$^Cr5`@ z??>k|SK*ITObWlCbvGnkEP!m3a7ZkzL?j0dw{-GxeCw9FW*Bs(*3pNl)4C$Sa8K+berA)YhyJa@W zQ%TSwr<)~=7w;M{eq}}9A}rdNG`~kkllMex5I*y%sDwDxTxOldWHV=XtK%=Hx7syX zTG;vYmPfU8N$_<_l9Nxe8TGn}!^Hyd#o zl=q7vJ`9BT)eQ~C7HS3*X3-v|>p5;oO?(6-hDF+r3;*5y{?%wO&0qQh;`1=*Um@zI z?B2tfyDmqx!tKD!4+heO%FY1ywZm`4Fk!4yYrXGfcbN?B;GZH^+c!J!r5oRAb;`I$ zpbd9p$Ss^OWsaGE*t#aUGLBEfo}*B`K1RwO`$s28=*-FjGyB-sid9o9-zZ!^a#oTuP#5#)_d4HoR3P z9w>wt=T~U*n^>G*{-CdOeUOYqonBvj%wDH4j#;?00OKuSC8)tAt|47D!TO5f9-DRL zZJQFWe>b0iVj2R9=|c`+3vBZ?pcjJc?(iGPn%=|00M-2f_eR(kZ$holv%mBfR_H2V z2@5fApm{RB?Z*_1{k^+R`E!i(Sl!<8S9?6VkPuN2-?%oe{c5^ur8}=*Jyg;^)j8T8 z$EEoQ?_tG+WoE?-MNz-TP*KnAFkfQzZtJ_`KGPUEsn;}WX6f{TubEdc@}~5plTJA< zJ?S}Dv>yig$HdSo;<2e_rKtYUODZk#kzUl-pRRSb@ZPm5oKq#?B<>9g5Rvl6Kak!F zru+S?C)+0uBP?A~wMyl)MiL{h_l(>6BEyBp3k!lV!DbKLU~TMpZta z6|;4hq=8FZO|Km+m%9DBHWDZWKao2yS=MW*>XZbRYyFnQt+fI^Qj1 zPkk=n-wy-+#~a{xw0t%JX$uPQf_n4xU`ZVLHNkRt6Gioal=K6f8HCg!5(db@(epq< zJX|^(z{LdvjcC0ISr{Z?t$7hfo)%{18-(lJ0&WBX9JhSuX>EZ*f{O*KBQ8ma3zmHge5JW8%zAFsH7Ts?CwnCWWNTr7cIi?~g%WTtu6 zCl(p9u!I61UNYAEbMdtrv@j0IFwchyHiV|k39Vq|Pp%h4vfyqq+7;x;ye^5;X{`8X z;6-QXE*&5WhOqZUX6rCAUjaN8`MUr`L(IPY3-uW2IT5@8Fs1E<7P_WtFYpzaJIYZ5 za0h><*@mn^S)DbBrvpyutd1|26sd!<1Ifm@swCzWWKT~;8E*SS`O z5+m;y9fUbMsVT-Dr(#q34VQ`KK8tKyl3CcqF7Mo7QxcG)~ z9D2DFL{03qx5@jK^>8c5xXy30svT5d%7(^;Q`WQwm;1>GjbBeR$a-PI3sgmg)l%}y zNSYbs&obwhGK_A2#vwV~U}dx7q2)Hh`j%2q>PE){Sb{+oV(M{~LvUwf0niyqmyi)F zFmmDVAmzM8Sdu*U2j1X+KC>J03E@i?ENBx>+5{GYBQ-0>?Skl_;W*)Pe18DXhePGK zK*wo{M^= z9)B)juAe5-dLyJE@+w?{!4>D#inZSqu6#6ct#pba=E`Zp)N3X1^>>_}sd$FZRCdRU zqDPCW-865Bjhv{Fs9g8uSyjE?4p+riqRLMDaa=B~ImWH5DnLnqHS?)EPbH;2y@V-0 zM{Q45Fv2FRV%Ry(W8yqaw^&e}O;=MbQ{HcYu~tgzFA&uq(XJ+nBTyyfA;8Vr%dEt! z_F~pzw{8nq0-5$D1oQwb1Xija!8`yJ0RZX{O&bxh0rEgC2@oC-UIb>mPhiUm$wqeO zlmG)k$ONR&qGIr$T4NIbpU1*E_svszAeG(1BP`CvWluH9dOp|-x4JPj5If$d=P60n zSNbC7ocR-HvI?FF4`xH@X>W!>ca>;ztoOnXI|V(y9*kg?7OtRNyFt83TdfCiDH~Pho34yP$qc=M z-b+kewyL8wq;5a_$mH#M&Aj?D@B%BbhQ@f!PEnThdpXg{Hr18(`00A2^93Tg#ukNV zNgs`}ym*4eQTL89u>W3kJ6#0pNK+UzT5VQ@r+rh?ly+R;NxtS3u?Xe%;0C<4H4p2${oESk}fI7Mcm8N!|X5cNuntZBcmA>iLJdvUcLi_k&8grMq#wqT(f=t0X1q`=dS1@~eJB3y?IRY}4(J&mR~4_ayPdN%9dwc61WXJ-~H{dG}l8 zVBy$PAdH|b2!cX@{0{MQ-$2_n2p1KFj0oC0A`T8Lw1KL7zq&f13ht@=tqkeo4v#rF z47`Y5mtFkPpukGm5n5*|Zlhkp<{3A!n>gXq!F;S)hXFr{sp|3t)?MdM>5I>-PKlN;E`5-i377bU;trCO~s-PqoLs zLe+E;7T89_uphl3?Je8N7)g&&x1)~4P+D$BT~rgO?ZVj8Cr_R3Gw{`B60T&|Av5q) zigNc0>U1_|pJjRvnF+9wMfRzA;*R(0+h>vX5#`2HvL&4Y3!u`#{|<)j@o<8^Ar?J= z9zaTp18Vm?2n_XsSFL@6@dQ|_0B`aD7@vngY64Ax3f$nZZF+Gn)!xnyu?>H$y;%oB z9+QMqS6?E{D(uxf5^tZ&`*=k@Ig9<$kN|B1p|C+*!7aTtR||HffnAu5^gceHB^RG6QwcU+-CJNjS))f!P9!Ub&(faorEyrUms+vs1rU2n z@$Ptq9j0C)6LMp~L;DcotG>d514`(3;5=ojyz^$%vgcS`z8;Zl zs1~H8IvGeD7ENn8IiQD|zNFVjMT6n&x~9}p%~lYZhMR|_g5C%-aa z_liTb%SV^=R8bZ7Yd`bPx@En1&h+$Xd-6st-d8c{XWOg48J)A-3uvW^tP(G++ie`D zq7g3DSm3;x$RTO?Sv8Pi?1^+}e<+7cRBw)861E1nXdY9}Hy`e>g;a^ot2XOy`YlQ#>-Sp zjO>Jh`HjjJKldfv*@szpHL8QF3Bsw+=G;Ywz)}g@RZ)zw?UCF^CJG@f1 zingS+?a->SOIOv4s@S#iC7VnTzh<@2X)V^7)4lcon{Yy$d3c z1H^jjzw=176hKij*U@JR5qL-l4UjgUf>8ry)&q?@)=QeA zx7v{BPj=*{(&txfS1^>Eg@M=r$=L5T1<_R`o@0HuL`OFtWQzoqT(o-Vm#N2(t z)#am$tV!{=IfE!62nBU2`L&floY-S_0EAWx0SH7ESTXrpo_Ce7HxwdEwPMgd-FyacVGc1(&N6j$${p7cAXpqqqD}Z>YE&i9@q+05kA$lB_rbU_mM_#j9|MtQ>D^O53y1@_`K$q#7h=l~G4L}MM$uZ!Ga z1<-qyBjGrAsYb@`N_x!OEq>FL6*14nMUgK(dfk{4Z!y?h2Bp!PUFLM0S52J6JJ}3K zT8`!S=;hNb&~f9-lf9%Z5e#uAZO`o8vq~}N+c=#u;c&u5c8T6fFrD;)s)1ZtFt1Z1 zq$7v8)p5863yI(fTt8+tk}k-hEE6loT-a`za8K5o6-G4`i;8@TdU{nFVS`RdVV!!c zt%XBJ<6L(T@k@z^yn;TAZP$O7ph7-Yc3Mo#5UxZ@$n%BuB_*re7Gy!7G&*sBc#tpv zK+(r2Q{eFz$qH1J(JllDzTua>BpY}AwX+1K6mQ`-b7HvrZw%N%d&tV8I9oRL2 zRRgL%vRcgfZp*dKx$JwDrZGeZ71`;g9D=7v2*SL(n7wsPBr2)m_b_J8O1e8Kh3ez+ zEWgKkH5u(03PjlI+T#eCMg7oxZZHhEf~@edw|KmngDiqY|%Q|x%h54*gA zQ-SBcOw~F8gC7)9-=Wd?i^$&@zVjw**bv+Fq{AM=yz2QOkVBJ3d^h1`?iKY+SL^;Q z%Fi3I>8-813fMSPU0fPfDgF3TIrSABd+6^M+`Newe?`jcwY!c|2svX#)A zF=##ya!v@UOqcFnKTW|}X!VvW^^Qix?NaT~dXw_R&UTzI-77N0{z`tqx#~?^nPTi4 z8vHpVx-t@t$z)t^W>uPI#%7TXQ-S2%+COFS;7;r6PlEOVr6D3yM4&Rw0c-@U`8G{f z$RI%MZ)6n$nUm+?n30I<%z7B+OW?}d!D8tjuyzem7g|1}q!dWc0CtXjoq&kQEVK_W zPR)WdhBGL9JpikMRn=-hC4w0MhytD2bhQb$hoD3lsQdx!zlPR$x4N$uZ77M|xP8@E zKqsnGB=tg+U~gr<@XP7@Jfi|WsVgpHONGYHpDIBeL@V5U5J@-~aY|A+U3+EMQ$RFrB6@ICH*GXck!O0mp+3!%!cd3fq zeL^`?+3}}AB1fwZcCeC5@WiTLj!RX-WFe1AVuP}KoDK4|$a! z6XFwcsVF}9#1DM8APei}3-7)|vyTkM!Bj@U!@XMzxXcf)`S$;V=#?8eBN+>%&isL| zxBoD!7M!jXVKTqivHc8@de8v|o3S6D5CqRAFmrkcN(V>}rRqn$Ka!5y5jzK1=-~ERKTDD1ZYr&diJjo38~k3g@YJTY z@piKBHZ(NA66NWym%jJg*X|;8_~6)mkeO^%Rgs+ytA64 zn=q7UNn4tB_U5Qxe$weA!45sPwZ>@L7~6z$mR`v;NiuS70y`C;bfy0JVT>+M;J8bC z-`o?-0*W*eyZ~?hvVSggTCZSf1Xtq!e2m@-e_3;&rG^20>yUc|b__+pF92e}8ayF8 zE31`RxegCgkf!awI1>>7UWu&WE)4i!TOc>MGa%{)3}tQ8pbsQH9_ISyOjoSk?VtyQ zAOL$+(h{GybLkjM??+xXs~>TJC+SxC6OC>O>WF_E-HbHgX!He*t&8GL^_NJmaF{E11R?o(>TU3aVlwQgXh*zMu7 zIsMk8N`?$EkNY0xoq8=XNN~T}ol4B&3tW9*qFg`yCf4>Yz?Pf`WKsVodZGUP8Y$xc z@2~%3u}M1j#B6;aodL%yq{ITxBU;+*?YFUM)-Er@O`bSwe8-66f=|yWFd1HS5K*GBJjpapIcZ9O?afR2F4n4loZQHG_)^${1Ol>0pV3vM)k29DrzN@bA+Dh2YB zY4WW~VUGGSAs$A|c-R$HZV1{IHQ#P}-`5qVwsYOI6uzw(5xoZ$VI1{Iz92XJ^i@4MGR;F14wEi)_}Q*xSaz5F8ET|f}?5ZkFP0o`@nBTN>1$*<~``^ z-&#&+?Q#Bj`zS)^p786(ii2U}_V>MT@XXHTUM}SOa&Nd<&-C-}+-T)XKdI%Io>cTO zV|_wDnbPRTvIuJw-2A+A`+=6wYmd*$qulQ2O*@-EHPx8>)@eJpyOd#c-r94Kd1y&e z|AVxW?foIS=irXiIPdZf1c30TUUKONnq=aKxyL0%Fb^0)mH$Rt|-*W;`D``^21TBQ=!)3dBkd-X&4VjoWe zAE%8&AG&+!QNLig^-WC1U{vvYbPepRc45sAvmwY0j$A>%0rqpLVTh{3PC) z*$tzW=Ulx}K__NovVV}9);k)>7yJ;oKmDy`@=lTxXL8`Fuq%#EIn?Y`!%Y!|MP+EM8K;ym}y!Dd5K_mlI`_b*&{2WJ-O<{fs2-z%nVp8)F) z!92f1>2g4+2%T+kBURLoH8{O&fDR(R5ole(f;>LtgA+8sxyKG0)PYeQ1}*?-yaFU6 z7!2EHVQ~oTv^jWpr}`xB;vIO+D>Y22a0Oh+6_vrZD}UEEtOJk#Ik!j``%U+uzS^l$ z**2khdT6qFq$Z~-7|g%?A@R^668y-+K3>Ms@=E-a5#^8~zX4- zXG-{$BlQ^|YNN1d)KK?)Sd#_(9@KbkNAh>&k?9O<#WzAH*@1LBl{wl8#aMa)6+ zq65IGNM!^e58QBKdu*f9-yR?z0sqB5*dK1&zJd9G;Bu4P9K6 zR6d;Cr?GZ=Yi8g^atRalO~V?Z_S2T$AFf;0!0RFBPMbIKhFSZ@pF3w!o&X>WS3~1#@e`G;FYjC0EjRkD%uP4j0fwddUsQ@>Cv;*6m?cl+KXm9wba0rm3 zU%jOH$qSUfpK$W=zkv-12z;pzu{yW}u*iky{R8o(z(NVx1n~YljNRq^+y6mxO?jMX zesUMam1{8n`t=q?q^&7E5)u;H2ee%42IKbO@6D?zP+VpKl!v|W=A!%vz*GR+UGKh5 z^c48kpdh<^@giU_`*3?AeLg@fW*$t>_;|k)5e!=$cVkb{R#D0%9gIntOXJ{3O<1A5 znAhNtCH-2XDp99wIGS|+CHW&Ap{+TlI(gngjIe>K*=XwI_}7J$lnc7BP_RzT`Nid> z@PxFEXUTjlL#n})^~GSJxLeiv<$JqXsuV*3JfYTJcqz=JD%M=7cI++~?{h8X1kP&G zu6PFhi$aT+Dwv{ag?q)iMx|m6Jk$pz#*t(f4foS3UG07gJ^!(bKuU@2$A2pH^Jp0u zfS~^et^2?~+&>L_s38i-_fKero8YT?96}TIE*(n8<$-igFd}zPb!5rQ&ITaw8`Po* zC`mmknYK(@sY=Ke8f+cFa_;p9hhs&oqG^gd#51+K;{WZ%t9kyu3M5$t6ARZPoOKjg z^yGW*4dJ0?~E?<8g}VX(T_Txvf(%AbzP zKB?A^Ma}^V z+FIM=`x|gTIZ#GGp{}!Q3xEz4j-O+z-vXFqg0N^EiC*EvYA?anm{PZH+3fov0xcGy z5wPn>{0aY;W9Vun;AM&j7wMk1u1(c{fKst#$@G=?8jLj1#eg-DmLFSK%HA0K(}1)i15RzkL$2T|nj>UoI>o#16itMZTleJH=pa zwwr>JJBj*?wx`5_PR2k=Y6;6~Ffa(eF zl&!-T`)aV~>CbhrHBbU46BNONbm0Fddv4JehS}zuO-wR{YkBXTH>>lOO4k;K#IN}) z_T|OTXLOcQdD3vWO)8K)z&7qho=Y&&6_4>$`@CXqWkI*1fw{O=fC;ZN)hcr%^sMUW z<<2%28yK!gA!aRj0n)(ML414Fz6`p7uDfxM1GTM#_3$nHJqLx(QJ=q4f;aeOXC9w| ze?V7Y{JCCkKd0pL>b96E92E$&3li9PCI*Xx7o2;q6a% z)6!J7>=j@D&K7uh+5lhA-mVZDS6I@0`;P)X07<_9XhWY4iq8X`2gPw^w5vNV=jQ~Z zCFplaw!xV8`Qf|ct=8}0aQv8dJ;vb6h15AvxKKPQ+#Iixy2Pu&Sm_INb7*hse-tq7 z9KUes*;3PdFoa2>)vT~Zou9>0KI~WlbyjvCq-78;Jb7V13lJM{MDDrL1v>IJz-!`U zI}Ti1TCd)c@<{#f0{bo#`gkiF8n*IXQ{i4R{Gw3{NMIV{iA6{bX@{PrzU_0N$L%ZU z0QeJQ_=7w6XfCuCYKu-3#P`6!&EI(KBh965CDDs*_IAq!;AsM1smg^JX$FsOmKFfi ziePOFS2J?3hi>muUC7_I6N#X?kT~Erq^4~t*z``DZ}IDX8KL>JRXD1BVqNJq4ZG=$ zvr_{CY|+)T1za)N*&Kqy_~4(sknw4m;Z$03dAJwGUo(M^ypkGYG{O9>B_<(#cy|0T zR-WSvU3^XxcZ{dMz{-lq>73||B2xtyIu#(R(txR_YlatjB13@kf`M<7hpDlTI#G^M zjnw1m>Xa?!Q6z59y3bUnnN%tmx#H(=itH{FEj~NDOSR6*(9EY7hgaa9$_oOFkMPG4T>ToLy#vPU9pwH4Kl-1x<=gMT z=)$opzD{earM0(QtI3CA&a+zIjCZ-Cfu?p-CxexqY>!Wy#MclCyTtZr68>Te2 zFY>yWubhgZv{;$$Wzp*Qd|mYt1sDUFY?q8g)&h!kF|^z8+)*Eiw#zon0;|VKsi38Z z``v=lD-JICxq?ry&Fp2EO1po%zk&LU%p1;J+kcI~inc(H*{7^v$^m&+FQ6i9{z-I@ zUfe^b%VPKOVM6G8xe6Ob*n#;{`Q8GOL^E8hbn)F8$g>>UmCgEVf7anRZLHBE85#8R zE=PdY|EHQinWiK1YG{Br>n zN2eDQyy`z?yrK0(B^pM7=l#}`^^VZ_9>6YZ2EC>2+x6R1t%?m*qcVaj_#n4a|Dh*f zUGkiIB>wYVwzx&(E;oT5jo+n|M9~!{IsBK%3Io`~CFbdz-e8Q&wbUocq!Ve=t6ep6 zLsBOa&O}{`;}G&cPXB;w7u@jkfAzDhZ|IcW&|jq!q%!5>;N`e+k8|-srut12pPF@R zC(>5A9_x%3V%~9OiAFEHC-{2ONlX2Tbz0EcCfl{=lkl>Y5?dTofF8W?6C2CHPt70we)xCFc;9a9==<@avtPr#(cEnp+EI zfUVtm2KR@x+=4H7fo=(V&laNPo#3^g>3;xTR~m46u(%wt|GL-#{A6I1AN(y_2g4d* z5L25GKNNnK*Y*JD!*}L3tFpy3_|qVBRX_r}`$@yZK(hZ1+M}Lj8GwCJxG)*H>+7iG ztdXiKIi}xU1oN>)r7M%PSbi~|%oD|bn=E*%lBD!%a1=+?tEOa6$7V4cYSV_{+85%} z(JRL5)9;-n$qaEln{af>E1I2>5=e^ZI61XX+_+mLuKv-zb0M_S3HQ-}cvEs$Cr1Ny zVUWPCuGNU78UwZ_(a<@z-b{jOkkpP#-~0*Z(!CgWtCo_@?(^sM(n+*ZN;--eRKnW` zHJvD%VE4cZLzH1`le2ViY9W-z4t{|g(6z}x2volbb z^lQZ>0OqA$$>HIFk;~$&;dA(2jvtPloxOP;#=FKNHqo#CAW=HD`I+FUIZV9=z(Q?n zEfWFO4X9gMgT0}rNTwGpX{4HK1Z07_R9J{YIRgSR<1gFFjYFH*ajp5ko1;P`hrl@r zmJHB2e1Qr!4IIwSYkYTHoRA@Sase!eLW4uNjKjMw9Qj6ky9rm~-?$%GC!K)|8}J-s zfcA9@8Y<*4+g2vm!5@kLs_M_>{2T4V`}0w)avc_Xbn9MhpQ9&yx|dgjN>Jv&XlY4# zqKxiDUT&}u*-68idd1L?&u*u_^mFUFe<5k%-sF_QXX~WCmqq+zTqpPO0BI1t=W$~i z`74^|O#POUUw*ONrxI4J z01|G@<_5CCgV@>ke!Uc+sbv8m3WkAQL{Nw72HM7(!lYL4hlL5K_vs^K>(01>>78y3 zNvkgNuwW|rMSOFlPOv(W0mBx6Da|#(u=zI8y3%E>NK)0&cBD6C$O$LsH>R)@SLA6# zm8)afZMi9%Xie+QoUIE=Vq4|ZXI6*Y>L#eqB{d}!n`SY%H4%q9#aZ>M2@r7M*WlkK zY?~q*@2Pv#;y`ebN03cYAGah}r*GR-vb$RF(_zN;gYOm(^>sK$$7Hz53~F4AtGLTu z!b`$Ee+KQ6nhi`4*wbdp+!%ZSTX^JHiV!=*v_*(Ld;o1nx)!t7V2$1ZR7rq&79rdz z2s$D#upeAHDcDK`2iDrB&(&f8A6tDcOx`&jZ3_Jn-BdPkh#xbkn)9Q!2Sbpsahlrm80(I_2 zu2B<#yamlYEN4HvQKycl=y2|m-X%U?@#yoDP#s>ibR;@At+s3xRIY+N4qP3(=%OmX6~Rkcbc=Wq??&9Lbd zIDbk8yKy_=fbWx%y#x=MDvmz(Y|{$Xo<0rUwV?p;~bi+n^WdlN;Y!XgJc zVuj$f7`9%=k8W_6fGmvSsYCzGG?vD}0~6PO-qVe{Xef970=F0XWE4ZTAl~dPObh_e zUjglB_e*aGi11%dv|S3N!nT$!F~kTUC!bWvJwt;cYHA!0ck&=(;zf#-&`VgPqwy3v z{0Z1Ql9Gb?XfrTw+d|B;cIA4jZ&oNa7(F#lry!Fctx`OGr)I3`i$2wTW+t+px;Wbs z!j+AVds(JuV;(6S!_n-$)5{Ec58|r67v|NEqGjYOI2?2arB4{fkIrJETVvLuohW29 z>WIBQQ>E^u+q?OY7Sc+uCODmtiJVL|(9uq-oa7pm>&~&oA->2dOr|bMS$YPym_W;3 z)e&buFrNOnaWY;hS&s;TPiqnrbyZ)61CAk$jYTH`S;Y+rO?u;o{8G#FkbeV5v9+K_ z^bMd*DCh>lM+4xl{xZ`d3@}ab%BVAxmR`2k$ogkKis&{(P#}MH*b@f}RgUoouBLvv)WA1u*C+vaTf=pP8(l=7e?Y!4}qG`wR_umen+h5LgrX+?A#ec$_+ zfAoe1X>yPW7Xaoz!1k00a_C?)fK(VL-W1v5!1R4(fHVFJLlnzc@!{?r*on--GCw97 z6$3CLXg}B)`Z41p{#flL_kXZo;7ZdTTF$}N>iHe)?-91MH^A@^sO0pP#6_!)ci5C_xTuVw_@1%MFdIcvPUzw-%|DqqTA64NbuMFrzRUaR;1<>i9|f z3De#j_ky5R(Y|4GZ5>`qE>W%^dN=u;UTmwCnwdp7qbG+wR-~jCi!lO5T?gVsplcgZ zP+_1-{V;-DTv}b*q5T6O@-{%f9AR)t0T+537!iM87!GQf`zIz#%l;XBdXunc69p>lYFryAT2XJ#1hyssHy?uQH6vhRXmy1qu@u?4 zE{ZikY)*kIH!RyqonUQq0eaD|M-S68$bK3lrUAHn`a^2wtHJ22o1zb=F`FI9!bD%^ z{3!qU@A`O`2g78=_k*6Sn46~Sfs*|>#_=-IG0wb^f&`qVBAxAwoc{i~qnu+F zOgsj6LB(Ek{>~3~JykuA(oTn{RA9Q`inA!-Kgm;H$rkeS$2Zuw;*A;2;UXqe1oEi- z$M8B$<>$k}SWeD0_ezrL#-y6(dSn_kxQjkC4gFG4a+!46qwik$36^V=1QS<`NeGQV z&M_cX=0yh}RD~5E)Kb{V&w{g9#CEb{5uiP&jHW>d4r<%s6MYA`{7vAEg3Gj}{h#@~ zYhuP*;?e_pxaoQ+L6uEIW*$?~rhdHd+FSgE6WG7R1c_~bpeUjnk+I2=HL zH|GyOJmI}ZInVG4Oxe*g46fPuYeB&Pq^N-D-dA`r+40P655UnKdDei_J8;OwHpQ(b zzA-Jq4SsIqwjm9}INS_Du;7%M^_*vf8NnLZP5%CkicT`>TRyDCCeRHFe-ldqcnzA{ zu4*K3jAy$P*_#}n7ZX!4O!QWlVD-s)9(P?(+%Q=Xc9ONQ8>Ivz?{=l{pz7M&T3<&w zXXci~2PI#@WEm|;9u)sUYzLSj7p`HspX-E12?{P6j$(W~^%}*9bqCi-s7*D0nTon# z?6p#o{UG8MToYBQ3<}1dUOR$;ryl6K1>-wX&^Y}6*6joF@Ar8kwR7-j#Ci79H5J+n zMprOng7yYE*4Cf#$E>z3>a7|V(Q*+;IMDYiK``6k!S4?+o7#7T_#><26nthGZxlSW z#a+#aTre)e+7f#9yFgAMVhb{c0sNPgrm_p=)bU3@u}v)}S9PM~IGsB^GP5}ygdQ>o z4`(;Z^X^TwHb782>hu@+bpbyeIkjArD{8A18)tIzr_wSUfa@Q^*n!~lGh-SoUk?iJ zz50-25s9!$Am*aHV;B(O!`yiLU>S7iD~sdvm(|c$`O`xSVALCq7ju4vn|z&r{R@;Q zzHlltxV7bl$s!gun_nBDbf)c_!X9T+5%Uq2hkcuqKRp6}1@h4!HUNuV?x%|8?C!R& z#52)fXtfx+>v@oRi{PL2;Dp-2b5^ZAXQ&Ct*hj(%N4Xq$n+RJtdQ%_K0+Iz3%nh?_ zYmI)JsPtXhFfM?BSRqUSAU+6HmR>#wX25{u457eb;Kj<<1{}aK@7#XIas(}BTkE*= z#aTe&yMcX}n=DHYKQr=Q{rzK8<;sqmUDvCZ(d%vdM{;`dZvB+Uf9o?o-GXV@AHZAm zWa@{xZ^F7CU0AKmzxISupVJJQ2!;^Kvj-^F58vcaSEtU+NlpqTX^bD!#@yUme`Dpums+ zhm{DUq*gC>Z#1GVu4~P(B=uezfpy25oxL>}5v1VoAXGT$SGPF!z;OhsL;Q!cG;l+L^ zKv7jdpw$6}!q!da1Djg54-Y_BQVYG;vp>ccx&#u1 zHpwH7U4hc_xOEVGOb&O3#J9hF196^zE~c0vqBpWGS=bO_(~pO)lx~d-Sdh;Sumbc3 zYZ^V+kKS_sXCd>Rd!rzs(W?N~z$V&kv9^v^1}%Wc0SkGSb6~^^z1_9hS1-(jT+5>z zCE=umfus$^&HzxWAWNp40bZEz0fq+mzSsvsFX2j=g98CAZdZQ}8cD#hs1=yj_8pD+ z@W}%|0c@tub?CR|Z>*)n9vO>86nub}2dOqhFG)*|cD-SFzU9jE{f?4yZ1xeu=-YCBO0H~bqQ1!bodUAc-eN`EM zvf-J}4FZ|{^*4h@t8bteKpAy_!ah1ar8{rA4=$>YW&?&$s0@7F_qHBqf1Ij~wC!^c zCGONe?Q^VNj`lX8pmTl?DSxL{Jad&BvBg35=VFJJddrj@Q#-pbxX~An%I#UlfDM6A zYRKHikLV9xn;=nHv@3fi2@$wJGeUa~u~*TL`+?=lxtcr@=B7rLQ z`=xKh$Hlw2DvD3xh#~g+ujS(SOBd-6EY@K86%KaELf?*)cs2Axn~r!e3r7=0XHWUP zo!?-S@ivFn?|%=#_G(e(~39hgr;E%xU>F0jPk^CGO3%_?)zri7d9qNqr(w&Nmm=Eu8S$CjB4Ns|1+*CLS z-2?K?TUafAhglDR;05!2HSYwY?fA1+n{Rkh^h!JI1E}LTE=A|lx_^y64|bWrrSSJ+ zg8)+a3P9Jou@tcM{P$4Qm2>wM4a{@YURAwJ&&KG+Mt>R?uAqHhwqBzVj}d-=W%;#! zHl-+rb8Pt&XRw-HvQgsq83Nx_v2w`ZqE{t~*)y$syk#M7*SZB8$NS?dokIL1v7Q?t z=8|+tw8qz4h9xtlB_^Nu-}oSPBeD9R*a1Dx`|w#pSB%60KL=XbEN(jz-`e4#X+8ZV ztSZvezKTC&gJbf>Y0J3B#3H?qmEbZ489*7p9|)j8!!zq;l7*>SKzsW)zkXUjYw(dt z`gQ@WX^eH9DMw-H#fdTlD?z-|nlDW88klUJuIer$^v~Cctak6m4PB`KEXI2otiXIQo>qgVNnFucM))` zKnlsjV2S(lS}t-Xg+{f{x2tEs%>0QLM3Z< z-gmSFH^MHBU8x-~)8T&{4o!$&?5!p?Znwd{4bZ$s@SFxTQfV1USONHcglyEGY2iM# z0_Cep*v~CEKQErT-W3!P`7(L$T{@@6&R($%8GKCd;U|^2^u=oS&9{PbqHCPbt5kJ$ zUjXp^>8ZDGQ{v&q*@(^=C@hE%4_X)SKXu=KWX!qqlVz>*+7fzSGR3>P!^pNLx(Oom8eo`=2#Wf2uez!F>ukh+-ZqPQ1TXP<(lZ z|1~re8q-=%^8=^>;wY`t5CpW24HJPb22@ou(0DG7X&$vj_H}*$c>FD?kcH(0cr*XP z2$I3qCPi0=U>OdG3;&&|Ao}YCP@&)E7DaX7y#s={3*di%n=SVC^#{Oyf{ID7o3hUL zb-MxlIt4yCnEY;lgDj96_d<#N0AO|y>*uwuAd=GtID1{ZYqh=1xHgaOOImQZU-tia zbcXbO^cG&PkjU7OLzg5fKbcS3P(mNqLBR=ZS1KesbC?yz}6ngJ&6ui z1V$>>*7VV5z5YmJmxY1yD9;~^H!bu*7ffzj$sJzh1{;^yr|${!+SxZ3Z4p`uB}D4e zMiiuUBj)TDY?(d0uE=Dgph^HV%ipV0RDc)?F_lr5s!@K1_T7;Tc%f?re4`_|8`9JQ z>v~1Snz-GJwF8yF}D;R^aD>s{;0i*#g0AXN`&fdb>INRKS7#SL`92OVS z)jTXmiw7NrR}Lo~rB!ZO-w5rYZ@nB^6mD?s$o=rC%Ep2XcpH8!p#tqa6y6fGD140(;_G zYAd3is5zbkA5~D9<3LSKj!q_^7(+=5SHL1qm*n&R*qW&S(A7XE7u~*>$8V!PT-}i1 z2^2K|7&^xR?b%Qw^OzRE;AuSO&47bz&8S3@0eZqf#ZHmJaZpI9yx;7z&3Mj93Oa1+ zG6vx&t00#6l@R#iqkQ_vblE15-)UcEzCEl=_*XqRMcQM0jiHGpBS{X#ojh4)yP_8@ z`5a_R$~(g{`4B0VHIfW7gFs68iP^`a!BLQmEI-S*?fcj*l${5PiJ}TVbnORNXD7rlE7AJH<++;OtQi)K$p9VV$Gk9G3OnRG!RM z#c4t_RxBoSCI;f1)wM_(EplP_Kz#4BL10iA6wmZ6bksm4Pq%?sROMj@J~QSv^Br+TDYZRqNl)61;k>5tP8~EPtC1%L(;FC5Qg)6EkM@80R z=`#Y-n>0Yz{*2{7k}xt((18d7hWLwPRszsn{{$5K0}Vg0e?FF%527N2ZcPXbM8F-% zJw`O|0Dv(7Y+QkU4!ks|F@`L#MojLs-URae*Y00_@gHAS2+RYVSlUI7Kv2v8-C2#G z#{KsqV0z@kW)3u>V_IOTTmXcG0>mo<7R@$S(NnKD<#mGh=xRJ+_OWi!^6 z3n$y5SHRq1MrEo5x@>bFtDw@0!i*^t#f*rVd^-N76Jx+yWU#>xCVs2_d>c;e9!cya zJf5ZA$Qv80|)=B7NHK^E)#eE3u-I_c@ zT~ty<!1OpL7jQ|RI8D5_p77sY?tB06Cc@u1!pvd)5IhD zHf?&92rFYn_h?%qq&ED>P*QM$pgbbSY>>7w*>&mx=x~hi7D?WARiL{1z->bQMe#UJHQIYq9E5%$l!o-5+a?hJNfZ(fCEwm zO7#Vv642@6aQ3Ai!7w0IyV0%`aZ&iy9JXXviEm3)}6YR8xM1qp)`E)k??43?qWsw$O zw$;(d<8*FFjVBdyYYDcT5seL|4!IGWSUr4FnEE`pO7;;l+O5O)Q>LU>q)hPOq}e4N z#a$FnsuP`sS&kKnL0kzZ=O_ClPP1Ti5Ty7Azcdn#zv4`1fKrVvts+D$+bsDkP3dpS z)+YTGlRJ_?fpu{5`PO!_TNNMQOAo`EoQ%(nVGD@qr>I{u1A(Bpw9=L#@ysN=TOg2>}ov+jGH+ z%>Q99;1Jz_vySGGc^`Oz_E#l3AWG=H4(EP20mKak3OFl?^ z$A-LuL7jdL01MWe=(M^y&^fvRT6HeaeXr2AgW&A{o7b1$&Cf}H%LK>(5Q8@Y(k77F zlypq?e?0&`QUB39?*a?0YyiIlkXr1`Fe7N_XaMjC`atWkZ1RqJ;DU7ZYd^pfxDmhE zouBM@`4!76$tBF91YdjBeWHi^qfM!-k${C6PCn#xDQAmwGFsfA8Yon}Twy*=^zHSg znuyycHaA?X#8@U^QC(vRdrDiED_z#spz1bT&^1hI2S*~#Xnp>S@!kiP?0mIax;Rsw z*8?eDKj>w3M|qARiDwEdp^b0jw+xi28fu)&E5SWa^#5-}AJzo3#790Wces zM7IPGRnXxz-{JWtWCFS{$VY&5#kVJA5_^m7*HF?z1Tbgd9qKZ3Z1B@=Yl;6M)q(8cQ-0!Uo}TmvB5=!%KOH?WLN0LTy6&qe@0-TnMcnNUpp zG%t0#tlV%#F+(p7KR?JwQkHP>evb$POeTlKyALU9wr5(7kmCYE44jX}W_wd%QY zZ>e~0k0UFC*m1D}B1iWV%b#BbM8@}U0WWUmV;X9~52kw3sxt0FJ-G{c&m-wU#Z*+c5mnsCiW zz^?A)^XE-qstIXNfMKHPm`26V9Z|u#^InCCKCo~P$+0wA4;SF$Szvv zFbGgGaR5gTSg7_FZm?yfxso4Xq zd)45?x2dlQmPwM%f~#|lHl)#q3Grv44osJlX46UA9HXMSvOF%NE8OBw*72MqAd37= zpbN6$bK`Ux7F92tVbbk<{qmwH(xQB%((WmVP0^k`^L#XvEyC9nM$cNiR4@*Z?{lJB ze~9OEkwvmTEoaNQ>caM-n~_6R;U}uA%!r8(3TT9(zI*ORd06x7Ly1 zYYGZ4YTu!0Duv(-SE`PEoidI#3U$7qng1pw5YX!R0JZ_*AVR{>xf`{GKT{$w03uU4 zExTxvkdUn8LPJO>;s}U1AiNkb$K8P}4vfka04@wUGW;h_!j+P_64yl{tOoK8`1)(p zk(S_&(@|9IA~KDzD~jG@3j|+O z4REk;KMl$F8Pdy4tc^>DD;24ul}Hlty%J7`jZFFWOs0(+gZ{)rK*vxu2a7nj#+ooi0uA2@>>pyqbXBUNDRYEEx&-r)yrXTqFzP5$ zJ_6da&Z5G$(wajO4r1-I$P0Jhk$Q2){)oVT)e4S#=9un%s%fb%IopLA34k=c7y{h|8ou6W!6jBb<~)q1XBn|#Jh6vb#uH{??v z#ju25SF%cKzorr+`*lJ|Mka#&j$^u^izTR3B1DtusBtXZTZ&xZCLX}Z8S=3 zHahP+d;WfReWmom3EZGm<15X8(0E6nii=*PV8CW?!PM-SQ7YC7Vg%fSz7P{ZFvA^y zRHA@<1G00S`Hvv^AZX$xr?i2<*atz?`Oe@0`{OSc}MMjxI2jQ=%9LzDq1-R5b@m^+&hw3Wj z{0c*vY(zPX##n;7SA_CI*h;ams@w_1C^K%w`g0auV*Y(ovISA6n46`>@MUxe1<$I!z1J~*7yJ)S` z@~R_bhgGal#0&*JgA)_MWnak3dZ1N{>1WF-Tc9orEKEMJxuSm?O|pCB({4W0Gjpo{ zhCEn_NtKW$BX^1&gT6&D_;(Id++f$Jy1lT>LfS-eYO^%d98#|9NaEY-N-L<DwYAlFCYh6HoyJ_)DHVqT;PJu1;b{*F1iHM zr&|Dst$0>K+Y>Yl5aFe`ll%eGtupp4px!9HtF#F8HunGG504`ZHimL=?c>ZL=ZFrh@Y zeOQkBvv-<&Ni2t|x>{JGSmnpK9vIDM9>g)q<8x+QT3tqkzi#$m9L%T%GCj|3c(c}? zl&~Go)6~lhtL&Dh8*Z5C=a0v`(ul=p_U8`8S2oopI&e+NB`|7LHP>jFH{_5OpE+1w;oq2i#n`;y2C_$Ky9GWmkRq11) zHYZfC24IDpFb{=MiQlXy zB=08>e-=m_CQw(*)RkLvRb-!#R#&W!;7vy1+3DtE52C{ko@KKZ6ATOQPn0eflyhWM zg)#>d!43X&x30Ga1n`3Jfr!9x!PJnD5Wr=Iyix_(*TtfB*OU?Hcjex_+0`66Mzuzt@_0eNWflxUf{akG{m~%LRv*4 zo;Zn@x2LwJpTLkB-YH>ZzoNL%FX8-Xoz&Y~mdCsPjes4W-auFsD;@I(Gjk>{=Y-j? zK}B7n3|l#J7}-Wza>mtjccc#<0_A|Yu`04MLX6WEZ_D~KXQ7-YAlA0#N@vrqAW4Cj z)Qh!SS^J4ThSrNsa}1283mCh!eg)P%b9>^cAF{zO++spr6(-aNuPs~bc4t3jE8z0v zt7L(|i>_dhvuXA`Js35l*j)|Qu!Tyopm&D(BO%ez_+Z1Aex+2=g+yBbl`35I?a(tn zSk*+vlp`_--8!AYeml$L4*Q-lm1MVY@CNub;-wE|GWf+JxKiiZN`qE29r zG^S<>SSG+>*%ttD>OfBnXm6sAgXcY6jo?@ekR32+_`srXg`W4ljUSz0_5Qa=65Ho} zPme{))dEPyKzOcSf|uny@*Subp=?ATQFqfdvI4qZh%F9=$(qmNBM`etoejVN8?<|E zkX!TEcXtp+xe9IxVNi*Y3)xMr0n)PQ?a4IxYXL9{fWG ziN;5Go&j!#1-S7*?>eB-4>+uK`EAQKgMf820UBWNr_!W(0)(@dx?UOPo?3^t$z98W z;l#5!e_6o8(v(J$Glk;Lfnhj$K^{U&XYu8o2mo9`h*c!*M{d1CcVSY$q;jwa+M!thEHGA0;CnR#FVGP{5r-V){zE`WuSWWp zKnarkXk7XT{zITV9ml`rXnRIf+5|HDu%*%o(d)G4;Pm;7?Th&I6+vc>WQ*HCzzQe` z(SR-11_Ub5ZNk@y&W8u{GS=r z#tsfZ-nJ$RdVwtO_o|x0DZ=O5wNzgmQYkFcz0EvvE$O66eqYhuX_u-NiL<9pOAA}( z;+tYehcTqp25bJo^(lu&p^QdxkxAs=uWN+HrY&JKJ-l4;RV*jd)b{OD_q`E5r;v^s zT;eBll@z<1&*9>D`PMP%vT4W|Vzhl9|Af3g+2BVtZ`5Ql);2{2KTjeddpdZI`XO#Zw8=HA(EcCI%aE-6~36id10HBl0=>)bbpJ22nP24w&G43DO zexqqSEu*2>P1(ID#>R$V!99Wp}{X{bf#0F!SAHF^pvIPG!_F?qK``f zzK*ONf=;cbeFJF=MXig9lP8Ccj*296%ek&hWkz%GykDWeb!V5r5-Tt}C2EARS zI{Q4E>B@92BvJU6?GKSdDC{f++Qw}d4R*Woxp_+x?T|+mIC*y@+A&Q$;9c)M&tune zV&F#geP@`)x)D}mHZH<|{lJ5o&YU=9QcD9!A<(#=6LD$}D1nFkvK_`&9I|<-a9jct z<7C)sm}K*_3Dtd$q~w?f_UR}MPZnQYPFF(q_rd5iY=Y~|TRYzl;1t$L_U@#dRH>RO zus&q=BExu9AA{Wv5N7Ha9BQ%!px}Ndi`^Za-f|?swC+a;0`D4%kk0%A8HnBq$?izx zq09E)xt!NLbSZo(jnL3cqNzsN#;+iga`zXY3ynTT#~U4T{mz#3(Qe9N!FKuiqFwNL ztVjx_A1z(m7yTs4dS;=L;NLnv4@E8Ov6PEO+CVV+fmd#5<69!mpzI}I&3bVR>I?&8 zFEmV16e>ri%5=Eddcxf5SIhJf2RtdYSS$5@`i0H)*B9wXf*ONd6S$a7GNuiWNUejT z@12yl5#i$D5sA_$8C)#h*lLxgb4mu=u7;5?HmYrjfQA~?uuy=_nWJ{lqy9JpCyuHA z=|`$u7E?AWY>XUY;LS|4wa0EyEIeB&rKkWmdq9#8SWS?@`&`X0u;r(L8w!|#0gb8d z*)RKbr7JVrf3L=0z(Pw9NT>7jQhh}IOjpESq=d{XP_FwgCY=1#^&?0hT`_#a*klz&*y}!_ow2@Dh?% zV6@iKy*4h#@E3VkOlKPhXWUi73?7|q4S&X7AqeK@#8eggN+JdFo4 zf%-^-+7U}qv7Qmj6iPR}K6~WZR&l(F8rNd1zJ&sPzoY1bUu zTIjCbb*NzCir)lfwItyz{A{Q6jy^)9j@x@GI7ztqN)ZMzHTRA6-@sWXaRu>0b!1ue zXcAv&$y*6=w)1p(dodZjNe@wFOZv%qtaw7G;vdF>D-$$PQ8gR;+~*;z1Y5c(;xD1? zHmR^Vn3)=GMY7Z5;{*+o4{Lv8jzkyiYfYH=ea1~ z)1Pt&T9djWIOAAKzK0L`45S|Q@-4*_V{92w)N-cD8-)`QVz3{@=8pa?!^|_+KL&omM^&qdWm(aPqb)- zP>hs7IxTU}S@KY8&NPzyF1eyI2hZlED-HeZVJs7>l7dxmviH4_Xiw9!5F;c3)AqAq zT+L;x87Lf?Mx5B2CD(t1`)Ob70LjA&FIRpj3G%dG-=4=J1` zNo@ymhS+~K?ch`Y1C@cLo>Y*RcT~X{R+V8>Q!%dJ>*(12v>vrp^16QT5nYeDXgzz3 zWqbAXXO6eKB!3I3HHZLew_jgE6T*8!(XYY4h0khdjrmD$1B+_vhrl}aN>)+MK{fuf zREv@b0cEVP3rMXYj-507*oRNO(4{7%zn(qbbZX*pR zYC&x4<0hC=!1|;O45QI17mkYb-Qiq%Hhw-PTRDF;#QDkUYPn>Dbd`ZwPn!HPYYD7j zQK@Ib4ar8nae8s8j!ulJp@;^RNmlQ9Vlcg~Ju-`bFYmkU(DS7KKkul$wVs`u8%iGm z(*-Yx-SZq9@Ov%}RzUyv=1sWfV_2SAm4;V<5jn@1rEcySOAhOC-{Z_tl6=0B`HGk$ zSr$92Ll+t&nH+C10s#x9aTM~MoZy(;tuXp6R4W>J%${LBU(UE@xfVuaY7;tbCDg9| z%TV7E)zn@^94b2cuw-w#5g)QYStmp622}4_gi~B|Br5dJ%)#=YPk7cUT_Dx|n7*?Q zcYHr~lGB-PrZz1zfLk$Ie$;S7@lm{wi)59-o3)nc0K3JJcQ~AZ7f0&AFFqRAn?vNi zr!}x30@*#l2($awETs7a1Wp_PuI5HUpaQUA17#y5K>*XGrq{nj=S&}v^aN=A8-D~G znqNBta2K*+0mR~;KrruV8QcNJJiu9I5;BVw?JeK)!h8AnNCxxu!z_lG2m<|}lxMyv zCvRsd#?v&h1(k@7!gBE*7R)kji6H~{;L+P~tN8eyAIXZkL=K6`$?+W)i$jM^lb>k< zX|4deog-=|oss`&_f+-uO3p$BS1u9GVAr$r4J>l?#EBt|zMP zsInPE&yb3v9lR6Ho+i2|%<;9FlYn>Hy35A&B0pvm_~incSqlc)=E1KAA4EDhV?P@$!8rDqEKta zGSh;sFBX^jFayjh4e*v)2Io`CBrTIs|<9`<7_KZ zCTi2)ZTIRwmpOgqq8z#Y>+MCkevxS9m~mQ<&UXA<5XGB>#4F~?f271{du3quo{_O4!FOQD^#6*Qa(8?pjjs^=8^4T=(VXvpSr7KAQK9VSmMR%<)xWHc11@Or4A0 zgHK#}114sa6l2_VE*=iIPyW#CeI6@obG{?;v8T4s-1+l-FKfGM9RV)6FVpHCjqih3 zEIFhBT9^kZt@)VoD_7X;e=3kBciirst{EDq)u6)`QoOZihT8dp*;lL7;8c>a)IHBX z#SWW`QSq(`NH3vwlN#&x6erP9W?_CU#t0{XyfOW+PJr^}1h`LtHUPLceo$HK0-Q1E z>;Se8P*No*dJ*6>F$65>Ac@0&*FyOS>e-Wk@cr5X0(5$+yvsTPe?t}#u*bu(5 z{yzM^f}sv|QK=(ilAZ4fOMCNbBNtgBhsEva*)|fPeP05Xp1-x|3%F%wQlpMq#y)St zd9WF#ncB&f(2Zl-kkU(sXZz3XrhK&<_;}NPamove9A7c!Gmkv;3nFezjM~)_+}iZm zrb;kh7<5ozi%olvB+@}ur2Yt?LN)a`F{MF5-o5a78H7{JU1h{QZ<{=0_E zlEVN4t5?yd>Hbo#D7j#?t5Llcm3Za)a0uHcdg9G{oAdr=C>3w}9W1SUqQ6uYZ*;gv zlIcEZ*Nfcc{P7mHQa-xHXzLTXPr~#qiMNtkL`(n6^DE~>6}81fA-M-Mq3TmVaPy2p zE{JKAI+jbBIw=#6;Kr!%kj4-SLI+)%TOX_FQ9Fiw?L~aj=LD`ut6^|l4aI7QzBy|y ztzOc7W)&fxL1(8ld}4UN66<7&R?-$8g|@MZBZq(+c}mFNDb^~{I#i+c4xcCfgi@IE zaz@-e++#E7UCL5zr10FNSekV;G-KNb^<2Pk7I^3a9yG8>NNwckgKXdc{T;{*0)RO6 ze=}m_{d z%KYU4u&Wo%d>G}B$BRg`7Z%TjA9{4?DOFRiiWqO^+*g!J$HZv9XXODx!mtYPSbc#h+u}Zfx#(sgE<|63rf1p^&Aqe9Y-roqU`4 z_dy7#k(gzw*dI#TXpVCCPC%MnVAKtexHTx*MF#^wP69xY19*0RKwR|yKZfW3SGFTx zO}>9BR07i@6pvE#7S2lSQ58$2-(D!xzTd&Utjs!{L2?py5}%Ld;Kfw>1Fn^=VPx)21l<8rIcSkjv*OGn= z1?P8zsM+i zpjI`HWvdX65`Mo_@8jWHu^><0{rMnVy^5KKG>Qf3k-a`OTMQVa&eprmlR*U$7gL;Y z^>5wnZEjH&8VrIBd^_KSNmjxrlr)R+CS$Yr5RK>iQs1qu-bjG42Gu(8GXmL|FWNJa zx&kkxlKe=DWZym_vEUMXi!Q*Ciq7!j3t|5Q4J&heBB^@fcNFaRo(fxtHG=P-I(~oLM>f{id|3gt#yMn-Kx!ca?YTOV{l-m5{T6*U#TH=b;i8p@FA* zfr2lei0>bZYgC^HBF^)6y6IZBO0#k=M{NTB{t4h-Z~yzImKDT6=bakl$$49~U45&) zt3{l41{^;QJT^h>1m2q5LQR5&h|%A|KrJ4xZmfWHy@2(7#BC>HZ|QCi&v(9eWAXCxkQQ;sa}mNb@i=w-GJD)R z@7$Z#h-o;+;B^zG{nn^dTC}zuAt_~jKl7iEmqMv*bjHBELE^MR<6D~1Qj)|Wk%Y_N zoV=xrn5B!WT7=JS==DV$;-d4~6Y=-gUysKoMvD^?s_KX_fod|frm+vMp@yz3(JSUx z+ec{rVJ7FTbGP$xxAQ6{S5t@!TEy?pyE(*F$9X$X^>N`o{nEMr()q)sqlZ^Cg%XRv zQm}pWh}ZaAXLb5|LMe9UXss0{bE?&(X!|E`EIcAB`r@H;eE)lw>n3;W8dt>{KC47| zsU@9l^qdJ*XZ#Q8ZS5+FWSV0czVp=au@ayvTB!of?@T4cSVQa zU9=yB@!TZPUM6&&&E0(;zx_GxKcnFP++)1|7?3cXu1cM*pjR7sfOpre5O|`n<5077 zZkzHr%{3uF_RlJ@QeL{l^~m>J!oddH9F93s(V)}`+Fc36vBX^MBgjUg^Ymrssma|) zpf|`osUDQsM8)lqAhZ|yQ<}A)%yaF`Loi;?OQlbUcDKCxl0L?adDmje>`XL zY;RwPza(3Q7VNi5<8|8MP`Q)Z-p}nnKL0w-JzwU57 z!LiIMd)Q;c<2Yd>x3$OI!E=UV`#Yagl!N7`uS)C2Qpdz~2j?j$e}{1UsxI!3 zmfo4hbsAF>13#LNCf6TKuA^!%qLwammNKewZ%@4A&b{Km1CzQcC<1k+iSZR)d0N{V zGbAS&@H*lvpAlhX2GIwh~n;XL>NXsTX z$3-vM`B+_7bHg!HIC+-b?F%z4SkaaqjJN9qk>m;@G-vhjqj0c9ZF@k@D2>BgIc}7 zRn~yjW3c@{Oe20&@{J_<3^%gh_Ix{2Lkm2B1`G0 z?x=#mD$c*&L+(?1vh~-901T9*hIhVwtL1_1qK_%ond4~-0uR0`OnholTa(_T?oPC{ zzKdr1i+rRs}zo>NQ zqoa2{!k{@!D$>3GbPoOTJ2$Mt1)E-r;k|U2>JxdB?SJ0askX!^Fce-{0uNsT>?*pG zc6Eu*w8!ZKn;QL&s8`zVjN+?|;^0ShI+eu^g7Mm}0h1i~;kK=k)J}B1?!1WZ zys!y8v$;iJNnF?sWBH`;F7lzVla`*se9{dKw8Upm@Z zz55CJva9M-@a6_CwT{DG)0S~2Jj2RJOPa=d6FYfx_P#|lZ&+?eD4&cs0T1Sxp`Hle%5=tK8+p>d3vi{_Gqh{+f)_MVQ0{8Ro$}Sa0pHFwscUZU5{D#u} zel+|4xVy%3^8N9nWBp}^+)|kFapv5~l1%~-i`y{!4w5u$^;iMP^?@X-k@ zhHg;A6|{-gE5z3=9cj6FM+ObK>RYC@+1*oh{?R##7#2?W~;w2{xKYqQMwZ09yJL4*OV{MQKt~9X5 zpG^eHi`{N%AdYwtM>o^ve_i5ypRN+bU1Zi?Qrt#gLRW9&53lL0#o{~##H9qn<`%c^ z;&Bzl<>LPBV%*JO9JH_pa@K0~^1y*3c2*zf4=j;x{z5zNs%F3SqE@ouaL-fY!6bXT z@Q-G0XBF3t3wg_4akg(&Uqrh>@@LcA`Z?CL}Vabj{2W->8%*}k~b z-ZG=-)VVTx&iK*7#&ttZL9TfTSS&&mFc1OzMM3;10UX*A6?t=R``K-Kubi%Doo;8L z%F@YuzfZ>wnQpTVvu5N^A+Qzc^^2GR{BuQ9^0_mk?WdcUwHSQ#{n*;B4XhyB65Ky)S*& zE``E6662)%=PK;?=&SG#pW1A5{5kobW%JoyR3;!6T5e2guL6Bj5Wl-R)C&VO5D&Va zm_0I`uRHtHHb5?u?vkDR;dPB`KK!xuY0BkqiM!vGH#<7ZN&)lVvBF-6s@1&z+M(<#*vQ?AS%3k?eh$qfzLI0(30~+O--=h5Pd|*4rN0XLA z?^|+q{>F>9!|y*}Z>)aD89tI5YtuB@0~P1e^$P9X%I{mJ+EmXPF{LuU)>|cOwIJpD z+Au0MZ*9`l2bFzaK91@~Q%!bm@%S!`oH&evt18(0*N$=7z9w|4KA8)?>$<7#JZ;WB zDQ4YTDqRqbxx2l}-M`F59MIl{rY1{duig`1zSn`c?nHpI%;L1y0Tdx$a@G*S2Rt`D zJU2fAuboT|qx3cnoLvez5Z5`yn0{1UmtJ{5p?PK+Wtd*Q`q+tu ze=0-ZYO8AL;8aKJ99q$A&G>fv?H`FV$meR zpqK|fE(MS0-KRoD#j@65R(VQSAHGz=PoPHa=O6KNyt`$*f36(FUdAss7eGAl0|ing z@YBCuJiklUxFo*)zJ*{9_S{f8Vz^m+WbYl<8?BBhgPra=g=?-X@YI~2TByqE=Wy`^ zt>bNLxyjKI;&ut45U{4ejR5Cd&Ne}uSKrd*lfXZ(oO~%eoRZ})nCM8=*g}O#wHd@M z?Bz>6ig;{32-p(wab-&}%4S;0ZZ=0sfMq_@d2u!Eb=hfr3q7u#$2S@`eHu4#jf?xL z##)Q<1@VM{rMj;`x7|J;_I}zQwbg6%Uc1!+Yr)h~_s{;J)i;_*Ua4EAZHfkP;gW-R#Emw<&K+>H(w4 z=o=Xp#bc~sI%~y3rCbcNw++?qd-x;kvlq$J`sZk>?sgwOX^%b9{~S{G`sui8?axOq z%OuhyIZcBxw9Rc&-;J$C3JGWgE4TKe<575s?s8r==82)TVr}?%);f*bSYqdxi4aQ8 zc{j5q$!R-YysjrTV|(+Sxm%>9cl=24f|SkE>M^asjRC4nhXJxp)7LC4yHpjjV@u&7 z*vX9e*Y72Ik^!W@%NTChON}F1ZwW=lngxl}m8S`9^KiMs3p`~poGc}g`T9qX9@qvN zPnrx=5?XnszYMS;xG$^|@(|vZhlGZo zaZPbuBE*hkJg^SioT%Fv>}>L&e(X|pn%O{hSwz^^*W(_|l3uM&kHf@aT!xmPIfYP~ zlqE}YX2Op8eXVqOvm6at~i;chXFU|r7nF@bB z=htOaPuH2XIeM0UL=Q3i&5W&QHQlIN)g+HCOs$)vDr%i5~ zWA*X#0G)~cgvDAjtHwNF`aTz(N=HN2exbNL(IcgC567WT;Nxdz%{ir{p&2-i^~aAl??9w_a^dJk|5q~de5MF!y49Sq834IC6?vl9aNWST1sMHFGCH)Lg znGJ>(z+|Gi=t2)T0}2UxD%5jv*eJr}D|3i|%Kq zV%xxD+0VpNu=J@Xd~X?*S?IaGmr`)Xszl#$ujEKqZ%OUosSCY8ho6u3+ua16jV28g z#~p;fBN=`;{RLL3Vn?Kq+|7j%`N3H#m;v+Efa?xj_NPwwQ_U;pbX=N=4xtX> zD(}n}9i8uguXKKQkMyfJcL%r90CJ9>=yf)oTC-ol&%$IRWvMRJ?8=AKNQNULfp zqYz#&EYU^2{Uk1Md{z>8MH)sbAr;Cy_lUc3jUNpYe}tF9d4oZb=vN49^UHjbN6{f#hgha{tT8|Q8d?-ZEQ~6QXxSITlw%;?M-Om>;u`~pay}t>+MDPK2>@d_D znL6Vf)S|LbZ*iSIL2fz0!2CSgjpJ(QrQFeMVEXY+iLhWAciAg6XEyur#jv=uq~A!c z8#%-ajZZ2MRvIU2U%VrKqtbOwO011#U8(scPIl4U$e6*aSRJl*UzOH$F437V zW(g~9H?+t4qiBPUG22f$d`17KO(tYpvV(^f_p3i`4i+yAMhD2oem#o{JIqdGNzxWV zj)_aMJQ`kRzNC?`*vqLqBUsxZZv2)=&Jxw8n&mzmD1`a$=&quIRUF>FgUj$R0tPG!g`iY|9^%AeO5RX1a_29(JihEW|g5xyYIFo7Ekv^`s9+7|tPOudC$ zlYiX)O*aULlt_<~(J?wCN6J)SfOJVWNSDN<2MlS1AzuX%21vKmXr)UUr9o2UcX8kM za~#hfFpjb7bG_?)ou4;pnZ(=R6kB9!txGU4Ikjd2>Mur$D%^ju9d-%z-3J7D_E6+9 zBg=M%&7Lu3?DIL5Eh0R1%*d>&BTcO2E&Cx{Yw`WQe@BWMB(F=hTTI4FkZch0jihbo zQSBFVDhFpb*JkdIdjDgBR@0w=9d7hiP&*ZmQ|R<3h$q}??ZEX zw!|F;+J`|+K^5BfE5(P+=Y@~LpnMy}{n>O^4})GYacoLAH*eZGhk70#Ev$;O2|{OU z$C+E+djXo^^=m3%n9q<*r!4t)kRp9(o-r8(@iN)z}h**fgY4RE0Ys7IK%8x3C z>Spi3=}Vlver5-H?s0XO>;&-i4#a_lW>;D+$=@SFj9>n`XQDe2#!V<1)9IXc|4@(r zT7KPv#A+d694wa9*)R6!)~PH1c@Oo1s{kAEY_qd4Hqsc&j57I_2%0c z{LmVaMc)^j?B*AoM6teM*qAD>+09KA;2On#4%crYe9=6I6R~Q}BPu2k0$b@Rbhy;1a=Cl*;e!haUwX zOeI;QLL)$V?0bw2Gb)o}{?z(X9%wpG=0c$TH4IRS5JEmzFAVuo4!pc;x`V%jd*9V4{Rd~%Gt z;PfTPB}H3Lqm9tvx6E(s<^8s{V*KIj$JH88#6jIVnk zI(uNY?LFv=in!T)KDgN_CkD7N`&MsnmYNqfgw6roeaj}}8mMLu{*D|h+!n8X2D-YN zvqn~m{ZAKW_GC9{n>{L4tML<(BXpMQUyqIzJ<7u=v_29FoIFG9BVEvS+e4<0m|n(q z`~=}81qHRR9UJ8@@Oc_RvQ+JKcsDp7RzCiAus%C+S^w9UQ)kEM7uNLYAeOvIYDfz8 zTVs}oWX7^tzbl~FZvr}DNnuVzpT$6S*)`fN(d#t;izTQ(l;X@Sa$RwQEn?N^)nW3?2574n{}ir$gV@g>>v9* zJpV6KM{ARR5PZBy>+6?=f~MQl`yMUWc#TX^>7ptpb%o__q_SPOY$`!YeFthu4f`~TV&BpptWjp)hX>iStsQVLSCcn82NT*~q?ZSfL|T!