diff --git a/test/test_stochastic_log_det_estimation.py b/test/test_stochastic_log_det_estimation.py index 08a0ff6..00556ac 100644 --- a/test/test_stochastic_log_det_estimation.py +++ b/test/test_stochastic_log_det_estimation.py @@ -25,13 +25,16 @@ def log_det_jac_f(self, inputs): @pytest.mark.parametrize('n_hutchinson_samples', [*list(range(25, 40))]) @pytest.mark.parametrize('n_iterations', [4, 10, 25, 100]) -def test_hutchinson(n_iterations, n_hutchinson_samples): +def test_hutchinson_power_series(n_iterations, n_hutchinson_samples): # This test checks for validity of the hutchinson power series trace estimator. # The estimator computes log|det(Jac_f)| where f(x) = x + g(x) and x is Lipschitz continuous with Lip(g) < 1. # In this example: a Lipschitz continuous function with constant < 1 is g(x) = 1/2 * x; Lip(g) = 1/2. # The reference jacobian of f is I * 1.5, because d/dx f(x) = d/dx x + g(x) = d/dx x + 1/2 * x = 1 + 1/2 = 1.5 + # TODO: use the analytical variance of the Monte Carlo Hutchinson trace estimator to compute the variance of the + # Hutchinson power series estimator. Then make sure that the power series error is below 4 * variance. + n_data = 1 n_dim = 1 @@ -56,7 +59,7 @@ def test_hutchinson(n_iterations, n_hutchinson_samples): @pytest.mark.parametrize('p', [0.01, 0.1, 0.5, 0.9, 0.99]) -def test_roulette(p): +def test_roulette_power_series(p): # an example of a Lipschitz continuous function with constant < 1: g(x) = 1/2 * x n_data = 100