From 9fa229f1d16f523cbfb457e9e0a2f2e4ba76206e Mon Sep 17 00:00:00 2001 From: David Doret Date: Wed, 23 Aug 2023 13:48:25 +0200 Subject: [PATCH 01/21] reviewing tests + complete method signatures for free-variable declarations --- punctilious/core.py | 63 ++++++++++++++++++----------- tests/test_variable_substitution.py | 38 +++++++++-------- 2 files changed, 61 insertions(+), 40 deletions(-) diff --git a/punctilious/core.py b/punctilious/core.py index fa01e2ea..245f26ef 100644 --- a/punctilious/core.py +++ b/punctilious/core.py @@ -2522,12 +2522,17 @@ class Status(repm.ValueName): scope_initialization_status = Status('scope_initialization_status') closed_scope_status = Status('closed_scope_status') - def __init__(self, nameset=None, universe_of_discourse=None, status=None, scope=None, - echo=None): + def __init__(self, u: UniverseOfDiscourse, status: (None, FreeVariable.Status) = None, + scope: (None, Formula, typing.FrozenSet[Formula]) = None, + symbol: (None, str, StyledText) = None, index: (None, int) = None, + auto_index: (None, bool) = None, dashed_name: (None, str, StyledText) = None, + acronym: (None, str, StyledText) = None, abridged_name: (None, str, StyledText) = None, + name: (None, str, StyledText) = None, explicit_name: (None, str, StyledText) = None, + nameset: (None, str, NameSet) = None, echo: (None, bool) = None) -> None: echo = prioritize_value(echo, configuration.echo_free_variable_declaration, configuration.echo_default, False) - status = FreeVariable.scope_initialization_status if status is None else status - scope = frozenset() if scope is None else scope + status = prioritize_value(status, FreeVariable.scope_initialization_status) + scope = prioritize_value(scope, frozenset()) scope = {scope} if isinstance(scope, Formula) else scope verify(isinstance(scope, frozenset), 'The scope of a FreeVariable must be of python type frozenset.') @@ -2535,19 +2540,20 @@ def __init__(self, nameset=None, universe_of_discourse=None, status=None, scope= 'The status of a FreeVariable must be of the FreeVariable.Status type.') self._status = status self._scope = scope - assert isinstance(universe_of_discourse, UniverseOfDiscourse) - if nameset is None: + assert isinstance(u, UniverseOfDiscourse) + if symbol is None: symbol = configuration.default_free_variable_symbol - index = universe_of_discourse.index_symbol(symbol=symbol) - nameset = NameSet(symbol=symbol, index=index) - if isinstance(nameset, str): + index = u.index_symbol(symbol=symbol) + if isinstance(symbol, str): # If symbol was passed as a string, # assume the base was passed without index. # TODO: Analyse the string if it ends with index in subscript characters. - symbol = StyledText(plaintext=nameset, text_style=text_styles.serif_bold) - index = universe_of_discourse.index_symbol(symbol=symbol) - nameset = NameSet(symbol=symbol, index=index) - super().__init__(nameset=nameset, universe_of_discourse=universe_of_discourse, echo=False) + symbol = StyledText(plaintext=symbol, text_style=text_styles.serif_bold) + if index is None and auto_index: + index = u.index_symbol(symbol=symbol) + super().__init__(universe_of_discourse=u, symbol=symbol, index=index, auto_index=auto_index, + dashed_name=dashed_name, acronym=acronym, abridged_name=abridged_name, name=name, + explicit_name=explicit_name, nameset=nameset, echo=False) # self.universe_of_discourse.cross_reference_variable(x=self) super()._declare_class_membership(declarative_class_list.free_variable) if echo: @@ -7066,7 +7072,7 @@ def variable_substitution(self) -> VariableSubstitutionDeclaration: return self._variable_substitution @property - def vs(self) -> InferenceRuleDeclaration: + def vs(self) -> VariableSubstitutionDeclaration: """An inference-rule: P โŠข P' Abridged property: u.i.vs @@ -8478,7 +8484,7 @@ def variable_substitution(self) -> VariableSubstitutionInclusion: return self._variable_substitution @property - def vs(self) -> InferenceRuleInclusion: + def vs(self) -> VariableSubstitutionInclusion: return self.variable_substitution @@ -8629,18 +8635,18 @@ def cross_reference_simple_objct(self, o: SimpleObjct): if o not in self.simple_objcts: self.simple_objcts[o.nameset] = o - def cross_reference_symbolic_objct(self, o: SymbolicObject): + def cross_reference_symbolic_objct(self, o: TheoreticalObject): """Cross-references a symbolic-objct in this universe-of-discourse. :param o: a symbolic-objct. """ - verify(is_in_class(o, classes.symbolic_objct), + verify(is_in_class(o=o, c=classes.symbolic_objct), 'Cross-referencing a symbolic-objct in a universe-of-discourse requires ' 'an object of type SymbolicObjct.', o=o, slf=self) duplicate = self.symbolic_objcts.get(o.nameset) - verify(duplicate is None, - 'A symbolic-object already exists in the current universe-of-discourse with a ' - 'duplicate (symbol, index) pair.', o=o, duplicate=duplicate, slf=self) + verify(severity=verification_severities.warning, assertion=duplicate is None, + msg='A symbolic-object already exists in the current universe-of-discourse with a ' + 'duplicate (symbol, index) pair.', o=o, duplicate=duplicate, slf=self) self.symbolic_objcts[o.nameset] = o def cross_reference_theory(self, t: TheoryElaborationSequence): @@ -8670,7 +8676,10 @@ def declare_formula(self, relation: Relation, *parameters, nameset: (None, str, nameset=nameset, lock_variable_scope=lock_variable_scope, echo=echo) return phi - def declare_free_variable(self, symbol=None, echo=None): + def declare_free_variable(self, symbol: (None, str, StyledText) = None, + dashed_name: (None, str, StyledText) = None, acronym: (None, str, StyledText) = None, + abridged_name: (None, str, StyledText) = None, name: (None, str, StyledText) = None, + explicit_name: (None, str, StyledText) = None, echo: (None, bool) = None): """Declare a free-variable in this universe-of-discourse. A shortcut function for FreeVariable(universe_of_discourse=u, ...) @@ -8867,7 +8876,11 @@ def take_note(self, t: TheoryElaborationSequence, content: str, # @FreeVariableContext() @contextlib.contextmanager - def v(self, symbol=None, echo=None): + def v(self, symbol: (None, str, StyledText) = None, index: (None, int) = None, + auto_index: (None, bool) = None, dashed_name: (None, str, StyledText) = None, + acronym: (None, str, StyledText) = None, abridged_name: (None, str, StyledText) = None, + name: (None, str, StyledText) = None, explicit_name: (None, str, StyledText) = None, + echo: (None, bool) = None): """Declare a free-variable in this universe-of-discourse. This method is expected to be as in a with statement, @@ -8881,8 +8894,10 @@ def v(self, symbol=None, echo=None): use declare_free_variable() instead. """ # return self.declare_free_variable(symbol=symbol) - x = FreeVariable(universe_of_discourse=self, nameset=symbol, - status=FreeVariable.scope_initialization_status, echo=echo) + status = FreeVariable.scope_initialization_status + x = FreeVariable(u=self, status=status, symbol=symbol, index=index, auto_index=auto_index, + dashed_name=dashed_name, acronym=acronym, abridged_name=abridged_name, name=name, + explicit_name=explicit_name, echo=echo) yield x x.lock_scope() diff --git a/tests/test_variable_substitution.py b/tests/test_variable_substitution.py index 40062d70..073b64e0 100644 --- a/tests/test_variable_substitution.py +++ b/tests/test_variable_substitution.py @@ -10,15 +10,17 @@ def test_variable_substitution_without_variable(self): u = pu.UniverseOfDiscourse() o1 = u.o.declare() o2 = u.o.declare() - r1 = u.r.declare(1, signal_proposition=True) - r2 = u.r.declare(2, signal_proposition=True) + r1 = u.r.declare(arity=1, signal_proposition=True) + r2 = u.r.declare(arity=2, signal_proposition=True) t = u.t() - a = u.declare_axiom(random_data.random_sentence()) - ap = t.include_axiom(a) - p_formula = u.f(r1, u.f(r2, o1, o2)) - p_statement = t.i.axiom_interpretation.infer_statement(ap, p_formula, echo=True) + a = u.declare_axiom(natural_language=random_data.random_sentence()) + ap = t.include_axiom(a=a) + p_formula = r1(r2(o1, o2)) + p_statement = t.i.axiom_interpretation.infer_statement(axiom=ap, formula=p_formula, + echo=True) # y_sequence = tuple() - p_prime = t.i.vs.infer_statement(p_statement, echo=True) + p_prime = t.i.vs.infer_statement(p=p_statement, phi=(), echo=True) + self.assertTrue(p_prime.is_formula_syntactically_equivalent_to(p_statement)) self.assertEqual('๐‘Ÿโ‚(๐‘Ÿโ‚‚(๐‘œโ‚, ๐‘œโ‚‚))', p_prime.rep_formula(encoding=pu.encodings.unicode)) def test_variable_substitution_with_free_variables(self): @@ -30,14 +32,18 @@ def test_variable_substitution_with_free_variables(self): o4 = u.o.declare() o5 = u.o.declare() o6 = u.o.declare() - r1 = u.r.declare(1, signal_proposition=True) - r2 = u.r.declare(2, signal_proposition=True) - t = u.t('test_variable_substitution_with_free_variables') + f = u.r.declare(arity=1, signal_proposition=True, symbol='f', auto_index=False) + g = u.r.declare(arity=2, signal_proposition=True, symbol='g', auto_index=False) + t = u.t() a = u.declare_axiom(random_data.random_sentence()) ap = t.include_axiom(a) - with u.v() as x, u.v() as y, u.v() as z: - p_formula = u.f(r1, u.f(r2, u.f(r2, z, u.f(r2, u.f(r1, x), y)), u.f(r2, x, y))) - p_statement = t.i.axiom_interpretation.infer_statement(ap, p_formula, echo=True) - y_sequence = (o4, o6, o5) # sequence: (z, x, y) - p_prime = t.i.vs.infer_statement(p_statement, *y_sequence, echo=True) - self.assertEqual('โ—†โ‚(โ—†โ‚‚(โ—†โ‚‚(โ„ดโ‚„, โ—†โ‚‚(โ—†โ‚(โ„ดโ‚†), โ„ดโ‚…)), โ—†โ‚‚(โ„ดโ‚†, โ„ดโ‚…)))', p_prime.rep_formula()) + with u.v(symbol='x', auto_index=False) as x, u.v(symbol='y', auto_index=False) as y, u.v( + symbol='z', auto_index=False) as z: + p_statement = t.i.axiom_interpretation.infer_statement(axiom=ap, + formula=f(g(g(z, g(f(x), y)), g(x, y))), echo=True) + self.assertEqual('๐‘“(๐‘”(๐‘”(๐ณ, ๐‘”(๐‘“(๐ฑ), ๐ฒ)), ๐‘”(๐ฑ, ๐ฒ)))', + p_statement.rep_formula(encoding=pu.encodings.unicode)) + p_prime = t.i.vs.infer_statement(p=p_statement, phi=(o4, o6, o5), echo=True) + self.assertEqual('๐‘“(๐‘”(๐‘”(๐‘œโ‚„, ๐‘”(๐‘“(๐‘œโ‚†), ๐‘œโ‚…)), ๐‘”(๐‘œโ‚†, ๐‘œโ‚…)))', + p_prime.rep_formula(encoding=pu.encodings.unicode)) + p_prime.is_formula_syntactically_equivalent_to(o2=f(g(g(o4, g(f(o6), o5)), g(o6, o5)))) From 20cda451948c45cb24df0e4fe8fbf743358fad7b Mon Sep 17 00:00:00 2001 From: David Doret Date: Wed, 23 Aug 2023 23:14:58 +0200 Subject: [PATCH 02/21] code cleanup --- punctilious/__init__.py | 15 ++- punctilious/core.py | 162 -------------------------------- tests/test_title.py | 37 -------- tests/test_two_columns_proof.py | 11 --- 4 files changed, 7 insertions(+), 218 deletions(-) delete mode 100644 tests/test_title.py delete mode 100644 tests/test_two_columns_proof.py diff --git a/punctilious/__init__.py b/punctilious/__init__.py index 848c4d15..3fb40e8d 100644 --- a/punctilious/__init__.py +++ b/punctilious/__init__.py @@ -6,14 +6,13 @@ from repm import monospace, prnt, serif_bold from core import Article, AxiomDeclaration, AxiomInclusion, ComposableBlockSequence, classes, \ configuration, consistency_values, DashedName, create_universe_of_discourse, \ - DefinitionInclusion, DirectDefinitionInference, Encoding, encodings, \ - FailedVerificationException, Formula, FreeVariable, Header, InconsistencyWarning, \ - interpret_formula, interpret_statement_formula, is_in_class, InferredStatement, NoteInclusion, \ - Paragraph, prioritize_value, QuasiQuotation, Relation, rep_two_columns_proof_item, ScriptNormal, \ - SansSerifBold, SansSerifNormal, SerifNormal, SimpleObjct, Statement, Subscript, subscriptify, \ - paragraph_headers, ComposableText, NameSet, SymbolicObject, TextStyle, text_styles, \ - TheoreticalObject, TheoryElaborationSequence, TheoryPackage, paragraph_headers, \ - UniverseOfDiscourse + DefinitionInclusion, Encoding, encodings, FailedVerificationException, Formula, FreeVariable, \ + Header, InconsistencyWarning, interpret_formula, interpret_statement_formula, is_in_class, \ + InferredStatement, NoteInclusion, Paragraph, prioritize_value, QuasiQuotation, Relation, \ + rep_two_columns_proof_item, ScriptNormal, SansSerifBold, SansSerifNormal, SerifNormal, \ + SimpleObjct, Statement, Subscript, subscriptify, paragraph_headers, ComposableText, NameSet, \ + SymbolicObject, TextStyle, text_styles, TheoreticalObject, TheoryElaborationSequence, \ + TheoryPackage, paragraph_headers, UniverseOfDiscourse # from foundation_system_1 import foundation_system_1, ft, u diff --git a/punctilious/core.py b/punctilious/core.py index 245f26ef..22d67430 100644 --- a/punctilious/core.py +++ b/punctilious/core.py @@ -1623,111 +1623,6 @@ def to_dict(self): 'explicit_name': self._explicit_name} -class TitleOBSOLETE: - """A title to introduce some symbolic-objcts in reports. - - TODO: QUESTION: rename Title to Name, Category to Nature, Reference to Abridged and - Unabridged Name. - - - Features: - - long-names have a short (reference) and long (long-name) version. - - long-names do not have an index. - - long-names comprise a category that must be consistent with - the declarative class of the symbolic-objct. - """ - - def __init__(self, nameset: (None, NameSet) = None, ref: (None, str, ComposableText) = None, - paragrapha_header: (None, ParagraphHeader) = None, - subtitle: (None, str, ComposableText) = None, abr: (None, str, ComposableText) = None): - if isinstance(ref, str): - ref = StyledText(s=ref, text_style=text_styles.sans_serif_bold) - self._ref = ref - if isinstance(abr, str): - abr = StyledText(s=abr, text_style=text_styles.sans_serif_bold) - self._abr = abr - self._paragraph_header = paragraph_headers.uncategorized if paragrapha_header is None else paragrapha_header - if isinstance(subtitle, str): - subtitle = StyledText(s=subtitle, text_style=text_styles.sans_serif_normal) - self._nameset = nameset - self._subtitle = subtitle - self._styled_title = None - self._styled_ref = None - - def __eq__(self, other): - return hash(self) == hash(other) - - def __hash__(self): - """Note that the title attribute is not hashed, - because title is considered purely decorative. - """ - return hash((self.cat, self.ref)) - - def __repr__(self) -> str: - return self.rep(encoding=encodings.plaintext) - - def __str__(self) -> str: - return self.rep(encoding=encodings.plaintext) - - @property - def cat(self) -> ParagraphHeader: - """The category of this statement.""" - return self._paragraph_header - - @property - def subtitle(self) -> ComposableText: - """A conditional complement to the automatically structured title.""" - return self._subtitle - - @property - def ref(self) -> ComposableText: - """Unabridged name.""" - return self._ref - - @property - def abr(self) -> ComposableText: - """Abridged name.""" - return self._abr - - @property - def nameset(self) -> NameSet: - return self._nameset - - @nameset.setter - def nameset(self, nameset: NameSet): - self._nameset = nameset - - def rep(self, encoding: (None, Encoding) = None, cap: bool = False) -> str: - """Return the default representation for this long-name. - - :param cap: Whether the representation must be capitalized (default: False). - :return: str - """ - return self.rep_ref(encoding=encoding, cap=cap) - - def rep_title(self, encoding: (None, Encoding) = None, cap: (None, bool) = None) -> str: - """ - - :param cap: - :return: - """ - return f'{StyledText(s=self.cat.natural_name, text_style=text_styles.sans_serif_bold).rep(encoding=encoding, cap=cap)}' \ - f'{"" if self.ref is None else " " + self.ref.rep(encoding=encoding)}' \ - f'{"" if self.subtitle is None else " - " + self.subtitle.rep(encoding=encoding)}' - - def rep_ref(self, encoding: (None, Encoding) = None, cap: (None, bool) = None) -> str: - return StyledText(s=self._paragraph_header.abridged_name, - text_style=text_styles.sans_serif_bold).rep(encoding=encoding, - cap=cap) + '' if self._ref is None else str( - ' ' + self._ref.rep(encoding=encoding)) + '' if self._nameset is None else str( - ' (' + self._nameset.rep_symbol(encoding=encoding) + ')') - - def rep_mention(self, encoding: (None, Encoding) = None, cap: (None, bool) = None) -> str: - return f'{"" if self.ref is None else self.ref.rep(encoding=encoding) + " "}' + StyledText( - s=self.cat.natural_name, text_style=text_styles.sans_serif_normal).rep( - encoding=encoding, cap=cap) - - class DashedName: """A dashed-name to provide more semantically meaningful names to symbolic-objcts in reports than symbols. @@ -3733,61 +3628,6 @@ def __init__(self, theory, position, phi, proof): self.proof = proof -class DirectDefinitionInference(FormulaStatement): - """ - - Definition: - A theoretical-statement that states that x = some other theoretical-object. - When an object is defined like this, it means that for every formula - where x is present, the same formula with the substitution of x by x' can be substituted in - all package. - TODO: QUESTION: Should we create a base "Alias" object that is distinct from simple-objct??? - XXXXXXX - """ - - def __init__(self, p: Formula, d: DefinitionInclusion, t: TheoryElaborationSequence, - nameset: (None, str, NameSet) = None, title: (None, str, TitleOBSOLETE) = None, - dashed_name: (None, str, DashedName) = None, echo: (None, bool) = None): - echo = prioritize_value(echo, configuration.echo_definition_direct_inference, - configuration.echo_default, False) - verify(t.contains_theoretical_objct(d), 'The definition-endorsement โŒœdโŒ must be contained ' - 'in the hierarchy of theory-elaboration โŒœtโŒ.', d=d, - t=t) - verify(p.universe_of_discourse is t.universe_of_discourse, - 'The universe-of-discourse of the valid-proposition โŒœpโŒ must be ' - 'consistent with the universe-of-discourse of theory-elaboration โŒœtโŒ.', p=p, t=t) - verify(p.relation is t.universe_of_discourse.r.equality, - 'The root relation of the valid-proposition โŒœpโŒ must be ' - 'the well-known equality-relation โŒœ=โŒ in the universe-of-discourse.', p=p, - p_relation=p.relation) - self.definition = d - super().__init__(theory=t, valid_proposition=p, nameset=nameset, - paragraphe_header=paragraph_headers.formal_definition, title=title, - dashed_name=dashed_name, echo=False) - assert d.statement_index < self.statement_index - super()._declare_class_membership(declarative_class_list.direct_definition_inference) - if echo: - repm.prnt(self.rep_report()) - - def compose_class(self) -> collections.abc.Generator[Composable, None, None]: - # TODO: Instead of hard-coding the class name, use a meta-theory. - yield SerifItalic(plaintext='definition-interpretation') - - def rep_report(self, proof: (None, bool) = None): - """Return a representation that expresses and justifies the statement. - - The representation is in two parts: - - The formula that is being stated, - - The justification for the formula.""" - output = f'{self.rep_title(cap=True)}: {self.valid_proposition.rep_formula(expand=True)}' - if proof: - output = output + f'\n\t' \ - f'{repm.serif_bold("Derivation from natural language definition")}' - output = output + f'\n\t{self.valid_proposition.rep_formula(expand=True):<70} โ”‚ ' \ - f'Follows from {self.definition.rep_ref()}.' - return output + f'\n' - - universe_of_discourse_symbol_indexes = dict() @@ -5392,8 +5232,6 @@ def __init__(self, section_title: str, t: TheoryElaborationSequence, self._max_subsection_number = 0 self.category = section_category symbol = NameSet(symbol=self.category.symbol_base, index=self.statement_index) - title = TitleOBSOLETE(ref=self._section_reference, paragrapha_header=section_category, - subtitle=section_title) super().__init__(nameset=symbol, theory=t, echo=False) super()._declare_class_membership(declarative_class_list.note) if echo: diff --git a/tests/test_title.py b/tests/test_title.py deleted file mode 100644 index 6d25a4df..00000000 --- a/tests/test_title.py +++ /dev/null @@ -1,37 +0,0 @@ -from unittest import TestCase -import punctilious as pu -import random_data - - -class TestTitle(TestCase): - def test_title(self): - pu.configuration.echo_default = False - pu.configuration.encoding = pu.encodings.plaintext - - title1 = pu.TitleOBSOLETE('1.1.1') - self.assertEqual('uncategorized 1.1.1', title1.rep_title()) - self.assertEqual('Uncategorized 1.1.1', title1.rep_title(cap=True)) - self.assertEqual('uncat. 1.1.1', title1.rep_ref()) - - title2 = pu.TitleOBSOLETE('1.1.2', - pu.paragraph_headers._hypothesis_statement_in_child_theory) - self.assertEqual('proposition 1.1.2', title2.rep_title()) - self.assertEqual('Proposition 1.1.2', title2.rep_title(cap=True)) - self.assertEqual('prop. 1.1.2', title2.rep_ref()) - self.assertEqual('๐—ฝ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป ๐Ÿญ.๐Ÿญ.๐Ÿฎ', title2.rep_title(encoding=pu.encodings.unicode)) - self.assertEqual('๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป ๐Ÿญ.๐Ÿญ.๐Ÿฎ', - title2.rep_title(encoding=pu.encodings.unicode, cap=True)) - self.assertEqual('๐—ฝ๐—ฟ๐—ผ๐—ฝ. ๐Ÿญ.๐Ÿญ.๐Ÿฎ', title2.rep_ref(encoding=pu.encodings.unicode)) - self.assertEqual('\\boldsymbol\\mathsf{proposition}} \\boldsymbol\\mathsf{1.1.2}}', - title2.rep_title(encoding=pu.encodings.latex)) - self.assertEqual('\\boldsymbol\\mathsf{Proposition}} \\boldsymbol\\mathsf{1.1.2}}', - title2.rep_title(encoding=pu.encodings.latex, cap=True)) - self.assertEqual('\\boldsymbol\\mathsf{prop.}} \\boldsymbol\\mathsf{1.1.2}}', - title2.rep_ref(encoding=pu.encodings.latex)) - - complement3 = random_data.random_sentence() - title3 = pu.TitleOBSOLETE(f'1.1.3', pu.paragraph_headers.lemma, subtitle=complement3) - self.assertEqual(f'lemma 1.1.3 - {complement3}', title3.rep_title()) - self.assertEqual(f'Lemma 1.1.3 - {complement3}', title3.rep_title(cap=True)) - self.assertEqual(f'lem. 1.1.3', title3.rep_ref()) - self.assertEqual(f'๐—น๐—ฒ๐—บ. ๐Ÿญ.๐Ÿญ.๐Ÿฏ', title3.rep_ref(encoding=pu.encodings.unicode)) diff --git a/tests/test_two_columns_proof.py b/tests/test_two_columns_proof.py deleted file mode 100644 index 70333bec..00000000 --- a/tests/test_two_columns_proof.py +++ /dev/null @@ -1,11 +0,0 @@ -from unittest import TestCase -import punctilious as pu -import random_data - - -class TestTwoColumnsProof(TestCase): - def test_rep_two_columns_proof_item(self): - left = random_data.random_sentence(min_words=50) - right = random_data.random_sentence(min_words=20) - report = pu.rep_two_columns_proof_item(left, right) - print(report) From 070aea060243fe9e0d07d2b121aa3c9e8322e023 Mon Sep 17 00:00:00 2001 From: David Doret Date: Wed, 23 Aug 2023 23:47:40 +0200 Subject: [PATCH 03/21] code cleanup --- punctilious/__init__.py | 8 +- punctilious/core.py | 22 ++- punctilious/locale_en_us.py | 32 +++- punctilious/unicode_utilities.py | 149 ++++++------------ tests/test_hypothesis.py | 10 +- ..._inconsistency_by_negation_introduction.py | 2 +- tests/test_note.py | 2 +- 7 files changed, 102 insertions(+), 123 deletions(-) diff --git a/punctilious/__init__.py b/punctilious/__init__.py index 3fb40e8d..a43d656c 100644 --- a/punctilious/__init__.py +++ b/punctilious/__init__.py @@ -9,10 +9,10 @@ DefinitionInclusion, Encoding, encodings, FailedVerificationException, Formula, FreeVariable, \ Header, InconsistencyWarning, interpret_formula, interpret_statement_formula, is_in_class, \ InferredStatement, NoteInclusion, Paragraph, prioritize_value, QuasiQuotation, Relation, \ - rep_two_columns_proof_item, ScriptNormal, SansSerifBold, SansSerifNormal, SerifNormal, \ - SimpleObjct, Statement, Subscript, subscriptify, paragraph_headers, ComposableText, NameSet, \ - SymbolicObject, TextStyle, text_styles, TheoreticalObject, TheoryElaborationSequence, \ - TheoryPackage, paragraph_headers, UniverseOfDiscourse + rep_two_columns_proof_item, ScriptNormal, SansSerifBold, SansSerifNormal, SerifBoldItalic, \ + SerifItalic, SerifNormal, SimpleObjct, Statement, Subscript, subscriptify, paragraph_headers, \ + ComposableText, NameSet, SymbolicObject, TextStyle, text_styles, TheoreticalObject, \ + TheoryElaborationSequence, TheoryPackage, paragraph_headers, UniverseOfDiscourse # from foundation_system_1 import foundation_system_1, ft, u diff --git a/punctilious/core.py b/punctilious/core.py index 22d67430..b05902e9 100644 --- a/punctilious/core.py +++ b/punctilious/core.py @@ -306,6 +306,10 @@ def __init__(self): unicode_table_index=unicode_utilities.unicode_serif_bold_index, start_tag=ComposableText(plaintext='', unicode='', latex='\\mathbf{'), end_tag=ComposableText(plaintext='', unicode='', latex='}')) + self.serif_bold_italic = TextStyle(name='serif-bold-italic', + unicode_table_index=unicode_utilities.unicode_serif_bold_italic_index, + start_tag=ComposableText(plaintext='', unicode='', latex='\\mathbold{'), + end_tag=ComposableText(plaintext='', unicode='', latex='}')) self.serif_italic = TextStyle(name='serif-italic', unicode_table_index=unicode_utilities.unicode_serif_italic_index, start_tag=ComposableText(plaintext='', unicode='', latex='\\mathit{'), @@ -735,6 +739,13 @@ def __init__(self, plaintext: str, unicode: (None, str) = None, latex=latex) +class SerifBoldItalic(StyledText): + def __init__(self, s: (None, str) = None, plaintext: (None, str) = None, + unicode: (None, str) = None, latex: (None, str) = None) -> None: + super().__init__(s=s, text_style=text_styles.serif_bold_italic, plaintext=plaintext, + unicode=unicode, latex=latex) + + class SerifItalic(StyledText): def __init__(self, s: (None, str) = None, plaintext: (None, str) = None, unicode: (None, str) = None, latex: (None, str) = None) -> None: @@ -4631,14 +4642,15 @@ def __init__(self, universe_of_discourse: UniverseOfDiscourse, echo: (None, bool dashed_name = 'inconsistency-by-negation-introduction' explicit_name = 'inconsistency by negation introduction inference rule' name = 'inconsistency by negation introduction' + definition = '๐“ฃ.๐‘ท, ๐“ฃ.ยฌ(๐‘ท) โŠข ๐ผ๐‘›๐‘(๐“ฃ)' # Assure backward-compatibility with the parent class, # which received these methods as __init__ arguments. infer_formula = InconsistencyByNegationIntroductionDeclaration.infer_formula verify_args = InconsistencyByNegationIntroductionDeclaration.verify_args - super().__init__(infer_formula=infer_formula, verify_args=verify_args, - universe_of_discourse=universe_of_discourse, symbol=symbol, auto_index=auto_index, - dashed_name=dashed_name, acronym=acronym, abridged_name=abridged_name, name=name, - explicit_name=explicit_name, echo=echo) + super().__init__(definition=definition, infer_formula=infer_formula, + verify_args=verify_args, universe_of_discourse=universe_of_discourse, symbol=symbol, + auto_index=auto_index, dashed_name=dashed_name, acronym=acronym, + abridged_name=abridged_name, name=name, explicit_name=explicit_name, echo=echo) def infer_formula(self, p: FormulaStatement = None, not_p: FormulaStatement = None, inconsistent_theory: TheoryElaborationSequence = None, @@ -4649,7 +4661,7 @@ def infer_formula(self, p: FormulaStatement = None, not_p: FormulaStatement = No def compose_paragraph_proof(self, o: InferredStatement) -> collections.abc.Generator[ Composable, Composable, bool]: - output = yield from configuration.locale.compose_inconsistency_introduction_paragraph_proof( + output = yield from configuration.locale.compose_inconsistency_introduction_by_negation_introduction_paragraph_proof( o=o) return output diff --git a/punctilious/locale_en_us.py b/punctilious/locale_en_us.py index 931e8b08..daea8a10 100644 --- a/punctilious/locale_en_us.py +++ b/punctilious/locale_en_us.py @@ -300,16 +300,38 @@ def compose_inconsistency_by_inequality_introduction_paragraph_proof(self, # Retrieve the parameters from the statement p_eq_q: FormulaStatement = o.parameters[0] p_neq_q: FormulaStatement = o.parameters[1] - yield from p_eq_q.compose_formula() + yield from p_eq_q.valid_proposition.compose_formula() yield SansSerifNormal(' follows from ') yield from p_eq_q.compose_ref_link() yield SansSerifNormal('. ') - yield from p_neq_q.compose_formula() + yield from p_neq_q.valid_proposition.compose_formula() yield SansSerifNormal(' follows from ') yield from p_neq_q.compose_ref_link() yield SansSerifNormal('. ') return True + def compose_inconsistency_introduction_by_negation_introduction_paragraph_proof(self, + o: InferredStatement) -> collections.abc.Generator[Composable, Composable, bool]: + global text_dict + # Retrieve the parameters from the statement + p: FormulaStatement = o.parameters[0] + not_p: FormulaStatement = o.parameters[1] + yield SansSerifNormal('Let ') + yield SerifBoldItalic('๐‘ท') + yield SerifItalic(' := ') + yield from p.valid_proposition.compose_formula() + yield SansSerifNormal(', which follows from ') + yield from p.compose_ref_link() + yield SansSerifNormal('. ') + yield SansSerifNormal('Let ') + yield SerifBoldItalic('ยฌ(๐‘ท)') + yield SerifItalic(' := ') + yield from not_p.valid_proposition.compose_formula() + yield SansSerifNormal(', which follows from ') + yield from not_p.compose_ref_link() + yield SansSerifNormal('. ') + return True + def compose_inference_rule_declaration(self, i: InferenceRuleDeclaration) -> \ collections.abc.Generator[Composable, Composable, bool]: global text_dict @@ -381,9 +403,11 @@ def compose_inferred_statement_report(self, o: InferredStatement, proof: (None, yield SansSerifNormal(': ') yield from o.inference_rule.compose_paragraph_proof(o=o) # Proof conclusion - yield SansSerifNormal(' Therefore, by the ') + yield SansSerifNormal('Therefore, by the ') yield from o.inference_rule.compose_dashed_name() - yield SansSerifNormal(' inference rule, it follows that ') + yield SansSerifNormal(' inference rule: ') + yield o.inference_rule.definition + yield SansSerifNormal(', it follows that ') yield from o.valid_proposition.compose_formula() yield SansSerifNormal('. ') yield self.qed diff --git a/punctilious/unicode_utilities.py b/punctilious/unicode_utilities.py index a9d9bd06..42a715d4 100644 --- a/punctilious/unicode_utilities.py +++ b/punctilious/unicode_utilities.py @@ -17,70 +17,37 @@ unicode_monospace_index = 12 unicode_double_struck_index = 13 -unicode_styled_characters = { - 'a': 'a๐š๐‘Ž๐’‚๐–บ๐—ฎ๐˜ข๐™–๐’ถ๐“ช๐”ž๐–†๐šŠ๐•’', - 'b': 'b๐›๐‘๐’ƒ๐–ป๐—ฏ๐˜ฃ๐™—๐’ท๐“ซ๐”Ÿ๐–‡๐š‹๐•“', - 'c': 'c๐œ๐‘๐’„๐–ผ๐—ฐ๐˜ค๐™˜๐’ธ๐“ฌ๐” ๐–ˆ๐šŒ๐•”', - 'd': 'd๐๐‘‘๐’…๐–ฝ๐—ฑ๐˜ฅ๐™™๐’น๐“ญ๐”ก๐–‰๐š๐••', - 'e': 'e๐ž๐‘’๐’†๐–พ๐—ฒ๐˜ฆ๐™šโ„ฏ๐“ฎ๐”ข๐–Š๐šŽ๐•–', - 'f': 'f๐Ÿ๐‘“๐’‡๐–ฟ๐—ณ๐˜ง๐™›๐’ป๐“ฏ๐”ฃ๐–‹๐š๐•—', - 'g': 'g๐ ๐‘”๐’ˆ๐—€๐—ด๐˜จ๐™œโ„Š๐“ฐ๐”ค๐–Œ๐š๐•˜', - 'h': 'h๐กโ„Ž๐’‰๐—๐—ต๐˜ฉ๐™๐’ฝ๐“ฑ๐”ฅ๐–๐š‘๐•™', - 'i': 'i๐ข๐‘–๐’Š๐—‚๐—ถ๐˜ช๐™ž๐’พ๐“ฒ๐”ฆ๐–Ž๐š’๐•š', - 'j': 'j๐ฃ๐‘—๐’‹๐—ƒ๐—ท๐˜ซ๐™Ÿ๐’ฟ๐“ณ๐”ง๐–๐š“๐•›', - 'k': 'k๐ค๐‘˜๐’Œ๐—„๐—ธ๐˜ฌ๐™ ๐“€๐“ด๐”จ๐–๐š”๐•œ', - 'l': 'l๐ฅ๐‘™๐’๐—…๐—น๐˜ญ๐™ก๐“๐“ต๐”ฉ๐–‘๐š•๐•', - 'm': 'm๐ฆ๐‘š๐’Ž๐—†๐—บ๐˜ฎ๐™ข๐“‚๐“ถ๐”ช๐–’๐š–๐•ž', - 'n': 'n๐ง๐‘›๐’๐—‡๐—ป๐˜ฏ๐™ฃ๐“ƒ๐“ท๐”ซ๐–“๐š—๐•Ÿ', - 'o': 'o๐จ๐‘œ๐’๐—ˆ๐—ผ๐˜ฐ๐™คโ„ด๐“ธ๐”ฌ๐–”๐š˜๐• ', - 'p': 'p๐ฉ๐‘๐’‘๐—‰๐—ฝ๐˜ฑ๐™ฅ๐“…๐“น๐”ญ๐–•๐š™๐•ก', - 'q': 'q๐ช๐‘ž๐’’๐—Š๐—พ๐˜ฒ๐™ฆ๐“†๐“บ๐”ฎ๐––๐šš๐•ข', - 'r': 'r๐ซ๐‘Ÿ๐’“๐—‹๐—ฟ๐˜ณ๐™ง๐“‡๐“ป๐”ฏ๐–—๐š›๐•ฃ', - 's': 's๐ฌ๐‘ ๐’”๐—Œ๐˜€๐˜ด๐™จ๐“ˆ๐“ผ๐”ฐ๐–˜๐šœ๐•ค', - 't': 't๐ญ๐‘ก๐’•๐—๐˜๐˜ต๐™ฉ๐“‰๐“ฝ๐”ฑ๐–™๐š๐•ฅ', - 'u': 'u๐ฎ๐‘ข๐’–๐—Ž๐˜‚๐˜ถ๐™ช๐“Š๐“พ๐”ฒ๐–š๐šž๐•ฆ', - 'v': 'v๐ฏ๐‘ฃ๐’—๐—๐˜ƒ๐˜ท๐™ซ๐“‹๐“ฟ๐”ณ๐–›๐šŸ๐•ง', - 'w': 'w๐ฐ๐‘ค๐’˜๐—๐˜„๐˜ธ๐™ฌ๐“Œ๐”€๐”ด๐–œ๐š ๐•จ', - 'x': 'x๐ฑ๐‘ฅ๐’™๐—‘๐˜…๐˜น๐™ญ๐“๐”๐”ต๐–๐šก๐•ฉ', - 'y': 'y๐ฒ๐‘ฆ๐’š๐—’๐˜†๐˜บ๐™ฎ๐“Ž๐”‚๐”ถ๐–ž๐šข๐•ช', - 'z': 'z๐ณ๐‘ง๐’›๐—“๐˜‡๐˜ป๐™ฏ๐“๐”ƒ๐”ท๐–Ÿ๐šฃ๐•ซ', - 'A': 'A๐€๐ด๐‘จ๐– ๐—”๐˜ˆ๐˜ผ๐’œ๐“๐”„๐•ฌ๐™ฐ๐”ธ', - 'B': 'B๐๐ต๐‘ฉ๐–ก๐—•๐˜‰๐˜ฝโ„ฌ๐“‘๐”…๐•ญ๐™ฑ๐”น', - 'C': 'C๐‚๐ถ๐‘ช๐–ข๐—–๐˜Š๐˜พ๐’ž๐“’โ„ญ๐•ฎ๐™ฒโ„‚', - 'D': 'D๐ƒ๐ท๐‘ซ๐–ฃ๐——๐˜‹๐˜ฟ๐’Ÿ๐““๐”‡๐•ฏ๐™ณ๐”ป', - 'E': 'E๐„๐ธ๐‘ฌ๐–ค๐—˜๐˜Œ๐™€โ„ฐ๐“”๐”ˆ๐•ฐ๐™ด๐”ผ', - 'F': 'F๐…๐น๐‘ญ๐–ฅ๐—™๐˜๐™โ„ฑ๐“•๐”‰๐•ฑ๐™ต๐”ฝ', - 'G': 'G๐†๐บ๐‘ฎ๐–ฆ๐—š๐˜Ž๐™‚๐’ข๐“–๐”Š๐•ฒ๐™ถ๐”พ', - 'H': 'H๐‡๐ป๐‘ฏ๐–ง๐—›๐˜๐™ƒโ„‹๐“—โ„Œ๐•ณ๐™ทโ„', - 'I': 'I๐ˆ๐ผ๐‘ฐ๐–จ๐—œ๐˜๐™„โ„๐“˜โ„‘๐•ด๐™ธ๐•€', - 'J': 'J๐‰๐ฝ๐‘ฑ๐–ฉ๐—๐˜‘๐™…๐’ฅ๐“™๐”๐•ต๐™น๐•', - 'K': 'K๐Š๐พ๐‘ฒ๐–ช๐—ž๐˜’๐™†๐’ฆ๐“š๐”Ž๐•ถ๐™บ๐•‚', - 'L': 'L๐‹๐ฟ๐‘ณ๐–ซ๐—Ÿ๐˜“๐™‡โ„’๐“›๐”๐•ท๐™ป๐•ƒ', - 'M': 'M๐Œ๐‘€๐‘ด๐–ฌ๐— ๐˜”๐™ˆโ„ณ๐“œ๐”๐•ธ๐™ผ๐•„', - 'N': 'N๐๐‘๐‘ต๐–ญ๐—ก๐˜•๐™‰๐’ฉ๐“๐”‘๐•น๐™ฝโ„•', - 'O': 'O๐Ž๐‘‚๐‘ถ๐–ฎ๐—ข๐˜–๐™Š๐’ช๐“ž๐”’๐•บ๐™พ๐•†', - 'P': 'P๐๐‘ƒ๐‘ท๐–ฏ๐—ฃ๐˜—๐™‹๐’ซ๐“Ÿ๐”“๐•ป๐™ฟโ„™', - 'Q': 'Q๐๐‘„๐‘ธ๐–ฐ๐—ค๐˜˜๐™Œ๐’ฌ๐“ ๐””๐•ผ๐š€โ„š', - 'R': 'R๐‘๐‘…๐‘น๐–ฑ๐—ฅ๐˜™๐™โ„›๐“กโ„œ๐•ฝ๐šโ„', - 'S': 'S๐’๐‘†๐‘บ๐–ฒ๐—ฆ๐˜š๐™Ž๐’ฎ๐“ข๐”–๐•พ๐š‚๐•Š', - 'T': 'T๐“๐‘‡๐‘ป๐–ณ๐—ง๐˜›๐™๐’ฏ๐“ฃ๐”—๐•ฟ๐šƒ๐•‹', - 'U': 'U๐”๐‘ˆ๐‘ผ๐–ด๐—จ๐˜œ๐™๐’ฐ๐“ค๐”˜๐–€๐š„๐•Œ', - 'V': 'V๐•๐‘‰๐‘ฝ๐–ต๐—ฉ๐˜๐™‘๐’ฑ๐“ฅ๐”™๐–๐š…๐•', - 'W': 'W๐–๐‘Š๐‘พ๐–ถ๐—ช๐˜ž๐™’๐’ฒ๐“ฆ๐”š๐–‚๐š†๐•Ž', - 'X': 'X๐—๐‘‹๐‘ฟ๐–ท๐—ซ๐˜Ÿ๐™“๐’ณ๐“ง๐”›๐–ƒ๐š‡๐•', - 'Y': 'Y๐˜๐‘Œ๐’€๐–ธ๐—ฌ๐˜ ๐™”๐’ด๐“จ๐”œ๐–„๐šˆ๐•', - 'Z': 'Z๐™๐‘๐’๐–น๐—ญ๐˜ก๐™•๐’ต๐“ฉโ„จ๐–…๐š‰โ„ค', - '0': '0๐ŸŽ0๐ŸŽ๐Ÿข๐Ÿฌ๐Ÿข๐Ÿฌ๐Ÿข๐Ÿฌ๐Ÿข๐Ÿฌ๐Ÿถ๐Ÿ˜', - '1': '1๐Ÿ1๐Ÿ๐Ÿฃ๐Ÿญ๐Ÿฃ๐Ÿญ๐Ÿฃ๐Ÿญ๐Ÿฃ๐Ÿญ๐Ÿท๐Ÿ™', - '2': '2๐Ÿ2๐Ÿ๐Ÿค๐Ÿฎ๐Ÿค๐Ÿฎ๐Ÿค๐Ÿฎ๐Ÿค๐Ÿฎ๐Ÿธ๐Ÿš', - '3': '3๐Ÿ‘3๐Ÿ‘๐Ÿฅ๐Ÿฏ๐Ÿฅ๐Ÿฏ๐Ÿฅ๐Ÿฏ๐Ÿฅ๐Ÿฏ๐Ÿน๐Ÿ›', - '4': '4๐Ÿ’4๐Ÿ’๐Ÿฆ๐Ÿฐ๐Ÿฆ๐Ÿฐ๐Ÿฆ๐Ÿฐ๐Ÿฆ๐Ÿฐ๐Ÿบ๐Ÿœ', - '5': '5๐Ÿ“5๐Ÿ“๐Ÿง๐Ÿฑ๐Ÿง๐Ÿฑ๐Ÿง๐Ÿฑ๐Ÿง๐Ÿฑ๐Ÿป๐Ÿ', - '6': '6๐Ÿ”6๐Ÿ”๐Ÿจ๐Ÿฒ๐Ÿจ๐Ÿฒ๐Ÿจ๐Ÿฒ๐Ÿจ๐Ÿฒ๐Ÿผ๐Ÿž', - '7': '7๐Ÿ•7๐Ÿ•๐Ÿฉ๐Ÿณ๐Ÿฉ๐Ÿณ๐Ÿฉ๐Ÿณ๐Ÿฉ๐Ÿณ๐Ÿฝ๐ŸŸ', - '8': '8๐Ÿ–8๐Ÿ–๐Ÿช๐Ÿด๐Ÿช๐Ÿด๐Ÿช๐Ÿด๐Ÿช๐Ÿด๐Ÿพ๐Ÿ ', - '9': '9๐Ÿ—9๐Ÿ—๐Ÿซ๐Ÿต๐Ÿซ๐Ÿต๐Ÿซ๐Ÿต๐Ÿซ๐Ÿต๐Ÿฟ๐Ÿก' -} +unicode_styled_characters = {'a': 'a๐š๐‘Ž๐’‚๐–บ๐—ฎ๐˜ข๐™–๐’ถ๐“ช๐”ž๐–†๐šŠ๐•’', 'b': 'b๐›๐‘๐’ƒ๐–ป๐—ฏ๐˜ฃ๐™—๐’ท๐“ซ๐”Ÿ๐–‡๐š‹๐•“', + 'c': 'c๐œ๐‘๐’„๐–ผ๐—ฐ๐˜ค๐™˜๐’ธ๐“ฌ๐” ๐–ˆ๐šŒ๐•”', 'd': 'd๐๐‘‘๐’…๐–ฝ๐—ฑ๐˜ฅ๐™™๐’น๐“ญ๐”ก๐–‰๐š๐••', + 'e': 'e๐ž๐‘’๐’†๐–พ๐—ฒ๐˜ฆ๐™šโ„ฏ๐“ฎ๐”ข๐–Š๐šŽ๐•–', 'f': 'f๐Ÿ๐‘“๐’‡๐–ฟ๐—ณ๐˜ง๐™›๐’ป๐“ฏ๐”ฃ๐–‹๐š๐•—', + 'g': 'g๐ ๐‘”๐’ˆ๐—€๐—ด๐˜จ๐™œโ„Š๐“ฐ๐”ค๐–Œ๐š๐•˜', 'h': 'h๐กโ„Ž๐’‰๐—๐—ต๐˜ฉ๐™๐’ฝ๐“ฑ๐”ฅ๐–๐š‘๐•™', + 'i': 'i๐ข๐‘–๐’Š๐—‚๐—ถ๐˜ช๐™ž๐’พ๐“ฒ๐”ฆ๐–Ž๐š’๐•š', 'j': 'j๐ฃ๐‘—๐’‹๐—ƒ๐—ท๐˜ซ๐™Ÿ๐’ฟ๐“ณ๐”ง๐–๐š“๐•›', + 'k': 'k๐ค๐‘˜๐’Œ๐—„๐—ธ๐˜ฌ๐™ ๐“€๐“ด๐”จ๐–๐š”๐•œ', 'l': 'l๐ฅ๐‘™๐’๐—…๐—น๐˜ญ๐™ก๐“๐“ต๐”ฉ๐–‘๐š•๐•', + 'm': 'm๐ฆ๐‘š๐’Ž๐—†๐—บ๐˜ฎ๐™ข๐“‚๐“ถ๐”ช๐–’๐š–๐•ž', 'n': 'n๐ง๐‘›๐’๐—‡๐—ป๐˜ฏ๐™ฃ๐“ƒ๐“ท๐”ซ๐–“๐š—๐•Ÿ', + 'o': 'o๐จ๐‘œ๐’๐—ˆ๐—ผ๐˜ฐ๐™คโ„ด๐“ธ๐”ฌ๐–”๐š˜๐• ', 'p': 'p๐ฉ๐‘๐’‘๐—‰๐—ฝ๐˜ฑ๐™ฅ๐“…๐“น๐”ญ๐–•๐š™๐•ก', + 'q': 'q๐ช๐‘ž๐’’๐—Š๐—พ๐˜ฒ๐™ฆ๐“†๐“บ๐”ฎ๐––๐šš๐•ข', 'r': 'r๐ซ๐‘Ÿ๐’“๐—‹๐—ฟ๐˜ณ๐™ง๐“‡๐“ป๐”ฏ๐–—๐š›๐•ฃ', + 's': 's๐ฌ๐‘ ๐’”๐—Œ๐˜€๐˜ด๐™จ๐“ˆ๐“ผ๐”ฐ๐–˜๐šœ๐•ค', 't': 't๐ญ๐‘ก๐’•๐—๐˜๐˜ต๐™ฉ๐“‰๐“ฝ๐”ฑ๐–™๐š๐•ฅ', + 'u': 'u๐ฎ๐‘ข๐’–๐—Ž๐˜‚๐˜ถ๐™ช๐“Š๐“พ๐”ฒ๐–š๐šž๐•ฆ', 'v': 'v๐ฏ๐‘ฃ๐’—๐—๐˜ƒ๐˜ท๐™ซ๐“‹๐“ฟ๐”ณ๐–›๐šŸ๐•ง', + 'w': 'w๐ฐ๐‘ค๐’˜๐—๐˜„๐˜ธ๐™ฌ๐“Œ๐”€๐”ด๐–œ๐š ๐•จ', 'x': 'x๐ฑ๐‘ฅ๐’™๐—‘๐˜…๐˜น๐™ญ๐“๐”๐”ต๐–๐šก๐•ฉ', + 'y': 'y๐ฒ๐‘ฆ๐’š๐—’๐˜†๐˜บ๐™ฎ๐“Ž๐”‚๐”ถ๐–ž๐šข๐•ช', 'z': 'z๐ณ๐‘ง๐’›๐—“๐˜‡๐˜ป๐™ฏ๐“๐”ƒ๐”ท๐–Ÿ๐šฃ๐•ซ', + 'A': 'A๐€๐ด๐‘จ๐– ๐—”๐˜ˆ๐˜ผ๐’œ๐“๐”„๐•ฌ๐™ฐ๐”ธ', 'B': 'B๐๐ต๐‘ฉ๐–ก๐—•๐˜‰๐˜ฝโ„ฌ๐“‘๐”…๐•ญ๐™ฑ๐”น', + 'C': 'C๐‚๐ถ๐‘ช๐–ข๐—–๐˜Š๐˜พ๐’ž๐“’โ„ญ๐•ฎ๐™ฒโ„‚', 'D': 'D๐ƒ๐ท๐‘ซ๐–ฃ๐——๐˜‹๐˜ฟ๐’Ÿ๐““๐”‡๐•ฏ๐™ณ๐”ป', + 'E': 'E๐„๐ธ๐‘ฌ๐–ค๐—˜๐˜Œ๐™€โ„ฐ๐“”๐”ˆ๐•ฐ๐™ด๐”ผ', 'F': 'F๐…๐น๐‘ญ๐–ฅ๐—™๐˜๐™โ„ฑ๐“•๐”‰๐•ฑ๐™ต๐”ฝ', + 'G': 'G๐†๐บ๐‘ฎ๐–ฆ๐—š๐˜Ž๐™‚๐’ข๐“–๐”Š๐•ฒ๐™ถ๐”พ', 'H': 'H๐‡๐ป๐‘ฏ๐–ง๐—›๐˜๐™ƒโ„‹๐“—โ„Œ๐•ณ๐™ทโ„', + 'I': 'I๐ˆ๐ผ๐‘ฐ๐–จ๐—œ๐˜๐™„โ„๐“˜โ„‘๐•ด๐™ธ๐•€', 'J': 'J๐‰๐ฝ๐‘ฑ๐–ฉ๐—๐˜‘๐™…๐’ฅ๐“™๐”๐•ต๐™น๐•', + 'K': 'K๐Š๐พ๐‘ฒ๐–ช๐—ž๐˜’๐™†๐’ฆ๐“š๐”Ž๐•ถ๐™บ๐•‚', 'L': 'L๐‹๐ฟ๐‘ณ๐–ซ๐—Ÿ๐˜“๐™‡โ„’๐“›๐”๐•ท๐™ป๐•ƒ', + 'M': 'M๐Œ๐‘€๐‘ด๐–ฌ๐— ๐˜”๐™ˆโ„ณ๐“œ๐”๐•ธ๐™ผ๐•„', 'N': 'N๐๐‘๐‘ต๐–ญ๐—ก๐˜•๐™‰๐’ฉ๐“๐”‘๐•น๐™ฝโ„•', + 'O': 'O๐Ž๐‘‚๐‘ถ๐–ฎ๐—ข๐˜–๐™Š๐’ช๐“ž๐”’๐•บ๐™พ๐•†', 'P': 'P๐๐‘ƒ๐‘ท๐–ฏ๐—ฃ๐˜—๐™‹๐’ซ๐“Ÿ๐”“๐•ป๐™ฟโ„™', + 'Q': 'Q๐๐‘„๐‘ธ๐–ฐ๐—ค๐˜˜๐™Œ๐’ฌ๐“ ๐””๐•ผ๐š€โ„š', 'R': 'R๐‘๐‘…๐‘น๐–ฑ๐—ฅ๐˜™๐™โ„›๐“กโ„œ๐•ฝ๐šโ„', + 'S': 'S๐’๐‘†๐‘บ๐–ฒ๐—ฆ๐˜š๐™Ž๐’ฎ๐“ข๐”–๐•พ๐š‚๐•Š', 'T': 'T๐“๐‘‡๐‘ป๐–ณ๐—ง๐˜›๐™๐’ฏ๐“ฃ๐”—๐•ฟ๐šƒ๐•‹', + 'U': 'U๐”๐‘ˆ๐‘ผ๐–ด๐—จ๐˜œ๐™๐’ฐ๐“ค๐”˜๐–€๐š„๐•Œ', 'V': 'V๐•๐‘‰๐‘ฝ๐–ต๐—ฉ๐˜๐™‘๐’ฑ๐“ฅ๐”™๐–๐š…๐•', + 'W': 'W๐–๐‘Š๐‘พ๐–ถ๐—ช๐˜ž๐™’๐’ฒ๐“ฆ๐”š๐–‚๐š†๐•Ž', 'X': 'X๐—๐‘‹๐‘ฟ๐–ท๐—ซ๐˜Ÿ๐™“๐’ณ๐“ง๐”›๐–ƒ๐š‡๐•', + 'Y': 'Y๐˜๐‘Œ๐’€๐–ธ๐—ฌ๐˜ ๐™”๐’ด๐“จ๐”œ๐–„๐šˆ๐•', 'Z': 'Z๐™๐‘๐’๐–น๐—ญ๐˜ก๐™•๐’ต๐“ฉโ„จ๐–…๐š‰โ„ค', + '0': '0๐ŸŽ0๐ŸŽ๐Ÿข๐Ÿฌ๐Ÿข๐Ÿฌ๐Ÿข๐Ÿฌ๐Ÿข๐Ÿฌ๐Ÿถ๐Ÿ˜', '1': '1๐Ÿ1๐Ÿ๐Ÿฃ๐Ÿญ๐Ÿฃ๐Ÿญ๐Ÿฃ๐Ÿญ๐Ÿฃ๐Ÿญ๐Ÿท๐Ÿ™', + '2': '2๐Ÿ2๐Ÿ๐Ÿค๐Ÿฎ๐Ÿค๐Ÿฎ๐Ÿค๐Ÿฎ๐Ÿค๐Ÿฎ๐Ÿธ๐Ÿš', '3': '3๐Ÿ‘3๐Ÿ‘๐Ÿฅ๐Ÿฏ๐Ÿฅ๐Ÿฏ๐Ÿฅ๐Ÿฏ๐Ÿฅ๐Ÿฏ๐Ÿน๐Ÿ›', + '4': '4๐Ÿ’4๐Ÿ’๐Ÿฆ๐Ÿฐ๐Ÿฆ๐Ÿฐ๐Ÿฆ๐Ÿฐ๐Ÿฆ๐Ÿฐ๐Ÿบ๐Ÿœ', '5': '5๐Ÿ“5๐Ÿ“๐Ÿง๐Ÿฑ๐Ÿง๐Ÿฑ๐Ÿง๐Ÿฑ๐Ÿง๐Ÿฑ๐Ÿป๐Ÿ', + '6': '6๐Ÿ”6๐Ÿ”๐Ÿจ๐Ÿฒ๐Ÿจ๐Ÿฒ๐Ÿจ๐Ÿฒ๐Ÿจ๐Ÿฒ๐Ÿผ๐Ÿž', '7': '7๐Ÿ•7๐Ÿ•๐Ÿฉ๐Ÿณ๐Ÿฉ๐Ÿณ๐Ÿฉ๐Ÿณ๐Ÿฉ๐Ÿณ๐Ÿฝ๐ŸŸ', + '8': '8๐Ÿ–8๐Ÿ–๐Ÿช๐Ÿด๐Ÿช๐Ÿด๐Ÿช๐Ÿด๐Ÿช๐Ÿด๐Ÿพ๐Ÿ ', '9': '9๐Ÿ—9๐Ÿ—๐Ÿซ๐Ÿต๐Ÿซ๐Ÿต๐Ÿซ๐Ÿต๐Ÿซ๐Ÿต๐Ÿฟ๐Ÿก'} def prioritize_value(*args) -> typing.Any: @@ -135,7 +102,7 @@ def unicode_serif_italic(s: str): def unicode_serif_bold_italic(s: str): - return unicode_format(s=s, index=unicode_serif_italic_bold_index) + return unicode_format(s=s, index=unicode_serif_bold_italic_index) def unicode_script_normal(s: str): @@ -162,45 +129,21 @@ def unicode_double_struck(s: str): return unicode_format(s=s, index=unicode_double_struck_index) -unicode_subscript_dictionary = { - '0': u'โ‚€', - '1': u'โ‚', - '2': u'โ‚‚', - '3': u'โ‚ƒ', - '4': u'โ‚„', - '5': u'โ‚…', - '6': u'โ‚†', - '7': u'โ‚‡', - '8': u'โ‚ˆ', - '9': u'โ‚‰', - 'a': u'โ‚', - 'e': u'โ‚‘', - 'o': u'โ‚’', - 'x': u'โ‚“', - # '???': u'โ‚”', - 'h': u'โ‚•', - 'k': u'โ‚–', - 'l': u'โ‚—', - 'm': u'โ‚˜', - 'n': u'โ‚™', - 'p': u'โ‚š', - 's': u'โ‚›', - 't': u'โ‚œ', - '+': u'โ‚Š', - '-': u'โ‚‹', - '=': u'โ‚Œ', - '(': u'โ‚', - ')': u'โ‚Ž', - 'j': u'โฑผ', - 'i': u'แตข', # Alternative from the Unicode Phonetic Extensions block: แตข - 'r': u'แตฃ', # Source: Unicode Phonetic Extensions block. - 'u': u'แตค', # Source: Unicode Phonetic Extensions block. - 'v': u'แตฅ', # Source: Unicode Phonetic Extensions block. - 'ฮฒ': u'แตฆ', # Source: Unicode Phonetic Extensions block. - 'ฮณ': u'แตง', # Source: Unicode Phonetic Extensions block. +unicode_subscript_dictionary = {'0': u'โ‚€', '1': u'โ‚', '2': u'โ‚‚', '3': u'โ‚ƒ', '4': u'โ‚„', '5': u'โ‚…', + '6': u'โ‚†', '7': u'โ‚‡', '8': u'โ‚ˆ', '9': u'โ‚‰', 'a': u'โ‚', 'e': u'โ‚‘', + 'o': u'โ‚’', 'x': u'โ‚“', # '???': u'โ‚”', + 'h': u'โ‚•', 'k': u'โ‚–', 'l': u'โ‚—', 'm': u'โ‚˜', 'n': u'โ‚™', 'p': u'โ‚š', + 's': u'โ‚›', 't': u'โ‚œ', '+': u'โ‚Š', '-': u'โ‚‹', '=': u'โ‚Œ', '(': u'โ‚', + ')': u'โ‚Ž', 'j': u'โฑผ', 'i': u'แตข', + # Alternative from the Unicode Phonetic Extensions block: แตข + 'r': u'แตฃ', # Source: Unicode Phonetic Extensions block. + 'u': u'แตค', # Source: Unicode Phonetic Extensions block. + 'v': u'แตฅ', # Source: Unicode Phonetic Extensions block. + 'ฮฒ': u'แตฆ', # Source: Unicode Phonetic Extensions block. + 'ฮณ': u'แตง', # Source: Unicode Phonetic Extensions block. # '???': u'แตจ', # Source: Unicode Phonetic Extensions block. - 'ฯ†': u'แตฉ', # Source: Unicode Phonetic Extensions block. - 'ฯ‡': u'แตช' # Source: Unicode Phonetic Extensions block. + 'ฯ†': u'แตฉ', # Source: Unicode Phonetic Extensions block. + 'ฯ‡': u'แตช' # Source: Unicode Phonetic Extensions block. } diff --git a/tests/test_hypothesis.py b/tests/test_hypothesis.py index 0c419c45..f55a2a21 100644 --- a/tests/test_hypothesis.py +++ b/tests/test_hypothesis.py @@ -30,10 +30,10 @@ def test_hypothesis(self): hypothetical_theory = hypothesis.hypothesis_child_theory hypothetical_conjunction = hypothetical_theory.i.ci.infer_statement((o1 | r1 | o2), hypothetical_proposition) - proposition_1 = hypothetical_theory.i.vs.infer_statement(conditional, o1, # x - o2, # y - o3) # z - conclusion_1 = hypothetical_theory.i.mp.infer_statement(proposition_1, - hypothetical_conjunction) + proposition_1 = hypothetical_theory.i.vs.infer_statement(p=conditional, phi=(o1, # x + o2, # y + o3)) # z + conclusion_1 = hypothetical_theory.i.mp.infer_statement(p_implies_q=proposition_1, + p=hypothetical_conjunction) self.assertEqual('๐‘Ÿโ‚(๐‘œโ‚, ๐‘œโ‚ƒ)', conclusion_1.valid_proposition.rep_formula(pu.encodings.unicode)) diff --git a/tests/test_inconsistency_by_negation_introduction.py b/tests/test_inconsistency_by_negation_introduction.py index be4bcb0e..0e2b7270 100644 --- a/tests/test_inconsistency_by_negation_introduction.py +++ b/tests/test_inconsistency_by_negation_introduction.py @@ -48,7 +48,7 @@ def test_inconsistency_introduction_2(self): t2 = t1_h1.hypothesis_child_theory t2_p5 = t1_h1.hypothesis_statement_in_child_theory t2_p6 = t2.i.conjunction_introduction.infer_statement(p=t1_p1, q=t1_p2) - t2_p7 = t2.i.variable_substitution.infer_statement(t1_p3_implication, o1, o2, o3) + t2_p7 = t2.i.variable_substitution.infer_statement(p=t1_p3_implication, phi=(o1, o2, o3)) # t2_p8: ๐‘Ÿโ‚(๐‘œโ‚, ๐‘œโ‚ƒ) by modus ponens t2_p8 = t2.i.modus_ponens.infer_statement(p_implies_q=t2_p7, p=t2_p6) # p5 is the negation of p8, which is a contradiction in t2 diff --git a/tests/test_note.py b/tests/test_note.py index 6232d50b..b44c10f5 100644 --- a/tests/test_note.py +++ b/tests/test_note.py @@ -15,7 +15,7 @@ def test_note_introduction(self): ap = t.include_axiom(a) t.i.axiom_interpretation.infer_statement(ap, u.f(r1, o1)) note = t.take_note('Hello world!', ref='1.1.1') - self.assertEqual('๐—ก๐—ผ๐˜๐—ฒ ๐Ÿญ.๐Ÿญ.๐Ÿญ (๐Ÿ—…โ‚‚): Hello world!', note.rep_report()) + self.assertEqual('๐—ก๐—ผ๐˜๐—ฒ ๐Ÿญ.๐Ÿญ.๐Ÿญ (๐Ÿ—…โ‚): ๐–ง๐–พ๐—…๐—…๐—ˆ ๐—๐—ˆ๐—‹๐—…๐–ฝ!', note.rep_report()) comment = t.take_note('Foo', ref='1.1.2', paragraph_header=pu.paragraph_headers.comment) self.assertEqual('๐—–๐—ผ๐—บ๐—บ๐—ฒ๐—ป๐˜ ๐Ÿญ.๐Ÿญ.๐Ÿฎ (๐Ÿ—…โ‚ƒ): Foo', comment.rep_report()) remark = t.take_note('Bar', ref='1.1.3', paragraph_header=pu.paragraph_headers.remark) From b3ec5a6c5c7606168acbb435fb0f1beee0c24592 Mon Sep 17 00:00:00 2001 From: David Doret Date: Wed, 23 Aug 2023 23:48:41 +0200 Subject: [PATCH 04/21] theory build --- ...no_axioms_interactive_graph_plaintext.html | 2 +- ...eano_axioms_interactive_graph_unicode.html | 2 +- ...peano_axioms_report_noproof_enus_latex.txt | 2 +- ...o_axioms_report_noproof_enus_plaintext.txt | 2 +- ...ano_axioms_report_noproof_enus_unicode.txt | 2 +- ...e_peano_axioms_report_proof_enus_latex.txt | 2 +- ...ano_axioms_report_proof_enus_plaintext.txt | 126 +++++++++--------- ...peano_axioms_report_proof_enus_unicode.txt | 126 +++++++++--------- 8 files changed, 132 insertions(+), 132 deletions(-) diff --git a/theory/build/tao_2006_2_1_the_peano_axioms_interactive_graph_plaintext.html b/theory/build/tao_2006_2_1_the_peano_axioms_interactive_graph_plaintext.html index a0cec182..aba3fe3b 100644 --- a/theory/build/tao_2006_2_1_the_peano_axioms_interactive_graph_plaintext.html +++ b/theory/build/tao_2006_2_1_the_peano_axioms_interactive_graph_plaintext.html @@ -88,7 +88,7 @@