%w++U3I~;%_#Ler{ z%5$qYG+O>o>(g+jjfJ06~pSvGxXZ-EB(bZz88^qebutJ04X=%2nBjr~Rdg1&<1PQ-s?KpHEmP z(DqmHSq#b#ASyzc`>3-W-BLa)lVJ2&(HS+>PO8_sCxRo2b|yp5uM%Cg9r^ht1tTTT z-tHMF&I}EK1s+7t!b=Y5d8gemIB_$ptu2X@RCv3>$%Wa`g5%`YRni; z%vho!V<)^D5NZV|wlV7_*WMlEeO0_Jk)JlMP($X7cuA;IR(t(4)IE%7F zfz;2)MoU2EiTnYECIy^FN%RkcWNyf>JF)9p?bW>9>wY$?5O!hb(rEt|N=1IxwHpn7Rw zLT%>W-Uj@njE=jGR`7=4=i{;pk3H$V5JyStE05@JDon1I@fznB_oWze`TVDwmn3g> z@pAhLn>y!dLJF};*a_rc?M*CB(5*~1j=`UwjU?-%za&5{FKV(tiW?m^9jP=vp%Nh; zibe7o+aR&f5%(wh?`WBn%ikY<@^{%*(VlLZRoD%k6lXU$cM&76?xXITIc`MeKUbnC( zWV}9VaBv@)?||dChxEjYe~R+C9rFiZ{iCQ3{#>x`0SmpbWwZTj`}f>_gT6VcV`8sx z!~83MsH1AQt#eVo^J~8{Jrg1lnfDFtc*-xGH64Z5l2l_?12Q@n8B!%rIR%xBjlz*e zczVvzAbVss-JX$$2BX}dU4Wh(I-|}%1mQ&_wh4mS#&yepDp48y@jGgm?-j9q-3{j} z4Vw96>+|wUN;CTHDl-H0O_rH<8gLuYl#08b!Z{Kj867#!mRZ;S^3FXEq>H=Efw;BA zRJpNIkZoN5kc`Q`P@q+Ae1mss(QvCDy!nQ^kLeV`P~1D0gp_&QXI-35Q4TNrSc{75 z&21dIFe)VZS<12_X42%u<>-~7<2xd2nQHJ+sk13u<6BWcvPz?RS^mT^!+*Cm5K~2C z2hZ2?kG&rly1&K8jqRi=3MI4Wi`A^cac>Yh&zjJV&UiRB9~`4en*+Te( z5^H-jztR;wf5;vFN&*d)02}UjroesuUQ@@38H}%%*Ec>RGUueIRZb`z2zxchcuOtX z`H+fax-8;*39>|9qf9JlB#8>orfTigy@}zsd}W7LtCS$&g=g*sR@rL96Xm&_kAlOn>2$Ibj4cGOZQNR6Kmfzj4-R;9b=OWT(f#C5w!1pHSqEsE%9m_s|kqkO|EsudfO%TOs|1%Yh{liyg_hT z3-o>PpbX=Abrf~}tnW`77OPoF{rK5u;d zxu0?ZA$Nq}abE7CMj@n78}?QyXVHJ={`sF&q)f?8D7wK>&Vq_{{F^z!6kuYB_z^e6 z+RejcwOc97$Z@rxxVa(X2wN0sRDMe5w(^9(asUQhPtc0Dp9$8L6$D}y0X^GT?j;3Y zL)N+p#b`QxCers;zo8gCX8u5y;FLso>dv8xXF zcw? zKX?Qvvf2e^zkXTgmp%^FNzSRX5PVdfaX$Dghf9`_DPP%zvWeR(UGml@@CWYnCaX)r zSthET2Z>SpjV*+$mKWJ4QEyL~TfGN;1sN36xcsD~o$6E0?lKoHCg!WYpdfPAyO(4T z**{FR-80~R@3L`*qYt+4PI8EJ1Vwm@%n;wG%$*49WzzYGGPbmSIcpWYeI{3Xl;nG~ z9Hn@Gf|ntGKJ?L%VW@J;5YG2 z_2|w_SlH6FG4bEJWg@8S-uWAeGJY`GMc2ma9DR-+AwiSD1mGEfpKzy;LWuiPPBS2g z!re8-y6s2-FP8OcOB1W}Q~r#~ zW+8L8oNqj<=N8}PpQlTO+1QKQD+yUZ3(?`q#q!Es@UNMh&(qKKg%JUpwG2w{hIhr% z9ly1Vm1v4;Kw`V567+g(T-Qnf{ON10*KoUiWoYdm=^1fL6fP0SHA_g2+{HNXdHd9u zO=Y&+=B#T%$sXfYib@c#efWFJA4;R2TFu+c{P~g&)VWbzFt_CxokCUZ9wI8EI9{_}TNUw~k-}(e(ITdMH9{luls*k4eW8W1QzL^d#sdXYILHpt9l< zI5;otKW@jm7{}JsmQYe(S=j;d6mAqjj9$ZpjG%qFN46n?w)lQzPJiL^6~?Hy5;k*n z_k*G^Ir}aTQG3n)@d>m#;F{C;{^y)##46-NBgg&T&D}DY%<|7|kT?2~XFJ%_s6}9h zEUu?6yNF-OeK{s6loR6rlFpLpm~`{q;O}mpUI2{f|2|vG84cmV-kcG(fq+>t);9^>Y61U%L*N4_aoA?fOe77 zuaPgTFm27uGoog}q@QAhXhdr_qa7zKfo&Jz>D%<2Pg@Jtq*v%`@#|T(2-+zPR>)jT zKbM?(7T@oQ8xFP%c{&)~9j2t*U%W25LSMowT|{bTw({O@ll?S#;6*!`W@*j}@+ORN z<9W%)6VZv+M7-D}B9KL%B=pT=-??eh%J4+>3`%8XUY;`iHk-5s9}3^PWv=2$Y8<(< zU|a!HCr=gJ zmG0no49LBwoFKDjv*~Ho{OuWVhysbrL*y(tpzp73X7K`YhX-t~@Na9msrQAt@C|7_G!bqIhZM=E@ss3wfU1d?e@M(bvmxy7QQmio#(nw zo8}GN%q`$Sgq2|}NaFHacKVW5m)8-od@0YIJr~@boG3BiVGe=PzM89(eJ*S@whJ%A zRF?%al1Dqj5H7;V5`8D5cdpE(Dy>!C=-`wo%SH4@sKnSsHEj0sDCBW%h$#5=fwZBBXEP7dKQ>|$tss)=<7L9 z*;eyd*3TAK>Uu}Cj8}2}TmyXXj4P-M2_$5v1^5SSEV13|&K=%Mf-3h4Qp`x>VygH@ z4SyXMN)6w{op+i1HW54(wMhk7?O0O*jMV5&*e=Jgbn+!@X52g1Y+^u}yq;f`eN7y57|b&k4$HSY=3Dvgrd^EyywYO8m>4Z~29Vbp+$JvqLz}A6L-! z!34%%&g{ZO;@OFiHdVyYwPS@@J1HxssS6kHCAUVp^ zB5=fD>N0R}J2TWN2-8O^JJtlm=i@Zvt33F<7kKiGBf&J;XU% zw~(>-q(TT2X10odydaSRiR>9}x|CUU2P?w$5zq5_d^i75LSL2}l7ht;DX2#8rspe z$nSLm13(}Cae0YZ`Fn3j@r$~*_5SQPa+;v`W=pPHWGhvF4HH6Ryo|!?Yjl_U1shJY znd_k0`C_fS_^{WZjgmG;LD|KE*z(o*@2`$%^`nL9E&0M7zBc~4-OjBaO9l&l~toCn= zhgBV_cfHdwD|Lt|M0yNSwCU@TXGG6}MI+x&f*tlm3f@)e%PBiAgY!DA!hux^$#;SF z4w|&AOThaa_UGf>0+ZWLox97-LbK?W4&O*G02@qB5<6EeE)0a1#X%vQ%Cfh4?}rLQ zGDW6w!)8fA2Hynzw>Y8s`kaF+8acJ-04kk*&EKwt4sWsuELfbKhGBs*Rm6I^a?W0y zB&S?f_d9cRTvdNj9>45)Ive&p?Cdxpv446HH=D%XL~EuT--h`&eIho(w(L2PPKQOV zI^PPm_)t~&K)8%^Q@q}I)27#yUUe`e-@OB>HY4G>DMNT)+#$an(TSYHVM542O%GJuz9J5F}>xZZz!Q_V;qGG#B zT#KF=m!#t6FL`qRodxxrMrGf>(r=KU5W3vk@oVo08$AUgv057}@F< z?U(j^H1owI1dP^CPtKIbRi5evAdXhQI~@Qj!4|g8#di5YQ{fkY zu)+K|KdD3ly6)&jY}a6PJh!NOhZaC^rfJBDpK3QXR^YfC%PE)hn2Q#bK+;7qo5d%rmAY)*UK)@rhhI9YH+cxp{0yhU zA`0vu_rc_@ZRa8P1*QfuE4~37u4H>FX2sSVAy*7mqJ8}yQFOF8z)guTnoIsA!h!t# zE)2q0lAL5&AXz;WxPiM^ zKkY|^5IQh@(f*eFWt5+eJtIukDRpx7k8R>oBV&+7=k<_!OL?oyyE;z_O(bRBh3uYk zu1VlqF_Gyc3a(x3&g5kqfkp>h6?|${eeZ6g4nTP&F8>`~{(E;C0VaQWDxsQ)@a07p zLmSY`4k`t*Z)JWCDQg-$jgIhG{|iur|1AIZS^{*nM@|C;kuhF)#3lW&gDiTnM;*Aw zs!{YH;Gb&0No>nR(qER8U*_{CqPce!F1nZtBOYbLJT$Xj271oj-y}Y77!wF%%jjn9 zC_vG(Ph#p8t(Z=zN8KP4}K%`o-91$(gK&t3EPuJJ0Lc);-M!cM9 zPr{hzNo|nyH-cZu1v zWz@G-g$c!2;>vuw2_cX?LhJQb*M&y3xB@7~T`fNA-I5_xUkw*#O^)dtDAiBp5t)`d zRIx8mT?|vhT;$P!G^F#t$EoL@fTAWgPmz<6J@;T5%!gjvstyD$tt{4Te3PPLKh(F? ze0X}q@LAb_pJ(8Ih3FsKTMD-x=f}kD659+>f5EuZc2AV#AioNh86@0v3$ zkZ&-_(tNYNrVU|nCeMa(c6FiEKA*&VFYzc_L%2fwcQg9XA%s&aK~u6PE}&;*b=w8n z319ShO2E12@2~41H>_5fgy8)3@z|PQTI*nW4BAl+i5gk}w*h9~1f%TKslo zsb@=fV){E$?#A9=8~W9Li_sHtW+o9_62Knn%qL1eXE1&>#D_0LgE#zjG%Me;h@mXE zn%8W86d-$|16WR5zl3Z(Gi`G_TNZbgad!NI6k3#wXG+mQO_WGLZVK?^w*1WjMBwTs zu2*`q_5?&L7W+uW74Udsjxf&U7eS90yrTZvWF3i{Vz(Z|sZV>oFQn{E!|_dK%z@nS zGe)xXI7*3c>(YN0t9`I8P^|m1`2INB@le#yXw{s^!yyxjQEvDi1C7*gSAOHgqU8wx zUj0ql`-(DFN}8CZ9$#Pxc0DnIao+*eHVJ$k|D4`0jjWMR5pt*(v96Dj&?&lIy}%6; z5~JL0dS{cV?td@Y!!-KiO~hGNM)_5b>yUn?VlY$#R6az9_w&BBIj01l`Klpw-4)nH zo?QsIcBuOQx28(#WotFoz7=0eUgDYij63<6e9A7O6!m*EwWsuScJj@pr$gzq27&dx ztoud?!J*Bhbs%QIp>{Sh{hP@&jt) z`X>o6F*nJ2zvv1lsxr_lDAV($tN|j7fCYxAV(AlP5vOXdLvgS_+nmiHC#1ssv$hg9 zj(_R%%SfV3@`G=Yf+sp<_*F(t()~WPUqSpTU!JPsTAn|AUEokW1mI(FFXjWe9gn<3 zXrw|NbR2UF`YcK!g|+~7FQ!g*cmcv^4=z)xBh=dBCFHH-U@Iiw`?xM4@FO1qnp=4L zNMn#aQl92bi@NnN@M=T{c%JUj6a(o@dU8M4Ei9n781s@sYres@l~Q|a_Wk{zAlhwt znw`Kg)iyN;0x;KdWpuaq5__VvB_7)sqRYnk6z5$eW4Rs+`6Xc!2~lgQpZ?S1)Lfcj zMfoO@%`1tGrL#Oz40;Ud%-j_9_?WW^v__kDsj4KD?@&PEVu|^xROn?grAQ^6rNe(B zA!TYJ1`@1^J<~bvhF@ci>=@y8ogB_iWeK*gx7e%e^GL=rAk#}4E6;nzK78st z0^cTbfnH1i(1m3HUD$Ml95XNhGbcZd_J1)=b&EQ`7Y6-lr0Q5-szVO<`Dc$uSte1i zdMZWwGwYGq+1_?fab3LGWC;=TiB@2^qAoLA?WmoJ1+iM;5p9A5VKfRktoU3OzxR8B zqOc624O>4{6x=w6Oiz(#kn?o%nxg@Wr2#ddH+(%t{r+53VC7W z5%Y9_JTzSe(~lgeEx!oGx@7dCQtvsz>ARSAPRo9%uAFcAc23w*=`WRh3>6+##sMM4 zihB#B0)DM|Mm@@nk)bifTY2#=cEWpx(}19~qFULKNSGj-c2_e(l1YM#1W%phIJGVH zJ&b2j^&nV{_aimz;I!5&rj7t!ZWCo>I3cig=WdHQ$k15krmQ@x^i`!|dg3ZH)!sSh zsLf`3Yrf0ASsi0LnYcZuh6B>Snz(^j7mlr#I|!#tlesxG>XPFjNg@lQ+zpnE6bZ|1 zcaewityoNGK4}}iEYr@@>8O?tQM=c-#}~3nT-uYO9K$(^n{&)<^y|A4OKQwvpd{s(nT9 zkxBpscc<|aUagFr-xkwBO>b~k*v-kDrGVDR`haDUZnPYOIuwICyunOXsdr(4rcUB_yc*jHsd1Ei~^l@6ZYnFP1q-r_eIiN^#0dAr{ z|BVMU1TSAN0c7(Nw&T>emg#&Pg*DuJfgLx1_31Jc7y)*t-1g`T>mFPf6F1a{=Xgrn zx-i%?g4uStL=s4S>tiGpk;fk{v^QeWt?mx>Q7oDf-7>uoreqlc&d@9y8I51MSmrDu zahwkhdPNWS7SdB_Hqz{TSJ~0#Rv9!lmEs3p{Qc}u7kmT$QIa*hS`z(k5(ps0D}5en z-gQ)l*cK~OxywT|sUb4ymELuHLydFy_$+>ArEcSwv~L7@W*2azonKk+CGj$U!3`GM zspBVEv16>fuhJ3peqvtA$z@X^USeGK+|*CDhNCK_TZXMY(8lqcX>FTg*)ACLw+D5kF?yKNM^-q*df`ac5d^wgZ zn1ctj5mPxqc|AOx)99X((IJ_=?b7e2G1-Qyz-~^7KEa5ZKfHlB>#R!Oa6{7W znp4kbcl@N}`PV)L#r-wKeP@HMS|DSBDD6MA%UT#&StMm$~ev)}a(3wyO_=xZ#)v-7@`lOA|RRdL?q6u5uRA zaibwV4I^Hd5aC+My?9q9mL`F5;<#qPxhFiXP%huqW^(tZiQg4u9+Ui5vzrFzpYeAZ z>p%qc5<2oG9*==YuXQcby(?lKkz%U(0u6DU(bW5^7$Av@GRVD6cRj}F zb>~BBaMuG90`M$2iqq+no#phK@cKYer6c&Ov54Gq%^qTc;e+^k22Ap6~EF8p>c$MPK zPHHkoDFnvc=36=^AWk;z94cnm%6kPo-xKrb&Kjj@PP7w#`Go*3Yz6X+rVW5rNh&YzR<&mU z7WFlQt`+8@aE6Q7&unM$^48E#*?5}RKU8uz9<;qrCz2%%RJV>x_$MV?Q^)xCj7t7E z*7!XOQCI8`raKeO@YT}Cm)qrvk(Be}WcN#HVm_B?mRp~}K5Q5#naA!T7=0gCQVGsvkhO^zL$=i(Q`pbbeG7*pjet%j4{EnQf--oItI@A# zv+sCoE6RP>lkl(CC@1a98y5&ZhmPJzg?@{H=JXbaet2 z!=lXyFUcUb3XF_5X?OFHO&gKGxV~lmli*K7yCv5i|3PFQRTE{(PHInN)33|i=UrUo z42gM)K=}^6nEKn@1#ap2>gti#{z8@zoQp;x0$Gx9poP2T7-4z$G{JY;M1bbi|7<|U zEKVc0HROn1Nzn4QU7H@Kcq+PEhH#b^73%OJNteuJxxeu%J>R0Y^4RbUuC?P!-aQ02 z-;DsgRjKUZL{}x=8fg$F+cANiXP5mBW97 z^0|-kq@GI9)$akI8rn7CAAlk%`ToX6693Pv#t+<@||Mj&@3jCX{rdz|Z+U7`;tf zmiZCocGkt3PF!l49KDIVbAC6Zk(r1RQgkF^w@sS)_OSmqGQ$Oy(K$YwVpX!kn&AKQ zuL!v%*vN!eEYp!-my04fU9p&Q*fIt?6C((s;9{rr3B9UKWk60-w?-NtF*=i@RFgv7 zt_b0uVp(D&v`f_A_#{+UOxhc`PniuxY-mX zZp@i)NB>a$ZFEAa_+3Ajov+zAUu(v&QeYJhf=2IM72UhqPWiWew=ah+n0Liianp9` z&L{K|fc1dryYlL&0ZN+pcf=Xi1uuQE^l;Y^XTr2aRrlnmG8oK*ejJbucw!Wy-&4G6 z>0lT^(Lx|Eh0+?#xQ81GZ*G=sof5po&#TsPq8JZqT(KzX+`jey87yr{Sdg0v8B1Bu;9MdF& z5SoV;Et_U>zuZns$E3{clM(NdP4MLZt3}>P>k^ZibGg8^ z{R?9-5N{AbnGCn6xVnRgydx+8}7YWBc(0&$#zM}JaZyjDWFOUriG4V}9A>Mr6d=A;5 zyA*KFCX3J^fb6tr_rW=hf39ggaha-0<0r1|<#qZ483-cW7HvbsRa&%ei|=PCz00df znuugU>Mt|raacBuz0sH2=FZ#rKA$NvjF~{^KlvHEfh!d&vB*D%8R4IEN*mCI!Ff1C zt0&0~o|3WfeXNO{s(5?I`cnwRl=-bJ+mMRraD`auV)@Q%^}Ss255GasV8#K#-xa{S z1~>!0-d#s=a!nNd5!8-=Hm^Svbdb5<8&T79B@bzjZ>DV|W7BLp_=UljG7GVB|J1%` zh-?nTp96SAxYFSH(4=Hn?+1+hr&43tl`#5nu;9s;(K&2U zxn|+N2>TSaU6dzLhL4-MqiAgRtP$g8Q}IL&#ryKh$%hUZN!@At`gq6eas+$7mJggsWx@a}AL7>Q)k44Mh^jUS z3GhQxV+5fZ4sU=nBnrS7cV~#{-;pK2Qk+L~5BDzLvr9jka~QoQEE||_%`;ib9E;5p zxO{7mPO%3@1zy&JZ+7;H%JzqiOw88j#egM?q>7FsXXk?)M6VjTvn(e4^IjXNJ~qhm zM2B;?gdAmsq+?=6rwZXt`6ONRLXR?Fx|smvnqAVng#))^PqS>AK%VVI=ndMwM+A~e zL$3(}dR_CwO7X^I%N-Pq9QY^AW1jaIHPd;Q`c16Tp>_mU73cxHK*kUEIBnsFrG=0^ zLB496W(wsG^&A#?=ZyWoY8W1CFE=c6M(9V-TT10}3OCF=o zB}3k0noaRGr5g3vMP}cu;eatmt+Z1bK^hCcq)!7g`^MuRe>?xBT|v`jpw4w%$Aptd zk^R;zp}VY1Bq+c3N9?tDH$dnG2&Gg_!96rexs0}=5fMgYEJeDox#`U6;@@uxw6Fcu z>cw20a`uiRwwYSEmo*Ynz7bs8=rMRdz`IK8jTl~t9xy$#BEIwej(2=ch6=as-JUe_I%JkmzDC+oLhllkY}47y-xJ&4|h2c8JkiHT{ z+WJZX;5|Wmn_qY0I>RG&s@PMsO?wKe*V)$vS~&`dr6R>1W&E>YKYBnf^Z1xDLOY;- z4x$Z5x!4s|=0LxZzXD$o_l@$oF6@u$48RD3Tim=VyQ3mv46N^Kf<_dbde$HbdL9~f zfnJ`#bB;M$js$>-cRww8{^~>+XtDiVCN&~=yrNO#yl-iZn3AF4=|<8r)fza@EesTm zDEjnXRBTwo4&*OtJy*X1XR^Vt>G9YOH4&y6l%);dDcaaV8s>a?TqLi2DlB~|zte_z zPXW|3&GF&`DnE_7;A0OaE3Jkq~jJml14%%){I|{7^Nsa=i%r3+Yy%TVopPw0G8)wv?O2MVlrn)dDe-I{en@}* zq%pR}67-$c+sc15fw+;RC8#PzIrwJV)^?;$=)juc9fF~u1 z?d@3WhCi{0MPfRgx0olce6m&h=Pc^@bO}4|b#e*C0SN|v3pAD1zUB$HrJDA~)G#7? zHvapYO-Y9Jk{Q4@I-^_@GneN#h*&a&n0Ig8RtKu0+r` z@JN?q@JEU3Z~jVbu-U)|x*Na+wesODa9a)q(KOLb|5mwTJMPK_9SV({4;&yuFu5NE zbNdSM?2Pmd*4qd<6ooV;trxgjwtiJwHeAa1uptx-&2e4$$Uj(Pm$v7ga=eN?XGu7o zGr~hJMX%J!kAgYeMEvNTNCUtN(APd*l`FU;VgjPYWjwG{8VH7JWNz~;=CWc6smSq1 zF)*{2v$39g$X3luOc}c)MDcV1P(hT3mKL7a4fk)|RScgxO3d3DxvSo<}dh z-`>JEa24Kebtj4g`8(o&V>5GiN_hTXqSSUKLs@0#$pN2Ex_P5`Z(|PPO3+wDeMY4l zy@x!>&BH+pD%Te4;DI@Im@L>=z%?yLP-QNxF^XQ*aVJW*$;CB5IDw7G>DrWY3iT!c zw`a9>S`p#c`MHGdCOCw1U9Ql&pO#YKQ5#<1mU&*7L0A^&SFBv0xp zks-ytSt}Hf2o#aN+)6Amo+94n%18#)cz=>Ailz`VH3Qrk7u_kxb6NS|0!=nMM{Ni! z$ccorH6LbQ4t|?*{G>xy2mrb<<**7Uf>+$(AY|+RyEt zg(LT&1!s&z86JeQt~-=HU;HVmnYuRE?zrT5^DL{;<;z9F_q}q#*NN?4Ydf^eWJr_P zDRfx0)<5WUAZh9Qgx{Qdra{$~%rO1){CjpofJa+{|9+CA^mLV8+D|4(S5QE1XbttQ zPSGAqYE7;DKuOD<%{uK)O@@&)9y-=AVxq(;?Mj#K%0Sj2ZuFQd9RZEyO0UAUy#9xV4()XaWli%U^%u!B0o z|2}){K|nZ@$3unJhnzJfyh*Z8$nQPk>Lez}B+0oXf-8)iTBm%Fbd$entoaRtI2Y63 ziEp)5l|zrYl=R1uF2bc4&kE&NTNzkxCinNS9G;nRT8VivZ5>{)KAsFfWf1}Qh!n1y zf#Ay`{5SdHfCQ*W2y=g0B5h(0@~(HK7x1EnVAKw{-wi$=i}RxI&ej~_$krL%-xs9~ zwGw*a$=W&atg6d&Vd@^5uYa^oy;)aD#^)9^AkE!GwJFONlo?9F8)~otX~Ou<$uI=v zv#sP07kKL8?cMkKGJhVk(bV6?+Xa|QxJV>2^G8BUO2Ii5~DJC(0HC7BU z<@pCy>3ND8Ti92`$)V&`n`))q6(U`MW>-u6PMH-;qAveH1H7PP1~Yjsw)dzZu^Pt7 z9TP8e&eu~R;|5R9{>^cTZ%zXT`hRX`11Jvh_` z2!UACYPu#-oV1h%2)#K!RmB*HD7|k_%fctTWF8QDxZCVHtW76gXQpBAg_BVcrB@%s z@)Ksk8*6L)-<38`{h+^@6je5fO6tbVN9>-h~wt{@X%xUSJFt`RZliU@>&evbti>E ziWAV5(GN$7&wW$Xq6D_s$U}lEFit7?mZ;( z_!w*_d}UO4uz$kViA3F$T76!WbMS07c`bb$jm_rz+9a<`7iYvZ!Zj9;NMoD&cuxgu^yxXMle@Kf3yi z;t~M{+OsrvhYX_`Q8C9Kn5H~`>g@6bxz_hTjRH1)tQ7~~cWmRjS>K%d(&7Eq`Fdy|_Mny|ahAt+B>YjdC>$C`BZg)FM zL##8Xh{T)1yFj9ukRY-qdfCY@`mfvf6dM=eQFi{HBX%T@a8K$s6ny#J$RsTCqVU`| ztX4bbXb-;Z#8ZvRtlm%tN%0EZu5rTcE3y>z2RuT3GP1AAC-NRk?Z&0cWviGZGb3E{aBx2 z9KjatROpO%qI)6hIr5^rtl6LT8e#Es%Wci1joWehjEz8O?v`xpBvzG52l69!Dz88N z?e?SUgmk(fX?rVO~)nw-Qw3t~f zgpq_T!Qy&df|PG5y%0|@lS4MlCp(Y@z%Lziq*Akfw+K)}KA7g@pz@ttc zg>3C6C9%!4wLe}oA~lr1#ptN{>v%`^RvZ%*q&cVpDnG?O#R5|s*Ciz)6R3MfBjEy>pXE~VNFCcH{Wvf3T3a5r9^fG=5HF=7L8i8;_23fxF zq*j_|%9@^VG(1Y#Imv4y(Zu>a*;sWsG7G_rdvQsIW3SCKlE>gSx%+KocN2`@0z_!v zowL?i@aa!qDIx~zsfSZpKCfjsM|*Te{-Atf8Ftu&TV7b~w1EBq&EE7_J+?NaNjPN5 zYB+&9X94Y|5Y$rs+KcB&<`i<*C{Z zUvdKy6erQVn@#UsMP!V=S)dDpuZ-=F0T0{GzvzB1G(*St66dR7$8@e6@j*X<$(=f> z^)456#ZQjcvGcX6Ya^d_qW&i7{IC}hhg=&p820~|I_t2e`>^dxNQg)Z z5=zIEjg)RdgyBFj=+PnF(kLinVFEkGts)630IJnTAYlP<>3? zz_$7iP2`hP%HyaF|Vv#-tMl9~`vH)r0&VTcb-8)Hhpu1W5Mk zn=b+R{o#K%t(C!SXOV#ywO?{;V|^$^@JNR9Pn2D&1^ctSd8)Mx(WOsr{21NFR2yYr zvZ5}z`reU;rwfMSTJL(7z1#mou~7E0NY}6NqJ5_LhFmD>)FJJrG5_qBW6-L>u2!@S zQLm+AagQU~B2xR&xr^3FiL@>CTZq}uqKsRs&#rE}>&bk-kDGPPZ(&mtB<)c> zFX|BXNGzVOu$yQROEzrdqUDhV%he0rkKl0?s_ddH5bQgS7cJIqq8eAXo#W(VV#VDQ zaT|^+tfZ9VDH!P+?-4IDum>#Jnjf#G1j45e2|j@XxN^4}XJ%ZCv%_47*D{X0N;&+C z*EC%SAfmM&jK5dnt%WzvAJPmx)B70X*~?k0*q!{nXZkREKZ8Ti#X z;z=)$(N>Pvv4w*W{xV$EexWES0TuDOq14{kPu(h~SIvNh#*IcGC9+z5b$yJy)X;bR zu9d?EPdBNvs_#m-5%GXuK4G#cQC^e4YwFDEKdSWn$?nIEHi6;{i70NC zLJOJ1IpZyrRSFksMQ;Mx)a6C^e6vZ(zeb=Y&e)~51Xs#UPDGHXz!#Gn6XC3a-^DUm zHkY5td`{SC9}-xZwhvaQjM2m?<`;b>#vICj#ilBn7sU}kMr=jV$Zm^%2>~fl-mbKh z!wdv=Z7q%`4Nj@iM87#NjPs+p_hJP24v6|cuhBHx^BpIA8&q^G`u<^zdLWI5Qc9ev zxIT+!j7^EclxH4kp+agpElV=A#mZ5yb?$hQTx0mb`{TEtY0?MWsw~~0*3C<*Nk+Ga zQV<`~qryLM^W`+ij_SY!XW#!m;+ga>bXLqYAbj3o1-e%M$#JyFQ$xyc-DLQ3fYcG% zOyUP$GyLjbo8GWMyW%UrykHrlHcnVFcNeiR`MBL=;Y%ncu|54$JJrAjEfV`xQ`>Pd z&ca0qRXe6$Gic=pymPyjWsTD611+DA^zdeXmd=bg+K6+eB>ZAwjs~lU2(Q3vSwXCD)JvM2DXL zk(+q{_mTX-yIl)Zw+GC=H&ta|o3}M6u=@{HKuRffx)goyB3PTBN!yrS-E%IEg`C{N zA#dW^KI3hTs)v>uQZ0EYPA#j{N&&+C+H_^#?-dDTr}hC1)nT>Yylz&V`AFrR5;-Co zmS~{kN(dZpt;Td7g?y;o@hC_@k;#yhNAS4OR6M4;g?ydu)hEl~#19nv+RD54idAv4 zlE$^iw2K91MH70xnrJ@xkJVCw3s&8kG*IptU})1dCPahP zO&tbKf4;&5)$)9Ylt#196)e2^fgQr8QCh(DCs6%tv@ED*`3X8KIBuW`9ZfZmyR8gE zFB8m{CG_Gl1)QOP{3tBa0gtJ>oOgK2wxrQpNH{sUk%~CgELlNL?e?!#I_foiYXABZ64CJ190$0a`%!cPuVvsFp|Q26FzOsBb*pZf&WzD?ZSA1Z4Z& z4ZV92jNN_)b<`a>k8*m)ehiR9T@CL%tNsr8d1iRpK}bdIRN;(8y~i+QrH&$wQADRP(0!int(!Yu>@Dy?l`tVo;J)f z>ivY07chd##3r?mgY3!|-&LX>-(qr}MG5w|w5}AnRLp zh3K218*{vM9JUggeSf2ukAlrhjzNC7qoMcY@a&qO#5ljdJ_BhFoxaXy{84}<$4}0e z@Ug(F+Y>dDwmznx$kkY+dM*_>*L?REPIQ7FCbaim4$dT08vOiN1eJ+2=zyil{LVe1 zjT~#IDai7=we~a^*m2h{i0T(j0QA4T=*UK%B7X@Ox`b61=lN^j;ka*$0n=)?ax9t& zmB_Fd7uoRnle}6LaJbAuZ-+K<1Y2qHW_b;))}5&y82b~;3*V(DrA8m*R( zHoC}>^v_%j3fuD_Y%Cd;Cff!y@~{WVaN@}adQW_1fBrP}(J(KPz`$?foSxm&oAFlf z@hzJTc<0HukQby*+RvEgiu>xVa-?7WS*zC52%&7HSZ=pO)IxES>e=++$vK}4m6+9| zB$nDYMc9)Si+dbH_>a!>W`TJqhiJi+|NTdu&v=~iP6eV8iQMYH-gZn_@y1Nkii7~h zLfgeyEqjP(|FjWf$HW)4fp_^6#+HHL8-FsGl3s_(elx_4-N^(GkvT*8X6!#PBqtYs z&6;WV(=&GjxXLp9`tiCMd29ro^W%ndWevO?lJMJzF%|8~NfZ7<4)XiGemdx`{FDKK+ z>JYE~BQD_qrZsb{(LB_TtFERJTZ%6doq9Y(3^~HE1d;9(||H^azIy(v5(!Ku=?TtSBFG(6nTRRRj zIKd}Zs{DcktoqED{Nsq%*$b@!!EnL@>q-^g@Yb5Pb@$HoDm$2W)?@j_?N*j_d|0s-4UFWqJ?%2B+&!H8hZ)`(|&{my@XP3gos` z)CZ4>%GqFwSrV|6otce}`;*2Ic?v@&j;b{fhrb2(Mgn3cbj&rvfZR~t)2w(&HC)u4W48x1dKl~9yW%VWQ z_{(;|_6$w5ssB416#2fpqv`<`UdzdtVYiX-ej}Mmm*U46FVP5O6u#OwIOCMm@buBu znpQ9K^|1ew-i1K9zP0&3{wd@=j|VRDhZ49(Aikx1XI+N_J5SD}ox=w%i{?$=^!>GE zK+%tj*d8ZWvM}mVtY{TGnJ9y4u;1#C?{+(53)+gu;t}isN4i63Fo%p7PP|Bj>#pbBDC?5DLqf-lKXB)HBpn zMu5eehz`LV;vURR>p25L{|0Q5CgdTTA9iaIq|*a!2@sxWPQJ1!A`kc{W1?|ru3d}R zzxVrjcu3tq05wBC5MtlZ!iN-tSx9WfX zlk_lQit=JzfFi@lH_Jb=@_L=QE_7u#x4Xk@LjE>Ji{-6Z9`R4RVZ*ORA{)aYWhLW( z`dwF+$CQRtXTQ8f&X}%H)+q6D_G6;mc4QOM=H|->!F78gyHa$4H{B84@s3(mL!R%e z6wMiWtTb9icJz~~-bbIcx%2`S4l(+8RWtL|y48ns?H**pa*m8mN`mpG<-*H#q7WR2 zwOZhIu2(jKpKFL0ma()Kr#p+LdPeXNQQkG(JJHd-WyrE^dUvw4q~UP!tsau<5naR% zi9>V2Yde7eIULQdi#+Lx-*3R?<51|oV@{SHC)#stGYn^G{*We#oo?MHBB4U|H=l1l zpXdmL#uzetfc0c=4cF91?XL_sx~&x0rAd`B*i`q!g?p@=h663@vYfypJ86Q`ZmU58 z^FK`w#xA$@jx6)wke-nVOJfW5w|yR&`$xlTzgCtyH$bbQcvUj`@PIJWi<)gBRr2fj^0dlKCj#sL3En&uS3*zGbZ6YG22o#fel zanDXeW!W)!s^%x{G*rt`_Ry1*`$%8@KA%-0J008fPyr}zS|H`7L&o@Ht4CeFIxJdi zAKF)W_FaK#5V_m^qjF_l(_d+>8k3eY{$+JYt6_S7cWMUaP&<2Nzs$z>&!OsTHR+7DYm;Vzp;l#fH%Hu zPI3|EjYA9>VaDGNqNKn!0XqS*PTNv`(ufN^&N*-r8e5*M{+vXOIg74w)>tF%`>_i2 zTn^PnbxgXiryX>gnd2oQF(qj$^T+F_chrgb?&K+k8n7JcbOfMH-BNg*xdE3wql)*% z{TIvZZAUyaE04_2c{b)udXO5s0&Lt+z(nghuMuC4|2j?A%k%f=0*>T4t4ac_b5#`nIIUuk& zfAC9J^IJ+J5u?$>)44=sEBC%ZGuw(t;J*g3b%xysG_=*?B2SqdLZ{xnXK18KiZ}e~ zj;nTvfhV;K5_%P=PB7t+C8t7`tJd)&zzv6zS881djg;*t_p&d{J@o}jT;jOvMwb15 z%4QE)pOTTuY_wFDE3q5?vvzxcvn>qT_GO6$@A^Xi6;*&d z3pmh01(}$i$tFNh?h@XurxGZW@5i@$8+r1L-mSD1hVjwPbKlVm`y6}x&(tS{8RcA< zjJr`DLm16?CofwGnINe2z`oJ*T(&l`|M9tEQFx!`gaE$z>$d-}pk|)OTvxU?b&vjo z&wBH=Y#Mr!<-G^(ebW=xxGmmu(k)rH)UZwXa?mq>Qw9b56fDP~>Or^$sdE@KHKXj= zvkdhCNHj3}xoA+aq5AIZZbdFh4%-FVj_V1#oExPz^(Dg}+E>6)2HlH`jD{^elhCBC z4}$4i?_Z{9GXQ4fvOPLR>!G=auiI1-H&t0nsB5S!%gKDa)PnTVuz`x@G3n085K z`4DPHL6sM(cTB%2ZQoRhVq|e3CzxC7ER6%exS&#Ty9y} zXklwMivuQQt$S0gxcX5pSNo#UpKz=F(e5{Y2&)k_^I#feE>LOS8ThZ#v{q8M{HwFj zNX(ryRc3W-?rTxP;s{tKPvBJ(mD?lH(d_%>cO})|=Cck*VBfE{2sEe&%%>i`)pEkh zZyOThGqq{a1y!~oj@d<8FGLVrdDsk6HzE^_pEoP+Kx@oGk1Ng`B-O9PzruRs!37%uAqj7 z{M*R(DS1!+adGo=VLRbT8}eTc&D{fI$PuJ8rf7*fGas9(qt09Z4cyO3YDu@H>nY5AHInZC%L3t7lEKsK}yc(8%9Rei> z7BUI>x_3xEeVM9kmY;I7S`0ecMJ8CW1ua)+g|DWd(J!W{6EiLARI+zJiRG&n_I-EQ z2_-Qtis?w!dg!EW3{&|1z#!ocMOtN_;qK;r?e}k>&J%|2O92dOI)=F7GCzjS zPr?m8X7+;A2>l6Uw;mPU4fxQk#n9izMp~%D<=OM|0+Z68Zmg`gXQfRJh$KW>zX^Y1;KK#1oaRPpS!iEt!2@|3gESxU85t|`hred#S-MXaa5VGt~Tk&0&s zPdlmWYFejbhMlJv66}si?h;(`kN01%8yqKz9Ty;Eb8)cMGI&qUHVXa{yUyvbP;g^S zw(;n9IYv*$!R#py!O|OOdghxH?ie-ipyEd-$AkR4+fr_!N%B{Y>hHSBoR(|~C3?GE z5XBibKF@@&OO|lRpj&ULrfBhL6sx&*XB~NDXun zCpp(de<2lpBMs!382nvb)LDQ4{_$GqH;HQB{idCEnfi_-Z?`f3Fn4>nrEHXo7VqK7 zn!tqxe%p>IW}%MK38;#r6I@v$z+yMW!#%3pdFyqYgD5%GAVLAMz?7L&>URTdR0gjf zCelW|Q?ztL2Z4MuRp7eMnd<$3B_qXa|F+D-sQVOrQU>otJgT}@M+tGUg^zo>m>c-D z6i9^Em`C(Jy%Z5)jH3O?ZCq5j#yJc@Cl|`GZ+mIz?mn5%Z7wU!FNANJ`51HvEE=MB z4py;iJa*K*gYiyP12>fI;V*vaB?=;d4v&YG-&cs^@Bh;gUneO1{W}vB$kDZMJ50mu zbjmW+Ik~0#sF1=E9P-^QMlA2Xdv~U9*=w_h62DLpULlFq5fg&#%emr=YU3vVDA4@S zAa$_DaduA6{uo4%R`33j1@=#CCczbglVR>NULpVvD4AgVQ`P%hGqzqC=jYTz$qmob zd8jI)gC#atObT-uHQbidP=?{p0G!bBD@`-j{^mRCe&!@K=l6DYl?<_$Y$tC&Vq!S#mZBHf7F^yem=vTyXBb1Hfkk$_pc3%b2 z2P`Q!Ft-G&R@G`V{L=?5mzkS;wqS;?9q3&iI1bZ^(R2ttK2+o_pHk)ep_=?$B$OoO9-pH@=Tnb$C^L|lBXOsF1EUacDp%Rg_q-=mZaKbi?SBam9=0e0p8 zHg|Wjx5-!gmSoBTy6)|0=$?Mdl!!PZsbI&lYHVTDpl`4&|PZ=pF@U%he)dZM} zN_O*>Tn<5gu*y3VS+8FfTIGDM*z8>%PNJzYLDJE})_5u*JFi@)dIsZJ0XqI(<*dYh zpih}MnI7+U|7k<&vrT7=xKG|Vw08qXJ38uB+*9Na3)6QG_W-tvGso0}$~$$qZ^F8D ziX7Z94vLt9mFBw*-(*{nC-xBu?V8b0ooxT`tQ?*=0z|vPK#rk1_j$F^b|uRX@Ty(A zI)*L|9{loHz!S$)K3yulMt9!ax{OCC$MlhA9HV(gKiY#^PDXA+%^}frv5R5i!cLiE1tZa_oCyW8bIK*}0`DEYFSB{T zP|uJ<$4V=QOn4HsBggtJ^oTUQ;wZjUbFGMrY*ZZZn<}i|{SSPwRPjJ+B0`{y| zE$JnLYmD>Mar(LWE(0MORyQRg*FKS2oM(t#jW4eW*|ZB1wks9q6nXPh))EeTr!jC; zxKEI;cBXg#qbur!>*C&kUm@ncj{fJFS2aJW_sBN|@&+mC2QI{cGnn!}@!N;AS-QL) zmFY*}24pgI44sx46;1l!Unq|1yK#l`z`n=-GAXdbfNDv!cqB+nd!cMXkUJBqC7`Ml zVC&5R-i;dqMXkKdp&AG^7?Fm)w3d#@Ucm76|CIs_LU6B{;T%!anBwMXd2ujSKH7|X zuD^Ng!@YdnKEUBZ9JBdL-emI+v29D57I zPEL(Av~2^i!glhZh$Apq-R*q!5uA>dkn=e|&*XNo{Dax{-?D$}s?o__P1Vkc&6RSe z()haBgh?-`De;~1oe2VK9RvB2nrpq@ks#Hgs2;w`i1;1y^3An?Z#tnQN^UbCy&b2>QIk);%?E3}q&JeME zQ5CstQ6u@=i5h17!S(Mnti6YYzZ>fN##()u%jQc^7f4Kd8I1}kk<1g?|)>)J70NIp{iAPda%oARvaQc149(<)-q(B6JC~~-KDYDny|dYJKSIV@ zj9?2CYsMO+3=401VU=v4 zJ(nAuNRe*P(g>$@%>=l~y)Rp9=ZSH(c#&qu9o4CttCh#kbor(^pC5@)f4gauo{Txf zwThd>q;Y=M;DGnN3B6}@eT#q1GP*;u@l+vs{H#cG(|vn=ki1VRv>+0{D&6dM?O8UqE?+%5I*#K^6S0Jff)-gf{A$+W6B4Y{&}u zRuy+mRoR*qotVfJLu)2VE3FMPE}1aTw*Fvf@~>E}lDpcfZ)}N$pOnzqU_+~IHGUyC z0XMX`vJLIiCme=^xlWx@hm@m_BwFh+2!4*|=~KCDiVGqS%b~h`e{Wfm3#6d3>YjHs zk4YKG*z~tcGeNNk=WW4H7>bHs1N+!Bi(!k#V!E~wDKdP^K}P!q&#l;Qx(dTdke3wv zLbUr)n^`w3QHCA+(wYLjI%h`ua){{~M0~4N%jZw+gEV zuy&pQ%L)Ds80uZ1Ulw~uUC#Ug*uVg_%+0JsJs|6px8}4k-YF*xJkDNn-&m|Y1+YS_ zGy@!p-2Hn{T}3wgOd1!Dnqu~IA-#M(w6bLiQt`kw!^7^MGuOL9FQrxO29T~q@MirZ z)BU^CgLgfTvjR;azz&`_%!_B}L)l4G9x);5E1w)ym7VUGQVT2(#^5li?+8Xi zo@bD9kg3PYUGQdrQ!zk#Q(pA@D7C@XgD}5H!FWYn<&?&f3r@~>+1b?LjXW2zVM^7( zHYxph{Ewb=HA@^5D6ElCo+cSInD>bLM#2uWHOZtD<0EH`p*x$(qNLk;3-DyT|9dj) z>#0rwOBC=^IPCDN!ui*0e&R;kqUso9B&9VrM>x^NqFv?9iiC#yge@~UG|GAYPXZus zOg<$^q)B;ZfHjXaKyD@pwWeExu2o@ponf+&+bPIFs;RwlssqA{}w;yw5$25D%56h9a z$hO9%+Oumu9GARfoBUCCvmD}YWveEvXb!9diw-vmUV9*4yN_KQJ6#>SWgN2Ny?UoC#rfSjk>!o;{9w1t&{MMoT( z$t!$%;)z~D{))b5$=lP(1uyowz6sWpj|(q(0veL0;UTZM#q>;uAL5Qqpx4q z1Oh7`kMGteW`dz&g;~wj06+ymPxEx8v7QmOloX~3DJtP2VvL%e}?u#2+ z_0^cS?C#a->=qlgjE#4B%1@KM+Fl_ISiR#WAUzYu+gGwYqG@d69^Ljxv+4KKFP`dh z-LjMaJ_!;kegFp#%Rl!A-zoIlSWabp?vyEzqcG zrenyk)&Z^~8XjxbxGf{ffEs?*5aRj(xT%IkR#};u=O_k1?vTpl$1uYkbkgLT77fLa z939>IX4#K7cpm!4+aAk??0}5ESXCt^(dAnYvv}RVRWyV}B8H6mkc|Jh{|xkVbXFt; z03TS!qO(jrcHU;ph$d##-U-+?S_eY6H$c6P{D!~ws@04qQomEXi=HS$0LoHTV7Uc7dF`KKbU?uLCAB7S6zvk4Sx=X>k$Q%43D zN~yZ16E%f(|wql>^wxDE!sSU-tHTyP>Sj5eR2RY-Pa-1E`*KJX?yZmiyjR7IB zv#aLEC4C(l6&&ca@9&c1n z?Nj8^EZ&&TSB*B1Dd)4yVY6-oE8Bi7-BDP zVbZiEHsW97S(3IvY2`k5WVF%zb*wW(Q$rjFIAM78y%k(nGBT4pu9pIq1ZsXdq`(7P zO@wq;3!VJ8fE>``gsXD$?K6LH2sp1iX~fkw;s74c4)79fuf{L09P9s%OEm09U2R-l zpwSoIXus>%cNe~YSMYr^#SvWMaPLc|b=_&Z;5Ew{2LwX*D(3SOJa$td?+9e&0q&Z~ z#TUM80VBlJA=1(g%ol{Evbf63GGaew!n78shNdLfc~LC6o4>8@@5UicgFEc9wWklP zpnx3Qm(y-NwpO8)hZgw^MEa-KqtTe|X|PYe%Tr|@{lys$DM~RuErbZ?5C7hpu5j;g z5bjXG8x`cOtJ{l-P!AIP0?F6*y7kzZ)`L7#xPO`K+nQ`C?M`*D8BF5{>P!twnU@kc zvlkn@(b%5?7?j9_16R=G@!5>L2L5kX!4~ZIkHpV1R+b+5a9rs5(DC81%@<{4XMT!J z!&9B^Jpv6SD=sR-LotZYUoL=Fn)Y9n+RYhYon0Ft4Qt`YwCXSa7NZNB*ER!vV@2`O zB{;cEVp{#PN8uv%wsoe{^Ibyu&ohZ_HEpY%!!#7Pa(da{Yg;#4?Z^rkHUky_No3_q zM__DRVR?$s13Df0MAi0?cu3*qh#xymq+l8{tFs5c}>jf;w%EdO2Tc0}u z5J{jogZp2suwAVJc;@SxY`e&LB}(G5Z}8&!E#6DNCN^80bZx@_TtC0Y*`&he@S(SW zb5VbFzdP}Q0^W#T!8+kG6|4V%@6fyUF#$>%!7$P?9YFF!6`>Wa$hcj6bD-C6|IRq4 zdpv=Lbfw_*pw0lj@+uMC%)w+~rjSBB8M> zwDpo(N{TC}L}+?QS#C7$JJs91_8o%JP>2^u#^aq%x-6pq4!wi6GU?kK2$sv7SuPeX}Q%=F#J4&*Tjv5x_<#68tjMgp{LGx?Rbnrpuas_-o06-U0qWT%L1s z4xI2^|36Fd_jrEY{-@2fhFx=tlkOoSe(YM51=<3GI-sfXY^=VqBnt58xkP%g?w{7jZLc~ zuj`)Curyskb2;reQ|l^V#90KTe3-6ep!WiLdMq9f!>e*PbPn8@bMrLm$QRpO@xQ zg?m9DsAR2Wx24(&@?68Pa1Gi#q;_P77s^dz*DqDRxlnGO#L4ma#SqwV!+<|Lt@8UC zotrKp-E6kN*?RizKdYRbpEdM(8b9i@2p`|Ox%$55@H7qRtQX(^doy*s4D?um*F1Os zg%f|RfP;jE^YQ9|okise^yOb`zsmOpVR?!3O$-a0|xISvLt8k zyL?^PpNj!{4KCeNc7Q%#Gl@38`$lwZfrvzodi>~Ih+pgg_eR!UKvUcvNZ;A)1>F;h z#2|OL)jeko=-LlY0cmDXgT_SzkD4{WQ*o)eC(rIJ=(7@sTX`MwTC$|nudw~+FNd}6 ze;m>*z$=om6MEGw$Mt5RhIax!EZ#zsIWu-ayHuQ+TfmQTOeQ@PZslF8VhgdyFmju? zgu3)LBYq~0^yur*&tG@VkM9QZV`U?MeUUI@aEqWn2KsL{T?5)H`}CNwMjqD0?cl1&kHu=XdpKU{>^fxoh!&w#2xFvIMx;h8&c{trY?~!$cDiwUGm6dn@NhZw)nlovTlzI^*E!_ip%^LcQ7J*!?u*ytsxaR}b-HFJ& zRZlzI8h2j8ZGGzy!H-jz1mYW=LgSUzm#yN)%S*s2 z4~S>JKy%r!OY~qbsCEwP=w{vt&~^`G8V_ZFAT}Cv(%9tFdEcuJXiR;^%QOC_FPx>X z?7k6yc-;*Riwmg>Q;D{uqqL2>B`PlbUVhMl}+f*Sib2oUW#LDU@a4MHc ztDzeWOI9Qi$<#4oWtU})a;JXq0`n%u3`S_0HBA|&llfIz5R;kW-mXz zU7aImC(QH4`G@wK0{V}(?5s);z&ZJMDKBa!3;Tr{6j2vSn@$7^xjM{%%Sxw^BqI%^ zg%7~*xziA)!{#~D!IJ?WHmldVnwNf6J{rRsd>$%$n)8)za*?5>>)JKd+$UeLsd}<> zsGz8c-c<-ZM#c)k1eJ(L~6v9}yxPY$>JOP}GJTB(`m@e_v2dugsu-uRb zH+9mxzFN*Sco%(_l;Bu2mg(#v?p|!$7|8XFP->nSu+6q7K}gDR@-=*3Ju*qY4?~3@ zDz7BUUkF{VNaizQ=NbzU80JY{w3Y^@ttN7IS4C}7(plX zPIhmy^6C%&RL-~L`b;D-&ytRAvaByFmJChsc%#g1R20l)Q$wZQRKT6Yz{MUbDri7% zoYrBP`!iQuo(H5m2)LkYEvuTco-1l0(C&|01X39C z4Uz@H2x$CUf$SiNYu{j|SliHOuP5Arb;%WL80z3w8cKr$jb$H!BI^2yBR)5Uy#&g) z4281asprjO=q7u^LI9}w?^OnovCnC-7?nr%wHU0wxFYWS=OU4)ug zfpYeTd3f`NF!-svNO_&4c_5KW17HlJpuvyb-JLn~Nbuv}7}0QMZW>9#(LTqB<8NF2 z-Zygr_i=YKcqY}yV)L3^W#<-mJY@SGvV=JA<|XIU>-TSDo}&_8*9eK84yEv=g2T*$ zlEJoTWNGG2t`Jwu_wbuXF)x~!yj%=@I0zMLH|;rSS&yAltqvP6NxLo$qc3&rt+@)I)K_JNv#mT79p;&@FN7;`0S=*z0HunU2Nc*C$t1oWCf zqIW;KF8q7{w9aApz_+$6VgQGeZ0~lc{Dk6M&pndKEQ9tzmO%DN4CQXOC}5g9^U)z3BprwOh??1Jm(D*^dsSm-t+c1Hg`sLdS{Sr2MaSKUsF#&8W$fQ)bK1LxHTma77S05n9cT z2d>b9FCU))n#T%b<7xZa0wW%JR1zV#&CFR*3YWZcF zn6AKyFcSFH`NY-s;N`X<+sEtT5Kw?GzQE6b?A=p*k?3@msDLY1NM&)lGCXv8zJ_M+ zA{OJFTwM#eGLw7}@5mG!U^u)!ZjPk7%x&c5}S^D|D){7g&DWev8`f@yr zF)_O@0dpk1FD>%c@#knM2c9CId-KH4QY|>YyCUm!aUdJz~_P-i{?8HqiAj*>z z$mY}DqPBWSF)!FV`==k2?nl~S+<8f7Uh8xxms$*KitT952-|utvq!7d472q_cUdo@ z&q_Y4Lo+>K-@ST;oAaFS#c^dLTcZ6b^I9oy4jYE_#s<=-cObzmY>F@!jCB;8=!U$Z(u3owke55lS1D=?3PjE z$Fhd3vTE0V1xMzEhpw9{CPz0Vf6!`_1uzo?6`C{EdsAPKgX&F$hMdF!*NcJdSo3}~ zMVz(o^u>)%6(=8!LiuD^e8Xd?E7hHpM1J0UYlmqyiVId!5gtFqI`qp^9vfgPF1krK zG917DIt#L>JG5L;Oy{gwmHGMEy~^3UWHMv}-V zaTViN%Dv57916fPprr;%vM2`v2E ziBIv#`RpLxu+qw|vtMH2;=0+;zKR*FP@@Rk@Cw)fRJxYy{^XjOb{V*RmG$TG)%dFh zx0js6fI})?tl@-H#R+CkS*?;Pf5t?tmyNp->Ne+$VGvH0r&$zfU6USFFn`0?&f-_8 zh@)>4&>$aiT{r6#t80bPaGq3b&mIiire|ds`E0*BvG;&Hvrglu`~Ew5MzDOk0!TjF z(i)h%-C@rwooo3_uAeDFWTQkeB)w1LDP-W>0!G>39PbkgS~tRqsCRgy^)_GKCJp{d zcg_Q_&K*WC3Z#s(5lL2@Z(0g&DsPC5+VnH&lX5ejOQZi}n?67J*-L8&OF&ns!hXFQ zt}KbE;^No~zyA!KNW_pw#ZrBT?5&MxufMsVpYJV?{O&mgE*K8%p-eFV-T)OE>=CmP zlACrx?hx`dA9?i4Fahfso!1(siFOSz@CjJv3s^>99R^-*swtdb*Vn+vM@WK%G#rhW zR=r%TE~aCP!rZfX^q5dqnZ$YeJYgYt&miz}?%8BD`?iRx!dgkJXL5t7ih!r!2d`VU z4&%0TFN)mW$`^_Y^9{GiuZs;m18Yb$57OndyPxbxllu{p2iHsnx6-#nhuieG0!#dB z>LK65%}1m`H!Y(TF^IQZY!@V^-JC1wFXx8R?1mD;-7rMd8= z7VzauAIpLY5 zS@l>ADsLQ>jiMjvxtkQFwvuStvZ^4`DgaYLOx$>~v*u7b;%TC4=+j9P%C>0Yw+3X6 ztD2;Fq*!@oJ|jO=h~rCEp87f}gsr(yZE)vv>5p|SX740ce3vzf1a&+kfon}K5Td{Oc8!a{EIAo)xg@(JJiG( z0^4vQPGKn)|dj#cK#bkNsDfx#gs7U8bC>9lq_XGij+#KUA&K3wC4+512mJT$ZZBqvwMvSD<( zd*loH&LWb|G_TgHoHj{L>bK_@Pq}oueeGMX2hG(t6uEI)ATw zhc>u_c))(pKVIQO$MIv-y-ZEGxQ8Yy9x`op%cI+Z9PB~D^u&%RN3^n-xKRyt>{LFa zM;Iiy?t{`Ib>4=qR>{NJ>wX#n3U&{&$HDuQ+ zvh21gRVw2Cbxm#u$4vw28J-NhJiEqYyKDZW@#O(<;W*<^eiwj3dw~KmGCzgZW(uGU z;eZ$^$eZs}R_j!5VVHPvX%j1le<%~=L|1xm;Psu4WqTz^Qtdo)&x@)=xz1K#iCf$_ zRk^~KSN{+3FB^bywVkzggQZTb#1s%VwkWp$)x;XX=oa z_Ye%@wEA#{Xd~qUk23G&+OTpJ$E08m&FGi($R@A1tMtlU6@k2?mbH~B%BkaN`vX;% zWA#V`-?Nzt6YxOX-d*oF$7)+_wWSCLfXWzfuWPh{|EcseT;{H5l77DQa)k$;7MdBp zJv*N^C+;HB61f;IiNsXD$~{S@eMhh+ZjaQ!ocafr0S4p*^_5$Ljl~-AYkV9MJ=;sLYRyDd=h>*AQ0-=~S zFU5i08Z9YD1OxNv(3eGb5J#R$C@ljtm09AH(BIh)!lxC z@swL5Ua4=#kpbZ`D-;MwNGtqEd32bvUoYe37HlFxy zrEM)q zqc%YWu}N$1t@cig7mhU7$QOfJ7_4i3bMb~r!rEbO3QV-+0-fA&g30n7*0Wv}^IQ(mpn1FQ_gS@ii zr!XBsde+-}eZzyfgDrAT^L)i_evVE2phvvWxr#xiS17gCz+TrNH+mYF%KeWxBc&Ns zXq=#iMbW9#R1d&Ef$1sLv`M{8qLc&RHZM~BH$?6rt@pgs60dp_uPXL0Dk^b*D?>&i zIAxk6^Z=hcJVX0F=~mIJc99xbw(_3E<_V0{{ISUHEq+>nR;1}CR^TWRr3Q+%zEbU#@!M;fOWCl@!mP0dty!xe}N(J>tx`22fh*oHyWv2>_q zf_Sh@4Ydga7QJGD~`|7MdPi0gKvQ2}_+La&7U`hg6O zG^wXNeRwL#DjFDQpg^PJs0^IjCh%8=P7{FNY=HmQegM$zd@3TE7q0jA4>|Yq+pYFT z{w07x*-+jCvHc^!!4;q&;xF+y)$95{J8i+>c+d z7@AkRr1^u07HfY0R2udH90{92>8Z$oF|AdnhNJl#no9 zXj7*t^x2A7#5|qNGK1in3ubZEn&Pp4q%3Ni^mBfv{9gJm zHnR~boY?99*?*>v-c#0k3HLMQ-Iz3t7vzPmev*Casi8>Ao*kt5Hu7oCcWieUt}u)P zqP@+DoqA{&>z$+fct)bR;q5RDL3BbWL7U^uiCG}e8JPTlgrCdneF!AShoc4kxE1~X zkj7RZJz(!65=is=YlaA@pzHCSus$a&;4_Hp87@4g2k4`SdK}p~VkZJR3UPorn1=5c z$OrvAW&+1L=@kzb`NEHP;e-qyd1NY@#Re0nSABVg`2h9hy{to)!{-?(YCb>Z%tzeH0_Hjn z?_B!^Z?Wt>o4RkltV{ufrtUOHjbyMI#tN|w`^f35zXC@12(##l{(I%u&$Zf^$C%_5 z(ITr1eXhp!55MlGMroVyg6gD%ifRDJ)~x$Kbqf*xRx@x&KlS1|_aa0c0%3*#{PlzG z@<;tS-fw(;=s+`V;pV#id65j?`wJ$iIVmypu-CSfU`(iSo_ql)R%KmSP@V6Yho@R6 z+l8f=p-q~2NB!BKdmgW~1UhHrEmym=N`;n~ox<+sDN~f2lCOPqS$F}hkRHt4{MDoB zhh+`_rr>p3g{HWtBVZJqetn;Oy=jRYc3t2k@S7*PtS0i(WB@suZc`T+SE*UVn=O;D zRkWr?YhcOd!vTvb@XOm_vG`|Koer@2)vJshGwh;4FS1t9xRXF+Zo~^EFS{4h=-{tTF9TQNH^+?T7<0<^D+k z*Xk6j^)5XZvT)?*fU*~90i63)fWWxBY+Fh2`$j{0zh8T#Z>hfB3z%pgLIUO1u=1iZ zAf;~blWt&q7jwBQbqC!yAL2 znaa@jlzwE294jqb9Gk(SFjshzCBdR#>LaDRkLSnG$g_<*>EI4)U2uYkhKVF498&<~ zK2>E9Tm3zGO677PY(luS-NukVm{<>KO)h2b#h9A&u6j1X7PZU;IBVZ@WGH~yI(_Kn z4b!U2GmyV$)VGxP&Z?H#Nyoh}PwbXiiACQm0Yvh}?dbbY@B6Z$0lCmcjMGq9-xnC%K%&c6?6wTfP*U)(lAH+uE z?6mnXHF=b#B_kOUKWS#Z`&R2rzk>>j>T<_akY(Ni015Wk|H!