-
Notifications
You must be signed in to change notification settings - Fork 46
/
quoted-printable.rfc
265 lines (198 loc) · 11.6 KB
/
quoted-printable.rfc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
6.7. Quoted-Printable Content-Transfer-Encoding
The Quoted-Printable encoding is intended to represent data that
largely consists of octets that correspond to printable characters in
the US-ASCII character set. It encodes the data in such a way that
the resulting octets are unlikely to be modified by mail transport.
If the data being encoded are mostly US-ASCII text, the encoded form
of the data remains largely recognizable by humans. A body which is
entirely US-ASCII may also be encoded in Quoted-Printable to ensure
the integrity of the data should the message pass through a
character-translating, and/or line-wrapping gateway.
In this encoding, octets are to be represented as determined by the
following rules:
(1) (General 8bit representation) Any octet, except a CR or
LF that is part of a CRLF line break of the canonical
(standard) form of the data being encoded, may be
represented by an "=" followed by a two digit
hexadecimal representation of the octet's value. The
digits of the hexadecimal alphabet, for this purpose,
are "0123456789ABCDEF". Uppercase letters must be
used; lowercase letters are not allowed. Thus, for
example, the decimal value 12 (US-ASCII form feed) can
be represented by "=0C", and the decimal value 61 (US-
ASCII EQUAL SIGN) can be represented by "=3D". This
rule must be followed except when the following rules
allow an alternative encoding.
(2) (Literal representation) Octets with decimal values of
33 through 60 inclusive, and 62 through 126, inclusive,
MAY be represented as the US-ASCII characters which
correspond to those octets (EXCLAMATION POINT through
LESS THAN, and GREATER THAN through TILDE,
respectively).
(3) (White Space) Octets with values of 9 and 32 MAY be
represented as US-ASCII TAB (HT) and SPACE characters,
Freed & Borenstein Standards Track [Page 19]
RFC 2045 Internet Message Bodies November 1996
respectively, but MUST NOT be so represented at the end
of an encoded line. Any TAB (HT) or SPACE characters
on an encoded line MUST thus be followed on that line
by a printable character. In particular, an "=" at the
end of an encoded line, indicating a soft line break
(see rule #5) may follow one or more TAB (HT) or SPACE
characters. It follows that an octet with decimal
value 9 or 32 appearing at the end of an encoded line
must be represented according to Rule #1. This rule is
necessary because some MTAs (Message Transport Agents,
programs which transport messages from one user to
another, or perform a portion of such transfers) are
known to pad lines of text with SPACEs, and others are
known to remove "white space" characters from the end
of a line. Therefore, when decoding a Quoted-Printable
body, any trailing white space on a line must be
deleted, as it will necessarily have been added by
intermediate transport agents.
(4) (Line Breaks) A line break in a text body, represented
as a CRLF sequence in the text canonical form, must be
represented by a (RFC 822) line break, which is also a
CRLF sequence, in the Quoted-Printable encoding. Since
the canonical representation of media types other than
text do not generally include the representation of
line breaks as CRLF sequences, no hard line breaks
(i.e. line breaks that are intended to be meaningful
and to be displayed to the user) can occur in the
quoted-printable encoding of such types. Sequences
like "=0D", "=0A", "=0A=0D" and "=0D=0A" will routinely
appear in non-text data represented in quoted-
printable, of course.
Note that many implementations may elect to encode the
local representation of various content types directly
rather than converting to canonical form first,
encoding, and then converting back to local
representation. In particular, this may apply to plain
text material on systems that use newline conventions
other than a CRLF terminator sequence. Such an
implementation optimization is permissible, but only
when the combined canonicalization-encoding step is
equivalent to performing the three steps separately.
(5) (Soft Line Breaks) The Quoted-Printable encoding
REQUIRES that encoded lines be no more than 76
characters long. If longer lines are to be encoded
with the Quoted-Printable encoding, "soft" line breaks
Freed & Borenstein Standards Track [Page 20]
RFC 2045 Internet Message Bodies November 1996
must be used. An equal sign as the last character on a
encoded line indicates such a non-significant ("soft")
line break in the encoded text.
Thus if the "raw" form of the line is a single unencoded line that
says:
Now's the time for all folk to come to the aid of their country.
This can be represented, in the Quoted-Printable encoding, as:
Now's the time =
for all folk to come=
to the aid of their country.
This provides a mechanism with which long lines are encoded in such a
way as to be restored by the user agent. The 76 character limit does
not count the trailing CRLF, but counts all other characters,
including any equal signs.