// parsing and collecting nodes and edges from the python - nodes = new vis.DataSet([{"color": "#81C784", "id": "A1", "label": "A1 (2.1) : \"0 is a\nnatural number.\"", "shape": "box"}, {"color": "#FFF59D", "id": "P1", "label": "P1 : (0 is-a\nnatural-number)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P1): (0 is-a\nnatural-number). Proof: \"0 is a\nnatural number.\" is postulated\nby axiom 2.1 (A1). (0 is-a\nnatural-number) is a valid\nformula statement interpreted\nfrom that axiom. Therefore, by\nthe axiom-interpretation\ninference rule, it follows that\n(0 is-a natural-number). QED"}, {"color": "#81C784", "id": "A2", "label": "A2 (2.2) : \"If n is\na natural number,\nthen n++ is a\nnatural number.\"", "shape": "box"}, {"color": "#FFF59D", "id": "P2", "label": "P2 : ((n1 is-a\nnatural-number) ==\u003e\n((n1)++ is-a\nnatural-number))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P2): ((n1 is-a\nnatural-number) ==\u003e ((n1)++ is-a\nnatural-number)). Proof: \"If n\nis a natural number, then n++ is\na natural number.\" is postulated\nby axiom 2.2 (A2). ((n1 is-a\nnatural-number) ==\u003e ((n1)++ is-a\nnatural-number)) is a valid\nformula statement interpreted\nfrom that axiom. Therefore, by\nthe axiom-interpretation\ninference rule, it follows that\n((n1 is-a natural-number) ==\u003e\n((n1)++ is-a natural-number)).\nQED"}, {"color": "#FFF59D", "id": "P3", "label": "P3 : ((0 is-a\nnatural-number) ==\u003e\n((0)++ is-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P3): ((0 is-a\nnatural-number) ==\u003e ((0)++ is-a\nnatural-number)). Proof: ((n1\nis-a natural-number) ==\u003e ((n1)++\nis-a natural-number)) follows\nfrom prop. (P2). Let n1 = 0.\nTherefore, by the variable-\nsubstitution inference rule, it\nfollows that ((0 is-a natural-\nnumber) ==\u003e ((0)++ is-a natural-\nnumber)). QED"}, {"color": "#FFF59D", "id": "P4", "label": "P4 (2.2.3) : ((0)++\nis-a natural-number)", "labelHighlightBold": true, "shape": "box", "title": "Proposition 2.2.3 (T1.P4):\n((0)++ is-a natural-number).\nProof: ((0 is-a natural-number)\n==\u003e ((0)++ is-a natural-number))\nfollows from prop. (P3).(0 is-a\nnatural-number) follows from\nprop. (P1). Therefore, by the\nmodus-ponens inference rule, it\nfollows that ((0)++ is-a\nnatural-number). QED"}, {"color": "#90CAF9", "id": "D1", "label": "D1 : \"We define 1 to\nbe the number 0++, 2\nto be the number\n(0++)++, 3 to be the\nnumber\n((0++)++)++,etc. (In\nother words, 1 :=\n0++, 2 := 1++, 3 :=\n2++, etc. In this\ntext I use \"x := y\"\nto denote the\nstatement that x is\ndefined to equal\ny.)\"", "shape": "box"}, {"color": "#FFF59D", "id": "P5", "label": "P5 : (1 = (0)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P5): (1 =\n(0)++). Proof: \"We define 1 to\nbe the number 0++, 2 to be the\nnumber (0++)++, 3 to be the\nnumber ((0++)++)++,etc. (In\nother words, 1 := 0++, 2 := 1++,\n3 := 2++, etc. In this text I\nuse \"x := y\" to denote the\nstatement that x is defined to\nequal y.)\" is postulated by def.\n(D1). (1 = (0)++) is an\ninterpretation of that\ndefinition. Therefore, by the\ndefinition-interpretation\ninference rule, it follows that\n(1 = (0)++). QED"}, {"color": "#FFF59D", "id": "P6", "label": "P6 : (2 = ((0)++)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P6): (2 =\n((0)++)++). Proof: \"We define 1\nto be the number 0++, 2 to be\nthe number (0++)++, 3 to be the\nnumber ((0++)++)++,etc. (In\nother words, 1 := 0++, 2 := 1++,\n3 := 2++, etc. In this text I\nuse \"x := y\" to denote the\nstatement that x is defined to\nequal y.)\" is postulated by def.\n(D1). (2 = ((0)++)++) is an\ninterpretation of that\ndefinition. Therefore, by the\ndefinition-interpretation\ninference rule, it follows that\n(2 = ((0)++)++). QED"}, {"color": "#FFF59D", "id": "P7", "label": "P7 : (3 =\n(((0)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P7): (3 =\n(((0)++)++)++). Proof: \"We\ndefine 1 to be the number 0++, 2\nto be the number (0++)++, 3 to\nbe the number ((0++)++)++,etc.\n(In other words, 1 := 0++, 2 :=\n1++, 3 := 2++, etc. In this text\nI use \"x := y\" to denote the\nstatement that x is defined to\nequal y.)\" is postulated by def.\n(D1). (3 = (((0)++)++)++) is an\ninterpretation of that\ndefinition. Therefore, by the\ndefinition-interpretation\ninference rule, it follows that\n(3 = (((0)++)++)++). QED"}, {"color": "#FFF59D", "id": "P8", "label": "P8 : (4 =\n((((0)++)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P8): (4 =\n((((0)++)++)++)++). Proof: \"We\ndefine 1 to be the number 0++, 2\nto be the number (0++)++, 3 to\nbe the number ((0++)++)++,etc.\n(In other words, 1 := 0++, 2 :=\n1++, 3 := 2++, etc. In this text\nI use \"x := y\" to denote the\nstatement that x is defined to\nequal y.)\" is postulated by def.\n(D1). (4 = ((((0)++)++)++)++) is\nan interpretation of that\ndefinition. Therefore, by the\ndefinition-interpretation\ninference rule, it follows that\n(4 = ((((0)++)++)++)++). QED"}, {"color": "#FFF59D", "id": "P9", "label": "P9 : (((0)++ is-a\nnatural-number) ==\u003e\n(((0)++)++ is-a\nnatural-number))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P9): (((0)++\nis-a natural-number) ==\u003e\n(((0)++)++ is-a natural-\nnumber)). Proof: ((n1 is-a\nnatural-number) ==\u003e ((n1)++ is-a\nnatural-number)) follows from\nprop. (P2). Let n1 = (0)++.\nTherefore, by the variable-\nsubstitution inference rule, it\nfollows that (((0)++ is-a\nnatural-number) ==\u003e (((0)++)++\nis-a natural-number)). QED"}, {"color": "#FFF59D", "id": "P10", "label": "P10 : (((0)++)++\nis-a natural-number)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P10): (((0)++)++\nis-a natural-number). Proof:\n(((0)++ is-a natural-number) ==\u003e\n(((0)++)++ is-a natural-number))\nfollows from prop. (P9).((0)++\nis-a natural-number) follows\nfrom prop. 2.2.3 (P4).\nTherefore, by the modus-ponens\ninference rule, it follows that\n(((0)++)++ is-a natural-number).\nQED"}, {"color": "#FFF59D", "id": "P11", "label": "P11 : ((((0)++)++\nis-a natural-number)\n==\u003e ((((0)++)++)++\nis-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P11):\n((((0)++)++ is-a natural-number)\n==\u003e ((((0)++)++)++ is-a natural-\nnumber)). Proof: ((n1 is-a\nnatural-number) ==\u003e ((n1)++ is-a\nnatural-number)) follows from\nprop. (P2). Let n1 = ((0)++)++.\nTherefore, by the variable-\nsubstitution inference rule, it\nfollows that ((((0)++)++ is-a\nnatural-number) ==\u003e\n((((0)++)++)++ is-a natural-\nnumber)). QED"}, {"color": "#FFF59D", "id": "P12", "label": "P12 : ((((0)++)++)++\nis-a natural-number)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P12):\n((((0)++)++)++ is-a natural-\nnumber). Proof: ((((0)++)++ is-a\nnatural-number) ==\u003e\n((((0)++)++)++ is-a natural-\nnumber)) follows from prop.\n(P11).(((0)++)++ is-a natural-\nnumber) follows from prop.\n(P10). Therefore, by the modus-\nponens inference rule, it\nfollows that ((((0)++)++)++ is-a\nnatural-number). QED"}, {"color": "#FFF59D", "id": "P13", "label": "P13 :\n(((((0)++)++)++ is-a\nnatural-number) ==\u003e\n(((((0)++)++)++)++\nis-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P13):\n(((((0)++)++)++ is-a natural-\nnumber) ==\u003e (((((0)++)++)++)++\nis-a natural-number)). Proof:\n((n1 is-a natural-number) ==\u003e\n((n1)++ is-a natural-number))\nfollows from prop. (P2). Let n1\n= (((0)++)++)++. Therefore, by\nthe variable-substitution\ninference rule, it follows that\n(((((0)++)++)++ is-a natural-\nnumber) ==\u003e (((((0)++)++)++)++\nis-a natural-number)). QED"}, {"color": "#FFF59D", "id": "P14", "label": "P14 :\n(((((0)++)++)++)++\nis-a natural-number)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P14):\n(((((0)++)++)++)++ is-a natural-\nnumber). Proof: (((((0)++)++)++\nis-a natural-number) ==\u003e\n(((((0)++)++)++)++ is-a natural-\nnumber)) follows from prop.\n(P13).((((0)++)++)++ is-a\nnatural-number) follows from\nprop. (P12). Therefore, by the\nmodus-ponens inference rule, it\nfollows that (((((0)++)++)++)++\nis-a natural-number). QED"}, {"color": "#FFF59D", "id": "P15", "label": "P15 : ((0)++ = 1)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P15): ((0)++ =\n1). Proof: (1 = (0)++) follows\nfrom prop. (P5). Therefore, by\nthe equality-commutativity\ninference rule, it follows that\n((0)++ = 1). QED"}, {"color": "#FFF59D", "id": "P16", "label": "P16 : (2 = (1)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P16): (2 =\n(1)++). Proof: (2 = ((0)++)++)\nfollows from prop. (P6). ((0)++\n= 1) follows from prop. (P15).\nTherefore, by the equal-terms-\nsubstitution inference rule, it\nfollows that (2 = (1)++). QED"}, {"color": "#FFF59D", "id": "P17", "label": "P17 : (((0)++)++ =\n2)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P17): (((0)++)++\n= 2). Proof: (2 = ((0)++)++)\nfollows from prop. (P6).\nTherefore, by the equality-\ncommutativity inference rule, it\nfollows that (((0)++)++ = 2).\nQED"}, {"color": "#FFF59D", "id": "P18", "label": "P18 : (3 = (2)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P18): (3 =\n(2)++). Proof: (3 =\n(((0)++)++)++) follows from\nprop. (P7). (((0)++)++ = 2)\nfollows from prop. (P17).\nTherefore, by the equal-terms-\nsubstitution inference rule, it\nfollows that (3 = (2)++). QED"}, {"color": "#FFF59D", "id": "P19", "label": "P19 : ((((0)++)++)++\n= 3)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P19):\n((((0)++)++)++ = 3). Proof: (3 =\n(((0)++)++)++) follows from\nprop. (P7). Therefore, by the\nequality-commutativity inference\nrule, it follows that\n((((0)++)++)++ = 3). QED"}, {"color": "#FFF59D", "id": "P20", "label": "P20 : ((2)++ = 3)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P20): ((2)++ =\n3). Proof: ((((0)++)++)++ = 3)\nfollows from prop. (P19).\n(((0)++)++ = 2) follows from\nprop. (P17). Therefore, by the\nequal-terms-substitution\ninference rule, it follows that\n((2)++ = 3). QED"}, {"color": "#FFF59D", "id": "P21", "label": "P21 (2.1.4) : (3\nis-a natural-number)", "labelHighlightBold": true, "shape": "box", "title": "Proposition 2.1.4 (T1.P21): (3\nis-a natural-number). Proof:\n((((0)++)++)++ is-a natural-\nnumber) follows from prop.\n(P12). ((((0)++)++)++ = 3)\nfollows from prop. (P19).\nTherefore, by the equal-terms-\nsubstitution inference rule, it\nfollows that (3 is-a natural-\nnumber). QED"}, {"color": "#FFF59D", "id": "P22", "label": "P22 : (4 =\n((((0)++)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P22): (4 =\n((((0)++)++)++)++). Proof: \"We\ndefine 1 to be the number 0++, 2\nto be the number (0++)++, 3 to\nbe the number ((0++)++)++,etc.\n(In other words, 1 := 0++, 2 :=\n1++, 3 := 2++, etc. In this text\nI use \"x := y\" to denote the\nstatement that x is defined to\nequal y.)\" is postulated by def.\n(D1). (4 = ((((0)++)++)++)++) is\nan interpretation of that\ndefinition. Therefore, by the\ndefinition-interpretation\ninference rule, it follows that\n(4 = ((((0)++)++)++)++). QED"}, {"color": "#FFF59D", "id": "P23", "label": "P23 :\n(((((0)++)++)++)++ =\n4)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P23):\n(((((0)++)++)++)++ = 4). Proof:\n(4 = ((((0)++)++)++)++) follows\nfrom prop. (P8). Therefore, by\nthe equality-commutativity\ninference rule, it follows that\n(((((0)++)++)++)++ = 4). QED"}, {"color": "#FFF59D", "id": "P24", "label": "P24 : ((3)++ = 4)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P24): ((3)++ =\n4). Proof: (((((0)++)++)++)++ =\n4) follows from prop. (P23).\n((((0)++)++)++ = 3) follows from\nprop. (P19). Therefore, by the\nequal-terms-substitution\ninference rule, it follows that\n((3)++ = 4). QED"}, {"color": "#FFF59D", "id": "P25", "label": "P25 :\n(((((0)++)++)++ is-a\nnatural-number) ==\u003e\n(((((0)++)++)++)++\nis-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P25):\n(((((0)++)++)++ is-a natural-\nnumber) ==\u003e (((((0)++)++)++)++\nis-a natural-number)). Proof:\n(((((0)++)++)++ is-a natural-\nnumber) ==\u003e (((((0)++)++)++)++\nis-a natural-number)) follows\nfrom prop. (P13). ((3)++ = 4)\nfollows from prop. (P24).\nTherefore, by the equal-terms-\nsubstitution inference rule, it\nfollows that (((((0)++)++)++\nis-a natural-number) ==\u003e\n(((((0)++)++)++)++ is-a natural-\nnumber)). QED"}, {"color": "#FFF59D", "id": "P26", "label": "P26 : (4 is-a\nnatural-number)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P26): (4 is-a\nnatural-number). Proof:\n(((((0)++)++)++)++ is-a natural-\nnumber) follows from prop.\n(P14). (((((0)++)++)++)++ = 4)\nfollows from prop. (P23).\nTherefore, by the equal-terms-\nsubstitution inference rule, it\nfollows that (4 is-a natural-\nnumber). QED"}, {"color": "#81C784", "id": "A3", "label": "A3 (2.3) : \"0 is not\nthe successor of any\nnatural number;\ni.e., we have n++ 0\nfor every natural\nnumber n.\"", "shape": "box"}, {"color": "#FFF59D", "id": "P27", "label": "P27 : ((n2 is-a\nnatural-number) ==\u003e\n((n2)++ neq 0))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P27): ((n2 is-a\nnatural-number) ==\u003e ((n2)++ neq\n0)). Proof: \"0 is not the\nsuccessor of any natural number;\ni.e., we have n++ 0 for every\nnatural number n.\" is postulated\nby axiom 2.3 (A3). ((n2 is-a\nnatural-number) ==\u003e ((n2)++ neq\n0)) is a valid formula statement\ninterpreted from that axiom.\nTherefore, by the axiom-\ninterpretation inference rule,\nit follows that ((n2 is-a\nnatural-number) ==\u003e ((n2)++ neq\n0)). QED"}, {"color": "#FFF59D", "id": "P28", "label": "P28 : ((3 is-a\nnatural-number) ==\u003e\n((3)++ neq 0))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P28): ((3 is-a\nnatural-number) ==\u003e ((3)++ neq\n0)). Proof: ((n2 is-a natural-\nnumber) ==\u003e ((n2)++ neq 0))\nfollows from prop. (P27). Let n2\n= 3. Therefore, by the variable-\nsubstitution inference rule, it\nfollows that ((3 is-a natural-\nnumber) ==\u003e ((3)++ neq 0)). QED"}, {"color": "#FFF59D", "id": "P29", "label": "P29 : ((3)++ neq 0)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P29): ((3)++ neq\n0). Proof: ((3 is-a natural-\nnumber) ==\u003e ((3)++ neq 0))\nfollows from prop. (P28).(3 is-a\nnatural-number) follows from\nprop. 2.1.4 (P21). Therefore, by\nthe modus-ponens inference rule,\nit follows that ((3)++ neq 0).\nQED"}, {"color": "#FFF59D", "id": "P30", "label": "P30 (2.1.6) : (4 neq\n0)", "labelHighlightBold": true, "shape": "box", "title": "Proposition 2.1.6 (T1.P30): (4\nneq 0). Proof: ((3)++ neq 0)\nfollows from prop. (P29). ((3)++\n= 4) follows from prop. (P24).\nTherefore, by the equal-terms-\nsubstitution inference rule, it\nfollows that (4 neq 0). QED"}, {"color": "#81C784", "id": "A4", "label": "A4 (2.4) :\n\"Different natural\nnumbers must have\ndifferent\nsuccessors; i.e., if\nn, m are natural\nnumbers and n m,\nthen n++ m++.\nEquivalently, if n++\n= m++, then we must\nhave n = m.\"", "shape": "box"}, {"color": "#FFF59D", "id": "P31", "label": "P31 : ((((n3 is-a\nnatural-number) and\n(m1 is-a natural-\nnumber)) and (n3 neq\nm1)) ==\u003e ((n3)++ neq\n(m1)++))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P31): ((((n3\nis-a natural-number) and (m1\nis-a natural-number)) and (n3\nneq m1)) ==\u003e ((n3)++ neq\n(m1)++)). Proof: \"Different\nnatural numbers must have\ndifferent successors; i.e., if\nn, m are natural numbers and n\nm, then n++ m++. Equivalently,\nif n++ = m++, then we must have\nn = m.\" is postulated by axiom\n2.4 (A4). ((((n3 is-a natural-\nnumber) and (m1 is-a natural-\nnumber)) and (n3 neq m1)) ==\u003e\n((n3)++ neq (m1)++)) is a valid\nformula statement interpreted\nfrom that axiom. Therefore, by\nthe axiom-interpretation\ninference rule, it follows that\n((((n3 is-a natural-number) and\n(m1 is-a natural-number)) and\n(n3 neq m1)) ==\u003e ((n3)++ neq\n(m1)++)). QED"}, {"color": "#FFF59D", "id": "P32", "label": "P32 : ((((n4 is-a\nnatural-number) and\n(m2 is-a natural-\nnumber)) and ((n4)++\n= (m2)++)) ==\u003e (n4 =\nm2))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P32): ((((n4\nis-a natural-number) and (m2\nis-a natural-number)) and\n((n4)++ = (m2)++)) ==\u003e (n4 =\nm2)). Proof: \"Different natural\nnumbers must have different\nsuccessors; i.e., if n, m are\nnatural numbers and n m, then\nn++ m++. Equivalently, if n++ =\nm++, then we must have n = m.\"\nis postulated by axiom 2.4 (A4).\n((((n4 is-a natural-number) and\n(m2 is-a natural-number)) and\n((n4)++ = (m2)++)) ==\u003e (n4 =\nm2)) is a valid formula\nstatement interpreted from that\naxiom. Therefore, by the axiom-\ninterpretation inference rule,\nit follows that ((((n4 is-a\nnatural-number) and (m2 is-a\nnatural-number)) and ((n4)++ =\n(m2)++)) ==\u003e (n4 = m2)). QED"}, {"color": "#FFF59D", "id": "P33", "label": "P33 : ((((4 is-a\nnatural-number) and\n(0 is-a natural-\nnumber)) and (4 neq\n0)) ==\u003e ((4)++ neq\n(0)++))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P33): ((((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) and (4 neq 0))\n==\u003e ((4)++ neq (0)++)). Proof:\n((((n3 is-a natural-number) and\n(m1 is-a natural-number)) and\n(n3 neq m1)) ==\u003e ((n3)++ neq\n(m1)++)) follows from prop.\n(P31). Let n3 = 4, m1 = 0.\nTherefore, by the variable-\nsubstitution inference rule, it\nfollows that ((((4 is-a natural-\nnumber) and (0 is-a natural-\nnumber)) and (4 neq 0)) ==\u003e\n((4)++ neq (0)++)). QED"}, {"color": "#FFF59D", "id": "P34", "label": "P34 : ((4 is-a\nnatural-number) and\n(0 is-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P34): ((4 is-a\nnatural-number) and (0 is-a\nnatural-number)). Proof: (4 is-a\nnatural-number) follows from\nprop. (P26). (0 is-a natural-\nnumber) follows from prop. (P1).\nTherefore, by the conjunction-\nintroduction inference rule, it\nfollows that ((4 is-a natural-\nnumber) and (0 is-a natural-\nnumber)). QED"}, {"color": "#FFF59D", "id": "P35", "label": "P35 : (((4 is-a\nnatural-number) and\n(0 is-a natural-\nnumber)) and (4 neq\n0))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P35): (((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) and (4 neq 0)).\nProof: ((4 is-a natural-number)\nand (0 is-a natural-number))\nfollows from prop. (P34). (4 neq\n0) follows from prop. 2.1.6\n(P30). Therefore, by the\nconjunction-introduction\ninference rule, it follows that\n(((4 is-a natural-number) and (0\nis-a natural-number)) and (4 neq\n0)). QED"}, {"color": "#FFF59D", "id": "P36", "label": "P36 : ((4)++ neq\n(0)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P36): ((4)++ neq\n(0)++). Proof: ((((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) and (4 neq 0))\n==\u003e ((4)++ neq (0)++)) follows\nfrom prop. (P33).(((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) and (4 neq 0))\nfollows from prop. (P35).\nTherefore, by the modus-ponens\ninference rule, it follows that\n((4)++ neq (0)++). QED"}, {"color": "#FFF59D", "id": "P37", "label": "P37 : (5 = (((((0)++\n)++)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P37): (5 =\n(((((0)++)++)++)++)++). Proof:\n\"We define 1 to be the number\n0++, 2 to be the number (0++)++,\n3 to be the number\n((0++)++)++,etc. (In other\nwords, 1 := 0++, 2 := 1++, 3 :=\n2++, etc. In this text I use \"x\n:= y\" to denote the statement\nthat x is defined to equal y.)\"\nis postulated by def. (D1). (5 =\n(((((0)++)++)++)++)++) is an\ninterpretation of that\ndefinition. Therefore, by the\ndefinition-interpretation\ninference rule, it follows that\n(5 = (((((0)++)++)++)++)++). QED"}, {"color": "#FFF59D", "id": "P38", "label": "P38 : ((((((0)++)++)\n++)++)++ = 5)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P38):\n((((((0)++)++)++)++)++ = 5).\nProof: (5 =\n(((((0)++)++)++)++)++) follows\nfrom prop. (P37). Therefore, by\nthe equality-commutativity\ninference rule, it follows that\n((((((0)++)++)++)++)++ = 5). QED"}, {"color": "#FFF59D", "id": "P39", "label": "P39 : ((4)++ = 5)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P39): ((4)++ =\n5). Proof:\n((((((0)++)++)++)++)++ = 5)\nfollows from prop. (P38).\n(((((0)++)++)++)++ = 4) follows\nfrom prop. (P23). Therefore, by\nthe equal-terms-substitution\ninference rule, it follows that\n((4)++ = 5). QED"}, {"color": "#FFF59D", "id": "P40", "label": "P40 : (5 = (4)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P40): (5 =\n(4)++). Proof: ((4)++ = 5)\nfollows from prop. (P39).\nTherefore, by the equality-\ncommutativity inference rule, it\nfollows that (5 = (4)++). QED"}, {"color": "#FFF59D", "id": "P41", "label": "P41 : ((((5 is-a\nnatural-number) and\n(1 is-a natural-\nnumber)) and (5 neq\n1)) ==\u003e ((5)++ neq\n(1)++))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P41): ((((5 is-a\nnatural-number) and (1 is-a\nnatural-number)) and (5 neq 1))\n==\u003e ((5)++ neq (1)++)). Proof:\n((((n3 is-a natural-number) and\n(m1 is-a natural-number)) and\n(n3 neq m1)) ==\u003e ((n3)++ neq\n(m1)++)) follows from prop.\n(P31). Let n3 = 5, m1 = 1.\nTherefore, by the variable-\nsubstitution inference rule, it\nfollows that ((((5 is-a natural-\nnumber) and (1 is-a natural-\nnumber)) and (5 neq 1)) ==\u003e\n((5)++ neq (1)++)). QED"}, {"color": "#FFF59D", "id": "P42", "label": "P42 : ((4 is-a\nnatural-number) ==\u003e\n((4)++ is-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P42): ((4 is-a\nnatural-number) ==\u003e ((4)++ is-a\nnatural-number)). Proof: ((n1\nis-a natural-number) ==\u003e ((n1)++\nis-a natural-number)) follows\nfrom prop. (P2). Let n1 = 4.\nTherefore, by the variable-\nsubstitution inference rule, it\nfollows that ((4 is-a natural-\nnumber) ==\u003e ((4)++ is-a natural-\nnumber)). QED"}, {"color": "#FFF59D", "id": "P43", "label": "P43 : ((4 is-a\nnatural-number) ==\u003e\n(5 is-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P43): ((4 is-a\nnatural-number) ==\u003e (5 is-a\nnatural-number)). Proof: ((4\nis-a natural-number) ==\u003e ((4)++\nis-a natural-number)) follows\nfrom prop. (P42). ((4)++ = 5)\nfollows from prop. (P39).\nTherefore, by the equal-terms-\nsubstitution inference rule, it\nfollows that ((4 is-a natural-\nnumber) ==\u003e (5 is-a natural-\nnumber)). QED"}, {"color": "#FFF59D", "id": "P44", "label": "P44 : (5 is-a\nnatural-number)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P44): (5 is-a\nnatural-number). Proof: ((4 is-a\nnatural-number) ==\u003e (5 is-a\nnatural-number)) follows from\nprop. (P43).(4 is-a natural-\nnumber) follows from prop.\n(P26). Therefore, by the modus-\nponens inference rule, it\nfollows that (5 is-a natural-\nnumber). QED"}, {"color": "#FFF59D", "id": "P45", "label": "P45 : ((((5 is-a\nnatural-number) and\n(1 is-a natural-\nnumber)) and (5 neq\n1)) ==\u003e ((5)++ neq\n(1)++))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P45): ((((5 is-a\nnatural-number) and (1 is-a\nnatural-number)) and (5 neq 1))\n==\u003e ((5)++ neq (1)++)). Proof:\n((((n3 is-a natural-number) and\n(m1 is-a natural-number)) and\n(n3 neq m1)) ==\u003e ((n3)++ neq\n(m1)++)) follows from prop.\n(P31). Let n3 = 5, m1 = 1.\nTherefore, by the variable-\nsubstitution inference rule, it\nfollows that ((((5 is-a natural-\nnumber) and (1 is-a natural-\nnumber)) and (5 neq 1)) ==\u003e\n((5)++ neq (1)++)). QED"}, {"color": "#FFF59D", "id": "P46", "label": "P46 : ((4)++ neq\n(0)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P46): ((4)++ neq\n(0)++). Proof: ((((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) and (4 neq 0))\n==\u003e ((4)++ neq (0)++)) follows\nfrom prop. (P33).(((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) and (4 neq 0))\nfollows from prop. (P35).\nTherefore, by the modus-ponens\ninference rule, it follows that\n((4)++ neq (0)++). QED"}, {"color": "#FFF59D", "id": "P47", "label": "P47 : (5 neq (0)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P47): (5 neq\n(0)++). Proof: ((4)++ neq (0)++)\nfollows from prop. (P46). ((4)++\n= 5) follows from prop. (P39).\nTherefore, by the equal-terms-\nsubstitution inference rule, it\nfollows that (5 neq (0)++). QED"}, {"color": "#FFF59D", "id": "P48", "label": "P48 : (6 = ((((((0)+\n+)++)++)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P48): (6 =\n((((((0)++)++)++)++)++)++).\nProof: \"We define 1 to be the\nnumber 0++, 2 to be the number\n(0++)++, 3 to be the number\n((0++)++)++,etc. (In other\nwords, 1 := 0++, 2 := 1++, 3 :=\n2++, etc. In this text I use \"x\n:= y\" to denote the statement\nthat x is defined to equal y.)\"\nis postulated by def. (D1). (6 =\n((((((0)++)++)++)++)++)++) is an\ninterpretation of that\ndefinition. Therefore, by the\ndefinition-interpretation\ninference rule, it follows that\n(6 = ((((((0)++)++)++)++)++)++).\nQED"}, {"color": "#FFF59D", "id": "P49", "label": "P49 : (((((((0)++)++\n)++)++)++)++ = 6)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P49):\n(((((((0)++)++)++)++)++)++ = 6).\nProof: (6 =\n((((((0)++)++)++)++)++)++)\nfollows from prop. (P48).\nTherefore, by the equality-\ncommutativity inference rule, it\nfollows that\n(((((((0)++)++)++)++)++)++ = 6).\nQED"}, {"color": "#FFF59D", "id": "P50", "label": "P50 : (1 is-a\nnatural-number)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P50): (1 is-a\nnatural-number). Proof: ((0)++\nis-a natural-number) follows\nfrom prop. 2.2.3 (P4). ((0)++ =\n1) follows from prop. (P15).\nTherefore, by the equal-terms-\nsubstitution inference rule, it\nfollows that (1 is-a natural-\nnumber). QED"}, {"color": "#FFF59D", "id": "P51", "label": "P51 : ((5)++ = 6)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P51): ((5)++ =\n6). Proof:\n(((((((0)++)++)++)++)++)++ = 6)\nfollows from prop. (P49).\n((((((0)++)++)++)++)++ = 5)\nfollows from prop. (P38).\nTherefore, by the equal-terms-\nsubstitution inference rule, it\nfollows that ((5)++ = 6). QED"}, {"color": "#FFF59D", "id": "P52", "label": "P52 : (6 = (5)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P52): (6 =\n(5)++). Proof: ((5)++ = 6)\nfollows from prop. (P51).\nTherefore, by the equality-\ncommutativity inference rule, it\nfollows that (6 = (5)++). QED"}, {"color": "#FFF59D", "id": "P66", "label": "P66 : Inc(H1)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P66): Inc(H1).\nProof: P65 follows from prop.\n(P65). P30 follows from prop.\n2.1.6 (P30). Therefore, by the\ninconsistency-by-inequality-\nintroduction inference rule, it\nfollows that Inc(H1). QED"}, {"color": "#FFF59D", "id": "P65", "label": "P65 : (4 = 0)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P65): (4 = 0).\nProof: ((((4 is-a natural-\nnumber) and (0 is-a natural-\nnumber)) and ((4)++ = (0)++))\n==\u003e (4 = 0)) follows from prop.\n(P64).(((4 is-a natural-number)\nand (0 is-a natural-number)) and\n((4)++ = (0)++)) follows from\nprop. (P63). Therefore, by the\nmodus-ponens inference rule, it\nfollows that (4 = 0). QED"}, {"color": "#FFF59D", "id": "P64", "label": "P64 : ((((4 is-a\nnatural-number) and\n(0 is-a natural-\nnumber)) and ((4)++\n= (0)++)) ==\u003e (4 =\n0))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P64): ((((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) and ((4)++ =\n(0)++)) ==\u003e (4 = 0)). Proof:\n((((n4 is-a natural-number) and\n(m2 is-a natural-number)) and\n((n4)++ = (m2)++)) ==\u003e (n4 =\nm2)) follows from prop. (P32).\nLet n4 = 4, m2 = 0. Therefore,\nby the variable-substitution\ninference rule, it follows that\n((((4 is-a natural-number) and\n(0 is-a natural-number)) and\n((4)++ = (0)++)) ==\u003e (4 = 0)).\nQED"}, {"color": "#FFF59D", "id": "P63", "label": "P63 : (((4 is-a\nnatural-number) and\n(0 is-a natural-\nnumber)) and ((4)++\n= (0)++))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P63): (((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) and ((4)++ =\n(0)++)). Proof: ((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) follows from\nprop. (P62). ((4)++ = (0)++)\nfollows from prop. (P61).\nTherefore, by the conjunction-\nintroduction inference rule, it\nfollows that (((4 is-a natural-\nnumber) and (0 is-a natural-\nnumber)) and ((4)++ = (0)++)).\nQED"}, {"color": "#FFF59D", "id": "P62", "label": "P62 : ((4 is-a\nnatural-number) and\n(0 is-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P62): ((4 is-a\nnatural-number) and (0 is-a\nnatural-number)). Proof: (4 is-a\nnatural-number) follows from\nprop. (P26). (0 is-a natural-\nnumber) follows from prop. (P1).\nTherefore, by the conjunction-\nintroduction inference rule, it\nfollows that ((4 is-a natural-\nnumber) and (0 is-a natural-\nnumber)). QED"}, {"color": "#FFF59D", "id": "P61", "label": "P61 : ((4)++ =\n(0)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P61): ((4)++ =\n(0)++). Proof: ((4)++ = 1)\nfollows from prop. (P60). (1 =\n(0)++) follows from prop. (P5).\nTherefore, by the equal-terms-\nsubstitution inference rule, it\nfollows that ((4)++ = (0)++).\nQED"}, {"color": "#FFF59D", "id": "P60", "label": "P60 : ((4)++ = 1)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P60): ((4)++ =\n1). Proof: (5 = 1) follows from\nprop. (P59). (5 = (4)++) follows\nfrom prop. (P40). Therefore, by\nthe equal-terms-substitution\ninference rule, it follows that\n((4)++ = 1). QED"}, {"color": "#FFF59D", "id": "P59", "label": "P59 : (5 = 1)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P59): (5 = 1).\nProof: ((((5 is-a natural-\nnumber) and (1 is-a natural-\nnumber)) and ((5)++ = (1)++))\n==\u003e (5 = 1)) follows from prop.\n(P58).(((5 is-a natural-number)\nand (1 is-a natural-number)) and\n((5)++ = (1)++)) follows from\nprop. (P57). Therefore, by the\nmodus-ponens inference rule, it\nfollows that (5 = 1). QED"}, {"color": "#FFF59D", "id": "P58", "label": "P58 : ((((5 is-a\nnatural-number) and\n(1 is-a natural-\nnumber)) and ((5)++\n= (1)++)) ==\u003e (5 =\n1))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P58): ((((5 is-a\nnatural-number) and (1 is-a\nnatural-number)) and ((5)++ =\n(1)++)) ==\u003e (5 = 1)). Proof:\n((((n4 is-a natural-number) and\n(m2 is-a natural-number)) and\n((n4)++ = (m2)++)) ==\u003e (n4 =\nm2)) follows from prop. (P32).\nLet n4 = 5, m2 = 1. Therefore,\nby the variable-substitution\ninference rule, it follows that\n((((5 is-a natural-number) and\n(1 is-a natural-number)) and\n((5)++ = (1)++)) ==\u003e (5 = 1)).\nQED"}, {"color": "#FFF59D", "id": "P57", "label": "P57 : (((5 is-a\nnatural-number) and\n(1 is-a natural-\nnumber)) and ((5)++\n= (1)++))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P57): (((5 is-a\nnatural-number) and (1 is-a\nnatural-number)) and ((5)++ =\n(1)++)). Proof: ((5 is-a\nnatural-number) and (1 is-a\nnatural-number)) follows from\nprop. (P56). ((5)++ = (1)++)\nfollows from prop. (P55).\nTherefore, by the conjunction-\nintroduction inference rule, it\nfollows that (((5 is-a natural-\nnumber) and (1 is-a natural-\nnumber)) and ((5)++ = (1)++)).\nQED"}, {"color": "#FFF59D", "id": "P56", "label": "P56 : ((5 is-a\nnatural-number) and\n(1 is-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P56): ((5 is-a\nnatural-number) and (1 is-a\nnatural-number)). Proof: (5 is-a\nnatural-number) follows from\nprop. (P44). (1 is-a natural-\nnumber) follows from prop.\n(P50). Therefore, by the\nconjunction-introduction\ninference rule, it follows that\n((5 is-a natural-number) and (1\nis-a natural-number)). QED"}, {"color": "#FFF59D", "id": "P55", "label": "P55 : ((5)++ =\n(1)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P55): ((5)++ =\n(1)++). Proof: ((5)++ = 2)\nfollows from prop. (P54). (2 =\n(1)++) follows from prop. (P16).\nTherefore, by the equal-terms-\nsubstitution inference rule, it\nfollows that ((5)++ = (1)++).\nQED"}, {"color": "#FFF59D", "id": "P54", "label": "P54 : ((5)++ = 2)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P54): ((5)++ =\n2). Proof: (6 = 2) follows from\nprop. (P53). (6 = (5)++) follows\nfrom prop. (P52). Therefore, by\nthe equal-terms-substitution\ninference rule, it follows that\n((5)++ = 2). QED"}, {"color": "#FFF59D", "id": "P53", "label": "P53 : (6 = 2)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P53): (6 = 2).\nProof: \"By hypothesis, assume (6\n= 2) is true.\" is postulated by\naxiom (A5). (6 = 2) is a valid\nformula statement interpreted\nfrom that axiom. Therefore, by\nthe axiom-interpretation\ninference rule, it follows that\n(6 = 2). QED"}, {"color": "#81C784", "id": "A5", "label": "A5 : \"By hypothesis,\nassume (6 = 2) is\ntrue.\"", "shape": "box"}, {"color": "#FFF59D", "id": "P67", "label": "P67 (2.1.8) : (6 neq\n2)", "labelHighlightBold": true, "shape": "box", "title": "Proposition 2.1.8 (T1.P67): (6\nneq 2). Proof: Let hyp. (H1) be\nthe hypothesis (6 = 2). Inc(H1)\nfollows from prop. (P66).\nTherefore, by the proof-by-\nrefutation-of-equality inference\nrule, it follows that (6 neq 2).\nQED"}, {"color": "#FFF59D", "id": "P68", "label": "P68 : ((1)++ = 2)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P68): ((1)++ =\n2). Proof: (((0)++)++ = 2)\nfollows from prop. (P17). ((0)++\n= 1) follows from prop. (P15).\nTherefore, by the equal-terms-\nsubstitution inference rule, it\nfollows that ((1)++ = 2). QED"}, {"color": "#FFF59D", "id": "P69", "label": "P69 : (5 neq 1)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P69): (5 neq 1).\nProof: (5 neq (0)++) follows\nfrom prop. (P47). ((0)++ = 1)\nfollows from prop. (P15).\nTherefore, by the equal-terms-\nsubstitution inference rule, it\nfollows that (5 neq 1). QED"}, {"color": "#FFF59D", "id": "P70", "label": "P70 : ((((5 is-a\nnatural-number) and\n(1 is-a natural-\nnumber)) and (5 neq\n1)) ==\u003e (6 neq\n(1)++))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P70): ((((5 is-a\nnatural-number) and (1 is-a\nnatural-number)) and (5 neq 1))\n==\u003e (6 neq (1)++)). Proof: ((((5\nis-a natural-number) and (1 is-a\nnatural-number)) and (5 neq 1))\n==\u003e ((5)++ neq (1)++)) follows\nfrom prop. (P45). ((5)++ = 6)\nfollows from prop. (P51).\nTherefore, by the equal-terms-\nsubstitution inference rule, it\nfollows that ((((5 is-a natural-\nnumber) and (1 is-a natural-\nnumber)) and (5 neq 1)) ==\u003e (6\nneq (1)++)). QED"}, {"color": "#FFF59D", "id": "P71", "label": "P71 : ((((5 is-a\nnatural-number) and\n(1 is-a natural-\nnumber)) and (5 neq\n1)) ==\u003e (6 neq 2))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P71): ((((5 is-a\nnatural-number) and (1 is-a\nnatural-number)) and (5 neq 1))\n==\u003e (6 neq 2)). Proof: ((((5\nis-a natural-number) and (1 is-a\nnatural-number)) and (5 neq 1))\n==\u003e (6 neq (1)++)) follows from\nprop. (P70). ((1)++ = 2) follows\nfrom prop. (P68). Therefore, by\nthe equal-terms-substitution\ninference rule, it follows that\n((((5 is-a natural-number) and\n(1 is-a natural-number)) and (5\nneq 1)) ==\u003e (6 neq 2)). QED"}, {"color": "#FFF59D", "id": "P72", "label": "P72 : ((5 is-a\nnatural-number) and\n(1 is-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P72): ((5 is-a\nnatural-number) and (1 is-a\nnatural-number)). Proof: (5 is-a\nnatural-number) follows from\nprop. (P44). (1 is-a natural-\nnumber) follows from prop.\n(P50). Therefore, by the\nconjunction-introduction\ninference rule, it follows that\n((5 is-a natural-number) and (1\nis-a natural-number)). QED"}, {"color": "#FFF59D", "id": "P73", "label": "P73 : (((5 is-a\nnatural-number) and\n(1 is-a natural-\nnumber)) and (5 neq\n1))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P73): (((5 is-a\nnatural-number) and (1 is-a\nnatural-number)) and (5 neq 1)).\nProof: ((5 is-a natural-number)\nand (1 is-a natural-number))\nfollows from prop. (P72). (5 neq\n1) follows from prop. (P69).\nTherefore, by the conjunction-\nintroduction inference rule, it\nfollows that (((5 is-a natural-\nnumber) and (1 is-a natural-\nnumber)) and (5 neq 1)). QED"}, {"color": "#FFF59D", "id": "P74", "label": "P74 : (6 neq 2)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P74): (6 neq 2).\nProof: ((((5 is-a natural-\nnumber) and (1 is-a natural-\nnumber)) and (5 neq 1)) ==\u003e (6\nneq 2)) follows from prop.\n(P71).(((5 is-a natural-number)\nand (1 is-a natural-number)) and\n(5 neq 1)) follows from prop.\n(P73). Therefore, by the modus-\nponens inference rule, it\nfollows that (6 neq 2). QED"}, {"color": "#81C784", "id": "A6", "label": "A6 : \"Let P(n) be\nany property\npertaining to a\nnatural number n.\nSuppose that P(O) is\ntrue, and suppose\nthat whenever P(n)\nis true, P(n++) is\nalso true. Then P(n)\nis true for every\nnatural number n.\"", "shape": "box"}, {"color": "#FFF59D", "id": "P75", "label": "P75 : (((n5 is-a\nnatural-number) and\n(P1(0) and (P1(n5)\n==\u003e P1((n5)++))))\n==\u003e ((m3 is-a\nnatural-number) ==\u003e\nP1(m3)))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P75): (((n5 is-a\nnatural-number) and (P1(0) and\n(P1(n5) ==\u003e P1((n5)++)))) ==\u003e\n((m3 is-a natural-number) ==\u003e\nP1(m3))). Proof: \"Let P(n) be\nany property pertaining to a\nnatural number n. Suppose that\nP(O) is true, and suppose that\nwhenever P(n) is true, P(n++) is\nalso true. Then P(n) is true for\nevery natural number n.\" is\npostulated by axiom schema (A6).\n(((n5 is-a natural-number) and\n(P1(0) and (P1(n5) ==\u003e\nP1((n5)++)))) ==\u003e ((m3 is-a\nnatural-number) ==\u003e P1(m3))) is\na valid formula statement\ninterpreted from that axiom.\nTherefore, by the axiom-\ninterpretation inference rule,\nit follows that (((n5 is-a\nnatural-number) and (P1(0) and\n(P1(n5) ==\u003e P1((n5)++)))) ==\u003e\n((m3 is-a natural-number) ==\u003e\nP1(m3))). QED"}]); + nodes = new vis.DataSet([{"color": "#81C784", "id": "A1", "label": "A1 (2.1) : \"0 is a\nnatural number.\"", "shape": "box"}, {"color": "#FFF59D", "id": "P1", "label": "P1 : (0 is-a\nnatural-number)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P1): (0 is-a\nnatural-number). Proof: \"0 is a\nnatural number.\" is postulated\nby axiom 2.1 (A1). (0 is-a\nnatural-number) is a valid\nformula statement interpreted\nfrom that axiom.Therefore, by\nthe axiom-interpretation\ninference rule: \ud835\udc9c \u22a2 P, it\nfollows that (0 is-a natural-\nnumber). QED"}, {"color": "#81C784", "id": "A2", "label": "A2 (2.2) : \"If n is\na natural number,\nthen n++ is a\nnatural number.\"", "shape": "box"}, {"color": "#FFF59D", "id": "P2", "label": "P2 : ((n1 is-a\nnatural-number) ==\u003e\n((n1)++ is-a\nnatural-number))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P2): ((n1 is-a\nnatural-number) ==\u003e ((n1)++ is-a\nnatural-number)). Proof: \"If n\nis a natural number, then n++ is\na natural number.\" is postulated\nby axiom 2.2 (A2). ((n1 is-a\nnatural-number) ==\u003e ((n1)++ is-a\nnatural-number)) is a valid\nformula statement interpreted\nfrom that axiom.Therefore, by\nthe axiom-interpretation\ninference rule: \ud835\udc9c \u22a2 P, it\nfollows that ((n1 is-a natural-\nnumber) ==\u003e ((n1)++ is-a\nnatural-number)). QED"}, {"color": "#FFF59D", "id": "P3", "label": "P3 : ((0 is-a\nnatural-number) ==\u003e\n((0)++ is-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P3): ((0 is-a\nnatural-number) ==\u003e ((0)++ is-a\nnatural-number)). Proof: ((n1\nis-a natural-number) ==\u003e ((n1)++\nis-a natural-number)) follows\nfrom prop. (P2). Let n1 =\n0.Therefore, by the variable-\nsubstitution inference rule: (P,\n\ud835\udef7) \u22a2 P\u0027, it follows that ((0\nis-a natural-number) ==\u003e ((0)++\nis-a natural-number)). QED"}, {"color": "#FFF59D", "id": "P4", "label": "P4 (2.2.3) : ((0)++\nis-a natural-number)", "labelHighlightBold": true, "shape": "box", "title": "Proposition 2.2.3 (T1.P4):\n((0)++ is-a natural-number).\nProof: ((0 is-a natural-number)\n==\u003e ((0)++ is-a natural-number))\nfollows from prop. (P3).(0 is-a\nnatural-number) follows from\nprop. (P1).Therefore, by the\nmodus-ponens inference rule: ((P\n\u27f9 Q), P) \u22a2 Q, it follows that\n((0)++ is-a natural-number). QED"}, {"color": "#90CAF9", "id": "D1", "label": "D1 : \"We define 1 to\nbe the number 0++, 2\nto be the number\n(0++)++, 3 to be the\nnumber\n((0++)++)++,etc. (In\nother words, 1 :=\n0++, 2 := 1++, 3 :=\n2++, etc. In this\ntext I use \"x := y\"\nto denote the\nstatement that x is\ndefined to equal\ny.)\"", "shape": "box"}, {"color": "#FFF59D", "id": "P5", "label": "P5 : (1 = (0)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P5): (1 =\n(0)++). Proof: \"We define 1 to\nbe the number 0++, 2 to be the\nnumber (0++)++, 3 to be the\nnumber ((0++)++)++,etc. (In\nother words, 1 := 0++, 2 := 1++,\n3 := 2++, etc. In this text I\nuse \"x := y\" to denote the\nstatement that x is defined to\nequal y.)\" is postulated by def.\n(D1). (1 = (0)++) is an\ninterpretation of that\ndefinition.Therefore, by the\ndefinition-interpretation\ninference rule: \ud835\udc9f \u22a2 P, it\nfollows that (1 = (0)++). QED"}, {"color": "#FFF59D", "id": "P6", "label": "P6 : (2 = ((0)++)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P6): (2 =\n((0)++)++). Proof: \"We define 1\nto be the number 0++, 2 to be\nthe number (0++)++, 3 to be the\nnumber ((0++)++)++,etc. (In\nother words, 1 := 0++, 2 := 1++,\n3 := 2++, etc. In this text I\nuse \"x := y\" to denote the\nstatement that x is defined to\nequal y.)\" is postulated by def.\n(D1). (2 = ((0)++)++) is an\ninterpretation of that\ndefinition.Therefore, by the\ndefinition-interpretation\ninference rule: \ud835\udc9f \u22a2 P, it\nfollows that (2 = ((0)++)++).\nQED"}, {"color": "#FFF59D", "id": "P7", "label": "P7 : (3 =\n(((0)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P7): (3 =\n(((0)++)++)++). Proof: \"We\ndefine 1 to be the number 0++, 2\nto be the number (0++)++, 3 to\nbe the number ((0++)++)++,etc.\n(In other words, 1 := 0++, 2 :=\n1++, 3 := 2++, etc. In this text\nI use \"x := y\" to denote the\nstatement that x is defined to\nequal y.)\" is postulated by def.\n(D1). (3 = (((0)++)++)++) is an\ninterpretation of that\ndefinition.Therefore, by the\ndefinition-interpretation\ninference rule: \ud835\udc9f \u22a2 P, it\nfollows that (3 =\n(((0)++)++)++). QED"}, {"color": "#FFF59D", "id": "P8", "label": "P8 : (4 =\n((((0)++)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P8): (4 =\n((((0)++)++)++)++). Proof: \"We\ndefine 1 to be the number 0++, 2\nto be the number (0++)++, 3 to\nbe the number ((0++)++)++,etc.\n(In other words, 1 := 0++, 2 :=\n1++, 3 := 2++, etc. In this text\nI use \"x := y\" to denote the\nstatement that x is defined to\nequal y.)\" is postulated by def.\n(D1). (4 = ((((0)++)++)++)++) is\nan interpretation of that\ndefinition.Therefore, by the\ndefinition-interpretation\ninference rule: \ud835\udc9f \u22a2 P, it\nfollows that (4 =\n((((0)++)++)++)++). QED"}, {"color": "#FFF59D", "id": "P9", "label": "P9 : (((0)++ is-a\nnatural-number) ==\u003e\n(((0)++)++ is-a\nnatural-number))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P9): (((0)++\nis-a natural-number) ==\u003e\n(((0)++)++ is-a natural-\nnumber)). Proof: ((n1 is-a\nnatural-number) ==\u003e ((n1)++ is-a\nnatural-number)) follows from\nprop. (P2). Let n1 =\n(0)++.Therefore, by the\nvariable-substitution inference\nrule: (P, \ud835\udef7) \u22a2 P\u0027, it follows\nthat (((0)++ is-a natural-\nnumber) ==\u003e (((0)++)++ is-a\nnatural-number)). QED"}, {"color": "#FFF59D", "id": "P10", "label": "P10 : (((0)++)++\nis-a natural-number)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P10): (((0)++)++\nis-a natural-number). Proof:\n(((0)++ is-a natural-number) ==\u003e\n(((0)++)++ is-a natural-number))\nfollows from prop. (P9).((0)++\nis-a natural-number) follows\nfrom prop. 2.2.3 (P4).Therefore,\nby the modus-ponens inference\nrule: ((P \u27f9 Q), P) \u22a2 Q, it\nfollows that (((0)++)++ is-a\nnatural-number). QED"}, {"color": "#FFF59D", "id": "P11", "label": "P11 : ((((0)++)++\nis-a natural-number)\n==\u003e ((((0)++)++)++\nis-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P11):\n((((0)++)++ is-a natural-number)\n==\u003e ((((0)++)++)++ is-a natural-\nnumber)). Proof: ((n1 is-a\nnatural-number) ==\u003e ((n1)++ is-a\nnatural-number)) follows from\nprop. (P2). Let n1 =\n((0)++)++.Therefore, by the\nvariable-substitution inference\nrule: (P, \ud835\udef7) \u22a2 P\u0027, it follows\nthat ((((0)++)++ is-a natural-\nnumber) ==\u003e ((((0)++)++)++ is-a\nnatural-number)). QED"}, {"color": "#FFF59D", "id": "P12", "label": "P12 : ((((0)++)++)++\nis-a natural-number)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P12):\n((((0)++)++)++ is-a natural-\nnumber). Proof: ((((0)++)++ is-a\nnatural-number) ==\u003e\n((((0)++)++)++ is-a natural-\nnumber)) follows from prop.