~n=fLZsvWr&PEi(-M zi-zM)hOcLbgL^eOy;JbyKmv3~-n=W`KAr1~0q4KJa4U4o`4YMK+@?STC82R!a})OA zmZ%{0Q7gHA^#bpA`fSdHnAs1vFQTxV?;z}5(^>uR;ltJGRF4z2L9x*muc$mG`5gdR zNZK`wA^0c>!;?y_Yc%1g=R}qE#ac#V@t#5(xC+|)EsVLe`Jq>wg||0?gjpfs_H}%k z&gC&xM21|_4%a#z&nORLZIacC)CNb*ROSah($0!vzW)lpr*Z{>#~$}Yr#-DL)isJGJmNq=~^Fn;Z7JmQc z_CkYP>z4ks>_nQ{{%9Q`AR~alUKnsuIVM0iI>Enn=74a6kIgt11ulr2>ZdlqxY+du^RFfugkGSsMWj`>?nld)x?T?6J3KJ&w|Y0wICW53Zwos;5r1ue;`$m5PBNI6WUIc2{8){YB#-r_$g&hd^4u1ZHGw=}1}$-yXO zb&4o1(u`rsArjMk{aLG|Od%VFQ$5^q&jSP^(;EpX+nne`# z&MqLpq2ivKdh4?NM``MQ>oPe((|0F;OB)45CS^Cmz$p{PKzcw8E}w|(>CZjU+Xh5X zYOd@Oj@htH>3gfMQ}k38TtQLdN0 zfao*h&rRc-pg>fXogH@$Mpfo={vvJu7n3pP^fU= zQ=a3RQAKbI{GAef?ieItuz8OZb6NB?0)^tD96EV|FC|+w6gG&VKJsZn3J6YxGH;H< z+euT_SZVK%H$_#uh<=c4(Kmyg16(5^Qi&tH%RWSN7k|_ga<{EeR#9 zfOse4=h~!BQP)J$_ZW6`Ny?t;hU>*WsBwp?lcqS`zG*yh$9%4K^Q9bBtLfZlR9q6n zg{!RM%7CZx!gkf!vC{dw^7FubpP~7UAn^D~_cAu1EqD8;&1I0w*+$T1(dVtCRu;4G zsKol!IDStv7s`Lw^{Z&!8a*U|by{c9F2n|1ht@e?tD}Twc#dQqdIdRMj5=ymy6lkk z4V*1TgL3BF7SET1?iY~ec6X50Kez(FrA(2R)qlpr8O6`UU3YF^bg_B|EX7~B>abtm$#s$|QY?0zll{1E8 zYD*B5eD}E1Pp5%6P!ik4{zYv@5^F^(&d3Z!Dw{)Eo6MiL9Z(|<&hfYfd|=4%{t{kr zH0waM_F^A5hqxqclB$OSxGsDkToo&TcQm6(YdR%lBttGe@VhG8@!a^G`qbN3Hy0Nu zcOIk{sunn!k<{Mhp~)4BmyjQl15}0m>^Y6)GAB)6ecZ{UkIQGf#1*yu={I^@b6wfx zb5(7akiR3nD26(GbNV)mf<#*)RKw4!x#wN_euy@;%58WBjk ztC~g@7OrnwD&s_3>hQ4CVek>^r1*N-4W(b<&r@$Q&v$Qmvj_^ewqwke+p`gBs6Yo$ z5p|t_xUahGtJ04EKF$>*9HS*pd@VfCfk18|UZD{|fBwk=;9d``C}M3Jf!jtb3%4zE z?0@XZIzVV`K=8m+MWT8@vT)|M(2X!mfp|!5m5!J1Uk&YF5qis+m&XmPvJhtZ4whzT ze|Qu?0w=X=lhBe8bl{oz80;&aBU05q(&4FqF!rA}a_aMD*gV?k;mTCDGDGP6p z_4)iOQtJ7RiimPJd!3Fyl=%LxvG_0s9HLmh5o-1mh@8u zh0OjS@$cMr`M@SsJ@~`+Nw(|Pxji>KIgfwpTP!PR!06$*10Q1N`DJz?+)2|Q3Dfq! zz-r|AZaSFgXys!}nb3|QghJ}hnX74O@POkm`OiqH0!x~{<-mj}2N=((wGdsIh$W>8 z8*wQhD&OWGkc3%@Ow9C_f2$!Cp-_8ErmO9A(+28A{+NN%xr0mhixBE6eFj$2Sj=db z4eI@eZ}g@TsDYv4ZnQ+a)T8AJjKYeEXqZ6|l9;_4T;hN4jr%Jfo)IT`Q5j6Yawr+= zy1e-A4GmF07AO+73z-I=u@qd$Wkw(-enXHY5bVGB?zz=Uvr`X~i}NzM4ZI?X?s|mo zKaf%t*Mm35TRgZx@LI>?M0aejzd=q-RZmTWtuEDD_Yj8h3#lK}iV>MVN^{u%^83S%&b10%c6Vdl8AosarlhE7&a!A2P%;W{HfnlE37fQbeVkj)?di?R4uAFVi^00- zs?6kGHeT}?O`FYP#ZQBU!I`5=sx5HS}NS;^o5j0z^AQ{H(Mfo{moy zf2_LjXS;*z3b(R=xP2G@@QbKIIz<@W$`^;;OJ))s#xTupK6&2iZ)nNb!vYkg9JlSE zXY6msJ{8(H`7Mx_k|{B{wH7za7yi_e$?jb%E>sbD=c(piBt&KW*@dEL-F&P}Pw2^s zv~$T~s@7j6`sLU1lH?`}?D}HAgiZyE1^YL%ZAQx~NYZ0Ds5?un{}u*OA&d0x9?WUT z50HYLl~|uMZy*nv8#$-#6L%6&u5zmDAEWj@dVvgtScu9|V)>gQ@ZotG)m3-|sgZ_F zy#e}lQ?Wu>4U>Fpy1JQJL-ANA+w%{9j$lI#k8{w9P^5iA2nvoftmMQ`=#;l2E?ZEx zm2JjBN6GLjIy`V9oWNh$s!rpEOO$A?XOi(MFKmtKFSw3_*|3J=3;#G@Z5Z5KSg0sR zdjWs6(SRtJ;cWLkivfT}FnC+>W8AqL+{3owKtV%bn;VtJy<}HHXPpuslu7g3F^zX0 zw?Z=te1|;czGm2MGrieM03^9rMPrK$#D*fBF#Jd_y|T8F-=q$Du1MPf%TC>>!SuvE}w)kQkoBD^BJ_2X_QZ7JD? zOmy$~yicID;IH^&r%%D$q6?z%f>jPn5oSO8>(jsXhb6~YI35f1`NvlRYx?pSRpg2N zK}_oxG00T}7|RzrCQv&RUFl=vn0c-?5Y#ED;QvIPch*-sT&+6}w0RmYcu%8^Cpa7R zBZ*ba@5Qnw&j^^~SB6Ghv;0h+AX;ZBP@VBI?kYS({vd(*U~FYfFfCv94b=Al>X#$Bm; zO6mW=d;&fauhe{~mLlk7hbF?YnQ_+%UG{j~9ki9n~p+emS$lMe!%)v3J-8hmE+ zx6S$Gn7)hN_8!?=HVOy*5C@Daz58LF-6PpuQtz!TGD^D|xf^f7bbN}Bn)(Nn;&&q+ z1q7?;PZvv51o`#W7ZgtS@YucW({0mMYj+Ub zMub_;@qf#Nz}_Id{%7R)MXswyi1mpe*OmUWjGL=18_N4zE7R~E_#rEN6l#WqOdfA2 z^NFhKg)>Us*Uh7uB=&crORSb?vH__^LashblinV=5dX}X;||5IrYNBqkB&=7KHMfF zR#bjjdScVIh+TB;WbAhBa_^U~aU0zl7wT52Et1rC-)1gY&FQLNxzQWB3}sKzEMjz_ zn50kFVB-oFm{z2#)Z0Lpxcvq~%Gw1Ze;JjeRJU6XNzL*X8>l+Qn2h|4DAA&*4{Cd` z0u6lpL)nC3)zTAEq5;d z#g=$nlmL7V4;&3*NiGgw0OmvdHM{;77#4>27{#ymZ9?ph^epj?QIUg(SuYKQpto6X zPw57S@(Vtjw4WWMvuon37Jkk@=hpCCrBaEpJGK6X^n%8A_Byh`ydwUKLr!>6GmQ4r zZ=(-!yvEE z?)1IeGs&g4PNYO2Vsb%v=h`Dbk0*P1ehPZAK7i?a;GB^wz-(#~{WA!Tl%{Z}_W^Q~ zT~nYiMIl$W6@$d(**mH|Y-(Gkf@sCL)jp;q3iiBOAv^t$uHo1L5`b4Y!WV~z-XuCI z_O-0bF$lbP686UO_e2g+isNT^oEdHB7inp6RlP6+@)BBpjXcZaC!>Wy?T0;&$7FLv zVo`LYI!^=nrzJrLccj3@yCi&V?IMLGf-6d$^>sa&bq#WB+-Fmk!);GRdp(=h#uAW^ zR_#q?2KTAbYH!QK_Bub5j&7UY&q3PT(c%LB;N$NZZv(HJqxg_NBQ9-rHX9(TUPG3| zuc9CrI=mgezOd(54hL`!07=`wDtk1Vc$uF4XSl7zg<|_Fx|`*PpL<`XemFB4lcc`H zQi+m>-X+%Q?Wk4by?=bJnYga$^sKLyCO&vAjKPWrEcL2X93Z4%nEd&El0+Rgot$|# zH~Vd`TLpaz1_>QEJt_!>)%@^M>&#$Y@QfA2R17n9mRBd{pD1v6Gagy*7fJ^wJBvZu zJJ!9mkMAC>G|x1Z;vIP$FJNes<}X1+lU>7is)D11Ly8Kzx-D-F3_o&S1vxxW_@e<5 zLao2}eJ5~^C6p|Ho(XRFZ}N+|PCo?=&ae+3ThfUP*ahvrT30DcDD@~90MDBE@Wu8Y zRgv2H{7 zqWwLzzF`UMi{`Bne~red8+~4%1W}Kd%=)HZ*)%@uR?>+Ba(fH8hwksdUX)sL)RNB8 zV~c;L1=03M_vECcQO>=s5<%8oxK@+>^Zc$4^`jlDXO#8l^-fRjnL>oK_J2 z%$+4AE!U+-TJH9?1{cf|d7fi)=mDGTUNyVQ7whaGdA0i74~IM}=GohDQz^W9D0>z~ zTBpUc$X>OJGW}?zjOlCPTCKNmzcoz$5q&pY&4xV&)D!S@E45ymsTcHC+p9!e&^LAC zxkja5owW$F=fT9cKuFlb-#Iwj_rWtW^JjWTz_`sDuphYa4I%&pKdSu3lWlzs!lps6 z8$m-Gz}Jj3$k6+upLwa$h|;+2b3Ud_@7v%8ZuJvgh&TI)iz(B z5<|}Qk4>eAJ5t)(}vVi9d*@uxx^WmF)QVPi#myiQWOgsMH&4Y zWffW~X?z(%eXHdrY=&QM*z+Y0iDe$uN!08f9c*2V*Jd%nO$1mf!-O+b8}@$mLbDf{ zKU!ouzh$mKu_te{o-sAf%Lr|<*$UOC0~IDQWd`Q)1eZ|0sh6jp_;t$SV3nBjq!KV& zJQny-UlU9z<0ravFQ`Y&NwL`Sb)LZE?+p5S76Ro+`$OXI2pek=6;XMd=Ea>Q!(bdH zMrIUjJq;3w@{AkvB&+z%w(LqFBPzo`^7lz0tkdjGS*?$cjK9@=ZcoV?mR}QFW2JX3 z!?_=N9SvXuFO1_nl>L7fjtH-D=Q_u0P@1~mgLhKoV8+WE^BK6RU-YI=+OTyZf8Xho zDP~P^?kqo=9UKkfw5N&8TVvb^ZM`u;O`B%RJg#atJ{dJBv{uj;)N1woRW{OI(rLfaOcjeVG{6(zQ8@*`>ytvR zT_ojo+FlJ?t4&MU`-R5C_`Z6l%kkMr%LIkc#?$cSTD?D`s8fw+8uvWcH>`iQBtG)b z76m6<#ci=WIBHdT!~->%_--){mjZ(-^)-jg8LDN*il?UPCNj)?TB=~RY=UNJ?sd#x zos^dbTEHswA`Lp3joj657S$;6mp*GgxlQe7{kMfti6}r&FTZ-XTD0A@qwI#+(`oT9 zlEt9DQ<3vp!E(1!G$Vtz)aw%GrObiTA1`M1c2twgQ1?gVroxO>lxvjA8Gy)1btu-f zdt4pEUz=Fn{P1Ip7wg_~paH5sZ8Fz&g!r=6y_c!=lPm9p|>O{rQnyWGpm68_VR@&AeEv+Lm5LqSUe3hqO#YlJu`0 zZFO~^onEAT5CJRemrT_rckp7+m2}rE|*WDkbRU&PFtNrZn_b9mL zr?RddCeiBA?MeNo_0Ntc2E7)SPkX$TegtR6B>w1m#F}6KG{IltJm3V;qJ<6UG}v=@@Cb0GD{cm5qCqL!|E z&|nE76&(4ausc=$;^@BVZGcWX=BQOar1MO8#oUj)_mj=O_?3)#Axl{Ovdr1&r_M0C zF{Ov19a}dvT&R|m8^dM2+2x(ZyCa2TlrmbeJ^TNDJH28Ry~QUPn_6y{roof%tE@n} zyOjOVOFnFGbCww)*7OH7UjQ|*Kva_Rt&C}~>gIvq47$-`B{{#JP$Z_@wp45)w_**H z66wy+C~~IBZcX`pddFq;={*pso$a%1rrr6M7J2kNxBCz3mbZ{ROf^1cCH?)8UczC# zw6#a_%!>4zw_a0inSA)Ec@KL~@w8`R4W#3i_y~?>`Tt5KIYM>)H1GyO_<$M^pV{eY zVP%fw?v$*#1AU3?-ttq%2<6uJk7so(C>EWT^3CzMY8T5OA8@~Dt=>{btssY*Bko2b zLlZF!;2uqCQ0w~A&na`^9=;*ke?PskiAR|=x&@78t94rlNM2^k+xOF~Mz+SimeK&C z;lrC*eY86-usiW=@NPRx^^CX#yUr(l<_k%#T*+h3+a5+#i5jrfP2{bkf(gHfxd5-B z!)TN|QB1PJ7UqP}K-YZ5lwY=orYG!`hAWo4?{U7_RY8V|g}sAzg3U13Q3uUDUK4~6GXEBxZ|B;N^VX$Wou(#Eo}iO>hCMgV}# z6HhO?EInFJbI)6J&;hLS%AOOOzZExWhd`85TYXa)@ue& zSCkhe?ag7G=b3$-kDf|$P6QBCsxhRevG#rm`v8vV~6Kjbsvt?RfMgS0oW?3ETaj=~+HX<&NALj~6`-JsfGo~NpwUf4!JWl8-p?r!7JRGMts zP*Bq)c$~sRrR%I$yswcVar3@DpLA+@VBW@L`InN~iS~Nlu)?uUQQe+5Q!ET>^(@js zPzDK_Id;A!=#%t;h`#07$iuk`gUKb|6!|kzt#{*;J%W%!ABA6@x;giC_=ws?*d0r- zmrIY%<_DE^!2Mw1b{CDC-(9x`Di&WJ>S+s(ypZV5i=4q+GUx351RenzFEw%5dp_3im0rks_o&WU}h%&mr5f;w1Q0L}*|KHwD4u}=cq^YB%t z_?1Rw1YkzNNT9bXUvK{bxM0Ei{={=gNhK&b$0 zb3)sx>lNK3?qp=hK*GCoZ}`Zc1{^>9yKe6=FyUIp{)>5HQ2|yUKgDKTucQ;gZh1fN z_#+N2C>$?%qg6#mIILFsLwlxzn6#-8)U&d(#46v>LM6r_{%P*P$tftNA7pE}mUNR# z`2)4v>Q#A#0mva*CklM85s;}1Ou~M++8yn=9j>-D>(ZlY-U<(WOLrRHC#gj)cTE?+qt%P1P(N4~4!|@=gmGm#U z(bVbS;|m(sK)2-5<7-9Otzzk!?p+t?%8wl3De6*H_f9m%iRi%BPx^k&@e?5yDA|86 z$VBt}=~+FZbwWVpVl)x=8xZrKKu8V+{_%52@7$aXfnK;NQ$r!?8D6>snP18}#5#+i zB;xJ!mLk!f(J!L(b(@^Qp+7cH<5tA>KW7&**r7!|U-#M6-}2|rjb7wkd|LBsGqk@o zFH$5?;7Nodv7^3j9S*0r?_(i{qPsMN4>ALH&@yg)*? zVM)o;1&8y_VaJ)BAaCq_4FgFb1)p$s*UPpwwT`e(SugzYnBou&6^VvL+aN?%)@{TM z)vI?h*3LQ%GES^5LXUZ_wTRrmYBd0^EizI4vU$T?$>9FEnNCKbNE?xN=H^_#B3pXZ z4A@B}4YFb@?XaUN`4JD)230(*%;gZ#AX9za_VL`|g#1Y|XYp`jp~* z_>a1gjFL%jfmOy$-$ED^Nep0d<>G|SaW#y;vVmh%@f-N7F2k!XLPt4K!~i>9V`9)M zFP?Dnvw?pkEI0sH57}zo(s8h+;BeQ`*AZtI;HAa-rOEPG0oOw zTI}ug1WHhs^`RxK-93AX%}?cZwt`L7%J7~^X-RMkQ z4J##d5jtbj&y127%owHDdp&t?i#GYcy3z{$J@FQwit*iTIldc2uBH)lsj$9`DrRjq5yzMp_{S$0k2*q*!X zWRR*RWTJVqyP}cbbi|!1P*b=5c5G8u$sE$&7}HL!B7yt4Nw~}tBtZY2>21gf(y~i9 z4h?yT4~#gqt@mp?&OvO+U6dZA3EPtkJhTu%`PCgW3Guf+S7ow^rw#ON8?gy zW**g_=!3N2awFaGAFjJTUSr2XREwtzK$}v}`w2-tv zQv%#{;>W#{4-u}i%0U;ej<%Gisqev@aFXZ=pKy|g(ltQK==z_Qaj{xSjJ+3XK%HZM zwRXRMi~)xPpmNhDZJd0ab?_u3(HNL)O>*d|6=WN`nO||Hddaz3Z#_)*^!SxvaYrVz zWLN4tSabL-SW&;*CYDY#nWs6jF&B3&9}@LKI)ZnS(Qft#aQ8d;(!2sKcG7k2wUs7v ze0XE7iDLyC@T4R-Qtx$!Ju@)q56>s@W}_q=S!l*HMuq08bp%(;v#P$T5FbZN%r=O$ zolDNhmLg|6pEab{2GX%aC1c*eqjoh4Cj?ekeaS`Y%nZee+w%TEbNoE?{0qv_TQ3*q zM3|C?BoqxJPfuZ%XiC{vWiaL=zV95;?#2ngG)iQ9QEYobz`;13A$N4Az){oL1ug1VUPY*C*rzuW*Pkyds!Z5Sq?`?H}Yl zjZ0bO%eqxABW#b>`}b?sQsE|&d8F(vBA^dQ*@`f6N5w+ZCNhD-Gfxx0;A{R>+A@En zOR9ueVj;SGAn~7XtLar!{BC)^eSVxST{xR|M+W7#OM7;uQf96e(bLfSCk?AwlU0*9 zkq|aZmo$b0(aT)to=$lqQWv^8Hkt{Ap^Z74Y!zyw=^oiK7u;by4rS=qiPB}iX|FNgw4PtOq%*@q zN1Z20#{ZG^!#HKSJoC&N`k!$Ka|jYvwfmD?z}I~f{p|v1B>#6hAym>D(_a&fw@cp8 z+>>KS@_}H7<8YA{1_W#I4m;e_s}7FaW^Ulu?siEnxH_Q?QL&n$UQ8B(2`dO3qnpoP zUr}uBlygJal7(pG7ppP$R`;c6^6n-)1=e13fwsJ;5@@Wp`2sViVxH(vV`fkP#e3{D z>Y>-h4_tL49!c-k>dVETCk;KP)2a98vuAsV&(1QEo{3S(lq`xq7Oi##eVvP}$a{Xv zPRB7%jr#dTfX4RxDtf+jlYWkYYSs70$~IadA)c`W6cfiUyasXwy-TAE5eN7pwEH3F z&8h$}7&6KdYz!32sv&OmKMwt5;IZeFNVfM2Z&1im>mVGoitu)O%NmQ^ zE0li!P1se1L0rOO)1%(1_Kn$jik{xtvB$^FZ#}O$fBdRjC>H3`otZZi@mG3j9evxO zRDW8N-mlC)f+Cm1$XfnL>;z*4 zyA^o!?NmuV6r7cV7V*~rl1ev3bg*xyrsU&%-7?&}*{jZI@!EXtpdp5<^@LC0EtO5GhgghG+a z(f=W;%;GeV)kMf-e+CX9Q_;maxN{!`+^f3|-yC>acT{mD66Tp@VJTbRWAK_vig&7d z{7KjKqUccT#!gyj|JG4#l7{H!o&sn)Had8L?~BSbsCoDAm9dZH0crPX|^^bV8zUB^6P`0ME*c&cJ!a4>=r(nG1^HT z+oA`J+s5J~i59%xF=tDEb^YJb+0IhW47m5Zp9FL_(0PvTb0%lJJM!x^ELFR#p|E%+ z8LM7zpgMVGx`l7_zTrci(;hR%BLZ~ZN(z@Nt(wQ~qiaCJDx;$+0$|W%rjO(GblW5OYQewDr1zowAR+I|H2T z_TxNV$5>T&(#f%ED5OY_F?k#jU6GSyr)A*WNk z5*MV(k6VRzK*o9B0y}9#zI~Swo!L`P zWQKK4+qaM%x$-5%i%LGCJE-maEn=1YN<_sCfHdZhf7)LDL>vMqxFbl|3p^5A2EQl+ zq`q8OfS1z&%p-u3h_KA`K(2ZM_q$wzx?O?*Td}SBp#J(RU}WiUesnNynT+>~ILkR~ z5D!Btf5c4`^2ceOb?;qkF7!iXL$(v}866ukfrjl~=LRsEjx46Hb`VcpZUK^TcjsFu z*S2)R2XC=iU@Ii*ApI+93wdwstspv%S-N4xGa%DmSS@1U-0%2hWllBwU1Qy?JceaHZPpKGdmjDVxQwICLR4} zP%UW*Y41fhZd)nF44vqJoB<)+s+hG!1rX#hE94QYmw9J~S10&6)jQJx$petNx8nGE z?Y5!I>Lf@s_liE?P4s)yJiGyeD%>7?a!Fiz3mj7Pz?$=u@>L&l z)&6iR4o7_iD7IfL9MCKr5X>7_Y@_}nwEn|H_clWIOyL*L>kT%S3Gi4D<`)-k5P_BR zdv^%^yyfR0iDiCN90^^hqWY3y69d%*o59Rk|8e)C>aq6m%FvO_sS8fGV@*;FF7Dc4 zsX*O8tqh>=x)|6t_Mn&hs&;!CuSstcLma0Sd+)hhv%! zKxqWadp#~_LTvKldt}D28KL9q5|BG@$Z{VFJyho(g z&SSlu_RZo~P;G1JQ5OE^AKRJ&!?J#y>!z0Z9KRF9o(;+Fz8;c>-)=mBZ84@N245Rn zS>5X9$o-L02`Y_kb&`T-2&burQmXh1!kh2NW&11r?SrG{Z)4rp{z(#FgT0eFcfOQx zqk%BvYle<^0^!JGaqmIRz>F1vZcD?gWA+n!m8Sa8kH2XHm$rhkW{>6~oT!{MJ_AK3 zpaKx&@Y`*B+ij(!0ElYN`l?_V^X@8r8}X+y z|LUvp7r5xQ41{u#YwJ{XX5)$xlmJO`@XH+bga7y?&T6w>gQ&tUA#f|U$Mj12JOZjq zD;uX@SN0^)&BLr1?Io^LG>+E~V3Q9aFe7MLg>Gq|rRpn2Tt>n-P7zf%lu`pvH8i9% zm&|ZPZEJ-Lm{g@-5tz+NwAUyZ9R8B|h;Xhuvp>9xiNG%o2U;i+p)u#t?~Epg;|n88 zM|~BFL2qj0ta##@{pVw62Lr4czTMYf>%ZfGH-;mZ*dM!hZ}|RR zhv4Y8W(hiIPSd0|Mb0zQHxn2acmM=A5WmTFUHG4Pt2tz1|AK(^?Cl)@YQa}rSBvEM z-|!1l!Xr9Gpf~_X!3D(O1>QjBdZGZjIgZ)azmWa1FCK#=x)9Qb7?Cez%%trsnZ2VO z_^~v4(sOIkgV%s468__M8Fvo5H{VKomZwr(P{ENu_1X0nZ8W1qu?%LWp)1m( zQU1>v7k?U^S*2!N8kqQbi%RiEZ;C@t&MkP?V$XiNK1bXQ7fLjpn+;_ zp=0;v^AS-8>Xkz4L3vJJ#=fJT9lj~)X7a3WPfP%!;$K*VnhWL3&kyuXGd~;_>=U<> zhgUPPYsvgUZz%^^bx>2yS$5HrOH?K8*-~w9z*V={s~{3Cz&xG$-#op7A<)kNmEfH1 znUn1q!7T={9(i)PfX5MdGh6w{6;{A($Cl;yqqzVjw%!4iP0!yl?W954v93}a0#E)r z4ntII_CpLG1gvGo9BoMdnHkHc55$Z{2(!e@X1j>37=k5t)Nt&5H{E2oWj)a27%wHn(jzx2;*Wt<_)GE&K=P{YU0t1^8v)1pp8vu%~bYcP6^v zO-*3Ty!!ed51rr&a}B*UM>2n$dmgk%!qp489!1a`R;mWt5|anbZv@Y$1)M(qLJ=1T0C{I{LuftRi$lIhb zcp2OY9ET?0AJdvp;Su-=?pMfX2uZ_IB{7Rm)!4kdRp}!RPsg;kM9mU4HHJ04LcY>&AC;g}kjNR~28n<*B5LU1I9xUAa%vEUL zJJ9>%?-2$EIZJf22gUAj&h;&w3d&WN+I9O&qW1~Gz227g8M9IJZ1ftyVWo=UUEB0f#F03L~iHsfoC zC;mhJ69OOm7qNeS-8OvjefV#qT-J(5O@wEla{aXC8E|Vk0f} zx~}u)+BXU7TYb}J%iO!k%4>!3j5}5+uv->q)@1%WiG7_*Ru3pvVc(yg&qs4OAEZ>% z^2qyon-YDrH=kWP2q9j}_tLbJzHWsN5IKFno3pyuc}rc8FCjt&&;zfKbynNY%TW<4CT4a4*JQ zQKJ~(i~aAAmAI0#AGGm5>nj3y_XuAwL)iyiazVf3S_tH*e55HWez8J&rzXi2RHtN{0!;R`exr!62=k~CaX@PHg_Ecbn{+=Kve>s=WyFK-I z#^WdULP=%Vq}Av@?Ctg>no^6NBRc>zyV>l2ieg_`PSKEmr2%2ERbe4iRGE+ILG(!?P zt;bcj$L~m$Z~B)6gRX@OOUO4oxf=`l=H-ZOEcwE(s3Xz8+-DidDtR0dW^KZCcMN~^ z3vD*lN@QrUd+M)KuF|eV^IXq%tbc?~f~T4I^d|Xun)xVAP1*4yU??>$mdV33<=jF`9Zd9gbVW%$M)KWrJ#i zDjybc+@1UqWV80xfw5HW^p(~p%X!VAFQZQJs0$MpT>VQ zlVglX*I+-n{DqOmWmpWbFZ}w0C&<0pDvC=7q7^!&oM8&LQoGy%_jY?mk+ZKfU=c{tr`c;n!r_ z#|@KGN=rGVW5Q^4o6-$ql!`J!8l<}h0@5WhVlbpZ?n_E0LrS`PUUWCoAyRt1r}uTg z&-45TeAsaw$M5&eETP6g=8HI4;&ouUJ+D(XTT1}C^*dY5j z6-#MFGy3S+zMva5ciW+r)UB4`ZPzZ&=-%nZ$5Dx>J>P#Ao-An=$9C(fYb4}|vBir9 zT+J^2{*yoQ-yMAC&9AC|zW-Uc&*Q4jQzb4^|L_FO&Hnd^5`P(&Ij_6TG`rlMa!Q=L zUoL*I0nT$V${GW&#h1HLKX#~3zF`usK_tD-S*>a6)fO-F?|3_yqjC`{`5+Q)Ld9J% z=VM4F!mVbGLqfL#^T7Rt5&T$1j`Td6zX#gb_;|uxEVp_8)F;Q<@B0)Y_rxX6BdxQq z$S$3{uRdb;3d(JJBTtC0qbvWAL zEbjeX(FEN9WGH6;ofE~(^NxGI4(u66r43uK9}}pk-YYJ+=(((^P=02up4eul-)HMr ztKD48IsWoKwv;BsG-d(%Iq*n8_EumpP5YC}!7}cFBd_nDP*r}1#}fgxCW=@Y8Jt3FI&8a zw`@~Sx|`!iB*CBhR)DBA1{y?g&e)f2dI9{1DSJDggY8Z7eJ%%B3cMsp?t1`{k4_vN zv&b@nw(;*Q_BGv%*^lZ~++P-mOJC|j{-I>B&^&-BE^rx$gdmark?vo}W|5l;ETFA@ z-k`p--RVYSdNh5Iog zNv^l8On19ty+8J3^%@u#iV{)VWz`|K?_FJ<gn%$Ez$NFWZyH8=UKqd_msO5%A|i;wY?m+3+F0}Pm(Xq!XO zT|yKfz6h$@Ytt*Su4VesnKm7N$;sDky4haB@u&@q6;lHjNXw$<_GzqR?QCjb+h&%cNDM>vx!qDM^m4sNUHYpTY1Gi(w%(5xNU2CufBP%;?;~1=-bvh~d;8F+`gF zanCwkYdpNC%;Oxq{Nk!;Z(e&1lw&)ya5%2}Embd`=vSt)uNzRZd&A*j4^t5PSd3Fv z2tqG^2Z8kcD+`)6eonRaBU2!=$!=sY;c*ZbGyyieNSDxO-Me$zWokXUtxB*1`Q@q0 z2TEE%+{CqGhj(l-9RUM~M&cSK6(=7osS7a!6M$XR%A@tXYk;uje|%SzwB-fbp#NBP zIlEG3l?*Ngd$v;l4J;CwYx8=6;vwfG<5}MIrN7i&yv1OdrFSXDxEnE;Ejb-#}cQnAEKnqTYbm9FY5BqZ#=@9cfy~)4+8md$4_SMlb7F~Z8UVBoMZ~1%O!>JS+EjQ8>2qW zhnzF0?|j=)52-t|dKA_b=<#6AN-7VE?>$$25q~;B<&C`<+}&nsSXGRrIPw4U9scV` z=-P2Vd`$6`vG>&NhT=Qbj6cTruOt|!N}us*2ex$nU_a2fXi9EePj#qFKAOJ#p<#fwa9*G=p?#|z{j9WF zVwtU8aIRgfZ#K1~1pLEwUj;1Ecdj~@jQ%Ux4XjemG6X@Uha2XXF>*ZcAO3Y1f1&@9 zAGQ!3-|w7P9PExq;iP@|-1EDxMru)$N-gu1?CTD%TKG!!FoS89!`5Xr_7ccEP5);R zK2E;8G6!t+sbm0?ByKL8Y~N1C*I`rxT&ZrX>+wgo!Ha3X)z|6RjPm!OX|{3X{qg*? zid7?3h`i+Tn`PR_bm(Y!V?tQG@jW{7&&;-kY$3kfpA|WG!d8o*#N`0WZWu9s>E=2s z16ry(vWL>s>!IrG5si&EpY#p97&S>q>b%@_r#ZAIbqp3oaEYRPf0KCK51pR(gl{*p zxt3JFUujhIfBhZAO@>DH;8Lo64e0~lt?oZKH?YhtJrrgCX%O0o<41om$0b`Yo-lEC zgIi9h5Ei@NRk2<}Q^JxhsQPn&3wbS;b`tSTU5F4E+|@{9S(yn7ul%)}u?9#YwEj2N zsDGt8XQv06H1tgHg2opKPH-K z?OT*?Qy^~rd>8X+`fg^?lnSZ6ED^9TU6MKH9j1)j-F5UjFk(H)E_?7AS88Y{VFyk2 z8#`xq(0*H9I|+Q9HCbaVs)Q=-7PXRD_SciB!Z2hs;yv|FPvJ6b(S&>q7edCH#(bQi zhfUVvE&IzWm|^D1zR@h=I^EKJ%1^LcFE@$6e7;>AH751imVg1&N%L&-Iv2ZF&P>8my(5cBT6?aM4UdXbpq~8XwPq78R>xB44mxH0>sf| z&zC(bY59)DvVgo6rc-GJC7@aC40@?KF4gUfLXq(VXGA- z%+pP+8}2)EH}d8VuvZWTUuEC_`lbp|m-anLNfT8FnL$6R@@2m4`ERV| zR`G+9uAqgr+kOyJ*F8?#nHX}xfTI1owZ`15N%D98x<--I>;7abf}G6e=A@;;8$id zpb*`e6hQ{#*3HLLTzI_Vb$jVmbJM$gqN_%)s41)3P-6H|=b|rsG43Wn^p9!PQ))BU zy%K}>p|(;DwiCJ@p31Tn$o!#9x^g;pLLMIpzMN`N(X)6@UF0&*Uh?#weUlT~ma8`m zCJ^kX?E^6>Q&F5+ypj8xr>K)^P`U3(bo1t6&t%?Ly{G{%WqNon>pBFHs|@KclUfKK z#ycI_gSqeb4W9AdffkWeZmHU^Q_VqY_Dniy<6t!OtAByWZNws^w^$1wxZRM!er*nB zzDOpIs??1>$(W9MZ}EuOq?xzVUV@Z(wRrC8xU6R(P(FdbLVL1oqczE*nN9ygi3!5& ztej_z=8uG}ryC&b!tZ9;vPR`6GC(K3IEJJna*O_?ryPvm`z6Q^BDni&_k7OMz=H59#n%>E(voTf zp3knlI4xm4#VZKS4!CC?CAA-rK{d;>u`Un=>{6yDyiJ)UopI|1X8-CZKn6=y@ z^ytf{3T<1EkrvOdF{X05ZLdci<&>lb2<_Z)8>r9=H&D8-r5lTKmo!i9} zlxN(6q9?cITu(z`-oILVi*JbefA-I}3fr(>8ZAB-5T#O3J0Nuo`_==R^8^=MI8Z=x zLnUhVJX&aacfaFOy`6D~h<>u{17WeczwcmxZu?ETV;#j3d@zUtyJ8QGoKhw&1%jo@ zBcn)KD1OtmqV|sFH3%c_zqxasP|A~n+_iMhI8Vkip<|pH<~l8V9xnX@Q}cKjEff;o7qFj#dYSp` zS?MZ+_!IQOZCmdKK;17w&?e-&_uX0SZ#}}J+E{`bmuqA5y>;l7h37K@C5;4ZXdl)- z{yQ7|)N^H&d5gJDotjD@6bP6QV>3FH+jcXM)&K5Yo)-GmgbA*8$@fD_un+a{8Ck=* zgOcdo)`Kp`zs+Uqz#SE+<-Uu~`cRxlbV9nQ7FMj=Ae;tA3$>=w#X`Y`bdkYK!kj}c zmtp~4P3aUZ~nN6LiDgRj(R|?}3&QA~bGm$4f_6uNu|oeAsD~;pAQiEv8Gb zh#XNOSKPa4DLyh8eft6G^cQkDe3;C_+QEJwMwb<2org%$p7)(LTMg`P%Dw(J9x|^C zGEu)fWDH*71+^hb;o>dUVymMX4qnXO zh`h#K->*hh)&wUI+nLb|$K^&|>{NS>rm6>0N!oL^tYJ-L=K(_7rnTc$7v|7P@`?Wevd~?(FwluJoY5S`z z4{otie`sX)r*}>#8^^i6I1X}`i;ju+1LDnUQNpF{Jy|e^+fOe13Bt9(#YE|%C4)@9 z&ss!!1ML6Prvm=P%t0$*Ncl~WxA~vWZNX7ArHxgM%|R>Gf)(+_(pj(o4ZV-#9m;89V>2vP+5EFf%0uskSdD# zdy@A%?k!xh7>ERPi14PEfpW`HYhk-4`ED^5N)92kZSnF%)^S|cS=y-<8FD3yQvXsr zHXvKO*U)4$BPkyEBjz6LySfefhS1;p0Nlrr2oCONgWjSU1cx)M#Gz04T|{mt<4_1= z{CEpVP4HrrGO;Y>^QhJ>Q>^_4MwiK+vURA7Yvwe{YUI(~6tZ;7UQpyDi=M zj3B(fRdnqtzBDQ2!#C>6OWU;>H*EfB7gOCowhTHEgsnr1#7QF*aw$fdZ$1$&6|8>I z-cDWZmMdvAsz%J-U~rH)kw|Y^=30Y#-tEQ`tJ*VLr!s&nt(LM>0Pa%6pGw zIhGO9w5r>7pp=?EaV}Qg2HI#;kTl36NbOk=tN4Ai-@Ie z23!}ztyuxmK_h)-CB&-LVjyDQrMsi&D7gu$Txu4awM~P`CrRq)Noz9}iSH$1j-T%) z4lxKyMxrypp{Y0Z<5sNszI~FcSiI|FgkduwE8fGunhXHSqEoGRo=aMU6a0ITFdEJL zM8p-3k^LpqC@T~hmdE~V#u%)WIWA<DFqnrXbl4OF`Ne%Z6A=Hi{*xm_9rKgT)Im0vHLEk4GJcyCFR}_g zQ=zPT;f~`e&u@gOkKUf>WR$K|B?SEde62O-vON|Fzh^M~^DWYk!n%JtvfLV%4$Giu zLFPb>r0aAYXY9=dwwq7^l*AfV@5qi&^71^br2b7+RN299usW{*Z4p>_F}1EX5xRa9 zNukd?pctQrg|sLQKuvkR48ey8Q!_uqZmCu2Atme(ja@bY2HFOxm~9~gl2 z$0N!3)Wlih!AHWW+_D*6?)uoxd>Z`Tz0@QcZ@5quND|o_zqdY|UbQ5$+w?$riT&() z=ZJzvBC7AVW5!T0A=#KDak~b}ycC-3>zK%RZpx(QkD<^?$rk7Hd4JDSMK-x_{L6^c zmm8D8nHl!sIu@YZK|K$i$j{YwLbf+r&1hsX1{B4AWYMkz|K1|~TkkH89+6NCpZ+9q zB?U5}(P=8^u2R*UQ};+9%bAH!=0=(6&x>}4#7eFiCI3fxFO|P!VRl0ADLn9!26xkR z9tWDM9u(Y^qSF&C<2h`{R5T^j6cs-x6#F8{L5F~5f)6o6lB7EYrkGmjqThxxcpJq+aVMIJAx6}_r|Aj zop!!nx30Yt5PIUq`B@nGf(HO3Y-KPuDWq(XUhdN%R{YM@0&oB3c{m72un+)4)W5AitZBCT)sMX8RZcR5+;s452&aSJR$TGzI>5hwNjmY==!H zTaVIYkK=4ny&^H(I%ZB_lBfps&1vR#tT(C_pHTGAZ_8rID#Tx`zO{Z7F&XI-;2ohj zTPgg-H7m_T|FWOD;=TOdTL~qC>CfBRyi}uEd_Nw_Ro3JEN&Ow%^xWF9WXH5NE$A1j z0e{_Og^~7)zE0;AFBk;nF*+j23CdUApUJCg>k7KeGMS<8vEf;f0~NvTMcp*YX1v0> z9cG_j;g0nSf50m4|H+HO6josu{M@FOlVpg;^hIXcj4XKX@E>@=UApTCS6Emh zIKnzqD<74aRe2=aFCy`F7zn!pw=C5zWr|mr<3zM#=V-Zwg;!tjCxJOfiks}(b4Q8o zSN?)@ZGlNNG&xY_34YV3JUylN3^GZqgZ;#eGFe80E*`h3Fb6ta;frClRQv_)*gTpOSMqhd=X(k7@}28{biZBX?> zX{URN?U>?rSj?%9-7yRi{pxtse|-ME!hCvG)Df!sA7O6pFtFvPNb9(F?hC?Xdly6d zPJrxp0MHy5v4?F;0C1~V=XrY8VuoTL%|jYZD7k}4yOg^lsY9g>KMyL|L?1b1gR^$l zjxpVhlKe6_Qn97%MhCaG~-Rq=*+`{r?3ts=kYIjc~<7g-Bx6$EqKFf)?Y>vrM*F^oh@ zH~BFYpRlP=Bvo%43fo??wV%+e-Co{*AaWCPFGkadFKxuqEhbn_c&O+?c1l3~(OuaR zB&b@5M;mNva(+7(Vm?{x7A;d%KiEkBVv7~9Sy|O+UjG6g)5-kmT&&EO-rkQz>??JT z=q`R<4HGO%WotL1fLz_?}tQO*r zaq;7V;+7*17+<^{msI4EdvKqWiO-NZm`og6bA%~xChnaVZc8)@h4?TLf zR6}L8=q$qmR6O(ZMzydlk*y=oh#Fhotz1vpcv;vAVR{*V_?&H|M~}7c zR-vtn#bfGi)2LKM<)~U4v{{mF?5PpI`V$-?4hZ!|CO;1y1h7KR|D#G=&^f%L2=+;m zH>ocnLg;d<)$~5h{vFFKV*Er`(|H7Ej*r!p?&veiq!MwrJq|pD2fY>|OA{80Q{Te# z7t7JQ*m&A?+s8j;Sp%ACqs{=U5f!Q5?CPwj{C3^9`RNR3LF(jQ(aW1*D&@7#D6(Wu z3y~xfbwl(3A8=n z^(8uv?I!6K85S|Zy*@T#s1d7;4yvAWk?8QdyY6OXYEoK-g1}!{D*W`4H;?*pyAyk_ zX>7D+esHd^sY%%vjT_oo#t~@sbj7xd%_0LprN=g+^%e#HTX~9mdVkk@J(DI#tB3aC zZAS1n=J8=utqsm+{=2PChbpsYo7^@6zxGtR8Ay4%1+{4LdYX_Y|FJoH9uB0=HHnj+ z1HskTz&qjgzaL!b&B9eC2@MjYO^0|azs><8E0}oTUcz361Zd%(> z?9~3qz7WOx5pU#6aGMyR&d1u)Z|@FeZ$1rAoJ2}lV>?m^d_>UC7q96|YBW{d89b(( z%Amf6YinTMVW`>>-NUkZ)Y!cPlq0uN>}uMx?ZQY| zeKrt_ppmPV%=8rZ1FgqoLtX*l!aw1fGF36opJ&r{-U;R%Dyjxqs$f6G8W8?U8+LD; zFIW>$+^!a3f0lX#rh58)PI*(ohF4gJPDwO!N?q2J?--zCRfq(9Y_J>U@%DvG`chUa7anVy;MXeDa?R%O(r5O3#qA5=FUO7<-1C1!e-~)?=u** z6#en1h*SNy3Q#zsvmF4#eBbq>JQ_k$y|ICWMH33FJ&3%DVLHzbVCMRTZ%?3u6J_!@r3fMGF!$GR~YEIjHd869?Pe(ZDXF%OwGw_p@HTO zqU#9iUARVo895j`XFf%-!D>HBy$lNlUuz#pjZJqEN*g1&P#-AASq11KAgW_LLwM ze9b-&+*RvX%z#sxfm9nkeAR4PO)vr#vN{XJd8FQs+hXkrZn5Th@-4W8wyn9ivyF!! z1E37c$jfGM^<0e1rLAIO4uAK`!H+3Fqd+iFE+6e{R;OiOtl}RQ)6}c(oC;N(gvw0cuQ{4XTZTk**Y!MVW7$r2oW5m3-9VE>KD5I< zwC)Qrq0T=o&(gaJ-?_)vD{#)%ofK`fQs%|Lv42-!bhT((M+eHUWbFJ?50ECniTk=y zjX4buxbKx9Y#MT;a${r%6jl5Hqr=VrP91t03pfR*A3BQSMj^tC`{w*vH=tA^gI=^( zeDs19keOC*x?Yv;bvLm87I7Su!dt`qX1l9PKT)85DQntf`McW ze@=z$k|niV&xnDEIp~W%m4x;+2)%wN4J;bvY^7k$8O1DP&AfK-`Muu7H}UubN`Y>+ zyj-JK-^H}t5#FL3Z>5)*N$CgNtRDivWrew_PWz>9>%g6Ut8iWW)0fgO`@z4@O*L{> zK6Eah9(uAbmRehR8^#;TN1K8zrI6aW<;`y?;2K{tn9)}j_y2(2D2N!B$|odo=*sb~T|wxS{$jtCnuQ~xvsYRXtRmQ; zR+bAUL>;Zm=lS_LW&G}0QLn*xRx|yY-|Z^vhIDL7f|TVYBh)=PK!`p1uYvz?s%#1m zi6;ao?oc2`TX6xQ)~k%5HrbtB?WO!SEc@F@pJV*+CzT_Z*Csh=wV_pM3)2lIuf>Q9 zvX8;dOhBVixy_UfK|?=8ElpY;+;vTpoME-UsVL98XTYq8ElWONF?`!TESxoLR9a4C z7wqnP)TSqJ;hK@WlP(x+uFB5qmgwifS_^1?&GV#{r3ldVS1X!sUx3Lc>+Bb(HaS}aI+;#EIRYS)MyEX7D$zkNJ`f$tWBq03!S}D zrePG1Sh<4rxbHqX2$TEgV$Id+Qq>NWd^j9FE+hryNo1xX!i$Iy3t9Xw!IGgW3r8~U z7)Y;duj7K(>`6KRnAxrsjyEpa?lYYd%9w;m5s1t!x^!rlp1+Ck3J-{ztOog4uGYn{EA|R*HLO{A|8ub5N^_Eq8hs zEULOnQ!;~@{)U}sG*5)Ae&DCva56lIBh96a&dW8)0<$z$*A*2^A@a6}m>s_`%?I{U zT{s3Y0AaK!Yq4B|9X>x&7kiv9i)@B)RuxNekFA(DU*IK1L-B^Y>g$3}y5F@TY7QpY z5(l>i9CK-b`uYARZZS79unWZ%*VVTJ2j4av1DWQcLRHBE&OI}|ylEBRzVn@tX+`OD zS8TTet@r=KsmZh#5CDl^`HDV2NWaLBMU04LgC_C$R6 zX_j;1{FTANeeQq;EtGrFq>@{wy^=uIlQj}S1x1?NY63&W_+3YtdzC!(FVLA1iUCg7 zth6zvo^cZJ?)0W~6Pvyt%p9Cm=Vlz_RpP9+&=a_=a z@)kYDwr+j+Ac-{Bd;SwRg&~o?7w-lUi$IYz&p%P(@o1g2h%$Aa{XDjFt`zGb3Ok2; zFbd@6`7&)|rtVGut+vmVPT}2P%i?0O#NM-Pzf!Y)JN;rM9piWy0n-=H7}u-*Ph*iJ z^vmq~7Vep_$e?)+b{5C)V)J0rqeFC8wgFj%4C4b$}pr5dcX^P?=S)I^X2NB{Z17TBt&H?UrX z-2v`vsuH|Th-0<7scK)72-;XE+m+5$(7up_b9rARLe@6hZ)J&wP|Ep+Exvuh=UBR| zB@#&qa?RC+KF@#FAgv~G<5Nj|$?o^}yL;Wz-Vnv?`M6k-JY^fG0>(QdJOLTe8`>yO zsbWg&sGSGvoN_*j-gy*JjK$k0%XFQ>V!y>OeeT!hR2Qv&)D}XY0!GKzE};ip^@WBtL-8FLo}T&BgQ0WW zWUpbFrjh1SKJRDVjYC;}?SYa=k)ly%XciPRtwx?i@tX~BD8xSsHU39^MaNJ%r}}1@ zE=4v=3Y7n&AZG39^#0%RlvDzq8yKm`njCN7#BWI>t4J6;;J&#eA#yY7lj>+_-)@kSu|;7}2xL{mU*tf6%)W;krKW_$e8S z%O_UgV3EZqlTD2;#NPimbJXhS^;RZ%h{9;z<#pSE5duY~U@)-kvQn}LyJ@M%_ELLi zaGW7Mvt4u9|?Cb`!b$e zHNvi%x{BAV>f&VTmI4)W!vS+3)}K`(@O**gn8BCjJ6u2NEdrf;4j(&z#R7UL{za`@ zu*}04!zRM>G5$m-`N~Nu7mC5t2FbH?hVy&cS-rt+9A+um1N=Tqv|H~2iU#{h(&{ym zS12$TSt-?R+R)XQ728ziSO+&yHZmDpICj*Ny|ZSr(zpZv^MkOfw4TSuKJ*|_1pB0dd3zgrUTqfC?)ss z-q;av1f)5SYyPK30{ln{8{m_*OcL3pViH@^QUySoV|)!47Syx(h$+n)1W(HF@1-8< z`tJ@V>^W*iudg5CDCz}j)kYK^aFPj;hkwfIS)1B+$L{m($KCrOZyP3u7HkvdacA5v zil=F@!f~G5SNkHJ=s_0HBT1OMd+0uVHuzqEnYb!C20|R?7~J$ zaU3*d91*$6PURe~?dRwb7!!$9Do@J@P78?MD{f^^P*%tT(K!O#q=}}rknc=FOKmG* z^#xMjSWsAA5aQ5wOL|_;rG#bgIP~Ewew|Vpm^_o;O8@e1U#fU8djZQE;IXr|%zA5K zb@AMMaD37$Ndmq>@}W2q8*rV|ia&N`YUj)qR9F!Yf3kGY7N2y%XFCShF;}L~cVTX2 zcR+}g@Lq#FKb57|h)u+^cy?E;C6s1G>DJL(Q4UdPiyM|o7}E8xYE)UQ)?uDCM@8hL zq?7Fyly?&;eSms~d+QC_iZT&~T%@xy!VQ0m{E@@{8xo3!8~*MLR>RZ0S=gbt;?b~& zJLC$E#AYe`bM+b|X)(GE$?Szvym+Uqnfb(Y^~tS~qZuM)sH?>A8`W|pdi_iB_LgLE ziT@082;1%CDWztR6N`BdSTxGCL9H51Bu|PdO#?YW+IU`)xgQk0VZ`xa;voQ_4LeIX z=jTe{4d)oxIJn!F2XE~q7^`DAt)cKT1<;_Uj!?_+YCIpga!Fg?{y+!UmkM^42108CPzuw8O#<) zbT8pYOjW$gb4)vd5vJM@LCHcfBeW9QJh(8Um!EJy&tc~CD9x;W{Ihj$pG#`Ei{0e; zrMcMV9cg&tFUOELx7Zywvv+pLp1NSbH>+x%lK=N7v(XaStl6O(LQ_ZSF3;b3zQc7e zN@c(~)2--k>9m{s1L~B2!%oWhi3-6MOnXKlG5~38XdHpK666^_V&Nw~m*V^^H;qoG zf5CrjkiYX}Eh4Dnc~E1l`4e&mjTZzv`=D|dMZ{eML10bCy)Gng!!xc-DQc|e&x~Vu zRX@l8-N)8632K9%vT2A21$qRo@MJ)|Jwhcv?B4gz9uZh%E@9o)Jn^2kX*h(^o?YV* z>Lz?Ap416TSB0OC)FP1ac6rNYrLHww?Z6K+|B9ReLrYC;C*4 z+6{PJJhBZJXqsJ@b@M+)zm)`z2q^EE;M*iJPIatBgE2ghGjWIrj<@da`@<+4cAqd;MQ8=$EY)hFmWle9FQMnn=tY(Re6!@YlP(zPbB;JqGK% zxoi}vP5YwFuI_YRIDH{hCa=W1iB~MSL|aK8T6+<}dZ)UV!XmL@ZgR9y=Y^_w7B|UT zWcVIn_Bs5yY(FB;mMJdG4a-n~yd+ByY-qti;OJd@3;PZrsi}pgO(A(ZX+i$s6a&<; zZ~MGqvFq3+f3e<9&XaJq4ngU(nHmH<)O{x_L5tl(Mb-<{2nlYdR|c6XEeWjk$WXF_ z%T!)D2PmhO;-htJ2IPgx5LPh|0uZUy@h^9LdCqXf`djYR)!pUOD^fF)EjHMd;HR#~ z&>$cq^JcVjShSa&JPK1(cM|7MRrM4nyp;D=2$M%6Q>K^fy&$N<*yY$ZRCDi$MX&=B z*4;!Uw)B9x`SB$h?xZ@MmVl&6kYS?&nLZlEJP*2FzI>0INetL|?jWy#ojY67Xp>*N z8}u#JnnQ#5>6sN~b-w*bI}7V^vu(Ro?yv^~4e4#Xy+*fhGWE#Qvju0!XHzQiw2n0G zAI{j#@VaZ9SSg+u!}E#D@J+7IkTNiLURT)Or=sAf+FXA&f{XCWZr`PZCF)sHvX z5nv;?FUu>?XcnpU{2vre0-Cj{NL4A1!3Al7zweS~(Qlo)o1nH-Gbp@iwb7Qj8!-*{ zVv<)y*&cPC{J`Zc6n(^Ok~VzK9AS^8p}_}tQbR15&Rqs=L=nS|?^%lP0`J+sy(l&Q zx~Ia;|Lk(Vxh>f>Xu(vsC^Y=WOrNkOW7J+40fv34Pkh`QGlI2YPvJ7ix(r&*sowi0 zPhF+o5IOah0UCaQ{SAYD{izBLPVqco6WP6p?VvAyTQB(KLjce|$9J@j4OzL?uM9PJyagB$GM+7d_ zrbU&)hA8Z76B2eq`nhZgkcotmuSRi6f^Fj5omR%5GB0!*4vjR-W-T8xZTO=(+=9IF0`sep= zdnB-!xOK!j`^ecQ-=0zNX@Zi4?I=BF7m+9X! zV#GOVPLX*rBKzEZAt2iWkrSZIxiaBfphOeF`9j=qW-?ZhKObO3SL*(^!;!yfJ^4%J zx8=JD*snd(;$M%WDfF{tE510D3QY-E1L!Dk9o5Pt7b1VHL1&6M(la91qsJ}b?!f~U zl4`c{W*2$a(XQnoiQ@=sIzGlkHo`9!Y6BSXUEB{ddD7^u`rD=|!>t-lS)lMp#8oJN z;5^TC{BrDON9&Q90Z1Y7VBg=M7he@0V(aZpJIE9bRuej!PoF9!gj!R7Zf$rVd|o&$ zM86?3);iZ_`#w}W;MHGa>_K#*O_R*Ftnb*25{6mLs4`=0Udwa88+taY0TXR}4T!6z zp1UcK<{gjOL_9EyAB+L|g7OD`AZUBUKJHl?&R76bU6<5F^Zn6nkygLmv#!8}&!OYD z#|H_0B9>G${LSfPE*iylns?ru39C81SBjURL{tH7ZU!TMZA1PW;G-k0i1GmE_whzr<{(PvOoNCGTnFOzKgWu-`V`0+$2Yhq3 zEsiO-w0-U>o}TTEPVsdvs9>2o(VuuZPuX67=+xVVVuzK?-6L7vG+9Mw<$nXm1t?sP zs%fXn0ZmGZd>u(8;6qzJ&um%wQc5n~{#M~uijl#vi)4{?ox%zVI`=?5G}0sst^=gs z&AmQbBd%A(`}36ahE4w+tFLH<22lEcYu&n5{yxn6`MXx(4f&E^xH(RHYXTPF_s+A~ z)PQEZ6YAkG-GhJEJ>qI5b3z^V-W)A7c#1MVSU~}{8NDfxeK`3#0&VOqYSk5C9xc-@ zl$>4JMW-+S%2+sWo^dOciTW|l7d`J+CakIQz0ZU1_O#}a4;n|1SI*= zWYb3*lqnyHa5Ql+!GQr*FIms#JLuOR%$D`MUH10|MicbMTqs;RkWiwYHHYixgDpZnZ$Jcdx4#-xUQ|AU&#^2Foof8CfuP-ZxpAqNvywC0_>>#Y(w*oknmE zZ8{sq%?0d|5plfv%)--NXtnU#2aWs%L?Qi4cnPvnpOy?B&o~SaY-MeDoMTUW*`(7@ zv?zZZ(^4_e8MzeUO%05fl_TX)Mb2L7NQ)-!CLlSn9Z7rE$MC+F{n&9^faYurPUE!_ z50OPI6q(`=8;J&4N$G#mSAPAsS5nOU*6*gxcj$i#C2!k6jY5TOKH79{0jH4kb@^#* z2iRE%A0bPcGFc*XmU=$_DR!XZkqYUS51p5pJ5w0Yx&FI@1@|(^%IT4$T$96?p*{ZR zqfxm>LE$XDi^=gF)3*wU0SAZx#U!8ijqhV8ux5BgQIaC9Sn~1$Xp3OYyz>&V0Y>b5 z5_d@E(4Ix@{XYB!4g0PRb)-_#@NQB#he?@E1VSG?dJgg76y)>~_Vk}Ua{ecLa`@MY zcKgN`1;Qs)ukpWQ8Ijr~B{IIW5tK7Yt_Gz`s##+JTtr@%%-SKDsI%>2ye_C(g4!rU zc+QhUI%AS9im`U%s^(O|Y`*X@k#bB$suIemfb^xb4F zEf)MpjA-Ipj)zMfxzVLD`7(ANBtfM1TpJ(Sto($_bG4wDJ;e^kFnwDj#v~O+yX%pt zS(!3Q5hjG90;kX+MN+}KFiy)txO5ot-J6bdys$)ErG>p#7%ByH>#Beuj1|+u?#i!~ zrs`4GciLGN5~G3c(s-G|&<)0cFg93Q9(}#&GL5f*BCt-Z`RtGFyC8u2uDc7;^DZq4 znjw5sg_|YFH!rkvs?DhL*!Y5x1l89mB^soV9A<~y*XwGICW`sMQ@P^$zxU$p8(u}$ z@zW}508vBsF5WNxY1N)qJK%%VM%(YQ9`iD^$=>rc?k}S9&vRlk5;|EeV}TY)*jxtQ z7okQdE$8!VsPqR@1F2{LAyI%a>L{7IKR@GSx_u` zUl)+)2W^O?jv+LPlB%v?GCmD(19fnyb=ZW~w(BKlOYe`q9ZvQ`SG|xVnk8Oa9xOsg zz$fE}y8zTN5nFlV?0pa?knBs@bX_DL`G(%L?}!4SjqaIAj25qV`sBpw)Nx77TEb4N zb!-72!T-g1EDu-;6t0L&j$AM@U4(wz?meR0!-l_?;P!Qzbw>>+S(1BI)+~ zrsxjSVod2bteI2iJ(s}_`k!`lo99035+M{ShQi$cp*G=@aa0CJrcqw8MU59}Kl0e9 z^WRuFoYT){k!fTGT177H6$Uf*M%D1=*JcC|3tmysE7Vm=X;`+L2oW#*bJ~ZNhc3*= zf7*mR%V3U{x$8tj{!!t{_oePk|% zzr5i`QbXS;EQ%@8yOtXULC>VaLxZ(tdp&;kVX&cnXkSLWs%yGgj#@oyzZd1$yt+rd zV6=PoD}}~~N+rY6#ft1DRLKr1?O=32w1Fx4Me>P6*|o5Slh?qGvE*Cdj1k zYQT1~;XI22syW6>*49o+OV{->Nfl>36qTpG0j)c@Wm;uT8y)A>mAn+-ar7tspKK^% zk>>iZ&}!o4oviF!36uA#f6o1q5@r5mKXk!~ah7`hRV?v(BZ=`KOK zL)7={`90^nf3s$>W_I2C-q-cHJm1kGF&dh!Ah#c#CZ~_U;ms?_Z>MI|?iJ@Z)(~zn zCIamdrfuQ9A`Oy5ij|wPMpN7iAf{+W3frnnwaBiMULZMbfi36;vzE628rQj_~d__BtjE=I~L=4s*sx zY8Oof{%t=yRKUf)@VGs@eo3tRPK9jBF-T$%{s8%qlHP+SyE7a}vvplvfH8a-XiMgv z0Q77@ia!D`!G53qWT(^QYcYu9^pPhS()2>Z&eOyPOD$9s?TA|U>8amgAZ;M9GXnm1fQZ*QV9zS_$Dl#g z+SoM+O;$O-6P}=%DfK)G0V5RZ*G;7INNpdH%yR(`4N|A}R8~Ls6jO*6ySxxm^eu+y zH$djG9feESZ>Q+y7Rq^0cZ)fKv-;fv!&6-S{2n!~a|-s|d&+t^H_TIM1S0sYMQS&M zFtu2$sLoC_991>HR+d2+FTYIDuF8wSbT13^0gr{nYNt4i(5A^Ax5F;7LGBsnT%aZ} zEjH1b2j{WPXbXoE%l2HeJyqm4q2gJSFuq*MEP4hKfeMdMczJ>_j(x&y@Of!8&<8yq z{?DnBDslRxExAwi_g}1>rWIR2wT0jnv(%iLQ2`VoI~}fZiYF3M_B(81JQ4HJ5dFzA ze%O)!x6QWZ+7G8Xim4M4a>>`}-JfS{%c#G_ee~tB) z+5lMd)$aUU5f{Nm!A5yDdF4gPLF2$LCGnZ~oM-F@pZ!7(ihB||a=3!==g3AM1{|D##br4w-VD|3YUQ6_S^?ia6WzROQ(rr` z5o;GApF{E5Arxg&O>}!1t^VWWJ=lWsta^lAn&=FDZLMLc zLuBjzRkk&nQ-Q6|qmB4|mANQ(L5l7WGKJ0kA?7bhJ(Ia6+oVJ`=Q>guE5FCEu{q=k zm#At*=Q`|Vo8OVFB$MYt_ZF_wB7PqY z1im2sw>b=aBL@;3C>lqM-;A_|&8CK;lW)q9PxoHo<(wnH7C+f2EqlRQErZ_!t}v5q zI;Jg;=pjCiSWX-YboZwqf+vzP+3d0#TzfCpaZ17 z8{8|g)VvQpH)ZRly+07Rfi};O6&8 zne@_)hlq_acnnH{>PWmfUdk3KOiDfJBQJ8^;VBU64}a6Vm9W!2(F3oxZ4C>?H&no( z%GO*Uz#MKCd)|3;o+@y+6U`Gdf4B@azfrr?