-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
249 lines (199 loc) · 8.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
"""
build a research agent from scratch using lanchain
"""
# import keys from env
from dotenv import load_dotenv, find_dotenv
load_dotenv(find_dotenv())
# now the enviroment variables have all keys
import requests
from bs4 import BeautifulSoup
# from langchain_community.chat_models import ChatOpenAI
from langchain_openai import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
# parse response to str
from langchain_core.output_parsers.string import StrOutputParser
from langchain_core.runnables.passthrough import RunnablePassthrough
from langchain_core.runnables.base import RunnableLambda
# web search api
# error always appear rate limit
from langchain_community.utilities import GoogleSerperAPIWrapper
# capture the response from the api as json
import json
# from langchain_community.utilities import DuckDuckGoSearchAPIWrapper
from langchain.agents import Tool
# streamlit like interface: langserve
from fastapi import FastAPI
from langserve import add_routes
import uvicorn
serper_searchwrapper = GoogleSerperAPIWrapper()
# number of results per question for web search scrapping
RESULT_PER_QUESTION = 3
# make a helper function to scrape the page
def scrape_text(url: str):
# send a GET request to the url
try:
response = requests.get(url)
# check if the request was successful
if response.status_code == 200:
# parse the html content
soup = BeautifulSoup(response.text, "html.parser")
# get all the text from the page
text = soup.get_text(separator=" ", strip=True)
# return the retrieved text
return text
else:
return f"Failed to retrieve the webpage: Status code {response.status_code}"
except Exception as e:
print(e)
return f"An error occurred: {e}"
def search_web(query: str, result_per_question: int):
"""
query: keywords to search for
result_per_question: number of results to return per question
@return: list of links
"""
# print(f"query: {query}")
# search the web for the query
search_results = serper_searchwrapper.results(query) # , result_per_question)
search_results = search_results["organic"][:result_per_question]
search_results = [result["link"] for result in search_results]
return search_results
def flatten_2dlistofstr_2str(list_of_list):
content = []
for l in list_of_list:
content.append("\n\n".join(l))
return "\n\n".join(content)
if __name__ == "__main__":
# print("Welcome to the research agent")
# exit(0)
# 1. get the web you want to question on
# url = "https://docs.smith.langchain.com/how_to_guides"
# page_content = scrape_text(url)[:10000]
# print(page_content)
# exit(0)
# 2. get prompt web_search_template
web_search_template = """{text}
--------------
Using the above text, answer in short the following question:
> {question}
--------------
if the question cannot be answered using the text, imply summarize the text. Include all factual
information, numbers, stats etc.
"""
SUMMARY_PROMPT = ChatPromptTemplate.from_template(web_search_template)
# print(SUMMARY_PROMPT)
# 3. create the chat chain
# chain includes:
# 0. passthrough: take the current input and pass into the chain
# 1. search: look up and retrieve information from duckduckgo, get most relevant 3,
# scrap it, pass into the llm
# 2. prompt: ask a question
# 3. chat: answer the question to str
scrape_and_summarize_chain = RunnablePassthrough.assign(
summary=RunnablePassthrough.assign(
# x:{'question': 'What is the best way to get started with langchain?', 'url': 'https://www.pluralsight.com/resources/blog/data/getting-started-langchain'}
text=lambda x: scrape_text(x["url"])[
:10000
] # This will trigger scaping, more automated
) # take current input and pass into it, for this task we do web scraping
| SUMMARY_PROMPT
| ChatOpenAI(model="gpt-3.5-turbo-1106")
| StrOutputParser()
# summary each element in the list
) | (
# put each url and summary into a 2d list
lambda x: f"URL: {x['url']}\n\nSUMMARY: {x['summary']}"
) # add the url to the summary
# return the actual web search result
web_search_chain = (
# 1. get relevant urls
RunnablePassthrough.assign(
# return a number of list of urls
# add a new key called url
urls=lambda chain_params: search_web(
chain_params["question"], RESULT_PER_QUESTION
)
# next stept turn urls dict to a list of urls
)
| (
lambda chain_params: [
{"question": chain_params["question"], "url": u}
for u in chain_params["urls"]
]
) # 2. scrape urls
| scrape_and_summarize_chain.map() # 3. apply every element in the list
) # "map": apply the chain to every element in the list
# 3. tune the search prompt
SEARCH_PROMPT = ChatPromptTemplate.from_messages(
[
(
"user",
"Write 3 google search queries to search online that form an "
"objective opinion from the following: {question}\n"
"You must respond with a list of strings in the following format: "
'["query 1", "query 2", "query 3"].',
),
]
)
# return list of questions
# temperature is the randomness of the response
search_question_chain = (
SEARCH_PROMPT | ChatOpenAI(temperature=0) | StrOutputParser() | json.loads
)
# 4. execute the chain
# map the question list to dict so that the web_search_chain can parse
full_research_chain = (
search_question_chain
| (
lambda x: [{"question": q} for q in x]
) # take the pervious chain output(list), put in a list of dict
| web_search_chain.map() # run each element in the list
)
# 5. we get the knowledge, now we need to write a report
WRITER_SYSTEM_PROMPT = """
You are an AI critical thinker research assistant. Your sole purpose
is to write well written, critically acclaimed, objective and structured reports on given text.
"""
# NOTE: research prompt templates: https://github.com/assafelovic/gpt-researcher/blob/master/gpt_researcher/master/prompts.py line 8 at def generate_report_prompt
REARCH_PROMPT = """Information:
----------------
{research_summary}
----------------
Using the above information, answer the following question or topic: "{question}" in a detailed report --
The report should focus on the answer to the query, should be well structured, informative,
in depth and comprehensive, with facts and numbers if available and a minimum of 1,200 words.
You should strive to write the report as long as you can using all relevant and necessary information provided.
You must write the report with markdown syntax.
You MUST determine your own concrete and valid opinion based on the given information. Do NOT deter to general and meaningless conclusions.
You MUST write all used source urls at the end of the report as references, and make sure to not add duplicated sources, but only one reference for each.
You MUST write the report in APA format.
Please do your best, this is very important to my career.
"""
prompt = ChatPromptTemplate.from_messages(
[("system", WRITER_SYSTEM_PROMPT), ("user", REARCH_PROMPT)]
)
# full_research_chain will return list of list(2d list of knowledge per question)
# we need to conver the lists into a str
chain = (
RunnablePassthrough.assign(
research_summary=full_research_chain | flatten_2dlistofstr_2str
)
| prompt
| ChatOpenAI(model="gpt-3.5-turbo-1106")
| StrOutputParser()
)
# chain.invoke({"question": "how's the job market looking in 2024 in US?"})
app = FastAPI(
title="LangChain Server",
version="1.0",
description="A simple api server using Langchain's Runnable interfaces",
)
add_routes(
app,
chain,
path="/research-assistant", # localhost:8001/research-assistant/playground
)
uvicorn.run(app, host="0.0.0.0", port=8888)
# run service: docker run -it -p 8888:8888 [image_id]
# access service: your ip address/research-assistant/playground
# if using google cloud, you need to auth before push: gcloud auth configure-docker [region]-docker.pkg.dev