\n(P11).(((0)++)++ is-a natural-\nnumber) follows from prop.\n(P10).Therefore, by the modus-\nponens inference rule: ((P \u27f9 Q),\nP) \u22a2 Q, it follows that\n((((0)++)++)++ is-a natural-\nnumber). QED"}, {"color": "#FFF59D", "id": "P13", "label": "P13 :\n(((((0)++)++)++ is-a\nnatural-number) ==\u003e\n(((((0)++)++)++)++\nis-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P13):\n(((((0)++)++)++ is-a natural-\nnumber) ==\u003e (((((0)++)++)++)++\nis-a natural-number)). Proof:\n((n1 is-a natural-number) ==\u003e\n((n1)++ is-a natural-number))\nfollows from prop. (P2). Let n1\n= (((0)++)++)++.Therefore, by\nthe variable-substitution\ninference rule: (P, \ud835\udef7) \u22a2 P\u0027, it\nfollows that (((((0)++)++)++\nis-a natural-number) ==\u003e\n(((((0)++)++)++)++ is-a natural-\nnumber)). QED"}, {"color": "#FFF59D", "id": "P14", "label": "P14 :\n(((((0)++)++)++)++\nis-a natural-number)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P14):\n(((((0)++)++)++)++ is-a natural-\nnumber). Proof: (((((0)++)++)++\nis-a natural-number) ==\u003e\n(((((0)++)++)++)++ is-a natural-\nnumber)) follows from prop.\n(P13).((((0)++)++)++ is-a\nnatural-number) follows from\nprop. (P12).Therefore, by the\nmodus-ponens inference rule: ((P\n\u27f9 Q), P) \u22a2 Q, it follows that\n(((((0)++)++)++)++ is-a natural-\nnumber). QED"}, {"color": "#FFF59D", "id": "P15", "label": "P15 : ((0)++ = 1)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P15): ((0)++ =\n1). Proof: (1 = (0)++) follows\nfrom prop. (P5). Therefore, by\nthe equality-commutativity\ninference rule: (x = y) \u22a2 (y =\nx), it follows that ((0)++ = 1).\nQED"}, {"color": "#FFF59D", "id": "P16", "label": "P16 : (2 = (1)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P16): (2 =\n(1)++). Proof: (2 = ((0)++)++)\nfollows from prop. (P6). ((0)++\n= 1) follows from prop.\n(P15).Therefore, by the equal-\nterms-substitution inference\nrule: (P, (Q = R)) \u22a2 P\u0027, it\nfollows that (2 = (1)++). QED"}, {"color": "#FFF59D", "id": "P17", "label": "P17 : (((0)++)++ =\n2)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P17): (((0)++)++\n= 2). Proof: (2 = ((0)++)++)\nfollows from prop. (P6).\nTherefore, by the equality-\ncommutativity inference rule: (x\n= y) \u22a2 (y = x), it follows that\n(((0)++)++ = 2). QED"}, {"color": "#FFF59D", "id": "P18", "label": "P18 : (3 = (2)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P18): (3 =\n(2)++). Proof: (3 =\n(((0)++)++)++) follows from\nprop. (P7). (((0)++)++ = 2)\nfollows from prop.\n(P17).Therefore, by the equal-\nterms-substitution inference\nrule: (P, (Q = R)) \u22a2 P\u0027, it\nfollows that (3 = (2)++). QED"}, {"color": "#FFF59D", "id": "P19", "label": "P19 : ((((0)++)++)++\n= 3)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P19):\n((((0)++)++)++ = 3). Proof: (3 =\n(((0)++)++)++) follows from\nprop. (P7). Therefore, by the\nequality-commutativity inference\nrule: (x = y) \u22a2 (y = x), it\nfollows that ((((0)++)++)++ =\n3). QED"}, {"color": "#FFF59D", "id": "P20", "label": "P20 : ((2)++ = 3)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P20): ((2)++ =\n3). Proof: ((((0)++)++)++ = 3)\nfollows from prop. (P19).\n(((0)++)++ = 2) follows from\nprop. (P17).Therefore, by the\nequal-terms-substitution\ninference rule: (P, (Q = R)) \u22a2\nP\u0027, it follows that ((2)++ = 3).\nQED"}, {"color": "#FFF59D", "id": "P21", "label": "P21 (2.1.4) : (3\nis-a natural-number)", "labelHighlightBold": true, "shape": "box", "title": "Proposition 2.1.4 (T1.P21): (3\nis-a natural-number). Proof:\n((((0)++)++)++ is-a natural-\nnumber) follows from prop.\n(P12). ((((0)++)++)++ = 3)\nfollows from prop.\n(P19).Therefore, by the equal-\nterms-substitution inference\nrule: (P, (Q = R)) \u22a2 P\u0027, it\nfollows that (3 is-a natural-\nnumber). QED"}, {"color": "#FFF59D", "id": "P22", "label": "P22 : (4 =\n((((0)++)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P22): (4 =\n((((0)++)++)++)++). Proof: \"We\ndefine 1 to be the number 0++, 2\nto be the number (0++)++, 3 to\nbe the number ((0++)++)++,etc.\n(In other words, 1 := 0++, 2 :=\n1++, 3 := 2++, etc. In this text\nI use \"x := y\" to denote the\nstatement that x is defined to\nequal y.)\" is postulated by def.\n(D1). (4 = ((((0)++)++)++)++) is\nan interpretation of that\ndefinition.Therefore, by the\ndefinition-interpretation\ninference rule: \ud835\udc9f \u22a2 P, it\nfollows that (4 =\n((((0)++)++)++)++). QED"}, {"color": "#FFF59D", "id": "P23", "label": "P23 :\n(((((0)++)++)++)++ =\n4)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P23):\n(((((0)++)++)++)++ = 4). Proof:\n(4 = ((((0)++)++)++)++) follows\nfrom prop. (P8). Therefore, by\nthe equality-commutativity\ninference rule: (x = y) \u22a2 (y =\nx), it follows that\n(((((0)++)++)++)++ = 4). QED"}, {"color": "#FFF59D", "id": "P24", "label": "P24 : ((3)++ = 4)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P24): ((3)++ =\n4). Proof: (((((0)++)++)++)++ =\n4) follows from prop. (P23).\n((((0)++)++)++ = 3) follows from\nprop. (P19).Therefore, by the\nequal-terms-substitution\ninference rule: (P, (Q = R)) \u22a2\nP\u0027, it follows that ((3)++ = 4).\nQED"}, {"color": "#FFF59D", "id": "P25", "label": "P25 :\n(((((0)++)++)++ is-a\nnatural-number) ==\u003e\n(((((0)++)++)++)++\nis-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P25):\n(((((0)++)++)++ is-a natural-\nnumber) ==\u003e (((((0)++)++)++)++\nis-a natural-number)). Proof:\n(((((0)++)++)++ is-a natural-\nnumber) ==\u003e (((((0)++)++)++)++\nis-a natural-number)) follows\nfrom prop. (P13). ((3)++ = 4)\nfollows from prop.\n(P24).Therefore, by the equal-\nterms-substitution inference\nrule: (P, (Q = R)) \u22a2 P\u0027, it\nfollows that (((((0)++)++)++\nis-a natural-number) ==\u003e\n(((((0)++)++)++)++ is-a natural-\nnumber)). QED"}, {"color": "#FFF59D", "id": "P26", "label": "P26 : (4 is-a\nnatural-number)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P26): (4 is-a\nnatural-number). Proof:\n(((((0)++)++)++)++ is-a natural-\nnumber) follows from prop.\n(P14). (((((0)++)++)++)++ = 4)\nfollows from prop.\n(P23).Therefore, by the equal-\nterms-substitution inference\nrule: (P, (Q = R)) \u22a2 P\u0027, it\nfollows that (4 is-a natural-\nnumber). QED"}, {"color": "#81C784", "id": "A3", "label": "A3 (2.3) : \"0 is not\nthe successor of any\nnatural number;\ni.e., we have n++ 0\nfor every natural\nnumber n.\"", "shape": "box"}, {"color": "#FFF59D", "id": "P27", "label": "P27 : ((n2 is-a\nnatural-number) ==\u003e\n((n2)++ neq 0))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P27): ((n2 is-a\nnatural-number) ==\u003e ((n2)++ neq\n0)). Proof: \"0 is not the\nsuccessor of any natural number;\ni.e., we have n++ 0 for every\nnatural number n.\" is postulated\nby axiom 2.3 (A3). ((n2 is-a\nnatural-number) ==\u003e ((n2)++ neq\n0)) is a valid formula statement\ninterpreted from that\naxiom.Therefore, by the axiom-\ninterpretation inference rule: \ud835\udc9c\n\u22a2 P, it follows that ((n2 is-a\nnatural-number) ==\u003e ((n2)++ neq\n0)). QED"}, {"color": "#FFF59D", "id": "P28", "label": "P28 : ((3 is-a\nnatural-number) ==\u003e\n((3)++ neq 0))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P28): ((3 is-a\nnatural-number) ==\u003e ((3)++ neq\n0)). Proof: ((n2 is-a natural-\nnumber) ==\u003e ((n2)++ neq 0))\nfollows from prop. (P27). Let n2\n= 3.Therefore, by the variable-\nsubstitution inference rule: (P,\n\ud835\udef7) \u22a2 P\u0027, it follows that ((3\nis-a natural-number) ==\u003e ((3)++\nneq 0)). QED"}, {"color": "#FFF59D", "id": "P29", "label": "P29 : ((3)++ neq 0)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P29): ((3)++ neq\n0). Proof: ((3 is-a natural-\nnumber) ==\u003e ((3)++ neq 0))\nfollows from prop. (P28).(3 is-a\nnatural-number) follows from\nprop. 2.1.4 (P21).Therefore, by\nthe modus-ponens inference rule:\n((P \u27f9 Q), P) \u22a2 Q, it follows\nthat ((3)++ neq 0). QED"}, {"color": "#FFF59D", "id": "P30", "label": "P30 (2.1.6) : (4 neq\n0)", "labelHighlightBold": true, "shape": "box", "title": "Proposition 2.1.6 (T1.P30): (4\nneq 0). Proof: ((3)++ neq 0)\nfollows from prop. (P29). ((3)++\n= 4) follows from prop.\n(P24).Therefore, by the equal-\nterms-substitution inference\nrule: (P, (Q = R)) \u22a2 P\u0027, it\nfollows that (4 neq 0). QED"}, {"color": "#81C784", "id": "A4", "label": "A4 (2.4) :\n\"Different natural\nnumbers must have\ndifferent\nsuccessors; i.e., if\nn, m are natural\nnumbers and n m,\nthen n++ m++.\nEquivalently, if n++\n= m++, then we must\nhave n = m.\"", "shape": "box"}, {"color": "#FFF59D", "id": "P31", "label": "P31 : ((((n3 is-a\nnatural-number) and\n(m1 is-a natural-\nnumber)) and (n3 neq\nm1)) ==\u003e ((n3)++ neq\n(m1)++))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P31): ((((n3\nis-a natural-number) and (m1\nis-a natural-number)) and (n3\nneq m1)) ==\u003e ((n3)++ neq\n(m1)++)). Proof: \"Different\nnatural numbers must have\ndifferent successors; i.e., if\nn, m are natural numbers and n\nm, then n++ m++. Equivalently,\nif n++ = m++, then we must have\nn = m.\" is postulated by axiom\n2.4 (A4). ((((n3 is-a natural-\nnumber) and (m1 is-a natural-\nnumber)) and (n3 neq m1)) ==\u003e\n((n3)++ neq (m1)++)) is a valid\nformula statement interpreted\nfrom that axiom.Therefore, by\nthe axiom-interpretation\ninference rule: \ud835\udc9c \u22a2 P, it\nfollows that ((((n3 is-a\nnatural-number) and (m1 is-a\nnatural-number)) and (n3 neq\nm1)) ==\u003e ((n3)++ neq (m1)++)).\nQED"}, {"color": "#FFF59D", "id": "P32", "label": "P32 : ((((n4 is-a\nnatural-number) and\n(m2 is-a natural-\nnumber)) and ((n4)++\n= (m2)++)) ==\u003e (n4 =\nm2))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P32): ((((n4\nis-a natural-number) and (m2\nis-a natural-number)) and\n((n4)++ = (m2)++)) ==\u003e (n4 =\nm2)). Proof: \"Different natural\nnumbers must have different\nsuccessors; i.e., if n, m are\nnatural numbers and n m, then\nn++ m++. Equivalently, if n++ =\nm++, then we must have n = m.\"\nis postulated by axiom 2.4 (A4).\n((((n4 is-a natural-number) and\n(m2 is-a natural-number)) and\n((n4)++ = (m2)++)) ==\u003e (n4 =\nm2)) is a valid formula\nstatement interpreted from that\naxiom.Therefore, by the axiom-\ninterpretation inference rule: \ud835\udc9c\n\u22a2 P, it follows that ((((n4 is-a\nnatural-number) and (m2 is-a\nnatural-number)) and ((n4)++ =\n(m2)++)) ==\u003e (n4 = m2)). QED"}, {"color": "#FFF59D", "id": "P33", "label": "P33 : ((((4 is-a\nnatural-number) and\n(0 is-a natural-\nnumber)) and (4 neq\n0)) ==\u003e ((4)++ neq\n(0)++))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P33): ((((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) and (4 neq 0))\n==\u003e ((4)++ neq (0)++)). Proof:\n((((n3 is-a natural-number) and\n(m1 is-a natural-number)) and\n(n3 neq m1)) ==\u003e ((n3)++ neq\n(m1)++)) follows from prop.\n(P31). Let n3 = 4, m1 =\n0.Therefore, by the variable-\nsubstitution inference rule: (P,\n\ud835\udef7) \u22a2 P\u0027, it follows that ((((4\nis-a natural-number) and (0 is-a\nnatural-number)) and (4 neq 0))\n==\u003e ((4)++ neq (0)++)). QED"}, {"color": "#FFF59D", "id": "P34", "label": "P34 : ((4 is-a\nnatural-number) and\n(0 is-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P34): ((4 is-a\nnatural-number) and (0 is-a\nnatural-number)). Proof: (4 is-a\nnatural-number) (P) follows from\nprop. (P26). (0 is-a natural-\nnumber) (Q) follows from prop.\n(P1).Therefore, by the\nconjunction-introduction\ninference rule: (P, Q) \u22a2 (P \u22c0\nQ), it follows that ((4 is-a\nnatural-number) and (0 is-a\nnatural-number)). QED"}, {"color": "#FFF59D", "id": "P35", "label": "P35 : (((4 is-a\nnatural-number) and\n(0 is-a natural-\nnumber)) and (4 neq\n0))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P35): (((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) and (4 neq 0)).\nProof: ((4 is-a natural-number)\nand (0 is-a natural-number)) (P)\nfollows from prop. (P34). (4 neq\n0) (Q) follows from prop. 2.1.6\n(P30).Therefore, by the\nconjunction-introduction\ninference rule: (P, Q) \u22a2 (P \u22c0\nQ), it follows that (((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) and (4 neq 0)).\nQED"}, {"color": "#FFF59D", "id": "P36", "label": "P36 : ((4)++ neq\n(0)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P36): ((4)++ neq\n(0)++). Proof: ((((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) and (4 neq 0))\n==\u003e ((4)++ neq (0)++)) follows\nfrom prop. (P33).(((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) and (4 neq 0))\nfollows from prop.\n(P35).Therefore, by the modus-\nponens inference rule: ((P \u27f9 Q),\nP) \u22a2 Q, it follows that ((4)++\nneq (0)++). QED"}, {"color": "#FFF59D", "id": "P37", "label": "P37 : (5 = (((((0)++\n)++)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P37): (5 =\n(((((0)++)++)++)++)++). Proof:\n\"We define 1 to be the number\n0++, 2 to be the number (0++)++,\n3 to be the number\n((0++)++)++,etc. (In other\nwords, 1 := 0++, 2 := 1++, 3 :=\n2++, etc. In this text I use \"x\n:= y\" to denote the statement\nthat x is defined to equal y.)\"\nis postulated by def. (D1). (5 =\n(((((0)++)++)++)++)++) is an\ninterpretation of that\ndefinition.Therefore, by the\ndefinition-interpretation\ninference rule: \ud835\udc9f \u22a2 P, it\nfollows that (5 =\n(((((0)++)++)++)++)++). QED"}, {"color": "#FFF59D", "id": "P38", "label": "P38 : ((((((0)++)++)\n++)++)++ = 5)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P38):\n((((((0)++)++)++)++)++ = 5).\nProof: (5 =\n(((((0)++)++)++)++)++) follows\nfrom prop. (P37). Therefore, by\nthe equality-commutativity\ninference rule: (x = y) \u22a2 (y =\nx), it follows that\n((((((0)++)++)++)++)++ = 5). QED"}, {"color": "#FFF59D", "id": "P39", "label": "P39 : ((4)++ = 5)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P39): ((4)++ =\n5). Proof:\n((((((0)++)++)++)++)++ = 5)\nfollows from prop. (P38).\n(((((0)++)++)++)++ = 4) follows\nfrom prop. (P23).Therefore, by\nthe equal-terms-substitution\ninference rule: (P, (Q = R)) \u22a2\nP\u0027, it follows that ((4)++ = 5).\nQED"}, {"color": "#FFF59D", "id": "P40", "label": "P40 : (5 = (4)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P40): (5 =\n(4)++). Proof: ((4)++ = 5)\nfollows from prop. (P39).\nTherefore, by the equality-\ncommutativity inference rule: (x\n= y) \u22a2 (y = x), it follows that\n(5 = (4)++). QED"}, {"color": "#FFF59D", "id": "P41", "label": "P41 : ((((5 is-a\nnatural-number) and\n(1 is-a natural-\nnumber)) and (5 neq\n1)) ==\u003e ((5)++ neq\n(1)++))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P41): ((((5 is-a\nnatural-number) and (1 is-a\nnatural-number)) and (5 neq 1))\n==\u003e ((5)++ neq (1)++)). Proof:\n((((n3 is-a natural-number) and\n(m1 is-a natural-number)) and\n(n3 neq m1)) ==\u003e ((n3)++ neq\n(m1)++)) follows from prop.\n(P31). Let n3 = 5, m1 =\n1.Therefore, by the variable-\nsubstitution inference rule: (P,\n\ud835\udef7) \u22a2 P\u0027, it follows that ((((5\nis-a natural-number) and (1 is-a\nnatural-number)) and (5 neq 1))\n==\u003e ((5)++ neq (1)++)). QED"}, {"color": "#FFF59D", "id": "P42", "label": "P42 : ((4 is-a\nnatural-number) ==\u003e\n((4)++ is-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P42): ((4 is-a\nnatural-number) ==\u003e ((4)++ is-a\nnatural-number)). Proof: ((n1\nis-a natural-number) ==\u003e ((n1)++\nis-a natural-number)) follows\nfrom prop. (P2). Let n1 =\n4.Therefore, by the variable-\nsubstitution inference rule: (P,\n\ud835\udef7) \u22a2 P\u0027, it follows that ((4\nis-a natural-number) ==\u003e ((4)++\nis-a natural-number)). QED"}, {"color": "#FFF59D", "id": "P43", "label": "P43 : ((4 is-a\nnatural-number) ==\u003e\n(5 is-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P43): ((4 is-a\nnatural-number) ==\u003e (5 is-a\nnatural-number)). Proof: ((4\nis-a natural-number) ==\u003e ((4)++\nis-a natural-number)) follows\nfrom prop. (P42). ((4)++ = 5)\nfollows from prop.\n(P39).Therefore, by the equal-\nterms-substitution inference\nrule: (P, (Q = R)) \u22a2 P\u0027, it\nfollows that ((4 is-a natural-\nnumber) ==\u003e (5 is-a natural-\nnumber)). QED"}, {"color": "#FFF59D", "id": "P44", "label": "P44 : (5 is-a\nnatural-number)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P44): (5 is-a\nnatural-number). Proof: ((4 is-a\nnatural-number) ==\u003e (5 is-a\nnatural-number)) follows from\nprop. (P43).(4 is-a natural-\nnumber) follows from prop.\n(P26).Therefore, by the modus-\nponens inference rule: ((P \u27f9 Q),\nP) \u22a2 Q, it follows that (5 is-a\nnatural-number). QED"}, {"color": "#FFF59D", "id": "P45", "label": "P45 : ((((5 is-a\nnatural-number) and\n(1 is-a natural-\nnumber)) and (5 neq\n1)) ==\u003e ((5)++ neq\n(1)++))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P45): ((((5 is-a\nnatural-number) and (1 is-a\nnatural-number)) and (5 neq 1))\n==\u003e ((5)++ neq (1)++)). Proof:\n((((n3 is-a natural-number) and\n(m1 is-a natural-number)) and\n(n3 neq m1)) ==\u003e ((n3)++ neq\n(m1)++)) follows from prop.\n(P31). Let n3 = 5, m1 =\n1.Therefore, by the variable-\nsubstitution inference rule: (P,\n\ud835\udef7) \u22a2 P\u0027, it follows that ((((5\nis-a natural-number) and (1 is-a\nnatural-number)) and (5 neq 1))\n==\u003e ((5)++ neq (1)++)). QED"}, {"color": "#FFF59D", "id": "P46", "label": "P46 : ((4)++ neq\n(0)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P46): ((4)++ neq\n(0)++). Proof: ((((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) and (4 neq 0))\n==\u003e ((4)++ neq (0)++)) follows\nfrom prop. (P33).(((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) and (4 neq 0))\nfollows from prop.\n(P35).Therefore, by the modus-\nponens inference rule: ((P \u27f9 Q),\nP) \u22a2 Q, it follows that ((4)++\nneq (0)++). QED"}, {"color": "#FFF59D", "id": "P47", "label": "P47 : (5 neq (0)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P47): (5 neq\n(0)++). Proof: ((4)++ neq (0)++)\nfollows from prop. (P46). ((4)++\n= 5) follows from prop.\n(P39).Therefore, by the equal-\nterms-substitution inference\nrule: (P, (Q = R)) \u22a2 P\u0027, it\nfollows that (5 neq (0)++). QED"}, {"color": "#FFF59D", "id": "P48", "label": "P48 : (6 = ((((((0)+\n+)++)++)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P48): (6 =\n((((((0)++)++)++)++)++)++).\nProof: \"We define 1 to be the\nnumber 0++, 2 to be the number\n(0++)++, 3 to be the number\n((0++)++)++,etc. (In other\nwords, 1 := 0++, 2 := 1++, 3 :=\n2++, etc. In this text I use \"x\n:= y\" to denote the statement\nthat x is defined to equal y.)\"\nis postulated by def. (D1). (6 =\n((((((0)++)++)++)++)++)++) is an\ninterpretation of that\ndefinition.Therefore, by the\ndefinition-interpretation\ninference rule: \ud835\udc9f \u22a2 P, it\nfollows that (6 =\n((((((0)++)++)++)++)++)++). QED"}, {"color": "#FFF59D", "id": "P49", "label": "P49 : (((((((0)++)++\n)++)++)++)++ = 6)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P49):\n(((((((0)++)++)++)++)++)++ = 6).\nProof: (6 =\n((((((0)++)++)++)++)++)++)\nfollows from prop. (P48).\nTherefore, by the equality-\ncommutativity inference rule: (x\n= y) \u22a2 (y = x), it follows that\n(((((((0)++)++)++)++)++)++ = 6).\nQED"}, {"color": "#FFF59D", "id": "P50", "label": "P50 : (1 is-a\nnatural-number)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P50): (1 is-a\nnatural-number). Proof: ((0)++\nis-a natural-number) follows\nfrom prop. 2.2.3 (P4). ((0)++ =\n1) follows from prop.\n(P15).Therefore, by the equal-\nterms-substitution inference\nrule: (P, (Q = R)) \u22a2 P\u0027, it\nfollows that (1 is-a natural-\nnumber). QED"}, {"color": "#FFF59D", "id": "P51", "label": "P51 : ((5)++ = 6)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P51): ((5)++ =\n6). Proof:\n(((((((0)++)++)++)++)++)++ = 6)\nfollows from prop. (P49).\n((((((0)++)++)++)++)++ = 5)\nfollows from prop.\n(P38).Therefore, by the equal-\nterms-substitution inference\nrule: (P, (Q = R)) \u22a2 P\u0027, it\nfollows that ((5)++ = 6). QED"}, {"color": "#FFF59D", "id": "P52", "label": "P52 : (6 = (5)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P52): (6 =\n(5)++). Proof: ((5)++ = 6)\nfollows from prop. (P51).\nTherefore, by the equality-\ncommutativity inference rule: (x\n= y) \u22a2 (y = x), it follows that\n(6 = (5)++). QED"}, {"color": "#FFF59D", "id": "P66", "label": "P66 : Inc(H1)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P66): Inc(H1).\nProof: (4 = 0) follows from\nprop. (P65). (4 neq 0) follows\nfrom prop. 2.1.6 (P30).\nTherefore, by the inconsistency-\nby-inequality-introduction\ninference rule: ((P = Q), (P \u2260\nQ)) \u22a2 Inc(\ud835\udcaf), it follows that\nInc(H1). QED"}, {"color": "#FFF59D", "id": "P65", "label": "P65 : (4 = 0)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P65): (4 = 0).\nProof: ((((4 is-a natural-\nnumber) and (0 is-a natural-\nnumber)) and ((4)++ = (0)++))\n==\u003e (4 = 0)) follows from prop.\n(P64).(((4 is-a natural-number)\nand (0 is-a natural-number)) and\n((4)++ = (0)++)) follows from\nprop. (P63).Therefore, by the\nmodus-ponens inference rule: ((P\n\u27f9 Q), P) \u22a2 Q, it follows that (4\n= 0). QED"}, {"color": "#FFF59D", "id": "P64", "label": "P64 : ((((4 is-a\nnatural-number) and\n(0 is-a natural-\nnumber)) and ((4)++\n= (0)++)) ==\u003e (4 =\n0))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P64): ((((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) and ((4)++ =\n(0)++)) ==\u003e (4 = 0)). Proof:\n((((n4 is-a natural-number) and\n(m2 is-a natural-number)) and\n((n4)++ = (m2)++)) ==\u003e (n4 =\nm2)) follows from prop. (P32).\nLet n4 = 4, m2 = 0.Therefore, by\nthe variable-substitution\ninference rule: (P, \ud835\udef7) \u22a2 P\u0027, it\nfollows that ((((4 is-a natural-\nnumber) and (0 is-a natural-\nnumber)) and ((4)++ = (0)++))\n==\u003e (4 = 0)). QED"}, {"color": "#FFF59D", "id": "P63", "label": "P63 : (((4 is-a\nnatural-number) and\n(0 is-a natural-\nnumber)) and ((4)++\n= (0)++))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P63): (((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) and ((4)++ =\n(0)++)). Proof: ((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) (P) follows\nfrom prop. (P62). ((4)++ =\n(0)++) (Q) follows from prop.\n(P61).Therefore, by the\nconjunction-introduction\ninference rule: (P, Q) \u22a2 (P \u22c0\nQ), it follows that (((4 is-a\nnatural-number) and (0 is-a\nnatural-number)) and ((4)++ =\n(0)++)). QED"}, {"color": "#FFF59D", "id": "P62", "label": "P62 : ((4 is-a\nnatural-number) and\n(0 is-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P62): ((4 is-a\nnatural-number) and (0 is-a\nnatural-number)). Proof: (4 is-a\nnatural-number) (P) follows from\nprop. (P26). (0 is-a natural-\nnumber) (Q) follows from prop.\n(P1).Therefore, by the\nconjunction-introduction\ninference rule: (P, Q) \u22a2 (P \u22c0\nQ), it follows that ((4 is-a\nnatural-number) and (0 is-a\nnatural-number)). QED"}, {"color": "#FFF59D", "id": "P61", "label": "P61 : ((4)++ =\n(0)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P61): ((4)++ =\n(0)++). Proof: ((4)++ = 1)\nfollows from prop. (P60). (1 =\n(0)++) follows from prop.\n(P5).Therefore, by the equal-\nterms-substitution inference\nrule: (P, (Q = R)) \u22a2 P\u0027, it\nfollows that ((4)++ = (0)++).\nQED"}, {"color": "#FFF59D", "id": "P60", "label": "P60 : ((4)++ = 1)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P60): ((4)++ =\n1). Proof: (5 = 1) follows from\nprop. (P59). (5 = (4)++) follows\nfrom prop. (P40).Therefore, by\nthe equal-terms-substitution\ninference rule: (P, (Q = R)) \u22a2\nP\u0027, it follows that ((4)++ = 1).\nQED"}, {"color": "#FFF59D", "id": "P59", "label": "P59 : (5 = 1)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P59): (5 = 1).\nProof: ((((5 is-a natural-\nnumber) and (1 is-a natural-\nnumber)) and ((5)++ = (1)++))\n==\u003e (5 = 1)) follows from prop.\n(P58).(((5 is-a natural-number)\nand (1 is-a natural-number)) and\n((5)++ = (1)++)) follows from\nprop. (P57).Therefore, by the\nmodus-ponens inference rule: ((P\n\u27f9 Q), P) \u22a2 Q, it follows that (5\n= 1). QED"}, {"color": "#FFF59D", "id": "P58", "label": "P58 : ((((5 is-a\nnatural-number) and\n(1 is-a natural-\nnumber)) and ((5)++\n= (1)++)) ==\u003e (5 =\n1))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P58): ((((5 is-a\nnatural-number) and (1 is-a\nnatural-number)) and ((5)++ =\n(1)++)) ==\u003e (5 = 1)). Proof:\n((((n4 is-a natural-number) and\n(m2 is-a natural-number)) and\n((n4)++ = (m2)++)) ==\u003e (n4 =\nm2)) follows from prop. (P32).\nLet n4 = 5, m2 = 1.Therefore, by\nthe variable-substitution\ninference rule: (P, \ud835\udef7) \u22a2 P\u0027, it\nfollows that ((((5 is-a natural-\nnumber) and (1 is-a natural-\nnumber)) and ((5)++ = (1)++))\n==\u003e (5 = 1)). QED"}, {"color": "#FFF59D", "id": "P57", "label": "P57 : (((5 is-a\nnatural-number) and\n(1 is-a natural-\nnumber)) and ((5)++\n= (1)++))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P57): (((5 is-a\nnatural-number) and (1 is-a\nnatural-number)) and ((5)++ =\n(1)++)). Proof: ((5 is-a\nnatural-number) and (1 is-a\nnatural-number)) (P) follows\nfrom prop. (P56). ((5)++ =\n(1)++) (Q) follows from prop.\n(P55).Therefore, by the\nconjunction-introduction\ninference rule: (P, Q) \u22a2 (P \u22c0\nQ), it follows that (((5 is-a\nnatural-number) and (1 is-a\nnatural-number)) and ((5)++ =\n(1)++)). QED"}, {"color": "#FFF59D", "id": "P56", "label": "P56 : ((5 is-a\nnatural-number) and\n(1 is-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P56): ((5 is-a\nnatural-number) and (1 is-a\nnatural-number)). Proof: (5 is-a\nnatural-number) (P) follows from\nprop. (P44). (1 is-a natural-\nnumber) (Q) follows from prop.\n(P50).Therefore, by the\nconjunction-introduction\ninference rule: (P, Q) \u22a2 (P \u22c0\nQ), it follows that ((5 is-a\nnatural-number) and (1 is-a\nnatural-number)). QED"}, {"color": "#FFF59D", "id": "P55", "label": "P55 : ((5)++ =\n(1)++)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P55): ((5)++ =\n(1)++). Proof: ((5)++ = 2)\nfollows from prop. (P54). (2 =\n(1)++) follows from prop.\n(P16).Therefore, by the equal-\nterms-substitution inference\nrule: (P, (Q = R)) \u22a2 P\u0027, it\nfollows that ((5)++ = (1)++).\nQED"}, {"color": "#FFF59D", "id": "P54", "label": "P54 : ((5)++ = 2)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P54): ((5)++ =\n2). Proof: (6 = 2) follows from\nprop. (P53). (6 = (5)++) follows\nfrom prop. (P52).Therefore, by\nthe equal-terms-substitution\ninference rule: (P, (Q = R)) \u22a2\nP\u0027, it follows that ((5)++ = 2).\nQED"}, {"color": "#FFF59D", "id": "P53", "label": "P53 : (6 = 2)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (H1.P53): (6 = 2).\nProof: \"By hypothesis, assume (6\n= 2) is true.\" is postulated by\naxiom (A5). (6 = 2) is a valid\nformula statement interpreted\nfrom that axiom.Therefore, by\nthe axiom-interpretation\ninference rule: \ud835\udc9c \u22a2 P, it\nfollows that (6 = 2). QED"}, {"color": "#81C784", "id": "A5", "label": "A5 : \"By hypothesis,\nassume (6 = 2) is\ntrue.\"", "shape": "box"}, {"color": "#FFF59D", "id": "P67", "label": "P67 (2.1.8) : (6 neq\n2)", "labelHighlightBold": true, "shape": "box", "title": "Proposition 2.1.8 (T1.P67): (6\nneq 2). Proof: Let hyp. (H1) be\nthe hypothesis (6 = 2). Inc(H1)\nfollows from prop.\n(P66).Therefore, by the proof-\nby-refutation-of-equality\ninference rule: (\u210b(P=Q), Inc(\u210b))\n\u22a2 (P \u2260 Q), it follows that (6\nneq 2). QED"}, {"color": "#FFF59D", "id": "P68", "label": "P68 : ((1)++ = 2)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P68): ((1)++ =\n2). Proof: (((0)++)++ = 2)\nfollows from prop. (P17). ((0)++\n= 1) follows from prop.\n(P15).Therefore, by the equal-\nterms-substitution inference\nrule: (P, (Q = R)) \u22a2 P\u0027, it\nfollows that ((1)++ = 2). QED"}, {"color": "#FFF59D", "id": "P69", "label": "P69 : (5 neq 1)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P69): (5 neq 1).\nProof: (5 neq (0)++) follows\nfrom prop. (P47). ((0)++ = 1)\nfollows from prop.\n(P15).Therefore, by the equal-\nterms-substitution inference\nrule: (P, (Q = R)) \u22a2 P\u0027, it\nfollows that (5 neq 1). QED"}, {"color": "#FFF59D", "id": "P70", "label": "P70 : ((((5 is-a\nnatural-number) and\n(1 is-a natural-\nnumber)) and (5 neq\n1)) ==\u003e (6 neq\n(1)++))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P70): ((((5 is-a\nnatural-number) and (1 is-a\nnatural-number)) and (5 neq 1))\n==\u003e (6 neq (1)++)). Proof: ((((5\nis-a natural-number) and (1 is-a\nnatural-number)) and (5 neq 1))\n==\u003e ((5)++ neq (1)++)) follows\nfrom prop. (P45). ((5)++ = 6)\nfollows from prop.\n(P51).Therefore, by the equal-\nterms-substitution inference\nrule: (P, (Q = R)) \u22a2 P\u0027, it\nfollows that ((((5 is-a natural-\nnumber) and (1 is-a natural-\nnumber)) and (5 neq 1)) ==\u003e (6\nneq (1)++)). QED"}, {"color": "#FFF59D", "id": "P71", "label": "P71 : ((((5 is-a\nnatural-number) and\n(1 is-a natural-\nnumber)) and (5 neq\n1)) ==\u003e (6 neq 2))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P71): ((((5 is-a\nnatural-number) and (1 is-a\nnatural-number)) and (5 neq 1))\n==\u003e (6 neq 2)). Proof: ((((5\nis-a natural-number) and (1 is-a\nnatural-number)) and (5 neq 1))\n==\u003e (6 neq (1)++)) follows from\nprop. (P70). ((1)++ = 2) follows\nfrom prop. (P68).Therefore, by\nthe equal-terms-substitution\ninference rule: (P, (Q = R)) \u22a2\nP\u0027, it follows that ((((5 is-a\nnatural-number) and (1 is-a\nnatural-number)) and (5 neq 1))\n==\u003e (6 neq 2)). QED"}, {"color": "#FFF59D", "id": "P72", "label": "P72 : ((5 is-a\nnatural-number) and\n(1 is-a natural-\nnumber))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P72): ((5 is-a\nnatural-number) and (1 is-a\nnatural-number)). Proof: (5 is-a\nnatural-number) (P) follows from\nprop. (P44). (1 is-a natural-\nnumber) (Q) follows from prop.\n(P50).Therefore, by the\nconjunction-introduction\ninference rule: (P, Q) \u22a2 (P \u22c0\nQ), it follows that ((5 is-a\nnatural-number) and (1 is-a\nnatural-number)). QED"}, {"color": "#FFF59D", "id": "P73", "label": "P73 : (((5 is-a\nnatural-number) and\n(1 is-a natural-\nnumber)) and (5 neq\n1))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P73): (((5 is-a\nnatural-number) and (1 is-a\nnatural-number)) and (5 neq 1)).\nProof: ((5 is-a natural-number)\nand (1 is-a natural-number)) (P)\nfollows from prop. (P72). (5 neq\n1) (Q) follows from prop.\n(P69).Therefore, by the\nconjunction-introduction\ninference rule: (P, Q) \u22a2 (P \u22c0\nQ), it follows that (((5 is-a\nnatural-number) and (1 is-a\nnatural-number)) and (5 neq 1)).\nQED"}, {"color": "#FFF59D", "id": "P74", "label": "P74 : (6 neq 2)", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P74): (6 neq 2).\nProof: ((((5 is-a natural-\nnumber) and (1 is-a natural-\nnumber)) and (5 neq 1)) ==\u003e (6\nneq 2)) follows from prop.\n(P71).(((5 is-a natural-number)\nand (1 is-a natural-number)) and\n(5 neq 1)) follows from prop.\n(P73).Therefore, by the modus-\nponens inference rule: ((P \u27f9 Q),\nP) \u22a2 Q, it follows that (6 neq\n2). QED"}, {"color": "#81C784", "id": "A6", "label": "A6 : \"Let P(n) be\nany property\npertaining to a\nnatural number n.\nSuppose that P(O) is\ntrue, and suppose\nthat whenever P(n)\nis true, P(n++) is\nalso true. Then P(n)\nis true for every\nnatural number n.\"", "shape": "box"}, {"color": "#FFF59D", "id": "P75", "label": "P75 : (((n5 is-a\nnatural-number) and\n(P1(0) and (P1(n5)\n==\u003e P1((n5)++))))\n==\u003e ((m3 is-a\nnatural-number) ==\u003e\nP1(m3)))", "labelHighlightBold": false, "shape": "box", "title": "Proposition (T1.P75): (((n5 is-a\nnatural-number) and (P1(0) and\n(P1(n5) ==\u003e P1((n5)++)))) ==\u003e\n((m3 is-a natural-number) ==\u003e\nP1(m3))). Proof: \"Let P(n) be\nany property pertaining to a\nnatural number n. Suppose that\nP(O) is true, and suppose that\nwhenever P(n) is true, P(n++) is\nalso true. Then P(n) is true for\nevery natural number n.\" is\npostulated by axiom schema (A6).\n(((n5 is-a natural-number) and\n(P1(0) and (P1(n5) ==\u003e\nP1((n5)++)))) ==\u003e ((m3 is-a\nnatural-number) ==\u003e P1(m3))) is\na valid formula statement\ninterpreted from that\naxiom.Therefore, by the axiom-\ninterpretation inference rule: \ud835\udc9c\n\u22a2 P, it follows that (((n5 is-a\nnatural-number) and (P1(0) and\n(P1(n5) ==\u003e P1((n5)++)))) ==\u003e\n((m3 is-a natural-number) ==\u003e\nP1(m3))). QED"}]); edges = new vis.DataSet([{"arrows": "to", "from": "A1", "to": "P1"}, {"arrows": "to", "from": "A2", "to": "P2"}, {"arrows": "to", "from": "P2", "to": "P3"}, {"arrows": "to", "from": "P3", "to": "P4"}, {"arrows": "to", "from": "P1", "to": "P4"}, {"arrows": "to", "from": "D1", "to": "P5"}, {"arrows": "to", "from": "D1", "to": "P6"}, {"arrows": "to", "from": "D1", "to": "P7"}, {"arrows": "to", "from": "D1", "to": "P8"}, {"arrows": "to", "from": "P2", "to": "P9"}, {"arrows": "to", "from": "P9", "to": "P10"}, {"arrows": "to", "from": "P4", "to": "P10"}, {"arrows": "to", "from": "P2", "to": "P11"}, {"arrows": "to", "from": "P11", "to": "P12"}, {"arrows": "to", "from": "P10", "to": "P12"}, {"arrows": "to", "from": "P2", "to": "P13"}, {"arrows": "to", "from": "P13", "to": "P14"}, {"arrows": "to", "from": "P12", "to": "P14"}, {"arrows": "to", "from": "P5", "to": "P15"}, {"arrows": "to", "from": "P6", "to": "P16"}, {"arrows": "to", "from": "P15", "to": "P16"}, {"arrows": "to", "from": "P6", "to": "P17"}, {"arrows": "to", "from": "P7", "to": "P18"}, {"arrows": "to", "from": "P17", "to": "P18"}, {"arrows": "to", "from": "P7", "to": "P19"}, {"arrows": "to", "from": "P19", "to": "P20"}, {"arrows": "to", "from": "P17", "to": "P20"}, {"arrows": "to", "from": "P12", "to": "P21"}, {"arrows": "to", "from": "P19", "to": "P21"}, {"arrows": "to", "from": "D1", "to": "P22"}, {"arrows": "to", "from": "P8", "to": "P23"}, {"arrows": "to", "from": "P23", "to": "P24"}, {"arrows": "to", "from": "P19", "to": "P24"}, {"arrows": "to", "from": "P13", "to": "P25"}, {"arrows": "to", "from": "P24", "to": "P25"}, {"arrows": "to", "from": "P14", "to": "P26"}, {"arrows": "to", "from": "P23", "to": "P26"}, {"arrows": "to", "from": "A3", "to": "P27"}, {"arrows": "to", "from": "P27", "to": "P28"}, {"arrows": "to", "from": "P28", "to": "P29"}, {"arrows": "to", "from": "P21", "to": "P29"}, {"arrows": "to", "from": "P29", "to": "P30"}, {"arrows": "to", "from": "P24", "to": "P30"}, {"arrows": "to", "from": "A4", "to": "P31"}, {"arrows": "to", "from": "A4", "to": "P32"}, {"arrows": "to", "from": "P31", "to": "P33"}, {"arrows": "to", "from": "P26", "to": "P34"}, {"arrows": "to", "from": "P1", "to": "P34"}, {"arrows": "to", "from": "P34", "to": "P35"}, {"arrows": "to", "from": "P30", "to": "P35"}, {"arrows": "to", "from": "P33", "to": "P36"}, {"arrows": "to", "from": "P35", "to": "P36"}, {"arrows": "to", "from": "D1", "to": "P37"}, {"arrows": "to", "from": "P37", "to": "P38"}, {"arrows": "to", "from": "P38", "to": "P39"}, {"arrows": "to", "from": "P23", "to": "P39"}, {"arrows": "to", "from": "P39", "to": "P40"}, {"arrows": "to", "from": "P31", "to": "P41"}, {"arrows": "to", "from": "P2", "to": "P42"}, {"arrows": "to", "from": "P42", "to": "P43"}, {"arrows": "to", "from": "P39", "to": "P43"}, {"arrows": "to", "from": "P43", "to": "P44"}, {"arrows": "to", "from": "P26", "to": "P44"}, {"arrows": "to", "from": "P31", "to": "P45"}, {"arrows": "to", "from": "P33", "to": "P46"}, {"arrows": "to", "from": "P35", "to": "P46"}, {"arrows": "to", "from": "P46", "to": "P47"}, {"arrows": "to", "from": "P39", "to": "P47"}, {"arrows": "to", "from": "D1", "to": "P48"}, {"arrows": "to", "from": "P48", "to": "P49"}, {"arrows": "to", "from": "P4", "to": "P50"}, {"arrows": "to", "from": "P15", "to": "P50"}, {"arrows": "to", "from": "P49", "to": "P51"}, {"arrows": "to", "from": "P38", "to": "P51"}, {"arrows": "to", "from": "P51", "to": "P52"}, {"arrows": "to", "from": "P32", "to": "P64"}, {"arrows": "to", "from": "P64", "to": "P65"}, {"arrows": "to", "from": "P26", "to": "P62"}, {"arrows": "to", "from": "P1", "to": "P62"}, {"arrows": "to", "from": "P62", "to": "P63"}, {"arrows": "to", "from": "P32", "to": "P58"}, {"arrows": "to", "from": "P58", "to": "P59"}, {"arrows": "to", "from": "P44", "to": "P56"}, {"arrows": "to", "from": "P50", "to": "P56"}, {"arrows": "to", "from": "P56", "to": "P57"}, {"arrows": "to", "from": "A5", "to": "P53"}, {"arrows": "to", "from": "P53", "to": "P54"}, {"arrows": "to", "from": "P52", "to": "P54"}, {"arrows": "to", "from": "P54", "to": "P55"}, {"arrows": "to", "from": "P16", "to": "P55"}, {"arrows": "to", "from": "P55", "to": "P57"}, {"arrows": "to", "from": "P57", "to": "P59"}, {"arrows": "to", "from": "P59", "to": "P60"}, {"arrows": "to", "from": "P40", "to": "P60"}, {"arrows": "to", "from": "P60", "to": "P61"}, {"arrows": "to", "from": "P5", "to": "P61"}, {"arrows": "to", "from": "P61", "to": "P63"}, {"arrows": "to", "from": "P63", "to": "P65"}, {"arrows": "to", "from": "P65", "to": "P66"}, {"arrows": "to", "from": "P30", "to": "P66"}, {"arrows": "to", "from": "P66", "to": "P67"}, {"arrows": "to", "from": "P17", "to": "P68"}, {"arrows": "to", "from": "P15", "to": "P68"}, {"arrows": "to", "from": "P47", "to": "P69"}, {"arrows": "to", "from": "P15", "to": "P69"}, {"arrows": "to", "from": "P45", "to": "P70"}, {"arrows": "to", "from": "P51", "to": "P70"}, {"arrows": "to", "from": "P70", "to": "P71"}, {"arrows": "to", "from": "P68", "to": "P71"}, {"arrows": "to", "from": "P44", "to": "P72"}, {"arrows": "to", "from": "P50", "to": "P72"}, {"arrows": "to", "from": "P72", "to": "P73"}, {"arrows": "to", "from": "P69", "to": "P73"}, {"arrows": "to", "from": "P71", "to": "P74"}, {"arrows": "to", "from": "P73", "to": "P74"}, {"arrows": "to", "from": "A6", "to": "P75"}]); nodeColors = {}; diff --git a/theory/build/tao_2006_2_1_the_peano_axioms_interactive_graph_unicode.html b/theory/build/tao_2006_2_1_the_peano_axioms_interactive_graph_unicode.html index 7a3d0808..a4a233c8 100644 --- a/theory/build/tao_2006_2_1_the_peano_axioms_interactive_graph_unicode.html +++ b/theory/build/tao_2006_2_1_the_peano_axioms_interactive_graph_unicode.html @@ -88,7 +88,7 @@

