We use Python and Pytorch to implement a Disentangled Multi-view Graph Neural Network for Multilingual Knowledge Graph Completion model named DMGNN.
We use [DBP-5L] and [E-PKG] datasets. The structure of DBP-5L dataset is listed as follows:
datasetdbp5l/:
├── entities/
│ ├── el.tsv: entity names for language 'el'
├── kg/
│ ├── el-train.tsv: the train dataset for the completion task
│ ├── el-val.tsv: the train dataset for the completion task
│ ├── el-test.tsv: the train dataset for the completion task
├── seed_train_pairs/
│ ├── el-en.tsv: alignment training seeds
├── seed_train_pairs/
│ ├── el-en.tsv: alignment test seeds
├── relation.txt: set of relations
pip install -r requirements.txt
## Experiments
### Training and Testing
To reproduce our experiments, please use the following script:
```bash
# w/ SI
python train.py --data_path datasetdbp5l/ --target_language ja
# w/o SI
python train.py --data_path datasetdbp5l/ --target_language ja --no_name_info --dropout 0.1