>FYS|Sg`$8)qEx|7=Q^o$9O5km-nHO z!irCT;~1l7S`yp?e!w?>J@zh z{2GD(RfzrfZ~LB{5dD}F$-z6uM80o6lfPNsbo^Fy>+4*M-d!ErpTFFi@MR}fn&c8Qk88xAy|!Px7AF1?$ldk{<4|RkM0ajwKH9&aBS>a^n+{Ex(CvgV6?x2gtXw!It0ujO&tL>T zYf+jZM8%Umu3ux!FJ&5ttV$aWPA*W5F{2t~J{DjAw0eH0!c>yKUp=|F)oA@pVgYzM z*~BMdfmGMpw#*(@-oM1f0@&AP+a8c(w>WaJBfIpaeY_Y3gy@wcqmx=f73XdNO+@ap zjy>j4u^h~7%=65BRt-ayaPb_hKe8?zI#R8cMfcI8Nqy7OgtNNikIGBf;HLFTzeJdk z;2e2)wInyl7X2mmC?=BH{kdH~A}wXo?{UGC{%al(ct7@EmD7*+U2S+`Fi;p=81~Vlab=%F=R$SVS$iF}}1?kCtxB`xJyoDGZ3z}z3&w|ExW9<*7QV9ZMt9fmtD&+)B&om=+uCz0+sGb`YH@H2Q}TeHp$@K+NiaHMf9^~f}v;OZTj zn80pxW&2edQP8CDgoeNrfUP;YQne!2>o%`b2nTccwmc)Anx-a9GTHs|&vgEEoH5Ep z=B?HOZN8R!OHvCM6YXe%KF&v&q12U+riL)o@gKIpOmZvjk39Pp%m$U>wXn@u60Yji z#Mx7+hg_e&CWf`m8}+Gb1Zsi>BrDGDt5o!*g;P?Hx&Mp5kV$H-&^Y2 z>PP0&&vau1IQBe9+&7hxQxO+&Eu)vs@T?1T2H1pyD@;s=>I|a-3=<&e8uz;Ry(TlU8;2EP`+EkYf+C zngjMc_eo7xzc45#(VxfFYd|AFt;PyXpal`fl0c~$_t=}%s4l%rp4xE zb(DLsm>?$E+vtCvPpw}xIf#b+w4H3O+;!M>??V4Jj=IO;z&IR(wdjw5-YNs zUOK3C9Jcx+JXQ0Xdz?@H%h8x>3{O#yf)obVv)|S3kSYJm1e5{!w>;9(%hfndw(8+4 z>F+bcedKN)^t1nkkM$QO=z#(HGP+6kj>9RbxI1MV?RVx1SOqdfZXrqRkD{vYn~~5q*{)3fVA`v* zg@Cnw+9zQ{2k{5+gd|%@rO21Hw}WSfZtF!|WUdDh*d^jGlYvftR<=1NL>&ZwXdqG0 zi76a5k5d9Vs2ZvB6?u>vDQGMmP}*;Ve@!k~##ygo{KOVa~!3ivW+=*HEafE{lq5C@L3IPJ(te)sFbzP^1Zw#BiJ5_<<%=PnGEFD0wD}$ z78CYMQ-9quaHPwAllbH}5_tyVBDa5ZmXmH-Pqv|>TErtMEMfExAqVJ_b$X{s#;DhImAnClCZ}J z8hVOZFLUrS`VN`n`UKWGBXT5@;z4qU4%ul1Ju9fCUU4(4W z-=<2AmRH*VMywV`O!Kwzo2NkuJr(wLq4y$mUwMNNeUvqfWR-G!T2^wpX#UNI;oHHz zNY@nZ^58;?ptQtN53%kHuc}z!3H6af`m?f^e(f(1u<7Oe*E@{7!u1ZMA!~cAgag8b zLeoC|%}0XvaRRzrk3!+z)s|*V8T+xp9_*_>{>&5mqiZ}GWk-uo39%$Fo?;=E4v{7K z9iAPsh<&Jn;U~8F9aJg{`_WOF0lX6JF=<<9Wc}MWJRB%EZ>doUhv8%WG#0gBYHMHq zwq7>GZp9Mrc}SJ(cq*d{4PIzXZM_;luDXgAMD?6cP7TTN<92>|@9!cK+##+|zzdoZ zYA~#7iPJ|Vce_k-8oVMz-M9w{`fgAhxXc**$gbazcoB|+2jfOgEOWv@dxO{O|CBzo zq~8Y4CpQ7CPdTT0aF0rokF6O_5bq#WO5bOvXaVn{rT99EGF4SA#;DLsu^G2jnk6z_ zU!FbZg5>F_i)no`$z}G)f>hl?eFOj1yOYtU#l3mUc<$}Ij6}Qx)DRF2)u{<>*rfC! z;RFwjGTDVuN*nPW_<+4#Bz9UZYk&*>FYUZVxArFgb$GSgZmT5|qGX&_x4tXa1rqL) zFs}%0dL4B+Pfe@cJ<5mtXedksIT!(c&-GP=>p@T`%{0ANBBgFUZ}Uqif{K=Bu2t!2 zfS!bcaI$(Fw;|^STNTjn_@B&!&4}<%G3m1doIL?vNw%wH&{MboaOdt(D>xG(PcG%P zRdd-kyRM5ve9E{V#`XT)jP6#i&FEB<%R{h-Fnl4x2zd?g9-qVRt~%61Ve?{ygFOrg z%;a+reb|p%HwKJ2c9_9C<$MsnAKtwo5|cr;vr}grGV6iae0Xeh0^XzFzF}hM=t^1k zbiu-LoLVDDS01=e0_7U+LGm9WI;8u5y;`B6y5mc}sa$N!~ts}Xl zjo7z%+cEv~`jj0H&y-_SDryStNZu!pgTv?lu5aJMKwE`F-QRfeVbdhtNFwG|9~s-% zv_oy>(sy`39wI?N`8Snu8nbtP0~&u+X_TopJ?revt6#Eg?I>A~kjG3ip=`v+6$odY zqKM2Jy}GPpwf2>J`zuAn+`4!lpTTLXnAa22^3`Knmd`+*NM;{>zRKnEJ*%l zaEk_f;P%fk$>V)vo8S>N$6fo$Y0S56=hB?Jm}DP28Y-pF}mcM+fhSNpF5 zAG%G4E11K9K{B(qClrqlCvJPyq7UYMFbzrkJU&0nPCeoG=+a|-CRd%VGiJ0F7H4tY z-o)!!f6XlR203-G6IEB7&yaIx5AL%^;K#jX%62GenaqH@S{thY$zSbOE12!c*uffZ z;2-njiUL=W#12O&(lbJoUp*dh;F{Y3Q0_`(4u<2f%~zp zquMW|l$~L!9d9ZxT(id9%h26jp|+Q=r6~{ReYt?|h$OGs;3ZA`@z9+${Ei#-;;==` zB06H%por#8?oClir?6;1XD&0QK??qXTYRv4CpxYE*-!Zz>r}@>a&HF9DTh(jYnqd5 z-(RK%dVexic564se#|Mvsddb13Zr1)C|c-QV7ln9hNd&I?giuvsujcRj1wG>Cxnsx zfoEx82q&)q1XU!<(cm?6ovn8a)6p2TrIi*qKyyDaOm_w{J&t+{#$FTJN%X}VNl?sdLNj2nls7500LAIS>c5n_$Nui$ncRQH`r*MN^@d_6&Bip8fq9Z~srr^U zGBF_L<6W}rE+I{`v&~Q$kneBWM>-7>u-7Z`T(0MRVNBgjPck*oSa(e^WO>dFVM#Y}=K*O!YWN=idEGwmN?<;Km^HwPyHpC`W{Q&tv-P^r^w05wzv%;x zpC5YK@H}WXzZ*Jm^qE$2l68v>9TU#B5c-zr74EC|ai({?8I15b@M-T-Lnk{v+Ryi| z1j;A;1xd9%HVRwj{X60^6avK3ICnxj&iuTJmeQSFe<2o0!3ga$yPmWFq?=A6BW9G* zRtV3eoxx2E@0uDmIB9kN($+-wiNI3{lMsv^m~>6MkH56#%j0)4O0Ie#P`D^XTFM*# zn`g&6->Cq9X}eAZFLiXmA7SDl_9@!ty}lmPutbdPD7U>re*&VF`~ArNU5jJXCo_MM zTeQ0Cy`00?a@K>zl$9*EgK5<|))Y<@iENk3tCVC}>+W@S^7QZ@FBI;i#p5qsbEdNO zEjz%i#@hRp2ycRJLtOA1#vllG7BTe^oLtYWzH4O)6~;*CJ7hkp`rQ*1!s}O zYM?Uj*5m{Btw|aN#N)V)AM=}?AHSxYp6cJ5zSNBXeI~b=%s%}mGrw=?39qzAV1i-L zF|(3|`QfaDjXj5!JVm7IXK$DGwcBTJ(n}B8)Cc08Pi~hLeiWw?n@w8&ebUBQ!#MjK1CjY%%tFu-=Iqt_2 zl^U02NM~{yN!fvqU0o7vy`26mY&8oP)I0d@Xr*+bA5_^fQd#5NZ;9_rZFK2m`k5=V z%5`H0GIL7*d2Y!~*t~Wl-P*vc_2itgW*l?}X)^Z6l^Is3>Ap?vY5g&X4kUh4@xPDt zY3Yn=6C4XPB3;CY^SU8HD4RUmX3E&x(3Ksh__~ue_*jIe#oKn6Vs&U1_`K^KoAEnV z-N65W(clLB6!iXC1}Z$C7fs&LE&e&gjB=V3=B0-)_b-F(Kk1SDwlV&YvCzwSFZ3IO zO-Sn>(%7p(vHN88Uw3jXvikR{$hi}@RoB(Z4D79PZNq~>mn!CEV)ar!N!+$SGHI41 zZY^%ZjAwCCnS+ygA3!b6Ly{trdX0}LB`(`K2E5L{uv!9_sMsUN8|C-aOM^2xo$BIHYfZZ+K&Wm+AYL*m=rd4Zik&7*7LY?h!LiLw&9q zsI;opsdyZc8hTtd`;}D!eFTNi|9L_Bj4KW>=S5WO0=zCh8Kz(IpJF%K)(QF>@Tbfj z$KG$RIHwQk4lUla1u|kj?3Rmu3^86vHuFu71AOCq(+8p;Psf1pKC=zNFw4c)iX;re|5;H{e6@|uIRK)=^U&AjmR2H|q|(M|E{ zOVwCHNu?XuN@VM>$Vl+j_z4NB0hTEI;yq{?X@gdMXSZSr^*)(=c^sHQg0TO{Q`-*_ zWxose^rxT1lxk)Ep!D}Jy{HwjN-qsV<(YQOIE@mIb^IzR{loUuTOuV~+s?0T%@bxP z{NnhR{<`^3NnCYxT-W?{r(c^kN4(KAxWUi8;pQydS(=tm6F*}z$@Tx88EbwBTkFPH z`kT^DIqm-kHw=C0?_TSJM9B4C`=LbFQjM%@_EY00`GkN6U&^fiqs@TslLkJ?NFDHg z3w)@)_zk*gln9vMt@(zbd;YTg36FG`=Q2W~&iapnWz6C@_5(OKmxJ1E`r;$iH@W2! zCF|3Wm#(x{t9Y?ow-!K>0Q*`m4rVLgnKXC`Zxj2h2#8u(MdOqLOi>&$dpuHT(QMaQ!o~^QpQummC(y8=*zbGHM#_eVXzVEJ=Gnk+L|J^NTJ3jNkysN*{rPbU8&op zSsU7vG8}`sVRvvGRhj);LvaaeTH(h|hHt;!tq9}fxzB_I`q-xsDc|1Li8^#IHD6Lh zyOf$0`SiF)fg~CgR2L2ZCHtNOn>ky)f6fQGmjls2WE-+Uw zr?uJi6rjPP^|?jc%c*29mToOj*U3X{kC{aIlV2;e&24CI7``!wNK&}|p@m_Hq3{$bpouttlIx+(s`b5x?jYT4j%o2Iu3M9U;C1A!PvfqsWQb`aR_r5 zSakj`+KV-EA=ih?w^Fz)NM83)f12y421Vsg_%jdZ=W7UWOxBf zv72S9TRHu?vw@F@E9zVu)FsNW;sAs&d+O?HnGBM;Ky!aYYUBABr6C@93k_0f^rwNQ<@bStutEqCcw?`)sD6JBNixW6PU;wmz4B)An(yfF#! zK8-a*9=;hI?BSm7(H2+&HhG5nxBkWC< zr|HExJdD%p&MfPpH5m9dn*SB1aeq1=ILS4@fy5)mXcWw&7WM~7c7s8##hrnPd^qW( zpm~4t7ry+PP$F#LruppcW#4u}a{6TEEHQ=_qj@8W7f~{c)!(bl`$sah~1_X{?+7xpWdQ12vzU=zIOT|cRNIUc6Srn4#$Wi;JnI?2K3F>ri+|Yv(z6HY11LvstuO?1oT}ouE~-xP z0LPlU<&BYFX|ie@^Q98;h&b0J2MXh{f;1AE_>1V`?sk!}@FTdahW9>1!W9}QpKm;t zN(ab*id)e7f8{FjkTL1p=oX6m^{-w&=Lv5)rjWF8F(N`((o{!8wW4Z07yktqpvUU` zK|4!v@a^190}KS`$waAU*#aV^>%5cy)D--g=;PXhK3=Y%;w*lQu3rTUFie1y1qAu^XM?#KJTY$^Kym1 z@HGdV&QDvsa*m}zRjDB*+tnnkG2p$iHOQVw9w_c=P{bZ^rwz)Oyh?LPo;x)(Ep4ZD z+EJVt0Wf1isnq8jzPw*r0hReS)S z&Pv$+dYK6{Q{`jMx9GG250+AjoBKg|MyMj5nYeYBGpU}$eppP$C1rUWqB<;pP3z0) zqd(-8vYW~yG3A|35}1pOTjz~%P|fE=vwn>r#8DQzk!FB<`$e-{(vczF=J$qJ8-m{l z4c9|F;li#NszE^<{kWM`%*(Ja1RJRn9dBy&Vmb(wKL)pF!j0CD`VSgmhd8mAuEDX$ zjo2-50it*BM9FhjG5B^`x2Evnq_@gd-PUBb& za^uWnwmiIbsk5er)#Ib%CPLq15N-+4lvYgWk8_NRpL~ze59{K~Qwnb5YQaH=bh1tZ zCmi^G`x^?qa)&L%lw(9KyP3gbLTRfbrs`7zrUTx(`&ETdRPc*f)Y*<>mRBkf>6Wkf zX^+fNJu%fc()d_AKSpyYMqv2#=m=n)j=prc`9$U6<6>L;%fDt9KRwnini(9!8NL&* zN!6sy5p(T>#+kc~3g$+RNI2{$5sjdi@T9Qe{fRgDn1TGlZOj~eFa7C_!ib9! z=_;nR`n(5YKhSKi3%bgh-%4v73VOqopqb0+aNke-YcT{8*MBS`kZYjipb1uFcU_nS zn&i4hVb{BSZrGVx@^4a})~hmtZY;*avL-qsj#*J_5+v{_e&y>tiY;f(kahSh zz1o=@G3~ozoh}gl>H19jmdZM=9Vwf1a5Qa&lI+EOCKq?^+U0t^A2GVTF=aJw%3L`2 zeS7L^{GE_0h$=QhW-2Kyl%ucCy89PPZG*%tC7_tZHMPq1^ZHHL;mUKg*elu2p|vd0 zx(0j^7s3BtQ43zUr=1X=-by_on?0XM7fM={-lVv%et)$bNN6i_jdXo%KRYCZIudJy zYI_cJ$$;Q+U$v6s^B#9?=M!qWdRFYzz}3%kJ0|`6LTNPy!k23HRKFT~TG0)gzeh8V z?9(#gAe6R*-H@OrUNJ{gWEBn3OSk$ty(Ajtb!T+n8mXKbl6H|@LR|%&$}OG4ZiPsO z|B!L5jMcR;JlLM7i=Xx;Yh63`PJ>d+&$QCeuQzy5YvK&3?)CR#TXwgjXUTUOEL>j; zz9>E{{{rejI+2ktP(wQs8EZ+4h)LmpV(T4FdChLoGv!p0;%}<98n3duP7HHUXXaVA zW5+C(tx@py%(jChSwW%|9*!!G3^Vy@Idkn%!+@eM(NSFtOV*8mYJ!eiJOa{|k`K}X;bZV;!t{tUFUtFuK zlegO>-CU*X*fV396$uB+l&2JHl=J48H%I?6EoBJvc_)-OS|2)?lW}g+NpGh}cbZ;3 zB{mWS#LrwnNEV30kWJMv)jVbeT#)(>qAnntxDs^^e^WrIu|P*>dZK5vE&&QMRT4Ur@@4xO}j<;80LjThi;#TLbH zcJL*D>zHP>HlEw5w2BWl6HBNC&|2a=VmFEzobRb+#CwUla$VMm4{XOo-4L=`I|L2b zk35RPI63ZBybZ0z=^fg?1HmEK0t^s3c^j9H*PcK2A8BGi`wu+BUKf#@ck^ewZ`j{! z2&D+48mhgV#S`kcOO&QcHXL;UhQiJCGhMsu0aEDODfSGQqR(H zhT4ZAH)dRB^7N>6nxT$Fjy3ZEQ-R*A@&_k5PZ z7m*SjGy04VQd+AIgDN5VXLE}z@EQ}NAah+ed$0w}H{tk|^A+&wrJkFzsb7Ao1va)% zVaytT*TZh-A1r|q$6MGao8{8%14_9Pac1D8#A>72JM?^fGWp>5H_j3ypHtTMSj7A! z>(y4R#jW;%R=HiiL?2kMSEW}!jWwQgPk;K8fBMv1GZ%TG_iHg~alMDzF@97w(AHAe zGaO}XLNz;SNFA)JK|(~=M%qgAH7Qohnga=eQW_udpZLQ-9I$ib>G}m%< zh~ysMxc;JnPDxv(bwC!#=5X1MBtdieW}6S@|B5mrg*>b3l+lkpkkKeXMXAEB-Ges8 zT$fp+)DmWh&bSPpMSx2F51sYjI@cZgG@VI~dhcO%FiKA?<=CfWvSRb=uOxCT;A zglQn#wO(S}H12d#-RG znB+asCm57}GTX-_WS1DfZLm-B8DCD9G*&`SkA!pM1W`~IY2h^fA-BMo-*?;g2p+Pi zEAQ8tb0j|X`}Ed)JkGSPtZbjv&(yyQib=8W6cTxp*sH=-R)s%UD$yuydw@zBh|l%l zod5e}DljN&R^8e!KNu9udFgj$?>(!Y+JXdcYK&7#5xaQ21bi99gg&uo~XlktumLPjK;a78Zv49hUbO zQl`&a{4s_qABD(sL}jDzql0+d{CAg=JVD$!aY``LoW^T_BiTy$A2%`a)4sCuQKOQr zVOR=!Ag7x1L59n!kODwx&CF0%3;V#)a?CyoGuT^?aTrHAXx6e1&zqtYmTg^lU%f}F z8KE^6xmUIUB}-9}>=;)Gwn<_SRXViXzB9@;Hx8*f-A_LMNyO0*uBOm8wMa?5eGDcv=ffFl8VtU=p+i{4&a<`gyb5gvEia?A`Nl2yo320Y9h{|13Pi5Cfk)MDbuVX!uI z(O$P)CsXD%`5RFNLrt*MHJM{Pf7O}kSagj1NS_o$= z&BdpS!|mt%+)5S7X!6#%U?gh>x{N5eP$(oecfK=n6p%As4hl)(ldw67M1g=W*hOnq>V~;1f+5P>+k7|X^#`0O^z0sPcTV8 zT0_KJ^%o`4g`zxnhS3wnPBy{)7Bf-F|K>pWa<{y?ah3S*a8QzQnN61Cfi3fmFM7`c+oQ1UwYaTj z-@;XNer$?qtl#!dTXZ--vjGM3>xwX=JPO?X0sG(Buv8J{38p?J4J86F=<|4Xwz-p> z&v_7Q%4eGEeLA#8wSqMFp@{_|SNVo*SkyJehgSF2BftF7zz}2zTDy=)JlN4eYggnT zbxymx@4aK0@`8yL%>JH-8K71~fhG*Lp{re#oU<>MW z{DF6l3H$&RLUw#HA)mmy__5p7ts2%D5QG9WU~l35z5opB6^pkd4x0iKfPM)7<^zv zIAh3a(QMw>%lGrY0=w23{31ITKOvR)j7Tuw;b38mh-$G~$0_wl#zUHdb4lXs$Fu0| zqc_w67=xo6##3N@?9m}S0~mfjT8`yxK2VF(1l%{G+#4T(B8O!ALcQDmcMfc;(xz#| zdABhzJnqhjEsu-*UZxOhw8Lh~HHUCsm+d@0kA$FP0i>{PkPu1sR%MSJfQE_J^T7{? zrI_Splmx?*tW)+Fr`Md;06U4ucb)vPL~in7vpH-sXWR%PmhsXAXkd|Bv)^#!t8-5_h1dGx%UnQkt2ckXP4()3JU4)7w919v4dbrvCxf zw}Su^yLS{zyMi_^pje7q5E_td9XU1^8stR80DTx)BepOIHpQLu-hPxk&1BR#@20 zd`%nDhlvrTcroXPUJ$8~tTCsgu6QB#Cs%mOO;_h02Ajz7vpz?@zZw4X^=`xNqH8Kw z?8m8?8)h}p$*@QrM7~OciN#WJIE_YyROcj%jQM??5t?tBYPrAv)Us~=6I#_wd2CXRHNv|1CJ)im@${9(J72o2hT%TZwr-3cUs>9} zAC-C|FpLx^{*Wr($ueOI{XtuzUv&)aAG!wFYCy%|!soCEiA}C5lFzWm?Bf(fMw)Va z<&m%?z8q6-MLRKDWF^0or%h6%r@v55{>5UV$6m5wuWeb)M4Ce_7^T_Y`N(DJ;I_d~ zq+F1iAzLEf{I2$rwqzKgo@j2Ij_gCVVQf5u3|K&a$3w1ks#M#mk~Nl3w<%vy%hd(l z2&s<^5)rNBjT3F92Q}!?Nm-~N3q*UZIVzct8GBU?Jz_~2Yh-N*DCcU+{fh8Y;!8c{ zJJvxkvOaOfS=PH(B?XWO?D!oIkQHWL*~(&c4RJTSx1f_Y9`*jSg$m!7yTSwWt7U?4 zgCy`>q-97!LCF^)rAc{G=U95eflBoq;+1@sB=D2j1e!Z@Y8(x3<@_z%E>tKV6`No%}O9D^1cx% zoB}n3R*Z20hC8LAc++j`2#6=-8+zN!#8(WvBlP;aYFwPY9^7E;U~T0*@q=Lm#DtoTVHR1WwFY zs%7jh2xf*z^m?(bVWIgZD#P4UaA*)!QVUE#z%(KlHS<#Z)PL*QjD#Gt^m{`HjSJB* zgT22`G^!%mH0Gn&5laNybP_8WkA`4f+S_PR$yWn^qLlJ=8js%sG1!atU1`ECemLRVbf zq?9s<63red*(mFiOnSSmS*5fW^_vN06?2|@V8Fpkg72{vhfEhtTM&uZYU9XYMZQKu_U()cWSOd7Cqw~ zVW)mE%UV_e7kH~}_a=tt9fKe+r&9knr^sFysU_QymvgD3hKbAbf-6n~X`?v1cP^Wj zO#(6t=47DXG3+H(euq(0H~ow@VN051X~JMi{I1zahP3YiNO#6x$wh#7=KIk&q&P}w z#Hg#3KOW1z86$?g%C-KiL zfetJ9I%6Gvdxwx+9HLBprHbCBt4v@ZYz1SzV-S<%RO2>wvq5lAs1nh0Oa!+QZKp198r z)jJK>D<6unDyVI$z4;pn-eI;0@YABie9zpuD%=$_8ofJuPIZVd;|e2{+Xgo0XNJJ8 zSJASsg0_#V9pJrnxp|l^wKC7;WJHSp9M(?BnP^q+^k5;%al2MI%%Jc4maqISCPrV> zk=M}Yd=#%sk)2Z(kZF#iMx7TU2vwtpjKR5|+DCR5gn%aV8zV@lowZm)`BO2O`wYHk zLeO2wnTr3EW_&h%LR%5n=Y4mu1_2A=e~l)Us*c9MH0bZ>rYWJ~)(^Q@k>&kK+O9p# zLN4-FgrN{w1Enz7E~X`XH{1Yhe=`3X1F@}iL^73~ZpmuCy2rhLR~w4W<*%Jo>l^%) zI$dj0a*R-gn@%#RVzQ|Q27dzobrEdJEiPmeRSC&ZgMm4^@dhfRO|h#gWvf5g+wg{Y zO*Zp!X}sJ0P}L@GN(Iu5C@`T)j7LX9IFicIsAw~gX~%NXV%z~$gcxK28&UK^{_E12 z0D^rKZO;T^ovaoN-EBzWBbi%?i55zemGVPVo0X%+3Quxkd<>W2qqp{xiH!E0^vpM} zNh=|He5`m{x^&0juPQBMw`g@1npcHC!E z+Yw^dlE->HC3~{`9TnX?0`0Lx2W@E)lOOGBBE3)=qHW?8BXsIq9vg(Y6MPR=nHV&K z_^gh&%u#slQ7F7oYBeOI(B!gRmkW;=Bu7sp43P+JC-{h?q<)OY$kGGWs3MO679o`G ze^U<5?=p71l)6^{ey)kQcCMn+A*P2oYLG@R0yzueCreGCcU(`Jl{D+__ih?GQ^dh0fkgqoW2V6}-S&&4k5yvA$1mKRGN z7oxedGhyR0L@7C-9vlt|FIRb9&S(HmdjT{OlDM7MuNIL);h?QnsMRZN0x%sD`QOql zKUW?uwCW)m#1`RpC=7bgmPtIdi$>y-_&MU9w z(}FJsc&_N4;Y`8J;2DZ{S$4+edM!M_u0<}*jUf1?PaCw9m@8+hgJHkhkfR5jC?yL? z_DtQ@5h*9b*mE*URhiA=83ej92FO7MH9-c)+YSltU`#H=uT+Vuwj3oyPOO{YowI*) z&)Xf7xcr^lTjXddD1Q=-p*-ymuEE!|<uBT&qFtfX3Hu)0d2Z=$s6Jg@JMrLoF!C@STs8uo=n>u77nBqZ-A zql`3T!Rz}bKMsu#$fwe5pkf-c8pasVXlCTtWmA(*Ovbo>ne!du@0SG*BmuP=(xVwH zkLqBR;#6k3B*9Wy+ulPkI@SoXaD9xF?oU;uq*fi)HH3XI{+yJ0a{29DA0q-p3AEt}WSgqaXv>jD1v$|9%6QTfl;d5Ud{?BOYn^E@ zev1f2STks7Qr76y#Tt<0*1d|jK(f$aF=}E-d8QE88zBz1BbqBv)OM&F$C|x|f+i54xN*oi=7tL-XPtx+|&%2=OExSzCJvHL(7j> z@{wk(O~H2t{R`o7eF^GsB<*gf`^p_=K!v_>Oflnhl(+*zYH{4VD(n>BMLk48q*l7uJd!cS}**FM0`r>Zg6pO%j4^RL1( z{#T9<%!p|(X%GM@PYi zAaw9yQN>l6)Qn4VLc({Hzq54fAc>79p84Tmxv>VvbG(*mmQ1qICY!4xHdm~JWI$+t zZVC3@_k-Yyl{Krhec0ry@3e}Qy3C98czE2=O-8+Cm{sKAOjC6%CvQ+>@+;dujG|Bx zMqwbjP1f=#6F_xFbpT~R4t=kv*pKf}JtISH6YMIi52G4{iOl`!VNx80j3~v$Y7Y4{ zmYdC^Xva~mma?=-EO_6H;$>;ELq9FsQRTl0x-{b`jOfuW29sO84yIjt=I)Pt`rvL1 z=F{IE)5sv=P0ox*@z&RKZmysl^{lR}g+wIU6@OH%RoH-hfZ9WOibFvJmT1UmW{}DV zYHG=iQZ*|*cJ32Wbg+p{DzQ^A^+#|lEH_OE*&&L2M2CAcXg3_q30SXQ0n^1C z8hl|Oqd#q>s3Ps^{gyiYq;#}QCqBm=CLlOy9~@$5x_M`cU~X z5Lto_O&aQ^e|I{FTME(!r3dL<3)nt57mR#f!pOq2WUET(gz0wUc@Rn*WR}F^f2^qw zrr}1zGyu|-$2|2pE!^(SVZqFZgQuNHNv_}3ubMGPO1))rGSGe|0@pbm1_tFh+B5bj zwz&!sW(KUh46N}LdnfM&rOgUBDlM?67%O~(6vr3T=*2996=@Dj5MA15szKj-+Yz|v zRFihu1fm*ibJ0a8)>Z@m1Wu$`p?!WD!C;?gMY1M+5G3N#Gr%-pY^0PO5uZ*H{{2^Q zl|`rrZPwhReqbPF11g@3@DVzg>v{D2j4shxTVEHCi?olv>Y^`X|^z|pB1%n*~N5uQJtxXEbiAkRLW?Tcx zsXSmEq6%usv_PFSJS$zQB>NN$32TueMIa+#3nkEx0h7Zkb;K9>0h^?oT&80QR)VY| zP@yrzkVhLhA-(yKY(;j+La07NZ^L{Y^FCyJfNM}zk`Drc*HvXRf)}4Skp|ys=JKQ_ zfaz+O=?^(v=l5p=I#*T{FO&LG4LCW(qPNdznJ45Mt5te01sH(zWcfFBe_|!$uvw6k zujXI6aHOU}$mBA2`mwa$5il}vN>w!#P6*sKb@TZXRydbXWwRoWFQBLu_rV8$iU3z@e!@P3iIEzH+cO)n&4e?Q&xoJQPTMQX)1-mO-_nZ`Y1;bV)vA-v{E4j=!^#M#`mFxn@)B z643<)YgyVTD~hv{1ix;YrgkDCk6PCtcaphFLqBRmP7Ixpkgl@Axn7I-(Ns*X5w|P; z4(kCnojbJ`Uw(pUKCJtN7KdP>Zz*ty*OMQ?L~olFo_wF z6(WrGC8}>}ku;EK<<;PiJ@aC;+fMB$rTOd=Wh$&e!zA|w6eZvB5uy>~p-@BasE&m-&D z+4IhXHJ{HX&lArZUXE#yA{Cw{6Kg(=ndx(2U+W zrkyqFL#4Ewinu@H2umE*Q|M?y_h)8y>9iYFLSNv)hi}WyPGLQIHt}i6^mH0`t%e>8 z$cH+`gsX>Dw-4>$w4c#H&>7ta_09VVmJf_c(|cFin)myxozOhZL(UThN!}qkWNe(U zU=J6@#bzDgI-lP=k9{NslQCrOIs!!e%3&im(W&;1#Axx109BH%b{a>SU-2v9mGCL4 zBE!uFwdbCBaq&OD#m5T9jzJ6`#k@>0BaeiK6T31lH-Kit^pZj+X7C$^zOdfc@!%`3 z4pqUqk&`!bbi>oOcKUjdlni}{rc}rxhK&AvgDWY2Q%iDxlQn0#o$!tK;2spwy@ySV zT>H)7hPKAj`YCn0L110toBcmA4B~3C-GS_klZ+!=eN6d5lvdMnwI9OM{Vj~_>dA>T z%T2b%<;@&!5aWW67Law#{NmGc7&^V5S4?!0+`@jDBMPL@7`AmkXFeRY%azJAh9UG5 z7hc*Et1y|6rn);Fhl7YuXWo`7^oDg8a_156WtBaPCL~FYR_w(eJfgv;^DVetJf5P*3cP9*!G;o!+04CTxYmFZU$S82CUd_1*5Mxu)tR_HSUw4hDXg1X zZM)`_q=H99yDA7yj?bI=++eY^Hwv3_U6eB+2$k5DQf7?@ZX8&9k5sT0shClO(!*4g ztA{=YbGDHtF%(2bm_}TpxstDfvlj{s7I#Z|7D$Romb5vh0huiGJUeyD|2~+e?|3D# z_y3lg9Nzbe30@+d4K$6T{FuY<%RDku-C z4Zqui02eAN;n(1uG-TQiBHwkJ`E;R$Sw%T&&}T^&nZ2Qq!H{ z^9shkg;E@wxAlHjRB&f+E=biu3QC!i)@sy=Md_066bOu@`Idx`40R$`)YNiK$7sHP znbg6t>JsZGh^pN)VCYE_$>y76I&={k$eJ$M;&<)Q^m%-vy_g|Iv8I-mU(T!?nirf2 z$$CbiC6zNcC~(K~Qaxy;?2~c0ecrW8wXSFU$y7|UEL;pprx9usIF*Mk2wc2xpUxT4 z+PVhFzrfBC(UB{*bl84VS~O1Uk4$tQHcwO`Oq+97M{)wqW@OHV(d**nl&YGOU~+0> zWEo)a2FS^r?rTUu{fl7l8pY>#UCvhxD@o|ixd!reFW2dw=}^^Qvkg{R%=6~Zuz4z` z?o)zd)e2F+b)7xO0}-+@e?`DwHnW#_@*E+J7)&hNdWEr4qsb=si2U^j-x0QVKc*ef z7Id-IdKqJ^@M|?4qI>rTnAxE&_D6~tej_yIj3ekGr$*mN(a6vGX{aN44_jry7NimX zdQeWSvjXjU7cqFzFo`D1KBGpndg*M)qL^}R*Y@MXesaA$T)Ls;8&!l<@l2g6;acv6 zCa+u7XXK$J206&KK8G^4Kg+YpWp0GPw-ZphrU)tWUGX7|Lk1Q(-D92EF@(Xlh zSR1DZ5nFQm0e6gdLe?2*}F=<#{zj+^Ft32I6!juabq&g7Hw6ckWv z)2VOmWfW&cl1`cM`SA7WYC$d6MZDQzF=f-7_C9AV6eVT?x*(nIR>}2RZi|1bOpdk?^B84)$fHO{%fcVXuQ)ua`u(FTQo|UNcoi&$6kz!nv)pavDxPk=SPd`GlQuidR4k~{xugN;zEu|P;cc?k-T7( zJ@zaFsVT?C%O_!mwp5K2V4Bcyl(neO?x;xGAk@6c!sQO-+ z)#O0+1*hsVH$*Fm?%f!lhgJtl!Lrm9T~#8!bRG*Sg*{1tXe@WhN)P0 zN;6{vL)AGX&@7~{B?-bG#6cVCRHjQHORZr)?u`^G(UT1Zw|kP7S^MV&zgz4DOCm=b zQO)Gf#a_{(%FmBh#?D+*d8s;%Fhd*C%vl{pZz7!ufHR#|L6gwy_BOD#Euq@*VYe+- zYukA5l;Se`Kh7rJ{D~LWIT#syBH1e?;nsmV-tmgY6-WXE_93`Tu&+&1w9g!oSN?wZ zBXhH+M1#VvTtIv>Bx}b#=54QW{Zw(8pqEs%`=JZVJoY?;#y(yA>NlN+qW0BMmwYfr zZd4B9+}sQ&iCh~!uRL!Ej1oRx5E5ReJM08vXmL%A zOUteY+^HvHbxITL5t_tkn`Z?!LtxNit?&Hq zkI5zIo+)}i-SX+4d8q;u%IHoBHAc;$v`S}2vsyb9g-9G2*`GDW>4A+T7|QFZQ7Ts| zn6+nnf|R|lTij&dU-QW1HYY)?;nB=M9SrRNpXr@#8!Dh2R?ww{Z7skA)pc-8XGFA? ziqX|l#NL(~DxER^Al#EmQx79E;w2W;WrJ9n2l6h$W{mC8bu4<^({@6lg;x2$ZKzF=!%FtDM=)cDbC7Sw~ zoDOv`9Vs@3W`9CSAiu>0=^Mk}Uypw--JEg1Zt!QjPpxwg+<@lr zDTQ=^>jT!JR_&ZblkmYv;Orr6zHs||2lzTSEWE_&YIf9DJSum74H1jt*+k>6OPv3KDJVGZ_~<2pTvDQ@V|Z$a#Mh@ov-A3 z=xeccOpsX-Efs?_cU-sX*Rk3065BM_SZsdZ;nPmi*J+zqMr5OK0>118lcc9jRD^w9 z?#~4_SeJQ$%8dGqiwO@Qe@|eQ$#IBlEeVw?16w(o;qqhPGP5Q?KDtLr0i73;)ia>u zG>ERIY1X83VlZH?TX9hV-DQQR68BtFk=vr4kuFYr~8=p#@3HP$J*O>07MQomO5yHQF;6pQti1^ijq3YrDe0n@yt&CSyU zttOo=%-?-d@ZCP~74)*K>jUI4-*m7?U$X69l};#Ml^1{Hg=(Ck@{Ie(Q%ac?Ugs1z z2t1u$(KE@PO?kSW>Pm}TVn~iB>JVm_{k7Nf=m$OS1s&?72{87j>q#+A|y2; z15;e8za(M_;!=Vay$TEsOQY-T5jH|A-*mYC%W`|%%68|%CE}e@1l&fC<@b|eUA#9X z8&ygekarLH`fg6D#_`UFHn?RbdAGUniTP!=C7HSNSr$i)9b+2Uh?-&H){WxCMB`Br z-VF0ya>znk%VO;2%!|MKUyT06TvWP$`SsaP*=OFI|FLq%t}tvd=8M7c-aGUSSCvcT zmA6*n$KS8NxUrlepHK5jA^#lsku~J!h08}1;(xc(t}n*O=iDwxTre_-HTmX?hSUp@ zdih#Qg~3snNpnSsuWQ{3p~6K?q{gPexl}8Fv)bMRH+lF zH0pRks^XnWkuwGMm&d&*b{t=7lxdA2yF;Jv4vn`oyX4X-jKNo+;ql>AVANqLu0eP& zHg-Hn)J`gW0~pw?{st#$y!YrMqklM&kh7l)91{Nicw}_6_Lx`B#<|h6CzDSJQ|Ho* zrIOEuuXY?C%(cvijkI*_*E!f3>=T?kSj7Tz3UOn1p0wZW7KoWun$TfrtxFnlQza(w zc-ofT)QSwKT;RD-I774j# z9;n<~l6oSkl$SlRRM8mU#T;s;*(-O?5t{Ql-H=&*;BKDJT{DV#A9NWI*v*<`pdhPg zuB+K8ofwgt2|>8-N`BM}O@H$oDc4WMB?G$nARVT9x)m36qBm5nPpYofOT&*n2sJnu zg^pL2mDE)_a`bgD<$~EW`HqW}Zw&|frn~*N?IRy5GCp}-DI@x&n$4Wup=H(rS8ug@ zd-;rpw6%KfcMjckU4sz$)X^n^J8&NnF|%;$EvsEMU^uY6!8%V@a+lv!J}2Jw!7+g zkD+-Yo`#|4;fG9UVmhs+BcJ(jv$`5vkUs++aH^1|o;jv+@v6n4xtKB&Sw*{nbfV_X zzlo{Tye&={1@ZyTSQy|8ypf5G*+*XFLqoHMqOu9dfTy!l7q9f(yqOB|VzL_| zt0l>2WV?=S|LcB-#tFxje!_7v-qZADOZ&sF`uszV?&60(FQUG^=Md33d?k2rw7)r1 zd#TB@C)r9oe(!$x>sCWc}_@k2E=K+yjLTA9uM#hfnRlG{*8j_R(E?S%0Zv>fU+J+}FGNJjH${8J@ zMtXy2Vbk)Nr|4DT$-Kx4E|@OfK>!InEyvDv$m~F02HM1OmzsP@`<3@Ic?i}dp63L! zbFQlrPCD=wmm1B1$1Y1HP`5@GNdp1LlvL}xHHwl>!KvOf`sU%UI+cIz)d`8VVQvY|;5KdArtmA1KCV@ERQ^OS1(eKFu)O@)!rB{7 zFOH@L1TLRX_;ZM^!PL37sBZo8-QSo3vqRT@gq+rQkKe?FajRXaSXoXQcr$(KXh?!|=L9bK>s`rgLV z)CTpc2R0jHE*L#`a)OUElg!fq0tE5Zt%UA4#T#6<6nBTMN1;F`kEvOcYm7i^p*f1V z^rrfekozE-K#*7ntU$UHwUS|cS12{1FMc66#`-dv{_a83 zYsgJ^ED#qKo1a1&oPAWE_(;IQXy?4U``bR;=sq|usVnkSo-stPzCKwyp^q z%n_V!!34W>g1!WM*lT$&nsDD?9}ce|^GPr!)701=4d#?jY+7UAb5;n9DcoB2H0#X6UkC1P3%wXVoAwBZ>z}4^mtZc2s#yM%w=f=BqS{KOgb$(36zQulg8q9 z&;IQk-xX9ux%dK>eH%|Z&DNM<UIs3tiURW&G42)BVZZa86`BQ2V&51uwhsXOOSFt! zPVebjNe0@Oc14k;aAV5wRmRq5Zuy$#I@T}`&f*WKAllY?-EZ>jY}Gn=zg`@Gjw7Gvp`SO@oMF-mwI zE)^RD4~nx&Nn|qH)J(y6Xpkbd5=(R@Y`rt@bE}c^C@Ob>hL!{|9YzaHt~P6QoFXf+ zNxPh)zO~(f@=VDz<^agStKeGBScRxiA4nTgz)LLZwR}{hHK+-<++m$f_kb#3Hiwkt zI#*-2>wJ*O5d#b%NQ?Cx<;*>%p3(&31==aZXzFx!2o3=}nMBk7%^>G%Jvxtuq9vTmQO!07l+D8&Eran7b&QS63NX&tL|cru_@dy*MJ z;Vl6q`~r+?j*7Gw4IW$N*7slj91rkaNY}4bCyyB4Z||F{pPh?tQgeI0ogx45IcU*3 zzxS^(gk7HnPL3WWzmaj#DJ+Db8TMa^&XRKAL%os%HQkxWWViL+tZ6$gn3J=NY}-J3 zsn^1e*^Tj3tYv}9N~WXYJfSoLcr%f%?CKRzbSfamuU^Y;RQ6`e$fUI-edyj^;maZZ{?loKl)Xzca0nk%N?xau+Dd)ma8xWk zeeA;(+-?$|yy=@e1?VTsuzeg}tP-)ll^!9Io(--MbfG&Gm4IHW_ z=nYyMyr7mNWU!E>l~xmv>Y%m$Y?+K%)Ye~nQodr#Lx;B^R`u_<-uve2b@fWv7*F3% zze70_bYZEIq=m0X9ADI;mO1_+AYVlPr<27*1FS3_x7{;zNB%13!TCEb6fE`Wl~;aa z#TEHiz@maBUW}Y^Z=qiOA}_Q$F80l)081#=1;OW2HZ5|RyQX!F0&Hg%yver2M055$ zmR7Goct!Dihg4i28(!3rO?IVTGJLAEXql^4jLtPgf=QIb*0)Jr4Ff}1aE>Dh^g~{^ z&@ah69qumxO)2KS`MTnaHHe)s6+yF1HI-4fk3qH?B2~>adBNo~v}T#uGd9nn zg$j5!x%D7NJ`x2!v!_Y>mOKQ&>mdo)ZTx_>2v)C3jn6Ej?g`kwVpoLIX_OAD z*0QfKuEA6F?)oUQ?(-h~_=B(1mW8OfLAJQFkg9lkvK?tT2AN}iUQpFlJnz<*>%PurHJXpVkK5(DsLFB>AIcUh4Yc#i&G7a| zo2>-%<%x93+2Ek1x=WIoLZ-BfG+8^c%^CMc#=pkCvSe-&di}%%X4Wi$M|nzgI<~QvUy3;sq!vPpdJXI?+@wbCBlAuDSdJ3p= zZ=&a+dY%G(^7};M3w7hnqaE2cAwTwaXc9*Ca1h{@7ys+Vc>`GjC+vk<*P-`8DBaJs zx1U6o4qpOb-rySAxj(GbaQ^%APh@eF^5w2S_3htd!6}F`%1`>zCiV@p(euc0b-US; zYyiJ5sCkQOeJtn7u`Zzx#>>hPOrskjb!Y%?+M8fwPaM=9iSVu0)~Ka;Y=$T)(5J@r63O+P_2el%t)0-&g=hvXwj zLfxwy^ImWXIK0@XVWTle@~J`SIA^oCv7g$@TyE0dl|#ZAVv%(asu=WU06$LB9ijS6 z&KaIG`G#05VBuoaisxzMlbFFGYDj9eeNqOlr}|eoew1Ui%WPb*GOX5-5C@vMh&~)Y zuzt=F? z*CYS0&b0UMRWe^9(?v6fl}gOc6y4l)}1d3(iXQl75= z$i6ZJm?5w|BSycc zaiYEVD^YX64Weh?5|#@4@QtWx^??amt(e;(im;hjI?Fjcy`8DsUF>Q@iK%Ne9D6-i z1{L?jO=Wg7SyWC`9)5`Jv2=W+n401DWdi6EiYYW%KXszr4S>sC5y{8YMkhlm_-Ow_ zLNjY-${dG~u5M5^!L52bpPKb}BP<48LQn)gCqvn3YWBpOe{D&#n{i zOl%12U}x1s7dz6#6V4jGL?nGNsCc9lOh*&}j-im9i7^6qI@fbkZ*?vPsgOWlB!P1~ z_-X3Ar^LMRQ}}jN%*r=f`;?=%vWkm)%dE~t>T?mBD){i|g=}n*@eb`Y>3pp&r0Mf; z6_;T!hl>95(-BaDX2+>8dZ-XXiC3&p74ts7=K_g;2Kv#xiG3dZEYJIjFwRo{K&*M7T;ESjdSIP*jxP+@LUXc8G z*qBw%-iC6uaW%OJTU5}2#&INZ@4*;RFO1~~maLPCIi(o`bG``HBMniX(&!ehNf%#O{$+Iqvhw-50yVO7{m*Mr2q|{KS$N+Bb8-9X19J z)Zv*=@^vV$$wW1m476zK*M%!cMDlcqI106j1(9mMNX+iVO0La6Rs_+sp*&OAfK+%S ztKmdmkT>cPI52}0Qg{rw7%A7o4W{>CeKW~Z{K?Tl2`)3}2p@)R6>%X=ZMCcNNr zHu)-mi_#^}b-1%_sQ43RY|F#o5TqgBfGSml417@%cb}HTlRSA}N zYsIR0+MG#taEuYnltWj2`7vNYTBG;`aWFp?tnjeHEvcy&h=CdgHQ_=#ev(9bi{$wv zQ=7#`(C1nIC!q`$-TLsVqC`80GUIV09*{{Ji=8(BiZ9j;U8DrhxnEz{A3gKt>(Yyx z!j63#Q#Il@zCM+`P)JOWNfG;Te(Q5`OE7O9mK7yRFKUBV5*aQ0D8d9x-zc03XXPL= zAQri~0~5Mc=1SO?YvJ+X3v`2+sFB9J7!~%d_}g2-lKW8iLKV}psf>4RT+$jgKk?TQS9W3D^(C6 zcZD5ttMK*(-f^3_m4ag8QWKc$c&@U7a5C~llVML~{etQwDZ@0p84OfQOf{X3fBxH- zF*rykHDiJYNH|;c6Em4sU zg6{*-#dOw#a#cF&Ag{-&&>ff(9iH08w@7hOO7*t68yv!ue`XYz&tfhC&`rIZ`KU!oZORUw1KV;BaKKrVQ8fpB|ldpB2S@1!Da|WBtharvrAmG z+hD8Sa4n1amTDdz4IABoEJ5;^F>%j1v9(k^qgBk^$&^-%F_GkxD8yECxz^Q4)mPK= zHfZBef}vS6S<$PUlLi|kOaE3EddZ@y3@$5xWdh+aFO)j5M4_)Bb22=Jibc(H?jxR=Hx#q7mbixsZ}0R=};!#(a6e z3AzmERzUtbnfC$e2ZK$|!=JIEn|L*g!Le_2_r2=Kz?Fv89t}#wBF^xfOACEC`J{@? z%vbdpleYamfvlFI(zHY=_bKjJ{x&YS5>Mt;-$Qk5>&Ea=K^00S>D-E^sYi~9@Ct@Vo^;%DhW!sm+eSq!frl?Z zkD_~Pz=`?uW0PS2&z~-s?RXSC*uw|aC)TR22v@t%XS!UHC(Dv_W=3Tt`sQgEuN>0A zxSsWL6zpz4@C-Wp2q()0cpnRIN4AElQFk*3r?g=JxAQ*-m*lj@s)j#B!omvN)?1uca(4_>>?3Vyk0)tC)(9CUN?ZDn!tksv9 z*KR#V9=xdkP99N(ERcOiChh)4{Rb-i_W9kxdiVB96vxP2HF0nvOjKNOFhW7w&BEri z%%bhRy0osb{wV)S%sov$v7Wtzqtmv=K+=-Qxennlnkb{5)_eX^1$J!-Vdt^%(t?xD zhI@52Sjvn-XR~LiD%GR6!$e!4DRU&3sFW%Q%e>3MMicHUc&Q=*R#2p#ss$~L>+q`B zrtRHCk&hV;PgzW;GDjh^6f8P_y(d~!4YKG}pB^5b6V|(X&#almlO6_Bv4sC*qlB^p zs|+pRwCXMKb(9ax z9hVUQW;VBmkqT(**}Ek99AMYu`(H>3+q*J!2XL$LuYUkDGB{wP=Kp(DM|rQf&l?>Q z`E~ZcHwHiVKnQ}MOMu5KUOC9mNkNZ*iFLd6tyXNY_AY>`b!a5f>iDb2>YNqvMCUcb zfZ3{x!o%>mL}_kKUP6Ore0)eFgo3J7u&Lkg ze(k#+mZz{VOrz#K(u|WBAkoDU@qAO5wn#!t9jOB^u-S8+M+>%S7UPqqF1z(P-4y+- zVmMZvm^DwMD$&Rae;^!ZEJ@Z-Fioi>^<}X+bQBQndq&h!uxY7Bx}s*kkRY|>3hJk? zmq&$@Z7|X)ymOIX>t}P9ZWFy|oIDw33rVI2rcj1#aifIg{*0c>%c)`pv0tCPyV#>& zWqn8Peh>~Klz*fRBpWYK@h5O;~zVXW}`g?A?9+|QY8Co>aGH7t;GrOd6p*vDT=+Lkg4?qvD1|S9qwkL0w<({qY}}qbcS7c0jrc+ zVV-e{|Fow@SZXdOi4FfvQr&#(=3ROC1yGhru1UcU?z1b)4nK87D#xU)m8qqZ<%hJSV z#?ZTITbFd=*>$L4iB!dPG$tTMZ7s{yiRQQjblm|F}ed&3saKO-wgt zKB%c&>-46w0cWYVF%udW=pZj1SfrOxBWLM?2XJPQqP~RY^3&MAFkXjapXf&4Lul94 z4$l+A?ySx(?mKsw_;}z^ZB)Zik};aUaPmnVFlfW|2Ja-|TORFhKL(i&y8@{zjMj3t z4!U!Q<_WZmx=-+uS-r1qVoMfM<|Rpx4zXT$d$!r%97I*l`9${Ds*XD-h4Xa{UpX$a zPoJ*}$@HP|4k4Q3gWIx=dj|6AP`G_hDd#zm@>7pLig>M7?O?V!U3cT>_l4H*FO%1i z&F?Pi1GZXmKghW=cK`R*i${8&$$?WOz-s|YP<=mW4Yb##uK1>uT^;$MuQN3#G_280 zL#w9AP#>*ceUy&uDyHR9d-V~Iqmr_inRD<)=xtN{#8lIf&C2Q4#XBYyBRZmHXlrcs zq)t}^*+9t-gw!M1M(G)vTZ6*mT?i2@{ouq`ijPAEePBZT$Ho{`i|~{ViArBVp-?dH z$ZvrcVP+bOI@dargT4Gp*jI;H26Mg?r$lrgbb8fjaoY%VA!I(5IqPg>CONWEN#$B^ zUvdOy^%sS_^xMH}+Smsaof4jL6OwbmSV+9=MP#UPFA;oY`^ege(=Et{Z78*3p6t)k zXtt(Kcw=601>O-iO|&O@SCM$e&s~CP2%)s9 z#9f-Jn*#V4n!`-I1Scf@SuhvS6aIHRTTPVQ8V-T4lUb6xv92tlMrF~yZs7|Ss%tudFQGTm)PouRmn)?bEmnALGp5=KD(1Ih742kxBErj`FA1`Rxe|)$y zm!Jy8RyqEj*u;(8uUCiP48;1)-yZi%a z8b+^-qPW!%R1CV8O*AT@0jUoo?q8ipd;kWDfOCl?0CGmsCfsTi%V}`SUwQ6^{f}d6~JZkeL-wE{L5?iXa4pZGvk2%1Kssm$b#O!C>X}p=2}82fhRU3 zzcIvvuuFgt1n9cRfZ@OVjp;hqZ6l1u93}Yo-ufNA+uA|XTJIa2L<*&JEkjyOH8hDM zz?|FLO;Sd&mBMvpt0DM$_1pmmMr&q~8-qdek|o(Sni4bamTyEZSxr7cT;M5?_gQfB z)4m5tI>d^t@#wURS!*vH(ZR(P(P|xkY8}~8qr7n@9q>MA-U@l*VZV>V@V16Y+(ggI zpULQZD#08VofkVW6V_1 zs7UBN(vt3Gb`4j<6nNH3QIFu%%pE*G&01KeLPzog4z3CIeNJK13P9f|zr>nl!o2|u zXZ#<9E%Fia0tnpzMN}kkj1_Bd0&xEO;G4tJTcY(Hu%1_Iq93ZbJ-@awSzRqYlxA?q z$eGZ<;7Z#R&&%Q_J*ShtM+s1}PK?ktQmpL>AsRSmSzXl5M>=&_IE$ z$rF-VU7)lA?6bloO#S*|BMrT5GaFZg!nJs_d5Kc7A-}a(<q;yy0(Eb+ovhTecGySFt#JST3A`POi! zdbfK=+RuQd0xFgI&y((SFgSq<>)r!)di36zCZhlsr9F2wcd)8J2iP1hGh5Wvyyx@p zr(&&p`#}n);b7F1p#L`LoV3vIRXB4Y5Ljqn=S`Jzc=fSFkUH4mm8`gJ3ssh_>MiuH zFrQ+}AmHpFJS<_`KsAf=EV$ieXMeu-`1407@BCgV-M#e618g;5?H7eoW&z* zyxI8=I9e6aO8LX56BNhm(qsbf)YA+s$M-4g@KZt=S6%9|5qY)~FWH!E$+JFmV@P>w zeYf{5xBV-)P{IB$1G=nOq3Mil35l6fOWH?fu*Wl^Iq78+B880u=~5ZL)N^Op2LyHM z-5}fG;+(6#xZXH4{}MssIXuoF|N5G7fve0T3Bw@+5Wk~$Vk%;psGD{ZZ@QGp;QA)B z3}VR;>Ll#$g6FO#yFeaMW_)WLZ6u+eIP7-Bs>Ud61z$hQw+O0^Z@m5&zRkOoOxdRZuUO;yV$c)tC9fy`jz>(f@6nJ*$eh+rSS0pET00 z(lW0JPI=Hg0RnJp@OW^97v5b=YPCjyEuuS7E9U9W_oP6OWtWx7Vz2LBS)-{Ce{b=O z^oE1%FB*y)Ow*V$Cv&ZgpWZP)JDHUQYE4xYS-Ap)Bl>9)Atq%@fFcXPjN z+?f-_K4pXrDToFstrSk!X<}oiP???@6%1F0D2h+TQ|+hOr_mGFPlYlw;8R(8Gj)et zOClQYCB-FD2V5DO2i)m9JsRsLgV$GrQFjxD{Y8+LPSio;xBAc%HNyH;HQq^!ZHme3 zQXEaxhf0hWB7@s{DJI!=beaiKA74Jm)kV5pB_1irwYKWFZ>-_SSbez&)tgMyn(7iv z(VfL|_Rd9GJz$1T{3!phY#TV`<$?J6;%m~R`dXSMz%0s_$UZyE17Lmw^!3?RtlFq^{(=X>tG0N^6^ zq2=W2al0$9c=*fwyFnPW){Nw#YdKmG+tprbuY&qrS(!?mI+|!V_2yO{MM!gXUVwpw zT|Eo5)!Oq^22NnC5teUnwe~6&;3#`u8&>lzQw(jx;Ojy$XrCLJwLzq77>SmImcm)g zw*nJyiksezJ z^cN>ep3=ggt8Zoo*`yxtq(RqWUQ2*%6}z*DU!gpzY5Q~o6M(zkRNyQt(xGC*3Q@9{ zt{lzsHdmbbU=a!~A8`61{TMr$0=InaMTx*i0vS1DNYRqZvtC!CdcNPbP8do4-#_(q-9Jhks$aXypXA2!v<*wX6UDo7{?CW2$0o5AP7x%d3PPbWrCU}S#KlST&s z*by*!ZZG{iUaEcp1AY7uNKE11nr8s@J659m?|AFxO`vW(Nf0g434RaM?W<$O=$9ge zujKFkn05_axYoykD%K8)dMR`jBC7YS_}_54R-uaP!F>1|1K{BWCR1uqLnm-2@ogE2 zRr-UW?-Os-tXJBbn}2^OckEWCAHM@XkNPpD+m!VlqyXBZz6n3kOQinY?&G{1yDnR~ z27c25_+v+YZ{JR+w7C~{BGeSApGY}#!7c9ZDs4YuZ|p7JJl>!A^5)Ua32XUpFaG^i zaiu74VJwZnaDQV3Z}mLw^tEo{rw55bvw>SX%{$_?*9C&v1J?f zDG$#1T!u2HGk5LB7f1Bi9Ctuox53Z(rsy4S1I^_hQi)H_G)w}&*@&BH%nBYWFmi)5 z5eE#Er?=NLXJWTM^aNP+gDcB{FA5aMEFezbfZTv%ove-a^~6`=H}5~V3Z{Xz%;2kT zv$V?C#oyT7_Q=hbb!33~KihIQ9WUP4S^)35Pl|dUApc#`Cc#C(+LLtk_5Gnf;l5}``$?P!+^bsRfL4^<_LENlyd-uCRqggL zdO71{tM9G7oyU%}j{!nG3Vh!Ar%%_D=CpPHZ7kh}gF-x0X$82A(;cYTd+%F9m%yvY zk4RYkFQfO&oNTnWvK({HMknkvFank5LiS+|RcOncd#$W|rBF&MXga&P zeq{aO#pi^l9gz_#H+~=ems;&--PCv~2WVbZBltV54>YbYb!z;t%p8bztVLg5KhU4~ z95v<@xIR(Qpvu)><_@ge}(|{{zU(QsTD205z*995}vFy}Amw?+f6JbYY9H)2!XhsR6hBnz? zDmb|YE1i~}>Cfine~9Y|czAI1b`SGUAV^2Zp2M9IJ?f_CB$^1l%oV>mX>V0gb{ja5 zj)B;GF=cppIZN$3wdv~n2cP!d*VZI=MI*4oQ2{>mHu zvId{+-9-SxPr~C;;?lD{5C3~9^zMnBo$gIMoG;_@thtoPN0p~#-Jy+qzf2TKY*Y0$ zxi6Z@3CBl39^pqQpS%yeeHV{Y@$bY6OFuF`D_!tkLXv6oX#-S^vcJd6r>Q=>f0beG zJKy0C!peRCE@X12?f*Waxl|4>B?fzdlIN*b-N~i5k`g&dece3XybMHvV;~6tt`F?U zKmU#z{vnQS?}3=d*3EyvYwFtoMd&|WOFc1UgI#*P`m!qMKhM9nZHBaeqkxxvU=mMV zQ*m2)$4lp!MSC!mx}M~oj)kyQZ1uPMI(TS4bn!(EU-NFl8j#ivUo~0L-8G4aBa`{|64}Pp@+S9e}+$>0k%IKEMlYpo_2{TYp3yf{ex? z$So0mT-cbocC`NFa`ea4lM`}7AD9>Zfik)IE$A}9xh{%R>Ym++0+-{S0__p3DNq}^ z(wcP_{~xN}IxfpCdmlcEf{K8Gf|3ddA_xM~rDD)1jdV+QNr{L^ONrzoQa+$k(nxnI z@F?Bg4U+HLo|*Z5-@j(&eC8xy-|7|2eA;!${I&V8}8UMZ_mp?WOAx3;D7 zD1cJS$388T7iFl zo%406C%n=u>MZ!DG8fOK*0QFli0nlgUiesWTHIe&sw2rFQgZgsh0}@!XI2UZO17;n zc-by}@7!^hDm(Fnv7_vuJ7c}%F=Ng>rEmTZnpYxw%2fP~a%iPyn{%Ty;w}6fI||q% zUA$8b)%H8HjqY4&u0wvMUcKB1VTfx1TOao7K0S`1gNB*(Pp!i8k=rK9bRpEy%|S7g zLdGmd&8c4tRKEn>Ao@D z#x#X@JkBmJIr99}BhIw|-^bR~Pfv=!*Lp?ovwNf0_az=pbZ6nFl|eH5?8Vr(q%6s< zVHO|~edg`YX#8=pI$ddOCiN8yzM0!iQMywD^e5CWN`6=vkYbidbNH;cWygr`VI1}J ze9#z+l5&b9OJsu0knQ~YvlhG;?55aOy1MR9;>Z9flKaR8qq1Hm&fmpgLM0hEq>S|=?e9>a4)>?UOpdna zX45h4O`jT%v_+=l?O$>j#oadLvKhG({(0|68yd|l{3*Ov14YnwQWc0E3}s}Ho)`%L z@va#|{^Se~haJH`#|Y6o292H zHT}Y4eYF>KeAkudwOArm;+_exeJI#zf4~B%d{^@7X_9=(kCBlV6s4G6rz+`BV-+c{ z@v?