// parsing and collecting nodes and edges from the python - nodes = new vis.DataSet([{"color": "#81C784", "id": "A1", "label": "\ud835\udc34\u2081 (\ud835\udfee.\ud835\udfed) : \u231c\ud835\udfe2 \ud835\ude2a\ud835\ude34 \ud835\ude22\n\ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33.\u231d", "shape": "box"}, {"color": "#FFF59D", "id": "P1", "label": "\ud835\udc43\u2081 : (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081): (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\udfe2 \ud835\ude2a\ud835\ude34 \ud835\ude22\n\ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33.\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd\n\ud835\uddbb\ud835\uddd2 \ud835\uddee\ud835\ude05\ud835\uddf6\ud835\uddfc\ud835\uddfa \ud835\udfee.\ud835\udfed (\ud835\udc34\u2081). (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddc2\ud835\uddcc \ud835\uddba \ud835\uddcf\ud835\uddba\ud835\uddc5\ud835\uddc2\ud835\uddbd\n\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddc6\ud835\uddce\ud835\uddc5\ud835\uddba \ud835\uddcc\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddc6\ud835\uddbe\ud835\uddc7\ud835\uddcd \ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddbe\ud835\uddbd\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd \ud835\uddba\ud835\uddd1\ud835\uddc2\ud835\uddc8\ud835\uddc6. \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc4e\ud835\udc65\ud835\udc56\ud835\udc5c\ud835\udc5a-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \u220e"}, {"color": "#81C784", "id": "A2", "label": "\ud835\udc34\u2082 (\ud835\udfee.\ud835\udfee) : \u231c\ud835\ude10\ud835\ude27 \ud835\ude2f \ud835\ude2a\ud835\ude34\n\ud835\ude22 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33,\n\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude2f \ud835\ude2f++ \ud835\ude2a\ud835\ude34 \ud835\ude22\n\ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33.\u231d", "shape": "box"}, {"color": "#FFF59D", "id": "P2", "label": "\ud835\udc43\u2082 : ((\ud835\udc27\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n((\ud835\udc27\u2081)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082): ((\ud835\udc27\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((\ud835\udc27\u2081)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\ude10\ud835\ude27 \ud835\ude2f\n\ud835\ude2a\ud835\ude34 \ud835\ude22 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33, \ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude2f \ud835\ude2f++ \ud835\ude2a\ud835\ude34\n\ud835\ude22 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33.\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd\n\ud835\uddbb\ud835\uddd2 \ud835\uddee\ud835\ude05\ud835\uddf6\ud835\uddfc\ud835\uddfa \ud835\udfee.\ud835\udfee (\ud835\udc34\u2082). ((\ud835\udc27\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((\ud835\udc27\u2081)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddc2\ud835\uddcc \ud835\uddba \ud835\uddcf\ud835\uddba\ud835\uddc5\ud835\uddc2\ud835\uddbd\n\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddc6\ud835\uddce\ud835\uddc5\ud835\uddba \ud835\uddcc\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddc6\ud835\uddbe\ud835\uddc7\ud835\uddcd \ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddbe\ud835\uddbd\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd \ud835\uddba\ud835\uddd1\ud835\uddc2\ud835\uddc8\ud835\uddc6. \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc4e\ud835\udc65\ud835\udc56\ud835\udc5c\ud835\udc5a-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n((\ud835\udc27\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n((\ud835\udc27\u2081)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P3", "label": "\ud835\udc43\u2083 : ((0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n((0)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083): ((0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((0)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((\ud835\udc27\u2081\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((\ud835\udc27\u2081)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2081 = 0.\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((0)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P4", "label": "\ud835\udc43\u2084 (\ud835\udfee.\ud835\udfee.\ud835\udfef) : ((0)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)", "labelHighlightBold": true, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb \ud835\udfee.\ud835\udfee.\ud835\udfef (\ud835\udcaf\u2081.\ud835\udc43\u2084):\n((0)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u27f9 ((0)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083).(0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((0)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \u220e"}, {"color": "#90CAF9", "id": "D1", "label": "\ud835\udc37\u2081 : \u231c\ud835\ude1e\ud835\ude26 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26 \ud835\udfe3 \ud835\ude35\ud835\ude30\n\ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\udfe2++, \ud835\udfe4\n\ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\n(\ud835\udfe2++)++, \ud835\udfe5 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\n((\ud835\udfe2++)++)++,\ud835\ude26\ud835\ude35\ud835\ude24. (\ud835\ude10\ud835\ude2f\n\ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude33 \ud835\ude38\ud835\ude30\ud835\ude33\ud835\ude25\ud835\ude34, \ud835\udfe3 :=\n\ud835\udfe2++, \ud835\udfe4 := \ud835\udfe3++, \ud835\udfe5 :=\n\ud835\udfe4++, \ud835\ude26\ud835\ude35\ud835\ude24. \ud835\ude10\ud835\ude2f \ud835\ude35\ud835\ude29\ud835\ude2a\ud835\ude34\n\ud835\ude35\ud835\ude26\ud835\ude39\ud835\ude35 \ud835\ude10 \ud835\ude36\ud835\ude34\ud835\ude26 \"\ud835\ude39 := \ud835\ude3a\"\n\ud835\ude35\ud835\ude30 \ud835\ude25\ud835\ude26\ud835\ude2f\ud835\ude30\ud835\ude35\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude34\ud835\ude35\ud835\ude22\ud835\ude35\ud835\ude26\ud835\ude2e\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude39 \ud835\ude2a\ud835\ude34\n\ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26\ud835\ude25 \ud835\ude35\ud835\ude30 \ud835\ude26\ud835\ude32\ud835\ude36\ud835\ude22\ud835\ude2d\n\ud835\ude3a.)\u231d", "shape": "box"}, {"color": "#FFF59D", "id": "P5", "label": "\ud835\udc43\u2085 : (1 = (0)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2085): (1 =\n(0)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\ude1e\ud835\ude26 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26 \ud835\udfe3 \ud835\ude35\ud835\ude30\n\ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\udfe2++, \ud835\udfe4 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 (\ud835\udfe2++)++, \ud835\udfe5 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 ((\ud835\udfe2++)++)++,\ud835\ude26\ud835\ude35\ud835\ude24. (\ud835\ude10\ud835\ude2f\n\ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude33 \ud835\ude38\ud835\ude30\ud835\ude33\ud835\ude25\ud835\ude34, \ud835\udfe3 := \ud835\udfe2++, \ud835\udfe4 := \ud835\udfe3++,\n\ud835\udfe5 := \ud835\udfe4++, \ud835\ude26\ud835\ude35\ud835\ude24. \ud835\ude10\ud835\ude2f \ud835\ude35\ud835\ude29\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude26\ud835\ude39\ud835\ude35 \ud835\ude10\n\ud835\ude36\ud835\ude34\ud835\ude26 \"\ud835\ude39 := \ud835\ude3a\" \ud835\ude35\ud835\ude30 \ud835\ude25\ud835\ude26\ud835\ude2f\ud835\ude30\ud835\ude35\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude34\ud835\ude35\ud835\ude22\ud835\ude35\ud835\ude26\ud835\ude2e\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude39 \ud835\ude2a\ud835\ude34 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26\ud835\ude25 \ud835\ude35\ud835\ude30\n\ud835\ude26\ud835\ude32\ud835\ude36\ud835\ude22\ud835\ude2d \ud835\ude3a.)\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2 \ud835\uddf1\ud835\uddf2\ud835\uddf3.\n(\ud835\udc37\u2081). (1 = (0)++) \ud835\uddc2\ud835\uddcc \ud835\uddba\ud835\uddc7\n\ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7 \ud835\uddc8\ud835\uddbf \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n\ud835\uddbd\ud835\uddbe\ud835\uddbf\ud835\uddc2\ud835\uddc7\ud835\uddc2\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7. \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc51\ud835\udc52\ud835\udc53\ud835\udc56\ud835\udc5b\ud835\udc56\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(1 = (0)++). \u220e"}, {"color": "#FFF59D", "id": "P6", "label": "\ud835\udc43\u2086 : (2 = ((0)++)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2086): (2 =\n((0)++)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\ude1e\ud835\ude26 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26 \ud835\udfe3\n\ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\udfe2++, \ud835\udfe4 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26\n\ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 (\ud835\udfe2++)++, \ud835\udfe5 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 ((\ud835\udfe2++)++)++,\ud835\ude26\ud835\ude35\ud835\ude24. (\ud835\ude10\ud835\ude2f\n\ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude33 \ud835\ude38\ud835\ude30\ud835\ude33\ud835\ude25\ud835\ude34, \ud835\udfe3 := \ud835\udfe2++, \ud835\udfe4 := \ud835\udfe3++,\n\ud835\udfe5 := \ud835\udfe4++, \ud835\ude26\ud835\ude35\ud835\ude24. \ud835\ude10\ud835\ude2f \ud835\ude35\ud835\ude29\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude26\ud835\ude39\ud835\ude35 \ud835\ude10\n\ud835\ude36\ud835\ude34\ud835\ude26 \"\ud835\ude39 := \ud835\ude3a\" \ud835\ude35\ud835\ude30 \ud835\ude25\ud835\ude26\ud835\ude2f\ud835\ude30\ud835\ude35\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude34\ud835\ude35\ud835\ude22\ud835\ude35\ud835\ude26\ud835\ude2e\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude39 \ud835\ude2a\ud835\ude34 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26\ud835\ude25 \ud835\ude35\ud835\ude30\n\ud835\ude26\ud835\ude32\ud835\ude36\ud835\ude22\ud835\ude2d \ud835\ude3a.)\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2 \ud835\uddf1\ud835\uddf2\ud835\uddf3.\n(\ud835\udc37\u2081). (2 = ((0)++)++) \ud835\uddc2\ud835\uddcc \ud835\uddba\ud835\uddc7\n\ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7 \ud835\uddc8\ud835\uddbf \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n\ud835\uddbd\ud835\uddbe\ud835\uddbf\ud835\uddc2\ud835\uddc7\ud835\uddc2\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7. \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc51\ud835\udc52\ud835\udc53\ud835\udc56\ud835\udc5b\ud835\udc56\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(2 = ((0)++)++). \u220e"}, {"color": "#FFF59D", "id": "P7", "label": "\ud835\udc43\u2087 : (3 =\n(((0)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2087): (3 =\n(((0)++)++)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\ude1e\ud835\ude26\n\ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26 \ud835\udfe3 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\udfe2++, \ud835\udfe4\n\ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 (\ud835\udfe2++)++, \ud835\udfe5 \ud835\ude35\ud835\ude30\n\ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 ((\ud835\udfe2++)++)++,\ud835\ude26\ud835\ude35\ud835\ude24.\n(\ud835\ude10\ud835\ude2f \ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude33 \ud835\ude38\ud835\ude30\ud835\ude33\ud835\ude25\ud835\ude34, \ud835\udfe3 := \ud835\udfe2++, \ud835\udfe4 :=\n\ud835\udfe3++, \ud835\udfe5 := \ud835\udfe4++, \ud835\ude26\ud835\ude35\ud835\ude24. \ud835\ude10\ud835\ude2f \ud835\ude35\ud835\ude29\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude26\ud835\ude39\ud835\ude35\n\ud835\ude10 \ud835\ude36\ud835\ude34\ud835\ude26 \"\ud835\ude39 := \ud835\ude3a\" \ud835\ude35\ud835\ude30 \ud835\ude25\ud835\ude26\ud835\ude2f\ud835\ude30\ud835\ude35\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude34\ud835\ude35\ud835\ude22\ud835\ude35\ud835\ude26\ud835\ude2e\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude39 \ud835\ude2a\ud835\ude34 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26\ud835\ude25 \ud835\ude35\ud835\ude30\n\ud835\ude26\ud835\ude32\ud835\ude36\ud835\ude22\ud835\ude2d \ud835\ude3a.)\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2 \ud835\uddf1\ud835\uddf2\ud835\uddf3.\n(\ud835\udc37\u2081). (3 = (((0)++)++)++) \ud835\uddc2\ud835\uddcc \ud835\uddba\ud835\uddc7\n\ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7 \ud835\uddc8\ud835\uddbf \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n\ud835\uddbd\ud835\uddbe\ud835\uddbf\ud835\uddc2\ud835\uddc7\ud835\uddc2\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7. \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc51\ud835\udc52\ud835\udc53\ud835\udc56\ud835\udc5b\ud835\udc56\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(3 = (((0)++)++)++). \u220e"}, {"color": "#FFF59D", "id": "P8", "label": "\ud835\udc43\u2088 : (4 =\n((((0)++)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2088): (4 =\n((((0)++)++)++)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\ude1e\ud835\ude26\n\ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26 \ud835\udfe3 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\udfe2++, \ud835\udfe4\n\ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 (\ud835\udfe2++)++, \ud835\udfe5 \ud835\ude35\ud835\ude30\n\ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 ((\ud835\udfe2++)++)++,\ud835\ude26\ud835\ude35\ud835\ude24.\n(\ud835\ude10\ud835\ude2f \ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude33 \ud835\ude38\ud835\ude30\ud835\ude33\ud835\ude25\ud835\ude34, \ud835\udfe3 := \ud835\udfe2++, \ud835\udfe4 :=\n\ud835\udfe3++, \ud835\udfe5 := \ud835\udfe4++, \ud835\ude26\ud835\ude35\ud835\ude24. \ud835\ude10\ud835\ude2f \ud835\ude35\ud835\ude29\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude26\ud835\ude39\ud835\ude35\n\ud835\ude10 \ud835\ude36\ud835\ude34\ud835\ude26 \"\ud835\ude39 := \ud835\ude3a\" \ud835\ude35\ud835\ude30 \ud835\ude25\ud835\ude26\ud835\ude2f\ud835\ude30\ud835\ude35\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude34\ud835\ude35\ud835\ude22\ud835\ude35\ud835\ude26\ud835\ude2e\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude39 \ud835\ude2a\ud835\ude34 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26\ud835\ude25 \ud835\ude35\ud835\ude30\n\ud835\ude26\ud835\ude32\ud835\ude36\ud835\ude22\ud835\ude2d \ud835\ude3a.)\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2 \ud835\uddf1\ud835\uddf2\ud835\uddf3.\n(\ud835\udc37\u2081). (4 = ((((0)++)++)++)++) \ud835\uddc2\ud835\uddcc\n\ud835\uddba\ud835\uddc7 \ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7 \ud835\uddc8\ud835\uddbf \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n\ud835\uddbd\ud835\uddbe\ud835\uddbf\ud835\uddc2\ud835\uddc7\ud835\uddc2\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7. \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc51\ud835\udc52\ud835\udc53\ud835\udc56\ud835\udc5b\ud835\udc56\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(4 = ((((0)++)++)++)++). \u220e"}, {"color": "#FFF59D", "id": "P9", "label": "\ud835\udc43\u2089 : (((0)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n(((0)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2089): (((0)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n(((0)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((\ud835\udc27\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((\ud835\udc27\u2081)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2081 = (0)++.\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (((0)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 (((0)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P10", "label": "\ud835\udc43\u2081\u2080 : (((0)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2080): (((0)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n(((0)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n(((0)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2089).((0)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. \ud835\udfee.\ud835\udfee.\ud835\udfef (\ud835\udc43\u2084).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(((0)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f).\n\u220e"}, {"color": "#FFF59D", "id": "P11", "label": "\ud835\udc43\u2081\u2081 : ((((0)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u27f9 ((((0)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2081):\n((((0)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u27f9 ((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((\ud835\udc27\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((\ud835\udc27\u2081)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2081 = ((0)++)++.\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((0)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((((0)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P12", "label": "\ud835\udc43\u2081\u2082 : ((((0)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2082):\n((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((0)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((((0)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2081).(((0)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2080). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \u220e"}, {"color": "#FFF59D", "id": "P13", "label": "\ud835\udc43\u2081\u2083 :\n(((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n(((((0)++)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2083):\n(((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 (((((0)++)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n((\ud835\udc27\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n((\ud835\udc27\u2081)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2081\n= (((0)++)++)++. \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 (((((0)++)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P14", "label": "\ud835\udc43\u2081\u2084 :\n(((((0)++)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2084):\n(((((0)++)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (((((0)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n(((((0)++)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2081\u2083).((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2082). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (((((0)++)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \u220e"}, {"color": "#FFF59D", "id": "P15", "label": "\ud835\udc43\u2081\u2085 : ((0)++ = 1)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2085): ((0)++ =\n1). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (1 = (0)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66-\ud835\udc50\ud835\udc5c\ud835\udc5a\ud835\udc5a\ud835\udc62\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc63\ud835\udc56\ud835\udc61\ud835\udc66\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n((0)++ = 1). \u220e"}, {"color": "#FFF59D", "id": "P16", "label": "\ud835\udc43\u2081\u2086 : (2 = (1)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2086): (2 =\n(1)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (2 = ((0)++)++)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2086). ((0)++\n= 1) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2085).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (2 = (1)++). \u220e"}, {"color": "#FFF59D", "id": "P17", "label": "\ud835\udc43\u2081\u2087 : (((0)++)++ =\n2)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2087): (((0)++)++\n= 2). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (2 = ((0)++)++)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2086).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66-\n\ud835\udc50\ud835\udc5c\ud835\udc5a\ud835\udc5a\ud835\udc62\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc63\ud835\udc56\ud835\udc61\ud835\udc66 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (((0)++)++ = 2). \u220e"}, {"color": "#FFF59D", "id": "P18", "label": "\ud835\udc43\u2081\u2088 : (3 = (2)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2088): (3 =\n(2)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (3 =\n(((0)++)++)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2087). (((0)++)++ = 2)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2087).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (3 = (2)++). \u220e"}, {"color": "#FFF59D", "id": "P19", "label": "\ud835\udc43\u2081\u2089 : ((((0)++)++)++\n= 3)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2089):\n((((0)++)++)++ = 3). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (3 =\n(((0)++)++)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2087). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66-\ud835\udc50\ud835\udc5c\ud835\udc5a\ud835\udc5a\ud835\udc62\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc63\ud835\udc56\ud835\udc61\ud835\udc66 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n((((0)++)++)++ = 3). \u220e"}, {"color": "#FFF59D", "id": "P20", "label": "\ud835\udc43\u2082\u2080 : ((2)++ = 3)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2080): ((2)++ =\n3). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((0)++)++)++ = 3)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2089).\n(((0)++)++ = 2) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2087). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n((2)++ = 3). \u220e"}, {"color": "#FFF59D", "id": "P21", "label": "\ud835\udc43\u2082\u2081 (\ud835\udfee.\ud835\udfed.\ud835\udff0) : (3\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)", "labelHighlightBold": true, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb \ud835\udfee.\ud835\udfed.\ud835\udff0 (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2081): (3\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2081\u2082). ((((0)++)++)++ = 3)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2089).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (3 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \u220e"}, {"color": "#FFF59D", "id": "P22", "label": "\ud835\udc43\u2082\u2082 : (4 =\n((((0)++)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2082): (4 =\n((((0)++)++)++)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\ude1e\ud835\ude26\n\ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26 \ud835\udfe3 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\udfe2++, \ud835\udfe4\n\ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 (\ud835\udfe2++)++, \ud835\udfe5 \ud835\ude35\ud835\ude30\n\ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 ((\ud835\udfe2++)++)++,\ud835\ude26\ud835\ude35\ud835\ude24.\n(\ud835\ude10\ud835\ude2f \ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude33 \ud835\ude38\ud835\ude30\ud835\ude33\ud835\ude25\ud835\ude34, \ud835\udfe3 := \ud835\udfe2++, \ud835\udfe4 :=\n\ud835\udfe3++, \ud835\udfe5 := \ud835\udfe4++, \ud835\ude26\ud835\ude35\ud835\ude24. \ud835\ude10\ud835\ude2f \ud835\ude35\ud835\ude29\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude26\ud835\ude39\ud835\ude35\n\ud835\ude10 \ud835\ude36\ud835\ude34\ud835\ude26 \"\ud835\ude39 := \ud835\ude3a\" \ud835\ude35\ud835\ude30 \ud835\ude25\ud835\ude26\ud835\ude2f\ud835\ude30\ud835\ude35\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude34\ud835\ude35\ud835\ude22\ud835\ude35\ud835\ude26\ud835\ude2e\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude39 \ud835\ude2a\ud835\ude34 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26\ud835\ude25 \ud835\ude35\ud835\ude30\n\ud835\ude26\ud835\ude32\ud835\ude36\ud835\ude22\ud835\ude2d \ud835\ude3a.)\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2 \ud835\uddf1\ud835\uddf2\ud835\uddf3.\n(\ud835\udc37\u2081). (4 = ((((0)++)++)++)++) \ud835\uddc2\ud835\uddcc\n\ud835\uddba\ud835\uddc7 \ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7 \ud835\uddc8\ud835\uddbf \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n\ud835\uddbd\ud835\uddbe\ud835\uddbf\ud835\uddc2\ud835\uddc7\ud835\uddc2\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7. \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc51\ud835\udc52\ud835\udc53\ud835\udc56\ud835\udc5b\ud835\udc56\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(4 = ((((0)++)++)++)++). \u220e"}, {"color": "#FFF59D", "id": "P23", "label": "\ud835\udc43\u2082\u2083 :\n(((((0)++)++)++)++ =\n4)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2083):\n(((((0)++)++)++)++ = 4). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n(4 = ((((0)++)++)++)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2088). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66-\ud835\udc50\ud835\udc5c\ud835\udc5a\ud835\udc5a\ud835\udc62\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc63\ud835\udc56\ud835\udc61\ud835\udc66\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(((((0)++)++)++)++ = 4). \u220e"}, {"color": "#FFF59D", "id": "P24", "label": "\ud835\udc43\u2082\u2084 : ((3)++ = 4)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2084): ((3)++ =\n4). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (((((0)++)++)++)++ =\n4) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082\u2083).\n((((0)++)++)++ = 3) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2089). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n((3)++ = 4). \u220e"}, {"color": "#FFF59D", "id": "P25", "label": "\ud835\udc43\u2082\u2085 :\n(((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n(((((0)++)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2085):\n(((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 (((((0)++)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n(((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 (((((0)++)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2083). ((3)++ = 4)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082\u2084).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (((((0)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n(((((0)++)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P26", "label": "\ud835\udc43\u2082\u2086 : (4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2086): (4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n(((((0)++)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2081\u2084). (((((0)++)++)++)++ = 4)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082\u2083).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \u220e"}, {"color": "#81C784", "id": "A3", "label": "\ud835\udc34\u2083 (\ud835\udfee.\ud835\udfef) : \u231c\ud835\udfe2 \ud835\ude2a\ud835\ude34 \ud835\ude2f\ud835\ude30\ud835\ude35\n\ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude34\ud835\ude36\ud835\ude24\ud835\ude24\ud835\ude26\ud835\ude34\ud835\ude34\ud835\ude30\ud835\ude33 \ud835\ude30\ud835\ude27 \ud835\ude22\ud835\ude2f\ud835\ude3a\n\ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33;\n\ud835\ude2a.\ud835\ude26., \ud835\ude38\ud835\ude26 \ud835\ude29\ud835\ude22\ud835\ude37\ud835\ude26 \ud835\ude2f++ \u2260\n\ud835\udfe2 \ud835\ude27\ud835\ude30\ud835\ude33 \ud835\ude26\ud835\ude37\ud835\ude26\ud835\ude33\ud835\ude3a \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d\n\ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\ude2f.\u231d", "shape": "box"}, {"color": "#FFF59D", "id": "P27", "label": "\ud835\udc43\u2082\u2087 : ((\ud835\udc27\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n((\ud835\udc27\u2082)++ \u2260 0))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2087): ((\ud835\udc27\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((\ud835\udc27\u2082)++ \u2260 0)).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\udfe2 \ud835\ude2a\ud835\ude34 \ud835\ude2f\ud835\ude30\ud835\ude35 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude34\ud835\ude36\ud835\ude24\ud835\ude24\ud835\ude26\ud835\ude34\ud835\ude34\ud835\ude30\ud835\ude33\n\ud835\ude30\ud835\ude27 \ud835\ude22\ud835\ude2f\ud835\ude3a \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33; \ud835\ude2a.\ud835\ude26., \ud835\ude38\ud835\ude26\n\ud835\ude29\ud835\ude22\ud835\ude37\ud835\ude26 \ud835\ude2f++ \u2260 \ud835\udfe2 \ud835\ude27\ud835\ude30\ud835\ude33 \ud835\ude26\ud835\ude37\ud835\ude26\ud835\ude33\ud835\ude3a \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d\n\ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\ude2f.\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2\n\ud835\uddee\ud835\ude05\ud835\uddf6\ud835\uddfc\ud835\uddfa \ud835\udfee.\ud835\udfef (\ud835\udc34\u2083). ((\ud835\udc27\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((\ud835\udc27\u2082)++ \u2260 0))\n\ud835\uddc2\ud835\uddcc \ud835\uddba \ud835\uddcf\ud835\uddba\ud835\uddc5\ud835\uddc2\ud835\uddbd \ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddc6\ud835\uddce\ud835\uddc5\ud835\uddba \ud835\uddcc\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddc6\ud835\uddbe\ud835\uddc7\ud835\uddcd\n\ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd \ud835\uddba\ud835\uddd1\ud835\uddc2\ud835\uddc8\ud835\uddc6.\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc4e\ud835\udc65\ud835\udc56\ud835\udc5c\ud835\udc5a-\n\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe,\n\ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((\ud835\udc27\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((\ud835\udc27\u2082)++ \u2260 0)).\n\u220e"}, {"color": "#FFF59D", "id": "P28", "label": "\ud835\udc43\u2082\u2088 : ((3 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n((3)++ \u2260 0))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2088): ((3 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((3)++ \u2260 0)).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((\ud835\udc27\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u27f9 ((\ud835\udc27\u2082)++ \u2260 0)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082\u2087). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2082 = 3.\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((3 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((3)++ \u2260 0)). \u220e"}, {"color": "#FFF59D", "id": "P29", "label": "\ud835\udc43\u2082\u2089 : ((3)++ \u2260 0)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2089): ((3)++ \u2260\n0). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((3 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((3)++ \u2260 0)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082\u2088).(3 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. \ud835\udfee.\ud835\udfed.\ud835\udff0 (\ud835\udc43\u2082\u2081). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe,\n\ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((3)++ \u2260 0). \u220e"}, {"color": "#FFF59D", "id": "P30", "label": "\ud835\udc43\u2083\u2080 (\ud835\udfee.\ud835\udfed.\ud835\udff2) : (4 \u2260\n0)", "labelHighlightBold": true, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb \ud835\udfee.\ud835\udfed.\ud835\udff2 (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2080): (4 \u2260\n0). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((3)++ \u2260 0) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082\u2089). ((3)++ = 4)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082\u2084).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (4 \u2260 0). \u220e"}, {"color": "#81C784", "id": "A4", "label": "\ud835\udc34\u2084 (\ud835\udfee.\ud835\udff0) :\n\u231c\ud835\ude0b\ud835\ude2a\ud835\ude27\ud835\ude27\ud835\ude26\ud835\ude33\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d\n\ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\ud835\ude34 \ud835\ude2e\ud835\ude36\ud835\ude34\ud835\ude35 \ud835\ude29\ud835\ude22\ud835\ude37\ud835\ude26\n\ud835\ude25\ud835\ude2a\ud835\ude27\ud835\ude27\ud835\ude26\ud835\ude33\ud835\ude26\ud835\ude2f\ud835\ude35\n\ud835\ude34\ud835\ude36\ud835\ude24\ud835\ude24\ud835\ude26\ud835\ude34\ud835\ude34\ud835\ude30\ud835\ude33\ud835\ude34; \ud835\ude2a.\ud835\ude26., \ud835\ude2a\ud835\ude27\n\ud835\ude2f, \ud835\ude2e \ud835\ude22\ud835\ude33\ud835\ude26 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d\n\ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\ud835\ude34 \ud835\ude22\ud835\ude2f\ud835\ude25 \ud835\ude2f \u2260 \ud835\ude2e,\n\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude2f \ud835\ude2f++ \u2260 \ud835\ude2e++.\n\ud835\ude0c\ud835\ude32\ud835\ude36\ud835\ude2a\ud835\ude37\ud835\ude22\ud835\ude2d\ud835\ude26\ud835\ude2f\ud835\ude35\ud835\ude2d\ud835\ude3a, \ud835\ude2a\ud835\ude27 \ud835\ude2f++\n= \ud835\ude2e++, \ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude2f \ud835\ude38\ud835\ude26 \ud835\ude2e\ud835\ude36\ud835\ude34\ud835\ude35\n\ud835\ude29\ud835\ude22\ud835\ude37\ud835\ude26 \ud835\ude2f = \ud835\ude2e.\u231d", "shape": "box"}, {"color": "#FFF59D", "id": "P31", "label": "\ud835\udc43\u2083\u2081 : ((((\ud835\udc27\u2083 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227\n(\ud835\udc26\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (\ud835\udc27\u2083 \u2260\n\ud835\udc26\u2081)) \u27f9 ((\ud835\udc27\u2083)++ \u2260\n(\ud835\udc26\u2081)++))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2081): ((((\ud835\udc27\u2083\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc26\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (\ud835\udc27\u2083 \u2260 \ud835\udc26\u2081)) \u27f9\n((\ud835\udc27\u2083)++ \u2260 (\ud835\udc26\u2081)++)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n\u231c\ud835\ude0b\ud835\ude2a\ud835\ude27\ud835\ude27\ud835\ude26\ud835\ude33\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\ud835\ude34 \ud835\ude2e\ud835\ude36\ud835\ude34\ud835\ude35\n\ud835\ude29\ud835\ude22\ud835\ude37\ud835\ude26 \ud835\ude25\ud835\ude2a\ud835\ude27\ud835\ude27\ud835\ude26\ud835\ude33\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude34\ud835\ude36\ud835\ude24\ud835\ude24\ud835\ude26\ud835\ude34\ud835\ude34\ud835\ude30\ud835\ude33\ud835\ude34; \ud835\ude2a.\ud835\ude26.,\n\ud835\ude2a\ud835\ude27 \ud835\ude2f, \ud835\ude2e \ud835\ude22\ud835\ude33\ud835\ude26 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\ud835\ude34 \ud835\ude22\ud835\ude2f\ud835\ude25\n\ud835\ude2f \u2260 \ud835\ude2e, \ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude2f \ud835\ude2f++ \u2260 \ud835\ude2e++.\n\ud835\ude0c\ud835\ude32\ud835\ude36\ud835\ude2a\ud835\ude37\ud835\ude22\ud835\ude2d\ud835\ude26\ud835\ude2f\ud835\ude35\ud835\ude2d\ud835\ude3a, \ud835\ude2a\ud835\ude27 \ud835\ude2f++ = \ud835\ude2e++, \ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude2f\n\ud835\ude38\ud835\ude26 \ud835\ude2e\ud835\ude36\ud835\ude34\ud835\ude35 \ud835\ude29\ud835\ude22\ud835\ude37\ud835\ude26 \ud835\ude2f = \ud835\ude2e.\u231d \ud835\uddc2\ud835\uddcc\n\ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2 \ud835\uddee\ud835\ude05\ud835\uddf6\ud835\uddfc\ud835\uddfa \ud835\udfee.\ud835\udff0 (\ud835\udc34\u2084).\n((((\ud835\udc27\u2083 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227\n(\ud835\udc26\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (\ud835\udc27\u2083\n\u2260 \ud835\udc26\u2081)) \u27f9 ((\ud835\udc27\u2083)++ \u2260 (\ud835\udc26\u2081)++)) \ud835\uddc2\ud835\uddcc \ud835\uddba\n\ud835\uddcf\ud835\uddba\ud835\uddc5\ud835\uddc2\ud835\uddbd \ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddc6\ud835\uddce\ud835\uddc5\ud835\uddba \ud835\uddcc\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddc6\ud835\uddbe\ud835\uddc7\ud835\uddcd\n\ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd \ud835\uddba\ud835\uddd1\ud835\uddc2\ud835\uddc8\ud835\uddc6.\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc4e\ud835\udc65\ud835\udc56\ud835\udc5c\ud835\udc5a-\n\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe,\n\ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((\ud835\udc27\u2083 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc26\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (\ud835\udc27\u2083 \u2260 \ud835\udc26\u2081)) \u27f9\n((\ud835\udc27\u2083)++ \u2260 (\ud835\udc26\u2081)++)). \u220e"}, {"color": "#FFF59D", "id": "P32", "label": "\ud835\udc43\u2083\u2082 : ((((\ud835\udc27\u2084 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227\n(\ud835\udc26\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((\ud835\udc27\u2084)++ =\n(\ud835\udc26\u2082)++)) \u27f9 (\ud835\udc27\u2084 =\n\ud835\udc26\u2082))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2082): ((((\ud835\udc27\u2084\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc26\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((\ud835\udc27\u2084)++ =\n(\ud835\udc26\u2082)++)) \u27f9 (\ud835\udc27\u2084 = \ud835\udc26\u2082)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n\u231c\ud835\ude0b\ud835\ude2a\ud835\ude27\ud835\ude27\ud835\ude26\ud835\ude33\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\ud835\ude34 \ud835\ude2e\ud835\ude36\ud835\ude34\ud835\ude35\n\ud835\ude29\ud835\ude22\ud835\ude37\ud835\ude26 \ud835\ude25\ud835\ude2a\ud835\ude27\ud835\ude27\ud835\ude26\ud835\ude33\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude34\ud835\ude36\ud835\ude24\ud835\ude24\ud835\ude26\ud835\ude34\ud835\ude34\ud835\ude30\ud835\ude33\ud835\ude34; \ud835\ude2a.\ud835\ude26.,\n\ud835\ude2a\ud835\ude27 \ud835\ude2f, \ud835\ude2e \ud835\ude22\ud835\ude33\ud835\ude26 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\ud835\ude34 \ud835\ude22\ud835\ude2f\ud835\ude25\n\ud835\ude2f \u2260 \ud835\ude2e, \ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude2f \ud835\ude2f++ \u2260 \ud835\ude2e++.\n\ud835\ude0c\ud835\ude32\ud835\ude36\ud835\ude2a\ud835\ude37\ud835\ude22\ud835\ude2d\ud835\ude26\ud835\ude2f\ud835\ude35\ud835\ude2d\ud835\ude3a, \ud835\ude2a\ud835\ude27 \ud835\ude2f++ = \ud835\ude2e++, \ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude2f\n\ud835\ude38\ud835\ude26 \ud835\ude2e\ud835\ude36\ud835\ude34\ud835\ude35 \ud835\ude29\ud835\ude22\ud835\ude37\ud835\ude26 \ud835\ude2f = \ud835\ude2e.\u231d \ud835\uddc2\ud835\uddcc\n\ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2 \ud835\uddee\ud835\ude05\ud835\uddf6\ud835\uddfc\ud835\uddfa \ud835\udfee.\ud835\udff0 (\ud835\udc34\u2084).\n((((\ud835\udc27\u2084 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227\n(\ud835\udc26\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227\n((\ud835\udc27\u2084)++ = (\ud835\udc26\u2082)++)) \u27f9 (\ud835\udc27\u2084 = \ud835\udc26\u2082))\n\ud835\uddc2\ud835\uddcc \ud835\uddba \ud835\uddcf\ud835\uddba\ud835\uddc5\ud835\uddc2\ud835\uddbd \ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddc6\ud835\uddce\ud835\uddc5\ud835\uddba \ud835\uddcc\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddc6\ud835\uddbe\ud835\uddc7\ud835\uddcd\n\ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd \ud835\uddba\ud835\uddd1\ud835\uddc2\ud835\uddc8\ud835\uddc6.\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc4e\ud835\udc65\ud835\udc56\ud835\udc5c\ud835\udc5a-\n\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe,\n\ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((\ud835\udc27\u2084 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc26\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((\ud835\udc27\u2084)++ =\n(\ud835\udc26\u2082)++)) \u27f9 (\ud835\udc27\u2084 = \ud835\udc26\u2082)). \u220e"}, {"color": "#FFF59D", "id": "P33", "label": "\ud835\udc43\u2083\u2083 : ((((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260 0))\n\u27f9 ((4)++ \u2260 (0)++))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2083): ((((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260 0)) \u27f9\n((4)++ \u2260 (0)++)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((\ud835\udc27\u2083\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc26\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (\ud835\udc27\u2083 \u2260 \ud835\udc26\u2081)) \u27f9\n((\ud835\udc27\u2083)++ \u2260 (\ud835\udc26\u2081)++)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2081). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2083 = 4, \ud835\udc26\u2081 = 0.\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260 0)) \u27f9 ((4)++ \u2260\n(0)++)). \u220e"}, {"color": "#FFF59D", "id": "P34", "label": "\ud835\udc43\u2083\u2084 : ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2084): ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082\u2086). (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc50\ud835\udc5c\ud835\udc5b\ud835\udc57\ud835\udc62\ud835\udc5b\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\n\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc5f\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P35", "label": "\ud835\udc43\u2083\u2085 : (((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260 0))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2085): (((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260 0)).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2084). (4 \u2260\n0) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. \ud835\udfee.\ud835\udfed.\ud835\udff2\n(\ud835\udc43\u2083\u2080). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc50\ud835\udc5c\ud835\udc5b\ud835\udc57\ud835\udc62\ud835\udc5b\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc5f\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(((4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260\n0)). \u220e"}, {"color": "#FFF59D", "id": "P36", "label": "\ud835\udc43\u2083\u2086 : ((4)++ \u2260\n(0)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2086): ((4)++ \u2260\n(0)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260 0)) \u27f9\n((4)++ \u2260 (0)++)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2083).(((4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260 0)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2085). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((4)++ \u2260 (0)++). \u220e"}, {"color": "#FFF59D", "id": "P37", "label": "\ud835\udc43\u2083\u2087 : (5 = (((((0)++\n)++)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2087): (5 =\n(((((0)++)++)++)++)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n\u231c\ud835\ude1e\ud835\ude26 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26 \ud835\udfe3 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\n\ud835\udfe2++, \ud835\udfe4 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 (\ud835\udfe2++)++,\n\ud835\udfe5 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\n((\ud835\udfe2++)++)++,\ud835\ude26\ud835\ude35\ud835\ude24. (\ud835\ude10\ud835\ude2f \ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude33\n\ud835\ude38\ud835\ude30\ud835\ude33\ud835\ude25\ud835\ude34, \ud835\udfe3 := \ud835\udfe2++, \ud835\udfe4 := \ud835\udfe3++, \ud835\udfe5 :=\n\ud835\udfe4++, \ud835\ude26\ud835\ude35\ud835\ude24. \ud835\ude10\ud835\ude2f \ud835\ude35\ud835\ude29\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude26\ud835\ude39\ud835\ude35 \ud835\ude10 \ud835\ude36\ud835\ude34\ud835\ude26 \"\ud835\ude39\n:= \ud835\ude3a\" \ud835\ude35\ud835\ude30 \ud835\ude25\ud835\ude26\ud835\ude2f\ud835\ude30\ud835\ude35\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude34\ud835\ude35\ud835\ude22\ud835\ude35\ud835\ude26\ud835\ude2e\ud835\ude26\ud835\ude2f\ud835\ude35\n\ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude39 \ud835\ude2a\ud835\ude34 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26\ud835\ude25 \ud835\ude35\ud835\ude30 \ud835\ude26\ud835\ude32\ud835\ude36\ud835\ude22\ud835\ude2d \ud835\ude3a.)\u231d\n\ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2 \ud835\uddf1\ud835\uddf2\ud835\uddf3. (\ud835\udc37\u2081). (5 =\n(((((0)++)++)++)++)++) \ud835\uddc2\ud835\uddcc \ud835\uddba\ud835\uddc7\n\ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7 \ud835\uddc8\ud835\uddbf \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n\ud835\uddbd\ud835\uddbe\ud835\uddbf\ud835\uddc2\ud835\uddc7\ud835\uddc2\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7. \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc51\ud835\udc52\ud835\udc53\ud835\udc56\ud835\udc5b\ud835\udc56\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(5 = (((((0)++)++)++)++)++). \u220e"}, {"color": "#FFF59D", "id": "P38", "label": "\ud835\udc43\u2083\u2088 : ((((((0)++)++)\n++)++)++ = 5)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2088):\n((((((0)++)++)++)++)++ = 5).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (5 =\n(((((0)++)++)++)++)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2087). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66-\ud835\udc50\ud835\udc5c\ud835\udc5a\ud835\udc5a\ud835\udc62\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc63\ud835\udc56\ud835\udc61\ud835\udc66\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n((((((0)++)++)++)++)++ = 5). \u220e"}, {"color": "#FFF59D", "id": "P39", "label": "\ud835\udc43\u2083\u2089 : ((4)++ = 5)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2089): ((4)++ =\n5). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n((((((0)++)++)++)++)++ = 5)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2088).\n(((((0)++)++)++)++ = 4) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082\u2083). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n((4)++ = 5). \u220e"}, {"color": "#FFF59D", "id": "P40", "label": "\ud835\udc43\u2084\u2080 : (5 = (4)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2080): (5 =\n(4)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((4)++ = 5)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2089).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66-\n\ud835\udc50\ud835\udc5c\ud835\udc5a\ud835\udc5a\ud835\udc62\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc63\ud835\udc56\ud835\udc61\ud835\udc66 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (5 = (4)++). \u220e"}, {"color": "#FFF59D", "id": "P41", "label": "\ud835\udc43\u2084\u2081 : ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1))\n\u27f9 ((5)++ \u2260 (1)++))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2081): ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9\n((5)++ \u2260 (1)++)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((\ud835\udc27\u2083\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc26\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (\ud835\udc27\u2083 \u2260 \ud835\udc26\u2081)) \u27f9\n((\ud835\udc27\u2083)++ \u2260 (\ud835\udc26\u2081)++)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2081). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2083 = 5, \ud835\udc26\u2081 = 1.\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9 ((5)++ \u2260\n(1)++)). \u220e"}, {"color": "#FFF59D", "id": "P42", "label": "\ud835\udc43\u2084\u2082 : ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n((4)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2082): ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((4)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((\ud835\udc27\u2081\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((\ud835\udc27\u2081)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2081 = 4.\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((4)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P43", "label": "\ud835\udc43\u2084\u2083 : ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 (5\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2083): ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 (5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((4\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((4)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2082). ((4)++ = 5)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2089).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 (5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P44", "label": "\ud835\udc43\u2084\u2084 : (5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2084): (5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 (5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2083).