-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathtest_lc2fen.py
executable file
·64 lines (49 loc) · 1.66 KB
/
test_lc2fen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
"""This script contains tests for chessboard digitization."""
# `sklearn` is required for Jetson (to avoid "cannot allocate memory in
# static TLS block" error)
import sklearn
from keras.applications.imagenet_utils import (
preprocess_input as prein_squeezenet,
)
from keras.applications.mobilenet_v2 import preprocess_input as prein_mobilenet
from keras.applications.xception import preprocess_input as prein_xception
from lc2fen.predict_board import (
predict_board_keras,
predict_board_onnx,
predict_board_trt,
)
ACTIVATE_KERAS = False
MODEL_PATH_KERAS = "data/models/Xception_last.h5"
IMG_SIZE_KERAS = 299
PRE_INPUT_KERAS = prein_xception
ACTIVATE_ONNX = False
MODEL_PATH_ONNX = "data/models/MobileNetV2_0p5_all.onnx"
IMG_SIZE_ONNX = 224
PRE_INPUT_ONNX = prein_mobilenet
ACTIVATE_TRT = False
MODEL_PATH_TRT = "data/models/SqueezeNet1p1.trt"
IMG_SIZE_TRT = 227
PRE_INPUT_TRT = prein_squeezenet
def main_keras():
"""Execute the Keras-based board-prediction tests."""
print("Keras predictions")
predict_board_keras(
MODEL_PATH_KERAS, IMG_SIZE_KERAS, PRE_INPUT_KERAS, test=True
)
def main_onnx():
"""Execute the ONNXRuntime-based board-prediction tests."""
print("ONNXRuntime predictions")
predict_board_onnx(
MODEL_PATH_ONNX, IMG_SIZE_ONNX, PRE_INPUT_ONNX, test=True
)
def main_tensorrt():
"""Execute the TensorRT-based board-prediction tests."""
print("TensorRT predictions")
predict_board_trt(MODEL_PATH_TRT, IMG_SIZE_TRT, PRE_INPUT_TRT, test=True)
if __name__ == "__main__":
if ACTIVATE_KERAS:
main_keras()
if ACTIVATE_ONNX:
main_onnx()
if ACTIVATE_TRT:
main_tensorrt()