~cl zrPu;DA4|2T)?Vrzm`k+mjePIwe|hTrZ7Kg;U*D6*;*%h6QwVWghvgv=Z0P+AsYD?; z#x;K<2=PJ(v|a{WFtVJtxiq*3|7{P_Q_Ii;FLN7f!fk?duNH8`Wv=Ui9OXqnqI2_o z3o{OXsf4A=z5DQvcEfrI@4E{#J(c1^=D5^aIrvc%B@Z6%zQ5;mUW)GcDb@=*V>Z=- zC(Os(uBR5#bKX@R8VxF|@*Svu*gK0mC~2Nak|0y|m(r9Q%qlF{Ilnj;!2DP${F>86 zSYX+#M*oH_{ElleE}*lEIQw-uf%GMJj8Ulmh1sOX$}|KwOI?RvJIdhm_KRN@-(kvq z;Oc5jb}I6zk(zMPjRj70E#q_-Y#>$6V1OCPjyOjB=FnnLyeikrrYWF>G{zp3|BSH zgK>Tz;8TVe&S0gy2VgLr*ZwNIR!NG&;19ikLT!I*W#!YyZ5{w%XGv|j-YIMyl`R)g z+Z{mqNa>D$GJ(ewjeg$v)V2PM4Noa+RvNQ7ZGW|+k3lUgoULSMDetI?-Vxb*lAE7@ zEzVxWyG-9!%5-equXB%slWy3{KS3ixfr~>#?@9kR^M0?{ZZqS6^hI;R-Urt?&+<~K zKUdwncbS6q%*kn7rt6b@8tK)?nHy5pMt{`Ek~a$MS{NigxLBu#z7PH!ZPAhztIDjQ zCiCNjk8JYtRZ=XI>k@xhBlEk{WK5b4KOZ2MFZhrYS&(&OI>C7ewI?_vC~Y@JQGx92 z5KjZT3_N0!(}`|YbC3Sp2w@6ah0d)FXQ@|gUC3o+1aq`Mt+PKyq3ERuAo)87lzN7T zK@ta)f{t?=s0)7ZA(lGmTStFKxHS7^AtwuX@&JdAc7Ip2?@?s`{-UuxlN_4p_)8s- zkW}g`xSM8xexay8ZU~`KWcg3;hX0@>n)T8H;PC^nB7i1CFK=A{+*QkY&p)*t#;|1XBe(LqZSwJByG;R7}VB z5Pq`lb>YIlKm+~EuBOA~BGb_e&Tr#2Usg1XkM4(W&$l9!wyOF-$Z@VV?1m%t*=U+4 z*JA)}{LA4kf^`g01!Di_mnQq0hh~7$Y8HshmUlPdR6EZ9x(UVY&)Ot*`G>p)2Mmjw z<~{m>Hw7JLP;cxG{SQ1t+)XM{he{lp4y$M2M;1r|R0TNqjgnD?yCo2J9f=|^?7Z7G z0+~1zVtuJ026X`!d&wdY?OE+h$Y;?5pxWjMb=qIM+kYPK|DFmIlQJ=zwiqwSPCy=B z(xU+i)K4F;3nw&y`qP3TjCJ$B&Rv;Dqy8@RyNKNo;JDw)&+)^U{tKXCuGGQ5ND#duQ<>U4DaPE>G;pxs zPoC?}2JQ`H+V(g;j!hc#-(M3%+<5Z=qe0zxzA+Pa@Sx}a{mWR20*K%>2i~&B6f*0>O*L#_L;kH7W8}s)v0tLS9&g58ZHX{*-JklCg^&-Fu|559yHAyjixD7=4zS|JEMfZ+OAa z0m=G^ecXh5Yyz|{!=sS1ht5CAH7tHYOJ)e+r~kh%@AyJ?4KcM|uGf8M_$%UdULKj2 z0LBI!pPcSVw2Q+*)#TgcGXj!?mCJ^!`H|6lRB%~enaNee}8Qh!F2%Yr|h(DU_kC|J_b?5PXC zvvi=5K=CVdSsgpi@KDojF+c13)>BF)ak%0YYf)L$z+}J`dT`^xf6rBzghw9C=qSJ3 z`koVB9#l)1Z`jpyU-fB!f6imtX$Vgqo;a1L`wn<|x8bOz-sORxZFGOVgYNdT$8*+y zvtZFM9z*os1L&4SFbV?$vJc414LB?~lASPvA>AWb`q@y~AJ9DncK9p-F(3kV)qKEqFt5Rwc98^u)h+{vjhuu;AgJ-D#5d?1UUFFi`({3}>?I z;DAEu-hF5fj5Ibj8=fJI`5oXE0)v0I=;6*d-+)aGm33K|%I`btN#cI!us{WsOqDHO zEa=zvI&geGeh2hOE{`Y8*y$dF(8-Z5xXriOlU&!QQdZ$z%V9(Zk4*K6WevG($7-ZTy-0V5RLbBdIq~J(JKc(a`)- z{`w1XPk3qI3oZvUcUeA6@;fM>UUib9HWcrFznw&CFQ}rRdF~)zHiXzo4tsAvu;*2c zG@KaK&uU=@8s*(vOM`KF9q_nfr7ojoqe-41)|M$w=YmdO@IiUyG;Bdi2th9z$=!94x z(b1m{FUZ4wH*5-DaLzRJ#+#gWB zf)jV!vQMev+K*f#X_dN1^QBurEWxi7i#2Y~N%|?u^j=Mt=bGXm9Lfu~E9)=OVu?CI7Q+G8NNXuPe!o3*M)# z*8f#)TrKug@e5{KKZ7O5$L*956r zKL16LM}cnT#fV;x`yV@6@}kJp&u?G9oaPE#XDC_hCR6X1OVD6}Tt0z4q40+o6Jrf- z%rBnjFR{NY(j9|I7FSrrK4M63eRp!eDe)b;og%Z^ejED3g8REnF2=0++t<}3w^NF3 z!g%$M=4q?dmAB8e!FLrO##Jm`O-XkhW+T`!u9UV&Tk1n{-b4k0G z&5YisGuAEF1OH29L-tkk!4jT8Zx4BlsK@U1@-P4vz*A7e%fpsE8{OfkLuW+3`;FPI zm_@j=b}yfnIAAR~5B7J=o8){8zkIPiUe2d?tX%Kc#Wymhz<&zFa(#!pbCaxH$$937 zcl3*!o|M0LekkQ-Q*dYtJI;0clQFkr#OSoh+Kuixm0USD`TV>F{wJx|7XrWC$|NOU z#xt}JGzgEGgLB4-1Mxqg+q`yg2p|VWAKQacN$kO+z%YJ@u0X`Pb;r; zC;*@xw^N2Dl^2$ciKNWwQ(pKsZM`n0f7UMYil?I*bJ7g zwr&BY5#1T_0epYePWmpheRgI6;oVii3uo5ZKk30*W%4t``iAxms3#T$qZSW!_lJ_b zv}tSMyu?Iuk2i+{C~=yuARWHiBi*A%6f4!-$T6#wMgpxDu7+J{cmkG{OWO z8h}q3kX*!K`!-hT*l#Qg{fNtfQnMRllBkENiJvuLW)K*<`!H@FvXi@)m=}H7V~EA}*6uGD~O9u&Z!6`x|$NL8wmO(-OqN)tTtNj=?xWS1+&g|1FzjzBNtRBBPvqJHekn?B8nc0ly z8(jCb2k(yxB^idtsO?3*D5dUqyY6sg!T45~@V(IMkgu)0_Fu`!jkeYnpQoz5FsouM zFMfOJghmPu--^Baq`kiW<-Em-v?^ju@2{UxWaR5vBM(o-WN8+Mn_O!Ja0?!8YTXz^ zF9#eCB@=$W-PKH&m#=$=Znd@rik_Oh^`MEYOsB$=TGx?e)ai>A74yJXfz;e=@0trE zT>S&exu$#AQ%v{aD2+8@@(dR~J#(R^cOP2;qogx3WSZtb?qTW9vsRXF`7H=^J zRG@zfxDatk#5b@qmzjlt#3Hf0<`7RMSxDO}&rk2xhpzfjuYIxhFmHT&)wD%oP&YAV z1@cI!!y42FRSmw~KZn_>y%fAY^gxB}v2tRD+`B?vvlF)q;=Rwt=v{H;ZIBV-E&byG%UU1?JXO|gnvvr{Q72<} zdn~(F$==}SbP$_GTC{IlhE=>Gkzw6NxNxtX0{tRTUNp9~=Vct>l?%x7RDY8U=O&%* zOiz41hZdC>%T2Z3%6w|wS?@}6EG;%QQ}H(M_FLer7vP8i2TRoz(%(bQtN7jh&l=b_ zNvL>(u-auVob#_PPdPPMtZ!L-BaDkN3}2il7_clHe3$+Qpg}t}|GXRznREd_EjPFZ z>OE}MOqk79#&upsji7n~T&4bx^wxz~7w%l)_h#fyFqae`<1N63+!yUcYl2|ZL2Eq# z7SquBmTeZ1*yAMyXuKMFVG#i%itYYt1IE5xK-j1|`xNkAe9IL_o~3#LAS6I^)C=Xe z0^LO_E#JlApj=3;!?j*@=z9G~UTmb)OSZb{C7hgS5l)Ho%P43E%0UGY%zk)^Fb=Cy@Vp#!+(>9vUogxP@PAJ!0l)%C`1||Hny}WNEb2XR-~DE| z6w^y?;aZuS*3Z@IhONs8gVu{Se57e%1_5y6U;S%%NL0@=hBY?}z7*QJ1RaOr5jR2& zdCe9&(Qr|)1MnAe6%6C+pUX!op<*qIL8?(+c=beH2|NN~T49%HEhiY-SvAfid?K_o z|Hk)G>h*QINEb_U2_=_%^Hm3iDO#*A2wvBM(t zGWTmAx<^b-F>pS00O3$}DA{+7q|_20f;^LOORu`p8!yIei5B&~z<6I-8J4ba=X=MW zC>rXIJkM2j?LU4d({~-8yY=O$abvYH-BC=3`xK};(^_^GCmFR&~*mYPBUwq8h?BJZj3s+;k zbv4Kl?1PTagBuWp3d4W%eLXiWMbPWeJsf5kW*yhbi*^PXlHt8pz`wZKQTSCem4+exvQS4M6^Kj>nG~?P&-|apE@Xvwj z0Gmu&28N5=X40KpPT4h#&@>o?6%N7MrYjpJv~8eqE<4mykdfv&2Ji2aH-9sr4e62_>?-O2}OokB$K=%Z=|N}|jTcn%s4 z-Z7ud+CgPTiBI})_J#JN<}yAT+|#IHbq3Y%@a>~}`JHX2EWBH;fj81=ZK8=yxFEqI zvG*vuW_qBFHu(vZP4<_PQ?tS_Qvpt01Rhv8!S$iN!{iq|s?%||xk+7<*?${wlgT{M z9^6IF{W&||`#jU%TP^H0jn+R~PQ!TDgwZ&m@$9RFEG4x9qS1wbSl$^A&AXw7_t|W1 zz%)HUjcSXq(sfGWll{ntKsQWGt>qBXiv9gURYK z?=Mpi`Y6p#oiH!x?a4DPI$<1FI(&?Py3#en>*!FJ=wk24+Z%*?us>-ctS!M1FqE+} zUZME`@u!;>VtAebL1iBs(sJHBIps+FD&}U9pG|2Zz$ge6)?KsVWi(mB4Tu+=q1`am zWYC2HDy2bb-CYwpKp}rxtPt-Wy%kGqL7NYTNKC+&DdR1>Mg0W>c9+!09av?12P649 z?k9dMiQ%Y|2wh)d44$JU^>_c+(@J!k)c=yOe{Z}8{E9HpYvdWr0ygbga*$skDU;9| z38~fAt9^4G^5!i43EZ%v?^AM!{vH+eJJF{yF+_8{Wa=8`k3F9cU+IBSUER zEB@p}XehxG3~r>x1nzL+#kL3R!Q4ThC<5d_ec3^q5Uw>ZjgsOZ|F?E2&@}48;3Vll zk~)o3k9S{+BVG;F;$*Z=IS4O63^x!>6pe=%aK0_jI**@O_f=y0(>Gi3N()v_-GX8P z_`U(b2l!?63)Fj{XrWDb#eOjO`+V!#B7(ottosu(Nl+^a-1CAdZBnlKe94b7(-rL0 z{fyeibNw86gAo*LYCxWFAnG0zL*#R<*vil13CDEmGWB||P@^dxxXu-rFb>}^gv@lM zhgQ%_u`?EZeEm{cw%xGK^R$n!y?F@}-%Y%w0I12e08>kW`HBZN3W#-E)V-)5voF#t$T(aD_(`+KbSkat*z~l zNC6GwclqAZ9{6BFOg0|vPQU22E(6nxa01IVyrnG9%}gJBA~VL&vqS1A5(&e6htIMi zX7@teH$W2woMP=84!@?n<6Wung$Ra{sMTn__HB;?pP*DAzI#yo`hjyO^u^fq3%vbq zr1QX()mX6wRu1gSQu6lewsFJIvVLzx)B|ifYCQua0)@z;5Ii9#VFf%x$!a~7dcO=; ze>)VJ&pnfUG)e(`L2JW6@OfC}T%EUV6+ zW=Q=HNO($#hmwYTjlT=S><4sI0Tl{U7oXEQA6WE_)EXj2cOy^h@WJKY8*l%glLI=INnr?VOSNLbQ&JB zZe>-i2Tc$og4LDC)-~dm52Z&7mTCZ{DGW;)+lAL#6Ghz8VAf@Nn;_^n2e=80Nw$DF zfL$~?4jlL|p+ArAQt$Wu-jDtOju?9=gkG<`G8l`>uo#nbwr%o>ixM{QYyWt`A6DuIKK*i01W;YHS zO$nv8cIVQQuB0Nw1OtEd6s;Y!f7?@cyD|TaUFQLa4Ya^pvE?e5ce7ots|y=y9~3g? z$y&kGtXtqcfbQZ(?mhlLc@F9|yLc)S4;NA19B$46v>2V8Y6^)`Jqq52vT2OhVafd0 z@$XHR!PqJOhOtpQ7e6lCQ(;DIOAhwe-tEQIr#AFP8DcVr!F-A$_ER$N?jv-&IafF6 zqim_zHfRjwG~b{@7qVS}+3XNVhpUTo%nN!6D|7bpr7-TJBaeoAz@HNVF8X%N)X=D5 zqBrSCY^yfTQ19ut$Rk?*1&nT?*_(>6_7iqp2G3(2k{VRUI4NA?gq<1^iAFyl;Ab2) z5)HEgNJa)wI#I1yhM%3tlLS%hp|^!;idMBfz&i#81B!~BI;1%z2s%p5i;k@rjtaPd zk#0Q*^(%Z5+JTYKAc$oSL7zq}SkG1D8tQ{KOVyE8Ycx9BI{yCV4`}q2^m^uZ4=sdT z1@q2#wtJ^@_j}R{6l7EA3pEsPLf^CQ85T1rtR(*9O+Z@&44}Yn0*op$JZ=TwO2U$Y zflq4LSmp*!w3^rwxJ{t;bo;UE7pQpCB4sJ9d!YYqgZkwP1Y!j^673nSS9CTRu5GQr z;>tF3&j4M$?z(MizH0Meygu0AK-b2bn#6Jy8LsXYBvgjI8u*ssZOLpB0aHLYZ?SEn z{*-#p#6w1AER|J}_cn_nls7lNg^q-5B{eGQG?;#{h(QeEZr8;GwGXU`;@D%cQ>SXK zN=M@@d{SpDlgCNou4oWHhq_=SIsc(S$zEdgd`&o$y_^ipai(po)nW0>=lNo+fu90u z*rG;`C;J9$ymy+6Qe}r+5wb^)z9Li0*&XmnW}Rk{TH^lfl@@FM(}H`Q$WGNnKSq2_ z@A5x+-)%1 z`+LE_^Js54PhFl>ls%iwNDQ5?9LGbDC>tM&eR+1O=i>o5NoXL=jFzc#xQ`No2qeQw zNoT>{%T*5M6SOxNta2TkKHT^u9K1`Fp3#H*Aop%z8lI_zQz%^4hllG6)DbRJq5$w^cudZ=cfOHfQEW?kQ-gFX zPng)2p>r14dd(#H9Zq{4n*8{17oAKXsdNr%602fj9M{${NAcXu+i&3lML6c_Rvnjf zhQgcj^-X@&MOy*Q3wm&Gy2maHyJVBg_o+@^B_eJ`WFMKla8&Bq)82h_g@ zR)eB?Zv#dd;DSi_Yt14g!!?NmrvcO(Wq@h4PxOyL!Cc0f>|2d~MwQi5#I5uuYmOvW ziNbrq`WPy@`z-A_809)gF-Gw2x6wKr81m1tW*ifXW0GgudIvsdXgQ&RbDzL;a5Saa z#x)i2-t1Qg@IK8n;Sz3{xlfBO+dUYtagkP8Uw@Qq6cs`%605um+cAKlGJdeOErC_A z0u!HZQ}da(xD5{mKs$ob}O;>3aeIU0Q0!ukc)xWCms7dwy3j4r2%0XhuOsZ0de6Ib9AxZ`=+ z%Ou)QwIYA)GPqXJa%PR;UGh??kRi52I8Qxa-^BYHPTD+(e*_&->>!Ka>!;>NgHXu8 zrx!O--{%Q>m2DG|8k7K0s9v|yNw(G(Fg!WP{Q=0)kY zS%;m`<*+w{A}w}9?er}`VbJ5|J(`v96x%ohT1GvZi7R5QCAF=zokN~5)+>QW*&F*X zB>-y$qX|$LBrt@+49Fd?pgtiZO3)8}tMM$a16G0%eBAec6q~6%phrhn$j1+h1VPPCdJ#&id_B+$Qb&U?cDNwO>zV-CbB6Om6Hy zJ^-gev7L1G+mw&ULA%g$Yx7UPlV)xJmXK2$2LE0V5mJ=sw4LRi1BgHK=t_wEb+$wx znb0wuA1viFO{aM4O?F|~7mR{t&|RMjE58^R0tpp4oqQa^LPZ5AX#iLO*OBMJ(D-c_ ztm?2pjF12BO`USh@5*!`?mByYzvcKxPgohnKX4R~aa>)lcOkT=EZgXmHr39@PC0>i zpAE+=0xP%P_y`Die$!!OMF$gs_);*aQ`gpy;2mZjv;Ga@-bg-EFsx^aV|y~>V7LPn z-UIx@(+&y7m{64TS)t|Bf90X}*wjT<{S!bSF%SzC_VY3TkF8ywSTrRQ0-+3nNw88B zd!Ez&`>h|dx|b&jdy&uhJbn9Zm4l)imb8BzZ42Z&1f%I1)KcFMi%#!a@CBaA+ zb<-$J=ia1Jb=n3%Sre7tOkN*jij6oi;4XnKwg8(+scZynBZ11E-vYl1>@(H{L6bQHuC8>kTqz^~cYS|NN9;^-k8q8M4SbGb@%&Z~G6HA?_{Q)YlS$b7A##qleLE^Pj0}EC(_7z{k)mb^d zTK=g|P%o-{tIvEl@=6;69q7LOFe?c#&M~WdpUoNuR$iQ8Rf9kd|Q^k&!2Ea-#aq)xp>!-m#?e(YCM6`zGtH$`D zcs|@Gv?SZAX!JDz=h3u_mp_5flIW=z;J*kCPr%Y3dvpVMBc1>baS7yY%BK(b1F}<) z;~g#E!CJL?r6XrR^26X=R0X?a`PyQ*nU&Y8e(3?sS?Ck61|Qd}gagoabHJ(3p_UCa zG97?y8i6Wuu`!i5V97v1in0OJT0;cquCGm0?u#9*i~ZK|5-A={v%UOj>;N$*xyI0V zvxdoJ=WpP(IKt>Dw%6MM|6J6{0~<^7?gtPu{K*C2#Q^1qx*!e&qwj9cAw}^|ieoGW z&v_Zge?~LNuPvmLi<5{%@>FVow7u^JYzew!VS;t;z2oJR@T0{|A2&L;Z;cfbGw z7Zrg*XH;HK8YZ~LmrHs3*||V(f#t4rlFWp{6%c8=;QxL5TL}a>w%`p@)Wai|mfHbG zz8BEm$WJWxXCearKxG;2A}8|G)AmD&kZ;M@C=LIuMaOb@xLv_KO7&V#ha45_SKt_X7PhdL-k$0;F0_HZq5~E&fYxU^hC%4bw@5_cghW68N%etp54Uzj z)B#})4FHCxlR7dN;*VLEF7h%V3-~UWn%`vvlUTlbZx-@(p*+B%^Nk^Ms}kO{N{AdN zucPt&U>HM_6c|n7si_PznqqDapmxP;AO>1tZ``ckK8(yd!PEk|jl^^+Up1R%Un?@Q zri1q;>ab2K9HogttGHtYr}0K&KiaYY{N11RY3sZ;USO$42b+(uLS)B!kR?_HfLp6xz07s z8C_oKv;Z)XAmsc@$^L~0m<5Zjw<|sCYB~uX0zW>g`IvJTK%4Vn|z7~xI zfK}IPJ#HA%9>t#4J1}nFJiHrT)$1>L#h!SG`Z()ux$Xzd{sc1|&r8-dN;l5TV;CHM zf7KE=vj55;5|RcbV9a;?rshE&ne`{|WEz7pbuy&Q!vglh417nCEp9*4`%l1#)vRFv zj+ruf))J*lV*sL1XMsnwTH3VfsxPp7A;RT^V3_)HfRRNwKa{!E6IY(>SHGyudh`rvr1)xki z6ROsoWqzyhznE{itVSfI*~^C&d=8@ctqDTWmLycKbq?2}ga4#6&l88{0cTVJoRx3_ z)m($}rZW?Y7{O>)w!1gfsmI{}coW^M-HZK7H-kiTF(PhA7wUCdbFc!Fn&_&@lcW?| z+{-UqR8wdPCD4I_(Bd+^Vp(Za#-Ru~z~B{fnVTsp;3GEiwkfF}#X%9{o_t8~LK+Mu zp&>EJj-Etv^>M_bYU~e$-CQwS;HCJ;e1V)da~FWpM8R9B2YTV^I6xcy0H(m}Q|tCl zh!Jb&GCK47N(a+ajGsX$tq8bRED|ZoX5b7A0zp<`Gg=KlX&LLV%Q%rXLp$3=EnL|K zkT?^!>h``y_Vcj7hf7{%j-O5KxTxOq*$2E0A)aBHG=1~YV} zfN)@MPwfkLS{^z87)uQ_*{3JT7aq%^*dgrM_kxkixFSv}I2;rr+jr%l{zP-=BuZUF zTj-?W^GQ$^x}9Gg>}`vIUI)H4Zric@a@he`N@_Pi4JU~&VGb5d;HpVWAtZ&S7KL&p zZioj~o4#^;;y=t8O%UPUYZMKD)gU!KHV8)1Q2P?UV=6j8q>k=jj?(Cd&sjA%0Ko7c}~reC!h|N0KLo~8d*NBPj!TB#*m5pR&Dw7<4J}v&MLS14;kUpkUGyC$ySE6jWs2eA z6N~(iNP|!xU=>@iJs$u@jj?y2d~*ET*yBo;&$V;~tRz#x*Pb_Bi;jd7pjK=*2@+=8 zvHO@x*teGGcFOP3FM;%@bxK5BUO>!C=mLvwqLS)oF_3&#nh%_7d|e<@BM^}tx2&)+EO472+=hKn zpET=LDJ?h!gk}l+1io&-DnwW%0mrexEE7L7RwkC$QV@)N_4~=csD0peXc4>A9WmKx zKeI#dP5RJ-V+ks4(_LS@vkj^zl?VpKfg}0_Wfj^Fh4VyX7?c<3%a4qPqT-8gY$seR zCZZFK$CIB;XBvn5HbGPMu^JS79%t#VB?ZIAI2z+kSZrsq0V`~>%bEhjbuGJeX^Y;X zwh65Pt8@(PijpC#Kw8NjbgE(YnQkwi;(_GDI1*o-mj?PgvFaSzR}j?wyox5jL;{^rM_JOHmQ+B^$MTQQ$eCl&w@e>+j2vC6vh*jc3 z^uq?HS@(5Ie}VRI&wlE|P?^7*_C;Gaqu2w8BdhpX{vRU1{=|!#?TJo)0yYTTu9*W0 ze}E8rKgU(hhT$=PH*~&-`jRVQUemO2we*J<8C8qBP?moW4^(@=nODcl-z`wfHb#Cz zF3NYOOfaf|x8OK_S>zhQnXGC8_`)6?9S#HBO%^+^H0cJhJ4q&_rr)Q$#Cr}H3gZ3& zkOM}^*0x!}^itpJzbLoa@u_k(3qVPH1l1o45;{>$ue-N5rHz5jia*<%Xt!HEDTU}i zp!9K0nNJ@{c)~FUT4excDFy74>M)<;8+(LxkOQ>?w7+}Z+Y$FggHMh|Inj*#v})C5 zZLcN&-w6x{un70tKW26C*A`LBm0jF*@>2pReC3#0NAT#ES2nx?AL5B3P8etcdd z(X@YRptlT931}&k67=mhF44h%`nWo7%OC7c0mZ6&IdWATuQDNKy~6XpLFSi&F|C1o zb5#}iJ_$a@2FORQ+7w~3Uc(VXL=LK9dbCl>(_M#y}Eko%?F9$}B15K<$6bN z8O^3{2Yg3RG?~kkvn}kWK;is%XvvtdkluLb@vJPRk?dlRjFKXu&1uA zUwCt#%BmRU*&e!^Gt1E^{S26QnF@gt1RKq$fb!5saFHARjnvZ{(-9?w`G>zS zdv^goG@ZV!+?Msw#n!c0^~+OS@*@(>ub&n|@pPdJfafJ8 zqB~3MJ$-uzdU)d4_hq z+6i3Ty{`-Ww9!7XcNN!2ROdl4jGEAKr)=6O6)hb{EbI1f33d>Y|AAgE2F3o{*Dagr z=^t`pSRF4kw-jfzXuO{PSZqZJ4To9MxIFeh9j_)N#7~LgNbJL=G%Sti-N_-$Xc;dT z=1<8!Ki8Q`7?%SV0?l8JAd->jtzU_Q^~pi>g@W01Bf@oz+|O_DNWC{KNHFqx(D2$X z_y^$SiMgY`?D@>8hi`KDt2nRs-&(Bg!Tg?d7G#!|w&ZoUl%FI?{vGqz#2HHp?@-od=-k&%uJG;@;3_cN#)yirrM#kxQfc z??$&U{MYH_TMY{?Dek1ta2ZkMl-OFo!3Sz@D`UQd9ev|@L>$s(wCqvXqfZD|GR(hC zNl|6&cR|3N!=OfCzNsu#b??u9f}U)3#ew4y+HAxD@k>Q3xjLm>BeYyl&Fp5nv1H?R zcZ}A$O8UgDpD!v@9A4o|D+$qA@6sIpV|&HA?;F-wLm3Af1f-u5#ufI!E`}D-j&&xq z&#$*aK_;(excgQ$`8!p4EbSgg)H0I>>0(}Q^c`f25HZc{sYeVl_ z3q0SYvbTQyb15w0A4x7;lmrhNSii2YO*L)$3(BmzTL9eZ2)QAapa-CVn%zZ^Z|&$? zHB$w9>3t>@W-g08tf;aw0jaKorH~?YR$_!(jF$Zz?_^_~jI?aOmnBT95G<1R3fq%F zj4o9nqeU)=f_N_1_U4K8R*Q5w_3R*l7tc8JGFa42qa^arX&%pOQ?kb!^+j$y`>04?io<+ny6&H_nhJBlx^Ca4LODw@WKlhuK$rbvYRnPFdY%D%G zV>CmmMbRh0t+y1$r6Jqr$ekcnw&8!roe6!eJ;mY1s%Af1F@e2!kcI|~WRIhXZkAp- z_@3Gwdf@|r85zf39gFOD{4@@WeLR~~&%FPf&za8+#NUdiCShGQB55En7IJKU$#;_A zE&fqpSKn$lw0e=b@UzwmAi@u+6DePjn zhL934rffOLZ7~qpj5Zx+K3P83QgLsM`x$yBD3gkFd;>~U78H_LcIH~}h}b;* zw2e_TyaxL}WAjY3%4H3uHKVPG=1;o$HyMI7^|@u+j7==9gmm~1=acyEX3z7cja)ql zDplP5+0ynWg!RT=s!2EuN6XK3aFt0#UPp)E5VeFSz#h>1cge8he^Q{P4jW5@ZlH57 zyilxoXHz=}RP!R<$;Bk9iT8ck%!LXgK{@cRMjcqvGYf_kZP|Yy;%d65DBE;;9fn?( zy|=|+uHn8a1Ir%hChD=KU@$kzIupALtILflIOb@k%m7ec7ot<4iB?Raqn*B`6HWIM z;%DQa)J^DMCk)==m-^YvP2uQZAxbS5+B%P@FDZBWA7Cy8hSL7G>_MMB@Bn?&nno2u z|K_V)wt(PHY@f9B@4c11sw*A8dzxr1$m$c3+AO5O>|iI8(UA=^$GK9KqqZ~a1KIso zd8dK?q@bGZ&bkHy_qBdGrWDdR_sOXv3FR*%&$8iB*}sxJc>QA2B8vk*(9g%jRqR+( zpF!f@=6v+-<{3V3AfB=otb6;vnbuTWDGmSGTEatJlFob5W{yW&`oOAx?d@|gA5dQDGR+!gGzW5@%Cq4WQr#yM`SEJae zTm0IzE+g=xOHFb%Q0D>t(6`LN+g;id+7Gw_m_##pPezP2{vPm@QJ_l8^G(sI38(7Q z%rGt`2MzFx0iQKgrVzFB`m@7+wbjp$b&wDI4t}{5PfOh!XzP(S_RN>d?VrHDD*^Eo z#R^`VIZ-qPlhDTR68SOtkwR*v?PApSc;TDJP+t-5uQO)|=f%Y%=z>}Ipi_kjSk z4MQ%Mr|NrYb3njx-vkdazPr8=gTz7$mA^v1c;3Lh23ZX0t}rlW))F=dydkSa-xY+H zh6oVC(!jmnj8AbmO#{l7hXWv+^o&Mt=e5HGIbqj)NbjD9!j_*G*A73h6RF=Lat7W0$#Iag5IYeum87q2oT~KU-Z@^@608 z_0g94mxn_(=5X`yM*HDVDvAm4_;+WWp^H*|$K3(kO^C>rnpZp9dF=%F_)Xo>U^f2U zQS%)InVqSY%IEs=0TuCF{T0_`F z826D^LdSpj>N!A;hoJK*4s~cEl@z$6z=Jmr|Hk>Qg)b~ojSyCZo)O+g%api0xv~Ij zg7Jccs%))X1iP70RHk;YGM9niJC|p99w?&=E9-}g@%Wks(B?$p4)BxVoVZ)fYlZ1x#afgbW@~vE zgJmE8@Ei2Gq4VOe&q^ND9}6@ACd7y+a&^9i4QZ~Wb`{<F&s61Sj5#o9&tLLRhkH z9c3k+_3T*3K~MGn+Zp_C|I;MEx#SX1MZO*h4CLN`-)8N6Ao4OJ@~5jl#=4lWgHa$ zjxrj@?k5_*rugy%29O6!+>dyZurz7u>LC&O(i&563l@htwe;%?m9@gq;Kc*~DLA*; zXAyzl8GSvv{#aDaIv7g(FD+3u`Op*a`b~S|5g9@#NIB@New%Z3cxfDTIH9r;pAPzYJUSnUQ1K& zms{KR;4i}y9Nrt+Zr-{2`%IDubGGXckSaZWISKC+&RD3RH4GsuFoWJ4H<6Tn)jI^- z;Ng75VW!G@{YBfp12{%>`nd_p=3E)khCe+!v_oaO~|7EmioMpl2Nf8KE zNP8{+2r$@$PZKSB<=?qI5)J_x@4s>~Bz8F6n2O*l%%<+%Mtli;LuB#|ji$1suv@_36?Nqsk-BHa$n>!-F zOof1943xt(g(twA*#li_Z#DTIg}&vx&a=qaJ$Kg6>} z!>3x^ePqh%BJ12Mj}h#H!v*Cjq%>0zT@7xnBA~X{c;!>i+zDrsv$`_yu*f>y>`CJ^ zC`7y9pR3cr=>$3*C*s1PH~**cJcgpq6zVt75i!f2+ofn_0878zmNcA2BOPb3qyL`s zyTDrYXufU{W)n9@r-f^tgE&wQAoP7{%)UbJQw5fBXJhtqg zn{UvY?E*=U>S}4+nLAeTcY43tQ{G(V(8|d{(HDUWkO;cIOqFzOn!0Bc18%gG25d$o z$BK(}ZXt7dkdD*mo74k6LlN5kI>ze{`B!Vn)bTX~y$Jah&hGiPJr@PBrhFrnBP^qq z{@gJ5I*@Z^UDegAve?04Z_)^zi352hikEmwkZ1wVO&PL{^cwxhCZqLt@BF*o0B~to z^;Ju7hD|-*h7#Zb7vZK|kFI?&__=Z}8+jGOMVJf@(rBfh>G-)1ZqVJn-{olU7^vNf zBEWSccQ3jS{6C-`)R2~yvn7HOkRU8@4*U^$jm}S$z|8XA$O$<3=vC*K<`;@0kH(O- z3%+PE9&5;w4a?NZ$)hl*+YYJ^4uSSwRW&IGdIJp&Fe6D826WS{yvYyPe3n-ZJbc#d~< z?&naTdby7YY^~Ty09fh@oixvfvC)40bVkfWnhTsbJk!6>N0ZU%%OHP2Hm_Q~ zc9HiJBJz`#J*dpuiR9?0w>xEiN2D$D0HqA=Xgw z42C$;Pue$1zNI;Ye%e4>Az@f^PaoY5aHk(EyH5+%c{#l3A|hBp?qlQ)3Glk7pkos_ zMN=DC+H38FI2A~w?}J;^sCwOVxqn0&boTo>*W{bK(H^_kx?oEIueB>^U;M$@9P+qO zA>iZO!ALCNhR}E$b z+O=Tq^|69p&79!S$yf2G4Ib=QK+;tzo`6pP{v#s2H{;jb^4Z^EkS|82K8sp`#*1Ph zyrl07ziO2(MgD-JGuaZIrBzDq0jc7JcJ-Swn}B!FVl=OLa0?=DP7H6Uxrs6|f`Ga_ zJ))YQX)KBS4FeBD1g0(>#o5Qdk?={C>nrS0umX5jN=Z2jLvSNNa^VQE!^8;#&=zr`*wv1}+qotJFv*?hw zDCKkDimJBeaOQAJhoDordcanLDv@Ie1C1E$RDCY`jvAP?4`CbAbKv$&=)`3^)aKUi(BjDs*zD{Et z_ekbqxyD7tnjdUIATmb@m=LX`i5pfoy~UdM=3e8wY}Jjn^T|se&gpK^GzjO>T{(hh z(tjMy;S#op(t~w%w$s88Ljg|tpZ*FE3|8(;(xRs4 zVm6r^?%`QC+O#*4QyW#WhR=JQ6wVZsTQv2YLUuB05#;N9#~y*<{p!sGF4qcyKe=%k zeGlK%RTkL8p2~QZBEO!kpaUua`|>HJ>Wj9#j3W1Gu&0s>fJP{xC-$FceHi%WiQf8_COntJ2V~!}Zpli3Kac?04|O0x>%Ax#743E;jUi5&h7! zOENqSN&Y-VTF4^-f6m~t3h;?!Tx+wi7uO}qTR>J( zfHZsPTdPUHglyaY-SFB7V;INYJ$Ru~Z}<3_cmOA*Tpe*h`ly!cWK_J8^nMFB9bV6b zmLpC%UV*-)3TN*80kV-AuO_eg|FiN*|F;n2fxs6b2hiC6 zHy2R}Wa}=rl^L^hcoJ`2{BdCnd%KnQQ5q;pVNv9~d9qCLST!8=99kbR{n5heKJqVs zPAC8$+yom)ztR_B6k{1a+$uy%Ibh^gTN%6*U9;x^%}$0V&;&?A$blGSpnbT)_5v>k zuPALJG<2lgxd*7eWHO}+A&g(H$qyokbd-MF3lTUP|GwTKQI75Y#wW9N& zR?G%YQOZom`z}g?&po1pj?g*0avgk2*xiGt+6k4%Ka`!8V0LT&cQ4riQdAKtBgCS0 zqSDb^BYo@WiiXxS&b|TkV;F8Hc-32r&hPdKYfk=&{uu}Wy~y$AyUg^noMK}Hyi9L3 z+b4u>EpXIu$hZX};$Divz)`)hi_cBL^)l+;>4bM~J1Pyt4M8pD^V6<9IXds;6=MZT zKg8eH!jX9Bbi<{h4x_CDP>{;f@5y%*M*}DfaHE6;w;5A(#p&B+5hHuP{b-r zY|P0-Y`5Gdas!v>g`yA)}t3=sAy#3o|2Lggzs3^~3hAn*b%K}-k|V{@9h zUb;h3de3Ga>QOgp2XX89owT}FA1;)^q0Fmrja49mIWSJyCE0$?v{Wfr&R~kc9-0e{ zOFFH|mj9pkjk-MXC7YH@d9~)>dJS5!++nZx@?qBJE#)tq>4SY1mqL z>9M`n^vB8hZ@($ypzMuHz~Ukz@7u}s#-4Y$w%g?S?Ho39%o+^=>gb(5V>Ty8d%1)6 z>C>O}sO5jKoz|i=uvrh6taIprOmTMhep^5ay<15p7Q5iP-o{WP)wPz z(+sptmEW1)1cyF2pRGgqjNK)+(C3-U9l0s9Fqsd)_dHlk_~qoNY{fg;FX>2b$Q~xX zUM!~suf$OOKGT#vQ$jS11Ke>iHR6Yh1z19m)i+=+tq@h5lxTP_4<6e`SRZDhe3^=T z_32GgJ?EhS&9MIqn|qwO+%)g#rC9aO^#QFk$%{Qqw}jcgU3~VqtG6wK*M+hdWMvN_ zlfA@OK1N(oBBH@abd``s69zGmVc$a(H#hq{GI91k5GGU;_!;JMgi$#{FW>Z=7^OjI z7lInjM$O#pzlOx=u+6_LrRSy<+i&QJDGMr6+G{Crd^SX>j8A_b4Qqbc_dP*8=U&;l z{1;wj^I4nhHHqJ8=;(+y2?Nik^QeRyv!FD zvlJ+3m36EyxxU@wLW4);<*YRcpOdR_qIZHI^ag-l$dy_~gD*%Rb3p;%;Gj5~CGDf^ zv_amQ)p7$M__V-!sr(&Vq&IwF)KT74LaC= zz)Zq@F;^HW)EmAkkCnL3f~mvA1`i4lcxtBz$>+hWqW->rc}q>Q`i49D;w1UNaa~ zAlaP(>$Q0}adAWw9U4o1Q}hy{o#D7&GG% zvVVis%DPHZ%7h}tl~AMO#|VEqLeERMJ3w9pR^Aj@cv^jF_WP%)4+Rj6;<@1m zO+ep2LD8bQS@tgeaqNNgd?}w@7>hWrbz=XYX6ynWP4)abEog-?wOkG!(8;e`xsN*oBe)03aKmQo`4L0z+ zHi2beM@-G99h+T~Mu0=cVYXK#O? zv(ee4%@P{mEd_9p4eD+;i`}-_OwHT_2x#}wL9AiY?o}w8%kcIf&A~z^=LtE}z#(F` zNF_F{linwcPHY2MY*DF3=7QaC2$6XB=Ly>yyr49T1)55{0%9Nz4N~Jk-0ipX7MKDa zblgUA7bg`eb(E@qL>vfAK&xWl?794IObWDe5HfTn9}>FPJ84Eunvx%m((k{qz$WI* z+juN!3|bdu<}Yt)4?Yt!6%5XUfp7Hx0`<-5U!TzmrS7?rUnFSgh=Tqu0!MD#OOaPq zP`R=&HhVchd5LJvu-l1}-pcjF>(1i*YlKaUg=g#EfK4}IB!+M|XfVSzv_cm z!Y?DkfiKz6LJ>>{G02Sygf&(tlyxp)?DB3x(W6ZLrwW?Iysm_U&&W0E1D6rn;~5`) zN$uFLLX@%GhwnDQ(6Hz+V$aA8v3slk8=H8htKOP_t-Q)HpP0%e_8JiF0ZhVsNMc%r z{@mZ|e4Cg#H8pi zZVf`DWcWC{;ihnE!d~Oc?`cj`oQDqs#!56am zvUXg{CblwCrybW$NDBfQUh_5z`ty~-FY>R!{seC50`i~TOrV)FS_&N z${9ims;hpwjB#Fwu#`w}`A+`A#&4^b^~?LG&%zjmISonxZXaL0#ZRaOHKTd%EfLW) zHnjuxK~3leuoI)1$ciUhhyY{bfL036TesRnl#`imC1zSKqY7zB%R{alB^#F6LM z4E`cFts;(Tt?~O3xt_4pfZP<$0jpP7?EvQx-kB~ei&so)js^ucAr6_x%@srFcGq=* z7!((O>B`_ZFj@ZbQ}jc+_8o)R3h<0)2in;hV%v*(%N{B=1~%KQSB0iBb)KR7njzV2 zdf~gN<*c8pUFe;gwk0(R;rTfzb*Fn$Sp&FZEEeqJts~~~0Q;;QufDs6a7ByCslSJL)L7J?7u%;p!Q+pyYX9iQNqSF4TmoFpkiv>oN9uoBiHO2 zg!>MV*k|e}lbk@;dxMxaw|XMN z1SeuAqOy9Q2G5@eT@FmMEFg|qBFLD_Rnfc_)0!~;`?m!^pmsYR%{QnNAK$-A?7u+r zu=iMNL{$R$EWPf=vnG?wy6XY&#qsWl5(PEeCMe**4aseHmyw|yvMTYF;mE4?!96ql3e}euhJNn5b4)wxqg!>Hi1pH&6sxQO? z6jo6Z;5G&T(2@97dZC>%ME4#MZfiD)vGJL^hPp3ayx0PLjsr8GdwV~oAvaNpF!1TQ zO!uC){A_EFA4^F&%F_!s@*FK`vimQ8XtB$dztvmvX}$rwO0jFRBl$RGxA`1OW{|_13LhW##6gqM~pBkt~^oxmZ(@A=!tgJhsC$8dt6mmP?p<3P1X~ z$KZgon}fpw0hOY-Nli=JWl!00|6onQASU{Xua@sVO^nlFfrR+xOZdmW4xYWNtXv%N z)qi9a0i(a@HpTi^T~1#r4mBysGsCF3TjDjGA%tw5It3%Ih9!{a+Lk^$$lG2TLZGy| z3B^yj>*E*EA0?A91z8_2v*&i;LUgZGIg~7i*3qywTMM^mx3#n!NhOLpkit9vxc1&z zLFW)t*sSZkKXeQs507yLc{WEYbzg-QjyGWt-r8D%k1L0=PGxWF%E9yO^|ndGBYS!C zn``D2yKgtV1;17%CXHY&@z`?|-%fz6da}CSrH=j{u%NCFxd0!9Fa^hK|BoM)B_7=? z`cY&xa@5asQA}TQdP{D4lPGBL0mBA*c!U)%U3#Ylhl{3a8T~ee3Xnvt`&q>m+n0~= z^6lBP2XJpiP7ZJI2fx@jiF<@o=iYo9))-#-ix)qDL%X9?MI}utg7-t1)8a6Vv^8Je zwJRR#=ljc_ufbZVRL1q(1p(%bg=Ei0O7aoPjXaeL@i;K3_1#hVv63Gcvf5HTCMw!@ z<8)#0@BoJ}d77%qV=hk4X!pHk_qRA^vDNaRtXLl3oUN~l(d5Jg4ehLr&ShmG+o4J% z4$Jc5M3!7MdRay%-FK|pKtm3Z_3H>fs-WcmJ+y?F_75Lm0^ErPX|SfyRT6RD6!lL)Kmh9@$va`w)6-bWR&l?0 zQx90j_34k?%eUEm$pnynm!P;mb-?wggzH(7dicLYhlk(FrQtZG4fiofVXIabw~)C( z{JEhstiAgti&UE`V5FFtHRZJpG7{>|aUoSQVUwPZ5k(b48t-S(8!rHKs~ zu3;~>oyCy8*TpdS9Hp<5P>d)DRPp$dc|u|kymMh@nEyMC>(8&Qx1@XPQT<|mdG>2U z^4R!z;#c@=m^>7wf|riDg`jo|E71}ld$AwO{|L#|9bMg+^t(kod)O{tyjW!HCV1qC zkK6Z4y?8v1i5KQ*rOBwt=;-L6!|}J6eXrMz28XMDk4D4(wUu1}Rtj-}uO)>R26wDEG z)=y+zU0tg;(kVwc3!INCOG!yNJD2h|GOb#fn3!~WGbjg~^re!Lw6Gv{OIKA-J)FM> z6m=+`QG3UmuDrOLjX^@(4_$K&;QR47TKb=MOX_3IkT6o6gSEqec+Q_b-Ko102lW<2 zcW;Bvp4p^S{m^Kb5oLJ%t6qPevsw&{H<&5;_- zzQ>$GLqq3O4cu+d$;r$6r~moD;3Xe&$ivXFzz>(}RmAy8#0U(wl2>P63wTniODR7s zLaRr{E^BVcmox9?d-B*ZMOD>OW4?=LbEJY*DpnDa#!~oSQR7BSyfEOB%?yi-eC;@? z%D-ju{yiZ@@9GNgW#qVd=-}rZvjOh`(LK~=W^P(!)ME$_=T4kBAuRkwcZDS-KqWnG z4>x(*D1T!x+n@J~hpR8Y5dZQ1_gCM7{XEuEQeMHYby`|lC_cQ(g%bm@SN`I29-WpK zi;yc+%Rgmu4zK0W%JTL1znY;|i$7SJhqG^tZ}ZjYv=r>EyBeZI6Xdhcx>R3$NE#S!Npo=XS|)A;!*+er0pr); z=rg)SEPXBE{lF!qbKWDTxYjMIVcPzrp|H#M)?7|8n_dGP<$L#2UFrrlzoj@EiutWECLfhKsEqqAqU zd_D<(yhIRn)q4Nj*z4-*XlQ7RjEr(_?>GDfcd2QnWRu`N~iJqHTCDjl$Jv}`mpwkt zs4Seo@*+^rE-Px{>BA;>pmUs@ay$cRbx2?DQrIaYz_0&5jEDHhn|EiZ3>mPNZw`pcQFo*Imh!8 zuCl3(?8eKBjql&f$;xWCyr8A0mz$k?W2r}WfvfaaI+6vkU;~(Rj9l<4urI966RV6W z(d(C$m+unFdR#J1PS2xx0Imu$L7X;ZE?d86PYK*qdy1&G zOIlf3L9<+0!Bv4f^axSmRJ`@RGO|OrPkbs^KUIatx8U~uf`CA{r(t6vpU*p?&nW^? za;4b_M;O-oBOtM~gt8y;s=xZUGEWzJp$wk9o;T# zS8n4J<_18h_IT@Ark5!7I^~Wdj z%m&K}(;aC8=P!AA>`>KN%ZI$)YAfgx_#% z6(lDoXLZ^@#>P}*F8=gNyn1cWuc4}SfFG0UhMBmN|F$-5%SLv6%|K|~!LnB!?*KQj zN`%?pB6t;3m5)msg6cw9>YkiJza7^3n^9s?&4JL;5;h8eCRZcx7kLD=vSUpN@m`uRXkk_esv#!pj z&V$frO%5H@Zj}Fj2Zc?u8zurzCgwD6U(M3Y#NC2xLn?0Tl+~G$BV%V9UZT91iDfI| zJ9EYXH=i|grAS(ITB9uO@LARHL1@E**e*y22z2X?3#qHCi*)VU$3&{Z6{Ww|q!3d( zPi_O?xh^g3E%r_a&Cx)KCE?$T-eKULTI^~tvoJI(d5((-AEl+G356M`YC+qf!D`nV z?7mc~a_cL?uhmC39Kr^kC}Obga0L#{ws`x6PNFuVF<8qz~q z0h+PHE;(AYJGQ6a-5nO<%=XZ6;A-8wcNlw;H*)7G_(68yDVo5(J1-AQUdcu;_w@e~F2}!7V>|frk91 zrY77!!fyPIYsKVMFU==UpT>*3E)XVaAt6*uOm2y95HGccL;(X~s1H=`CC6-BNUoO! zN5t?LCbraCI^GrtnspqOch3L!T8os-FYA+f-;cNLFnc5U+66U?@P6u-h8SQVzVDGj zZ^2X_^Q1x#=`*h_zsyX;+S+ub1gxK7e)Tq;AR5ZbM8szHPTMUX+g=)OKx_y=FJFqS zA=+(=rB9zDdCt$z<3+6@aSs)nYy8?NmUtSY?;Ak!eY34QUe@}xrQP0b=qYx0M)@z! zLxoxTvNZJ$?qTWh-FIYV$kh2H9dWujVYW!S(i|V?sg??&>BX7bA3#r|UnD(HSXij| z6NmzhvD(77(+fPR0sjGjnC$rC;Xk+Y`u>WWjLgC|;y8O)ebSSsKcIV^0|^;HF;#EC z?FY}d=}HyB3wwGT*nMv!i4e#trm+Xn0boOhtb)R;B1B8^g*ZV}+M}Nt4O|GT+L^ts zsXP4qlI~#l4&lB8J{NL)V+8kJu_ra)LUN#rKoT1r9YrJH0>HBkM(^?r0|GeQUVDWe z*ZMu<6c^tRrVt@<)70$7l9L(OmEqdxSYBd&dPM5U*+mbtEc93Th;N35hMd|*&+Oy$ znRx?@b!vx{t3-mEMh9N`Ig^hE9G>_83Yv#?z5@gV1b+g`tDS3@u)kB_R zuxdOY>TnB(w&2tg%L5D<*I)Am=A?)a)<)4N&L+CoQZ{c+^-_S8{^t%&F^q^`B840{ zwuf?GHiCG=;|3To{sn7%23gatG?JQ+MDk45NuEemFtlw4YL}nxu_nOl~cbLahzcU}Cu~Ff{}WxDQ249#{Z57qrcJs-t%8 zfzR*;Mtr+)eZ-;pBj#Ii*fONKRO1xs-7r95Hh`kp7-i4?IFbSP87>NxY@{E@&)@_g zkJtm4Y8R7y6}p}2sT$}4_8j#M@xF+T~$0TOE}o~ib^IlG?2 z$CZqE=`U;NK$nDK#Fd$bFfOQUTq_`Bn06L!qh(-l1`@alY`)>l+=et?z%mXnp;gDV zQneYlGks#)rQPn82-kbB9EgBqiH6@5DjQ>MVqBP(A(OoFPOIRTGRK6Wu2htxbS(b; z#NJ!bNT-eY zb`m*$qvg}8sC6$m{S1%x&e9{}kJk7M^@d*tvBL;4*)3j~`K8C4TOx2-4Rj zMLb^zR|N87WMimtAQ~jjZs_;9Tj%ohE6^t~GBXe0f-kbV^PFrN@b&dYz+1R3 zzJK4oRJLc$r%#_IY6jpu=PfZ33oTxQSfBNwYxxHEhTm>yk|DAB`ZK8`5>;diUs}76 zRd0tb^E7O2jo`YnbLY-7e(_f&J)WzbxSu!c5ES%k{lydxD!zF1=nW~amo8bdSAOBuzRRATTbQMM zW(W}vHD80S<$f-6_2bi@kTr_;L_F5y_QFJt&y!kZeZaA({EG&pCdbDKPpqbONW(?B zeA}=@1i;Lv%NItDhggrBwsDDy9&B$j*wvWy)G1!nG0py56qBX3xertR)m)~&flLi< z=VK)?&*>~)ESd$~dp0??frveW?G44kzgkUy52J=Twz0bE5_2oJC;_;u6KaI%?^t4j z(W5Ti>!k7m%D0hHGp#_A92Bv8InS&86^MP@pR|e~^}@NV{dL43vG^?h&b%8$r$5my zA^cvHQ2R?@Cot5u{+cdL#^@=wz~M{fxn056Wo-b`F4((BV1WS6^a~OD?~srQ!8%5d z))G|Ba}2=k{cLpatqE0i&soE>Qm%C++vmTc#v~MM0OIe1oFG_VLUfV}W&mW9wj)Gy zBkk>C=V@6sCiT`FTn~EPu;cCSmggPEZ(L>~T+9es33aKM$;T+fNbl!_EDs!^f?Mz* zu~Ix=DILYHgU5!hW?o6f1ww_ta6nC=-i&$TLK2m8Sgf_iT?Xk#+tN|IJbAC!N*HYs z(nQoxC_o(KZ@o~CKll83WxZpA{V$SI>hK+hZ`!*&aQ>}l>dBaR2FYGvlHh%Sc^jq~ zc+9^i=-KzgUN;bfj}Dr)=^MKrqAW@DSmCPi?LXZy0!0hJ^IgZ!GN0w?C(G{})p4OwyXU1Z<5V~0_weC0>q2IJa8CTUxXTj+Tt+%N!Ymm;Jhy6`i0eX% z=t$uc?_IZ(S*|9{XbTQG!Yg89!-Ll11=UYvXoiGlFaMlvu zjp>JFi~tau*bvxU!-sskeb4dpw--N^Rw$?Vs8;cb=arn*&d#>x=8;aTXUj!560P&r zB4T4(X!|GH)aoRb&0gs{IYL=U$4<9GR1OYRX>N$0Ge(-{>075lCf1%LuQfW8MC+r!Ydi1lagTV2A8y z-x&Yx=EEi#Bn-y-tqjk^eb3vKHvLMhuh68Hc6n$+$?H3JwrQv1e-2AsGqEHI6c$BT z(uRnCceVPUj*bp!AEfFZ-I-xw!aq*_op_reTiH1y* zmh(JnqBeKOn?oV7v6r}LEq17u5bGikKhK^$+ecj-W+v9tZ#4YO!NDOEpToLecF}AA z>B5Ye)B75Q*x>ywr7xA`$L=(5s}wCb(GAdbnwln-I|bKkSK`EGwQtP+E7?_I=8O-O za(YLRm$-I668ah@@Uo2hesxFj@5*n=8JWJ*bPsJQm5&=B(qF$f6iYJtcX4r%oHx~f z0{xOT{NT*Z%}EpV)iUSW-)}l)QLQumyS%Q#q&E0*lR1Fhy_Qb6U}*E7Bb1sbg{CIn zN|TLH2YqE(tyJqh7;n!&nSFd0V?zuQ-Geuxr;^Wh8R2Csa_y30VLKw2%-j`J7@OD{ zT=dDZgV~H5pX7;&Hr6rBi_f-t=}VKDE5vzu42yR0iHXIM`8<>9+5LemY92IH7r*ds zXb(F5Y$%_Eq#1S}B;^ixTKvxA+2;qULefkdG}cU)@26OgJrMOav=X$2TP2;!ne#K1 z){b9UdV4OMKfWuMXJq27Rgmc6u<-EuiKt}K;;?#?sy>!{nb!0yx~@39|6iC!bGk3)|>_8pVNrT*1yy~SU? zbiY32r5g&g@8vuyBp1A?7WpMUSIapdJUQJU1J{o=D z{uYvJB{n2}40R>Hr&s0X)cp^=vj+^aig6B5wojxM)xk96u{{PMV!~b@IEVTYx*w^7 zu8;wM8L`ei>1$>jU7!T2YL#H%p`1;+^cVfb-Pxh|dcq?VeG*x9*h;|G^RO_PFyIT= zhH3QiY=EHw2kp-<`N89?aA1N>p0Tm9eck(MT4!uy5Y~fpDQcpUp8j^!eG7>3U+@3h zd{0>&CBxi%f!0E3_pGTw(m3ixOcR z;A;8lVoI{8iq)K*h1^KkeG`oC$TLMpc1W*Ec+{dKpw31+k##jU#x+wpBs|=gLAs4_ zOYPxVml`K{x8)G;igbEKK7OGPaFjH z5ZG_9yQ#hXg3H|DYG%LS1zFaLC#=_{l#cE;yN;(REhEz|nC{`*9(q!BYm`^$7CH!& zUxX#B-gM>muBd+L5OTo)l??J~*ML@7OmHR&{j2`rkzqfGjya`l6K?!X%iz;0x(@U5 z?)AI8cV1&m24DSg`F`g;Y_302Bas!~mtMF0{g9y=CLq(_alD<-UG(%zKXH0bPh$~k zio$DR%;crsmn%nk^eGE>Na_yybN z5FT&6RV|0C?vPD6)i{GbIHb9=it-=1-H7#VZ8xfZ@`J;H=Zl}sukOrG8 zGmtA}4<}e-q7d;PG0|@$wJTUOe812ONKfx~m#1H7jo0>O;Es`>pP}VSNlPOphKL#l_4)h|AFbKj5N=M+XP>9j zpj>?w+ZKPSl)TF)0Tp8;jLb4I>O$+>qn*Dgtdy}or51z<+GIeXfrktXuM61>Htkk; z$~4|<&!<@P_H*{$nCYEDlQ0uY?W=5cOQgCed|ftJyUdPVtnQ=HxlafG{umt8i}5YL zc}%Cq^L${BrC$iQuRSsnBFwO>v~*p$`CH~Y%UM*?E+3$>#k-(7ie&ZVj+fms&uBmL z=)d{k`^0iI_{N^>Y7^u)x~Y6?Ri1+V5{@N;OiM>G+t$vLnkerk^9|(u=_}kmlO-bf z?mX%1gZ#_c)N6@jw> z7q%$PA6kznIXgRdCX+Voz#b|746!pTlkP)0%3?1M*6+y|0DpLk+o(D!x8Zsxr&1y& zzFv8i1&4%$7==ddC6CL#MlPr#_)lL&v2#(5Hnx@hbKg#w-?cV3n|HkQ3QOcFy@BEu z7O!YVtx12!v8s5-&vE7 z#46kuQBm5`Z;Z(L2v5afgyYAZ9IHJPrL~uF#Qz|kx??nMK8dq<-}(}u;Vl@TuEQ2E zFn(#6zs=gGFAm9T9%EYCuWj@@n_G;)?VdEKjM}jPuTqh)-d>_bCMLXGy2r-Gj2wIA z63>_YssUI;=zI#zT}X1BUe-=tnO4YTwxa$Gc3(J9C5OT9G8RzyTAYOd22FfK!AR=P z8pXXAfVv>Y!V)&p=601GWo6hssm7zU*dIL|nSmmi%D{1^$&Ug38>7qskh~&5b2LO` zUx6MY#2F<%pJ5Ii-{W|HKU;m&VO=vsFJ(9Upk#%mR{_V55O)Cs^;zXL3?@BnZ4xy4ng|2$lZi3S8P|HV_~sXL#Fdv1v2z8R0W&cLf}XYgZY z$MvV2^;zLJD>e?;k;FdOEj5yysvoKTg5r0h^Ro>??T34PNNx2&U89ovx2cPqDch^| za<3u?6K1zi2D}${8Yc5(az?oaXZLmD-Q#Qh_h?RXGy$GUE(o*j(G@d%m5 zgtRcS&8A4Ka6iTZpyq3j6aCa`d>-e1jTlG)c1tgIe1QLRa&ItAc6WC-A>W3GYCNE1 zrS7H~*!o(}kxiI}qT(Q_DY@OkF!%#rv7>Fa2PsreZ(zzWPE>c~IOf8L#m$Ji$`rX; zHSfWp!_HN@^|kfGjyf0fn^h6ocX3n!<89RyIEbf zd6~YZ+9UDt^E*QA|Jo+LBun>xtG>p9?FQsFyLcVVg7b1c4WW)1r?y!9 zlZtFQ__yrPM!GlM-ycg$OGt_PnWZ&ywKzlL<2NxVyNQfmyk5E8dA#8%^AD+|BX|9G z{baw2pPNlhV7TOC6wB*dz)TRfJNz6{w-tm!D$9D2 z$O#++?RVcfbS!E(vi#TrHIO_?3B1}BNh&ZtWxC(sg2VTEa+YDh9)kiI{(u>2e&W{} zdXDTUTO;&D*eX7Ajpq!3w)(DB?ha+iW6#^P^o)ED9oL6tRMWOS70qCs2_(AjT(mXi z4GCPl=H})eo2 zOO9-lh;`VS;oYjceEqOGl@r3G-NlQKOD={#3J|3p0`>*T3o&T?YUt41@&6?G5b~k> z?ThR+N$4u2nHhE9>)kHET{>QwuwW~k!bA)J^uifsJ>VV`n|LTia;02Cs=q-hHe4>0 z$DyUJkWm*EqJd-pUqn49m&Mfkc;!i_5J)3eu~%liDp_ zPnAyAkPa>*?)Bo(nrKL$-_sLAB^^QqB$lO)Ko@orSp5>wsHZP=DE(Vk#?!zev1tr`ke6mauP+;jePuag|%m2xkyUoNa^J3q^@zfVl( zyRW_3FIom`nvfr_LDOZ~CsS(sE$G5=TE+qzi^=581fTPAlz%!NK&NMTw$hB; z9lWp>>0nyGu^1w~&U~x+7Faq`GL;*p^{3skl-a=nc)88c^qT{+Ev`o0%^PYj zQ-q0bWJczV_8&XGcn!t?RXLc=LkBL;DH!<5DQgqL6|a=nEWnU}Ki z#l5gw1_cDvJy2l>r6eHPJE)g>9L!(g(d6GdE#EG<{Oen|v)9*`T9Z`@owm~7A84E{-?ym26R_;PwQPRZo_d(&sUU6Q zlf|8P7dmp}$noRNx?B7Pvm&#n^vPXRB_JLp1jG}Z{EEuTgO#qY4w;&V?D8n*XZ%JC zhsd>eJ6jVEpZWpap_C3Moad!A>GR?2fb8OAer!xxc~UOlCe=oBin6{ckp7$nXbK3j z3L;3DAC7wPfquBPTz;`vg{td-@7UNaF+Q49YlPkTnL9Esv-u1v32{}A!!