(4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2082\u2086). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\n\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \u220e"}, {"color": "#FFF59D", "id": "P45", "label": "\ud835\udc43\u2084\u2085 : ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1))\n\u27f9 ((5)++ \u2260 (1)++))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2085): ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9\n((5)++ \u2260 (1)++)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((\ud835\udc27\u2083\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc26\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (\ud835\udc27\u2083 \u2260 \ud835\udc26\u2081)) \u27f9\n((\ud835\udc27\u2083)++ \u2260 (\ud835\udc26\u2081)++)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2081). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2083 = 5, \ud835\udc26\u2081 = 1.\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9 ((5)++ \u2260\n(1)++)). \u220e"}, {"color": "#FFF59D", "id": "P46", "label": "\ud835\udc43\u2084\u2086 : ((4)++ \u2260\n(0)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2086): ((4)++ \u2260\n(0)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260 0)) \u27f9\n((4)++ \u2260 (0)++)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2083).(((4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260 0)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2085). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((4)++ \u2260 (0)++). \u220e"}, {"color": "#FFF59D", "id": "P47", "label": "\ud835\udc43\u2084\u2087 : (5 \u2260 (0)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2087): (5 \u2260\n(0)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((4)++ \u2260 (0)++)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2086). ((4)++\n= 5) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2089).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (5 \u2260 (0)++). \u220e"}, {"color": "#FFF59D", "id": "P48", "label": "\ud835\udc43\u2084\u2088 : (6 = ((((((0)+\n+)++)++)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2088): (6 =\n((((((0)++)++)++)++)++)++).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\ude1e\ud835\ude26 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26 \ud835\udfe3 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\udfe2++, \ud835\udfe4 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\n(\ud835\udfe2++)++, \ud835\udfe5 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\n((\ud835\udfe2++)++)++,\ud835\ude26\ud835\ude35\ud835\ude24. (\ud835\ude10\ud835\ude2f \ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude33\n\ud835\ude38\ud835\ude30\ud835\ude33\ud835\ude25\ud835\ude34, \ud835\udfe3 := \ud835\udfe2++, \ud835\udfe4 := \ud835\udfe3++, \ud835\udfe5 :=\n\ud835\udfe4++, \ud835\ude26\ud835\ude35\ud835\ude24. \ud835\ude10\ud835\ude2f \ud835\ude35\ud835\ude29\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude26\ud835\ude39\ud835\ude35 \ud835\ude10 \ud835\ude36\ud835\ude34\ud835\ude26 \"\ud835\ude39\n:= \ud835\ude3a\" \ud835\ude35\ud835\ude30 \ud835\ude25\ud835\ude26\ud835\ude2f\ud835\ude30\ud835\ude35\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude34\ud835\ude35\ud835\ude22\ud835\ude35\ud835\ude26\ud835\ude2e\ud835\ude26\ud835\ude2f\ud835\ude35\n\ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude39 \ud835\ude2a\ud835\ude34 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26\ud835\ude25 \ud835\ude35\ud835\ude30 \ud835\ude26\ud835\ude32\ud835\ude36\ud835\ude22\ud835\ude2d \ud835\ude3a.)\u231d\n\ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2 \ud835\uddf1\ud835\uddf2\ud835\uddf3. (\ud835\udc37\u2081). (6 =\n((((((0)++)++)++)++)++)++) \ud835\uddc2\ud835\uddcc \ud835\uddba\ud835\uddc7\n\ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7 \ud835\uddc8\ud835\uddbf \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n\ud835\uddbd\ud835\uddbe\ud835\uddbf\ud835\uddc2\ud835\uddc7\ud835\uddc2\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7. \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc51\ud835\udc52\ud835\udc53\ud835\udc56\ud835\udc5b\ud835\udc56\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(6 = ((((((0)++)++)++)++)++)++).\n\u220e"}, {"color": "#FFF59D", "id": "P49", "label": "\ud835\udc43\u2084\u2089 : (((((((0)++)++\n)++)++)++)++ = 6)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2089):\n(((((((0)++)++)++)++)++)++ = 6).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (6 =\n((((((0)++)++)++)++)++)++)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2088).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66-\n\ud835\udc50\ud835\udc5c\ud835\udc5a\ud835\udc5a\ud835\udc62\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc63\ud835\udc56\ud835\udc61\ud835\udc66 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(((((((0)++)++)++)++)++)++ = 6).\n\u220e"}, {"color": "#FFF59D", "id": "P50", "label": "\ud835\udc43\u2085\u2080 : (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2085\u2080): (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((0)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. \ud835\udfee.\ud835\udfee.\ud835\udfef (\ud835\udc43\u2084). ((0)++ =\n1) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2085).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (1 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \u220e"}, {"color": "#FFF59D", "id": "P51", "label": "\ud835\udc43\u2085\u2081 : ((5)++ = 6)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2085\u2081): ((5)++ =\n6). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n(((((((0)++)++)++)++)++)++ = 6)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2089).\n((((((0)++)++)++)++)++ = 5)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2088).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((5)++ = 6). \u220e"}, {"color": "#FFF59D", "id": "P52", "label": "\ud835\udc43\u2085\u2082 : (6 = (5)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2085\u2082): (6 =\n(5)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((5)++ = 6)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085\u2081).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66-\n\ud835\udc50\ud835\udc5c\ud835\udc5a\ud835\udc5a\ud835\udc62\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc63\ud835\udc56\ud835\udc61\ud835\udc66 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (6 = (5)++). \u220e"}, {"color": "#FFF59D", "id": "P66", "label": "\ud835\udc43\u2086\u2086 : \ud835\udc3c\ud835\udc5b\ud835\udc50(\u210b\u2081)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2086\u2086): \ud835\udc3c\ud835\udc5b\ud835\udc50(\u210b\u2081).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \ud835\udc43\u2086\u2085 \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2086\u2085). \ud835\udc43\u2083\u2080 \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n\ud835\udfee.\ud835\udfed.\ud835\udff2 (\ud835\udc43\u2083\u2080). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc56\ud835\udc5b\ud835\udc50\ud835\udc5c\ud835\udc5b\ud835\udc60\ud835\udc56\ud835\udc60\ud835\udc61\ud835\udc52\ud835\udc5b\ud835\udc50\ud835\udc66-\ud835\udc4f\ud835\udc66-\ud835\udc56\ud835\udc5b\ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66-\n\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc5f\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd \ud835\udc3c\ud835\udc5b\ud835\udc50(\u210b\u2081). \u220e"}, {"color": "#FFF59D", "id": "P65", "label": "\ud835\udc43\u2086\u2085 : (4 = 0)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2086\u2085): (4 = 0).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((4)++ = (0)++)) \u27f9 (4\n= 0)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2086\u2084).(((4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227\n((4)++ = (0)++)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2086\u2083). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (4 = 0). \u220e"}, {"color": "#FFF59D", "id": "P64", "label": "\ud835\udc43\u2086\u2084 : ((((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((4)++ =\n(0)++)) \u27f9 (4 = 0))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2086\u2084): ((((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((4)++ =\n(0)++)) \u27f9 (4 = 0)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n((((\ud835\udc27\u2084 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227\n(\ud835\udc26\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227\n((\ud835\udc27\u2084)++ = (\ud835\udc26\u2082)++)) \u27f9 (\ud835\udc27\u2084 = \ud835\udc26\u2082))\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2082). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2084\n= 4, \ud835\udc26\u2082 = 0. \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((4)++ =\n(0)++)) \u27f9 (4 = 0)). \u220e"}, {"color": "#FFF59D", "id": "P63", "label": "\ud835\udc43\u2086\u2083 : (((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((4)++ =\n(0)++))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2086\u2083): (((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((4)++ =\n(0)++)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2086\u2082). ((4)++ = (0)++)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2086\u2081).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc50\ud835\udc5c\ud835\udc5b\ud835\udc57\ud835\udc62\ud835\udc5b\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\n\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc5f\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (((4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((4)++ = (0)++)). \u220e"}, {"color": "#FFF59D", "id": "P62", "label": "\ud835\udc43\u2086\u2082 : ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2086\u2082): ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082\u2086). (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc50\ud835\udc5c\ud835\udc5b\ud835\udc57\ud835\udc62\ud835\udc5b\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\n\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc5f\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P61", "label": "\ud835\udc43\u2086\u2081 : ((4)++ =\n(0)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2086\u2081): ((4)++ =\n(0)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((4)++ = 1)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2086\u2080). (1 =\n(0)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((4)++ = (0)++). \u220e"}, {"color": "#FFF59D", "id": "P60", "label": "\ud835\udc43\u2086\u2080 : ((4)++ = 1)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2086\u2080): ((4)++ =\n1). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (5 = 1) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085\u2089). (5 = (4)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2080). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n((4)++ = 1). \u220e"}, {"color": "#FFF59D", "id": "P59", "label": "\ud835\udc43\u2085\u2089 : (5 = 1)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2085\u2089): (5 = 1).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((5)++ = (1)++)) \u27f9 (5\n= 1)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2085\u2088).(((5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227\n((5)++ = (1)++)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085\u2087). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (5 = 1). \u220e"}, {"color": "#FFF59D", "id": "P58", "label": "\ud835\udc43\u2085\u2088 : ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((5)++ =\n(1)++)) \u27f9 (5 = 1))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2085\u2088): ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((5)++ =\n(1)++)) \u27f9 (5 = 1)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n((((\ud835\udc27\u2084 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227\n(\ud835\udc26\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227\n((\ud835\udc27\u2084)++ = (\ud835\udc26\u2082)++)) \u27f9 (\ud835\udc27\u2084 = \ud835\udc26\u2082))\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2082). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2084\n= 5, \ud835\udc26\u2082 = 1. \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((5)++ =\n(1)++)) \u27f9 (5 = 1)). \u220e"}, {"color": "#FFF59D", "id": "P57", "label": "\ud835\udc43\u2085\u2087 : (((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((5)++ =\n(1)++))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2085\u2087): (((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((5)++ =\n(1)++)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085\u2086). ((5)++ = (1)++)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085\u2085).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc50\ud835\udc5c\ud835\udc5b\ud835\udc57\ud835\udc62\ud835\udc5b\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\n\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc5f\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (((5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((5)++ = (1)++)). \u220e"}, {"color": "#FFF59D", "id": "P56", "label": "\ud835\udc43\u2085\u2086 : ((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2085\u2086): ((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2084). (1 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2085\u2080). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc50\ud835\udc5c\ud835\udc5b\ud835\udc57\ud835\udc62\ud835\udc5b\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc5f\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n((5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P55", "label": "\ud835\udc43\u2085\u2085 : ((5)++ =\n(1)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2085\u2085): ((5)++ =\n(1)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((5)++ = 2)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085\u2084). (2 =\n(1)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2086).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((5)++ = (1)++). \u220e"}, {"color": "#FFF59D", "id": "P54", "label": "\ud835\udc43\u2085\u2084 : ((5)++ = 2)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2085\u2084): ((5)++ =\n2). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (6 = 2) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085\u2083). (6 = (5)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085\u2082). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n((5)++ = 2). \u220e"}, {"color": "#FFF59D", "id": "P53", "label": "\ud835\udc43\u2085\u2083 : (6 = 2)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2085\u2083): (6 = 2).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\ude09\ud835\ude3a \ud835\ude29\ud835\ude3a\ud835\ude31\ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude34\ud835\ude2a\ud835\ude34, \ud835\ude22\ud835\ude34\ud835\ude34\ud835\ude36\ud835\ude2e\ud835\ude26 (\ud835\udfe8\n= \ud835\udfe4) \ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26.\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2\n\ud835\uddee\ud835\ude05\ud835\uddf6\ud835\uddfc\ud835\uddfa (\ud835\udc34\u2085). (6 = 2) \ud835\uddc2\ud835\uddcc \ud835\uddba \ud835\uddcf\ud835\uddba\ud835\uddc5\ud835\uddc2\ud835\uddbd\n\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddc6\ud835\uddce\ud835\uddc5\ud835\uddba \ud835\uddcc\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddc6\ud835\uddbe\ud835\uddc7\ud835\uddcd \ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddbe\ud835\uddbd\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd \ud835\uddba\ud835\uddd1\ud835\uddc2\ud835\uddc8\ud835\uddc6. \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc4e\ud835\udc65\ud835\udc56\ud835\udc5c\ud835\udc5a-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(6 = 2). \u220e"}, {"color": "#81C784", "id": "A5", "label": "\ud835\udc34\u2085 : \u231c\ud835\ude09\ud835\ude3a \ud835\ude29\ud835\ude3a\ud835\ude31\ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude34\ud835\ude2a\ud835\ude34,\n\ud835\ude22\ud835\ude34\ud835\ude34\ud835\ude36\ud835\ude2e\ud835\ude26 (\ud835\udfe8 = \ud835\udfe4) \ud835\ude2a\ud835\ude34\n\ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26.\u231d", "shape": "box"}, {"color": "#FFF59D", "id": "P67", "label": "\ud835\udc43\u2086\u2087 (\ud835\udfee.\ud835\udfed.\ud835\udff4) : (6 \u2260\n2)", "labelHighlightBold": true, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb \ud835\udfee.\ud835\udfed.\ud835\udff4 (\ud835\udcaf\u2081.\ud835\udc43\u2086\u2087): (6 \u2260\n2). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\uddf5\ud835\ude06\ud835\uddfd. (\ud835\udc3b\u2081) \ud835\uddbb\ud835\uddbe \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\uddc1\ud835\uddd2\ud835\uddc9\ud835\uddc8\ud835\uddcd\ud835\uddc1\ud835\uddbe\ud835\uddcc\ud835\uddc2\ud835\uddcc (6 = 2). \ud835\udc3c\ud835\udc5b\ud835\udc50(\u210b\u2081)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2086\u2086).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc5d\ud835\udc5f\ud835\udc5c\ud835\udc5c\ud835\udc53-\ud835\udc4f\ud835\udc66-\n\ud835\udc5f\ud835\udc52\ud835\udc53\ud835\udc62\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc5c\ud835\udc53-\ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (6 \u2260 2). \u220e"}, {"color": "#FFF59D", "id": "P68", "label": "\ud835\udc43\u2086\u2088 : ((1)++ = 2)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2086\u2088): ((1)++ =\n2). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (((0)++)++ = 2)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2087). ((0)++\n= 1) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2085).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((1)++ = 2). \u220e"}, {"color": "#FFF59D", "id": "P69", "label": "\ud835\udc43\u2086\u2089 : (5 \u2260 1)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2086\u2089): (5 \u2260 1).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (5 \u2260 (0)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2087). ((0)++ = 1) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2085). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(5 \u2260 1). \u220e"}, {"color": "#FFF59D", "id": "P70", "label": "\ud835\udc43\u2087\u2080 : ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1))\n\u27f9 (6 \u2260 (1)++))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2087\u2080): ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9 (6\n\u2260 (1)++)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9\n((5)++ \u2260 (1)++)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2085). ((5)++ = 6) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085\u2081). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1))\n\u27f9 (6 \u2260 (1)++)). \u220e"}, {"color": "#FFF59D", "id": "P71", "label": "\ud835\udc43\u2087\u2081 : ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1))\n\u27f9 (6 \u2260 2))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2087\u2081): ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9 (6\n\u2260 2)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9 (6\n\u2260 (1)++)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2087\u2080). ((1)++ = 2) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2086\u2088). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1))\n\u27f9 (6 \u2260 2)). \u220e"}, {"color": "#FFF59D", "id": "P72", "label": "\ud835\udc43\u2087\u2082 : ((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2087\u2082): ((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2084). (1 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2085\u2080). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc50\ud835\udc5c\ud835\udc5b\ud835\udc57\ud835\udc62\ud835\udc5b\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc5f\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n((5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P73", "label": "\ud835\udc43\u2087\u2083 : (((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2087\u2083): (((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2087\u2082). (5 \u2260\n1) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2086\u2089).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc50\ud835\udc5c\ud835\udc5b\ud835\udc57\ud835\udc62\ud835\udc5b\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\n\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc5f\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (((5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)). \u220e"}, {"color": "#FFF59D", "id": "P74", "label": "\ud835\udc43\u2087\u2084 : (6 \u2260 2)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2087\u2084): (6 \u2260 2).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9 (6 \u2260 2))\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2087\u2081).(((5\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1))\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2087\u2083).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(6 \u2260 2). \u220e"}, {"color": "#81C784", "id": "A6", "label": "\ud835\udc34\u2086 : \u231c\ud835\ude13\ud835\ude26\ud835\ude35 \ud835\ude17(\ud835\ude2f) \ud835\ude23\ud835\ude26\n\ud835\ude22\ud835\ude2f\ud835\ude3a \ud835\ude31\ud835\ude33\ud835\ude30\ud835\ude31\ud835\ude26\ud835\ude33\ud835\ude35\ud835\ude3a\n\ud835\ude31\ud835\ude26\ud835\ude33\ud835\ude35\ud835\ude22\ud835\ude2a\ud835\ude2f\ud835\ude2a\ud835\ude2f\ud835\ude28 \ud835\ude35\ud835\ude30 \ud835\ude22\n\ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\ude2f.\n\ud835\ude1a\ud835\ude36\ud835\ude31\ud835\ude31\ud835\ude30\ud835\ude34\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude17(\ud835\ude16) \ud835\ude2a\ud835\ude34\n\ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26, \ud835\ude22\ud835\ude2f\ud835\ude25 \ud835\ude34\ud835\ude36\ud835\ude31\ud835\ude31\ud835\ude30\ud835\ude34\ud835\ude26\n\ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude38\ud835\ude29\ud835\ude26\ud835\ude2f\ud835\ude26\ud835\ude37\ud835\ude26\ud835\ude33 \ud835\ude17(\ud835\ude2f)\n\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26, \ud835\ude17(\ud835\ude2f++) \ud835\ude2a\ud835\ude34\n\ud835\ude22\ud835\ude2d\ud835\ude34\ud835\ude30 \ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26. \ud835\ude1b\ud835\ude29\ud835\ude26\ud835\ude2f \ud835\ude17(\ud835\ude2f)\n\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26 \ud835\ude27\ud835\ude30\ud835\ude33 \ud835\ude26\ud835\ude37\ud835\ude26\ud835\ude33\ud835\ude3a\n\ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\ude2f.\u231d", "shape": "box"}, {"color": "#FFF59D", "id": "P75", "label": "\ud835\udc43\u2087\u2085 : (((\ud835\udc27\u2085 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227\n(\ud835\udc0f\u2081(0) \u2227 (\ud835\udc0f\u2081(\ud835\udc27\u2085) \u27f9\n\ud835\udc0f\u2081((\ud835\udc27\u2085)++)))) \u27f9 ((\ud835\udc26\u2083\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u27f9 \ud835\udc0f\u2081(\ud835\udc26\u2083)))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2087\u2085): (((\ud835\udc27\u2085 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc0f\u2081(0) \u2227\n(\ud835\udc0f\u2081(\ud835\udc27\u2085) \u27f9 \ud835\udc0f\u2081((\ud835\udc27\u2085)++)))) \u27f9 ((\ud835\udc26\u2083\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 \ud835\udc0f\u2081(\ud835\udc26\u2083))).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\ude13\ud835\ude26\ud835\ude35 \ud835\ude17(\ud835\ude2f) \ud835\ude23\ud835\ude26 \ud835\ude22\ud835\ude2f\ud835\ude3a \ud835\ude31\ud835\ude33\ud835\ude30\ud835\ude31\ud835\ude26\ud835\ude33\ud835\ude35\ud835\ude3a\n\ud835\ude31\ud835\ude26\ud835\ude33\ud835\ude35\ud835\ude22\ud835\ude2a\ud835\ude2f\ud835\ude2a\ud835\ude2f\ud835\ude28 \ud835\ude35\ud835\ude30 \ud835\ude22 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\n\ud835\ude2f. \ud835\ude1a\ud835\ude36\ud835\ude31\ud835\ude31\ud835\ude30\ud835\ude34\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude17(\ud835\ude16) \ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26,\n\ud835\ude22\ud835\ude2f\ud835\ude25 \ud835\ude34\ud835\ude36\ud835\ude31\ud835\ude31\ud835\ude30\ud835\ude34\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude38\ud835\ude29\ud835\ude26\ud835\ude2f\ud835\ude26\ud835\ude37\ud835\ude26\ud835\ude33 \ud835\ude17(\ud835\ude2f)\n\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26, \ud835\ude17(\ud835\ude2f++) \ud835\ude2a\ud835\ude34 \ud835\ude22\ud835\ude2d\ud835\ude34\ud835\ude30 \ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26.\n\ud835\ude1b\ud835\ude29\ud835\ude26\ud835\ude2f \ud835\ude17(\ud835\ude2f) \ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26 \ud835\ude27\ud835\ude30\ud835\ude33 \ud835\ude26\ud835\ude37\ud835\ude26\ud835\ude33\ud835\ude3a\n\ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\ude2f.\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd\n\ud835\uddbb\ud835\uddd2 \ud835\uddee\ud835\ude05\ud835\uddf6\ud835\uddfc\ud835\uddfa \ud835\ude00\ud835\uddf0\ud835\uddf5\ud835\uddf2\ud835\uddfa\ud835\uddee (\ud835\udc34\u2086). (((\ud835\udc27\u2085 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc0f\u2081(0) \u2227\n(\ud835\udc0f\u2081(\ud835\udc27\u2085) \u27f9 \ud835\udc0f\u2081((\ud835\udc27\u2085)++)))) \u27f9 ((\ud835\udc26\u2083\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 \ud835\udc0f\u2081(\ud835\udc26\u2083)))\n\ud835\uddc2\ud835\uddcc \ud835\uddba \ud835\uddcf\ud835\uddba\ud835\uddc5\ud835\uddc2\ud835\uddbd \ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddc6\ud835\uddce\ud835\uddc5\ud835\uddba \ud835\uddcc\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddc6\ud835\uddbe\ud835\uddc7\ud835\uddcd\n\ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd \ud835\uddba\ud835\uddd1\ud835\uddc2\ud835\uddc8\ud835\uddc6.\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc4e\ud835\udc65\ud835\udc56\ud835\udc5c\ud835\udc5a-\n\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe,\n\ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (((\ud835\udc27\u2085 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc0f\u2081(0) \u2227\n(\ud835\udc0f\u2081(\ud835\udc27\u2085) \u27f9 \ud835\udc0f\u2081((\ud835\udc27\u2085)++)))) \u27f9 ((\ud835\udc26\u2083\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 \ud835\udc0f\u2081(\ud835\udc26\u2083))).\n\u220e"}]); + nodes = new vis.DataSet([{"color": "#81C784", "id": "A1", "label": "\ud835\udc34\u2081 (\ud835\udfee.\ud835\udfed) : \u231c\ud835\udfe2 \ud835\ude2a\ud835\ude34 \ud835\ude22\n\ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33.\u231d", "shape": "box"}, {"color": "#FFF59D", "id": "P1", "label": "\ud835\udc43\u2081 : (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081): (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\udfe2 \ud835\ude2a\ud835\ude34 \ud835\ude22\n\ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33.\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd\n\ud835\uddbb\ud835\uddd2 \ud835\uddee\ud835\ude05\ud835\uddf6\ud835\uddfc\ud835\uddfa \ud835\udfee.\ud835\udfed (\ud835\udc34\u2081). (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddc2\ud835\uddcc \ud835\uddba \ud835\uddcf\ud835\uddba\ud835\uddc5\ud835\uddc2\ud835\uddbd\n\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddc6\ud835\uddce\ud835\uddc5\ud835\uddba \ud835\uddcc\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddc6\ud835\uddbe\ud835\uddc7\ud835\uddcd \ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddbe\ud835\uddbd\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd \ud835\uddba\ud835\uddd1\ud835\uddc2\ud835\uddc8\ud835\uddc6.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc4e\ud835\udc65\ud835\udc56\ud835\udc5c\ud835\udc5a-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: \ud835\udc9c \u22a2 P, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \u220e"}, {"color": "#81C784", "id": "A2", "label": "\ud835\udc34\u2082 (\ud835\udfee.\ud835\udfee) : \u231c\ud835\ude10\ud835\ude27 \ud835\ude2f \ud835\ude2a\ud835\ude34\n\ud835\ude22 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33,\n\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude2f \ud835\ude2f++ \ud835\ude2a\ud835\ude34 \ud835\ude22\n\ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33.\u231d", "shape": "box"}, {"color": "#FFF59D", "id": "P2", "label": "\ud835\udc43\u2082 : ((\ud835\udc27\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n((\ud835\udc27\u2081)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082): ((\ud835\udc27\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((\ud835\udc27\u2081)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\ude10\ud835\ude27 \ud835\ude2f\n\ud835\ude2a\ud835\ude34 \ud835\ude22 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33, \ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude2f \ud835\ude2f++ \ud835\ude2a\ud835\ude34\n\ud835\ude22 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33.\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd\n\ud835\uddbb\ud835\uddd2 \ud835\uddee\ud835\ude05\ud835\uddf6\ud835\uddfc\ud835\uddfa \ud835\udfee.\ud835\udfee (\ud835\udc34\u2082). ((\ud835\udc27\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((\ud835\udc27\u2081)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddc2\ud835\uddcc \ud835\uddba \ud835\uddcf\ud835\uddba\ud835\uddc5\ud835\uddc2\ud835\uddbd\n\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddc6\ud835\uddce\ud835\uddc5\ud835\uddba \ud835\uddcc\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddc6\ud835\uddbe\ud835\uddc7\ud835\uddcd \ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddbe\ud835\uddbd\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd \ud835\uddba\ud835\uddd1\ud835\uddc2\ud835\uddc8\ud835\uddc6.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc4e\ud835\udc65\ud835\udc56\ud835\udc5c\ud835\udc5a-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: \ud835\udc9c \u22a2 P, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((\ud835\udc27\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((\ud835\udc27\u2081)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P3", "label": "\ud835\udc43\u2083 : ((0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n((0)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083): ((0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((0)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((\ud835\udc27\u2081\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((\ud835\udc27\u2081)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2081 =\n0.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P,\n\ud835\udef7) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((0\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((0)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P4", "label": "\ud835\udc43\u2084 (\ud835\udfee.\ud835\udfee.\ud835\udfef) : ((0)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)", "labelHighlightBold": true, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb \ud835\udfee.\ud835\udfee.\ud835\udfef (\ud835\udcaf\u2081.\ud835\udc43\u2084):\n((0)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u27f9 ((0)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083).(0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: ((P\n\u27f9 Q), P) \u22a2 Q, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n((0)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \u220e"}, {"color": "#90CAF9", "id": "D1", "label": "\ud835\udc37\u2081 : \u231c\ud835\ude1e\ud835\ude26 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26 \ud835\udfe3 \ud835\ude35\ud835\ude30\n\ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\udfe2++, \ud835\udfe4\n\ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\n(\ud835\udfe2++)++, \ud835\udfe5 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\n((\ud835\udfe2++)++)++,\ud835\ude26\ud835\ude35\ud835\ude24. (\ud835\ude10\ud835\ude2f\n\ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude33 \ud835\ude38\ud835\ude30\ud835\ude33\ud835\ude25\ud835\ude34, \ud835\udfe3 :=\n\ud835\udfe2++, \ud835\udfe4 := \ud835\udfe3++, \ud835\udfe5 :=\n\ud835\udfe4++, \ud835\ude26\ud835\ude35\ud835\ude24. \ud835\ude10\ud835\ude2f \ud835\ude35\ud835\ude29\ud835\ude2a\ud835\ude34\n\ud835\ude35\ud835\ude26\ud835\ude39\ud835\ude35 \ud835\ude10 \ud835\ude36\ud835\ude34\ud835\ude26 \"\ud835\ude39 := \ud835\ude3a\"\n\ud835\ude35\ud835\ude30 \ud835\ude25\ud835\ude26\ud835\ude2f\ud835\ude30\ud835\ude35\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude34\ud835\ude35\ud835\ude22\ud835\ude35\ud835\ude26\ud835\ude2e\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude39 \ud835\ude2a\ud835\ude34\n\ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26\ud835\ude25 \ud835\ude35\ud835\ude30 \ud835\ude26\ud835\ude32\ud835\ude36\ud835\ude22\ud835\ude2d\n\ud835\ude3a.)\u231d", "shape": "box"}, {"color": "#FFF59D", "id": "P5", "label": "\ud835\udc43\u2085 : (1 = (0)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2085): (1 =\n(0)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\ude1e\ud835\ude26 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26 \ud835\udfe3 \ud835\ude35\ud835\ude30\n\ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\udfe2++, \ud835\udfe4 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 (\ud835\udfe2++)++, \ud835\udfe5 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 ((\ud835\udfe2++)++)++,\ud835\ude26\ud835\ude35\ud835\ude24. (\ud835\ude10\ud835\ude2f\n\ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude33 \ud835\ude38\ud835\ude30\ud835\ude33\ud835\ude25\ud835\ude34, \ud835\udfe3 := \ud835\udfe2++, \ud835\udfe4 := \ud835\udfe3++,\n\ud835\udfe5 := \ud835\udfe4++, \ud835\ude26\ud835\ude35\ud835\ude24. \ud835\ude10\ud835\ude2f \ud835\ude35\ud835\ude29\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude26\ud835\ude39\ud835\ude35 \ud835\ude10\n\ud835\ude36\ud835\ude34\ud835\ude26 \"\ud835\ude39 := \ud835\ude3a\" \ud835\ude35\ud835\ude30 \ud835\ude25\ud835\ude26\ud835\ude2f\ud835\ude30\ud835\ude35\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude34\ud835\ude35\ud835\ude22\ud835\ude35\ud835\ude26\ud835\ude2e\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude39 \ud835\ude2a\ud835\ude34 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26\ud835\ude25 \ud835\ude35\ud835\ude30\n\ud835\ude26\ud835\ude32\ud835\ude36\ud835\ude22\ud835\ude2d \ud835\ude3a.)\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2 \ud835\uddf1\ud835\uddf2\ud835\uddf3.\n(\ud835\udc37\u2081). (1 = (0)++) \ud835\uddc2\ud835\uddcc \ud835\uddba\ud835\uddc7\n\ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7 \ud835\uddc8\ud835\uddbf \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n\ud835\uddbd\ud835\uddbe\ud835\uddbf\ud835\uddc2\ud835\uddc7\ud835\uddc2\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc51\ud835\udc52\ud835\udc53\ud835\udc56\ud835\udc5b\ud835\udc56\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: \ud835\udc9f \u22a2 P, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (1 = (0)++). \u220e"}, {"color": "#FFF59D", "id": "P6", "label": "\ud835\udc43\u2086 : (2 = ((0)++)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2086): (2 =\n((0)++)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\ude1e\ud835\ude26 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26 \ud835\udfe3\n\ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\udfe2++, \ud835\udfe4 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26\n\ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 (\ud835\udfe2++)++, \ud835\udfe5 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 ((\ud835\udfe2++)++)++,\ud835\ude26\ud835\ude35\ud835\ude24. (\ud835\ude10\ud835\ude2f\n\ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude33 \ud835\ude38\ud835\ude30\ud835\ude33\ud835\ude25\ud835\ude34, \ud835\udfe3 := \ud835\udfe2++, \ud835\udfe4 := \ud835\udfe3++,\n\ud835\udfe5 := \ud835\udfe4++, \ud835\ude26\ud835\ude35\ud835\ude24. \ud835\ude10\ud835\ude2f \ud835\ude35\ud835\ude29\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude26\ud835\ude39\ud835\ude35 \ud835\ude10\n\ud835\ude36\ud835\ude34\ud835\ude26 \"\ud835\ude39 := \ud835\ude3a\" \ud835\ude35\ud835\ude30 \ud835\ude25\ud835\ude26\ud835\ude2f\ud835\ude30\ud835\ude35\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude34\ud835\ude35\ud835\ude22\ud835\ude35\ud835\ude26\ud835\ude2e\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude39 \ud835\ude2a\ud835\ude34 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26\ud835\ude25 \ud835\ude35\ud835\ude30\n\ud835\ude26\ud835\ude32\ud835\ude36\ud835\ude22\ud835\ude2d \ud835\ude3a.)\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2 \ud835\uddf1\ud835\uddf2\ud835\uddf3.\n(\ud835\udc37\u2081). (2 = ((0)++)++) \ud835\uddc2\ud835\uddcc \ud835\uddba\ud835\uddc7\n\ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7 \ud835\uddc8\ud835\uddbf \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n\ud835\uddbd\ud835\uddbe\ud835\uddbf\ud835\uddc2\ud835\uddc7\ud835\uddc2\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc51\ud835\udc52\ud835\udc53\ud835\udc56\ud835\udc5b\ud835\udc56\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: \ud835\udc9f \u22a2 P, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (2 = ((0)++)++). \u220e"}, {"color": "#FFF59D", "id": "P7", "label": "\ud835\udc43\u2087 : (3 =\n(((0)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2087): (3 =\n(((0)++)++)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\ude1e\ud835\ude26\n\ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26 \ud835\udfe3 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\udfe2++, \ud835\udfe4\n\ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 (\ud835\udfe2++)++, \ud835\udfe5 \ud835\ude35\ud835\ude30\n\ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 ((\ud835\udfe2++)++)++,\ud835\ude26\ud835\ude35\ud835\ude24.\n(\ud835\ude10\ud835\ude2f \ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude33 \ud835\ude38\ud835\ude30\ud835\ude33\ud835\ude25\ud835\ude34, \ud835\udfe3 := \ud835\udfe2++, \ud835\udfe4 :=\n\ud835\udfe3++, \ud835\udfe5 := \ud835\udfe4++, \ud835\ude26\ud835\ude35\ud835\ude24. \ud835\ude10\ud835\ude2f \ud835\ude35\ud835\ude29\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude26\ud835\ude39\ud835\ude35\n\ud835\ude10 \ud835\ude36\ud835\ude34\ud835\ude26 \"\ud835\ude39 := \ud835\ude3a\" \ud835\ude35\ud835\ude30 \ud835\ude25\ud835\ude26\ud835\ude2f\ud835\ude30\ud835\ude35\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude34\ud835\ude35\ud835\ude22\ud835\ude35\ud835\ude26\ud835\ude2e\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude39 \ud835\ude2a\ud835\ude34 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26\ud835\ude25 \ud835\ude35\ud835\ude30\n\ud835\ude26\ud835\ude32\ud835\ude36\ud835\ude22\ud835\ude2d \ud835\ude3a.)\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2 \ud835\uddf1\ud835\uddf2\ud835\uddf3.\n(\ud835\udc37\u2081). (3 = (((0)++)++)++) \ud835\uddc2\ud835\uddcc \ud835\uddba\ud835\uddc7\n\ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7 \ud835\uddc8\ud835\uddbf \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n\ud835\uddbd\ud835\uddbe\ud835\uddbf\ud835\uddc2\ud835\uddc7\ud835\uddc2\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc51\ud835\udc52\ud835\udc53\ud835\udc56\ud835\udc5b\ud835\udc56\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: \ud835\udc9f \u22a2 P, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (3 =\n(((0)++)++)++). \u220e"}, {"color": "#FFF59D", "id": "P8", "label": "\ud835\udc43\u2088 : (4 =\n((((0)++)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2088): (4 =\n((((0)++)++)++)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\ude1e\ud835\ude26\n\ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26 \ud835\udfe3 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\udfe2++, \ud835\udfe4\n\ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 (\ud835\udfe2++)++, \ud835\udfe5 \ud835\ude35\ud835\ude30\n\ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 ((\ud835\udfe2++)++)++,\ud835\ude26\ud835\ude35\ud835\ude24.\n(\ud835\ude10\ud835\ude2f \ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude33 \ud835\ude38\ud835\ude30\ud835\ude33\ud835\ude25\ud835\ude34, \ud835\udfe3 := \ud835\udfe2++, \ud835\udfe4 :=\n\ud835\udfe3++, \ud835\udfe5 := \ud835\udfe4++, \ud835\ude26\ud835\ude35\ud835\ude24. \ud835\ude10\ud835\ude2f \ud835\ude35\ud835\ude29\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude26\ud835\ude39\ud835\ude35\n\ud835\ude10 \ud835\ude36\ud835\ude34\ud835\ude26 \"\ud835\ude39 := \ud835\ude3a\" \ud835\ude35\ud835\ude30 \ud835\ude25\ud835\ude26\ud835\ude2f\ud835\ude30\ud835\ude35\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude34\ud835\ude35\ud835\ude22\ud835\ude35\ud835\ude26\ud835\ude2e\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude39 \ud835\ude2a\ud835\ude34 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26\ud835\ude25 \ud835\ude35\ud835\ude30\n\ud835\ude26\ud835\ude32\ud835\ude36\ud835\ude22\ud835\ude2d \ud835\ude3a.)\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2 \ud835\uddf1\ud835\uddf2\ud835\uddf3.\n(\ud835\udc37\u2081). (4 = ((((0)++)++)++)++) \ud835\uddc2\ud835\uddcc\n\ud835\uddba\ud835\uddc7 \ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7 \ud835\uddc8\ud835\uddbf \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n\ud835\uddbd\ud835\uddbe\ud835\uddbf\ud835\uddc2\ud835\uddc7\ud835\uddc2\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc51\ud835\udc52\ud835\udc53\ud835\udc56\ud835\udc5b\ud835\udc56\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: \ud835\udc9f \u22a2 P, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (4 =\n((((0)++)++)++)++). \u220e"}, {"color": "#FFF59D", "id": "P9", "label": "\ud835\udc43\u2089 : (((0)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n(((0)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2089): (((0)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n(((0)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((\ud835\udc27\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((\ud835\udc27\u2081)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2081 =\n(0)++.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, \ud835\udef7) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (((0)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 (((0)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P10", "label": "\ud835\udc43\u2081\u2080 : (((0)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2080): (((0)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n(((0)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n(((0)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2089).((0)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. \ud835\udfee.