-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathapp.py
237 lines (178 loc) · 8.98 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
"""
Streamlit application that integrates with LlamaIndex and OpenAI's GPT-3.5 to create a conversational interface.
Users can ask questions about LlamaIndex Docs, and the application provides relevant answers.
The user's OpenAI API key is used to fetch responses from GPT-3.5.
Author:
@dcarpintero : https://github.com/dcarpintero
"""
from llama_index.llms import OpenAI
from llama_index import ServiceContext, StorageContext, load_index_from_storage
from llama_index.callbacks import CallbackManager, TokenCountingHandler
import openai
import tiktoken
import streamlit as st
st.set_page_config(
page_title="Chat with LlamaIndex Docs",
page_icon="🦙",
initial_sidebar_state="expanded",
menu_items={"About": "Built by @dcarpintero with Streamlit & LLamaIndex"},
)
if 'llm_prompt_tokens' not in st.session_state:
st.session_state['llm_prompt_tokens'] = 0
if 'llm_completion_tokens' not in st.session_state:
st.session_state['llm_completion_tokens'] = 0
if 'openai_api_key' in st.session_state:
openai.api_key = st.session_state['openai_api_key']
@st.cache_resource(show_spinner=False)
def load_data():
"""Load VectorStoreIndex from storage."""
with st.spinner("Loading Vector Store Index..."):
token_counter = TokenCountingHandler(
tokenizer=tiktoken.encoding_for_model("gpt-3.5-turbo").encode,
verbose=False
)
callback_manager = CallbackManager([token_counter])
service_context = ServiceContext.from_defaults(llm=OpenAI(model="gpt-3.5-turbo"), callback_manager=callback_manager)
index = load_index_from_storage(StorageContext.from_defaults(persist_dir="./storage"), service_context=service_context)
return index, token_counter
def display_chat_history(messages):
"""Display previous chat messages."""
for message in messages:
with st.chat_message(message["role"]):
if st.session_state.with_sources:
if "sources" in message:
st.info(f'The sources of this response are:\n\n {message["sources"]}')
st.write(message["content"])
def clear_chat_history():
""""Clear chat history and reset questions' buttons."""
st.session_state.messages = [
{"role": "assistant", "content": "Try one of the sample questions or ask your own!"}
]
st.session_state["btn_llama_index"] = False
st.session_state["btn_retriever"] = False
st.session_state["btn_diff"] = False
st.session_state["btn_rag"] = False
def generate_assistant_response(prompt, chat_engine):
"""Generate assistant response and update token counter."""
with st.chat_message("assistant"):
with st.spinner("I am on it..."):
if st.session_state.with_cache:
response = query_chatengine_cache(prompt, chat_engine)
else:
response = query_chatengine(prompt, chat_engine)
message = {"role": "assistant", "content": response.response, "sources": format_sources(response)}
if st.session_state.with_sources:
st.info(f'The sources of this response are:\n\n {message["sources"]}')
st.write(message["content"])
st.session_state.messages.append(message)
@st.cache_data(max_entries=1024, show_spinner=False)
def query_chatengine_cache(prompt, _chat_engine):
"""Query chat engine and cache results."""
return _chat_engine.chat(prompt)
def query_chatengine(prompt, chat_engine):
"""Query chat engine."""
return chat_engine.chat(prompt)
def format_sources(response):
"""Format filename, authors and scores of the response source nodes."""
base = "https://github.com/jerryjliu/llama_index/tree/main/"
return "\n".join([f"- {base}{source['filename']} (author: '{source['author']}'; score: {source['score']})\n" for source in get_metadata(response)])
def get_metadata(response):
"""Parse response source nodes and return a list of dictionaries with filenames, authors and scores."""
sources = []
for item in response.source_nodes:
if hasattr(item, "metadata"):
filename = item.metadata.get('filename').replace('\\', '/')
author = item.metadata.get('author')
score = float("{:.3f}".format(item.score))
sources.append({'filename': filename, 'author': author, 'score': score})
return sources
def update_token_counters(token_counter):
"""Update token counters """
st.session_state['llm_prompt_tokens'] += token_counter.prompt_llm_token_count
st.session_state['llm_completion_tokens'] += token_counter.completion_llm_token_count
# reset counter to avoid miscounting when the answer is cached!
token_counter.reset_counts()
def sidebar():
"""Configure the sidebar and user's preferences."""