}9XF4ozc zUjR-D#aC4F`Si*QX*n;*fQfAp{VTQXFp$sUC^2<+qYgFwkpXRV~}voZS>1N=;2=cdaU8 z%L&B6BvfXRw#W8I`S3?aN24`8V_CUve{@vTR7n``_88L%1!!apKQ(c#=SkfOllIw2 zaHzVs?tJFcuV^a^vWS7?`$wGFc8tIOny7#4_U*#-4OR=rv>~^9aTE|6f{7VkZsXZ5 zjpotfMji=~ieUAi{7*3R_6rbbRNE=vS-QEs`SQ-v!h$FHmC9@NeO%C)yfJNOyG+Y0(Q;J4xwqr7sHzhsn15?TDC4fqd6hW27&mWvO(ju%!R{s~u@2Wgi z52}G*%b6R_k_)S4-;PT;hg(+D2G1JbJK>h~>po>*lQQ|p;s4~6d&X6^NBwqk$)+}F zn4GJ~aAlheq4IYADBb7PXK~*v=+7FMSnpnEj8 zM4R-%7USxIJBIt$M4oGZq9j`-g> zxASlQTBWh9WurT(gZZ@7Cob{5bW}nhz0dVH{7}b_WMmw>A+2)T_*WCDW#9dW`VSJ) zuF_gq_FebjU1jvv{+yxyPIoS1ZTVN&e(`zZI6tbS91Y4#88`Hf+B^F(J+p1#pOutl z7us0o=CYB_*gRmJ68|i|N4K5536!c_s{T!*D=qwq&QduZ#mtXnq^(O+@6;w6BKhRM zG=wbWR(Oftqj%dcxUb}pQ?_PY%V(wen)7GJ24$>q1>b zCH(R4yTQYk3dEgn34T+`@mSJ;ghB3;WO^tR1H{2uJy=hAZrfMmM$x<5TcEXR{bBAr z^@=7#pX`E4ap#9gU5enhcSm;T_(}S8pVNQzPJxey&ghOc#7#^>R#TTqI5;?rjExTs zk@C-Neo*H>%-c(TM)bmk1j_fcGy`s}j!i%D$iAfqwo!aj=F+Bkp#f>+TKBe2I@$xH))?eZhQX3=F;WM?HFrVAT)VyHYD*_Brt#t z1}JtPM>9#i>K8C{W)GQtWSerb;W*T=PzY4VRf5Q z2e7kz^o@`Sp_i<**|w_$c#m_Ouw*a+@yRjjk2wv%)?GFI-PA&ySpuqC7RNIGn-`VL zX<~P&oj0SYz*&$1V-7;l@`j!bdB>@Z$}hD5BUFJux3WL*_TFKUc6xF`%k<^GTSsa< zF?R~}q=pOu*jG)6Lfi)m^tjsWxTnvMUV%X1h*p-Sy~`bc$Qy=JR-KB~F!ce`kcpBg^TD#yA37|Lj~_5o z-4Wze5^<<@YPvUM#$!7XTC;Q_5HFszWshfL>9(Ejc)6>)p*Ew3kqnYvGhTRqC7&A;mypXsTbF^`A zB%pHO>-6#IsOUOgr_}|#4wpj~E1H;qv%4h@6^G{4s|>-_aU{PFMIF}-efF$2Ul^w< z@+5~AWG`k4S#$BEduAblBy09LgtayaC0HNS8Ax6drgKtOR3To4Y{XQJL{V7$x`|0z zNfygZE|J3T&T(5;cPP3lDk+HqWeEiEYKzrAcNI7Rcy`)()_iNR^|pmj%}kNKhezRN zJBBs$`}+D&8BR~33^dlr{UUx;NXQw8IA!`{Mnc7bFMIUB!SMoxeJ3g%&jhq`P`Uyj zSXJh?;*nB4R-a~7+ZBA^bX|qUEXuP%yk!VVVvox#JT6kQ5cNFx3%3*#@-p~@9dG?6cradv&YC>2^t?E00dl7IS@+LJaj_J$rHuF^Y4~TPn@QM4S-AMB>kj!~%3lk)KYsksR-9eS=Z|XcMxh89fcN3iv}U%& zP=ye7x)69aVst@8S$S_&8iBVLafhgLnHdJW>gCYep*SBUGPbga~HJk zzXJrJC(Ge29>8f;mje%f3p9{t6Z0`~aV!i_zhJCm<~@0ER0vuRJ&ZMa-4{75Cgu*V z_yEa6(?kS*n3(y8!xV3~deU}$rj?nPCe)Kj6IF|^RdIf$j7ANox^b-DigxE-j~pCA zlQ8kr?C!4~YrHxG*(X&(P(^%rrV`Nl1tTx_af%Ge4*eVpVVC(>Jdb;hc@>|NjhX`j zv>xnD7NM>nKk%W_IKiQT;5j8n(QQS1HyK<- ztN+LmKt(z2%P`Fo8#PH#P+*iM@;wA!agLajYRzVqV#zC?h~X*y>K;;zhVbauM%@)( zNcoA=$5JK=H6?@-k1mY&r%4>cD2Wm}ipCPa_1(kMU*C7@F$rz|BbyNx8j3M7GC}~M*7>4e#`pYy zx7b|wblLtDM<7}TzA+&XTsPjnp23cQY)o>9QZVH67%}q(R^MzJHQkyBJq8Ewt2wb{U>rWnDL+OS7^5`>7o z-h|y-gsom}R-M^Q`ajebauBp5f8s^gad7>G%KqoT>wE7-J9|sIg2RBI!ttz9ByRGEfS8bw5C?}h6QD>H_udHLTtlCHV!Qt{UK*Xg zMBi0}7Yg$EjAPdfv6K-E;b*52>hT!9kGo>T8KGF&)*q2S+nmr5GW zGm(>NaA?nIFiX+c^ ztdjX`*B=lROLrumTqcalJf7bx3QNO^kNrN=KScKds$>;&wt^T;+3M4$PXM^d{jVV~ARE-J? z^R#&^pSx52Cb0Y`MG^P^Q~))?`DnTNi`(~@ydS&` zE)1;{;8|hD@{nC&Uq#Tc7>Pqf&d?jD6E&*!P}jp<{MQ#@?guE4y4=3`CEge=fjhGO zIlp^Xs*6P+Q~>GXy^OFQxA#M!ODLq2>9K2&5`vX zpJq*bAz&W5xLeYkaGt=@6>Joy*dsXfB7$lW<@(sfgsv?Qb?780w3pWwv{sfcR!3jO zshq73pal$Lx2T+nV+tOi2m+Ek`#Fppn!3Yl;iAx|opz;8ey4ZlD zIT8!zrawiAcA6L#8Z7>dN#sh<3a%+O1x@Lgvwp<*PI<%(f3WyINX?_p5XYWwJD@GC zqJ=!y4lKj-)2ohtT<@=NzQunJ)>`^$OY##n$tLH!9|YM9198meAwcMh{45!n{_S-5 z@X}ZDi*JW&;C7D){2~1#Q^QL_UV?wD{=!`QS85J3g7m8U_i_S)0iqeVzdFiVxoVu~F+*N4S3Acr4Z{KQl^z_Qxx+PAr;sh@Z5=7=X}|&R)$? z_<0B?J&@cwW382Na2=Ms8x zk2cm2Xw0twC^MrErlaK*7EJMdC17TOphj#NgR@JRnpjBhvU>AkA!@hK&?BYYA94U8As_xknK>U zmgjY0>=G%$)n7d8#2&A6aUmf$tEf_L-U6u#xs_ybh$V~t-lV6RP_Eenmo{eb;SJq& zI^dOz=qbraUNMYFU~VP?8kwfHBG^9Lwf<_%Qq$dBp2M{ zrIyT%f|yF0^J7rQp}8A?b!FtlzB%wqN?(8>az-YxnRC}b?%?CvcIw}RtQdj_vI&If zkT}RYB?~_t{TNb)R&t+Vs%yG&NZir0d_HB-mx{>+54L$K>^C(riTFS5UHL!N{kN@5 zM~25x92t)(L&v>)uy?!2Rjz2e10P2T-glg!>$!~~T*l5lH1q;kR1D!{*?C<%(%|&9fdAHm=p{Vk!*eECW z8WF5#cY8#8=FbpJfOG@ubYCYLsHM^Uy>@e&ae8u}O_n$U5;8QtHJvXps+GH0UfFhj zM#cE(e>zr;^+^@R`@-M=gCy8zKe3uSdugvGde1l)JmNao=vc>VHI~iQVM@mcj!-bT zzgnuipZ9d(D!VUn?q8N=4pZA7i9Y>Klnmv`AW5?79nYChKY zxPd8m8LPy_goK17B@fB(ERV!1tfceWs00m`)2+8LWP*8DO;6Y59qTBRrKck|P|7)PJiao=&+Uv$paN|M0Lo_! zr!Fog23ZKm$jir6b%X=@ZV@?kBf%Fmdr=K{Zr?^dSn)h{TQ;*3)L;yf&?gwa=As|F z&WZXoBD+(LUs8;wH$_bjJ+E#7@wDniCAlxQ(9)Vu!#|6h{0_qfHuwcJrXBECbfAXw(fT-C)no=RX8?`(*aMPm@@Lx9h|`4i(Nl2Z zlT4koH6E;F$!QryXl?0>E%WFQ6FM|lwYHO&Gh%oT-x?hqQNzeeSH9oz!^1)I8vB}u z+?o>@Dyl=v0P>ZNzRvZ4#>Ph6G=P$Z0yVm^=w1T;#>J5$k2`zCcA*@X4)aECyt?}g ztGZ7E7xCSK+?}jbV7-uFQ(QFLU*!1+ytRMaCfWsj*JIZm24s@{88wK58M;&$?9wL=n9MJ!?9TfmKm- z%0)m_8F%VKvV+~qFA98o_l4zgw zb5QDiBI%pAqf-Qh#^w?=>omh&O{GEYfN`sL8(I%yd6Nc@N{rVNWHt;eNb3e^swefS zO^&zXJt$rGtK!ywn!zOc*!#VwpA=m=+P(dWZK^mJHb>R=`S#jcPG_-{^6GrhN9aI4ywn+`-RG^7=b!h?dSz;JUBk1|rPm0M}9d=V*i zu&X2`!?L_iA$+e9_&`zM&<$g+QCN0avoQZ#!Z7U3Jj}ycY#S_Tn0li}f=M3@1Dr3Y z@wUH8AqC;sl^red7Fz7~Nzw*M7R-%WAUT5a13AF#<25VjMyf3st&V_0fZ-*2ZZf>r#v(udA0e_~MWtqCHEQ7zP>n3z(H69(KE8u?i79=Ag0t00yE$%B_ ziFC-xjm+;80`BiqPHyKC%c*Fo$cQ8!Rrk-*sE<=Ha0aUJmeR&VTfbG_GIO zl8fQ?oD?1ZSr6o#>F3%kM_Tut6X@m}Vz42}l z`3!%G!-ayL610bmPyjtWLlVDtk@)fqt<+zD75i!SQu%PDoFZf&&@U3EvGLI#xMWqG zN5ME~RIxt4Nj#_B(rtApdZ3M_11WuE-&Zb|x34V{?~uQl5{&-6x$cBu*5X0%#brd2 zn>72x?h%gqrq`f$Vsr(uvfQL?hX!$usE(l5aj|L8dg|^?nl>9LOiu7LGZFL-Fkt^+ zTUuDwi_#I@T{=tF=(^|=#Btm__#`J`GMth5$Y7@i$LTT(DePQBGw*R+5QPPFmF$dW z!`<(E1j>i?&J=8`-V9ZL6hAU#I9wr+dOuY9Nutz%UgqY?at67P!C=kS-s^EXyWKlf zx+lHUW5E4Acax3Byc9=#5Y>$H$&Y^i+HXibGQKzozpP?dfAYx~tLFdqgE81Ziy(aC zFtKN19Xx1432Eid%0Kc(?|y%)EGs@dO4Oe}#9asy5wK?+8WVkONJuwOV~)?V)`+OZ zJ~G=lTIf)e^F~YaZ_IA8Hymg;^VBGiR7|>GGxtcDgJ;!Pruql2k}rT~U|$Kc9fvsY zWzG|Ok?E#2{2ujrXMQnO^+q&b1`jcV>A*Jj6AKl>zruoYFb175;U6QB^XLm(|;8U4Qh|3s1-=Gwa+3OlJz!G*6m$YHexg)^gr; zCzRTj{J;f~3Zs3szk6KV+}*>#a2yLpn;MQBN#`_Di?z4SWt{TRilsUj(s+LIP$vxs z%~=NARRZ(weWIqaGX~OYY64k^04+AVUUnh>`d;YlDTA7gO9wRXDK-#x(8@dg}A512Cy%qp$HL$Z7UA!$uAyJYC z;xOb4BELlXiEQ|biz`cgza=V{QsKx*T&yxLu%Bz8e|nOjRw}&E1QrnCONOXOVE`p7 zIj&Sr7&aIXxnmbu$>m1QDIdGl3s?;}__;i6G09;CuQN+P?0usV7jzf#Rr~L3#%+;d z#I042q8GkjQ16~#s}wsw4-d!t&CS@vyAie;cU$GX&aK`31;}GGmsp>Sj#7JG6aw_clPs|8s3Lx8|1rGqGw*vZzt|aX4l)xlV4oXF}E+@#>R$NQG`ma@1m_F zdm-@s6q`O_%jHd?mSU1Ys56nib{@KN*+L?>EXKc8h<|!X`PItOK02+E^R_ZipJLG` z9HDxZ`4_(yT>{oCemuk1Ao6?4Ek$SV>q1>h=qm_#H(8uT6hkp(&MH}Z^ih>)fysvg zW&MF3A7De1nYcG*Wv$?tje_))R3W+P_&l1XkD8qRu?$~mX={^j1MSh*#-z??EG;g4Y)3f46b2|w=KVluzb%sv(Zg4~ztqxI z@I1)Biu9Xd;}d@XMpRH#w)n>6atg}RjlfE%--R_2XZ>3})%VnggGd3Ns`0k-H=S$H zSN9pHJjt)Grj~Nm`{0X8x#HV!DR#r59^PThvu9&yg*EK=qSpXCatW&#k4SC| zO*7={pFDS>P=UQ;7^npKu^RRpfKdg}ScBx!cw&cV`ttZTpRS?m0DcL=1EB_F@4lJ0 z@5fqFEi5dUit!TLGsQe1hms8ahgnl1pdh&Cp7 zMbUujk>T^NH|r}ww%=j|LVN6437{_fB@3c#8w|{Tfc13*YkdIe;5|@@DEf1wN#_wX zRx#oH42e5%#6=J}=PwyBXF;u66Z0KSk>;9;DMf6U`uZT$Vcj`v6u*rINkKUp9yTaR zODHQ$GZZP=W(2RKe%bSY`Pse3?Eu$&_d>c*7mR44iQ{m=GF`oB<G7;^g z7N`2JPk=``gmR(2JQA;HV;j_Hhmfc+UPd)!Yi{ldNsO_vu}G$eoCn_rV8i=CgtcYa zbxuYN#(v}6^t-OSK`HEgAZ(?96iy7!@jYRuvwtdFSoBPKy2~>p95*@V@O0rZcRYfJyO6sK^XUXw-Yru;8x1d3?Q5r#S-ajA!fk+Q<2{(nk&9HM} zVF5kTGkx)jW9+YM(7te^M!ELutQ|)Umo|mp6OLV(LsxfP8^*>Pg_AW0w~;88Y^EMc z(_qsP&h++bby56lH*J#8-+%R+vJnjKq;&1(i5&&t+wWEjncefiGbVmX#yiS@=MO*+ z!dZ1b1x387j*Kn@jP_OIJ5xkFH<(T!OseYaxauf^wcPdLgf)kGiQNI<1tcApnn1<( zNp5-3%sM8Msjk^>*&sFffiA06x3d4_KNy6q-$imIOVJ*7CF5+hWoX1U!*A&mMjt?o z#-jb(@m|0TF}C-7q&^2|WWX#_{?nf-nVf++}+HGIu2kCBk1^L}X`G zTTzn%|6BYYg|lE0!wsk#&K4`e0s{lX83STojzBiJAR=^(cPxCesXg6E>-E1b3rGw1 zx309_h#KrOVv3M9)i`c0hUoD}n4?^fo=2cC)l8 zDByU$9l?e;@oze!%mR1kiE~`Mq$zOVrvGcpK-H*aDgz4~l%;0RIObFh2jjG^PC|j= z!*=yH+7YNz-VIf246l2-C7M3-;;v*;4G3^U;+JS8Y7(p&P4a5XHguH)zp|>FOk!kC zIPky1vh!ZNpi63-^j5EqT~z_Wn76sNw|8lSKF4y!+G8tEioa}Tv#PWp7vx~hE#KVS zEa>fRj#Hnv!M8Th(sDT)L*0M&rQxp4`?gMzsF)#Ak_EF0Qg&c$U{=y6Yl^mh2?Z>O zfBEu)oZO>qO#SDj%p&Bqi2xf7eRuZ*iD8}Sr7W*Nrvcn#N9Z-{~}Bk{r1VbqOj z(%d5PZD@nO}iAZa%PG4tU*s3Rs z5+LBPY`I!ggr2s5@0kosVu~n|--;5xFh6!T2@F7c0TW-`f@$8d8U9Uak6g$Rsgr$}LxT_XlbkXwYSFs`EC*&4=?)pN=ETg32l|*u|GSx}!B{_TYo?Ud-KYsi zUI(CcLelNvt@rX_DV0n3Iz4EXe2LPOv09efq`fZV-A5t5BMLRPwmCW`qnFx?WBA5U z?Pq@6y!?e|oN80ig$rs@%TBh+q%(#Nd&K#%wX)uOX+nPfEu=#`%Oq4XLAHU89}tp7 z!H*R|`PXsOC^B~m@iT&-~Yfp+g3$1B^<#hV@a!WKrl7eCNstL8S#phT(F z;9dJNxm?oFPD-~U`yr(=StO@}Y#O}l&>WvF%faElBo?LDHh;+1>Y$-3re}Df=h9Y= z)t+}`>htblJVI$8*(|KcOr>A1W2G3oS;kqkTsteYuzc+V=T329VY6&ILp{T2_ILJj zzQr+lT7Fk>cONu@$<4f?lHV%-*PVyEUvA9}8>+u}>TlM5i&B{eK7RgtGE4vB@OMsF@ejQ!2_Vl(%T6$v^)520rxu+WkuKnKVjqB~Fo{>;5zJ6f1l^7vHT#eOEAH;Fwx{9~<^aaKWu zqFg!BlN0Kb@Qr-*6`A0kmwJ9;T%0PksmBGw!o7O}-RY(yVD69>cXl!RHu8n=G>R2! z%;nlebyPDrW5OFiM{aGU7HXt??O+eBj0(|6%4I)g%kON@w_Ngr*HpFN1ya5#NhI3# z;O#_#kOV4s%;?_7r`~Di zYb`%d*FBreb0OzeFl9ehKWeY|zyJR4zs>3rJhuPydB30E{H@vfmE2w}*dPj?f}ihn*Gq7fv;Kc0^Kw!ZxH>AyefzppCv oWq%xtf6waw-?iewo~~aUa*E?Bp+Yp-CHP}uVq<)jwkPtx0F0puYXATM literal 0 HcmV?d00001 From dd82a5711f22f54ded68fbbbea9e282eec9e58ed Mon Sep 17 00:00:00 2001 From: juneeybug Date: Tue, 31 Aug 2021 09:17:09 +0530 Subject: [PATCH 03/55] Added mean vs median pic --- Module 3/Notebooks/pic2.png | Bin 0 -> 348320 bytes 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 Module 3/Notebooks/pic2.png diff --git a/Module 3/Notebooks/pic2.png b/Module 3/Notebooks/pic2.png new file mode 100644 index 0000000000000000000000000000000000000000..2916866f5d300179158fd728f921c9f8b2e29ec0 GIT binary patch literal 348320 zcma&OcR&+ew>L^4gwR9pHKBzr5J7{41VZQm0s;ckL`p!4D8UwbFQIn{MY>cG5q;=Y zr6XABQY;V~AnJ|JTh4jU`M!JaA4z8Rti8&f*?U&`?Ihu?OgPy@*%%lYI8AXzwhRo+ zMGOp#;b2C3%UhF~>+~N$n5_w#;qEi>ZTboDqM@ZB14C;D`>_Wz{hT!z=M=`kpkn^# z1E|)|tD`r{TsC&Rj0wHqaoO)ukTk(B@B+gLjT4%uG;~jCX-aG8ozm1frL9A}JX*rQ z@H@iP$dC}>_WlNoyZF%0d-Ft{iOyHoK1rkkUM}*#{9?rj%Vh9-YY-<0mV1b|&9WHnR_BmPNT4u?1ZF z({P?st{~h1$dUMmT`z7kF$M{hLv^tvQ5uixY6u>&-l2USZQ2!}FGmDk7bJMq+@;)?9z>}Mh8volwJFD8@AMLo*^<@H!f4SWz zbEo|=flyyR!M4pUJjU}+8|`fB>hGeCgRyN(+Z&GOvgVs_qzrlX z{63Bn$tOqe6`T>H2DKaG=nOFzBA+Bto=i}d7(U?yLGRH#zI#4hf=(yC{{knIt;0-w zn0gHF4t-eyhZn1&8P7bGfX{karFy%iKLKfPP{e`W0YK{F|CI!WZ6j~D^Xwqb#R9Jv zohIBFd6fxu`Zrf&d5&cK4Zn(1vnlBVDJt<&P1=Nl+5Y0YGiuixkYzb6Ok3u6vTEa9S&UH9 z%nC=xVNEypx^KdvPUKSd414Ahd8({6pxG25;x!ucFLkO1aSN;hqH=`;yJo50Ou!P1C$@p}F#hhwpS9WQ=1& zKw{-pIQmG}7P16nj}RphDC-Lp%Nwu&AV_Ta&ZtW6R7}L!ngLvFhzcL4tep*K-g99o1mLgfTDIortw06;DTC2iOjgY6xQRQTLHBu= zzg`uQVj8-K8!DlA?}aiO&(`r~(O7~Kw* zUupx{!ejEU2<%B7C!llPc0SDdGf%Q{sovbjuJH==$=+2b$UESTtqrev!WLOos6Y`O zlRS9HVa=58ZJ_?1E`s76`mc*Z%>R?ofnl0=z@32EM}1Aeh@bzPqt80v_eYM5@<^GF zM3h~gkO@LsrumHTIIS0?eSu_98U}!^4{@{rES=t1zjI+=C22DKq5D3oCxk+~Jz)@= z%GvmN`5AL&=2@0Mh9Cy>IW@q23xgYnvOsDdXzqMjvUDdT z_D!u+YtKO&03@?m)P+1BE3LgqKAN!O85E4363fjr0YAM1if%d+3lf7|B|Qck`nCYR z=GVw3ssgDe;W8PJB1=x-xf@_kg!D(+b)M)cccvY6Yh%bcF!~Y!Eh(d2EDG*Cf`}4P zul}20se0t40YpTlsI?n-@T}YQC5D)(e9pg_r(ISfW3!$wetL%TD#BF;b$ekMZ17?$ z8_ca+dubh~`}wXd=ZoS*s*wiT0e!R|Xdvt1726k$20Uw;V z9e5C<>6}>Hv*fr@RDZkMZhc4oEGaL&*plHnoJT-s2x($~70yYP_Lm-a>YA@a0Q!b@r0G<9gB~)@;pJIG?@oF!#+anhNm_P=K;wT1!zGC63ieWl|c)DwDaR zEX&BQWfD;stS?8|^N6I9;9_yAG;8&VAC(ets1l zvwHo+&lbA$Jg#&b@Sdg;1sqDP$g2ONIKa3_&Bi3}QdSZfwL;7A?V`NW{q$_vxgr|+ z)^g6NV%10kQX1b2lI@g)EQgz#8#yrlYTaX?CJ`WYW=|$&Dk42u92rc#LqVM$+&C`S5MFSoGeMY-&%?BBaI*P8mlf7f1YSLt*$2MG!|4rp(<&>SYFi&0g zbvOO$ky1?=#H9nZ?D<7_p?ac@wl@|%{b1iHjhGANZE@4hl=5M*AlUPTc?SX^CpUL~ zZcanNS@z-LzV1p3Cd^5BF!q)rPxI=6s1cV_sXIe#)$R}5k+DYoTSD=o&XN&d_QgAgvqsb8s70;7{}UA-RFC%w z!Nz;9CaD6z)Ozv7-@3-Wo5Pfm$59v9E6+m>(>_yYS~9evU*v0e9@~wsy}NK_`%8@m zT8f)c&L9XbL2U6W08tw7&oO#KX%+cEVr@-~K!t!T>!I1UwuH14hP_AkNoD zz!jqm^>}&=t%}vVlmKkDj6cKvrNyprLqo&;z?YpNYs2H?W`x6b#x6*2eIw(R%CQsU zy$Slfo0WlcaEbM<7TUe{1{e}5(EeurpWGf@`|>`@*_d?LKa^sYY(6^FD`uRIEqBoM z4cQ!Dvm&qS34l_NHH^6a^{Vx|t`EO{daEv{7biw);g0_QQtCg3#*e*C{;0JMT>3xk zl3F?r75{HT)o00y&*a^@?FICAzw(AV* z;drLTWAfFKWZaGUgDD`eE~$9tPWWh)hAejrjp0EN9rLO$%0`y!AIefRK3J zq{428J)=OkY;$qlk1;1XK{d#14NbTmwxZm-ropk2JK|9r!IPivMUR8Jq}7Z#Ph{z9 z$POsTV?%F1-csHhzRDSnt39LM@kf(`LGZiihr5g`A=lRI&6`wvxxouj1o{Tvw|Lk@Ck;Y1y^&yqv zls{TU&kb7oxg_#JMG{vF!jFL_q2e2QiR>5GQoYeo(`Cw_gMPZk$z?XE9+LSYAx z_yj)j^CVB;pCiHd1A=8!Nkj|M$_nsDDZ4ZR9j&T`=p3ZSk5QJr393jcU!m}rcx&s= zDta`+?GX{{k&>LbmY|=t{j;_M zr_T{$#VhXL01sf;)1}V!y8FUu|E0#O!4014ixsl#bmugEapSOM2#ed3;ow%#)y&eX z@SKfqDooqc#TW?N#o0V}gEjUuEjFLt8ew%81jGzRaroSf<6LH5G)fJwwIDd`l4nmD z*6DhRpVQw6>6Q14#e6;IsKYhJ6|qs*0@3vC6V*W((~0BywM`LzXBSKHLm+VbnvU>2 zcZU@K(OgUcr7v_dvrlENen2y&+thzfhl_r}g5#$y;Hx;ihoLx;hbuQ}++QNtSwT_Y z6TYqn$@RDJoA7IEuEpLgDzw2e_e@#{B9_N=uoVnX_nwtDH?*AZ&@O;Jl zM*(wcx8M^vlAJ`9QYbIO#0k0cY4%f3*f=#YS?vO=Jw@PVcMMliAT5K2h~ht&j_Tg0 zU8NHKDQ&M!i9(3A9CTDXcC2>wxQf0fC@0?BSIgYa#_fLYg)U&{!Cnl954D?1p}5d* z;PDCc^-Hk~KfbiFmqwi>F(mQap1$A!wQ>C5em;b1T&^~ohAg!Y7@CbXQ(SfTba0g% zFY^{kM(QLQfsF6$9Sd0&p|b752gqJf(I%NSIV6~ zwcKHahxgGqcv(&q96Ajp(lrDp?9{ZKd=qCIGN_Bl9tEiv^P2wShGf{k5V)d12(anj z7fp56XxL-utWFbi_kJNAqe@LT&A*5h4L?unsFYHm=PHIW7;D0#ZCg{l^! z(FaVB&A{RBd)j2oY9OmxU>^Z{*=7lSbb3Ib_BffGOGt`@p#*qPr$yM?f92kf&Utjt z*0?Fc&PVH8y!p|JChbwt419Ml1^%tB_?fP z`dnh}{}^Ad{Yv#_EEG;+OYM>x#cc*B9t(@qRshQtUvp|@^^JeaDhjWw#jjZvcf9+4 zIFq8Eht8^Xc%irRq^}~mxxp(y(Xq>>YcQR+)cflgi`kBdbp@-l!;(-+ePD$?tyLVA zJMvhQz*#Nz(I*vMCMt^(+=p)E$gk;UJ=zy9DutT~CVTT3z$Hd9Zor^3U~RGKR|FnF zhn;6-t^!p)BoP}2eTC=2bNH(~>F&W{hB)nu*MjIHz!D7O%TeJUQ@u$zm3~J%>z+mF ztC&HYpaHO;_!rJW#UO`5M6*{Wt8t5UKi8K=wdbj6rY$J4`LHq`7_+0 z5vn#(HD1LfSu;JP&+F^nUjpsz1+?RK)-!26>A2ox1yxm59i92_r+ZObUn5fK96YVQ zV3;PLgHJ$%`5KRjsOzk26PpS0vg$+^U+rk5L8nHQ4G-4n`V#qocR2qkx22KWV%L-} zkaUwM`S1Wf6~3zsSB_PJqfakK-IhU$-FY!L_xQ$-Zy#Ta<+Zi79e&;v%IE*gAhg12 zJk1`ld=cE2mt%3B`BZRk@6>tb9mC5s{@6^Gxs;|ebe@{+fPJ}Cbuq~KetJ;*=kT1- z@?DwweE;hkL;0ME>K^~p;~$5z==AmYyysQF+e`_yck5p~2zWkhDK;@N9>==OB2>?A ziN81|HL`q}>Sd2YNZ+?C2E>3a_;}CF%{4l;`;4SZ+`D)0L`C}V3S$Nl)DxN!B}Sym z{;Rx#f>+f1gRpm-Pm9^@{`kan7x;M3#@_zHh22ih-REZsqaz|L;DVpq>cw9^ysWu; z$)fLzuGg>QRnN(_RIG_@Xz1j}*DM^3BWtPuOxpR@>yk6HI$mA^REje1wB$J5^MBfJ z%+AK1q9P90V*6+qAi(@SDl5zQe6=ycLFQp8b3ok3*WH#S+I98~4s<`E{ouP|>-75;!#~#foQS#aklgKx91F{K8vEp8#Mvi*@@ql_bqHpikJ5RF)K^1h zvK)MO^MtWPjnUn9{FEGC^)am%KyTv{8Jqqtd7_~Ken04SXVA~1aT;48(M}L1Eo|!s zn_5fln7jEU!TE44l}7sfF4s}=;^O)tlZ{IhH$UkN)zoxM|61&=5_`oetNdY#OG71HAD+yWAa`#=*~V$H~gqqBFZ+NZ#LRoEZx#nY{e|Q z?(6WfaiOjy+Sb@uDTM&CDaShuXZX50NbDth@iL!P)`CC<{6ore-4pHBSv40=0dlr` z-(T=p5tGAb*oj0(Aq^FUa|rNy=xP22_sX~EKoF1}sE(N)1yk1L zBQ`ut6Mpxs4z@8wr)b(;jJo-rE#;Clej}Ml zV^5fQXw<=&9rgKFK?yK|)5kZ5rYmR7rfMCdOb%`mw!lIM2T95+I^*P9E_((&&S|t7PeZZl#8*p_BszXa3ySvE*w5gk|a;=gz0*v z{-$EdxY?@aX5^oG0k3i9j-et+zOIme0*6>phm8)oBbF%&--3ld6oa%IBp~%5kuor%=b<#R@fB#54oY5{dFkoi-Tta>w`BvzaBV^xwz`KSiZeNBFr^7 z*ON-pk-HD@mhtDJsy{JOH3~T+=m{LxGPe6ck^ENKXR<InW%ikvg z7g)Z5Toe%lf!K%PV%DknI@u}Fpqd@il-{+Jtry%WiZjs|`%9_LD)<6f%25LSo*8>4 zvr|)vD5DxXSwuPwIOX# zMLo;bxNO>lV5dqc=*M^@&ylSa-T%AL-&>9w#?Nm$M$C8$NP7L?DR060_ZsBX*DLYb zMI3ba1@tQLYgE4OPE)|v5_o($?~8m`fbJd0c7Ge_&)%HmdxcK@U_$N}tpohA?GDaj zWo7nG6W}(!_rLV~+Qq$`VA(H|Oe&KoDR}(hXD`%IlfUAew-G>!H0Q=NmJ+=n#JM1` z-)C*+79&Btp2$Zp4IP+{1+>JZaff);&atG)XNaD7*98iAb@52>8fa1-{K(gv^y?C* zpQ!JPotw@y(f96am=a<5*Z<(LHyS{%Ih}E(7DK<~mlW;F#)tmph#hsG8!g}LzA)Lr z9kUnd60DKGHg)Sc;C5L*X;DzjjZZVu)v~hfa$#(3Hwa$H=vYBn>#t4&{>GUGrA!5` zobyUN@rosca`D{f!`Ot)_23O-j;{$&YrW~|@f4W!Vne^d%vEtLwxwrpwSTnTc&pR* z1ycpbcSBEDz+UciZEV}6k5Q6irz-ro|1e5JWF0nZdRK+bJZXOyhM@S|xW$q%0u@V$ zxqeqra;&;Vw%muk(kqnBv$l&%C*``cYr?a5$0h9@fS=%~5jQgiK7+rsDfK;ZCa`8Th*Y$+|AeFZ3Ue&_XIa5Hl! z=~c=4aXqLhn?V6L$``y2fK=E}&2CK?&5c%n&rq^ntLC(x4}}pbq2z(YclN62-dyu* zI{oGDdnGP_bB!P<`Rva{{>2R&C({dRCtvP6uD9ad_*?Fc^L)kSmABbm3>-Erlc6uU z9h&v65%r?c*LgNr9rXxap0Lj+mLsmOZ+}>H-k|%teCwYB<;tK=bz=KH{z5Vszh1!M)=Iin(Wgd z>e@p7in+O`1a6H!_kNC+d+Sj23@2a917gN7rFpyE8w*&4F3l*SE>v3$(f!zK>;~nc zw=AF!08$rqgEMl>3cN^hh6XtMrj5xYzgB1CZ3*W)wRJCe+U!_rrt6vP#n*xxUgQTx zD~#R1_4RSb5l`S-{MMei8izP;*x2}`^>SJ0z{P>hNE?tN&DDr2ugnE7fX zXN@7!(3}FdbkpJ`;T-kT;Hd`sJ3&@6>t6S>8T!L(`+V(IIkeEwr^r$jlFhv zu`kl3tyb)9Zkk@5AEM<#Jz6pMtJcWM8M<>)?FlV(;1 zOaUu#pU$1i+USZAHqL~q+wOYsoF}1jXpK?PoM-IC%8e#uQxfM&lqQ9`Pitn006DL~ zsd5t`ESkyECT>*=1G0~4WW^09CT6kg^$1i_o-wqa%dSkls`!_@!9D7DSUj714V7VK zdc96X{=EfnM??*Ato(!sd+#U>+((m53ZY(2BlEfM>jew!+2V=X48>|wF}~{noAGuK z8{&WvNaj^d!NyA5L7w0GIH*%-IOSf$>)a-O^7G-;KU9FCA)fC#xQ%k&G3CePqbL5e zpXRuEsy8SfE7#$z7qt1ADqxu2Q@$|&?Yc~Ki`@Wp{BzVqpSfYHXk(OoF_T=8fY|rf zB7oo+*#s6WP~SQ^mF(SY{;g?m6#iSE0<W~3l{NXj1G2RcfS zzNagoIJOM3ukNa{`aeT4kP#-)HFnQ;k&IuNF5ezYiHAO>txo(iSksPOGzMqHbAkmV zIg84A{&eIHy3xHTUva4QE$tjUeW;TwzH`Y)1y4&gPC5j!4-bqHB>_3F zzdN@+`aP2(UWB|)$LVw8V(m%pe$WKDV87&B4nA4|E;AbGLtRJmp8 z^fJDo_V5;Vfa#l95$xgxuN(e`>D|tkOcp(P{F0{`>*{YjO4{MO)-lNFUHVD?sd*+7 z&E)`_g|L@Qu1CV#T!^p)-X@fMtKzjppn-#_5LnQxC}KXaFU9>#ge#X#)>OkZrvUNQ z<(RWkzo-W4F3mEN^Qu!->mtxXh?S(dC*@a#i&55yp{5%N0c`IRbC5JxbUy_ksS(h( z2mj`QDRZ+-^;SP#9}0(w8L{2ufG){Ss%sW-yX6mL)|?d!t4(CpT(;<=s$78-6V5i! zQ>n`2h@_H~3SF=8KD#9caBzjCZd2{-Nz~H@8a}P78-jA}WW`UXGAup-pG=qFio27P zv3@k>rLn#}Kd7_BZa})M=9x8;sXiKzdXM)+WFt$x~T*r_4n6q8+d^2cRa2K!1 z;|UuWeSY#WyQopus*~^D9?%H606b371L80HBgq0HILUx9b~E#2%QD1`)5c2Hwaa)$ zfQWR8SvjlGn2ULiPw30N4KLzMgVBRJt^zt1#lA)H^)90Pbb-DDiA{+~>?$KCbdt#9 z{vQ^&X$Tivu*qadHCB7DVn;oaLM_c)7^G6zd@TW9DdDvR2Y^&>zaQJF>ySqZ&>Wm` zN^HL%Y7DHWVsqCtiGA722GFGBPV9^cd^I8hard9vl}UdQ7iWpm`HZ<}%o3y}nm9Eg z*Z2Ajk1x;a<0v$}=2n@bkWAJYg>z#o0nyKVqF$nc#WBJNLt)Jv84fDy(PHe9N2QP{ zF*fp1)Owr;(=jWn`)7rY^}|-ZVQkJtLk&6#;@{LROE){{&Qr|O+fy^-xU@b^y4w|v zA_)T90U;OpVtFtk{SdanT-7<;ooa}@%h_no88Nh^^b&`aPT>P2D4H@@A^Y=6#x+cn z8pCei4pjwJAloRg!m$@K8mN+)Fp%+7b2#p4l(M>~B1RY;)zzl6AJF!JtB;YL>P8P* z{d)U{mxU`&Ire5`G7&?z^+y)*wCFXMEOuzaT|$>=K&FU`{Y~j{zeQ7bxRy(B54z59 z&LwhE6Oq%itecc*BeSmaaV<45IK2BsB_@_RCJOS1h#5ubUP}#xtjee_q^Ax%zylD5 z;7(m0w!zY-q=|-;y?L2JS}r8_fGirY=y6XZ6OoQZ8OUYnlvlEruIkCW>IJAh85Jk9 zb2riCEeZ8kO&yCSm-%Uluh>^hbchL{MJI%`kK!{BqIbi11<+AyQSvv{cxjil``0*{ z0zWWO$)8vfTt2WJa}CH3kLfmduU zDk{#+_k%Swifs2rsuOr+=lXzmw+s;Cuznz-s4 zIvGgL{+JAJK)d8rxO45WeBED zNACe#YvSawZJd8!@IZ4iowJ}7J;7~iRRzL!lWuCSqwadozLlolVAP@Qpu;hM5F35B zh7{Nb>jS=qqWU9nMLnVsrS)48djgW(bDO?st!eE3VS2g1(Ot7y-KX&v16Lq7y*d0t9*Sd02G2Wt%} zUZ|>g=+y44W=-z*R(YvJ>)p&%xPNc13%wh+N_eTD*dTL%kZQ8y*5ngfUk)Y2FonYj z72m~4l=$S2^Zxb7Y*+_U|B2oM-hIh2Mye@vJO%KEx~gn#lw5lMUM9^`49-Z0YV^~4 zCx*k=>5gao;>Hlerw4nv3bI4bUOMAQ`yy~RKx9=@pof-T_@If~tngTQ#ig%CLt$!J zX)YVZonP_dSpf`GW$q3*i+HAjYSo-?wDkI{A|~qA58bhpksU^&Khd>KX%b*Jp7Mr| z8Jx?zf(-@wz92`Yde^vS+a;)}Ys{I?4`SP5;vdLg!@C3*RO1i`lqTr z5)g*B)K!6UlgO7>Ug+qBZ_yYrj|i4T*l7a2Ou4H%*=HRFJ3S_Eo{6m2`%qMJ3SGv| zMUNurrj%c+TUgG}vM}V~In}4DaEyC2`ODE&X8u&O)j2lElSoHJJ|>|%shC?$bH3^UM^|8#*cLPm+ObJV2cvf_-90 z^*%p%hJf^SrXissgh3yu_W5^ashc#bL942?h1OOT>sal??U!GR(_-T~yQgqH%ECf9 zay^TrjDdgw2hW#@IerSG-gCNy;B;^2!CvJhXeak9?%QPx z#co-LKHAXvg-e&%_sGu1^5rT_Yp)-skAi7jy|@L)c|^I=IQz-0figBpq3>&{M#8Ug zNv>tS30IEVG^2;NzVLWH_r=iN(K{;K^wo>9d|I|R9(kS)k@H<;DW)%P^mXk(_G9ed z8kTR>3`rY#fBuy>6uZscZC1ax*AJ0437I~DPMd49NM<;U^ySaMd6zFa%uP8ro-78n z#7T497~MIY2VUX(09H`{vvNwt<~{R!6~lSsinsft4L{Z4pY9k)yi}%T0PI?EGk3Aj z*X)biCBwNjtl+Tv9aZZ9*kcyATDR(346|-rfj`ircqP>hSq^yz0#7U1N11Uyga=uh45$zn5j9-dh2KU2w#8D zhyDKb-*wqvAcyf5=f2zAIY;Py>^bpN<1H@+q}t~ZBBh5e*l zrM@w@@=8gh%=>xygPunpHFY)g)hKc!nyt|@sXPIu_H-nf0q&OkrYBS6xp0?wo#ZK7epdt$UH-1%f)MEI8R(Hr6X%e z+Phr)eyz09gM~m|jqKfy5q36nUcQyua&wSC%SHb5m~XYg+ulAww?<*{-QJ^iS{>f8 zM-zO^fUn6uYhN zkD-N_x}WRV6Pdzen&W(S@wKK2IE@HoIZ|b6{XR}tB{PXD-+txtnE&fd@R+mK$3jLX zJ}j~4t~MZ%g?TZNzf>^XW9oycDaAnu+p`!}8l-)rQ1_5X8D+L|uc0OZL1VXMVyU$2YMts}e&+dNnAXjt$aB z#Sv}KF8Mj_#}dL{LVTCaHb#mDH7h=F&CF#b5j`o33{j-$&Cxkk~Ak;Qzw z;!wAKG4&`p@?U({&%^?|3eHa6Z%;D0kavI*p4_=i9yx8cj!h61>>Vwyva3C(!|OEf zGhj82c*U`@LEYj^H!A~pgsm^RQ)uZS<_F^p^oTwiq_HQvLt5`xmGh$7NYjgXVGG_QjkJ2XUZLdeR5PLt7IY;{dff z-Mc4dSf*-Bevosy{-HgTVjqZje{&03s5-UCCS+f2+@@^L)IH*B)Rcre&F3J*zdIaY z1ZXmGc0GvTY@fNixEp+vXXLaAbNx4Q&{suiEo@MIq_et}DNZumVV&$yqm7tS!M7=-DQ|H)o<&x~p z!716QjK_;T8AD*fbGmvShD0l3ltEV?w{Ee@9Es?$qq=lEk~P2=J; zfZDPSD|zv`LPeHPPl2H6MY3WCK&`H|)6dzx%O2y~ESWcHftX z;(x)AKd&@oE@{FvhRIc-ZX8l?(p>f~v;S?5F_HFvvnC&z4$4Y^JE12&V}7nbSl$-w zR0JDmCDTz%e~bvaQh9wb_R$Ta*;TXwWYWVlrZ8|pDSf1^$=Zu;E^&04g5pTOa&>zd z*?(E3RT@MxyGEE>2gq0MgpJoz3`L(1=k9@O%jJqKcGe`|@YpAOu*s+qMb0xcaePVc zG>C0(y^yGO*~*%I#@(m*Yw%2tVp_S)hTetqh+g?gzDxZV5a>1K$^JWImC<>`6U?Jt zWzr-rB-U?_@{YXP;jR3L;ZU0-U(8-QjDd6dbUJa{uA!4=z@qkLcHb^A5oySMc^A4@ z@|X@lE<(b6$K+?ZZ^GI~z?oY-vl{`f0R3jm#7kl1;uMYFIh`nT{|*B1pfI z7#{;P$3C~1#>72^PX5J6cSaf8C98&+Fp>@0Wk~KMrXjEFcefRn#UR;8?qY4nMI`N5 z8ReC>4!TuhXc@^>D$TJI)hZMft6&(nUG+8IF$`~-^IEab9Q5<2n2OP0-IbtORW*s; zx~e2bSI>7OkXB3b=Q3*sIi79Uou+DOssVX`1{J!2#Qqm~GqTR^C9V!G=DNrBJ+Vl=5c;P-ju5U$5 zR-9A1`3)v+InXUvAtCu>a-a6d*|IYPFkxS8jBRuj?PM8+9qw6F#3~m{T_!yaWQ&-!b#9vaRe=y{PWu@3wxA*)gaHZ*9+^sPxBi4}}_+eHmu z^(wn-Y}8Nw&BczAQA=aY3mCWS<*QEWXWU>#gK`QcBqBR%Fqz>j&e`>6!!(X#O+pEY zDj9}zxu~`lyn~%P>%3LHioIM8=01T%Y02HZI6=X2e>N2==b5ZH84KmSf7s(k z>+r4@Po%t}`{7lf48b7$bJioy)Ak*onRQ!zKH-JiHP6fy+*SzFiV4WXIXL4#cn_lu z*~6iL`YswIVYAd%HLG8^7b-E*EALI%{T@yQmlR-ax>PbM zbvt}H+!4bpR<7-rOD`HXS-F-;qIKRd?Idrk_lqO*%gBjS1dRxlL zuCH6JE0R*_?!cN;kaDh;m1nFnBJOmhqie)u+{F&&br(0&Z(Po)KwH^{laHwhCYx{)<2Cq3A;l_5^(QzN~=m{OvoQb$Fn8OwvnDG zaTxT&vk%-@=a;~4DdZ>N?Uf?%o3sK~`Td_!nF`-{2_qT0Lf!Xe=#Ixo-T3GD<54;! zQe}ILJmTI84o>*pM@zOo;=T$?DN2c_=g*}STB9;Zk7PQjGm27(R*ZPWR7la8`ya=$ zh(~s^(H_A+ip#$lB#3ck6a|1p@vqy6*3(S@+Tiw=sJ}*-tZx^%yL8}_g++L|JX|2? zvTfENz2wL2fIh*ws=tuddAg45(V}3~qi1oqk&92QkPsR&cyV>``2o$sI(TB!v{nju z4xjythICqWR|We^GsvtT4p>XR_fc3dar5HJ-J06^n=)EMeyY*BZkU%vVAwxFFj?2i zePZfXZh7BAYH%P#`San# z=XG$P;K3|QKShZBc)d?8LSoLu?fN8hs~k3z19C&K7-^kO0_|{`xT&;EcqRC=r8NQK zG$aqGqo3bt=@Sg-g~);uT?zff1GC{D+E8RfJ?V;96#q(cU4lxIE}kC6yxNyLmKjYE z+u&Yt7g-&AiKnf`-Y)CuvOzrQLy&uPZHB)`tWAK96F2t%$}=-3M_9adGpcK{YQzxq zN>+QvQtCI3O4!w1I(7HyX(L@KV0|d9&4a6x{+o2-@yL%Dijaaf`9JyH(x6rJ14t!2 zSA6Ke;>|5(5v`JN?!e0l-@dS@t@&j-Pm7n~OefNOplk7eAB}+Wvtg2% z6!FD7c}2owa8a~d#Ir%%w_)bax@xSlHR)nQah+w77J;LW8?1Q6SNt(<1uq%GUepHpPxu z)n*}Wq9O9{8nR*Eem$##eN9nIjD94R`#bJGvzbg7YDFBW@TX8FS=qN%d!_&G#ukaKc1)< z6;B?LDw7^4w;vdvon&rM1i89t)Qt0m)E?Mvmr1>$Z_d2LPTi2B7YaF*txMQNtOVlz z?1YQWeHSRx(W9H;?K9J+(JtT0nmRa+kOQYH%7mu?# zs8J2*V&#xyKg>v~Fe~T(Rk88OJ)|7(SRPN$rQMI4q7^OcI91yZxMKMWF|7v};Dc6d z9*q$!mtpu1v519$6EPlB^)};td+FY}3Ynj4bh4OVIl`3!Vc1XzhmK^7Lz-<_FLxx2 ziSs}g<2T{v-9OLeC3m~t_xf=2aeb zzq!)Zr*8ypcVYb&UsPfO2lD{iM!PC1wLg}WmPKfQ`0N#aFwS9T5SrYBiln1ji=69E z339T@#rYZ%TD|?0&g@l*fNIQ`b6VYw|tu`;_;+au7U+ zr%GlVUr~pdequtoJ(Fakf7vp%Vl)M8o#_!=PuM#vl!i=VK+vHy1IvWEa){`wNFCcx zA&%=L3(<@esePQoPf)7^=MUv*dQqI-0T1R3di25wdm`|lj#m;$9aJ##smLmj0$3zE z!pg^0?#Yft+16B?GmhxpiAI=yc}4#Hl`m4}0Zp}m{ULI$bh}t0`(ZaESeIl&pjdT0 z>#C`Dan<;>w`U~w#~kA{)~9l(%%kBTRT=WrD21mQy7uq`zMV36Qk$>G=K^g>p=q~l zC_jV?kF{ES*BpvyMyx zUJN#i2y{RaLqdX(#S6z`oA}nGT1Brw14c&QN?)7!Vb?0OZ}7-Wj+}yanhstQ1c?iT zcI1JBBO>~$(g@!%y|{F?kP1y6l$deK3GI)v0_d32d3RLwsD6!6$rJ(2kmPMU_LG~) z3I0)w(IlS^oair<5!x|VqByJ+Jh6l3Wfit()Y@)fKVPstC)bZ%k`eaAFof_2j!$(> zd{IcPRx-Ep6%C*}v&a5AL@|#wV#{V|<#saRyYW`9`(VL95nJ=-$%Qj!=CMxj~Ves-qG6r^dCeVG7w;wZj)XF?y zpp1C@FO=yjSZ8cl;|2?6k}-Gx2TWDEq8~z&4Ly(^UNe`D(v@A9F8;Hf3j$!-3W>k! zAFkSFbnS3pIbN8Iv07LSt#i}K?s!Xw0h(7|Y;|OOyTi`sBuISrDXQhWN)=EwrTp!b zu++JE=^}n@)xg%}82nG}-BXzu3y(qmj_ZX_La>FG)HPd%b6nIznpGMQ$E( z2{a=Cv?SRWI}hgDDjA0iY3o>0$%y|Rdc&NNI0$h+BX)LjGU{)}f^ zUexuJfO|FzyRYhea0eu0#!PDzr&-eXwC_udDJll`?&#{e{Mj@g&Qm+O-YWWEBjPDO z2GmuJanes8J9B zkyN@-B&0+707^UW>Rl)oZ;27jlgbU_);`4%qB^O8o#&> zkz@X7@iCx^H>#V!GN{@WS1Q&zgpLjhd1KjNT74^;j12oF!TFk6j?*RKB+g}t!mM=0 zB-mgu`ixc=4TUgVNLO#b^^k}mIdGiqhuEyK6}g_beD{DgVyT30VJDUlwWCO-skQjW zV$TcXyk}5gh;foH)NoN?;dqJQxA{Fk@<|6ML4x_E+bPe(Wf#c8eaQ$CGklF@XYZtR}nP zT#l?fo_+iS+^^qMvXN1A(B|x}|DLRSMfy$N*^o7MX?U!$AL&0~ASTlz?J=lc{wnZh zy@@jSJJUD%RD?h?Kya)N!3_v6>{Re_d9UEOfTH!+XFw3%+2W^7@hA+%*<0wFwn{^5 zGI?xVNs(-o&$isqB=grHyn@{`@VjHFteABxK3-&Cz~)f16do1!{43S9sThT0 zA0p^Kw1XjDk1!*=ZM-G6$8a5ZrL3qJHMp@667try^h0KL!Ww(@hO=yjEw#&4vjBW} z*TLkZoG~>$y!_85=yVpp_yF?7V2nm@fQleKWFVD~ak%0C(Iy$=1>6FiAqkFbQ zeY5BOdQQ7crJ}O7_5sGxPF#FYH;|a!`D|@?SW;K~|2A!t@-dBBF4kIf1)#>p#&+6! zdoS=)u+>6bb74){_|(4#jOq&iuft-Q<0Yqv(M{;&_+Yy z9${7^&*$r-h1hNEqX0jW(af)#Vav>wG>GARuEU7xa#dSfTPq%}>DEt3%Z(00Lt|e0 z4_D#I>@~xdE`y(`&%-ne7L`m|N=yuS%DISz z1$|>qetv#-cD7wSL&4|IOA&k;HKsG7q#o5Ci?t`bu4xXliK#qJz0}()uah_lZfy{( z#NCKHetKx$FJSMPJD2E@F=*6hl$U=`z*~!N+YOTZ-T^CH{|cEwK25&QKmamo+(TkC zd;=LBmoE@TPbNp`CxTK(hVIQ64pxELViyR>#_^Ze- zfVsZWSqb}L%LWLVL&#k?CZF_m8?9cRn_Jw9iV7FpC{n&_B7`){MnWW(eRjN&IgB1k zycrlNDBzvmfd*{BhQdPI%bgLG#QI;b7q6Z3SA6S6bq8vPy4seOme7c~DRVx##k`3# zgzChWWPOBtI$aP8$8~I&1`cC4%{aMKZFmk zN)GlLJuIG2cV5qz>GdAV9Lmbc3qN=i2uLyW7oL-b(1lOQe^#7;{SbynI})&>UKW@W9e*KBiGxVWT_^SX?X z7kBlW1V4j=pc5UR@{5muOG_P3SDJUz+)hBBzj0#B>y6F$fE!w&o9Wr7KTd#Yn#b<&DAJKblsY8e`iCTa3v zDv9Z9#=?Z*2Zuj79$W`lnQoR(dTR$HOvcV&g8uG=%pFP_IWAU+0?I^Nlh z@y^v+sM`=Tae4eB6Z+o@kQLzxyWO04Jm2rWxNL@VadGkU92zNWdMM^aq!tg<=9;s^ zj`#;y7u`*WlJefI!4a~XLmm?Jb9wJ{La*#eeE6RBVj`_t_j4&E_H23u(RshNijF_)i~V)a=tM{}$H^?$a+YuN{$|Gi9w+nkLbOKLxLk`BLgzN)I{*zP5?!nzjm zDG)uz(E5WAX)C#!G*WO$Ka1+(;=o4TK|T|8*7dfLiIHnwm^0%u7gQI=Awr{!qs z45XE}rOY`wImsLrz5U-l@bdDqVNWrQ8L6iZ`k0^*4R8;y*dAagtEkkwTpEVC)9LGe zb2yAEQCSqg(7h$t@qnJ~EDzzsC9d)ksk4q~#Yw zGY&3Jx~X{PSc1@9Lh!!);X}hXgg-iJ_yFz4H816qR(cc>-Iy?>bRg~f{zd#Q;*6;1 z?`b-6a{YF1*v&qfgfBLe+2mAGN#8lI#s!l(tSWT7Tz{dGK=z(4y&R4zUEgXkWBr+i0MECWUJvLdf96<>~|rgp#oK+Q|Cawi5;NSsU{I4A0JH9R=44dAn%aThI^i=UbbGRFlWIxP z#-qO-f<1Gz=qfBENVcYPn3R(}d)dVLmk-xxO<+@EetH`l3k!15PyX__`f_n`@hg}I zsrA7I-(sP1y9Za>{b4_E^Z6{%DBbP6XSYIt_i&hXjOX+Tq}ZT(Fwv_8jPn8+9FC9- z=`iVdspYb;O|!;+e{$ABZPjgzw@WlkGW=w!O?P{}v(jiR4V91`h2TrQRPwBOV~?iO z@@6&6! z+{f0fcpld4NAf(Tr0?$3qK@GZ*zh;#WHIJ1f`io?PWX6zI@hZCxJKCd^~cj;D^7>`M@qq_JNVTyFUOo15Q^@WJ#F+dV1>R zVXloyH`Tfmscy+uqD-qrPJUUtOGo7*&%8cXv&EGyj=QSuK3Bgl0z_CUH>ZF*4{srN zbR6UNExT|lF}g?-iwSnxuJ_ws(8C=~9w(_p7XOvhi84}GLWV0ZVPURLIXSt>Db_ov z3lt-@86%@Z9w~Jj8xO0%q<~(nIzLca+ohfW7Z+D5`DXmMZaFR~&Jkpg=f~B^pFe|m z$X%U!`$(7FFGoV->G-^UG`#8|@4i^f2yj^uY zEGcV!pg9q+$-PVLR_!t=Dk#n6k#$UhiE8&Y9g3qbYkPjU9OXe*UVl9GT8k1Tk(QQj zIO{}yzRKfw*q;>crWpTH4gw-FL%q)P(|tojLwzFu*6#{VzkkTJEA7h;Vq(mtG*)fb zv#q|qUd#4&>8&1j2{;f9*>mLDV!Gnz7!L0R#*oUfSN!8hq2-6VyMyK z*mXNr84Zs~rz;>FSNka*Y~>7Y_q#KchZ2c#ilWaMwY9nV<$Iy3RVyyH#KpGHH+5~_ z?qT=GUi->wYPL9ytsL{z>USClic9aeUS{PVDA`E${-F&UHAuSrkc96a3uQ7kcV^xg zTq&)Y`krV##RMOhlLjQ#+NKr*`i1YOc`IXDB7Mw`pxQzyYY3V&i$k0Uf*`-8>%zM2BCV@TFE{(43n#!a$}xU6*JXC zn3#g?OQrGGt|+2HsK4;ubMM_^3Jdq3^In1dxf+leqR^Vj3?poZUcK&UIXMt^ zBn##pdcFC8#_PdC$Y?J_A;-cSvZF(x+7n@MPIEBZ;ud&wT#P9Oqw-Qj_2CF9c%wVh zC`GWAEa)?i0SYLA5-<xgr_B1TB&t0EJ*P_FIvuiF&K)tyOPy_yHyYmWB<#o1!dGGfXsRB1v$zUf zeVJ6R=3M`U`LD(-umcX4fdwQykK>v-aR~`#=QY!*+;BJE;HmFuH@1J`LOd~Nv_uAn?er&YNXr*3usG&MHK z$`Zk~gSV912sIJz3e~62ANgg$;yLM?02w6snr8H=s(|0?@#YvHM!YAL=(s-{N#fM{ z>Z+e<=|5+pa!f@)s`I?4&tK)pWAiVS!YIb0Ccp3Pmz9$Pc~Vw(f`tl^k(WqL(O|pr z`ta=yZqTQYY<7Wua-<_!x4mGx4igW1v?QroMghvSi< zWM=)|S^6toOre|8IdsMxP#l8j?Rwnk;C6fDgJ&aSOxX2wQUS(x)Ym&djuM+Gm1wnD zE(7#cXl9Bb$+68BtmIvi+t^rMUS41SCZ(X@bNxuKnaA#EDy?#Khv_*vzU*cS7m5S%9ZS-YzKTNZ<#5o4H=Z4Mvy2fDKejb3hol?fQLV?FVB!A`stvE{qUB9 zr%0*fU$Y4&!;kM0Vp6)1QO;?cPu>-3>gvjBN?PUoZOz5awYfM>w56lm59(F*LF+hH zo4Mgd6K}C_u-3v@Js*A$cREYp^hbqp5g#76xVW{Y^5DL_TP<=bJKyZhQg2UBN>YpXUHfxivpq3{e znvXw^IJB{Y6!n_hsYC5YGScFwo*q#xjL<$K0)nSy{Ar!v0&u4Ji922nIp4t`LazA+ zGb0KQCj_5VyauXwZ?fGz&8Q-h-(CnCMCQslS5fpt5QNay^AOr4)G-F->!PSK&Nu0{I)r8HGdV4YBqLDq(${^FC=_q z%XoC5&$a956pm=shtB|W7Y9Q^=#x1%9bXlttnj)S7#bYJ#A%ZkE{8F1>0;5V*B(_4 zF(iYcqXUuj2^?;8BF^8Qa9x%MJHv@~Hw#9aESx5j*?}ak`A(-RD&d?L)$GHLuXJ)l zKElNtk@0)2N^w9hQ=L{^b`p(x!|?rt7fb4vA9}AiNIb44Y&Q4&nx2$JXkr!u7NlYR z_oK(YmlhY^ZG@^SYuLcYIUz>k+udq9t*e~<3lkvd_&CO#3G<~R>WJybLZ>k^b3(!2 z{vTE@uM7ztMhZdeisf>n9dXw7n_lC^ddR5!Yf zDY?hn{ly|DD}@SfZ6+%%8!_hF!nF|*dKnW50giJ#?BU46uaPIbh$uwf`*0s!BK+yz znATJCP-1zj1cn5=qGNmX{WqiVe``0bp60EV_1}2KcmEAutcMUj&403QTM)@Mho@_< zMRT%`9Y-XxEd}vjA~C8w2WQ=${Q1)fccME zqT!Ik;`CJ8!OviWNJ@!0{OkURAzE!Pw1dv~bhcc#s#@bJr7H{Dh)l~%w3#i2DZ_hR zElV!CT|LO0Yn8GP5^_PzwIeV*Lc}%51e#=d|i^TDr`$ z5GZxB;kEGE!sB9qN(KE-TpS81-z#}L5M}NMUu!BTDb*T|B;k_|-#t~0DVL}zs;Ldm z<#V<#)iz-EN^x!uv-Xm3*D6ZWJ}>@ItHHr-gU&9>@Lzr@l+TmqJuI$bH=hTvkhX1rKS{PH6+Er(zf(J4K{U^o^vYwbRjz8xJ<;%m4zDE9;?M?