\ud835\udfee.\ud835\udfef (\ud835\udc43\u2084).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe,\n\ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: ((P \u27f9 Q), P) \u22a2 Q, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (((0)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \u220e"}, {"color": "#FFF59D", "id": "P11", "label": "\ud835\udc43\u2081\u2081 : ((((0)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u27f9 ((((0)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2081):\n((((0)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u27f9 ((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((\ud835\udc27\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((\ud835\udc27\u2081)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2081 =\n((0)++)++.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, \ud835\udef7) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((0)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P12", "label": "\ud835\udc43\u2081\u2082 : ((((0)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2082):\n((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((0)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((((0)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2081).(((0)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2080).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: ((P\n\u27f9 Q), P) \u22a2 Q, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \u220e"}, {"color": "#FFF59D", "id": "P13", "label": "\ud835\udc43\u2081\u2083 :\n(((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n(((((0)++)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2083):\n(((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 (((((0)++)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n((\ud835\udc27\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n((\ud835\udc27\u2081)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2081\n= (((0)++)++)++.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, \ud835\udef7) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (((((0)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n(((((0)++)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P14", "label": "\ud835\udc43\u2081\u2084 :\n(((((0)++)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2084):\n(((((0)++)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (((((0)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n(((((0)++)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2081\u2083).((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2082).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: ((P\n\u27f9 Q), P) \u22a2 Q, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(((((0)++)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \u220e"}, {"color": "#FFF59D", "id": "P15", "label": "\ud835\udc43\u2081\u2085 : ((0)++ = 1)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2085): ((0)++ =\n1). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (1 = (0)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66-\ud835\udc50\ud835\udc5c\ud835\udc5a\ud835\udc5a\ud835\udc62\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc63\ud835\udc56\ud835\udc61\ud835\udc66\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (x = y) \u22a2 (y =\nx), \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((0)++ = 1).\n\u220e"}, {"color": "#FFF59D", "id": "P16", "label": "\ud835\udc43\u2081\u2086 : (2 = (1)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2086): (2 =\n(1)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (2 = ((0)++)++)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2086). ((0)++\n= 1) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2081\u2085).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\n\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (2 = (1)++). \u220e"}, {"color": "#FFF59D", "id": "P17", "label": "\ud835\udc43\u2081\u2087 : (((0)++)++ =\n2)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2087): (((0)++)++\n= 2). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (2 = ((0)++)++)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2086).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66-\n\ud835\udc50\ud835\udc5c\ud835\udc5a\ud835\udc5a\ud835\udc62\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc63\ud835\udc56\ud835\udc61\ud835\udc66 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (x\n= y) \u22a2 (y = x), \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(((0)++)++ = 2). \u220e"}, {"color": "#FFF59D", "id": "P18", "label": "\ud835\udc43\u2081\u2088 : (3 = (2)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2088): (3 =\n(2)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (3 =\n(((0)++)++)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2087). (((0)++)++ = 2)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2081\u2087).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\n\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (3 = (2)++). \u220e"}, {"color": "#FFF59D", "id": "P19", "label": "\ud835\udc43\u2081\u2089 : ((((0)++)++)++\n= 3)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2081\u2089):\n((((0)++)++)++ = 3). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (3 =\n(((0)++)++)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2087). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66-\ud835\udc50\ud835\udc5c\ud835\udc5a\ud835\udc5a\ud835\udc62\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc63\ud835\udc56\ud835\udc61\ud835\udc66 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (x = y) \u22a2 (y = x), \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((0)++)++)++ =\n3). \u220e"}, {"color": "#FFF59D", "id": "P20", "label": "\ud835\udc43\u2082\u2080 : ((2)++ = 3)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2080): ((2)++ =\n3). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((0)++)++)++ = 3)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2089).\n(((0)++)++ = 2) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2087).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2\nP\u0027, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((2)++ = 3).\n\u220e"}, {"color": "#FFF59D", "id": "P21", "label": "\ud835\udc43\u2082\u2081 (\ud835\udfee.\ud835\udfed.\ud835\udff0) : (3\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)", "labelHighlightBold": true, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb \ud835\udfee.\ud835\udfed.\ud835\udff0 (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2081): (3\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2081\u2082). ((((0)++)++)++ = 3)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2081\u2089).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\n\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (3 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \u220e"}, {"color": "#FFF59D", "id": "P22", "label": "\ud835\udc43\u2082\u2082 : (4 =\n((((0)++)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2082): (4 =\n((((0)++)++)++)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\ude1e\ud835\ude26\n\ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26 \ud835\udfe3 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\udfe2++, \ud835\udfe4\n\ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 (\ud835\udfe2++)++, \ud835\udfe5 \ud835\ude35\ud835\ude30\n\ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 ((\ud835\udfe2++)++)++,\ud835\ude26\ud835\ude35\ud835\ude24.\n(\ud835\ude10\ud835\ude2f \ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude33 \ud835\ude38\ud835\ude30\ud835\ude33\ud835\ude25\ud835\ude34, \ud835\udfe3 := \ud835\udfe2++, \ud835\udfe4 :=\n\ud835\udfe3++, \ud835\udfe5 := \ud835\udfe4++, \ud835\ude26\ud835\ude35\ud835\ude24. \ud835\ude10\ud835\ude2f \ud835\ude35\ud835\ude29\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude26\ud835\ude39\ud835\ude35\n\ud835\ude10 \ud835\ude36\ud835\ude34\ud835\ude26 \"\ud835\ude39 := \ud835\ude3a\" \ud835\ude35\ud835\ude30 \ud835\ude25\ud835\ude26\ud835\ude2f\ud835\ude30\ud835\ude35\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude34\ud835\ude35\ud835\ude22\ud835\ude35\ud835\ude26\ud835\ude2e\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude39 \ud835\ude2a\ud835\ude34 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26\ud835\ude25 \ud835\ude35\ud835\ude30\n\ud835\ude26\ud835\ude32\ud835\ude36\ud835\ude22\ud835\ude2d \ud835\ude3a.)\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2 \ud835\uddf1\ud835\uddf2\ud835\uddf3.\n(\ud835\udc37\u2081). (4 = ((((0)++)++)++)++) \ud835\uddc2\ud835\uddcc\n\ud835\uddba\ud835\uddc7 \ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7 \ud835\uddc8\ud835\uddbf \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n\ud835\uddbd\ud835\uddbe\ud835\uddbf\ud835\uddc2\ud835\uddc7\ud835\uddc2\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc51\ud835\udc52\ud835\udc53\ud835\udc56\ud835\udc5b\ud835\udc56\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: \ud835\udc9f \u22a2 P, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (4 =\n((((0)++)++)++)++). \u220e"}, {"color": "#FFF59D", "id": "P23", "label": "\ud835\udc43\u2082\u2083 :\n(((((0)++)++)++)++ =\n4)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2083):\n(((((0)++)++)++)++ = 4). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n(4 = ((((0)++)++)++)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2088). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66-\ud835\udc50\ud835\udc5c\ud835\udc5a\ud835\udc5a\ud835\udc62\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc63\ud835\udc56\ud835\udc61\ud835\udc66\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (x = y) \u22a2 (y =\nx), \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(((((0)++)++)++)++ = 4). \u220e"}, {"color": "#FFF59D", "id": "P24", "label": "\ud835\udc43\u2082\u2084 : ((3)++ = 4)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2084): ((3)++ =\n4). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (((((0)++)++)++)++ =\n4) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082\u2083).\n((((0)++)++)++ = 3) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2089).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2\nP\u0027, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((3)++ = 4).\n\u220e"}, {"color": "#FFF59D", "id": "P25", "label": "\ud835\udc43\u2082\u2085 :\n(((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n(((((0)++)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2085):\n(((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 (((((0)++)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n(((((0)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 (((((0)++)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2083). ((3)++ = 4)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2082\u2084).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\n\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (((((0)++)++)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n(((((0)++)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P26", "label": "\ud835\udc43\u2082\u2086 : (4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2086): (4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n(((((0)++)++)++)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2081\u2084). (((((0)++)++)++)++ = 4)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2082\u2083).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\n\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \u220e"}, {"color": "#81C784", "id": "A3", "label": "\ud835\udc34\u2083 (\ud835\udfee.\ud835\udfef) : \u231c\ud835\udfe2 \ud835\ude2a\ud835\ude34 \ud835\ude2f\ud835\ude30\ud835\ude35\n\ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude34\ud835\ude36\ud835\ude24\ud835\ude24\ud835\ude26\ud835\ude34\ud835\ude34\ud835\ude30\ud835\ude33 \ud835\ude30\ud835\ude27 \ud835\ude22\ud835\ude2f\ud835\ude3a\n\ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33;\n\ud835\ude2a.\ud835\ude26., \ud835\ude38\ud835\ude26 \ud835\ude29\ud835\ude22\ud835\ude37\ud835\ude26 \ud835\ude2f++ \u2260\n\ud835\udfe2 \ud835\ude27\ud835\ude30\ud835\ude33 \ud835\ude26\ud835\ude37\ud835\ude26\ud835\ude33\ud835\ude3a \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d\n\ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\ude2f.\u231d", "shape": "box"}, {"color": "#FFF59D", "id": "P27", "label": "\ud835\udc43\u2082\u2087 : ((\ud835\udc27\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n((\ud835\udc27\u2082)++ \u2260 0))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2087): ((\ud835\udc27\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((\ud835\udc27\u2082)++ \u2260 0)).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\udfe2 \ud835\ude2a\ud835\ude34 \ud835\ude2f\ud835\ude30\ud835\ude35 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude34\ud835\ude36\ud835\ude24\ud835\ude24\ud835\ude26\ud835\ude34\ud835\ude34\ud835\ude30\ud835\ude33\n\ud835\ude30\ud835\ude27 \ud835\ude22\ud835\ude2f\ud835\ude3a \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33; \ud835\ude2a.\ud835\ude26., \ud835\ude38\ud835\ude26\n\ud835\ude29\ud835\ude22\ud835\ude37\ud835\ude26 \ud835\ude2f++ \u2260 \ud835\udfe2 \ud835\ude27\ud835\ude30\ud835\ude33 \ud835\ude26\ud835\ude37\ud835\ude26\ud835\ude33\ud835\ude3a \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d\n\ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\ude2f.\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2\n\ud835\uddee\ud835\ude05\ud835\uddf6\ud835\uddfc\ud835\uddfa \ud835\udfee.\ud835\udfef (\ud835\udc34\u2083). ((\ud835\udc27\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((\ud835\udc27\u2082)++ \u2260 0))\n\ud835\uddc2\ud835\uddcc \ud835\uddba \ud835\uddcf\ud835\uddba\ud835\uddc5\ud835\uddc2\ud835\uddbd \ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddc6\ud835\uddce\ud835\uddc5\ud835\uddba \ud835\uddcc\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddc6\ud835\uddbe\ud835\uddc7\ud835\uddcd\n\ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n\ud835\uddba\ud835\uddd1\ud835\uddc2\ud835\uddc8\ud835\uddc6.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc4e\ud835\udc65\ud835\udc56\ud835\udc5c\ud835\udc5a-\n\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: \ud835\udc9c\n\u22a2 P, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((\ud835\udc27\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((\ud835\udc27\u2082)++ \u2260 0)).\n\u220e"}, {"color": "#FFF59D", "id": "P28", "label": "\ud835\udc43\u2082\u2088 : ((3 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n((3)++ \u2260 0))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2088): ((3 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((3)++ \u2260 0)).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((\ud835\udc27\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u27f9 ((\ud835\udc27\u2082)++ \u2260 0)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082\u2087). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2082 =\n3.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P,\n\ud835\udef7) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((3\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((3)++ \u2260\n0)). \u220e"}, {"color": "#FFF59D", "id": "P29", "label": "\ud835\udc43\u2082\u2089 : ((3)++ \u2260 0)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2082\u2089): ((3)++ \u2260\n0). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((3 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((3)++ \u2260 0)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082\u2088).(3 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. \ud835\udfee.\ud835\udfed.\ud835\udff0 (\ud835\udc43\u2082\u2081).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe:\n((P \u27f9 Q), P) \u22a2 Q, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((3)++ \u2260 0). \u220e"}, {"color": "#FFF59D", "id": "P30", "label": "\ud835\udc43\u2083\u2080 (\ud835\udfee.\ud835\udfed.\ud835\udff2) : (4 \u2260\n0)", "labelHighlightBold": true, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb \ud835\udfee.\ud835\udfed.\ud835\udff2 (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2080): (4 \u2260\n0). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((3)++ \u2260 0) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082\u2089). ((3)++ = 4)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2082\u2084).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\n\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (4 \u2260 0). \u220e"}, {"color": "#81C784", "id": "A4", "label": "\ud835\udc34\u2084 (\ud835\udfee.\ud835\udff0) :\n\u231c\ud835\ude0b\ud835\ude2a\ud835\ude27\ud835\ude27\ud835\ude26\ud835\ude33\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d\n\ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\ud835\ude34 \ud835\ude2e\ud835\ude36\ud835\ude34\ud835\ude35 \ud835\ude29\ud835\ude22\ud835\ude37\ud835\ude26\n\ud835\ude25\ud835\ude2a\ud835\ude27\ud835\ude27\ud835\ude26\ud835\ude33\ud835\ude26\ud835\ude2f\ud835\ude35\n\ud835\ude34\ud835\ude36\ud835\ude24\ud835\ude24\ud835\ude26\ud835\ude34\ud835\ude34\ud835\ude30\ud835\ude33\ud835\ude34; \ud835\ude2a.\ud835\ude26., \ud835\ude2a\ud835\ude27\n\ud835\ude2f, \ud835\ude2e \ud835\ude22\ud835\ude33\ud835\ude26 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d\n\ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\ud835\ude34 \ud835\ude22\ud835\ude2f\ud835\ude25 \ud835\ude2f \u2260 \ud835\ude2e,\n\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude2f \ud835\ude2f++ \u2260 \ud835\ude2e++.\n\ud835\ude0c\ud835\ude32\ud835\ude36\ud835\ude2a\ud835\ude37\ud835\ude22\ud835\ude2d\ud835\ude26\ud835\ude2f\ud835\ude35\ud835\ude2d\ud835\ude3a, \ud835\ude2a\ud835\ude27 \ud835\ude2f++\n= \ud835\ude2e++, \ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude2f \ud835\ude38\ud835\ude26 \ud835\ude2e\ud835\ude36\ud835\ude34\ud835\ude35\n\ud835\ude29\ud835\ude22\ud835\ude37\ud835\ude26 \ud835\ude2f = \ud835\ude2e.\u231d", "shape": "box"}, {"color": "#FFF59D", "id": "P31", "label": "\ud835\udc43\u2083\u2081 : ((((\ud835\udc27\u2083 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227\n(\ud835\udc26\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (\ud835\udc27\u2083 \u2260\n\ud835\udc26\u2081)) \u27f9 ((\ud835\udc27\u2083)++ \u2260\n(\ud835\udc26\u2081)++))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2081): ((((\ud835\udc27\u2083\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc26\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (\ud835\udc27\u2083 \u2260 \ud835\udc26\u2081)) \u27f9\n((\ud835\udc27\u2083)++ \u2260 (\ud835\udc26\u2081)++)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n\u231c\ud835\ude0b\ud835\ude2a\ud835\ude27\ud835\ude27\ud835\ude26\ud835\ude33\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\ud835\ude34 \ud835\ude2e\ud835\ude36\ud835\ude34\ud835\ude35\n\ud835\ude29\ud835\ude22\ud835\ude37\ud835\ude26 \ud835\ude25\ud835\ude2a\ud835\ude27\ud835\ude27\ud835\ude26\ud835\ude33\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude34\ud835\ude36\ud835\ude24\ud835\ude24\ud835\ude26\ud835\ude34\ud835\ude34\ud835\ude30\ud835\ude33\ud835\ude34; \ud835\ude2a.\ud835\ude26.,\n\ud835\ude2a\ud835\ude27 \ud835\ude2f, \ud835\ude2e \ud835\ude22\ud835\ude33\ud835\ude26 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\ud835\ude34 \ud835\ude22\ud835\ude2f\ud835\ude25\n\ud835\ude2f \u2260 \ud835\ude2e, \ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude2f \ud835\ude2f++ \u2260 \ud835\ude2e++.\n\ud835\ude0c\ud835\ude32\ud835\ude36\ud835\ude2a\ud835\ude37\ud835\ude22\ud835\ude2d\ud835\ude26\ud835\ude2f\ud835\ude35\ud835\ude2d\ud835\ude3a, \ud835\ude2a\ud835\ude27 \ud835\ude2f++ = \ud835\ude2e++, \ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude2f\n\ud835\ude38\ud835\ude26 \ud835\ude2e\ud835\ude36\ud835\ude34\ud835\ude35 \ud835\ude29\ud835\ude22\ud835\ude37\ud835\ude26 \ud835\ude2f = \ud835\ude2e.\u231d \ud835\uddc2\ud835\uddcc\n\ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2 \ud835\uddee\ud835\ude05\ud835\uddf6\ud835\uddfc\ud835\uddfa \ud835\udfee.\ud835\udff0 (\ud835\udc34\u2084).\n((((\ud835\udc27\u2083 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227\n(\ud835\udc26\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (\ud835\udc27\u2083\n\u2260 \ud835\udc26\u2081)) \u27f9 ((\ud835\udc27\u2083)++ \u2260 (\ud835\udc26\u2081)++)) \ud835\uddc2\ud835\uddcc \ud835\uddba\n\ud835\uddcf\ud835\uddba\ud835\uddc5\ud835\uddc2\ud835\uddbd \ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddc6\ud835\uddce\ud835\uddc5\ud835\uddba \ud835\uddcc\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddc6\ud835\uddbe\ud835\uddc7\ud835\uddcd\n\ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n\ud835\uddba\ud835\uddd1\ud835\uddc2\ud835\uddc8\ud835\uddc6.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc4e\ud835\udc65\ud835\udc56\ud835\udc5c\ud835\udc5a-\n\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: \ud835\udc9c\n\u22a2 P, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((\ud835\udc27\u2083 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc26\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (\ud835\udc27\u2083 \u2260 \ud835\udc26\u2081)) \u27f9\n((\ud835\udc27\u2083)++ \u2260 (\ud835\udc26\u2081)++)). \u220e"}, {"color": "#FFF59D", "id": "P32", "label": "\ud835\udc43\u2083\u2082 : ((((\ud835\udc27\u2084 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227\n(\ud835\udc26\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((\ud835\udc27\u2084)++ =\n(\ud835\udc26\u2082)++)) \u27f9 (\ud835\udc27\u2084 =\n\ud835\udc26\u2082))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2082): ((((\ud835\udc27\u2084\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc26\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((\ud835\udc27\u2084)++ =\n(\ud835\udc26\u2082)++)) \u27f9 (\ud835\udc27\u2084 = \ud835\udc26\u2082)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n\u231c\ud835\ude0b\ud835\ude2a\ud835\ude27\ud835\ude27\ud835\ude26\ud835\ude33\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\ud835\ude34 \ud835\ude2e\ud835\ude36\ud835\ude34\ud835\ude35\n\ud835\ude29\ud835\ude22\ud835\ude37\ud835\ude26 \ud835\ude25\ud835\ude2a\ud835\ude27\ud835\ude27\ud835\ude26\ud835\ude33\ud835\ude26\ud835\ude2f\ud835\ude35 \ud835\ude34\ud835\ude36\ud835\ude24\ud835\ude24\ud835\ude26\ud835\ude34\ud835\ude34\ud835\ude30\ud835\ude33\ud835\ude34; \ud835\ude2a.\ud835\ude26.,\n\ud835\ude2a\ud835\ude27 \ud835\ude2f, \ud835\ude2e \ud835\ude22\ud835\ude33\ud835\ude26 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\ud835\ude34 \ud835\ude22\ud835\ude2f\ud835\ude25\n\ud835\ude2f \u2260 \ud835\ude2e, \ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude2f \ud835\ude2f++ \u2260 \ud835\ude2e++.\n\ud835\ude0c\ud835\ude32\ud835\ude36\ud835\ude2a\ud835\ude37\ud835\ude22\ud835\ude2d\ud835\ude26\ud835\ude2f\ud835\ude35\ud835\ude2d\ud835\ude3a, \ud835\ude2a\ud835\ude27 \ud835\ude2f++ = \ud835\ude2e++, \ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude2f\n\ud835\ude38\ud835\ude26 \ud835\ude2e\ud835\ude36\ud835\ude34\ud835\ude35 \ud835\ude29\ud835\ude22\ud835\ude37\ud835\ude26 \ud835\ude2f = \ud835\ude2e.\u231d \ud835\uddc2\ud835\uddcc\n\ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2 \ud835\uddee\ud835\ude05\ud835\uddf6\ud835\uddfc\ud835\uddfa \ud835\udfee.\ud835\udff0 (\ud835\udc34\u2084).\n((((\ud835\udc27\u2084 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227\n(\ud835\udc26\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227\n((\ud835\udc27\u2084)++ = (\ud835\udc26\u2082)++)) \u27f9 (\ud835\udc27\u2084 = \ud835\udc26\u2082))\n\ud835\uddc2\ud835\uddcc \ud835\uddba \ud835\uddcf\ud835\uddba\ud835\uddc5\ud835\uddc2\ud835\uddbd \ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddc6\ud835\uddce\ud835\uddc5\ud835\uddba \ud835\uddcc\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddc6\ud835\uddbe\ud835\uddc7\ud835\uddcd\n\ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n\ud835\uddba\ud835\uddd1\ud835\uddc2\ud835\uddc8\ud835\uddc6.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc4e\ud835\udc65\ud835\udc56\ud835\udc5c\ud835\udc5a-\n\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: \ud835\udc9c\n\u22a2 P, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((\ud835\udc27\u2084 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc26\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((\ud835\udc27\u2084)++ =\n(\ud835\udc26\u2082)++)) \u27f9 (\ud835\udc27\u2084 = \ud835\udc26\u2082)). \u220e"}, {"color": "#FFF59D", "id": "P33", "label": "\ud835\udc43\u2083\u2083 : ((((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260 0))\n\u27f9 ((4)++ \u2260 (0)++))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2083): ((((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260 0)) \u27f9\n((4)++ \u2260 (0)++)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((\ud835\udc27\u2083\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc26\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (\ud835\udc27\u2083 \u2260 \ud835\udc26\u2081)) \u27f9\n((\ud835\udc27\u2083)++ \u2260 (\ud835\udc26\u2081)++)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2081). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2083 = 4, \ud835\udc26\u2081 =\n0.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P,\n\ud835\udef7) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((4\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260 0)) \u27f9\n((4)++ \u2260 (0)++)). \u220e"}, {"color": "#FFF59D", "id": "P34", "label": "\ud835\udc43\u2083\u2084 : ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2084): ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) (\ud835\udc43) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082\u2086). (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) (\ud835\udc44) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2081).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc50\ud835\udc5c\ud835\udc5b\ud835\udc57\ud835\udc62\ud835\udc5b\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc5f\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, Q) \u22a2 (P \u22c0\nQ), \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P35", "label": "\ud835\udc43\u2083\u2085 : (((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260 0))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2085): (((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260 0)).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) (\ud835\udc43)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2084). (4 \u2260\n0) (\ud835\udc44) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. \ud835\udfee.\ud835\udfed.\ud835\udff2\n(\ud835\udc43\u2083\u2080).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc50\ud835\udc5c\ud835\udc5b\ud835\udc57\ud835\udc62\ud835\udc5b\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc5f\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, Q) \u22a2 (P \u22c0\nQ), \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260 0)). \u220e"}, {"color": "#FFF59D", "id": "P36", "label": "\ud835\udc43\u2083\u2086 : ((4)++ \u2260\n(0)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2086): ((4)++ \u2260\n(0)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260 0)) \u27f9\n((4)++ \u2260 (0)++)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2083).(((4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260 0)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2085).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: ((P\n\u27f9 Q), P) \u22a2 Q, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n((4)++ \u2260 (0)++). \u220e"}, {"color": "#FFF59D", "id": "P37", "label": "\ud835\udc43\u2083\u2087 : (5 = (((((0)++\n)++)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2087): (5 =\n(((((0)++)++)++)++)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n\u231c\ud835\ude1e\ud835\ude26 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26 \ud835\udfe3 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\n\ud835\udfe2++, \ud835\udfe4 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 (\ud835\udfe2++)++,\n\ud835\udfe5 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\n((\ud835\udfe2++)++)++,\ud835\ude26\ud835\ude35\ud835\ude24. (\ud835\ude10\ud835\ude2f \ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude33\n\ud835\ude38\ud835\ude30\ud835\ude33\ud835\ude25\ud835\ude34, \ud835\udfe3 := \ud835\udfe2++, \ud835\udfe4 := \ud835\udfe3++, \ud835\udfe5 :=\n\ud835\udfe4++, \ud835\ude26\ud835\ude35\ud835\ude24. \ud835\ude10\ud835\ude2f \ud835\ude35\ud835\ude29\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude26\ud835\ude39\ud835\ude35 \ud835\ude10 \ud835\ude36\ud835\ude34\ud835\ude26 \"\ud835\ude39\n:= \ud835\ude3a\" \ud835\ude35\ud835\ude30 \ud835\ude25\ud835\ude26\ud835\ude2f\ud835\ude30\ud835\ude35\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude34\ud835\ude35\ud835\ude22\ud835\ude35\ud835\ude26\ud835\ude2e\ud835\ude26\ud835\ude2f\ud835\ude35\n\ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude39 \ud835\ude2a\ud835\ude34 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26\ud835\ude25 \ud835\ude35\ud835\ude30 \ud835\ude26\ud835\ude32\ud835\ude36\ud835\ude22\ud835\ude2d \ud835\ude3a.)\u231d\n\ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2 \ud835\uddf1\ud835\uddf2\ud835\uddf3. (\ud835\udc37\u2081). (5 =\n(((((0)++)++)++)++)++) \ud835\uddc2\ud835\uddcc \ud835\uddba\ud835\uddc7\n\ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7 \ud835\uddc8\ud835\uddbf \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n\ud835\uddbd\ud835\uddbe\ud835\uddbf\ud835\uddc2\ud835\uddc7\ud835\uddc2\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc51\ud835\udc52\ud835\udc53\ud835\udc56\ud835\udc5b\ud835\udc56\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: \ud835\udc9f \u22a2 P, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (5 =\n(((((0)++)++)++)++)++). \u220e"}, {"color": "#FFF59D", "id": "P38", "label": "\ud835\udc43\u2083\u2088 : ((((((0)++)++)\n++)++)++ = 5)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2088):\n((((((0)++)++)++)++)++ = 5).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (5 =\n(((((0)++)++)++)++)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2087). \ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66-\ud835\udc50\ud835\udc5c\ud835\udc5a\ud835\udc5a\ud835\udc62\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc63\ud835\udc56\ud835\udc61\ud835\udc66\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (x = y) \u22a2 (y =\nx), \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n((((((0)++)++)++)++)++ = 5). \u220e"}, {"color": "#FFF59D", "id": "P39", "label": "\ud835\udc43\u2083\u2089 : ((4)++ = 5)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2083\u2089): ((4)++ =\n5). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n((((((0)++)++)++)++)++ = 5)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2088).\n(((((0)++)++)++)++ = 4) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082\u2083).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2\nP\u0027, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((4)++ = 5).\n\u220e"}, {"color": "#FFF59D", "id": "P40", "label": "\ud835\udc43\u2084\u2080 : (5 = (4)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2080): (5 =\n(4)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((4)++ = 5)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2089).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66-\n\ud835\udc50\ud835\udc5c\ud835\udc5a\ud835\udc5a\ud835\udc62\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc63\ud835\udc56\ud835\udc61\ud835\udc66 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (x\n= y) \u22a2 (y = x), \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(5 = (4)++). \u220e"}, {"color": "#FFF59D", "id": "P41", "label": "\ud835\udc43\u2084\u2081 : ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1))\n\u27f9 ((5)++ \u2260 (1)++))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2081): ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9\n((5)++ \u2260 (1)++)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((\ud835\udc27\u2083\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc26\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (\ud835\udc27\u2083 \u2260 \ud835\udc26\u2081)) \u27f9\n((\ud835\udc27\u2083)++ \u2260 (\ud835\udc26\u2081)++)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2081). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2083 = 5, \ud835\udc26\u2081 =\n1.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P,\n\ud835\udef7) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((5\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9\n((5)++ \u2260 (1)++)). \u220e"}, {"color": "#FFF59D", "id": "P42", "label": "\ud835\udc43\u2084\u2082 : ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9\n((4)++ \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2082): ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((4)++ \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((\ud835\udc27\u2081\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((\ud835\udc27\u2081)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2081 =\n4.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P,\n\ud835\udef7) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((4\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((4)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P43", "label": "\ud835\udc43\u2084\u2083 : ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 (5\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2083): ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 (5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((4\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 ((4)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2082). ((4)++ = 5)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2083\u2089).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\n\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 (5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P44", "label": "\ud835\udc43\u2084\u2084 : (5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2084): (5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 (5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2083).(4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2082\u2086).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\n\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: ((P \u27f9 Q),\nP) \u22a2 Q, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \u220e"}, {"color": "#FFF59D", "id": "P45", "label": "\ud835\udc43\u2084\u2085 : ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1))\n\u27f9 ((5)++ \u2260 (1)++))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2085): ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9\n((5)++ \u2260 (1)++)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((\ud835\udc27\u2083\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc26\u2081 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (\ud835\udc27\u2083 \u2260 \ud835\udc26\u2081)) \u27f9\n((\ud835\udc27\u2083)++ \u2260 (\ud835\udc26\u2081)++)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2081). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2083 = 5, \ud835\udc26\u2081 =\n1.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\n\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P,\n\ud835\udef7) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((5\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9\n((5)++ \u2260 (1)++)). \u220e"}, {"color": "#FFF59D", "id": "P46", "label": "\ud835\udc43\u2084\u2086 : ((4)++ \u2260\n(0)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2086): ((4)++ \u2260\n(0)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260 0)) \u27f9\n((4)++ \u2260 (0)++)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2083).(((4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (4 \u2260 0)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2085).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: ((P\n\u27f9 Q), P) \u22a2 Q, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n((4)++ \u2260 (0)++). \u220e"}, {"color": "#FFF59D", "id": "P47", "label": "\ud835\udc43\u2084\u2087 : (5 \u2260 (0)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2087): (5 \u2260\n(0)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((4)++ \u2260 (0)++)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2086). ((4)++\n= 5) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2083\u2089).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\n\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (5 \u2260 (0)++). \u220e"}, {"color": "#FFF59D", "id": "P48", "label": "\ud835\udc43\u2084\u2088 : (6 = ((((((0)+\n+)++)++)++)++)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2088): (6 =\n((((((0)++)++)++)++)++)++).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\ude1e\ud835\ude26 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26 \ud835\udfe3 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26\n\ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\udfe2++, \ud835\udfe4 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\n(\ud835\udfe2++)++, \ud835\udfe5 \ud835\ude35\ud835\ude30 \ud835\ude23\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\n((\ud835\udfe2++)++)++,\ud835\ude26\ud835\ude35\ud835\ude24. (\ud835\ude10\ud835\ude2f \ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude33\n\ud835\ude38\ud835\ude30\ud835\ude33\ud835\ude25\ud835\ude34, \ud835\udfe3 := \ud835\udfe2++, \ud835\udfe4 := \ud835\udfe3++, \ud835\udfe5 :=\n\ud835\udfe4++, \ud835\ude26\ud835\ude35\ud835\ude24. \ud835\ude10\ud835\ude2f \ud835\ude35\ud835\ude29\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude26\ud835\ude39\ud835\ude35 \ud835\ude10 \ud835\ude36\ud835\ude34\ud835\ude26 \"\ud835\ude39\n:= \ud835\ude3a\" \ud835\ude35\ud835\ude30 \ud835\ude25\ud835\ude26\ud835\ude2f\ud835\ude30\ud835\ude35\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude26 \ud835\ude34\ud835\ude35\ud835\ude22\ud835\ude35\ud835\ude26\ud835\ude2e\ud835\ude26\ud835\ude2f\ud835\ude35\n\ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude39 \ud835\ude2a\ud835\ude34 \ud835\ude25\ud835\ude26\ud835\ude27\ud835\ude2a\ud835\ude2f\ud835\ude26\ud835\ude25 \ud835\ude35\ud835\ude30 \ud835\ude26\ud835\ude32\ud835\ude36\ud835\ude22\ud835\ude2d \ud835\ude3a.)\u231d\n\ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2 \ud835\uddf1\ud835\uddf2\ud835\uddf3. (\ud835\udc37\u2081). (6 =\n((((((0)++)++)++)++)++)++) \ud835\uddc2\ud835\uddcc \ud835\uddba\ud835\uddc7\n\ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7 \ud835\uddc8\ud835\uddbf \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n\ud835\uddbd\ud835\uddbe\ud835\uddbf\ud835\uddc2\ud835\uddc7\ud835\uddc2\ud835\uddcd\ud835\uddc2\ud835\uddc8\ud835\uddc7.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc51\ud835\udc52\ud835\udc53\ud835\udc56\ud835\udc5b\ud835\udc56\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: \ud835\udc9f \u22a2 P, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (6 =\n((((((0)++)++)++)++)++)++). \u220e"}, {"color": "#FFF59D", "id": "P49", "label": "\ud835\udc43\u2084\u2089 : (((((((0)++)++\n)++)++)++)++ = 6)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2084\u2089):\n(((((((0)++)++)++)++)++)++ = 6).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (6 =\n((((((0)++)++)++)++)++)++)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2088).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66-\n\ud835\udc50\ud835\udc5c\ud835\udc5a\ud835\udc5a\ud835\udc62\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc63\ud835\udc56\ud835\udc61\ud835\udc66 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (x\n= y) \u22a2 (y = x), \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(((((((0)++)++)++)++)++)++ = 6).\n\u220e"}, {"color": "#FFF59D", "id": "P50", "label": "\ud835\udc43\u2085\u2080 : (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2085\u2080): (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((0)++\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. \ud835\udfee.\ud835\udfee.\ud835\udfef (\ud835\udc43\u2084). ((0)++ =\n1) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2081\u2085).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\n\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (1 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f). \u220e"}, {"color": "#FFF59D", "id": "P51", "label": "\ud835\udc43\u2085\u2081 : ((5)++ = 6)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2085\u2081): ((5)++ =\n6). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n(((((((0)++)++)++)++)++)++ = 6)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2089).\n((((((0)++)++)++)++)++ = 5)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2083\u2088).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\n\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((5)++ = 6). \u220e"}, {"color": "#FFF59D", "id": "P52", "label": "\ud835\udc43\u2085\u2082 : (6 = (5)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2085\u2082): (6 =\n(5)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((5)++ = 6)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085\u2081).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66-\n\ud835\udc50\ud835\udc5c\ud835\udc5a\ud835\udc5a\ud835\udc62\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc63\ud835\udc56\ud835\udc61\ud835\udc66 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (x\n= y) \u22a2 (y = x), \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n(6 = (5)++). \u220e"}, {"color": "#FFF59D", "id": "P66", "label": "\ud835\udc43\u2086\u2086 : \ud835\udc3c\ud835\udc5b\ud835\udc50(\u210b\u2081)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2086\u2086): \ud835\udc3c\ud835\udc5b\ud835\udc50(\u210b\u2081).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (4 = 0) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2086\u2085). (4 \u2260 0) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. \ud835\udfee.\ud835\udfed.\ud835\udff2 (\ud835\udc43\u2083\u2080).\n\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc56\ud835\udc5b\ud835\udc50\ud835\udc5c\ud835\udc5b\ud835\udc60\ud835\udc56\ud835\udc60\ud835\udc61\ud835\udc52\ud835\udc5b\ud835\udc50\ud835\udc66-\n\ud835\udc4f\ud835\udc66-\ud835\udc56\ud835\udc5b\ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc5f\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: ((P = Q), (P \u2260\nQ)) \u22a2 Inc(\ud835\udcaf), \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n\ud835\udc3c\ud835\udc5b\ud835\udc50(\u210b\u2081). \u220e"}, {"color": "#FFF59D", "id": "P65", "label": "\ud835\udc43\u2086\u2085 : (4 = 0)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2086\u2085): (4 = 0).