Since the hyphen character ("-") may be represented as itself in the
Quoted-Printable encoding, care must be taken, when encapsulating a
quoted-printable encoded body inside one or more multipart entities,
to ensure that the boundary delimiter does not appear anywhere in the
encoded body. (A good strategy is to choose a boundary that includes
a character sequence such as "=_" which can never appear in a
quoted-printable body. See the definition of multipart messages in
RFC 2046.)
NOTE: The quoted-printable encoding represents something of a
compromise between readability and reliability in transport. Bodies
encoded with the quoted-printable encoding will work reliably over
most mail gateways, but may not work perfectly over a few gateways,
notably those involving translation into EBCDIC. A higher level of
confidence is offered by the base64 Content-Transfer-Encoding. A way
to get reasonably reliable transport through EBCDIC gateways is to
also quote the US-ASCII characters
!"#$@[\]^`{|}~
according to rule #1.
Because quoted-printable data is generally assumed to be line-
oriented, it is to be expected that the representation of the breaks
between the lines of quoted-printable data may be altered in
transport, in the same manner that plain text mail has always been
altered in Internet mail when passing between systems with differing
newline conventions. If such alterations are likely to constitute a
Freed & Borenstein Standards Track [Page 21]
RFC 2045 Internet Message Bodies November 1996
corruption of the data, it is probably more sensible to use the
base64 encoding rather than the quoted-printable encoding.
NOTE: Several kinds of substrings cannot be generated according to
the encoding rules for the quoted-printable content-transfer-
encoding, and hence are formally illegal if they appear in the output
of a quoted-printable encoder. This note enumerates these cases and
suggests ways to handle such illegal substrings if any are
encountered in quoted-printable data that is to be decoded.
(1) An "=" followed by two hexadecimal digits, one or both
of which are lowercase letters in "abcdef", is formally
illegal. A robust implementation might choose to
recognize them as the corresponding uppercase letters.
(2) An "=" followed by a character that is neither a
hexadecimal digit (including "abcdef") nor the CR
character of a CRLF pair is illegal. This case can be
the result of US-ASCII text having been included in a
quoted-printable part of a message without itself
having been subjected to quoted-printable encoding. A
reasonable approach by a robust implementation might be
to include the "=" character and the following
character in the decoded data without any
transformation and, if possible, indicate to the user
that proper decoding was not possible at this point in
the data.
(3) An "=" cannot be the ultimate or penultimate character
in an encoded object. This could be handled as in case
(2) above.
(4) Control characters other than TAB, or CR and LF as
parts of CRLF pairs, must not appear. The same is true
for octets with decimal values greater than 126. If
found in incoming quoted-printable data by a decoder, a
robust implementation might exclude them from the
decoded data and warn the user that illegal characters
were discovered.
(5) Encoded lines must not be longer than 76 characters,
not counting the trailing CRLF. If longer lines are
found in incoming, encoded data, a robust
implementation might nevertheless decode the lines, and
might report the erroneous encoding to the user.
Freed & Borenstein Standards Track [Page 22]
RFC 2045 Internet Message Bodies November 1996
WARNING TO IMPLEMENTORS: If binary data is encoded in quoted-
printable, care must be taken to encode CR and LF characters as "=0D"
and "=0A", respectively. In particular, a CRLF sequence in binary
data should be encoded as "=0D=0A". Otherwise, if CRLF were
represented as a hard line break, it might be incorrectly decoded on
platforms with different line break conventions.
For formalists, the syntax of quoted-printable data is described by
the following grammar:
quoted-printable := qp-line *(CRLF qp-line)
qp-line := *(qp-segment transport-padding CRLF)
qp-part transport-padding
qp-part := qp-section
; Maximum length of 76 characters
qp-segment := qp-section *(SPACE / TAB) "="
; Maximum length of 76 characters
qp-section := [*(ptext / SPACE / TAB) ptext]
ptext := hex-octet / safe-char
safe-char := <any octet with decimal value of 33 through
60 inclusive, and 62 through 126>
; Characters not listed as "mail-safe" in
; RFC 2049 are also not recommended.
hex-octet := "=" 2(DIGIT / "A" / "B" / "C" / "D" / "E" / "F")
; Octet must be used for characters > 127, =,
; SPACEs or TABs at the ends of lines, and is
; recommended for any character not listed in
; RFC 2049 as "mail-safe".
transport-padding := *LWSP-char
; Composers MUST NOT generate
; non-zero length transport
; padding, but receivers MUST
; be able to handle padding
; added by message transports.
IMPORTANT: The addition of LWSP between the elements shown in this
BNF is NOT allowed since this BNF does not specify a structured
header field.