*!h@NOSd$7K;u5 zhG0IH9lNMn=108ZfT@1>VOWa)b*A3FgQB8afqjW+dz3BQWpw!O~x?!`N$*u*WB;F zASY%k#a%!%CW-vJ@5obns(3d4DCVbMTu4-Vy7-!DLfXnJIBcG$>FL?lm$qAwu>uF+ zrsjX0W7?|KY-pi*o(5tDx|oeFajlL*aTEY(A_4Tw&`}&G0ej>W;Zr_7k>jTyuX1#5 zw!~KGZm?AUpq}yNq4Lrf*#*XAP$eJ|NBq{}Y)Tb=di7TK)3jy0QWYUjw!2{(s%-R2KhX69gwkNZ*{#toQDRl2)zT+{yM(yw!Yt0g!3;hrZp*UMb1_*7Vi}!!Yq7PL?k&mkt|!m! z&7xHw)E#h!;^Hj1CPJ1g%_ip?!k-HY{1DKF`-j)UFG6Qhxa>}vPM?j^Jd;RfrtjB^^K?kyqSapge#N zc_5ssGhgwg#ir_J^IhSpw0a3SZA)*{`6lJy@bV0;s;vC&FHK8JpUP%7YgX10K+-=r zI65}g1e67k4HOg=XHZ5Im9epLGfR3xamiajUP?^-SLd*2v`WA6+T(g=joev0ZJRm=*;K#d|LiPoK>CNQe@U#_MKi zWVG2M7A6h{Q}*pKt;Nk~IN|)b*~(^3@u)J4PpCqt63X(&F*K6`_OwaNAq9@U#iur8-UhdGwYqlD; zy@R7+x)h#nM%7CD^-g%ef&gKzFVWvHZZ{U?;L6`)aD37l3*Hr|gupCSn1Df=I1fSWw$C!8 zyoifoJHg@N;sysdetc^0%Q(&H=aQnXFOiF#PuzEHL!4#*y&srs+^b?0wdU>u;`TqzK!tigqW zD9N>-9kYi?anw>^4EQ4p!2TpTr`T*DS*X>0d;0)OD{N2RNG9b1mq(g`IrPo`RpToo z*mIN5o|_?IT8PpedFdXFKuZPOp`I|CUU!hy?npAf7fIm{xBd_M>R>uh=6i=42f(o0 zKVI1E{En~;=1iDKq{yMzlT=GmnBWdWh>ar;;hed$QAaqiNI7h5oQ#$u`atlDxx|H_ zH2xs7J*dNvVzZCbD=eQuv++Od03w1=P!|kr%~4k8-pA(RAUZG7?|aC&ym=%Nyv+&= z!PMP}dQ>0xDAv4#ngh4|zFPfeO<;!+(SsX6Mv$hrR2zqKl6NX-8|$f1{DGu6p&*30 z+;e8RKGs^qs%-b+Yq`8{WrOXx*3%HOQ$h{FpRHfH0b8YkRB$wl>!n*VyC zCt@u3_6phXCVyKvl}uJvt5&B&U}-C~55G^+ayfv+$QjATzq{t#51(|6y}r2kk5>{* z-8c}1ho=kV1JFrVSZE0kQ#|e;Yt0wr|UJFZ^QKa#N;JS1)RP-+w~)hodz=biR}NO-f15zoNG! z6gfHfE?=nHL*ZcWihY80MpL*zebHx>?y03I?wEVH$i=DXO2RXxWuc8m45f6E>(Mk4CZ+w}IPBEmU;og#Vs$^io~@ZO zua^RO%F90ddK%9<_j^%NFAXiNi5AgY)-g_A))*4WKUnd@PkK8e9Lv?l6CWkbzzuj0 z^2K7PWVkkhg0s*G!e`)1i`;IGeA1+nInW8dlv}NO+F$FCQl_@)Jma#qWr&hI-ZE;` zmpA4XkJpbB6=RX<;*g_Y<$Sa+M{vH9&={@&oM_9-^JCkc9*(6!xicp*=jK&b1jKYaqhswKfNgOlSBYr$uRO;5 zjh1uBkZ`vK2Md8WLVuX-UE#ycai}ns(ln=&U?8fLgw$pvYpvC)tb)c9^mg@hwa#m+ zKMGGGhLU(d<|BRB#U+Qu(yth{oi*l>x^7`QSHtnI{tZ8pgA$fIfYJl*f2-u1%9*5~GDB(1}Y;!b=M z-V6Bw74S}5SMZ;U3dAKWHMP$9X4AQ>b z_3>|f(H+Hj_m)XwB2bDXDGq4Q6T-OA4cs&;s;UPGzdkiP+i2MBdN%2F_yVU04lcH!+@d33JN9`jmpGU3>P%+_$Ajsb$HxaJ zb0nBkb=W&!hXv^L`DV!HMS%S;T6cA{fGJhApJ2=UVO<*g5bjUKmC0f)z3qqhhiQ|O zm0@95B)qPYNt`xEnSr$y$)U++>SGB;H5nOa;HefXT_g;ZX1R7#!d+5l)sGH4-o8a{ zO=LBCZg$yoPkHmEHyBXntgfeLUFf2pPVy%l$j%A9IEjeX08|NNeV*teJ)UpPlHZl? zOScwiTB`MUyiVnIpoy?wX}*8zqQs<E`*9yUnvvu@3JP_cEQIo~hLgra zEw5vT;(O2gA?@eq+qU$ZaY4qmtM_V<+a){ZQD&igpN)+2H|_0r2SsIZ^x6?_{KoCS z_ofRlalUN!MfQD6c%c#dA!sCpI?GF|T%5q`#y)+r(o&b3%gst#r9Nk=@(zwbDP=RiF7JYy6we)Vyt3STVgnFX9O`%dHsM%>{Od}+h=)7bWpQW!CUBJ zl&Umrw7j&`*)OmZmoimzJMFsr$0b!M)wVtFscL%4BL{QI8q3|Gs2J?EwMmjnal$f8vnvBaC^S*930N1*w=tN{838#^{jB=X_d$}995 z*JWP*i?*Idp>V6fkEL$a0$s8j z)5V@HTlG%1e4yGn46}FLL_oU)q=e_zx~SvHzhK-8KzDnKwdwasCmbRFiHj6*XvG2I<^k2*F?}|VTuVn{};C&JfJA-Wl6$J3s$N@qoc_Ynpd<8&y zf!UlT=g+pNFp^%WkF!)V;FW_^9Mr!V$^RU|bJFfw=5mRH5v=$hWHST@WKHIZvWWqA*MUgleppiX)%FRv zqMV-Z$wecw;bf#s3ya%7?m};kK&``yHy{{*)^HI*3pgZ&W}E}&YmWY&PoCCWY(dhr zCW37|SrKeSwS-p+9fy~%9~@D8$8$%LLA6#7h#{$Dc8jH;@Yh9aCqZD!FATd9CM8Zr z1N={{Rhz1%U{W-i*tob218*M5?`pN?`=IEm_`Pk3_+2Ub#}-0mgCmwOIT77gJLEHJ zeiwCiiviO_e~E^>!$DJAgzzsTeKaCp3camb;f^~ZAzdkmtbNYxOsUJ#to#@C9e80(HzmSG(hn?1DTcYVUJvL z@`(doBA%gxSN_|#Z*87XTU%Q>x#*sXawB}e!n!{NQ!%xHpb#h#FZcGO2yk8v0DBDc zy4>HlxLtQ@GmzwY%@5z$b!ITO zUk@?JQZ;~Z4it+{NAs}qnx>`%@1p=PDFuA!#f-8xke{qX!wLL%#<|ix0+L_0L8SHbo2b>5NvU{r+B?IkRi04pB}*==SqjG+ z$QyD*!Sm9llU{d-SI4XDV(m6q7qD)^h^6XHwIERtb64k48T|PQ)~99hPNb6QQ{xK>b8)TI1=p zSHOVs(NrETx&1^3*$Kj_yj2iztlFSAzVM;5#Xh6gKbn3Hyk{y_Ybi9kJ+WAT$wF5}?<;U~=1V1OgfS42U0v3N>GkVg z`-x2C80(!!_dH%)MsgY2S|)4Q^Wexivvo9q1L_(JO?h}(>_{r}pC}<0Nevgj5_6J?lmv9`A21r#c8yO* zbx>*Ey>5ayGU&`TTlP>F$f^avj_eM+{sHfPNxXL<1SuPzH87y4qwzE6{6Vfd{YDFk z!TbW{jx-sbC82^l@!i(_#SpHVW))yu;gNT}uD9b8>Svscg6wO2)W87_!)LXg3;e)s zIGk_@wnBLq+SrIia@5L4T3W)gg8vfJ(IJQVcdLn4=76H?HNcE{!?1=fl^lSN)++&w zD?q+FozD~u-Jvgk)n{4==FtQC!7M5*V!In~TTGa`ji-|{P&p%If4NsTCkvrNJWAu# zn>Ylnz2T(ki|icayl}T?DlLFmq1S4DZD%8HdcYhL*|1Tjd~-O*(PS`mb%moMzWxv? z0lheFEy||`X#6o-ECx700CCXzbRn@Mv0HUo*SK>~BuZ+Jfh9mApBy2U($=KQ^_WkY zi;!$sd$^Wt*EPpe$gE&hz|b=L*o)|w$YMzXM=YFz4Y$POMm@Dm+PIYN7; z?mJF{w;uDKJ|{9nCOlN!wEO3~MUoh$*@%c3Dmf^!#c?pU-s!ohs=jzaJzttuWfEE7 zi+sbvQ0xh6jdRT68B~tIk9m`appb9}RBaJl#Xrh)32iWludH^ZQyGAvNBj9Ap11M3 ze|S*nD;$`FwZfvJAH2`?n^l$jP_kw_#e8yn(Qq;Mo!xZ7_Hx~>{bl?G)tnp( z)|K@0o?=xz?7a$P#(J1#fA5`L$aa;Aa2uDwBh|D2+4HiHlGB^C!jD@S;-M1U_D7taOF$Rphb_Vx=1zFdJS!?|75WJhw|b4?s)4_*im26> zmfJKpX6DoR3Svw-Ks^6uv7cvJLds$t8X97*(j)e(>FGcuo<=Ksb>sOPsOugN161{y zCB^wmRYtdc>F#nW3iEkRr%_oVj>fC4e^Xk?h@rvv*rC~gE7cJYh;uPak=9%6{Oh|v zwL0HyA|HB%0{|;G)RT|PMEkilFqijfOJ3$=p@nd2F;gF%_dYv@lE?8vo+nxn3&Vw`A?RKX`Hxkdfl__;75V@7{OG?>#SD>zoJ@7E;HF)=smXSCuRbXsF z2nEoAQA@pU#q|)_{cI8sW@`xba!Gha=7dO5*aV5sjOFUuhyq2lbU zlLr8nhMKC0q7l9UFB}g+5D~p28Z8)jI6CI@4bq!B`nxOPisFE!>DnkA#wu~jme|dy zH{y5^7&2NDFGpIR+>1S}jaANw0Yu}pCSq%RI4CN0gM!ywQ3&EFp$kC|c%vFLT)ZbfZ6_*6)xvzd(WnajzC%L32Tcpl0M`QO5U%|B=fkfRB#s)M2W z?-$f@Y0r9L`;n|dr(htckw}beMC6(houIIqifXuG2EKvtNupsM&31!lP4PgCqh;1H zy6GpL>i~7C(7y;h`9G>&$pnjO5qr?+c69nz8F~aOQ}d1{xT9D$FJ!6XvzSy)*|IiX=OGF-x=Sibn-Kms8)+?t;Lv*PhU;xHXG@Ohw~&+Bd?u&nuk z=A#Vf^IiJO)2{P*1tnQ<^jSm5;Z;7e3R*%i?Ot^F)6l4i9w}2 z<8S4wP|{%nP6j$RP~zTOwcb;2bticV^>ps;1_|~ z{W8#(4!-bmvJ3>Cu;O7l4Yqf)EKLTh&mI*7TssK^7K=MHRxQ~pUCcYX+w>~+I*YZ( z#wWiprN44eQc=XmE9*c9+TO!Y?Fr**O#_Z{x>{i+^T)5tN{hqV1t5%Q$oW!Ab6sN< zyZ;=U4|ogbm2#fwoYKK(9vvJ0+3hC9YG>rJwy?5N%JSq}mWb|gpy$qK>T1AO0`?DB z_f|gVrG#Z!rcv_m7l5_3iXUZu&^@WM+qV%BA8h~TC(XStw2RxK5?HKWm&QNZzOlPx zHwwtmEDh-!s4+!P&wnh}$#QiZiQ9ap3cG%X_r&8)vXuuYWK{T5Zilr0Uhd;MeE%KH z`Hr)MGZWxcL~=xbKQ!)qpru}@{DM$v*~_mXOEJ=74+%349(t?G#{9rh{5*DDWU%ml zQH-ZJxV-Z{z8W7`(|3g^)$Ez(J}%i@~66aHlZ7`KPjzxD7^Q8J_ZU} z)Ik3E4}ZjRL3zDvzwlq*GmS-mjxc4006^Ek#>jYhjY$Wk3|&OMi6Hnkq6#`u8OocpM}>jaqhs7Smv zNCB$}IJ?_DFOrtWG&eNfs~R{grlJMqlnVfg9bMl{FadmFqfVo6ncS zUh3(}ekd?P^mRPHXdgLRYFNEFnz#(`S~{Da8e4-QyC`isCE~EuP*Wo~Nw=YD2CPL~ zP8VzR`A2f`8$XHnmz4h*nWkj;eRP&$w4I>W==>LFt7T0mR$h;b)rfh^j*G{F2-357^~RLp-d~M;N)G6ck!igEwS%_14M3BHg@vFq@czl=vV!^>grNJa)oi>r z-{nzNf&owmT((zB-9h<(TE7_qz{3MzMTD$U+)lVk)OYFBnt{kdGGDJN$R_f}@52~A zjd3I3ToR8K=jR#a-qg43Dn9GHa&rC8@?|&1*JQHUi?dJf`COF_f}Q?y(?coG z>93=#NInEs-r0;>ertXlN4yVs_ouCo4APdmy6elXPIpfIb4d7Y8KV_W!IW;1!bN{YME+Uotj(+f9_XaWu;@k+mhV z=4BV7yhZ2xIoyTL?+$cghm%S8(5h$X!>Z$<#a@Wl@)P63i6Wg5KKJG* z+)NHJ>Vh$d*t$V99tBtq&Hk}#nf%peY#!1dIg@h$z`0AaZVRz@{8C@ML6NcjNlDz-Q z#mYlV704G7DnU_tY+jq=wgy~{pa5D+s}k&ss1G|`XfoPmSPI_=bmVb5{@28Tegn8> zJ%PUAdhofh$x4>7&?Ft>oS;v8Vy9Dik>_rdf0%i7bHBbTN(FAz$tk;c?P#DfYpq6( zVNsd)>hHA$Su+-6s!=Mr_V{0BNP*Pe&-Pa+n23~v5vkmIo&Os2cY#jyE>e9Dv__mP z)}iYmpb|`%S~OuTAzbdvQ&Lc1r?URs`wjk+d{(I(noWfbI|je;_}AhOR*mPmtI(S| z%|`ozf*dP_o=Vh0&>+HYmDvV5nMMePYyZ4{du!S|sxGIgW~vrHdc}b$Umcl2nM0Yk zp~O$l8lz}(VE~UNp9p7^kHNwCiAr~Syv(XCf|y%Z)n9lh6{t>Nw~VCn7(oM2_rk%o zL8Fc29%zm@UTyOd5fOQ>4!=N9kw6xzS`p=@+FM|rI`wu4B}MP1IT%Lsso?dF(`y}A zHF-_JKxO6l^foJCnN-p5S_Iki3E;R~YwjKw10&E-*|O(IH)AcZzTE6m^_ZQEOco^V zm}EcxX6`5Y)u)9F#WY4Ua;+G`eVc&45;!e^Z}3Fw$gy4_WJxP4pC`%IvMdx#XmJoo zM#z6g!f4UkQWi8BA59qAqocqoLpHRBP#en{hIn>w9AtkD4h)^!QX16xNdJ*3Nj~LNU9LBhuuU;8tkl#AlJe008+=t19Q+H zR}*;po=v)g-W@MG!SqIwdhHv;-yW`#eyA_pm<*<+9IS61P3AZSr?Y$80p$01E!X`- zqtqFbNx*1|y2xde_w=Vgbv4u7$$O&LDbW@i({n#UPdFYyMGb{8+#EZG{KJ@NH_$XaKoOr2>;v~8__MBb84%fb|8Tn^*zAlnNWDh zsxo)BXI8Jh+HCw0L?{mu@e@*ATW(hwX$>MZA%b1`i*uvHLG~$oiQo-_RtcrK zX(FEMd9%_6Lm+2P5Fr=>D+Lh0?~+$Fra>cN$~LgBgqcyH#BHv6>gCxpRYx<4KbF}AtxF27`!QA#Fwqe0f| zH~-aHMRtV61TkCxGs)9-JFbC4K^#5ACiE@u8Q(0TYEQiBNyKm;*hkxM*~1q(I16-`*v-T5%QcI^;+|S z|A(!=j>>ZV!ggW08|m)u?gnX4y1S*37NjMlkrK&8h;)aPba!`mckPSc_wDiSvB&;* zt?}TK_dTyU&*PZ?)r)F_i`(tE+$-1dS6g)UrPx;hSggJEb=QJb$2_f>yK{?5OQAf| zWR4y=VWV=jk8s4LE_Ya*&kGmzR3XsNA=CEvQ%y;J)ha?TQy?KD*E=n0DI511-L-kX z@_kyUfzLr#IJGv@J2<%z4zh`R`fAy+6bYx41lQ_(AYl3KRA!@fEAKXW!v2r=>t3u6g+9>%)RWGL9! zPQkFMc_R|+>bXk@0K6I3s4$oPOesLRa`Y4CjTOY*A`yaWm0Q)*D5B@SVQJ}tAZB5( z^V$vR<22?W$_IV9fJA%+6DidZuYflkcxbd(xKRTNT<2(B{7M?~y&k_G?)A2B%ah-r@i335DIOm>w?fPke~O6 zvO3h_Dy+kd1|@K_PK8Q~*I4#v2a%QH7O$}aJSU~-F4S3=Z2S@AXw0q}rVJj~y(-L2 z>)jxHfyZE&eq@gd*A&eeM17<3V%pUkOVmr&RV^R5bZoS*tIscb2?s!{rMHYDIlLWDS&$!E%q+q}+m6A~r_?`N4729DkdF^- z28J>#Rn?2j%eI#tdk2?6&l>^jP2O04IcQ~78)g9pg4@KzLM2f^%jN_;hh2j?NB1z} zcTp~;!w5t<1Ltwr25m7Ar(UQl@YIf!hEtkru>6!fiS!Z8ac!Kw$$%Jw0`ZdEQBE!z zA2R;x5CSgZXfgJ$36w*_;^^RDd09d48FTRVzM7AWxQgEu90Bj@^zm}FHNcG;Vyu-s zY>-&8K-T;%DG`jW^0@32K!;0tgA0?bOkg94X-O}Tx&X5B!H!2Oc|t6m)F#9t59Bpa zLBkn*z(PXVTvg%~wF+a3BDwF0sMlLEV0R5MXiv^m;!MprJj9pKC{{; zkZ?(wnmWhsA@kmf2f>Xidu-W0kI$#$o7Q5Fx`5$9ii!kHZ(5NiEWzT8vtZIxZd)@z z*xJUOeOzWnl)~IZ`c1>k2mZ@PJuQWtrG8_NJJaVO2PMki=Oih?M~|M(V@^eVisry@ z5d?B^K*N!3*nCr%>3R_O0!^N=JMl{WfXx+7@_7yb@-f@{1DZ@AH>;+uzMrWQ#4vKDA?D~gL znJWjV+i+w5`|0XY(aS3?RX3AZAtNI%a68!g#jc>ur?rOTyoDYN6)*e2e)i%QpyB1f)u?!T9pa{Wj<|_8!d}pAL@RvKlDs z5|>OjG9!5_jGD&8<*t$o9YQjo%Mc5l%4d?l1DN0C%%an`%lmh&ALm3WLCXiEQU2)F zBH4R6YbR;mC6!cCX3|N8$#U~zjph@M?0 zkcibNehAAWiI{-8vZ+U`tI=@ui;tv_e)ht z30OCw8Y-ZXiO2VgdR$xHu-RjiO!e;N@$~fXZdt6@y;twZPwLVZC~G^Q?rD4KW*dF( zZUph7!FO%jW2W{qpjGI}n0mRbT zxv1RcDsuQiTuJAD5iTkC3_$Kr#> zVLKNfMgYQm*=yPvbC;hF5TGYeiG$8~_-VuQcbCncX$|dw+vf`q?zJtp1vJmdz(^;< ze;r5B7CtJ{f{#}x!PPAe^R72@GIi0GnjZ`gdH+0KAF3`(E_ZKL#`d@$ETxHx=+Bmx zR3R;Qav6|EDo&yWw_>F8bTQeBze4U`F%OZTg0zB8s}D|(siR{CMOWBH^x66m#0D29 zXBa9`7+SAMDwzH7_<7+||A zAWx;~c>7~5A&KERlGE7c=yAzr=p|zcOdVj_`#fi;R)p={1gEvENEVyGU5Zp7Yf zQqZzsY?i*}aJkU4d?iHGf$6jV!v+~`I>2hoPWFaZmfI5v!eN2n{}M} zXct-bAM|{9+ddqbn;JM*_}s>ug&Htk?@u;^QH2zUwu;!j^LNtN9qB*v#CO=2jP>2p zi&BgWEZMRG$#VuBUG>Z>M)eCd81~IlgUSu7Fl|uHf)oyz#&q8t3q?jnaZPZI85U-J zK4{#1fkH-P&7$cS#n#q)jA!~ZfP_7&;CPBz6JJ_!PI)+AT3X5x9^H78Zhz8xx?=o% zpxqUQW}iICC?H_F`r=nw3`ngmkiS_2wxJ9#&!N0&U1sJ&D5axmV5L>nDM&Q#vyAD$ z>_b|jsY9W!v02I0$IH~^z1g#{qpLS=`>XTmI|vTmRhasrj#fRd^RjIfX>VjQA zJq#J$DfLXX45fANW-@MWOAV|sYFDh&}=c?D9%5l!{RY?`WxxV(JXuA z#Wk-Zp@K^rWRs*rMLk$@Xk1ch4YQoh_q(<$2_an4@%b&1k4b(>Qm$j1$0(ZrV?Yys z+pgV*tq#_FFRRp5DX^_h&hRLbB`>!O|uerkydu+gO zGoB0k-zS$syNUrJ$*hrsSMRHFTXdC-8;s{(I4=;^AO-jHTkDos z{nCR2yQN~>AGl1js3UX|JWubvhZCH+X6il(?RFrk<`w@~lHX^U(67sFd+Z)!B_@0_ zaV`JzXSv!_^<_nPNoi;IG~l{c8`KA;tmqGOXt{;pTw{)m%S`_}o2U!K#gpFQQT-%M zx3H?~FOWkA3+`AdYs>zV@y~$e>)B5$HS$Bea0vzy*HBKOo}M7gh!S^(rDTJ$_BDl20wrw3WO-;Zgk1+b_Vg|c3O z90@Kxd`|Np)N~@uPXSo|S!K}TMVpp74$yol85vO@Co4b7E#2e&NP6SX?3kGThx|-o zt5!;^f43kU0I2`PZ?@gtUF}M-+h*TU(ic)1%6}a*JcC1h4y#!&`B9AMtPk$Yum0p> z)+_poPrq`jLhjjT1lk|$iov9ye~pYOg$i{K9r((PT;rtzI!q#g6b?|Rh!bIcB%M= zusR*u?-We5CZvII&{!dU>q=>zr?&6nL)4@S@AvnjsA!*Hl zXm3lt0jGnO59RttIEgCfRxtuyY-GBsMm!5{E-zc~Np|o?s}!n!c%(UYc|^Wde{sLg zm;8KcaL~IM1^O`%`D(kI(RXT#iDG^9j^eEeMs2QNNqgD30$pB0&xC;xdr0D~Jo7cU zsZeEy)SqNTTrk1a)CJV$x$l+jSNwo4=dG^Mce1-6pJ#w{`g=VC&fo4M0=qTuRaKSc zyRl$dOb`AY^;jXb>KeG&C6)mBS~%`Jl1fc~-H6NkWl%`})++x?Lb&2%59~xb>`Iy3 z`>Fv?lb`CBZ=Nnk+xRx00Yka!v1)@1>P>n5_%kS19iBN;o;`WK< zMOk>CA|+EXX!4Mrz@1sekXX3nbNH!THQ*VHCmI2z94p|X@JqC{vWk&~!SL@>GiYEP zT#kzEw*8vi_S%BXMPP?jA|)^s*+^0N27`~udw1G1&PB`2cvo)mfW8+n>VNxJ;2D+o zX727X)8Ht}`)1y4M1bhGR_@rgt#iigHUYx{B)GZ>#8;~q1?f=Uf#s;`$%RbTXx+%p zl-8U7?4@8UFnD@4qkY6@$q;UkcKmw}khq~K!Fqd+$M;`-W?-i@!<x zR7@qOBm?YfqYmlzKDFQkP{Pe8e-BTDPN7adzpVP-UXF_V`t{>SLV`kDWO+iH*X`FX zbX1l-C!d1q#V=Nv`rC+s5xgM@nipekVV#|w2@@Zbrorf7IpF1)p1Sd(p$Ggq0C~OK zo-}V;Zu9#s`D$15A!M`suVw{>t_Zkk1hj5MB7-1~cH6_WOxrzZ@EczLOH}m(_wxc8 znid-EkO?`6>mr{HOL4=IvPj??Ut{C$88Un#U#xX{4HtV_2l%@8>sM$l&VAL|Kf2XB zp?JnE|38v_)c_>$KqKm+%5pF=a_?s(^C;UCA6bv&lQbZW%Pj|-Zx|Pv5&zrOUOBjax7XF@J*wBQD*v=KwJ1W}ISY<- z2Xp}i@^&Q|jaRP1 z;Sgg(9jNZC4vkIzO)mdgyuTXPHvfB&X~BtYCy)hVW2)M*dppQeMXh7-C-6Yy;@5mi zNs7-J&+!l6%HOKGxX9hu7#bP^{d|CNpiQ#ATq=X;>B80yuTz$mzJ3=OeFGDHK#`dm zudxW_BDYZ75dsEF&OQj7fzB!Ec5ZI&z`y|L=SyU$$=k@if-Cm$E82TQ66L_7kM;BO z^Pu?5SEbj`a9C`rEg5(Y;sUcwV4(v3wvG>xt@^O2_6zw&3tgIeT9Gu9AT4TNVh?w9 z8UQ-G!e{N!09I$2QF)_%+99DA>hf08G&MEzWKKI=q4jqva}k_7q)c~6l@%bQGxs=% z-~A_}6c1?D$BSD{EiLeQffsVUXZ}5G%@$p``F7=zwP`Q+%ku+;!)6aE$VtjlZ&$nH ziC#b)SQ`E$t_@3*y0htRo#WJhLxTgz^Fjw+p7EW`jw&w)#Oe47HPKSIhVAV44Y`Xi zNQ#4a2>-=Vnv!aHF)D`NiLZ0-=V_i0Ik|A3_Y$ZFl4YJ6wvu4xPNPMA*EzLc<-&qI zkC!Xc!Lf-zmWN`sskva%`{(v=v>d@aerW?Xla2yP9dw;$oppa`{Q5AO@p6Bm$mY-Gd(-4`Si;C8H0eG&c9nw<8FE z#!xSqGt8NW=a?rZ4tp+1BMZ)B1W~oO1#ZS=+wdk-VjY8dlm~TJ1Q%K;w{%ae)3WRn zk1-;n?xQx(Lnef&miFFvyK+B4!Gr0hqtYV^sWASFRK346(WaZ;PYvhzi}-Yu0$=w` zNhC^!cWZhGa&i8cuBH&lWKFz}(4JQ%__p$muShPB*!|>T`7tt32KYf(PxlF~rc)V; z8Me3I^2FVxk$A*Mj2OBG2Ev=c=%C^QBs;w2lJ1lf={=O9aiveR zR*36^=;+<$&$l=}8@SzruLa^T4$d}E+Og8puQgIgoR(t9AkH+%A$PdOy_0S;{%4j4 z-Uh!MYhH* zFsg2fb!J;#`$fOLyYl#UJ8CoZrg`<<`L`K`U@ouVc1kURXyN=Fl&1`Ty!G@LP3OjP zW)0j>lf*G5WhWZc9(vtZJZ24nl}MuZ`_+%33coZ_{|6ALc!T!AfJ+6$9Ri*<$x`pL zz8nPF=X#aIOCAJtfk*%SXMp8!UY zt@(+Q_#b%BKLZZj0K9Eo;jw+T(v^0??L=}@Oyl==;vobY}S&Y?c;D<7Cp5|d3h1v>$i~+yP5pYcM7i!D*xSO`JQ&9 z;875}q(bf8GVSlqCm9leKy;>&i`LC)sU_L-e^<6?edb-ZeQ0{QJyt{e*MTVAgg)t zk6ebehbF2#_?M)op)vFe&E#OT?>*iZxH*CKqw=;D@Z%H`wD&~hMbFn{wLexD{MTPV z_Oe5ipsuC&(2d6hzDyjM%|P26@jd;oz99s3wv3MtIQi=c5V*0Tg*U?-p&~PVKGGJL z!l=*gi%pC!%_gm z(ypBqC`E+%5}z=Eo3kj4dD1^UBEybROdQ&Gsp@Gi!tt~+ApsGtoTb{(QOxT!c-CjG zXlSd+wN$0$s>-V9ahIfVk}qx}{{FL;)$h#At)#8U$bqAjd2r<+13_xFCy1{7RcDQG zG+?|mS^azUM`pRn(<#0zU^fV_L<73&wjxhr)NT%+AlmQ>udZLd|BtJlwWT#39o>&4 zASGP#2C3jUxKAZx6v5#r`0UxL#t$C~RDKGse~)kNa^3{dd~l&mN>29ZHhzut{Wr+k ze1y0AvH>FZWPB&i)Sd@Rh=0b2F#bJ$1gg%{j&|Abym1^wR-+FqEtrnfQTLb~I=JBB zW*G^Y(VBSF%0D@;`P!b3!6fwtC@h}<| zZq*BMxKM!n8r^>)(p+h={@fjW2f49TreBZ7lnRi`GQ)b_*{r>wOh6uYyVoJ_8_+rj`GjTY84N}x;!(XtmFDyp{p(NIH&&ip|8tUK}s_oNM{8! zF^ytl*V}X22Um}$l;rA;4r+Oy_pztImlGX83J>*D#kIRaj2;Am;LB;nwyqzYU#U`m zryQCq!36?yuom9;LFoN;iuV|QDsa^jr~BgK{mQp=Rer%4m&?_P#iG>8IA>gWQ5twF z`%>#~Gtk!7`w1NHb}C={JQoSae-~EmEgC?02`~ML{M1W6)nepKR7d9d z1{P~@km;@OKORmt@)l`A*xoUK8ieEIwB$CV$!P``G7~LW=x3ID<%~ETP350(ing}< zDZ?47siMyy>L-H}(m)h$<>I=ZIY9fbV?xDN^D|`HUhgp$O&@VT!Ukc?`FLZpk)eLo8mQ}5T!AxTvqAD>gvR*p-oWQN#mZa6bZp!+ag2hwzJ z;GWt0#QgONdmlPHL-py3n+kC^^ly{Lo%7TWHshDE8e8C+6X(;K;18J?=**=oJvZ_@ z@BXt`-!a#$T~4~}Yhp=SEHaP3%G7IelZ9wpUMLelN?;eY#=Czm-Eh&87jMFIfI;yR zPwI_&$KSQjWB7d~O+lF%i6(kBf8ElV<=ue2`?FdZ1^rr^0dfUlviI`04U?~q)IZ_2 zOMVVLMiNx0zy3pWB_Bn_F|pckH==TXZx9GEB2XaDhrDYkPM4ot=}SI$_?*`ttnDv8 z7%lv9w?;g17rR^rp=kD#Vul8>8Dev$43Y6uA5XNdF}@_R+N@H0C5^DY$$Wja9|zi2o9Cb z8o$N@RCHI!sqJG$TRTQ+5V4(abPP5p9?n>ctI&H+p z&Q->{y9bpB3F+pt_pIg6MwRHluVu}-h;W6Y`#3C7^avd#uIh2@hexBHpks)K;RlXf zEw3*qFFR35TU+4%U(^37%46==>(wqOUPP&=NVv#$1Ttx}26D0(5Ct1sq=mevEBnmP zgp%Fi5aex#Gk_VI%qKEZF@;$_vRmTMMffM;Iu9b=C4b=XHu630LKmq4D0(_!WaR+1 zFGVa~ny?IliuaE)L!pgmI+}9hdR8{JU$2t=^0LfL8z4sX_o_+}*nfZ2uYUH`^_Bt3 zOU}vtK{@c$GF1bTl?h}}$maow3k-2Lx1dLN-b*?`Z;NA_vHHD+ zvM_>>^#Fz=IN}!AgF*Sn4*$-eZZTqwO;lFfvfigxX+EwEG5F` z;_N?2``1!ytfIA&(y0Pd$mw$lh7Uu{&8gCOf@3%|xZ~u!IL2@H#y0_>Ov2;CUH0m> zGtzqC6yOWaXerFPRUlEvj4lceCe5dfkN0>+^sJ00%gwiJ0q28YJRMIouc+bfkLOAgAZ>vNw7KEhu-R%ED&1Bqp@kINK7uEDP(A(I zFZguk0@$HWizbWx2|#jR$Lvr30IA>4%S`~Q17>;aH)Sla5}=0$!=VbgPQ>rgOcd1| zxI^=O#nu3W$R0^d`)?rNzhnH`w7souly*J+gP#h)6E2HFm4q=p_zxsdCxdF`GiZKZ zoh-wDyl)1PSyaBIGk~tL0c+QB(=~Xvo|~Q8+$P1G0QXTY9#!enDNhFs60iyeAK2#N z&vNIOP~rQah3R_nM$TRFeY~c7G)L{L*a?SiO(?>InKC2b{4&?ctB8sAV6h2R=zYQm zUW%Wn@qh09_jn5`jE(Z$_ZSQZEvD4AnvoaUfocJTwCFOmw>t67F*B{~P?SB*5tLJS z=W7uV)rhaOtyyzh_c0baB=D%hqy04H@pje;?Dz-i9(!Y^S4HE%iwp+oT%c?QG?dHY zkRu7hJMH%L^z>HW+ZW&j1($fxne%g*zp$L1-lBjYrB)6dR zKcz97eOtv@ojz&IkXIhFMeCu~aNVGRB%Y6zn!r%jY;KxNRZ1ByNI zRWr$$9ju#~07=NzVsko}w@M#4WB6h5afA`X8!IZ#qSCnD&I*9WUmvbtWn^PQo+PqE zNKW=qaQy(%8(?~!mbGHG{BZrt|3z2b6!RJdS`c;D7rbg<;RQhzRZY$7_OHPUb+&Fm zDRfU44T_JuYi(nYL;dx zvBqirG2z15Cr~M=@=+Y!#*5twyU>J~xwzaw*PJZi=^V7-<|mQT^ueV~vlh4p0j}K^ zhh!rB+uu<<83{(42j;$$l9U+JgcnmekvYYKIa%1c(~M$mVk;U3jc#PI!7itYPcrx~ zyV}B!-Bqa5gU+~Jbe6HWUEFP+c{~YG>=*511onxb--KokYEr`dl9ppFc+-t) zQpKfHsJLv!vsfs&s$7PgR<%h<5rXTg68w)$#t3z?UC{)j6kAplUX`XuL_Bs=#xGC1 zV9IQ1U2jn9gX8G)h6gZ}w`{nEfvI~Q2>U1=dWFmz; zu&w#mcx<)kIQ{NUL$Ju z2KV($Y|U3yhp#TrK!w1?$wjA>>I}4PF(g7MqBVVioq+NKPIO~3x1sSg0)mEu*WQ@d zhNp``*4IO0w$`l)0L&3iBGLW?ErNndvBc5u5`hd93>ZU)z_$r#HfP|UtOrxviVBF| zZHjDdM*~b}rvr*WB>@(#r1Ckfv_l3v2YdmoH*=Q{z)InJNrB4L;qvY9)HwCCT| zuAdJ<+&u5ArFM(KaOlhdmjHxHaA?GLzm1>mKvZ`RvZ(32C&0+HpGN!n*onXTEvs_1 zKgr?IiChd%;*QbUuYQJ@N*8u*fe!cX0+6EnzRw=BA}@E?SKUn1nOX7b#+AXFy~zBQ zRg^*RJ~(j-S#EFD2(O21vfW+7g6Xr&^&4F9xLV$NRHaC9T{Xzo{1O&01U5>Dh&)$F zp+9%MK6c%?Y>o?dwp= zH2mCB#r^eL>r@wSc4l*tiaE@e9jg%f&}l5RoVlfJg!P=QP%CIkIfxuYut+x|r&BBc z@1b@wZ5$R#x)>tgeVUw-uo*bVRc!u!Xxz=xZ*pfiDRuUgt+%PIZCHNutOK$-zMiif zRNHULGs{8ZCSER>I@+(~-uR^|Yf&zyDZSebG4tquz=`IePd@QYX2ft0I;aB@Hy>~gt7O$+c|6^Wx5IMdIhe3ef7;%L?cP5@!=zRAkAztjGVW#h;uK(B zu%+k?B)Cns`OQc-5IxD^WQ$3q>0a}-sq48TO)5$sDn&&eXv< zHXY>mUN=?wNuR$F9f4NGMWU+M_Gk;g^X4}hm(HM0ct>y{JdJa91Q?9V!_qDDMtd>Bqat+A=baVKi{5+@TZv5s*c!B52S4v zdTZr4p5}a<`yD~BSIr{dzo(yB3;NUR+|!k8cNQwnik}-jg2B7O)T?jd#Wz{#M+>Sp1bC&T}r$C>)g z2i{@H4u}1)_~5E#r6ngx_fVAmqSi(Jue(m!ktk#XjtEc6G+E+(SLt|_r6LTlW?{lg z{BsnQ_R#HH~ZGrR>NRDi!Yd&00aWZvkmX*VfNF4c$nX- zBzbn7GErHf6zJjh{Dy}Io0FnIo2J^GzI_V zU+t}I^8Ig2_Hqn9NNK^7qFq0(T@WG!^z%|@XV6OPVW|QII8z3`s-qRsx{a=uvQ}?i$eY*zgMfKsHZici zV;@sq&y5*f@U5JZl7c%5ZcW3Kes}ntxHO4L`4 zAi%QU{_V#~itE#P@8(vP&wwqE^|8`3w`Crar262XV2m;0!7Zl55vM#LsxVU666MoR4PS9h3GNtl! zq1Nfgci0TC^xy)G%QC|z@Y3&RfoBImiAcrX-uJ5`8SurRhseN858(0LHvujCUYOhz=SMNBwyZr#(v^ta;$fLacZ}<_O2Svu z`u*7kv&C$zA)-$<%`vWjCwUj0;5T?0zgn8AsxAN$3ILzlhR*L~VlQ!0XgSS<{sX(U zkpoBu*c`s=jIobRmEqCdIKM&>){Kzr-9Wsx*Fe-`APG?78yD$GO2+3Ay3U~X0x_(A z{%b%E=6SplvnaEawGQ`KT$lx%rmq`l7}%rbU!LuiPz1QezU}wE8~zT>#(m}oK)`0t z<4&GuuqCA%mG0F8F|?$iv)D=T-TLl4~lNGu2Q-N(~5IY>c{Z)S!UfZK(?tq%V4tzJTVA4H?9CTV8@MrQ~<4rF6aSs zSKthDJwe{;KJYxY}g_q(9nyZz)WW59(FankXNpD~X7hgs! z%i8eTPHRI0%F(3Yy`{^u#dKug5*aZf3k_W&py25Z$_ZY z(7OgMs%&j|(4q7=s07E1And|su;M|#&T+oMvb{0WhRY-FPQ4xU9aeKDMd&5>cR9RXyi@_b1g6(Y~ z&!bc^r|SnU|uo-*~nT#rVtAZKM{?7UCs@?`DN0ow|I{(83DF#N|N=w*Unkn=-vq3IPN zU702@0x#AWy)3)B?}Ml!9*a@Zk9yD7FFwn|4;O;~*53j@OL02S!rmq-%R4ihOShKG`frcnYZL)}cg5iBIBC~^h`^Hs$M znTCBK%7eXqW@IZN{r@V)+g0TIyG5`c5j;ISroSHxIa^wBWYu`}nM-iad3s26>TTCJ zE|#$v9X(O@Y}9BMu`OX3Niv$KI(+zz3@yEPm^9Xcl*7W2ikMB!_uiCC0p+U$rxx-C z4p`1v&a;+&WI5>_93H7nidmRXyZN7I=N%&5Pp^r1ITA2JM1Setq6|94HyN^t7d06Z z9|~^pBoQ_90z>H|?W-l#SXp*OGZG=&3F-?0 zrgE5L1ZM;+iD!APu)X;$OQr4>!VsOYj$6a=mH43H6S6k5t>-|KiaEW;g5BmUh)}@p z-HaG8op;A@7`FHKhaveA2JuX#L(_dyv0U^O{=^ zCy@-;uzO1CPYm#0@ou~8W@Gn!>je3CX9?R}08`mMOFfv2X0o5hRrV2a?e|fQ3OpVG zD@%(xE!kwb>S{cdocO5v-Z5B)mR+w)R%e?SRl6+@-jAtqxjb|Us1NQkzkxDw?y{}S zV+@!tfGYvWQ>q^_pG=}Hb%T;lBuukZRY;2j~__H?v zxd;GV-!u|?k)=aQ%!+UD#KDw#;m!Us-SRW5KyF7)fwdJ1fw0%W7DF$IB7*>ne&p&& zyPUD|0@QD|D_+6lGjI|j=Cpcx)A*(NfMf6*-MkkE2@P*nUiCHm`;0RD{TF#sk!;m2zN3B34<(5gyq+98EXp%t% z_E_tS^K$1v=JXb=I|L^_zajg ziB(N+^UkMlB)meaBo}j49*UtSRYVviQhxQ6r-^gKZTKjS{7>8H<|z zI|FfYc?4}6Q_XMv@rgAu--`uGM$?+jSb&(yKUnG$%LB|MhY@ZASy8^&m#mO)PYd?tBEUoJT!ccnJ;RSNzC@b-Uc+-3i0CK`4F)OLn0-8jZyt~I@N2?WW6@4{)vaOTW9I8M&GKpV?S>2)gR zOY3Mm*}~hjP*wOG#<31;2U7@-#rM7(=8GW{`?5b#po3znwtfRdd}RNI+uV#GP@;iK zch|W7$sTO-qazM@0+eki6V4I&*XV-5l;w-^0Dl2{EzrBQvqO?a2viACAcj)u-s(?$ zqaj|P;Y_Yz?5MqZ%C$BijsYP_mVUDqVEo_&5c3`gJ$V)RGOK_?(vk}5hsj?r0O`XU zXGEe3c_v7jwx2QZzt()K;n>*1B}G%m6I-|{)%Z{5inU*kOFDw#^DY~K=-S%Ie_C^} z?Ga5x7;NWiNT1ZFz(3eC2oO5eZ!uzbq*KmxA7ptY6m-BRGkm-`ZQBC5_tWQF1;u?K z9e; z2hA4x*FWZOKMJH_)93q1ve&C9x6x07Dc_jW))swz@D6G*#G%9mk_bJTLf*U2Q@i&R z-7kmieHc%}pE#T?FE1(;Pam_)AmbpG{>d6W?EDi)b0+I!T`;{DF`EFnmR*#UVbgwR zt1{qD*MW|{YdSksG~rVxV{El6<<56zRoZ^6Zo~|w91&Jdk>*=`c4r79OHAVyn3Yr% zYS|9P>{-9{FoJ^AIRkRYY+{8NK|@LECI>7*^Qk9CsN`Ig9~j@}AQL(V@e@{2tCP*( z`61+`qLG+bHzAPxreLE*=&;^htp!rzP{P5O(4b;B`WHDb!?6>QH zvoFRuUsvoH>~l)MjA_Cet!vLqLn!VVL2s26fIvxO5T%*(b)bd^>lyTSOt6wlT^840 zkTPxM{rmhW${{6eY-!Yfb9t2s(Qv3hBw+|7n{>e_<)2Sp_*AY0Ouo5NR&b00v?PuY zisoX`!3Pc?G9{-0nQ35=EB?pVMu5(Jqg`DbLf&%Cf|8Z{PCXd47Xk|fhxo6s5v`;H zj2F?;V153?@5IpQnW+m+`X2)$4kZ`j%s%YuDuT70`Uzw9f1SG=Xy7U4|6gxWUUD19 z%1_hw>90R?BO;r`^<2DqBJr4W(V*dxpTR-Kguwx;xZ-m#4#G#u{U>@n0`zcplQlD( z??i|`p0divU=7&K$#5Pr)4dK%N8&NLmG@m`Kh^ZnG65+2o4GT zM`Cbj3~(!rR%`9G!6q?u06BwB5#WjKm{KFP%5-$q)W-f(&H!gEpRsm{jnAwM3@j|Q zs=rnmmWTWMbL{!#TwS%atO`edy0E=Xgf@8_q~LG#JzpIy(3)m;cTYp{qkq3V!xIba z_n{pN73nrK>-=@l)n)Kkf`I3-iPPu|ykg0ycUV?%GUeZjlj;F2-p{B1Rr1gA1QyA);L@fK6IS|zm(YLgUTmWMfR^S5zGv%M%8va zCqm60r(d?>0p{DZe zcjXT!kaP0!d4e8O+skx$+24l)kQQ9$#tc|{A0|dc1#MkYQ;M>|A!B7>F|j7#X8^`; z&YLwB=Lwlw0u8;Qt`pQ(8F_dY?2=>XM0^g?qd?_r296+Lk5>eCX@5V!PBXwlHpdE3 z?8kSb^Mbv)V6qIFZLMdyQ7;#}Vw<#o1XL^|x^eB3TSb?oIM9)lYXDgTDlGshTVRVB zQjeSC!|_u_+%E#bZ4ZI<4ycxt0$_jjTeLmqdbyD9&<(-gjz_wfPV=WrB)hee+?{iQH3B_W=4W^m{)fIiXXz8D2*=U`(0plg-~Z4e7=}U;^!dJ7FK#8* z8=3gxn=J1GA)(QP zj?SX5qDx8?aK%X$t1Lf*Za7$uTGVFr{fc7-VC<;PQk2->Q;l7~y z%X#Qw_ejL#?{R~~0^zUO%;mx;M^G;((FcUH;Xzn(GX8T17fEW^&Xv5&7^@~QrlmVO zb=??}ICyV%u}#gJn2F|c~gtHVMj1>O;*y6)3{aoS}Q0+eJD{pkib3~UD~mjXwn zOC0XoKPi)Z(k?>#Ls_zX#*O;X(nnA;_?Ix_fi1;$B|^_Z&x7@PRS_HJ49RiRPtO`0_0lN{$AFuSUAF{XDEli8VsK&mGvY_5YYdoSG6t1HF=G5D-Se7WN<~csZz~bhmt&~0kG5p)I!}F7a-9oL zg-?jw!tgN|C(F$;6f4yC8yI-80I7UM+>4(SdEBPk)OtE9L{Gh!rz{hYR?b$p8C9BD zviRHnQjNmB>x+`iz>UP4$N?8Fo$tul?fM8Z_+{%l+w(5%Z{6Di<%sJOP%1^Sn7B5l2Y^Ubh6H=Zb*+VNav@Za>DrY8G(#|ZiV+UywG z$=dO7a6t8f$^sU*J}_NT4OKQQ*b^#2uda~K)Q z1T=?e7sc@Pvy%dyNio3mK7o6JY_IgD$qYwbUQYpgZwI#!S9NI%v7(pu!mjkhzx^&?>ML_9f%i+r%E~I`#}6L9`u0}fvH%nppQtEWp~B>s(bJ%= zol0|C0fG7H>1j;Nb((8vLBE#Hs(&C{pU;F=(=P=fJc+PqRlLFtC;PjgEHRGm47l$i<%E6CXfkw+2GfT_Rt^7LYRau@(KvyG=0p zH-^WJNkS63JkQII)6m_FLILmOGR4NosG_VaqXs0u+3HHS;EI4jN^kyP5$ue0iBS3U z^mJ9@KE#}&JLEN6w)}8&xcJAOuhcaHV_x;)NnHi42^X8>XJ#fAL8uy^B*F{^*Z%(g z0#`1bK3%^^O=zX0&GB+G9yA)H(hTV2O@O=H9LOIB5APN2t@!&)J}MkdsNsj>hIk8q z#Ng%W?(Y34e0v-$0`)N)rTACgF6>`DXg`clgfr-dU77DIKY=&H=gP+4AG#-@nE>MM zAPcgFl#o!=1mgLL^$L@8pqcB5Zx1eI+{HcwaQy~2|2qXah}lmVib1l#OM%1Cz!69XKl+99U*D>RpPdV z;A-Dr`4b!&os*j1He+P2U3Uj<{2yj`Q|@AJyPI~~t36n4oRa*`T726AUs_|s1+^u& zs!zyRGw)0iS4LrM-t{MG)P(D{pJ5Q=NtK0J(h_WW9IJ0M=~YUZEPwnj_#=+YbYzrr zjEq}{V)pwB))K6t54ZRi^NgC|l%_45LR_@!OT{qfGqnr~xFE@UX<0@mG z!bEzuN|m--ATzP__r2`gk>tJT19$BX{m+mM4c3+%NTD%NDFjyPUC^&b^yDJScyNnU z^A3H}6(iiGkeMa)C0YibT*nN~utI3Ot4mrLxTZ6F8U0NDzhB>-`84z4R+jEaEoz!P zoVTHGQbU>65r)n!iakUjV`K@Ab_Ve$w^60*oh&3W9d>$$CIq3*QgiSciD4p2EBi!@ zX6Vrr>evSfPrg!d47-+n>ihq{N!#7n&O*?r@*-TV@*Pbc$j&$%O~eO6OsE+an(tDj z z)1TDpENy-oCmRpNg!_nn!X90vq@=ZGDWQJJU1o8Y7o3QqTQX?2Mju8kt~7!D#kL6_ zMFxM(4z522QdR2Ki=)1yv0iy*auKmylL-U)y-(f055#|os@+6a|Ir}tn+{2P; zWF9u#3qEW;OYw6DvySN<9xtxALikGlh+t4e)t&2k3A7_RgcNM~; zd`lf;pO02Hk5;WyQKQjhEl=Zt;QHo6KWX6iQR8~tJl35D9AmNqmn^F> z!RHyUJc+UQ9yhy53HwC%dRn5+MKxG+8VR1jzK9=TAs$C>aS7Wd)&lnbV(YAOfoze}`DP7Xt-5rW_cS(15r=+B`lG1%Q?-+NCZ+!Rus|TL*9L_m=?X~9o zP1Wy~&#lEYD1Nk?a}Kg>FcquN8Svovi^8qPi9F~ zesV`NLRce^_)c>~e{F8lVCKyWUxGK3t$7CdSyn6m2+YqGHCCKJH|XnWEO_i?W?AE7 zv$+WK!lnf_ws8!LvQc}(JLq{i|7a*dom!t+9&-B=5b#DfW^loBf}0`rCE!=*6MO|r z5R+hr!A%JdM>(o>T!25Cp@9Qy+oB+zjYyl9jfj`|uRzzEl|X+Y{>~=0_T%MtzC4xW z&eRP`=t!$+Gxpm>yEZ5TB`{y7|^9h@DQk1Jgv|!Daio-pI0oBjE_o+exu| zLZEV|Pq$grvLNOpf_^j13zv-${Lu517^})v50~)ku>y%}TLS_Pu#fgrMiK$zPh@c> z1LSmoKld1_dEKb4wWi$=h9#OmX19XvM=WT9=ZO+i5JrjmuJT*AG1{jB&ewXj019LqcU^f~Oa5;y%g(~*MB<}CTbdySH{ zI0}{ZlC^y8%`{d1>X$tNQ3SB8Hzsi=kC`cG=}QjjNlg6IfE z!z0VAoWUPMlHSas6gSKpHa}LDvYh693H{+S8DVJYU7`+#g@Scub!h z+vT+fC+EVZ6C$ATMS-1;DYU{bp(0Q1r1X;`K6Ftd&W)z@Vk7(BQC9OGYgtNGRm#Z| z2cC!=1n{kzt(fO0tmhL$#&VQHO2FwKCscgo_&pCUGqygxXh_fI^OOXuc{&`~N7fK= zIBLD(vkxeE5Pdv}9>^uENCLx=IpJj$Kcu_M)GztkrpqlzP2XDodDr2a-yBw3G+c-L zoP*yKG>T?IMMO0pt@U&B9%}@qw0D;(kOC|hkPXTaefV%Ux8k+UD}5s!WNT>*2+4yP zYgihYHkM+cRs{lyrf-b#SGVy-a2ru*ZoK16zC5h2s^mDRm0nA6HqbixVJCPS*_xLK zS~A0ba8sv9ySKCp>9#eT_TwxlC>pH|fLk_E3Zkx{t2s<$A0Iu68aeLnboeIC7Q{a7 z_;8uiGz?NL%`Ie57>|g$sZgV8gS?WJHI8MJpq5P5B_!XaX5WWG_Eg`FZMAtJ4WZqP z^XqG@I-Q|bv!G~}jQfjSon%3v;SjW+6nm9nJkX@U(A6oa{01qKYbq`+t61*oz8Ue|7Gx3nXvOOPhJM+qzCc?vU1n!nepbj7H7Eq+Uxl zpf11Jw_G^rp`x$jF@dbCpz|1G%4oD(hZaqP`e>U?dWp*;UTssP96HhgAyMm77Z7Rk zX3gK=b}I|6E|Tic38{liVhf}`SKB^>Th$vg`9v2t#om{_GzKKX_U7U(KbAy9-jVTb zmpZRE)ve~pX7ZTei@jlsTg17MTcENSEyM5=702WH8(=_velLwNvXX2#AdNR-CPl1s zqcDDqLS}dZSI&nL2&=p7Jr*7`GrsT(=`TAzI>U|ES6-AG@8gOO7EXRR&^E4$bw$e- zbzVqNfA!OS*oe5_oWS;`!8xtj)z1j1JVbJk8=SD*o@OCJx+#hntbM7oGlL%L=@8bO zGpKrq;cPXxdTDMM+U)Y8wpd^%0>3Vx%}cP})O8Aj0X3g^BD)7c(_AaRjAISWkN6XY z=FM3;=cJ{ixouxm$LwYW&MD~R!(Z#a42 zLVy(f?&|&0c*1JO1BUW?-N2M7_`OZz*0rn-L&0{JW0Wni*iG!^iB6 zKE6`as)`d-6irgTDMImw&@~y`6jG%sct^U1dhN_=Mx0eXNCvvtRyqcw)p`le&pv%GW>iVBiYFc{w#~)gol)sF z70bP9b|C7K{nS@iDVMbC(Dhc>b(}C-P z5aAC!L7JrkHiPs>4ZJ>v8fQ(5*yWH9(;=nZbbrzr$8icL4RSTbo!y)Eh?*DE8t?uP zL4oI#WnKVPP#bHSX3*aV0_O$AG5&v@Nt`m7s?n}i(k0CO ze6g1ksk(2SZOAP%UH??)2(`F_<;W-6?rwxUFB;WF*i&IsCVSdl&=1$*FEZ_)<_=9W z;{uI7KPqMpZA3fzZnv+|0*)g__&9=9dvO4JjBqn}C+lswjP#~NV9HI!_)c`9KQ_li zqMbGWlA5aW7B1?r*(Iw+QjPyNvc9O$2!<9yS%!lk`cwBr6WKXgP+_GVUS5?vyslOCrrK86MfrU(l; z*w1k!7IN?iCs+qcOxMe6h$}1O;^@6dl8xY79lwJ^kjf)gO?(JXBOJkuBjQS978F3r z;W4d-5$<`8mh8d8-1){VMpPr~`ZfgV+iVlQ^m+M4&;Altiz^g?m;SVG&ftw@#L&mOC#^Yfi}=|?3x zVV%`ELsl!f*dQ;$qeT;Bm;|O)NGs9i;%S~>Mqi^@Mfr+Rgm&A7+MgUef%?f2C}}Q_ zEYS8bTy)P^@EW>xWE)-$g=LTx8x2uB6_MJ z@rHQ%$(45q^7=?PkY&R*tT(~IR8ka?S%_sN(lh3?Cp9f+9rF2ff5Z1ol@BA#?&9l_ z*pgakMtwsfjfO2Ub#~qz8|{-~I8(r5?TSO!j-N-G3ZNK{M|hZ zV(8K{GkpL(3y`l=i3kY+2KD-QFrf`%!A4t0^btO)0I`#h83vO*%-cVkoPqZ#~{iPA)2W-^ktNj4=2*lZ8dS73>A=+8VBWiqJ@EtjZH?j zQLLCfJSK6Yt zvWxfG0H+}osf+fk1{QNpEavb^WLdeNI`K~2f6?0_K-lOOi@HI&fmWwd>pfJ)%qUG- zs+`N?9T}azSVzk~1borU2~S`YZ`(dn`ObNSi5;B0J+@_>333I>hrIPwCx7TUzZ>En z@ys=+ke~vin9ta^OArwb%HX(7iirvNU7T-)g@wbc1d!;4=J?8$=V@q+=u+cc%16&j zHdp})nMzmgX`mBozxrDjdNu8L)~vr>C1QLv7c7d^M{n=_0;*@Hv{ivZ(#3MU+D2l%iktI1qM`Opq=FcIyqatwwgAw zdtF*r6K>Xu&AiEzmR^xrzZ-?&F!`gN3`qpBoc65OYYW>etU+@5#olE8pS=mSd9~q>!S?i<10A^I3i2)!fTEE= z<_%Ddzz~MoSiibTeCR#UGcL8TiQ{};(iR4F5BO9NUkFkOhU3Y*wPF#LoKw~=kety; z%}mUSii&V?aVf;EVi6FMo*}6X!s4RI4?*=w0QChGG;SF!Dn%?3^3DU%+Zrd;(?udO zELMm+A|+{N1$KTsb1ssO*obtau(Ac5R9vIu8{`f$Ra?!MopyZ|a2}pMS!-RKpSM}6 zHtY$61#<=<7zuZd>xRFjjG{>?o=N)tz0G_o3ot~madEY-bsuJej6{tASb7iyqsP;I z{aSK5X)j(^Tw0xD04@kO+1}pXpHtg2_k(w8J8uC*3~;q8+~i^avo-#;x}WbT`>zwBOygr1d^mEYr6h6pl%$;{my?Cb;2FBHq__Ly|G zY;M-Y^g{KXI5;`$x_adsqvD3MDFO5P34!M=T^UHIxd~3~9?$-&A)2$O{ zJ7LNjTVcvXHzxR3+rLXR>I9oSGgiO6gW8Kp&n?=c-gyhOz0onp?!f1Hd9a)h^6>sH zRB~`|Xy|+F0>2B1ow<~HhsU4cp;8(K26m+IXe2b$i>n1h9oAcEwCc4YQ+(^|iUpi> zowSzs5E2$Izb~ne_1l-LmARatU^MD>1RewJNYPwZsMQ-5xfM+<#-cJQN&ORvSmL|9$2MGsYvb9oNwGB-W`?xoSChMH2Sf zWF_>=<@}N)0x3W3z-SDJpn<}&5d+W8pf}QYd+CGw*m`Mdha&TfWk(Op;fy z@ybJdW9CPhnLpnAm6ZCc*hvoTjw@NWxi9Uj#ZUB4w}S> zABzR;Xz*0CmHm33^ahuom z(w+aEsVN{rAtE9IHeo|bBDq$>xhhr@Z_clt>$Lck+p*7jS76!Zzj<`R(|0yhHTk-U z@fEHz(^OHqcAN*d^UW_QT;`0eqLdN^{`Zv2IW5jde$0t$0Xqc+^)LZ?8lR^c(fU;F z?Ug`;8z5(PzAmgl>OctMWh|t^H!;Mp)Zum4lExyF8Z&q6gB3E(^qnSvP@U7TH~5W6 z4|oND7zwZa%qD;%3EbR7Z?-<}vek9 z6faSNWP(i8n%rwo9TUoX#-NCi#!8tI5s75n0K+k+QqnN^{wF^D0drYA!fdGC%b>;< zsSgRhw4){84a}{^{vWkEuae$mxLU?Y^%CM`B==7tJ3A<26Vy2fGE<)PJ8+ds9BNwS zUc|aXmGT>_#wLEND!KImLh}L|DXKbFU%qHmYPPsdk!GCa85s@65_thnOt#0K7C_ei z#U~mIIU*l+B-1pP&-|499$v*iwXXt!qD{)|2@&T9XyFDWy|4H=!!nbJmDJnUm!6&; z7!;V7m!HH-BQ7RJzWlNG-A;3ezl7tTgrB=(8aunY93K25BO^eV+;NbHY(Ab6aLmZg zu8NRKXnClltNSgP5TdDx~DNbq~y`H&_qPE7<^5BgL-uZoWKiU`Dg}~$@}~JB5Fa0 zk1CDNDlsN(k`*I?OUWEs>Mlq)aG1_}<-~=GLPu%ihn#7=(ku3d&OhuDb%j@^d_BK2HF1d?@?|h?@eq9ggLhw1VZ?=&P=>GCB?pm!4i&$ynl2 z(a}#j-~v9(FV?wPZ&aNka~5^a2~XjnR*3!1h@~#+9{E&~1Ff8Z0W8$bJBhMW06-l8 z4IdhM=*5&HPg&O!&BCWG%CKKlD@sO?)2&C&jCPw3F*d+M@Q(k6VCqas7YD&OO{<8+ zUuthb6R#y`oaqB=JaPUEnaZpUt30I0C&GFMMTEJaYjtd|k~HlfEx0;G%}k$5G?nLA znk)}KDxmPs+2adjQ)n%j^bO`D45<09*j|%on%I^vOnVnAWWJ`?1F6}oomRl}a=MEl zv~4J|*BG@oc0E4H3&n`=&Yg|YdOU=Vd|{`$dOA2bxVf48E4WuA#Ki{&2Ll6j>p?SBfJxej|G2fUudl0X^3e9-*OXgOJe)rP{NPUe!wDYka)1a`I+=b)b4q43?5kczcr!Kk`F zz^S>RQStvJUSq@fS|;l%f;NuK)LT{|HvNk_2P(9RF|swh-UqrB5fw8aG7pL5v1y7a zI#RJ(Djh*a?cX2{X95F8ecp!!Y`*nP&^sqC>(stLG^zh~l8XL%w~Nh~-z>G{0pst} zJt`0i4+7KN8L_3cHNW%OCJ;9_yN_U=U&J4+c@sZM2TOuZ%okrkCb7}Wgm*p;fj@yt zBvVWZgR!!@TeJD}l|KZ>`UHa02Lg6ZEAk4GM(EyJ%ErdVMPA-VH0avvo54sEs`Mvp z_GwvUQcp|B4&yiMF8*bhBkg$@^~KpE)zN#@_xwmaDta+hxfFgz1F%e()6{h_Su2G8 z<9UcPvZnm__^^_eJ|z|z0$Huv(N6Nve~W5HmmzhlKIzC(_N9Zam~c*MsxNLqBV5*O z#_W(Ib9ukXIzF`YCS*4wG(W!8Un>z2zjHD_MyBK1dHjziy$aD?&Qy=363(hzK0bF8}x^OT)b(w3LyFX>wv@ZX>{t0`kWFk|JEb z%leb9DnnMK?_2x6uwr!?M@NnA@A4~=-IEMJTO!1AgDwudTT!?lc+y;pCurR zpbc2Gm^!YJs6a?J!*Z9OpPbzIPfHb$ND&aCdiE%0z(-^c zqp=4shsz+2QmKXgAaDSDbyL>P9 zr*HN2bjiWNH1jbZ>k^vD$0NW+5O>l<;(h0ggotx`F?14*Wo&3TQ^c4Khy>hrC+)jq z-%po1JDLl)sd))$LO{$V36D27KgI8gx=BI-PiG5FTCS*IlA&Rsa0T@h*b)Ng0W1K( zELR(f>f72%(T*IgH2ei7i@tSstDhy7b4BMT2HSv(b_(LFl}I^FXa{qFTYCo{+PnP6 zkG{a_tWGMItw31h?h6cy7n54Q9vM1=3PJEF{Q#A5xy?t-0frKyzoM!)pqd8sZ8I z2i&4X3v$yxszI9x@zKC!95?Xxaih)rG_g>Y`Dz$n!>7$^zbX^3hzxVzrcggC==;>O)R-0)f}&r$ z$<{|g0*)FgC@CQ;fI9>15QSlNCRrG8uRd;9mpW#KOZ&4j}+?Wibg zTXTHgT23dCuM^BGW_W6HEqd1fuoUU8!nEHlxeX&G){D=O$qJ5*2Cj>W=iP3{zzWhe zu_jvT*%b|Zg&rd&Jrty0%P%6@^H%$vNd7S=hn$Q?!rDu-g{k8b^SRC(Jx{XDUF25< z!LdWDDgRw;y`-(=w4`WwOS1u7tXxW)w7^Q3IUkoSV5eHPx`*mB%9x^*^bH;*+!Jp(j*q92J&ZiS0=-CmiNIIaH_Va~weAF;Q_BV69C| z+nSr~Zz}b)9Ay&r3S5)l<);|hZ%VCE##5HT%(F)_5n~f$~0(oH#$VG_y!%jZYiNAlLW-1S9Nv*DXe*hgC~HRfi9zlzVdp9 zP7}ybR^UEn58vJ22SCJfVDlc5j3Yf>&fo78c*yd3UIqn*=R_I@h|pSVw4tAje7HG| zi-|Y{KWl0_uTf_%N*dM#3>E-iY%{k9Y*e~H#7xXayI&wJ*Kh~! z(N!YlT0U<{GZHzf>)!MF%a0CDkn;($u(sq7@EjHd9B-Mk)(*x%*C`JAr9_$1#?Bmt zgjcRBQ-lwfWRJelcI`FR65xf%!26JRZTXFz<_`c!O3MDe(WXe2K~i8|ve+U@xU35J zgZB^fKidEOlO%hBm$w7!>Mz%SE^GHLwA;}!J7nhWoVrRqpJkPm&u@UC{NT(m13@B| zIKoMA&||&bgI&l17QX^jKqs9lpGul7RYy% zGf%j@seXW3nbMZY=UQ~BpjB&fP7gxDEP5Dn^w1B@pZ6x#YF&_j2NWW`oeiHkF#N39 z=)AlgClES9$3Vw>TtAnXnAlxjULI8bO1;@|-@a;b>Vm}M#6W>S`b&V`f!_-D5Vt}4 zQ>hmm5{OU-2#ztMWuxFcjB?OHc3hm~CJB$@&P3DtJqT)d15#}ZkdN|of8NG6oIyxL zI76)Y%6(e3+xv)2BI$H6u)^^Loh@A0Ip74wQZz=MQGgQK=jE&q4Wz&aJu-uIGJuB) zO_+D@v|dL+zPz#mDK^buB}WjiimEa-F%f+^nA-Yb)&R zqlEp`akEXIz9{8Y|BmR&>{+l_L-jF%4Y|+^pj{!OlpbqSFeXQpv9GDx-Q5GKbgZOx z%s~?a;WVM)#Ag5MzGZh4MvGs(YTWR_xYr(9kNXQtK4`e^CNZ)#lKnE?-n!X>J~g=H z1*~j!V3318EeExkhlza?=&~`rY_Ke_MG&-?^`?S#WyqtY!NBLIJ?a}o83l#IS+%ar z+;a$BWh`xVbVV#`M!lqo5EDtJ)FypLMK2@=98oovx8yVS^Iux!MYj0W$s@0aq||Rv zZhvQ~Lo!f1*ICO%r%}_=W(*;TVfaDB>H^{sSc#W{J0F3M+k8U1)%p;uGh1*z9B$le zA-m7hk;z$&E@QaXUZ7_=F*zck9x0aF*vLsKKtjW9Qj+^ovwl>>rSaTgV57#^%f&|C zSrt2zAC2T5q(%dNZxVn(9j(_9N&bu_*{0~F3=DjKF*!NXLw&Pso;~qwb=}JG1z=5# z9I|3#4VzX{9sWRs#u4|eXJln{I?j*Yfq3pT4rH&b$Zz!awF8aVI5-h5seVm$dswT6 zAKbnspDeez0mAZU06EOy*{INIdn2)Ft7>Axo$Pqs(SEPX&eg=u&W??TW4JFmd$Ifd zGeunwMeGwaleoBe*vyyrJ4Dfo3ky9Lae|LG!^-)-cVnLihiJT?t~6dN+Y}XryLpg{ zd%OZmw}Kwgf{w$XI^6)gq?h%Vz-DRa8b4a0Swq3dh)U9}A7zfdVawvYly?oNV;k|Y z%Yj=nBn4g)$na+q{dfx`#NDYdSHwklf-CHeyU()D3fOM@b z>20B@Y4u0hl`kLE-OA>NO>8-1zFoNGEFGi`zR->sa`&qs&<5ZWCiVDgx+EkA#3aSx zDE*f?b@kQZcza#$YIp5P^8v%jygtetsTVOp3S)p8fymX?mdP;?c;v{rKJwNA#2YB9 zad5Hwoudb;=ZFMT-4maVV zb4Nvg_cUh9!?cQ=MFfeF@8XIoYH|ot?7EehfxRB>5a?>(1$@7-LUrclVSYh&gb0$J zU=f!vK(p?nCSmlH6xxQMr8646~nqPv0GxLPTwm*D)nV6aRvO3 zvyy&`_XA%-%M1;!7%I;5P$Mr+g-ND|GJ?(Fl4#gVI4Mni< z^Y_k4orVriP7c;Ezs;TdbK2!~UiiIwk@9_HWGo6Q@&GOxGI-_ptULU%#IpAnYh%_? z){o6}o*%_2$znA_nM_`SnidoF>8mj=odSTiuJsoUTU%19eB=Cc24P<{ZS7jSjrC(b zSM_fiJA1n#&*OEIyr!2HD+DZg6O8uT`Ek!rV7;BW(OH}~+=z~gii<}0QC2Ewzu65k z3C6}o;CO8ixrh+WwD_8fNT@+5|@yi|GBWa z^kAR#ucfp8T={xKI^672x|3GM~%U zu=|1FHw5emcbvpSLbQ2T15vnO=$9m@J~#Wg)g`pr=Jg>DZ!REwfIT65c^M=%4Y8S^ zbTozA4u*t-B z6>?IAuVUEUHlbqLz9GqAlV2Y~O5yu%6ln}$IjJQ63Bfx^Xmn6j}UQk}*gMOH`MVk-_S7&t8!plO?gUs`<<>Pg)fP z-vBGWK>)XrS5XpqjYC%)5(=Z3;d~GF&gbl#6#W`sVddD%Rw731w}=?DhUdvsAkL5b z!9TTXL&I#WrH#9ASp4WU_)+|+2Epi^ysTn2m)~=HixY62MhBH|!n(YMQSL}50W8iR zPzM|24y{L9-+~k!cQDzu<oFM;Ou$6-V#xbsi#dTlIZ7)|6-n5p_U&`#mk~e#tn_ z@PX&F{laWAqs4S=&#p7|dsbHHF-+EG1h5z{zS3YoR*<+;I;YKRrNm{ks;Q+W{=tch zhJ9J65<-&52<4kJ0vLP;Atvu z5p@a03|d*0Ip9AZ%}sUcHIy|srwB60*v`@g$4+ryj00lGsLD|Gs3Z0`osIY-V*-Fk ze9lmvp>62758rnGk<~HTbruMY`YsxV(xZjfX=o38h+*HJ@}igsSsbaTzB6doJ1thd z;t{UwgjXRTUM{7@L{tIk?2=Pq4DU7-;)R7oGOhqDaOL7rc*Udwk^3J`@fu+=lqUHv zD$0Fb=9|xrjg1f2szI#^usg#5;-japAG;i&>8^=?T?!i1SpuG&7wc`H$CYc>)Y#u$ zQ*XRD-VS$dSt3BnO@>88M1V1q?-d6aL`XzvgZqFM@&tfzEQEeuzwJ2Y8^V))9&QXj zo7f3k3^vB-;X>L2kMA^YmCeh9`~+$YYIrj21>QI)MNoSL5BP^97PuXL_ossX^59{y zaoT}8!ufc>7mCgBa6=KZi&u71gtny?qPpCU_);B!3W4C2uE5^cO1%<~1u%1k=IdyD z5OF1-vkHm}Kj?xakHEW!o0I$x(D0fm-GXrFrN3|hSnzIF1E2+oD5K|JQBc~T6~ZdM zBauUnIM_e%uK(%o<@qt{^COhN078LzfpOmcR65$-eW>U4j53sN$S4498(!3oG5!73 z^dXH|h=U;$*4o0=h!v$%{FA9AM^p+5Gvx1I5vdlcE)8(_-cbbtWBznu?Tj0EGv52o%P}uofUHZ1+&1N&jZJ9`4nmQ(&8VeRU z4uzdZgd9V^hk^+EC*Uf5{fgb{HEcl~N{~;LQ(K=VE(iBN9xiZdvst@V=yLwIu13^^ zYI>EBfv2|ed#!{pSk>T}+qXhR_m+;fYp%$dF`=x2J66LNHo$8XN5*9eL?M5yjsur- z&FuwR_B&&4c71esw=cWpYykn=Br&^%fs6bEKpBCTU1nBRtcw@O%;K1z&&0$6k}5&d zQG)aH%zqdEa2fUMz3=`3wAlLl_pfj=Kezo%=D=@4^z;v)iRyFQu-NK$`rNibVR&cb z{gMB;ZYUO{J9z;R6ccApmVg&P+kf*Ba{HVy&jlRwk-niv1~xW~RD3kl&&LroRc$A{ z1!^Vgs;cC8o_ovYvXPN|H1FgyxFOU3Rd4kXIuxyS`T&k=o9jtgSw(;B0s!rPsY<;Y z&VN}fbi(wEmOleoS%8K49C^71sF)9PqG(`~j6zBws@Y&Q5B{$UAT6oH&Ef=$w*-HG9cH@M!$kx7!!{Q$H%pQBe{9 zuJT~;&|FWj7!MlhNMdrhovh*jh7EBj8kz6L)6M7Wx@?gIGiJ)CW%I13ql>9N(Y|Tq zquahv)VPS)s zFOJ_4@JT5=z^=vPp|a`uZtCXm-@l%he;iJh_wybAy-%c8Sxc+Mj%+RdqoA(3zF>~u z%gaO8%foV^5Hcz%kNd$iz=xspNZlbJ{R=}Sa+s6nqNu8_iX{}_tuh{})M+eJ1OkR1cn3!fe%HT5uwxj2YNoj+-vN9Wr<2UuO}B=p8Fg*Mfj=TSJklbgBF|yE zdnDq$gA4~}t2!vJRUs=xe)mx;*Rz_Ln&IN$QtaaD`X+2yp)%j%N_(l5<3Cg*s;^g9 zGc&_(l#NgFvzD0QsB8^?uN?VU1=oY^U9PFK>eNK-q=!l<7nSlMAv)DTP)YMo>pK-O&X$L+os5+W-n!Yw^0v0zwMwl)`V+(DrF`0sZZ=MZcPw#{Q1U>5_<@>*2~b1z3DncPYW0-H#Z*=rY7uf96ZN z9q}G4-tA{^0FO8!dxKsUqtDHgTZ;Vndsn`3b?{_OBU`*B=|R|h3{rUlTh*MjZ{Ii` z%C&%OM!@T`x4DP=r>smQ22R);GD2Px+Iv|pc@Q7N?Y7z7^Zm2$dG_fG07;@g{2orA z3_~LV6A2_3$J$x|EC{$zD-MP^I$5H$2^+v3Njc~EqW;P|1t?T{dit2ySORu?VF3Pk zC8v_`HruZ8_A_SmCnWl~4Qf5E5gbtWLg&V|LuOGFgC-(899yB=Y4EN4B}po3Js>*a z6A=YTM@L7}(KD{KIMK}VIinj#<^KJ;^ghCH^iYL4-ToGAh@GYcUO-A8MUV&C6|G0U_+xx+n_aZh~;VwzAg7%{(fLud2?c z>xEx5_+by&Ki(V#V*SR-V0bto-CiO}$Zamx7NtaVxZJ(IXAA5rNr3|*oPlg2@7mWV zCh+|&ZjJxW$kMibcV8_*ukR0KVb0%H(+1l8o1`cd^;EQK!#OS$$6(geGaDl>#8NW{ zV5(2UlyL@QfO|xCoew0J#;8MYU|FaTm!!!&54MPGn+?ZPSio3`fYo_89D@?5QLj&a z>3r58`&G03+PB%@0FmV_4%=WV!ZoA!jL5y5DKRvB?@2uTau??Z1dyAzZr~lWareMi zoWTPA4uV1OsA=pTpFrAf9Et3}NOG5BpOAGR4TATQpTP@}UAwQr3uMMyKabsSuL}$q z@mia8``3V3AU-Dr*9WwYZiB)8{%FFH^-K)WjcQFjl@7PK+v<^cL-5{_dPXDTy`AJc z{Y`~}2AaNufF6$ruT6ZEFlJx(HVZ0Kd+| zi^#;PkwGQoZDbl&*uGb^=lk@K={Wjcq(@|!teUb5Nadu&!rl-#0&eQl9#>b7 zQhshh0h7JU>aBxj-E1t0=wRZv%*@0L6qOVa=epKftK$_H0Ku{>DYgr5{`Xzu8AM38 zfKD%q7QW6c0SQjSmzydu%wzZDmtv%rOCh&~o*6S_l#<-{Wpi7uEhJUM(gc&t;B2XA zuBr{7nIJ17l@&j^1elxaPOsB+ZU-X(YD`#sn<`de*{V*6~p%0G9(+&Pkl>6Cg`o{=!ld^cKcaVby(2Yx4E>1 zAlH$L{j~KjpyPI5z_xBH3gATCgA5B<*->rnG!|1S|H>vdbUKRYiWw8FO9b^uq#(OQ ze#C_xtQSKpoT|w?*tlCd0L~=)T`ugh*%B;{KK02rpNo>MuDS$&hI&Z|=4^G^&Kx0; z5sC{hxLX_Acl^ZArgs})64!knY>1J+SXotHf}(=a?Qt)bzN+~*i1O;|A({*3z1Bcbx`L)Z6NFAwj{DH`i6sQ2=iD^L*Q37VAfij{g!p6O&er_W(EsR3MH{ z|Eg2he1}MyRvp={+e_z)K=;wa#3VWSTTyZ0Hhu)Q`QG>!g9niPJhT_Hi}^sGrNpg6 zK}5>sO8lFkoDTPI)4Dfum<{OC)LXi3Jca$OYI{R84htCm3(MwlWJ08E8v3?OteD)) zcb9Y9%ctUCs^1Ctu%KW@Kt>bwI|ZCWFs1(o>L~%I!PIRABwRo?)p>ugaZ1i8cmc zbk_m=il?Z^hVN66LTXxke6`<;Z-K?I?DKU~S8fpaQi5>ItTOl25pYV?YR0EM1f+VQ zJ>h2vRB~JZ{)`7Q-hgR?qAf=RGgNlnEDXNKaWgJg|Ve9Y{qXM zsuYV?-=G^!3;O~3A85FtAtTTg$S(qkUIUwaIYpsD zxA<7%yS9xrk1@t3@_GPQgo@t(S&Go*?jFdbs-XtRBZw@a;AxKNhg!zWg2JB%agmD$ zS5r(+%kPa90<=s@h9h4Ay1`g0A6XqPq7F_xyn@ubTsF;tuzpp1D zVrX^mQ)E{qK38!=E8ghs%~PY-C?e%c&R9h@+%hJ=g&||GY+_3`G#{$Fs-L5N2E!mS zW&{5{#E!Kejg4j(dyGp1n0)W_-Frf~*1WM?A^9=LAq<*&lLO|wz$8?mcZq4+-BqNC z4Z)c&2r|M}TKW(e7&<>c31C7T$t(#ws24YG(zDGM%3@}*6D|B0Y77+6c&U~KglRwu z#%0j-zo1b_Z(4IDirvlWGr#rU|72uD5t|^DTFqfRMaZ#oOQ&Sr1}1$N8<{M@K1)>Z z5h=UC3k?u?@loZo`0t({PEUUoe>gf*fV{Nf%j6Z8kN{&yRHxv^_)|ksu>iQqH;)ya zCL@?fSF|9&49@GRbX!r}s^UHl>R#P87SQDAf@ok&06O+4!G!pl4WE z@a^#-k@dDWw4s=07x_-xop!<#G%u%d;rRKZ^_yhm1w!RYi;7yEjLfOf!Xe#Z^knoL z9R=?$v36XlJ%F%O4{#sBK!Vr%b~sC*O<8a|nl0Xd$|YBk!pV=8dr3WzS$Iy03Rq*f z4S$Qt@unQC0TstWg_er8_DZqc#>I!`oG+j7lI>@UiGjDL{uhCRloT8)Y4AHdn~s~f zn>S>L0xJiTB$i4^1|p>bL%B*NqnBil)Jd9yvISn8 zb=bsREwmJgqs}Yxo#%A8qZds2u#)7IKkAIS0&J5RjYZK+&$_}S4AFa<$^|W~YWCj@ zbbS(|(z4Svs+FKs3!)M=H)`_MF2aOX&(ry;XJU!CY)> zOl5UBYOdi{1kor?t4k~h_!$~CHjn=_x>~OmbR6^tW=Mu)kLwXJH5UyqyUYnJq-PpxM*-^^ z@P`#EX1(s4*Br+f?NOi~z>=8MIR`&e)jCA}XWVT25%$8cv9l3Z{uR={6o)|y=GlA~ z<7}@BEXe96ihy0l;63tll66&I08_IqX`}tguIH;O3%omuUi{Qi089o^-MtS$5%xk8_YxQXr>iX?b4w?|EJl-bg}#8@cqkF(<}D z<*h(=z4E|zC87}FB+#W~CsZ8%8_UeB+D}BFV0v(xJAjG(h7bp{llER+px{~2Lm54a z#g7#gZaDUtJoPCj|NpmIpd1h=t*B)-VW#`XlA#^f>hX0v*mb*Hul5#{?}M*5rvRVa zLaVze*qlnZ`+z+P9r+?-@1$rRhDQSi18HmCgt?(A-Q%^jD$$c{_84EpKc4#hwOoE1hREN(Fso~sN_D^p2aWfpuR22}6HE?2y979=BR$D=>D``n z9^+)ZXF@mxXPnQWMPy8btXc3eZ`|-ZX*v9uAiznu44{GAETdw2d<` zCOTwGT)a6qex_RmwKnrj-Z+%aLxjPVmR1(uvag26r=D}je&_$rjm=rVE$Yw);##iU z!|0r#pjq}uoN~7TDJ6DkoXN~;DvA+Z`b%RgwkEy`ei0vP;A%D7(d@R1HJI2H?zJ=Y zmT)cNXnPq-SLtQO+5FZ5)nwive^`V1>!vrqv3M0TVUL3mTr@VJX>9DVzNMjzOerqj z4T)sF$MD$wxnLj(QW_wB9|e`*ClsTqHB5B zB%Si`?Wrk&?_8Us(BL8$L9Hi-OxJ!|dk(oy{{C7Wf z)?HSxFHUtYi=5O-jArbnyIYOi6$g*{vjv;TCQ_6+_5HbL*|IHx2FFrWxMf(uxZ~sV zkuBMQq0ytYcv?$`$v=!(g4e$>l?T1~Wud|yht^+FxJ^M8`(JRda&`6jnznpI>bXb( zJrPOSL-}oe91X+x@&U90r4;rt4;FcF>4l?Aj-gF<#`cDAzw8%Yr9BQBmt_wcG(8<3 z5ufH@ugTb;)#qMsk1n8ke;LK`MEzbwK!Wsgfne zMlY3BEh8hHr~(I>5W{1nA%>Ay=v+ojoj38Odborw^Ml*-Fb~8iU52Ma%CBD8Z7pyH z1-;tc0iB!2q`f`&-%qkxDMm)d`@=MWr0yLc#f|y==vnPO&7S7%FgC%bo?E^6{YekTs!0*MU{%J)ITY485C;9W3(pFe zPUKVYL%f7O7UH1Eupm;Vyu`-Z;>{9zlBWP#-0sx2R(121Iz`d5k{Alt;s0h#)a7zO z7Z_RcIr}pjd6ur4N<47#gs-MOT*f{Al*gNJ8^mJ7^JwJzT@UtNgG+yBNa8j) z`*T$ufsb%+NmG-{{$k@SA@mYEHf@9d6CLs|HJ)f&X)g#IL87`iKUy<=1-djCG9kw_ z)iA{&Rmx}x+ZAIy?a-K2=u4p$c42ztus8XM8|ky3bI<6g$T0`UV?znnbSn%2o+P*o z$ttR|WGQjg937mQ+;qpqnNSJ(iJiKrxN10?^2Yhw?;V!(iKK1pSK+;Y{t&mZ_KuQV z=U#YOP?6Co-0QZqJ;MK;^^R}*WYYAWt87=$lV_&pjv0f7_zBdW5r`v{Li+*|hf`37zCc)=(-hd~paR{@zGiLa8ZYg3HI* ze!hT5D`Kdnh5Z>pj1K<7a-|kkB>R~4%%v&BXAL;k7;M9o7<(Rgr$ zenRT>5TB;6-^C3e*kQDhDe=O^{z2WRf!8kR`aw=jYTMZit%S-h(9n|El!PQemcy)W zMK*xY%Hg$hhao>a#I1I9ayUqZ3q;q7yp2 zkBgr?3txdySQs7^rBYiQ8xLO}AJQj!Up96w@aA_*(L7>k7V_L$`2kCQtiy?05W}FH zo<3R1{kc+`m3Pd(SO&9B>587AhDKs$S~RcFC^|!7T`upYYX_~3y2_py2uVz~-@o(Q zASp$EMKZyvQZVNtbrbMDk4ImZRK%8%mbSCoSy7kq6)z8bY;j0XQ@Bc@+{Wk>D@dqJ5)^WgCzO}(?PO49p(o-!I8!0*=v~V~oFlfP z2NAG)B=VWm`O$uD;}ZvYbxj;*-(+@6QR!$#J|>RGK|i#*7L#?A<$|Y+2kc~~O#0_3 zzZVsUMo~3Hon(=4zyCQ_PN9-NLW>w|I`eR?RAF%qzn0O322V+wDvjpd1*&OAQj(b4 z&eZXU_-2;tQ9w*ut819?EMr>^`n>R7;3Rpht|JoIvc<^bwa)N#+hu(+ZnWM^s6xO}>Di&Zx1OVw?G;VLxyaaC z65i^2Wrl6KW)U_loAIG*#a~i_tG3Ip#1)==`ye zXK%aLJ4zI{h=>Ss9v9EIhKAf%`dGT{J7B!e@cTqHn)%EgbM_Gdy?qCZW0hJ4{%$$wuNzf5+wHE)+XX(Eg_nmhLGJv*-&FQ^ty3EL+q&8z891@Q`L43(E{N{O> zzEgP7h|*HCNB9lQo0A7-9LBBw|86@wkv=}5xmwI_YdhXwzcYHVGiC~gvbz#bXwHITUZn}U>)M?fk2^+clD@mzv^_j1 z2nna5Z*umF@joabVs=;V#xS97z!`M%gBw!SKhx>^F*N#L{TTj>YLU-mMm6jvm{OL0 zuU~Cb?aMC4@%GPlvPg|1?Jo-ney}-AEZ^wrga_YS8Uct1YEqxjOB zTX+YoMTr`2yFX$l5+g9|zr(E`G1T5=Qsm8vD0tPb~q>W*MEX>7vPqcJm@JKEFk42&alM!K-~Hh6 zJ#w|@c)aSBh0dQ!6`S6_u?jMsq`!NTCeY0PTM|zuFFjow&ck9KrRM!w&GA;{%{>O% zIq_SJhMIr0*Mc8$Fk}jN!wAe!pOFhGS!38d&$kZvMi_cTZtTw=FULT=CN_7!>{)gq z-$P{HzT1xlN;asm-F1B8FUBb-Q-Z%a``x2ugf$3WL39Mugsq?ntGL&R?gRYEJL>B3a(U;{<)7-l}LXd2J9_u zB+ggnNL3{+>0T~NmYjShYwfp|SG}J0VNz0$`uP%aF4-G?u`D-5(Lb`LbD7p|2Bz z2S*2ot@ZCpbyF!NCi39yAE?snLjQNZ(gIY3&+X!@&>JES|41h=2v%p)#`Zn%fSMPE zM493xJS33WM+u%?Eif-gPS%qC8?UWw=7ewH4y&cAf1M^88a(cAw}Rxl+U4_}YLeM9 z;8@1^0|ca#v6G65YDMy^G|@z@!YJ(C?=HroZcz$@U%ZYv~jhZ|GdG^o0+ox@z3X=ug!<@0)H&$+ZTEjgq=xr}@FWgqs|&w=EimtE z;4$wz-TR*Gf!Bg(O4r(zcA-4)eFkfy2% z*DeOzAM9g{eCcG97}8|IAT;iIIk`}Bk@Y%^bG689&*IXcKOc*VMrh{J;=s5T?P2{a zSVbtJNu5QR)}HcXLFBVyMj4{oP634nPlmz@=N>P-d5s*vrX-u_uFap$%=4UvnuUAy zp08*ZZqylP+yb(C{p_qR#}iM7l9NuE$Mm7b2ni^JeAk8ONMsL$ulsm&b(CV#nOMIc z^>a~@$0xq==DK}Ef+68|ct1Jpex$9x=Q_k|d&SK0QM$x&pZ_9@_EAwsHxCFYx~U=qrE^_^v?t)kbC`*tPHk!c;Q_YYJPZ^`AWhIfvT2I!{OY#mJ4- z2qc>i!I<85I=>6=PO-P=P5>GpwJV|-KUpX`;)JcRdMWiCF$4u9UdODp4C{Q@wQKu52XLw}wWIBn~FYfMBb z#cZBEfBweJjYLz%oet5Wi`h<=?$JS>FX~TjlU<`{;UBkHnF#WU9|rYySmVa0TW+o3 z&zzjp)znN_rEb~J)mQ@H#C3Bd6UJY`bMtgb|J#}mLw~UU@N~|WCK}!EF-49I>m;)_n^7q#@k1FVB!M)#EN*w}cKNycRqqe4hAP(D|?^NKCa ztZC=t1^O4$BNFASKyD0-OiAyv>-SWjr)`?_Hs*Sb&dc}r#n*PeOr$%$e)BDNyhbMa z@=yBmvw25zV?K<`z^c>WrcGZ5oJfQVtM>8x^@`<{3twLQ-269l`}ecIrA5&fKEb}e zo@}p;_s{_8C?88H=eR&tBcj%B$SvSg_VvU&Fn}4iw1*$}a#A_;z6*aA8c=$iVq}p` zS634W=S9g72Aphc$k9UD0&`o2lcw>T{`N^!5m1tnK5|&j4D=<4I+=d{1JU%JM1LzG z2`Lrjwu30S&?kn4xq7#S)Ztk)H~Xa+T>GI^_$@MEM#dD;Rdl)Zraqp_z;Pi~dTMTt zJP6yfXC1c4g%8gup9GZgRP(GPvEcqCr*L=|UEpE5da`g_UVJ|!Zj2|L`Qwz}n0m4_ zhX}Lxbvk#rqFPqPvYipYsY;xt(zZk%Ljley^(Z=mT5D^_sCFw_v zCrpkzJKF!Pz25{ao?5uZZidrBXsO99Q^XBxLM|WSb4Etuec z$Rgwj^z`(ARYPx1PehjxpHj(81GSS#Q76ny3Ef6^`W6LhA?N0VbsJ}K1ug^8vdpD^ z2JJCyM?}f;^Qhk1jD`N5&9k*|ms|5ZO?tYgR3M>cNY8YWgMDubO~bBCisVPd#rUuG z;KeRx=oFT3)_;nfs&g}Z!EEwcxYT5=TD>Et%f?z{J@QW-N45xP zX~%gg86^>Tiz)I?a5L&TQc-t{^&SQ$$cL=uU8h0t44j@VN5xbJ4Qp{e2aV|9((-w| z+9?OS4trFxSF<6I(1ZnJ670}z$5uKNxd;-VV$y%}w+Ag;CYBeS``}IZ_kRnGFJDSa zqa^LBTH*fodj>3&z@sr~;I=`>r|UjFh83ga`3iE|&9LL`$yisd^=KH??4yP#$Ex3q zSv@v7W`Eny-yDo1`;`8Ef*Otj;yWY5F__+q(V^%RK5tT$M{qJR+0DZkkKx`(%6OyK~6(>J)f>CF^Cto?9tSnGi1Z_L0 za?cffQ4qGmNFbX;r;$d#wKXu~PcGDY!OEx%N&fmdjxYPY-Dc+ zSdId)Z*xpgUlfG1(D|;9vvW3Q{kVK3z>3hk&bs@6b`|ZzlMJrM4ar*=9%v3#oDai( zdDw5$AobfMqcd%Vgoc@N3-byHxc}^qguL7GU1c`x2A16yUW4%r)^|_9o3s7}>PBzR z*VJb^HS2%w2UWBjm8V$Qlc z_SS&_3uWbl$x$J3AtpW+7HjCD=pQCHM8~J?o@06Z*ky}5=vFzVZxTf$>+R{B^(vE^ zbz~&8x>LjN%-Yy>nE!0a|DWrqM0CurFe=BG-PuH9*>+`_UIdRfNw*XEXi z?=XV$k%D8r3Wy3qeKlAadB>)$CY!Ko18`h3PdWRYYNsEf^yeKej?d!*hm=aK`y(qw z0^5)9mq!7^J`MdmpgVH$@Kt1^lq znJq4tUJVAi0Dg0ifss+Y-;FncQhMZEQ%RbyQ+yu(u&nB1S=}Ii%II6jmZ6C8-H{$}i@&)%OIs$5NUcu0^W@|EH&7Y$ zbAA4r)M_rqQCD2gEH3T~d>o-r@H_h7%_6CsFZH$MSYCe&2@Qp8b)0(xORm`FqHDAJ zcF=G`LBSsg3M_v%y19iCy#wE~AIIU%7iUQ|?&Z8D0Y@PLhG=6R-|!aHwuDf0y#91Z zxu}qGjCFNwi`v}BV&T7MAK~T`SIF^&wcSJNdM*Utij?n=+tGeR_(X60VbXZ2ygDPQ zZg?uVA~{4YEr0DjMI4$1 zqGgl}d}fO7-F@#ucxZor*Vg_A3=hAnh2>TdtBw8teusy>4HT5%a6J0Wc7!-`9<%Fn zt**JJJQmOW3iA6O*^cleTim1Z1RS7$pS>R#_{((QEBfM~J?huShSb(Oo{}s9QwHI# z6n)f+;3nJw9-V}&B@q+kq0#~g;lJyPXewGChb%we7gm~n9r4!iWN+SzSSoesMfx;j zQf(UQccxdVj9T(YwoVl;l%W+LYxD?WD3!MPD+@9;Um}|H=GmS-ieUIe9{okCJ}k;K zyqQJHWwe`zVq6u$M1xT!d1+cea0?~rm?!B`0va-K?(eA-#JS+0%{*k$($yoVQe!yg z;N+D5dFPpZd-mHyXwmdYO--#8-o0>HxrH8LcsT`k{(8_JROsU#T<+Ww8r5wX_*=j< z>nUXoacv%7XU+hc99gelh{E3Z$%p)Ljf9U7ZL9pWVMxOFEJZuzCsm=Ib@hNkpR7kr zY>(CQ*t0%KH)+GV2f`>lrGv`etJ${O61)^jaRkJKglf5rCW1(J_?gLA!6mFkdHlV^ zG>4X7sRjY_RmC}UyAYvQBm8xT+fu0cc_Udk*)`m$`Uv9U2dZZ@tuF|pq^cBl|j7kP~poI0XqsF*S$n|S?f`LA z;+SJ%9y~k_J5#nTTHcI_d0~G$h#u|aj3IMn=1J0zVRxHiTz%K>ruP?4)*B;Hs)=k- zL>3qv*U&he+hVRP?|+2V+|(*&syU9L7iBN>^zl^zVdEYN(`I2g@qjyb!wccHNM=r} z#5F(BU`js0Qrr^Ka-#GuB$xLqmeh)QAM&fK>s#X__(s|*|GNG6HK5Pi$0KLhmV}q4tSpLNLfv?FcX#)l)&8&G58XPO@#cfC;kY=WW{_9w zl9q8^ymk0{27fAs*RuB#zlesG^amt!b}L(8%#cVIbiAz{75DhA-3G1sZnfETTCLT{*Niq}vLCMoZRS!a2wfx&OO46l0z0#++D9UdtPQi{T_R&jNQpl8EnQ=4uud z-mE$$RH?q0M0FFVoa-ly&SiQ?{frE8h?0a{J6MUp45>Wdugj#m6xKg}GeCh&PzW(+6^*Pq8Vb1 zu&1%K>V8H>UV6fVilu*ZG44AlJrWhOj zCVOg(C;P^XC)hIqhy8U#8Kyl;-ls2m2N-5~Q{DPsic9$fyjyd4tszS4_TPUcagrc+ z-0X@TwBFtK{%z-nS2pdG!ow~uEKISfaw$iIHZE{Qtn2%drUpH}FF3myv@=+V0_8#S z797@M|E`a}Ecso5&2r_=1ff%DsHd;LbHpcw`bigeX>>mz1mS8J7mn0pFw)2SU$4Q9 zzXAMRpc0MGjx~U+giAHu^;mzr7Ly&L|)0quS zd~`%CYpaFxpm6TIASs5_{*RPtksOEjwMI}*!lC5zVDHl{3POqwn!X=mX6q5-q%oBI zuOQiTb9qVww-t|V!Ef0Cn6WW=@e(PiDGXe)Qrvv7e98`>a2%jESSy2)3KC^JBu1gS*`Uph=QK)YE9gMLZ;;jbz3qTwF4@eDQs$unfNn zd`2vZ)C4Eri*dh|eiYTUQ)T>}xQA<{jS$Uy`U@OaZx1`#?x@u;mzuf#p5<|X6bzWP zX1=}Wt+w{kJJgPA#I+X3{#HuOdi3AiKoW+LpPl`TG*LH6E{XElbIrhnm7z4AmbP{aToxC<8Zr^>xuIXilhR|>+V)M%THF4E z^)DAhzFGoX$+`l#2Lm2oP|!)*thA@krVkDd0`-NIn7C$1?>O`&a7FN`#TtA@X^XO# zX1`#)a(u}oa0wVakCXny@^3g5@i7Wq3w)NAmX1H_Flkiw-f`P+aZ~@9yP}-_ck`*_ zPIIEiW&g|?&izMx7DZ4*q{(qv!a9e)@M#*;n4O(nVoJwocem_14FOoRf7E#K)`-U3 z|EnJ$pI2Gw4)6NS-* zlOmppp^e7$d8wWEBMz~0^<@dR7R~!viSHX7|Fyo#`K0{ku;^oz%>nJ@@XMlizTRix zjVp5(m2q4yK3Ms*{~nQsia!W>j$};AwPO4^y+K}0tXzrwBIRb;ymMQ&GZOv2ws5#_ zyD6QTeo`mh0M+J)iw5bshk~4Hp99+?sWx7$7P)Wl9S1?*?nNb@5&N8j^qLU7Wc=?&XR>ugW8lLySa zK-Y%3jO+FQE}g&Y7fjI=rXh#Lc-$_uw^Vyp%O%nEquzN9&BAupzRH-{O^K4%>f7J8 zR$BBm?2$Hvt7l$bJy7^L-+Zo*df8N-Knw1q{Y8ot_(+&8^M8<_e(<2@4&V8yA~rH| zfBHXm0V#XGxULP7`H(Roy=e{!y0=|#GKIbEkRPBv0eAje>K0WVaK6O*o+AY_2Mheo z!-Gr~s5$tOx94qOF)wxyiKh|)3)gbo(Mj0@FR#W+^eqcGa}xwjy4R2TPF^oo<(JoS z0Jts7b)@B@I1?fmV=X>k0EDB$V1?W4CL<%>^0?S{ya}h&AgePOsnJBrl)iHhk_F92 zy;SOu=oiaxP>pH<>#ZsH0K<|q>V3X_K@0ps{_NVZ$r_WCZna>>Tix{eQ=LZN2VQ^C z5#2`raEPk860+7cZ;G<6>+4tXKz--Iu;8*c&~B^M`33lXsz|u)yn~p`8Q5<-(fZWw zq&LF@o<4D{5~H9^N=tpD@uY}E-yJdiYD(JLes2T3jOxlen(&bakzh|jUi3Xngymizg?grDFFo4EQ{ze9m{8@n+ zc}ygQgjshxA~Gc<6>PNr{?&1HT6b_L{vzVij^~m?!mjh}{qb-Z?k=Rf6jNUYaxw~2 z^S^qo?1JUK02x*;gC=5{qWB=EH+eG&Fv<%!{`lG%gtY#!P$70_vIKtuL7<^iEx81f zV&<$&CrxL}j>M1zmAc}NKBnGglZomVK|5227r(ctAe8Jx;gw3g15lh zd(6xG+R7*%&GI8^f*KQ3w>clTog!CTXuftCHwWNEz;P!RmbXMR7BHUw@0}wyQXuWP zg6?dcE#v)$DgH+7hcfk_KE2;Oq|Raqq{hRGxNL;Q|~2GNhha3G(wH$vf_0Uh{^<<5)z!o@)cI zUUa=$lX>D9J`ho;>Rp|ZL7e(>-U{P+LPOo!M$k9A51809YPuzj1}?$T#qU2%s~U=m z25nG2Z0)i~8PbC7=bdxg{H>|!YH14lwvL(#7unQ|`Im)OUjuOLC&k0^M@A^3^>?I! zxwBcVgNStelMqI&NycGrhWD;fGQ~sFm!&&9gHc!wvBQP%Iw_{JMr1xk#$i8^o=*OHCjWErkFS=;RG-_9cGy4P z>4IJt7u=n?AuD+%OzZ;#Emb`elP}Gcd^HA{({-ilF3?OFDFoiwSjftPEj@$Z?&MgQ ztoKK>s?A!jDv-qf@(H+u=N^>vYahCIrmmFI*nD)|+LUtl&ZD1aG(0EDE}lY^+mQjs zb6<=wD*Dw_;iuV=p}`?;Mi()2O}I7v0hB=OUa;phAuA)oQIg%8EdW?>FJHY?h@s4|L$y&%?k z`o4>S3T_qoaskT*S4*4M4W}J=`?tC|CU_X-YR5xKNMx$KPb)GT+}%-z(-cn; zH_$FdnjL=6Ll(yYmNgH09_UgfN?%_`qEc}pE;0fuWzsZ4UUXUwihgZwqWXF zsJTyV3BXXl4pg!?+lv%>%jk61*#BU9c&@3bsi&=NWR#kka|*ZqTUfNFrlf#3h8wCe zwAAu_vrcHF=q$(u9jHTAt=-)PVhR*&ZTkRg&dy#2-8R5*zg-QdYd28wU2eS@XkLB&oIcq{)0`x>)M)={QkXO9A|18qd_LW&nY~{hA*|@^oxgR*Ife#A0G;1*YXMl zC8hUy|0*~JOd#C~Ed(}rwg?mRGz(uw;eZnqB#YclpqIJChuRVO&(hh>z3;XsO9~ax z@u)p7ex+?f6Eb*Gy}VHCxG}Eq_x@c+b8YzXet|THj>{;B7XH9CSQKB({ue{w(D%<39Tk}6Zwe2SRzK=H1Owk|Tq{YqH51xNdIvwP8mM-yu{p*tsCY8tFQf0KE z3}Tl_*!rcNFN;rl)*#UyS@5dHdXqMguW1ec*n>B%dcgrO#WOy;Q7oN|oxQWY#d z=5HI)=!tL27Bh?HOa4FbOi@d?pgiS$O~t5C6G~p9Jxzfn z_)6m)6C%tNKx=|qxM8%iRgm|x^q-eBYsZ(NS>*Bwiw zuwSY{H8A%xlJFfx^8FO#^r}7JHj!{uk#QOhP50mWx3}1uUC#Bbv{yZl)^^hE=>_C& z!uh${tkCwZw2ZX!)2OsZ2CbIIR+^tavxN4_XW6^Dx zx$V+7^VC(UEp=P4>D~+4pskdmjYk({m&d1K88m!`L6AE)UaX`gJHRT9&=MaTdjn~` zr^?Eujvp27KhmpfD6e~mPL77_+fgs>cq?Y%mfl)*c&MdDA>%0iK-8U47GsBe;b_p< zXzr61i~VV?-{m%Bz&}>8-$kC|87%X+ixcfb z9Kk&gEg+v;{ya>g`i)8-P{vy~hMy^gYT&1en-r<9UWi@^ataP6Zs2>k&IE)q1^3Zj zOR)m#fB|d>d@25Y=vQxP1eLdeg^fFbhcLo7C8%g_9kdZ%jYlB&M=jG3+2uR;w<48Y z1b@6tj+!J6l01IB;Ex$i-=I3|4Wve;_eG)1)cDHd$}NtWr*0bL-}WL+}=-~P2x1FJaJ1L6h* z_Iuwr`>k3U6be3KMGeqtX}iV~9PT0I|2pC`RWXQ#GjkW3dTrhY^j7Dtw7?7Q#r{`bTwA^Q_C!h@!CQ(UHrO@ER1lonjd z1SwC)&=r9a)|7~UP)-f~pIlywv=1;a2X(uKpm%Vo@{y_~5J}_S7u*pVpZob3XA(;8}U^!mZ zYw(?I!n)&{B9%_F~Z;v62qIh_EvJ@RPrOMssE0!O43Cfjm7V~MM8yj-n^()#l9 zeQ`9Sq6ct-H?c}c#%Ks?g_*pjg19J>WgB_1$LH#%FURJ6`g17Bbvl;HUGpBPbL^VxGDm zzMI*5d*xszHU`RwBoInYy8O#)uLFA%i?bf`&5#BJyMsMg*zfw2^O5tr%&G5ka`K?7 zG_m+-B?&y3+Jx)BQZmcg_EO2GPZW(~zGq8UBh3fxzb}qA^Re;8uS=|R{4Svv1!^M{ z-H)!NX?0&}_xvX#Ez|sF`&(NnFC+W$wslVHuhdMQoo(9_Rfcbb0_7Z84SgDki7+2S z2ZVu^rl!dbJZlXQg}Up?0{Yc)&!(~1&B^lJSpzs%@MWoH@g3DKIQ*Wg4ZpP~F{+K; z3PAJK&JWC2-?Qm_I~F5l_MlMNGMNpthB`db> z&kt+L+}Yz~O$+Gb#ZSr0Xjp8zzLC;BJSs^-l-l4v3SkyEdFvUo#V4O1g}{K{N5%A? z<*$?XoRKW$J18$!ew$VEtYeh=G|gDV3Pn|EnC@4TTS#|wfYg@%nGg?Gt~d96qK5X% z*OACHouv+{uVkFnQ#9pAe&#UAFQz7paf@XqHNC;a)9}y9h)SZzOyUoE(V?9d9&vvm zb1YA(I{Kjk|LtN)5W(2)wHY?o{y6er&|anwWzj>DP#=A31G0e=J*CU~-!M4cT;YSg z@%Lg2_Ga~A|Ka6j6EHG{GryQ58#I_8;#q;Cx9xaDv@ee0o?IJwRJ$!F+ataIb`}7@ z5$rPJwRyChU7($8U$$@i7l;H&Nk2)3(n^Ypd);E1*MCM|f-oy-)ay2jZ}!>Xi^Jr` zuxeZYD)n|%jhZ7FQ|j3K&CV=iJ=c8H~B!2%z-pE6C@!N)Ji_?*v&Y+UcN zewGehZRRM27;ldg4N$6ZvL61V70=`7PvR07Tb#VF{b@FJFUaqvnqvGv&vAymuR!JN zln(#!S^eOL;G)yo>n}?JPGjxQPVtm`lCXM{&pYeXw3jAt4tvCLzjmsHSq|xNsH;DX zj)@aFF6UKTeXj#IO*a{(@bjnUV+F<)C7daTwQA z>tWT;Z}VEIWC;-(Q0bfA#z^O=TsS*D1Fw#J47rB3cI5BJTwIQzjDT~boimuaxUmsa zbO`7uaG}L9ilyXt8GQHYS`9Htut*SAEMcLhGT}KqzhXF*Uam-voOu3#SJ&t9N!=Iv zQR2HR`7+DEH-usVQYa|^HW};b*7(|;ymi*<1GrLEE?%3$eo^)Kom7ao=Bg?yQ$F@| zqPR)WW4i>gci$4WXod|05^#*bBVRx!2qY5TX74UQLF%=|O#C!*9c%5=4{--d_TO3q3x zDq+R3S|EqLF=~8sb2htMXl@2Dh47QVUyny8jVuZ>nZd~@$DTq$vgK#0F%Bzz*t9l5 z#Uhji&UN4*T3J;Xv^juxkUa3EsK@u|?`{V_Zs0f3vU}#yVIX1S z^ri8`hmTc=7y`*FB#N5KGcCkY;sRgI1)wXzR=M~Cm_>2CSb$dmft-l8&L@xwgl9MR(#*tk$i zpp+e)NcJAR?@Ye2NY4msZMvg;N#8EXCkgZ4Vl5$mvg}ge9?Caq;J<=W1Ls;52I)GP z$*&&eCQ^gF>kDu*&e!?~8j4$*0Zr^L-jCCvBtCp#4X6e1*&8pL>jemKf zwC%epN5;(T-m4ZMN3rn4!N|c>YP?sK%Gs*-6G>(V?3wP=9}JaDfePbgKd%cfC&zDW zB_@I&;*ro$%_Ymq%R7a|BqjY9PJdU$ESdp6;8{0g4)g4uW5X)i-c~=a3A(skji#aD zyG)sfvvxBT2F+G~DfdKxr-e#+>X`wIJwOuP;87@*d-7Izv1WBV!1c1}>*-;P?j%it z;tf(k#~(QOVAtl|%oKJ7iuy`^@VLf!iR%Bj0s$Qbq`|h@z0dX+n(@P3vkYLj;0r=S zpZj`lg^ATg4_^9xzK|0PA0i^cS9VMD`7()FIF%J;|J=V1w)mWx5^%Pj7a$^|g@w}R zatk0b=|+T~oZ#5|ftEiCeQ<1u1;$@+Wdgo`pV{2}#n>Z7gjNgYOuc&hxy@YP`ke*s zEt=j7*rWl8;2X;6_>0HZr<$~+${Ax^tY-UT`UIEuQ8K-`PFJ<#Vovqdp$46k&AA*}{Z%b1Xb6cLtS}$(;3EVHh?+rvH!)LnbK!(gh=!mRDe45Jni#}w-$WGG-9KzS8cI4Cb6@rTUpX1)zpO&5m z1tBfZtCNqI_gH?CQ;@2aNK|!7cfqY8@GWL>f?78W3T*jW$_GEz`eK`ZMzL1{1Gn;J zQ^7@kSD32s8qRHY;uumDFEf)nrNmp=QFxU`s6L{nN8CotXxJ)<20P9StZRClkzdEs z`Okx|z}ZSZ8X&CSzn?rkUNPep`Sos`Msz|@J+Xt}(o)dEV~am4kRM@=IIf030+_D; zf6I(lF=9~y9Dm_4mOi5oV?;~M&;Z6+lPR6R+S+#NgNZw^82FGw!2*2~O7=1Y_c`sW z@>DqBZT!z82tnFJ6c`3%Bm8oDWc!%i)F_2a+9|A68h1*|KED^fXW-B3KNp4=3XTh) zis6zA-T(Ad)2u}H4I=)_5FYYF*4)SsySh9;8*?8*OK2y8@C&k{4dJxEN|TriCb*=o~@>)TpATzjf|g4ZAROiBLA%mvYPwg9tB2)FFfh$p*F`MK5pB1oC^sC`MQyDu%) z0|Jo&^a^DmIx$qD_2!1<4oFuX-um;{aMg7ArMy=TX$TB=wkGV|s&ZEoHZgdPc}K-+ zz5iyw+%FD2hrrT&$>Hv4Raf_X=6T!kelwllA>!WhTi`nVaA8l?6ZX-qGFgQV5vcnl zwEw0qc7!tR@o_D$;q~tHXxn+vk2B{z^3sHEhGS%J+Dlu>W}WKWn3^(AZ~DCP7G660kY47lYQP1&I6wq?7a{GSAnLx? zzH)sO@4qu0+nPodYh`IUY}L;6;>CpHeBckB`Zc&$0XKFr_ocg@jLZ!vNAayD#{S?3 zg}Uwtgf5}=Uz=@**T-N}>ET8Fo}NBy;LvyhAxGJm55>hJAg`S6>49C{OcG!AfUaZD zgi&GtPwfy__!U5@w}5AP^>;Tuan*4_>c<7R4O_tY@*n?yP@w6%(t)0!n^z{Fem_^H z2d%!)TI2M4UPV^uRvCZ$!=3ONRLKw@wdtxa(^FGs+H9O`QuQdOPgIVSHn+kN`ISS99y z)$5gLpH>6p@&Z3rgF~5y8F@S1r`2tALY^z|zg`mmq_`w7!qRCky&60{3#ep<0l_t% zbj2in%i?8^ZO*&m;6Gqn5D7szpL_rRxi}Z+#tU4m8O-^``;PI9tpk}; zcg#0$SVQm#5p;as>L7G5GcyNq9wJ8e(4o(-wK)eF|KVW?nXaE2>zM-ZRRY}IeEvh$ z&leequ=P*k(3ArZ%d8=ZNX|BRAnA#YE-fz~pP1OcpbkKWM=+NWbLE>HKsBq%DJJ}S z1MQWIbcTsbiW8+6q=wq*X?(!iju66<|E;gjKOFgw|9p*tyE>DzvkY%W@BL_|_#48) zGR8mNIFWC)RsZBgqx1z#_!<|cKrf0&z@`)Gwp(WfPS561jaiAfxe=9NA+`?4UBcD} zt6>`A85_?z+F^39)fy^DA)@Av)1~#+jg6sZ&C}309bw;agpZ>YUt?dO*`x{5;j;koL@8KS;6s>D!y>(`v=$Ti9Bq&q{U9Yi*G?sJk2f z$iletP@TyNv!k%EpF{d*D#o>7zQua@w*jc`S}PNNqp|* z%?c5ivx98ES|VE=^zCLrNe*3ouoT^c?d83@=lHCp6(ETHi14McB2R#cs{w=|fchZV zRP|#=4o29VSS026H?qEY(_YcQ#Uv297JPB)G~YMtXKrjDGVo)aztBbd!>dl-5GbD7 zn}gjw3J%4ig+{HItbN<}tp5o{tgNc+Rayt;Oju4eH-UQM<6}VC-SRY%knk3PqQSwz z0XAO%GYS67Bp~oAWau=*>ek-3C9BhYa7Zlw7vJq{Im5S`b6J7cInhy=;|2s5YsD^i zHfxHZ;n97!Ls|$^aFKXVtlwF`kAMK25pfzv}qMOqt&bPEga$gKZ5xxmFiXz-Fym^C@PUPGP8pA8+GRP?&%;UI7W`{sjIvia{ zncZW@85$4+*dFj(0GgJNOOn1a|7V}>WNBU|A2UcqqDF(6Z~XKV%&TDE zjaEv(T~JoW5!aQ?ow{MRV;?;|3jP#heGA!PuEGdd2Pu4qLxaP9{<=A=y_CH$e=vFu zdtX;+Xegw(pDu!~i9S@kA)tntVR}WeT-SgV;^Nr%@4hxVUOJwVbxUCVunQa7JQO?> z2_9tkzRpFB+iM+V9BhW~{d`6g^4SyfZ6-*#Z>gR_Dtp!XyFowMdb+W1L6CI633{ao zis|E%GrX6*FDe&~gIOG8flqt?^+`TmX5i3OOaGoDmu-MCgU2Ft~r*_#V{6 z#YSsDq~u>_V;w1pgi%^=yCggdK_0*k7u&pk7YY@VmR=iR$9|elxPpG#f&Px6f?MT? zoOkG**#!~=={msA1zD5GS@=8#^O`((smLS{d1;P5P~rNPFtB_GNDK* zz!X!Y`_qfe*-v4us?=K`EJLyhB2zcTK(NcgJMX) zpvh-a@;~dpPg%w6VR~*@FiPW56tq!T=4Le0SdB<9d(Rv}mrx;*tEr>}%A0LBkzB}T z1j6&1{csJXeqNzL?5!S`5}`_AW)+dx%#HDQMLn&#xs*VYCCtHWV_KoBqYyg@ow*n< zz2Cy{&JUGDJy+Ofs%|I3L*Fq+>)Xs3s)4w#MdTLP+8131_F{E^1yo?x{^RR$JN z?;|#flDuhZ8D6?o@@^ge*inxi)1td(h(c9qtr1WY|D`o=1?|fRY1LW@ZfHeM&H5C+ zSt^bPsyFO+-|Z{wf4uvS8V6-Z6!>nMsE`)%4F~hVX(cVhT5^Vmu9`92*d(CxNOmej zcKQ8>59WnQdnJ^*`l6#eWUmVmk+8B`=l2Lph8Ttdavn(-%@8f6loJrv3SzqI&Qsrg zn39mcsAkD;>8ZXki-n8go?8^_wnUj%AQo>+FeWs58Ow1Cf+Xkm?kwO=(U&hJjW%gy z<;WGXH(#Q zPkZkUf5Z4H_8mh&Sc!!S=XZGdY!s~$9u?mZAs+W8d{4(1P{^dP6v%6y7o>l!eiuvq zb8hZ@y}rGmByh4-fx=cJ%4&vVdzY-yl51=(bigvFpO6}bET5mUL{#a^fkA)B@X!F2 z=Pwjw^wSk}^~o-hY$t#7mG)s$g(h2gi;UGxZvHz&lRH#2=xBysT^mzGxEa&)*MEZF z?(@G%?G;nuE+aBZE&fqjvxh{*a{p*9QMV+hww*~!CaS7Bf3DN6=f1ZG`VX^O*dO}0 zcXlQK=O3UZJf2E-M9n$zB07kSV0|F9QTRr#_VNLW?5mtP>eiLgZQ;c8mm$z-ony*- zp1!%8-5#hiVygLRB1vv#8OT~$6x;sYFHurOk^vQ0q3gtVf!w}}w@SLJv-&De7sBx58uep>W1>;73oT>O9b#Xk(yM)E54sEY0S3- zCmvSZ_G|`td}kE}{fqwo{=UBZGdGFhYz1zn9%2~oJ>wfLHcpwa%-=E}BYRR#?aa5X z5r(J`o!n_So_n=2I$MA7S^v1>fapY#spLe@(yR1Q=a5EY`BrJlRkLxB*`Z2^7GRQ1 z2nmgd;nJ#shh}od1I}5XE@mkgpL$AkM>klMhSO&;0A6jT?CE0+yyny)A6X>bqA(Te zhx>#yD|W=UIIf0V_4kuVCi>!eEAI(S-C2C2_(c~G(4SIXCo<7X zo?w_m^&AQ%y&y8?#PDu(Fi{TrGxe*IsYuQPa}ABaSm>Qx)bt!qmO(O33Z__Ycr`2x z|AC%k|1sq2cR!Gxg&AVG8Pjflm+fcaMdp4jHHk&bGEb2Kz29@B*CA3({_I>Vpb{yv z;Htv$L(O#y38O+uK*cpR$9;lOB$3t6#;T*EKA2&H9B&6X*^!$qc!Gv`*-m_1p$?{C z4mPkf&f~Pqa;2UA$AAjJN)rssK8(dqIFGS(+>hrh_4qI{{!voRLiwLV8?&ms#cL7} z84z!wM=Z*EI3)Xj54~G@nsxlv&`ewOqa(hVjRgqg(5o{V(R==r9E5^jbJrLIESSGQ zZNVLEVTNPK$?-paDwOSi)fcO;RXBEDsz4|)XgBGr+t^5V6#fQb{*pd;{ii~0(0?BC z|6czK0k!7W$ybbJ2jEFU!-3b_Q5<2wu|i$)J-o-UDoVz50>QgiH%+NRzJp)Xo6lb(K8LBIL#c}B!ri$zDDc^ZP z$$Nv}13O}T1SvdYYS8kD}aJr zJ_l`@FhIoV14#z9b*S31zLb9rtsmAhvO$DMY=?*xCt`eKf|}t>BuY4JuRdl$69p!Z zx6%ET+9b8j>^twyhA{A)|QvwOu{5I#J+n39?KcaT7@<9XQ< zFxr8H9R&je^b7{hTvqLYp%m1PYR>LB{(V!!j%3u1D}TU6_Nn6X$5MuiimyxP#Cjb% z%E1%Z>PZwew3+Xz%b{p>ARg~J6O`GGzWh=|MPg2(=`k7A$88n&O*c_sGW)Ro!;>91 z$O9T)r)Q>V=`9HG22*wZSBYxSz%a;~g*J4%mZ;eKo$0n$8#J)kxs2 zl$t(bMq->5VuNH|s*jQc2U(4fQk(Q6r)_RvR^q;6K8!ydR=%hIg${P+9@gkDpp288!@{`vDKe^?1X z8|gBRnk>ax<)`uWdu1s z!o<+Ch1e8@C4_?eO)KIlqVgEb2%|El6JuOTiGOu_c)XQ7;&HH@xJP`bT@2Qt$XAR) z3KLn=j|v?oQ?F|LXQ&ZECoF0frx4Z-a|8?U#ptZT%!?h<74X9d5~J@{~-b_|d9G)zUm^YQm2+?*Gx|5Cc_z`~o@h&jl3|tl$XCbr)e{tq9X8k| z5`i?|3}n(cw;?(0`1emxYz`LTtcnJ0eqqEsUwW(GvnH5Emv0i+;4leQR-jVP zmlGJ={)>?*zS1s6k5=$SauR8s_KZd)O}x)8r!se&;!ST=eN)ltWjEmn@@gw1uJnHE zOWPCU5h?whl>vS33=?)RjCWu-GUcw$0yuE%BJkig86ekbOjmf+waWRT2lr7~Kwb^) zVk?birY(_{mIhVlL7?UGUeGiZ zmz2~J(*MFsz&Kcza_O~3sMi_a}M3lb?jCIk}*>36P-x=_|Lx>TmTFW17t0vi|3+CMA-_}h$ zgb$|NJ|^z9sKh&eeYw0FCVKMjQYa9IPyLT}hS(M577fO?Td7-ra;kWk0AY`HvXNmD zcY>#*2%d4eOvu=K&R!de8Y)^yh8RXyUvH-x6{HgydS}$WU-~?&I)`=il5789k5#kd zelJ<~bL| UW^8jYVH5n5viGzX44~KsQbF&pu=84!WW;YujniK>u zfU(gJrB<7>l!akk|(%VANDrcGE4m8UAgDw7K=nsF)Hw9ts0!uCCB4+C>#1jw4>H4c>2g)nJH+aax%d#mcEn!@{=M`L}E4Z z*>N%|pl;!Hw(|1oT*pVXA^x`XCQ~=@F$<800@62_xm5l0#G8G*8WN>~@pyciFsEp3 zed6NASIg2QBOME5Bgh?EFrGY!bXSAX7j5m!JtqB5*5mvG=NKMiIs0Uf7u7ECp5A8z zXgt-|gbPg0s`%B7l6BA*3y^Fyf9a#Vxm{-@ofC6qex7IU6uaQ86OqN<9HN zaJ?>Azm|wMzl`U&apv`l4`%I+*KMwZEfL;K6YIyRXm;S|NG*H