with st.sidebar.expander("🔑 OPENAI-API-KEY", expanded=True):
st.text_input(label='OPENAI-API-KEY', type='password', key='openai_api_key', label_visibility='hidden').strip()
"[Get an OpenAI API key](https://platform.openai.com/account/api-keys)"
with st.sidebar.expander("💲 GPT3.5 INFERENCE COST", expanded=True):
i_tokens = st.session_state['llm_prompt_tokens']
o_tokens = st.session_state['llm_completion_tokens']
st.markdown(f'LLM Prompt: {i_tokens} tokens')
st.markdown(f'LLM Completion: {o_tokens} tokens')
i_cost = (i_tokens / 1000) * 0.0015
o_cost = (o_tokens / 1000) * 0.002
st.markdown('**Cost Estimation: ${0}**'.format(round(i_cost + o_cost, 5)))
"[OpenAI Pricing](https://openai.com/pricing)"
with st.sidebar.expander("🔧 SETTINGS", expanded=True):
st.toggle('Cache Results', value=True, key="with_cache")
st.toggle('Display Sources', value=True, key="with_sources")
st.toggle('Streaming', value=False, disabled=True, key="with_streaming")
st.sidebar.button('Clear Messages', type="primary", on_click=clear_chat_history)
st.sidebar.divider()
with st.sidebar:
col_ll, col_gh = st.columns([1, 1])
with col_ll:
"[![LlamaIndex Docs](https://img.shields.io/badge/LlamaIndex%20Docs-gray)](https://gpt-index.readthedocs.io/en/latest/index.html)"
with col_gh:
"[![Github](https://img.shields.io/badge/Github%20Repo-gray?logo=Github)](https://github.com/dcarpintero/llamaindexchat)"
def layout():
""""Layout"""
st.header("Chat with 🦙 LlamaIndex Docs 🗂️")
# Get Started
if not openai.api_key:
st.warning("Hi there! Add your OPENAI-API-KEY on the sidebar field to get started!\n\n", icon="🚨")
st.stop()
# Load Index
index, token_counter = load_data()
if index:
chat_engine = index.as_chat_engine(chat_mode="condense_question", verbose=True)
# Sample Questions for User input
user_input_button = None
btn_llama_index = st.session_state.get("btn_llama_index", False)
btn_retriever = st.session_state.get("btn_retriever", False)
btn_diff = st.session_state.get("btn_diff", False)
btn_rag = st.session_state.get("btn_rag", False)
col1, col2, col3, col4 = st.columns([1,1,1,1])
with col1:
if st.button("explain the basic usage pattern of LlamaIndex", type="primary", disabled=btn_llama_index):
user_input_button = "explain the basic usage pattern in LlamaIndex"
st.session_state.btn_llama_index = True
with col2:
if st.button("how can I ingest data from the GoogleDocsReader?", type="primary", disabled=btn_retriever):
user_input_button = "how can I ingest data from the GoogleDocsReader?"
st.session_state.btn_retriever = True
with col3:
if st.button("what's the difference between document & node?", type="primary", disabled=btn_diff):
user_input_button = "what's the difference between document and node?"
st.session_state.btn_diff = True
with col4:
if st.button("how can I make a RAG application performant?", type="primary", disabled=btn_rag):
user_input_button = "how can I make a RAG application performant?"
st.session_state.btn_rag = True
# System Message
if "messages" not in st.session_state:
st.session_state.messages = [
{"role": "assistant", "content": "Try one of the sample questions or ask your own!"}
]
# User input
user_input = st.chat_input("Your question")
if user_input or user_input_button:
st.session_state.messages.append({"role": "user", "content": user_input or user_input_button})
# Display previous chat
display_chat_history(st.session_state.messages)
# Generate response
if st.session_state.messages[-1]["role"] != "assistant":
try:
generate_assistant_response(user_input or user_input_button, chat_engine)
update_token_counters(token_counter)
except Exception as ex:
st.error(str(ex))
def main():
"""Set up user preferences, and layout"""
sidebar()
layout()
if __name__ == "__main__":
main()