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((4)++ = (0)++)) \u27f9 (4\n= 0)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2086\u2084).(((4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227\n((4)++ = (0)++)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2086\u2083).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: ((P\n\u27f9 Q), P) \u22a2 Q, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (4\n= 0). \u220e"}, {"color": "#FFF59D", "id": "P64", "label": "\ud835\udc43\u2086\u2084 : ((((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((4)++ =\n(0)++)) \u27f9 (4 = 0))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2086\u2084): ((((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((4)++ =\n(0)++)) \u27f9 (4 = 0)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n((((\ud835\udc27\u2084 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227\n(\ud835\udc26\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227\n((\ud835\udc27\u2084)++ = (\ud835\udc26\u2082)++)) \u27f9 (\ud835\udc27\u2084 = \ud835\udc26\u2082))\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2082). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2084\n= 4, \ud835\udc26\u2082 = 0.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, \ud835\udef7) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((4 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227\n((4)++ = (0)++)) \u27f9 (4 = 0)). \u220e"}, {"color": "#FFF59D", "id": "P63", "label": "\ud835\udc43\u2086\u2083 : (((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((4)++ =\n(0)++))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2086\u2083): (((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((4)++ =\n(0)++)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) (\ud835\udc43) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2086\u2082). ((4)++ =\n(0)++) (\ud835\udc44) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2086\u2081).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc50\ud835\udc5c\ud835\udc5b\ud835\udc57\ud835\udc62\ud835\udc5b\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc5f\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, Q) \u22a2 (P \u22c0\nQ), \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((4)++ =\n(0)++)). \u220e"}, {"color": "#FFF59D", "id": "P62", "label": "\ud835\udc43\u2086\u2082 : ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2086\u2082): ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) (\ud835\udc43) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2082\u2086). (0 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) (\ud835\udc44) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2081).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc50\ud835\udc5c\ud835\udc5b\ud835\udc57\ud835\udc62\ud835\udc5b\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc5f\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, Q) \u22a2 (P \u22c0\nQ), \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((4 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (0 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P61", "label": "\ud835\udc43\u2086\u2081 : ((4)++ =\n(0)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2086\u2081): ((4)++ =\n(0)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((4)++ = 1)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2086\u2080). (1 =\n(0)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2085).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\n\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((4)++ = (0)++). \u220e"}, {"color": "#FFF59D", "id": "P60", "label": "\ud835\udc43\u2086\u2080 : ((4)++ = 1)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2086\u2080): ((4)++ =\n1). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (5 = 1) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085\u2089). (5 = (4)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2080).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2\nP\u0027, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((4)++ = 1).\n\u220e"}, {"color": "#FFF59D", "id": "P59", "label": "\ud835\udc43\u2085\u2089 : (5 = 1)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2085\u2089): (5 = 1).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((5)++ = (1)++)) \u27f9 (5\n= 1)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2085\u2088).(((5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227\n((5)++ = (1)++)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085\u2087).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: ((P\n\u27f9 Q), P) \u22a2 Q, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (5\n= 1). \u220e"}, {"color": "#FFF59D", "id": "P58", "label": "\ud835\udc43\u2085\u2088 : ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((5)++ =\n(1)++)) \u27f9 (5 = 1))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2085\u2088): ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((5)++ =\n(1)++)) \u27f9 (5 = 1)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3:\n((((\ud835\udc27\u2084 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227\n(\ud835\udc26\u2082 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227\n((\ud835\udc27\u2084)++ = (\ud835\udc26\u2082)++)) \u27f9 (\ud835\udc27\u2084 = \ud835\udc26\u2082))\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2083\u2082). \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\udc27\u2084\n= 5, \ud835\udc26\u2082 = 1.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc63\ud835\udc4e\ud835\udc5f\ud835\udc56\ud835\udc4e\ud835\udc4f\ud835\udc59\ud835\udc52-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, \ud835\udef7) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227\n((5)++ = (1)++)) \u27f9 (5 = 1)). \u220e"}, {"color": "#FFF59D", "id": "P57", "label": "\ud835\udc43\u2085\u2087 : (((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((5)++ =\n(1)++))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2085\u2087): (((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((5)++ =\n(1)++)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) (\ud835\udc43) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085\u2086). ((5)++ =\n(1)++) (\ud835\udc44) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2085\u2085).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc50\ud835\udc5c\ud835\udc5b\ud835\udc57\ud835\udc62\ud835\udc5b\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc5f\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, Q) \u22a2 (P \u22c0\nQ), \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 ((5)++ =\n(1)++)). \u220e"}, {"color": "#FFF59D", "id": "P56", "label": "\ud835\udc43\u2085\u2086 : ((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2085\u2086): ((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) (\ud835\udc43) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2084). (1 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) (\ud835\udc44) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2085\u2080).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc50\ud835\udc5c\ud835\udc5b\ud835\udc57\ud835\udc62\ud835\udc5b\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc5f\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, Q) \u22a2 (P \u22c0\nQ), \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P55", "label": "\ud835\udc43\u2085\u2085 : ((5)++ =\n(1)++)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2085\u2085): ((5)++ =\n(1)++). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((5)++ = 2)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085\u2084). (2 =\n(1)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2081\u2086).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\n\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((5)++ = (1)++). \u220e"}, {"color": "#FFF59D", "id": "P54", "label": "\ud835\udc43\u2085\u2084 : ((5)++ = 2)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2085\u2084): ((5)++ =\n2). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (6 = 2) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085\u2083). (6 = (5)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085\u2082).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2\nP\u0027, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((5)++ = 2).\n\u220e"}, {"color": "#FFF59D", "id": "P53", "label": "\ud835\udc43\u2085\u2083 : (6 = 2)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\u210b\u2081.\ud835\udc43\u2085\u2083): (6 = 2).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\ude09\ud835\ude3a \ud835\ude29\ud835\ude3a\ud835\ude31\ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude34\ud835\ude2a\ud835\ude34, \ud835\ude22\ud835\ude34\ud835\ude34\ud835\ude36\ud835\ude2e\ud835\ude26 (\ud835\udfe8\n= \ud835\udfe4) \ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26.\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbb\ud835\uddd2\n\ud835\uddee\ud835\ude05\ud835\uddf6\ud835\uddfc\ud835\uddfa (\ud835\udc34\u2085). (6 = 2) \ud835\uddc2\ud835\uddcc \ud835\uddba \ud835\uddcf\ud835\uddba\ud835\uddc5\ud835\uddc2\ud835\uddbd\n\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddc6\ud835\uddce\ud835\uddc5\ud835\uddba \ud835\uddcc\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddc6\ud835\uddbe\ud835\uddc7\ud835\uddcd \ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddbe\ud835\uddbd\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd \ud835\uddba\ud835\uddd1\ud835\uddc2\ud835\uddc8\ud835\uddc6.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc4e\ud835\udc65\ud835\udc56\ud835\udc5c\ud835\udc5a-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: \ud835\udc9c \u22a2 P, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (6 = 2). \u220e"}, {"color": "#81C784", "id": "A5", "label": "\ud835\udc34\u2085 : \u231c\ud835\ude09\ud835\ude3a \ud835\ude29\ud835\ude3a\ud835\ude31\ud835\ude30\ud835\ude35\ud835\ude29\ud835\ude26\ud835\ude34\ud835\ude2a\ud835\ude34,\n\ud835\ude22\ud835\ude34\ud835\ude34\ud835\ude36\ud835\ude2e\ud835\ude26 (\ud835\udfe8 = \ud835\udfe4) \ud835\ude2a\ud835\ude34\n\ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26.\u231d", "shape": "box"}, {"color": "#FFF59D", "id": "P67", "label": "\ud835\udc43\u2086\u2087 (\ud835\udfee.\ud835\udfed.\ud835\udff4) : (6 \u2260\n2)", "labelHighlightBold": true, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb \ud835\udfee.\ud835\udfed.\ud835\udff4 (\ud835\udcaf\u2081.\ud835\udc43\u2086\u2087): (6 \u2260\n2). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \ud835\uddab\ud835\uddbe\ud835\uddcd \ud835\uddf5\ud835\ude06\ud835\uddfd. (\ud835\udc3b\u2081) \ud835\uddbb\ud835\uddbe \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\uddc1\ud835\uddd2\ud835\uddc9\ud835\uddc8\ud835\uddcd\ud835\uddc1\ud835\uddbe\ud835\uddcc\ud835\uddc2\ud835\uddcc (6 = 2). \ud835\udc3c\ud835\udc5b\ud835\udc50(\u210b\u2081)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2086\u2086).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc5d\ud835\udc5f\ud835\udc5c\ud835\udc5c\ud835\udc53-\n\ud835\udc4f\ud835\udc66-\ud835\udc5f\ud835\udc52\ud835\udc53\ud835\udc62\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc5c\ud835\udc53-\ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59\ud835\udc56\ud835\udc61\ud835\udc66\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (\u210b(P=Q), Inc(\u210b))\n\u22a2 (P \u2260 Q), \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (6 \u2260\n2). \u220e"}, {"color": "#FFF59D", "id": "P68", "label": "\ud835\udc43\u2086\u2088 : ((1)++ = 2)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2086\u2088): ((1)++ =\n2). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (((0)++)++ = 2)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2087). ((0)++\n= 1) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2081\u2085).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\n\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe\n\ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2 P\u0027, \ud835\uddc2\ud835\uddcd\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((1)++ = 2). \u220e"}, {"color": "#FFF59D", "id": "P69", "label": "\ud835\udc43\u2086\u2089 : (5 \u2260 1)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2086\u2089): (5 \u2260 1).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (5 \u2260 (0)++) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2087). ((0)++ = 1) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2081\u2085).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2\nP\u0027, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (5 \u2260 1). \u220e"}, {"color": "#FFF59D", "id": "P70", "label": "\ud835\udc43\u2087\u2080 : ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1))\n\u27f9 (6 \u2260 (1)++))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2087\u2080): ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9 (6\n\u2260 (1)++)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9\n((5)++ \u2260 (1)++)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2085). ((5)++ = 6) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc\n\ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2085\u2081).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2\n\ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2\nP\u0027, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9 (6\n\u2260 (1)++)). \u220e"}, {"color": "#FFF59D", "id": "P71", "label": "\ud835\udc43\u2087\u2081 : ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1))\n\u27f9 (6 \u2260 2))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2087\u2081): ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9 (6\n\u2260 2)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9 (6\n\u2260 (1)++)) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2087\u2080). ((1)++ = 2) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2086\u2088).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc52\ud835\udc5e\ud835\udc62\ud835\udc4e\ud835\udc59-\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5a\ud835\udc60-\ud835\udc60\ud835\udc62\ud835\udc4f\ud835\udc60\ud835\udc61\ud835\udc56\ud835\udc61\ud835\udc62\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, (Q = R)) \u22a2\nP\u0027, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9 (6\n\u2260 2)). \u220e"}, {"color": "#FFF59D", "id": "P72", "label": "\ud835\udc43\u2087\u2082 : ((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2087\u2082): ((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: (5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) (\ud835\udc43) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6\n\ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2084\u2084). (1 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) (\ud835\udc44) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2085\u2080).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc50\ud835\udc5c\ud835\udc5b\ud835\udc57\ud835\udc62\ud835\udc5b\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc5f\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, Q) \u22a2 (P \u22c0\nQ), \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd ((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)). \u220e"}, {"color": "#FFF59D", "id": "P73", "label": "\ud835\udc43\u2087\u2083 : (((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2087\u2083): (((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) (\ud835\udc43)\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2087\u2082). (5 \u2260\n1) (\ud835\udc44) \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2086\u2089).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe\n\ud835\udc50\ud835\udc5c\ud835\udc5b\ud835\udc57\ud835\udc62\ud835\udc5b\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b-\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc5f\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc50\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b\n\ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: (P, Q) \u22a2 (P \u22c0\nQ), \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (((5 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)). \u220e"}, {"color": "#FFF59D", "id": "P74", "label": "\ud835\udc43\u2087\u2084 : (6 \u2260 2)", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2087\u2084): (6 \u2260 2).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: ((((5 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\n\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1)) \u27f9 (6 \u2260 2))\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd. (\ud835\udc43\u2087\u2081).(((5\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (1 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)) \u2227 (5 \u2260 1))\n\ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddfd\ud835\uddff\ud835\uddfc\ud835\uddfd.\n(\ud835\udc43\u2087\u2083).\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc5a\ud835\udc5c\ud835\udc51\ud835\udc62\ud835\udc60-\n\ud835\udc5d\ud835\udc5c\ud835\udc5b\ud835\udc52\ud835\udc5b\ud835\udc60 \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: ((P \u27f9 Q),\nP) \u22a2 Q, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (6 \u2260 2).\n\u220e"}, {"color": "#81C784", "id": "A6", "label": "\ud835\udc34\u2086 : \u231c\ud835\ude13\ud835\ude26\ud835\ude35 \ud835\ude17(\ud835\ude2f) \ud835\ude23\ud835\ude26\n\ud835\ude22\ud835\ude2f\ud835\ude3a \ud835\ude31\ud835\ude33\ud835\ude30\ud835\ude31\ud835\ude26\ud835\ude33\ud835\ude35\ud835\ude3a\n\ud835\ude31\ud835\ude26\ud835\ude33\ud835\ude35\ud835\ude22\ud835\ude2a\ud835\ude2f\ud835\ude2a\ud835\ude2f\ud835\ude28 \ud835\ude35\ud835\ude30 \ud835\ude22\n\ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\ude2f.\n\ud835\ude1a\ud835\ude36\ud835\ude31\ud835\ude31\ud835\ude30\ud835\ude34\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude17(\ud835\ude16) \ud835\ude2a\ud835\ude34\n\ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26, \ud835\ude22\ud835\ude2f\ud835\ude25 \ud835\ude34\ud835\ude36\ud835\ude31\ud835\ude31\ud835\ude30\ud835\ude34\ud835\ude26\n\ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude38\ud835\ude29\ud835\ude26\ud835\ude2f\ud835\ude26\ud835\ude37\ud835\ude26\ud835\ude33 \ud835\ude17(\ud835\ude2f)\n\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26, \ud835\ude17(\ud835\ude2f++) \ud835\ude2a\ud835\ude34\n\ud835\ude22\ud835\ude2d\ud835\ude34\ud835\ude30 \ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26. \ud835\ude1b\ud835\ude29\ud835\ude26\ud835\ude2f \ud835\ude17(\ud835\ude2f)\n\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26 \ud835\ude27\ud835\ude30\ud835\ude33 \ud835\ude26\ud835\ude37\ud835\ude26\ud835\ude33\ud835\ude3a\n\ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\ude2f.\u231d", "shape": "box"}, {"color": "#FFF59D", "id": "P75", "label": "\ud835\udc43\u2087\u2085 : (((\ud835\udc27\u2085 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227\n(\ud835\udc0f\u2081(0) \u2227 (\ud835\udc0f\u2081(\ud835\udc27\u2085) \u27f9\n\ud835\udc0f\u2081((\ud835\udc27\u2085)++)))) \u27f9 ((\ud835\udc26\u2083\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f)\n\u27f9 \ud835\udc0f\u2081(\ud835\udc26\u2083)))", "labelHighlightBold": false, "shape": "box", "title": "\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfd\ud835\uddfc\ud835\ude00\ud835\uddf6\ud835\ude01\ud835\uddf6\ud835\uddfc\ud835\uddfb (\ud835\udcaf\u2081.\ud835\udc43\u2087\u2085): (((\ud835\udc27\u2085 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc0f\u2081(0) \u2227\n(\ud835\udc0f\u2081(\ud835\udc27\u2085) \u27f9 \ud835\udc0f\u2081((\ud835\udc27\u2085)++)))) \u27f9 ((\ud835\udc26\u2083\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 \ud835\udc0f\u2081(\ud835\udc26\u2083))).\n\ud835\udde3\ud835\uddff\ud835\uddfc\ud835\uddfc\ud835\uddf3: \u231c\ud835\ude13\ud835\ude26\ud835\ude35 \ud835\ude17(\ud835\ude2f) \ud835\ude23\ud835\ude26 \ud835\ude22\ud835\ude2f\ud835\ude3a \ud835\ude31\ud835\ude33\ud835\ude30\ud835\ude31\ud835\ude26\ud835\ude33\ud835\ude35\ud835\ude3a\n\ud835\ude31\ud835\ude26\ud835\ude33\ud835\ude35\ud835\ude22\ud835\ude2a\ud835\ude2f\ud835\ude2a\ud835\ude2f\ud835\ude28 \ud835\ude35\ud835\ude30 \ud835\ude22 \ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33\n\ud835\ude2f. \ud835\ude1a\ud835\ude36\ud835\ude31\ud835\ude31\ud835\ude30\ud835\ude34\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude17(\ud835\ude16) \ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26,\n\ud835\ude22\ud835\ude2f\ud835\ude25 \ud835\ude34\ud835\ude36\ud835\ude31\ud835\ude31\ud835\ude30\ud835\ude34\ud835\ude26 \ud835\ude35\ud835\ude29\ud835\ude22\ud835\ude35 \ud835\ude38\ud835\ude29\ud835\ude26\ud835\ude2f\ud835\ude26\ud835\ude37\ud835\ude26\ud835\ude33 \ud835\ude17(\ud835\ude2f)\n\ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26, \ud835\ude17(\ud835\ude2f++) \ud835\ude2a\ud835\ude34 \ud835\ude22\ud835\ude2d\ud835\ude34\ud835\ude30 \ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26.\n\ud835\ude1b\ud835\ude29\ud835\ude26\ud835\ude2f \ud835\ude17(\ud835\ude2f) \ud835\ude2a\ud835\ude34 \ud835\ude35\ud835\ude33\ud835\ude36\ud835\ude26 \ud835\ude27\ud835\ude30\ud835\ude33 \ud835\ude26\ud835\ude37\ud835\ude26\ud835\ude33\ud835\ude3a\n\ud835\ude2f\ud835\ude22\ud835\ude35\ud835\ude36\ud835\ude33\ud835\ude22\ud835\ude2d \ud835\ude2f\ud835\ude36\ud835\ude2e\ud835\ude23\ud835\ude26\ud835\ude33 \ud835\ude2f.\u231d \ud835\uddc2\ud835\uddcc \ud835\uddc9\ud835\uddc8\ud835\uddcc\ud835\uddcd\ud835\uddce\ud835\uddc5\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddbd\n\ud835\uddbb\ud835\uddd2 \ud835\uddee\ud835\ude05\ud835\uddf6\ud835\uddfc\ud835\uddfa \ud835\ude00\ud835\uddf0\ud835\uddf5\ud835\uddf2\ud835\uddfa\ud835\uddee (\ud835\udc34\u2086). (((\ud835\udc27\u2085 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc0f\u2081(0) \u2227\n(\ud835\udc0f\u2081(\ud835\udc27\u2085) \u27f9 \ud835\udc0f\u2081((\ud835\udc27\u2085)++)))) \u27f9 ((\ud835\udc26\u2083\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 \ud835\udc0f\u2081(\ud835\udc26\u2083)))\n\ud835\uddc2\ud835\uddcc \ud835\uddba \ud835\uddcf\ud835\uddba\ud835\uddc5\ud835\uddc2\ud835\uddbd \ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddc6\ud835\uddce\ud835\uddc5\ud835\uddba \ud835\uddcc\ud835\uddcd\ud835\uddba\ud835\uddcd\ud835\uddbe\ud835\uddc6\ud835\uddbe\ud835\uddc7\ud835\uddcd\n\ud835\uddc2\ud835\uddc7\ud835\uddcd\ud835\uddbe\ud835\uddcb\ud835\uddc9\ud835\uddcb\ud835\uddbe\ud835\uddcd\ud835\uddbe\ud835\uddbd \ud835\uddbf\ud835\uddcb\ud835\uddc8\ud835\uddc6 \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd\n\ud835\uddba\ud835\uddd1\ud835\uddc2\ud835\uddc8\ud835\uddc6.\ud835\uddb3\ud835\uddc1\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddbf\ud835\uddc8\ud835\uddcb\ud835\uddbe, \ud835\uddbb\ud835\uddd2 \ud835\uddcd\ud835\uddc1\ud835\uddbe \ud835\udc4e\ud835\udc65\ud835\udc56\ud835\udc5c\ud835\udc5a-\n\ud835\udc56\ud835\udc5b\ud835\udc61\ud835\udc52\ud835\udc5f\ud835\udc5d\ud835\udc5f\ud835\udc52\ud835\udc61\ud835\udc4e\ud835\udc61\ud835\udc56\ud835\udc5c\ud835\udc5b \ud835\uddc2\ud835\uddc7\ud835\uddbf\ud835\uddbe\ud835\uddcb\ud835\uddbe\ud835\uddc7\ud835\uddbc\ud835\uddbe \ud835\uddcb\ud835\uddce\ud835\uddc5\ud835\uddbe: \ud835\udc9c\n\u22a2 P, \ud835\uddc2\ud835\uddcd \ud835\uddbf\ud835\uddc8\ud835\uddc5\ud835\uddc5\ud835\uddc8\ud835\uddd0\ud835\uddcc \ud835\uddcd\ud835\uddc1\ud835\uddba\ud835\uddcd (((\ud835\udc27\u2085 \ud835\udc56\ud835\udc60-\ud835\udc4e\n\ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u2227 (\ud835\udc0f\u2081(0) \u2227\n(\ud835\udc0f\u2081(\ud835\udc27\u2085) \u27f9 \ud835\udc0f\u2081((\ud835\udc27\u2085)++)))) \u27f9 ((\ud835\udc26\u2083\n\ud835\udc56\ud835\udc60-\ud835\udc4e \ud835\udc5b\ud835\udc4e\ud835\udc61\ud835\udc62\ud835\udc5f\ud835\udc4e\ud835\udc59-\ud835\udc5b\ud835\udc62\ud835\udc5a\ud835\udc4f\ud835\udc52\ud835\udc5f) \u27f9 \ud835\udc0f\u2081(\ud835\udc26\u2083))).\n\u220e"}]); edges = new vis.DataSet([{"arrows": "to", "from": "A1", "to": "P1"}, {"arrows": "to", "from": "A2", "to": "P2"}, {"arrows": "to", "from": "P2", "to": "P3"}, {"arrows": "to", "from": "P3", "to": "P4"}, {"arrows": "to", "from": "P1", "to": "P4"}, {"arrows": "to", "from": "D1", "to": "P5"}, {"arrows": "to", "from": "D1", "to": "P6"}, {"arrows": "to", "from": "D1", "to": "P7"}, {"arrows": "to", "from": "D1", "to": "P8"}, {"arrows": "to", "from": "P2", "to": "P9"}, {"arrows": "to", "from": "P9", "to": "P10"}, {"arrows": "to", "from": "P4", "to": "P10"}, {"arrows": "to", "from": "P2", "to": "P11"}, {"arrows": "to", "from": "P11", "to": "P12"}, {"arrows": "to", "from": "P10", "to": "P12"}, {"arrows": "to", "from": "P2", "to": "P13"}, {"arrows": "to", "from": "P13", "to": "P14"}, {"arrows": "to", "from": "P12", "to": "P14"}, {"arrows": "to", "from": "P5", "to": "P15"}, {"arrows": "to", "from": "P6", "to": "P16"}, {"arrows": "to", "from": "P15", "to": "P16"}, {"arrows": "to", "from": "P6", "to": "P17"}, {"arrows": "to", "from": "P7", "to": "P18"}, {"arrows": "to", "from": "P17", "to": "P18"}, {"arrows": "to", "from": "P7", "to": "P19"}, {"arrows": "to", "from": "P19", "to": "P20"}, {"arrows": "to", "from": "P17", "to": "P20"}, {"arrows": "to", "from": "P12", "to": "P21"}, {"arrows": "to", "from": "P19", "to": "P21"}, {"arrows": "to", "from": "D1", "to": "P22"}, {"arrows": "to", "from": "P8", "to": "P23"}, {"arrows": "to", "from": "P23", "to": "P24"}, {"arrows": "to", "from": "P19", "to": "P24"}, {"arrows": "to", "from": "P13", "to": "P25"}, {"arrows": "to", "from": "P24", "to": "P25"}, {"arrows": "to", "from": "P14", "to": "P26"}, {"arrows": "to", "from": "P23", "to": "P26"}, {"arrows": "to", "from": "A3", "to": "P27"}, {"arrows": "to", "from": "P27", "to": "P28"}, {"arrows": "to", "from": "P28", "to": "P29"}, {"arrows": "to", "from": "P21", "to": "P29"}, {"arrows": "to", "from": "P29", "to": "P30"}, {"arrows": "to", "from": "P24", "to": "P30"}, {"arrows": "to", "from": "A4", "to": "P31"}, {"arrows": "to", "from": "A4", "to": "P32"}, {"arrows": "to", "from": "P31", "to": "P33"}, {"arrows": "to", "from": "P26", "to": "P34"}, {"arrows": "to", "from": "P1", "to": "P34"}, {"arrows": "to", "from": "P34", "to": "P35"}, {"arrows": "to", "from": "P30", "to": "P35"}, {"arrows": "to", "from": "P33", "to": "P36"}, {"arrows": "to", "from": "P35", "to": "P36"}, {"arrows": "to", "from": "D1", "to": "P37"}, {"arrows": "to", "from": "P37", "to": "P38"}, {"arrows": "to", "from": "P38", "to": "P39"}, {"arrows": "to", "from": "P23", "to": "P39"}, {"arrows": "to", "from": "P39", "to": "P40"}, {"arrows": "to", "from": "P31", "to": "P41"}, {"arrows": "to", "from": "P2", "to": "P42"}, {"arrows": "to", "from": "P42", "to": "P43"}, {"arrows": "to", "from": "P39", "to": "P43"}, {"arrows": "to", "from": "P43", "to": "P44"}, {"arrows": "to", "from": "P26", "to": "P44"}, {"arrows": "to", "from": "P31", "to": "P45"}, {"arrows": "to", "from": "P33", "to": "P46"}, {"arrows": "to", "from": "P35", "to": "P46"}, {"arrows": "to", "from": "P46", "to": "P47"}, {"arrows": "to", "from": "P39", "to": "P47"}, {"arrows": "to", "from": "D1", "to": "P48"}, {"arrows": "to", "from": "P48", "to": "P49"}, {"arrows": "to", "from": "P4", "to": "P50"}, {"arrows": "to", "from": "P15", "to": "P50"}, {"arrows": "to", "from": "P49", "to": "P51"}, {"arrows": "to", "from": "P38", "to": "P51"}, {"arrows": "to", "from": "P51", "to": "P52"}, {"arrows": "to", "from": "P32", "to": "P64"}, {"arrows": "to", "from": "P64", "to": "P65"}, {"arrows": "to", "from": "P26", "to": "P62"}, {"arrows": "to", "from": "P1", "to": "P62"}, {"arrows": "to", "from": "P62", "to": "P63"}, {"arrows": "to", "from": "P32", "to": "P58"}, {"arrows": "to", "from": "P58", "to": "P59"}, {"arrows": "to", "from": "P44", "to": "P56"}, {"arrows": "to", "from": "P50", "to": "P56"}, {"arrows": "to", "from": "P56", "to": "P57"}, {"arrows": "to", "from": "A5", "to": "P53"}, {"arrows": "to", "from": "P53", "to": "P54"}, {"arrows": "to", "from": "P52", "to": "P54"}, {"arrows": "to", "from": "P54", "to": "P55"}, {"arrows": "to", "from": "P16", "to": "P55"}, {"arrows": "to", "from": "P55", "to": "P57"}, {"arrows": "to", "from": "P57", "to": "P59"}, {"arrows": "to", "from": "P59", "to": "P60"}, {"arrows": "to", "from": "P40", "to": "P60"}, {"arrows": "to", "from": "P60", "to": "P61"}, {"arrows": "to", "from": "P5", "to": "P61"}, {"arrows": "to", "from": "P61", "to": "P63"}, {"arrows": "to", "from": "P63", "to": "P65"}, {"arrows": "to", "from": "P65", "to": "P66"}, {"arrows": "to", "from": "P30", "to": "P66"}, {"arrows": "to", "from": "P66", "to": "P67"}, {"arrows": "to", "from": "P17", "to": "P68"}, {"arrows": "to", "from": "P15", "to": "P68"}, {"arrows": "to", "from": "P47", "to": "P69"}, {"arrows": "to", "from": "P15", "to": "P69"}, {"arrows": "to", "from": "P45", "to": "P70"}, {"arrows": "to", "from": "P51", "to": "P70"}, {"arrows": "to", "from": "P70", "to": "P71"}, {"arrows": "to", "from": "P68", "to": "P71"}, {"arrows": "to", "from": "P44", "to": "P72"}, {"arrows": "to", "from": "P50", "to": "P72"}, {"arrows": "to", "from": "P72", "to": "P73"}, {"arrows": "to", "from": "P69", "to": "P73"}, {"arrows": "to", "from": "P71", "to": "P74"}, {"arrows": "to", "from": "P73", "to": "P74"}, {"arrows": "to", "from": "A6", "to": "P75"}]); nodeColors = {}; diff --git a/theory/build/tao_2006_2_1_the_peano_axioms_report_noproof_enus_latex.txt b/theory/build/tao_2006_2_1_the_peano_axioms_report_noproof_enus_latex.txt index 1e2517f4..57af3e54 100644 --- a/theory/build/tao_2006_2_1_the_peano_axioms_report_noproof_enus_latex.txt +++ b/theory/build/tao_2006_2_1_the_peano_axioms_report_noproof_enus_latex.txt @@ -1 +1 @@ -\mathsf{}\mathsf{}\section{\boldsymbol\mathsf{Theory properties}}}\mathsf{}\boldsymbol\mathsf{Consistency: }}undetermined\mathsf{}\mathsf{}\boldsymbol\mathsf{Stabilized: }}False\mathsf{}\mathsf{}\boldsymbol\mathsf{Extended theory: }}N/A\mathsf{}\section{\boldsymbol\mathsf{Simple-objects declarations}}}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{0}\right\ulcorner, \left\ulcorner\mathit{natural-number}\right\ulcorner, \left\ulcorner\mathit{1}\right\ulcorner, \left\ulcorner\mathit{2}\right\ulcorner, \left\ulcorner\mathit{3}\right\ulcorner, \left\ulcorner\mathit{4}\right\ulcorner, \left\ulcorner\mathit{5}\right\ulcorner, \left\ulcorner\mathit{6}\right\ulcorner\mathsf{ be }\mathit{simple-objects}\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\section{\boldsymbol\mathsf{Relations}}}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{++}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{Inc}\right\ulcorner\mathsf{ be }\mathit{unary}\mathit{-relations}\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{=}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{\land}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{is-a}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{\neq}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{\implies}\right\ulcorner\mathsf{ be }\mathit{binary}\mathit{-relations}\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\section{\boldsymbol\mathsf{Inference rules}}}\mathsf{}\mathsf{The following inference rules are considered valid under this theory:}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{axiom-interpretation}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner๐’œ โŠข P\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{conjunction-introduction}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(P, Q) โŠข (P โ‹€ Q)\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{definition-interpretation}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner๐’Ÿ โŠข P\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{equal-terms-substitution}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(P, (Q = R)) โŠข P'\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{equality-commutativity}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(x = y) โŠข (y = x)\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{inconsistency-by-inequality-introduction}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner((P = Q), (P โ‰  Q)) โŠข Inc(๐’ฏ)\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{modus-ponens}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner((P โŸน Q), P) โŠข Q\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{proof-by-refutation-of-equality}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(โ„‹(P=Q), Inc(โ„‹)) โŠข (P โ‰  Q)\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{variable-substitution}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(P, ๐›ท) โŠข P'\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\section{\boldsymbol\mathsf{Theory elaboration sequence}}}\mathsf{}# \boldsymbol\mathsf{2}}: \boldsymbol\mathsf{The natural numbers}}\mathsf{}\mathsf{}## \boldsymbol\mathsf{2.1}}: \boldsymbol\mathsf{The peano axioms}}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Informal definition of natural number}}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.1}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom}} \boldsymbol\mathsf{2.1}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{1}\mathsf{)}\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{1}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{0 is a natural number.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{axiom-interpretation}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{axiom-interpretation}\mathsf{ defined as }\left\ulcorner๐’œ โŠข P\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{1}\mathsf{)}\mathsf{: }\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.2}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom}} \boldsymbol\mathsf{2.2}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{2}\mathsf{)}\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{2}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{If n is a natural number, then n++ is a natural number.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{2}\mathsf{)}\mathsf{: }\left(\left(\mathbf{n}_{1} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{1}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{variable-substitution}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{variable-substitution}\mathsf{ defined as }\left\ulcorner(P, ๐›ท) โŠข P'\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{3}\mathsf{)}\mathsf{: }\left(\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{modus-ponens}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{modus-ponens}\mathsf{ defined as }\left\ulcorner((P โŸน Q), P) โŠข Q\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}} \boldsymbol\mathsf{2.2.3}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{4}\mathsf{)}\mathsf{: }\left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Definition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{D}_{1}\mathsf{)}\mathsf{: Let }\mathit{definition}\mathsf{ }\mathcal{D}_{1}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{definition-interpretation}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{definition-interpretation}\mathsf{ defined as }\left\ulcorner๐’Ÿ โŠข P\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{5}\mathsf{)}\mathsf{: }\left(\mathit{1} \mathit{=} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{6}\mathsf{)}\mathsf{: }\left(\mathit{2} \mathit{=} \left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{7}\mathsf{)}\mathsf{: }\left(\mathit{3} \mathit{=} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{8}\mathsf{)}\mathsf{: }\left(\mathit{4} \mathit{=} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{9}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{10}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{11}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{12}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{13}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{14}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{equality-commutativity}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{equality-commutativity}\mathsf{ defined as }\left\ulcorner(x = y) โŠข (y = x)\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{15}\mathsf{)}\mathsf{: }\left(\left(\mathit{0}\right)\mathit{++} \mathit{=} \mathit{1}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{equal-terms-substitution}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{equal-terms-substitution}\mathsf{ defined as }\left\ulcorner(P, (Q = R)) โŠข P'\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{16}\mathsf{)}\mathsf{: }\left(\mathit{2} \mathit{=} \left(\mathit{1}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{17}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{18}\mathsf{)}\mathsf{: }\left(\mathit{3} \mathit{=} \left(\mathit{2}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}### \boldsymbol\mathsf{3 is a natural number}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{19}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{3}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{20}\mathsf{)}\mathsf{: }\left(\left(\mathit{2}\right)\mathit{++} \mathit{=} \mathit{3}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}} \boldsymbol\mathsf{2.1.4}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{21}\mathsf{)}\mathsf{: }\left(\mathit{3} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{22}\mathsf{)}\mathsf{: }\left(\mathit{4} \mathit{=} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{23}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{24}\mathsf{)}\mathsf{: }\left(\left(\mathit{3}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{25}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{26}\mathsf{)}\mathsf{: }\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.3}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom}} \boldsymbol\mathsf{2.3}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{3}\mathsf{)}\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{3}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{0 is not the successor of any natural number; i.e., we have n++ 0 for every natural number n.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{27}\mathsf{)}\mathsf{: }\left(\left(\mathbf{n}_{2} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{2}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\right)\mathsf{.}\mathsf{}\mathsf{}### \boldsymbol\mathsf{4 is not equal to 0.}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{28}\mathsf{)}\mathsf{: }\left(\left(\mathit{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{3}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{29}\mathsf{)}\mathsf{: }\left(\left(\mathit{3}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}} \boldsymbol\mathsf{2.1.6}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{30}\mathsf{)}\mathsf{: }\left(\mathit{4} \mathit{\neq} \mathit{0}\right)\mathsf{.}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.4}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom}} \boldsymbol\mathsf{2.4}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{4}\mathsf{)}\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{4}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{Different natural numbers must have different successors; i.e., if n, m are natural numbers and n m, then n++ m++. Equivalently, if n++ = m++, then we must have n = m.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{31}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathbf{n}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathbf{n}_{3} \mathit{\neq} \mathbf{m}_{1}\right)\right) \mathit{\implies} \left(\left(\mathbf{n}_{3}\right)\mathit{++} \mathit{\neq} \left(\mathbf{m}_{1}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{32}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathbf{n}_{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{2} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\left(\mathbf{n}_{4}\right)\mathit{++} \mathit{=} \left(\mathbf{m}_{2}\right)\mathit{++}\right)\right) \mathit{\implies} \left(\mathbf{n}_{4} \mathit{=} \mathbf{m}_{2}\right)\right)\mathsf{.}\mathsf{}\mathsf{}### \boldsymbol\mathsf{6 is not equal to 2.}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{33}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right) \mathit{\implies} \left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{conjunction-introduction}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{conjunction-introduction}\mathsf{ defined as }\left\ulcorner(P, Q) โŠข (P โ‹€ Q)\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{34}\mathsf{)}\mathsf{: }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{35}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{36}\mathsf{)}\mathsf{: }\left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{37}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{=} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{38}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{39}\mathsf{)}\mathsf{: }\left(\left(\mathit{4}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{40}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{=} \left(\mathit{4}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{41}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\left(\mathit{5}\right)\mathit{++} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{42}\mathsf{)}\mathsf{: }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{4}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{43}\mathsf{)}\mathsf{: }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{44}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{45}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\left(\mathit{5}\right)\mathit{++} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{46}\mathsf{)}\mathsf{: }\left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{47}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{48}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{=} \left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{49}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{6}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{50}\mathsf{)}\mathsf{: }\left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{51}\mathsf{)}\mathsf{: }\left(\left(\mathit{5}\right)\mathit{++} \mathit{=} \mathit{6}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{52}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{=} \left(\mathit{5}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}#### \boldsymbol\mathsf{Proof by contradiction}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Hypothesis}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{H}_{1}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{=} \mathit{2}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{inconsistency-by-inequality-introduction}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{inconsistency-by-inequality-introduction}\mathsf{ defined as }\left\ulcorner((P = Q), (P โ‰  Q)) โŠข Inc(๐’ฏ)\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{66}\mathsf{)}\mathsf{: }\mathit{Inc}\left(\mathcal{H}_{1}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{proof-by-refutation-of-equality}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{proof-by-refutation-of-equality}\mathsf{ defined as }\left\ulcorner(โ„‹(P=Q), Inc(โ„‹)) โŠข (P โ‰  Q)\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}} \boldsymbol\mathsf{2.1.8}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{67}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{\neq} \mathit{2}\right)\mathsf{.