We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Urzustand
percentile.values <- dataset[complete.cases(dataset), ] %>% dplyr::group_by_at(dplyr::vars(one_of(columns))) %>% dplyr::summarise( percentile_10 = round( Hmisc::wtd.quantile( usedvariable, weights = weight, probs = .1, na.rm = TRUE ), 2 ), percentile_25 = round( Hmisc::wtd.quantile( usedvariable, weights = weight, probs = .25, na.rm = TRUE ), 2 ), percentile_75 = round( Hmisc::wtd.quantile( usedvariable, weights = weight, probs = .75, na.rm = TRUE ), 2 ), percentile_90 = round( Hmisc::wtd.quantile( usedvariable, weights = weight, probs = .90, na.rm = TRUE ), 2 ), percentile_99 = round( Hmisc::wtd.quantile( usedvariable, weights = weight, probs = .99, na.rm = TRUE ), 2 ), .groups = "drop" )
Neuer Zustand:
#' @title calculate_percentile #' #' @description calculate_percentile calculates percentiles by groups #' #' @param dataset data.frame from subset_data function #' @param grouping_variables Vector with dimension or grouping variables #' (e.g. c("age_gr", "sex", "education level")) (maximum 3 variables) #' ("" possible) #' @param percentile numeric what percetile is calculated (10,25,75,90,99) #' #' @return dataset_percentile_values = dataset with percentiles by group #' #' @author Stefan Zimmermann, \email{[email protected]} #' #' calculate_percentile <- function(dataset, grouping_variables, percentile) { dataset <- dataset[complete.cases(dataset), ] dataset_grouped <- dplyr::group_by_at(dataset, dplyr::vars(one_of(grouping_variables))) calculate_single_percentile = function(percentile_number) { dataset_with_percentiles <- dplyr::summarize(dataset_grouped, value = Hmisc::wtd.quantile( usedvariable, weights = weight, probs = percentile_number, na.rm = TRUE)) dataset_with_percentiles <-dplyr::mutate(dataset_with_percentiles, percentile = percentile_number) return(dataset_with_percentiles) } percentile_decimal = percentile/100 dataset_percentile_values <- purrr::map_df(percentile_decimal, calculate_single_percentile) dataset_percentile_values <- dplyr::mutate(dataset_percentile_values, percentile = percentile*100) dataset_percentile_values <- tidyr::spread(dataset_percentile_values, percentile, value, sep = "_") return(dataset_percentile_values) }
Percentile Funktion nun Teil von großer main Funktion calculate_numeric_statistics
#' @title calculate_numeric_statistics #' #' @description Main funtction calculate_numeric_statistics creates aggregated #' tables for numeric variables with weighted median, weighted mean, n, #' minimum, maximum, percentiles, confidence intervals by groups #' #' @param dataset data.frame from subset_data function #' @param grouping_variables Vector with dimension or grouping variables #' (e.g. c("age_gr", "sex", "education level")) (maximum 3 variables) #' ("" possible) #' #' @return datatable_numeric = dataset with mean, median, n, percentiles, #' confidence interval #' #' @author Stefan Zimmermann, \email{[email protected]} #' calculate_numeric_statistics <- function(dataset, grouping_variables) { columns <- c("year", grouping_variables) columns <- columns[columns != ""] # Calculate weighted mean dataset_mean <- calculate_weighted_mean(dataset = dataset, grouping_variables = columns) # Calculate number of observations n dataset_n <- calculate_n(dataset = dataset, grouping_variables = columns) # Calculate sd of mean dataset_sd <- calculate_sd(dataset = dataset_n, grouping_variables = columns) # Calculate minimum and maximum dataset_min_max <- calculate_min_max(dataset = dataset, grouping_variables = columns) # Calculate confideence interval mean with weighted mean n and sd dataset_confidence_interval_mean <- calculate_confidence_interval_mean( dataset_n = dataset_n, dataset_sd = dataset_sd, dataset_mean = dataset_mean) # Calculate percentiles percentile <- c(10,25,75,90,99) dataset_percentile_values <- calculate_percentile( dataset = dataset, grouping_variables = columns, percentile = percentile) # Calculate confidence interval median dataset_confidence_interval_median <- calculate_confidence_interval_median( dataset = dataset, grouping_variables = columns) datatable_numeric <- combine_numeric_statistics( grouping_variables = columns, dataset_confidence_interval_mean = dataset_confidence_interval_mean, dataset_min_max = dataset_min_max, dataset_percentile_values = dataset_percentile_values, dataset_confidence_interval_median = dataset_confidence_interval_median) return(datatable_numeric) }
The text was updated successfully, but these errors were encountered:
No branches or pull requests
Urzustand
Neuer Zustand:
Percentile Funktion nun Teil von großer main Funktion calculate_numeric_statistics
The text was updated successfully, but these errors were encountered: