-
Notifications
You must be signed in to change notification settings - Fork 5
/
leetcode-226-invert-binary-tree.swift
246 lines (180 loc) · 6.49 KB
/
leetcode-226-invert-binary-tree.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/**
Copyright (c) 2020 David Seek, LLC
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.
https://leetcode.com/problems/invert-binary-tree/
Invert a binary tree.
Example:
Input:
4
/ \
2 7
/ \ / \
1 3 6 9
Output:
4
/ \
7 2
/ \ / \
9 6 3 1
Trivia:
This problem was inspired by this original tweet by Max Howell:
Google: 90% of our engineers use the software you wrote (Homebrew), but you can’t invert a binary tree on a whiteboard so f*** off.
*/
/**
Big O Annotation
Time complexity O(n) where n is the amount of nodes in root.
Space complexity O(n) where n is the amount of nodes in root.
*/
func invertTree(_ root: TreeNode?) -> TreeNode? {
// Without a root, no tree, return nil
guard let root = root else {
return nil
}
// First we need to traverse the tree in order
let levelOrder = traverseInLevelOrder(root)
/**
0: [4]
1: [2, 7]
2: [1, 3, 6, 9]
3: []
*/
var index: Int = 1
// The root is for sure the same as the given root
var head: TreeNode = TreeNode(root.val)
// Push the root into the nodes we need to process
var nodes: [TreeNode] = [head]
// While we still have work to do..
while true {
/**
Get the current nodes.
If there are none, then we're done.
*/
guard let mapped = levelOrder[index] else {
break
}
// We now need to reverse the level order
let reversed: [Int] = mapped.reversed()
// We need a second index counter
var index_: Int = 0
// And a reference to the newly processed nodes
var newNodes: [TreeNode] = []
// For node in the last nodes we have processed...
for node in nodes {
// Check if the counter is a valid index
if index_ < reversed.count {
let value = reversed[index_]
// Int.min equals a nil node
if value > Int.min {
// Create a new node from the valid value
let newNode = TreeNode(value)
// First we add a left node
node.left = newNode
// Then we push the node to the newly processed nodes
newNodes.append(newNode)
}
}
// index + 1 equals the right node of the current
if index_ + 1 < reversed.count {
let value = reversed[index_ + 1]
if value > Int.min {
let newNode = TreeNode(value)
node.right = newNode
newNodes.append(newNode)
}
}
// Move the counter along
index_ += 2
}
// Update the references to our nodes
nodes = newNodes
index += 1
}
return head
}
/**
Time O(n) n = nodes in tree
Space O(n) n = nodes in tree
*/
private func traverseInLevelOrder(_ root: TreeNode) -> [Int: [Int]] {
// Final output dictionary
var levelOrder: [Int: [Int]] = [:]
// Init a queue
var queue = QueueStack()
// ... and enqueue root at level 0
queue.enqueue(root, at: 0)
// While the queue is not empty...
while !queue.isEmpty {
// Dequeue the next element
let (node, level) = queue.dequeue()!
// If we already have values for this level
if let mapped = levelOrder[level] {
// Combine them
levelOrder[level] = mapped + [node.val]
} else {
// If not, set them
levelOrder[level] = [node.val]
}
/**
This step is crazy important:
As we need to make sure to gather
placeholders for incomplete sub trees,
we need to init "dead" nodes with Int.min as value.
But we don't want to add dead nodes to dead nodes to dead nodes...
Therefore we need to check if the value is Int.min and skip if so.
This has to be discussed with an interviewer potentially,
as the range could reach down to Int.min
*/
if node.val != Int.min {
// Add left node to level + 1
if let left = node.left {
queue.enqueue(left, at: level + 1)
} else {
// Otherwise add a dummy node
queue.enqueue(TreeNode(Int.min), at: level + 1)
}
// Same for the right
if let right = node.right {
queue.enqueue(right, at: level + 1)
} else {
queue.enqueue(TreeNode(Int.min), at: level + 1)
}
}
}
return levelOrder
}
/**
All operations of this Queue implementation
have a time complexity of O(1)
*/
struct QueueStack {
private var enqueueStack: [(node: TreeNode, level: Int)] = []
private var dequeueStack: [(node: TreeNode, level: Int)] = []
init() {}
public var isEmpty: Bool {
return enqueueStack.isEmpty && dequeueStack.isEmpty
}
public mutating func enqueue(_ element: TreeNode, at level: Int) {
enqueueStack.append((node: element, level: level))
}
public mutating func dequeue() -> (node: TreeNode, level: Int)? {
if dequeueStack.isEmpty {
dequeueStack = enqueueStack.reversed()
enqueueStack.removeAll()
}
return dequeueStack.popLast()
}
}