-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
214 lines (167 loc) · 5.89 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch.backends.cudnn as cudnn
import torch
import numpy as np
import random
import datetime
import json
def set_seed(seed=0):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(seed)
def get_save_dir(args):
save_dir = f"student_models_ckpt/{args.data}/{args.save_dir_name}/{args.model_t}_2_{args.model_s}/"
# d = datetime.datetime.now()
# save_dir += (
# str(d)
# .replace("-", "_")
# .replace(" ", "_")
# .replace(":", "_")
# .replace(".", "_")[5:-5]
# + "/"
# )
return save_dir
def save_model(
save_dir,
module_list,
args,
train_losses,
train_acc1s,
train_acc5s,
test_acc1s,
test_acc5s,
train_acc1_T,
args_dict,
option="best",
time_consume=0,
):
model_save_dir = f"{save_dir}/{option}.pth"
torch.save(module_list[0].state_dict(), model_save_dir)
print("max train accuracy : ", max(train_acc1s), max(train_acc5s))
print("max test accuracy : ", max(test_acc1s), max(test_acc5s))
with open(f"{save_dir}/{args.model_t}_2_{args.model_s}.json", "w") as f:
json.dump(
{
"train_losses": train_losses,
"train_acc1s": train_acc1s,
"train_acc5s": train_acc5s,
"test_acc1s": test_acc1s,
"test_acc5s": test_acc5s,
"train_acc1_T": train_acc1_T,
"max_test_acc": [max(test_acc1s), max(test_acc5s)],
"args": args_dict,
"time_consume": time_consume,
},
f,
indent=4,
)
def train_kd(
module_list, optimizer, criterion, train_loader, device, refiner, args, rec_num=1
):
module_list[0].train()
module_list[1].eval()
model_s = module_list[0]
model_t = module_list[1]
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
criterion_ce, criterion_kl = criterion
T_correct = 0
all_data = 0
model_t.eval()
for batch_idx, (inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.to(device), targets.to(device)
reinforced_data = refiner.get_refined_image(inputs, targets)
for _ in range(1, args.rec_num):
for name, param in model_t.named_parameters():
if param.grad is not None:
param.grad = None
reinforced_data = refiner.get_refined_image(
reinforced_data.detach(), targets
)
with torch.no_grad():
output_t = model_t(reinforced_data)
_, output_s = model_s(inputs, is_feat=True)
loss_ce = criterion_ce(output_s, targets) # classification loss
loss_kl = criterion_kl(output_s, output_t) # Hinton loss
loss = args.ce_weight * loss_ce + args.alpha * loss_kl
optimizer.zero_grad()
loss.backward()
optimizer.step()
acc1, acc5 = accuracy(output_s, targets, topk=(1, 5))
batch_size = targets.size(0)
losses.update(loss.item(), batch_size)
top1.update(acc1, batch_size)
top5.update(acc5, batch_size)
T_correct += sum(targets == torch.argmax(output_t, dim=1))
all_data += len(targets)
acc_T = (T_correct / all_data).item()
return losses.avg, top1.avg, top5.avg, acc_T
def test(model, test_loader, device):
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(test_loader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = model(inputs)
acc1, acc5 = accuracy(outputs, targets, topk=(1, 5))
batch_size = targets.size(0)
top1.update(acc1, batch_size)
top5.update(acc5, batch_size)
model.train()
return top1.avg, top5.avg
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].float().sum()
res.append(correct_k.mul_(1.0 / batch_size))
return res
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
if epoch in args.schedule:
args.lr = args.lr * args.lr_decay
for param_group in optimizer.param_groups:
param_group["lr"] = args.lr
print(param_group["lr"])
class Refiner:
def __init__(self, teacher, lrp_gamma=1.0):
super(Refiner)
self.teacher = teacher
self.lrp_gamma = lrp_gamma
self.criterion_ce = torch.nn.CrossEntropyLoss()
# self.optimizer = torch.optim.SGD(self.teacher.parameters(), lr=0)
def get_refined_image(self, img, label):
img.requires_grad = True
output = self.teacher(img)
loss = self.criterion_ce(output, label)
loss.backward()
return self.get_adversarial_img_v1_abs(img) # refined image
def get_adversarial_img_v1_abs(self, img, sine=1):
perturbation = img.grad * torch.abs(img.detach())
output_img = img - perturbation * sine * self.lrp_gamma
return output_img