forked from lturing/tacotronv2_wavernn_chinese
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tacotron_model_export.py
68 lines (48 loc) · 2.3 KB
/
tacotron_model_export.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
os.environ["CUDA_VISIBLE_DEVICES"] = ""
import tensorflow as tf
from tacotron.models import create_model
from tacotron_hparams import hparams
import shutil
#with tf.device('/cpu:0'):
inputs = tf.placeholder(tf.int32, [1, None], 'inputs')
input_lengths = tf.placeholder(tf.int32, [1], 'input_lengths')
model_name = 'Tacotron'
with tf.variable_scope('Tacotron_model') as scope:
model = create_model(model_name, hparams)
model.initialize(inputs=inputs, input_lengths=input_lengths)
checkpoint_path = tf.train.get_checkpoint_state('./logs-Tacotron-2/taco_pretrained').model_checkpoint_path
#checkpoint_path = './logs-Tacotron-2/taco_pretrained/tacotron_model.ckpt-207000'
sess = tf.Session()
sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(sess, checkpoint_path)
export_path_base = './export'
if os.path.exists(export_path_base):
shutil.rmtree(export_path_base)
os.makedirs(export_path_base, exist_ok=True)
model_version = 1
export_path = os.path.join(
tf.compat.as_bytes(export_path_base),
tf.compat.as_bytes(str(model_version)))
print('Exporting trained model to', export_path)
builder = tf.compat.v1.saved_model.builder.SavedModelBuilder(export_path)
tensor_info_inputs = tf.compat.v1.saved_model.utils.build_tensor_info(inputs)
tensor_info_input_lengths = tf.compat.v1.saved_model.utils.build_tensor_info(input_lengths)
tensor_info_mel = tf.compat.v1.saved_model.utils.build_tensor_info(model.mel_outputs[0])
tensor_info_alignment = tf.compat.v1.saved_model.utils.build_tensor_info(model.alignments[0])
prediction_signature = (
tf.compat.v1.saved_model.signature_def_utils.build_signature_def(
inputs={'input': tensor_info_inputs, 'input_length': tensor_info_input_lengths},
outputs={'mel': tensor_info_mel, 'alignment': tensor_info_alignment},
method_name=tf.compat.v1.saved_model.signature_constants.PREDICT_METHOD_NAME))
builder.add_meta_graph_and_variables(
sess, [tf.compat.v1.saved_model.tag_constants.SERVING],
signature_def_map={
'tacotron_fw': prediction_signature,
#tf.compat.v1.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: signature,
},
main_op=tf.compat.v1.tables_initializer(),
strip_default_attrs=True)
builder.save()
print('Done exporting!')