}\mathsf{}\mathsf{}#### \boldsymbol\mathsf{Direct proof}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{68}\mathsf{)}\mathsf{: }\left(\left(\mathit{1}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{69}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{\neq} \mathit{1}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{70}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\mathit{6} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{71}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\mathit{6} \mathit{\neq} \mathit{2}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{72}\mathsf{)}\mathsf{: }\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{73}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{74}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{\neq} \mathit{2}\right)\mathsf{.}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.5: the principle of mathematical induction}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom schema}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{6}\mathsf{)} - Principle of mathematical induction\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{6}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{Let P(n) be any property pertaining to a natural number n. Suppose that P(O) is true, and suppose that whenever P(n) is true, P(n++) is also true. Then P(n) is true for every natural number n.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{75}\mathsf{)}\mathsf{: }\left(\left(\left(\mathbf{n}_{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{P}_{1}\left(\mathit{0}\right) \mathit{\land} \left(\mathbf{P}_{1}\left(\mathbf{n}_{5}\right) \mathit{\implies} \mathbf{P}_{1}\left(\left(\mathbf{n}_{5}\right)\mathit{++}\right)\right)\right)\right) \mathit{\implies} \left(\left(\mathbf{m}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \mathbf{P}_{1}\left(\mathbf{m}_{3}\right)\right)\right)\mathsf{.}\mathsf{}\mathsf{}### \boldsymbol\mathsf{The number system n}}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Recursive definitions}}\mathsf{} \ No newline at end of file +\mathsf{}\mathsf{}\section{\boldsymbol\mathsf{Theory properties}}}\mathsf{}\boldsymbol\mathsf{Consistency: }}undetermined\mathsf{}\mathsf{}\boldsymbol\mathsf{Stabilized: }}False\mathsf{}\mathsf{}\boldsymbol\mathsf{Extended theory: }}N/A\mathsf{}\section{\boldsymbol\mathsf{Simple-objects declarations}}}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{0}\right\ulcorner, \left\ulcorner\mathit{natural-number}\right\ulcorner, \left\ulcorner\mathit{1}\right\ulcorner, \left\ulcorner\mathit{2}\right\ulcorner, \left\ulcorner\mathit{3}\right\ulcorner, \left\ulcorner\mathit{4}\right\ulcorner, \left\ulcorner\mathit{5}\right\ulcorner, \left\ulcorner\mathit{6}\right\ulcorner\mathsf{ be }\mathit{simple-objects}\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\section{\boldsymbol\mathsf{Relations}}}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{++}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{Inc}\right\ulcorner\mathsf{ be }\mathit{unary}\mathit{-relations}\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{\land}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{\neq}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{is-a}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{=}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{\implies}\right\ulcorner\mathsf{ be }\mathit{binary}\mathit{-relations}\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\section{\boldsymbol\mathsf{Inference rules}}}\mathsf{}\mathsf{The following inference rules are considered valid under this theory:}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{axiom-interpretation}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner๐’œ โŠข P\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{conjunction-introduction}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(P, Q) โŠข (P โ‹€ Q)\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{definition-interpretation}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner๐’Ÿ โŠข P\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{equal-terms-substitution}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(P, (Q = R)) โŠข P'\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{equality-commutativity}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(x = y) โŠข (y = x)\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{inconsistency-by-inequality-introduction}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner((P = Q), (P โ‰  Q)) โŠข Inc(๐’ฏ)\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{modus-ponens}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner((P โŸน Q), P) โŠข Q\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{proof-by-refutation-of-equality}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(โ„‹(P=Q), Inc(โ„‹)) โŠข (P โ‰  Q)\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{variable-substitution}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(P, ๐›ท) โŠข P'\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\section{\boldsymbol\mathsf{Theory elaboration sequence}}}\mathsf{}# \boldsymbol\mathsf{2}}: \boldsymbol\mathsf{The natural numbers}}\mathsf{}\mathsf{}## \boldsymbol\mathsf{2.1}}: \boldsymbol\mathsf{The peano axioms}}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Informal definition of natural number}}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.1}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom}} \boldsymbol\mathsf{2.1}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{1}\mathsf{)}\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{1}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{0 is a natural number.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{axiom-interpretation}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{axiom-interpretation}\mathsf{ defined as }\left\ulcorner๐’œ โŠข P\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{1}\mathsf{)}\mathsf{: }\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.2}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom}} \boldsymbol\mathsf{2.2}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{2}\mathsf{)}\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{2}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{If n is a natural number, then n++ is a natural number.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{2}\mathsf{)}\mathsf{: }\left(\left(\mathbf{n}_{1} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{1}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{variable-substitution}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{variable-substitution}\mathsf{ defined as }\left\ulcorner(P, ๐›ท) โŠข P'\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{3}\mathsf{)}\mathsf{: }\left(\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{modus-ponens}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{modus-ponens}\mathsf{ defined as }\left\ulcorner((P โŸน Q), P) โŠข Q\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}} \boldsymbol\mathsf{2.2.3}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{4}\mathsf{)}\mathsf{: }\left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Definition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{D}_{1}\mathsf{)}\mathsf{: Let }\mathit{definition}\mathsf{ }\mathcal{D}_{1}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{definition-interpretation}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{definition-interpretation}\mathsf{ defined as }\left\ulcorner๐’Ÿ โŠข P\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{5}\mathsf{)}\mathsf{: }\left(\mathit{1} \mathit{=} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{6}\mathsf{)}\mathsf{: }\left(\mathit{2} \mathit{=} \left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{7}\mathsf{)}\mathsf{: }\left(\mathit{3} \mathit{=} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{8}\mathsf{)}\mathsf{: }\left(\mathit{4} \mathit{=} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{9}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{10}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{11}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{12}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{13}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{14}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{equality-commutativity}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{equality-commutativity}\mathsf{ defined as }\left\ulcorner(x = y) โŠข (y = x)\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{15}\mathsf{)}\mathsf{: }\left(\left(\mathit{0}\right)\mathit{++} \mathit{=} \mathit{1}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{equal-terms-substitution}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{equal-terms-substitution}\mathsf{ defined as }\left\ulcorner(P, (Q = R)) โŠข P'\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{16}\mathsf{)}\mathsf{: }\left(\mathit{2} \mathit{=} \left(\mathit{1}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{17}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{18}\mathsf{)}\mathsf{: }\left(\mathit{3} \mathit{=} \left(\mathit{2}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}### \boldsymbol\mathsf{3 is a natural number}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{19}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{3}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{20}\mathsf{)}\mathsf{: }\left(\left(\mathit{2}\right)\mathit{++} \mathit{=} \mathit{3}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}} \boldsymbol\mathsf{2.1.4}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{21}\mathsf{)}\mathsf{: }\left(\mathit{3} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{22}\mathsf{)}\mathsf{: }\left(\mathit{4} \mathit{=} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{23}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{24}\mathsf{)}\mathsf{: }\left(\left(\mathit{3}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{25}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{26}\mathsf{)}\mathsf{: }\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.3}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom}} \boldsymbol\mathsf{2.3}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{3}\mathsf{)}\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{3}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{0 is not the successor of any natural number; i.e., we have n++ 0 for every natural number n.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{27}\mathsf{)}\mathsf{: }\left(\left(\mathbf{n}_{2} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{2}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\right)\mathsf{.}\mathsf{}\mathsf{}### \boldsymbol\mathsf{4 is not equal to 0.}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{28}\mathsf{)}\mathsf{: }\left(\left(\mathit{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{3}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{29}\mathsf{)}\mathsf{: }\left(\left(\mathit{3}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}} \boldsymbol\mathsf{2.1.6}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{30}\mathsf{)}\mathsf{: }\left(\mathit{4} \mathit{\neq} \mathit{0}\right)\mathsf{.}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.4}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom}} \boldsymbol\mathsf{2.4}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{4}\mathsf{)}\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{4}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{Different natural numbers must have different successors; i.e., if n, m are natural numbers and n m, then n++ m++. Equivalently, if n++ = m++, then we must have n = m.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{31}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathbf{n}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathbf{n}_{3} \mathit{\neq} \mathbf{m}_{1}\right)\right) \mathit{\implies} \left(\left(\mathbf{n}_{3}\right)\mathit{++} \mathit{\neq} \left(\mathbf{m}_{1}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{32}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathbf{n}_{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{2} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\left(\mathbf{n}_{4}\right)\mathit{++} \mathit{=} \left(\mathbf{m}_{2}\right)\mathit{++}\right)\right) \mathit{\implies} \left(\mathbf{n}_{4} \mathit{=} \mathbf{m}_{2}\right)\right)\mathsf{.}\mathsf{}\mathsf{}### \boldsymbol\mathsf{6 is not equal to 2.}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{33}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right) \mathit{\implies} \left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{conjunction-introduction}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{conjunction-introduction}\mathsf{ defined as }\left\ulcorner(P, Q) โŠข (P โ‹€ Q)\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{34}\mathsf{)}\mathsf{: }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{35}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{36}\mathsf{)}\mathsf{: }\left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{37}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{=} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{38}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{39}\mathsf{)}\mathsf{: }\left(\left(\mathit{4}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{40}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{=} \left(\mathit{4}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{41}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\left(\mathit{5}\right)\mathit{++} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{42}\mathsf{)}\mathsf{: }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{4}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{43}\mathsf{)}\mathsf{: }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{44}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{45}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\left(\mathit{5}\right)\mathit{++} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{46}\mathsf{)}\mathsf{: }\left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{47}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{48}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{=} \left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{49}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{6}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{50}\mathsf{)}\mathsf{: }\left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{51}\mathsf{)}\mathsf{: }\left(\left(\mathit{5}\right)\mathit{++} \mathit{=} \mathit{6}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{52}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{=} \left(\mathit{5}\right)\mathit{++}\right)\mathsf{.}\mathsf{}\mathsf{}#### \boldsymbol\mathsf{Proof by contradiction}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Hypothesis}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{H}_{1}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{=} \mathit{2}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{inconsistency-by-inequality-introduction}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{inconsistency-by-inequality-introduction}\mathsf{ defined as }\left\ulcorner((P = Q), (P โ‰  Q)) โŠข Inc(๐’ฏ)\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{66}\mathsf{)}\mathsf{: }\mathit{Inc}\left(\mathcal{H}_{1}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{proof-by-refutation-of-equality}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{proof-by-refutation-of-equality}\mathsf{ defined as }\left\ulcorner(โ„‹(P=Q), Inc(โ„‹)) โŠข (P โ‰  Q)\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}} \boldsymbol\mathsf{2.1.8}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{67}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{\neq} \mathit{2}\right)\mathsf{.}\mathsf{}\mathsf{}#### \boldsymbol\mathsf{Direct proof}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{68}\mathsf{)}\mathsf{: }\left(\left(\mathit{1}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{69}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{\neq} \mathit{1}\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{70}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\mathit{6} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{71}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\mathit{6} \mathit{\neq} \mathit{2}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{72}\mathsf{)}\mathsf{: }\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{73}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right)\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{74}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{\neq} \mathit{2}\right)\mathsf{.}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.5: the principle of mathematical induction}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom schema}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{6}\mathsf{)} - Principle of mathematical induction\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{6}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{Let P(n) be any property pertaining to a natural number n. Suppose that P(O) is true, and suppose that whenever P(n) is true, P(n++) is also true. Then P(n) is true for every natural number n.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{75}\mathsf{)}\mathsf{: }\left(\left(\left(\mathbf{n}_{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{P}_{1}\left(\mathit{0}\right) \mathit{\land} \left(\mathbf{P}_{1}\left(\mathbf{n}_{5}\right) \mathit{\implies} \mathbf{P}_{1}\left(\left(\mathbf{n}_{5}\right)\mathit{++}\right)\right)\right)\right) \mathit{\implies} \left(\left(\mathbf{m}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \mathbf{P}_{1}\left(\mathbf{m}_{3}\right)\right)\right)\mathsf{.}\mathsf{}\mathsf{}### \boldsymbol\mathsf{The number system n}}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Recursive definitions}}\mathsf{} \ No newline at end of file diff --git a/theory/build/tao_2006_2_1_the_peano_axioms_report_noproof_enus_plaintext.txt b/theory/build/tao_2006_2_1_the_peano_axioms_report_noproof_enus_plaintext.txt index 2f1e6e1a..e450e384 100644 --- a/theory/build/tao_2006_2_1_the_peano_axioms_report_noproof_enus_plaintext.txt +++ b/theory/build/tao_2006_2_1_the_peano_axioms_report_noproof_enus_plaintext.txt @@ -10,7 +10,7 @@ Let "0", "natural-number", "1", "2", "3", "4", "5", "6" be simple-objects in U1. # Relations Let "++", "Inc" be unary-relations in U1. -Let "=", "and", "is-a", "neq", "==>" be binary-relations in U1. +Let "and", "neq", "is-a", "=", "==>" be binary-relations in U1. # Inference rules The following inference rules are considered valid under this theory: diff --git a/theory/build/tao_2006_2_1_the_peano_axioms_report_noproof_enus_unicode.txt b/theory/build/tao_2006_2_1_the_peano_axioms_report_noproof_enus_unicode.txt index 3f8de9d4..85bebebb 100644 --- a/theory/build/tao_2006_2_1_the_peano_axioms_report_noproof_enus_unicode.txt +++ b/theory/build/tao_2006_2_1_the_peano_axioms_report_noproof_enus_unicode.txt @@ -10,7 +10,7 @@ # ๐—ฅ๐—ฒ๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐–ซ๐–พ๐— โŒœ++โŒ, โŒœ๐ผ๐‘›๐‘โŒ ๐–ป๐–พ ๐‘ข๐‘›๐‘Ž๐‘Ÿ๐‘ฆ-๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘  ๐—‚๐—‡ ๐’ฐโ‚. -๐–ซ๐–พ๐— โŒœ=โŒ, โŒœโˆงโŒ, โŒœ๐‘–๐‘ -๐‘ŽโŒ, โŒœโ‰ โŒ, โŒœโŸนโŒ ๐–ป๐–พ ๐‘๐‘–๐‘›๐‘Ž๐‘Ÿ๐‘ฆ-๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘  ๐—‚๐—‡ ๐’ฐโ‚. +๐–ซ๐–พ๐— โŒœโˆงโŒ, โŒœโ‰ โŒ, โŒœ๐‘–๐‘ -๐‘ŽโŒ, โŒœ=โŒ, โŒœโŸนโŒ ๐–ป๐–พ ๐‘๐‘–๐‘›๐‘Ž๐‘Ÿ๐‘ฆ-๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘  ๐—‚๐—‡ ๐’ฐโ‚. # ๐—œ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฟ๐˜‚๐—น๐—ฒ๐˜€ ๐–ณ๐—๐–พ ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—‚๐—‡๐—€ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ๐—Œ ๐–บ๐—‹๐–พ ๐–ผ๐—ˆ๐—‡๐—Œ๐—‚๐–ฝ๐–พ๐—‹๐–พ๐–ฝ ๐—๐–บ๐—…๐—‚๐–ฝ ๐—Ž๐—‡๐–ฝ๐–พ๐—‹ ๐—๐—๐—‚๐—Œ ๐—๐—๐–พ๐—ˆ๐—‹๐—’: diff --git a/theory/build/tao_2006_2_1_the_peano_axioms_report_proof_enus_latex.txt b/theory/build/tao_2006_2_1_the_peano_axioms_report_proof_enus_latex.txt index 408abe37..34b5c790 100644 --- a/theory/build/tao_2006_2_1_the_peano_axioms_report_proof_enus_latex.txt +++ b/theory/build/tao_2006_2_1_the_peano_axioms_report_proof_enus_latex.txt @@ -1 +1 @@ -\mathsf{}\mathsf{}\section{\boldsymbol\mathsf{Theory properties}}}\mathsf{}\boldsymbol\mathsf{Consistency: }}undetermined\mathsf{}\mathsf{}\boldsymbol\mathsf{Stabilized: }}False\mathsf{}\mathsf{}\boldsymbol\mathsf{Extended theory: }}N/A\mathsf{}\section{\boldsymbol\mathsf{Simple-objects declarations}}}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{0}\right\ulcorner, \left\ulcorner\mathit{natural-number}\right\ulcorner, \left\ulcorner\mathit{1}\right\ulcorner, \left\ulcorner\mathit{2}\right\ulcorner, \left\ulcorner\mathit{3}\right\ulcorner, \left\ulcorner\mathit{4}\right\ulcorner, \left\ulcorner\mathit{5}\right\ulcorner, \left\ulcorner\mathit{6}\right\ulcorner\mathsf{ be }\mathit{simple-objects}\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\section{\boldsymbol\mathsf{Relations}}}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{++}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{Inc}\right\ulcorner\mathsf{ be }\mathit{unary}\mathit{-relations}\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{=}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{\land}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{is-a}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{\neq}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{\implies}\right\ulcorner\mathsf{ be }\mathit{binary}\mathit{-relations}\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\section{\boldsymbol\mathsf{Inference rules}}}\mathsf{}\mathsf{The following inference rules are considered valid under this theory:}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{axiom-interpretation}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner๐’œ โŠข P\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{conjunction-introduction}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(P, Q) โŠข (P โ‹€ Q)\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{definition-interpretation}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner๐’Ÿ โŠข P\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{equal-terms-substitution}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(P, (Q = R)) โŠข P'\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{equality-commutativity}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(x = y) โŠข (y = x)\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{inconsistency-by-inequality-introduction}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner((P = Q), (P โ‰  Q)) โŠข Inc(๐’ฏ)\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{modus-ponens}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner((P โŸน Q), P) โŠข Q\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{proof-by-refutation-of-equality}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(โ„‹(P=Q), Inc(โ„‹)) โŠข (P โ‰  Q)\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{variable-substitution}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(P, ๐›ท) โŠข P'\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\section{\boldsymbol\mathsf{Theory elaboration sequence}}}\mathsf{}# \boldsymbol\mathsf{2}}: \boldsymbol\mathsf{The natural numbers}}\mathsf{}\mathsf{}## \boldsymbol\mathsf{2.1}}: \boldsymbol\mathsf{The peano axioms}}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Informal definition of natural number}}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.1}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom}} \boldsymbol\mathsf{2.1}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{1}\mathsf{)}\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{1}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{0 is a natural number.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{axiom-interpretation}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{axiom-interpretation}\mathsf{ defined as }\left\ulcorner๐’œ โŠข P\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{1}\mathsf{)}\mathsf{: }\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{0 is a natural number.}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{axiom}} \boldsymbol\mathsf{2.1}} (\mathit{A}_{1})\mathsf{. }\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ is a valid formula statement interpreted from that axiom.}\mathsf{ Therefore, by the }\mathit{axiom-interpretation}\mathsf{ inference rule, it follows that }\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.2}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom}} \boldsymbol\mathsf{2.2}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{2}\mathsf{)}\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{2}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{If n is a natural number, then n++ is a natural number.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{2}\mathsf{)}\mathsf{: }\left(\left(\mathbf{n}_{1} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{1}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{If n is a natural number, then n++ is a natural number.}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{axiom}} \boldsymbol\mathsf{2.2}} (\mathit{A}_{2})\mathsf{. }\left(\left(\mathbf{n}_{1} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{1}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ is a valid formula statement interpreted from that axiom.}\mathsf{ Therefore, by the }\mathit{axiom-interpretation}\mathsf{ inference rule, it follows that }\left(\left(\mathbf{n}_{1} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{1}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{variable-substitution}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{variable-substitution}\mathsf{ defined as }\left\ulcorner(P, ๐›ท) โŠข P'\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{3}\mathsf{)}\mathsf{: }\left(\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathbf{n}_{1} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{1}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{2})\mathsf{.}\mathsf{ Let }\mathbf{n}_{1} = 0\mathsf{.}\mathsf{ Therefore, by the }\mathit{variable-substitution}\mathsf{ inference rule, it follows that }\left(\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{modus-ponens}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{modus-ponens}\mathsf{ defined as }\left\ulcorner((P โŸน Q), P) โŠข Q\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}} \boldsymbol\mathsf{2.2.3}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{4}\mathsf{)}\mathsf{: }\left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{3})\mathsf{.}\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{1})\mathsf{.}\mathsf{ Therefore, by the }\mathit{modus-ponens}\mathsf{ inference rule, it follows that }\left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Definition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{D}_{1}\mathsf{)}\mathsf{: Let }\mathit{definition}\mathsf{ }\mathcal{D}_{1}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{definition-interpretation}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{definition-interpretation}\mathsf{ defined as }\left\ulcorner๐’Ÿ โŠข P\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{5}\mathsf{)}\mathsf{: }\left(\mathit{1} \mathit{=} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{def.}} (\mathit{D}_{1})\mathsf{. }\left(\mathit{1} \mathit{=} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{ is an interpretation of that definition.}\mathsf{ Therefore, by the }\mathit{definition-interpretation}\mathsf{ inference rule, it follows that }\left(\mathit{1} \mathit{=} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{6}\mathsf{)}\mathsf{: }\left(\mathit{2} \mathit{=} \left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{def.}} (\mathit{D}_{1})\mathsf{. }\left(\mathit{2} \mathit{=} \left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ is an interpretation of that definition.}\mathsf{ Therefore, by the }\mathit{definition-interpretation}\mathsf{ inference rule, it follows that }\left(\mathit{2} \mathit{=} \left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{7}\mathsf{)}\mathsf{: }\left(\mathit{3} \mathit{=} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{def.}} (\mathit{D}_{1})\mathsf{. }\left(\mathit{3} \mathit{=} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ is an interpretation of that definition.}\mathsf{ Therefore, by the }\mathit{definition-interpretation}\mathsf{ inference rule, it follows that }\left(\mathit{3} \mathit{=} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{8}\mathsf{)}\mathsf{: }\left(\mathit{4} \mathit{=} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{def.}} (\mathit{D}_{1})\mathsf{. }\left(\mathit{4} \mathit{=} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ is an interpretation of that definition.}\mathsf{ Therefore, by the }\mathit{definition-interpretation}\mathsf{ inference rule, it follows that }\left(\mathit{4} \mathit{=} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{9}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathbf{n}_{1} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{1}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{2})\mathsf{.}\mathsf{ Let }\mathbf{n}_{1} = (0)++\mathsf{.}\mathsf{ Therefore, by the }\mathit{variable-substitution}\mathsf{ inference rule, it follows that }\left(\left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{10}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{9})\mathsf{.}\left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} \boldsymbol\mathsf{2.2.3}} (\mathit{P}_{4})\mathsf{.}\mathsf{ Therefore, by the }\mathit{modus-ponens}\mathsf{ inference rule, it follows that }\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{11}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathbf{n}_{1} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{1}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{2})\mathsf{.}\mathsf{ Let }\mathbf{n}_{1} = ((0)++)++\mathsf{.}\mathsf{ Therefore, by the }\mathit{variable-substitution}\mathsf{ inference rule, it follows that }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{12}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{11})\mathsf{.}\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{10})\mathsf{.}\mathsf{ Therefore, by the }\mathit{modus-ponens}\mathsf{ inference rule, it follows that }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{13}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathbf{n}_{1} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{1}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{2})\mathsf{.}\mathsf{ Let }\mathbf{n}_{1} = (((0)++)++)++\mathsf{.}\mathsf{ Therefore, by the }\mathit{variable-substitution}\mathsf{ inference rule, it follows that }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{14}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{13})\mathsf{.}\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{12})\mathsf{.}\mathsf{ Therefore, by the }\mathit{modus-ponens}\mathsf{ inference rule, it follows that }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{equality-commutativity}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{equality-commutativity}\mathsf{ defined as }\left\ulcorner(x = y) โŠข (y = x)\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{15}\mathsf{)}\mathsf{: }\left(\left(\mathit{0}\right)\mathit{++} \mathit{=} \mathit{1}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{1} \mathit{=} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{5})\mathsf{. }\mathsf{ Therefore, by the }\mathit{equality-commutativity}\mathsf{ inference rule, it follows that }\left(\left(\mathit{0}\right)\mathit{++} \mathit{=} \mathit{1}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{equal-terms-substitution}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{equal-terms-substitution}\mathsf{ defined as }\left\ulcorner(P, (Q = R)) โŠข P'\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{16}\mathsf{)}\mathsf{: }\left(\mathit{2} \mathit{=} \left(\mathit{1}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{2} \mathit{=} \left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{6})\mathsf{. }\left(\left(\mathit{0}\right)\mathit{++} \mathit{=} \mathit{1}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{15})\mathsf{.}\mathsf{ Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule, it follows that }\left(\mathit{2} \mathit{=} \left(\mathit{1}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{17}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{2} \mathit{=} \left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{6})\mathsf{. }\mathsf{ Therefore, by the }\mathit{equality-commutativity}\mathsf{ inference rule, it follows that }\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{18}\mathsf{)}\mathsf{: }\left(\mathit{3} \mathit{=} \left(\mathit{2}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{3} \mathit{=} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{7})\mathsf{. }\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{17})\mathsf{.}\mathsf{ Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule, it follows that }\left(\mathit{3} \mathit{=} \left(\mathit{2}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}### \boldsymbol\mathsf{3 is a natural number}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{19}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{3}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{3} \mathit{=} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{7})\mathsf{. }\mathsf{ Therefore, by the }\mathit{equality-commutativity}\mathsf{ inference rule, it follows that }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{3}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{20}\mathsf{)}\mathsf{: }\left(\left(\mathit{2}\right)\mathit{++} \mathit{=} \mathit{3}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{3}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{19})\mathsf{. }\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{17})\mathsf{.}\mathsf{ Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule, it follows that }\left(\left(\mathit{2}\right)\mathit{++} \mathit{=} \mathit{3}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}} \boldsymbol\mathsf{2.1.4}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{21}\mathsf{)}\mathsf{: }\left(\mathit{3} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{12})\mathsf{. }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{3}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{19})\mathsf{.}\mathsf{ Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule, it follows that }\left(\mathit{3} \mathit{is-a} \mathit{natural-number}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{22}\mathsf{)}\mathsf{: }\left(\mathit{4} \mathit{=} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{def.}} (\mathit{D}_{1})\mathsf{. }\left(\mathit{4} \mathit{=} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ is an interpretation of that definition.}\mathsf{ Therefore, by the }\mathit{definition-interpretation}\mathsf{ inference rule, it follows that }\left(\mathit{4} \mathit{=} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{23}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{4} \mathit{=} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{8})\mathsf{. }\mathsf{ Therefore, by the }\mathit{equality-commutativity}\mathsf{ inference rule, it follows that }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{24}\mathsf{)}\mathsf{: }\left(\left(\mathit{3}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{23})\mathsf{. }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{3}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{19})\mathsf{.}\mathsf{ Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule, it follows that }\left(\left(\mathit{3}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{25}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{13})\mathsf{. }\left(\left(\mathit{3}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{24})\mathsf{.}\mathsf{ Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule, it follows that }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{26}\mathsf{)}\mathsf{: }\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{14})\mathsf{. }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{23})\mathsf{.}\mathsf{ Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule, it follows that }\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.3}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom}} \boldsymbol\mathsf{2.3}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{3}\mathsf{)}\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{3}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{0 is not the successor of any natural number; i.e., we have n++ 0 for every natural number n.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{27}\mathsf{)}\mathsf{: }\left(\left(\mathbf{n}_{2} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{2}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{0 is not the successor of any natural number; i.e., we have n++ 0 for every natural number n.}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{axiom}} \boldsymbol\mathsf{2.3}} (\mathit{A}_{3})\mathsf{. }\left(\left(\mathbf{n}_{2} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{2}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\right)\mathsf{ is a valid formula statement interpreted from that axiom.}\mathsf{ Therefore, by the }\mathit{axiom-interpretation}\mathsf{ inference rule, it follows that }\left(\left(\mathbf{n}_{2} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{2}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}### \boldsymbol\mathsf{4 is not equal to 0.}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{28}\mathsf{)}\mathsf{: }\left(\left(\mathit{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{3}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathbf{n}_{2} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{2}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{27})\mathsf{.}\mathsf{ Let }\mathbf{n}_{2} = 3\mathsf{.}\mathsf{ Therefore, by the }\mathit{variable-substitution}\mathsf{ inference rule, it follows that }\left(\left(\mathit{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{3}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{29}\mathsf{)}\mathsf{: }\left(\left(\mathit{3}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{3}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{28})\mathsf{.}\left(\mathit{3} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} \boldsymbol\mathsf{2.1.4}} (\mathit{P}_{21})\mathsf{.}\mathsf{ Therefore, by the }\mathit{modus-ponens}\mathsf{ inference rule, it follows that }\left(\left(\mathit{3}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}} \boldsymbol\mathsf{2.1.6}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{30}\mathsf{)}\mathsf{: }\left(\mathit{4} \mathit{\neq} \mathit{0}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{3}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{29})\mathsf{. }\left(\left(\mathit{3}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{24})\mathsf{.}\mathsf{ Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule, it follows that }\left(\mathit{4} \mathit{\neq} \mathit{0}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.4}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom}} \boldsymbol\mathsf{2.4}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{4}\mathsf{)}\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{4}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{Different natural numbers must have different successors; i.e., if n, m are natural numbers and n m, then n++ m++. Equivalently, if n++ = m++, then we must have n = m.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{31}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathbf{n}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathbf{n}_{3} \mathit{\neq} \mathbf{m}_{1}\right)\right) \mathit{\implies} \left(\left(\mathbf{n}_{3}\right)\mathit{++} \mathit{\neq} \left(\mathbf{m}_{1}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{Different natural numbers must have different successors; i.e., if n, m are natural numbers and n m, then n++ m++. Equivalently, if n++ = m++, then we must have n = m.}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{axiom}} \boldsymbol\mathsf{2.4}} (\mathit{A}_{4})\mathsf{. }\left(\left(\left(\left(\mathbf{n}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathbf{n}_{3} \mathit{\neq} \mathbf{m}_{1}\right)\right) \mathit{\implies} \left(\left(\mathbf{n}_{3}\right)\mathit{++} \mathit{\neq} \left(\mathbf{m}_{1}\right)\mathit{++}\right)\right)\mathsf{ is a valid formula statement interpreted from that axiom.}\mathsf{ Therefore, by the }\mathit{axiom-interpretation}\mathsf{ inference rule, it follows that }\left(\left(\left(\left(\mathbf{n}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathbf{n}_{3} \mathit{\neq} \mathbf{m}_{1}\right)\right) \mathit{\implies} \left(\left(\mathbf{n}_{3}\right)\mathit{++} \mathit{\neq} \left(\mathbf{m}_{1}\right)\mathit{++}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{32}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathbf{n}_{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{2} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\left(\mathbf{n}_{4}\right)\mathit{++} \mathit{=} \left(\mathbf{m}_{2}\right)\mathit{++}\right)\right) \mathit{\implies} \left(\mathbf{n}_{4} \mathit{=} \mathbf{m}_{2}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{Different natural numbers must have different successors; i.e., if n, m are natural numbers and n m, then n++ m++. Equivalently, if n++ = m++, then we must have n = m.}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{axiom}} \boldsymbol\mathsf{2.4}} (\mathit{A}_{4})\mathsf{. }\left(\left(\left(\left(\mathbf{n}_{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{2} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\left(\mathbf{n}_{4}\right)\mathit{++} \mathit{=} \left(\mathbf{m}_{2}\right)\mathit{++}\right)\right) \mathit{\implies} \left(\mathbf{n}_{4} \mathit{=} \mathbf{m}_{2}\right)\right)\mathsf{ is a valid formula statement interpreted from that axiom.}\mathsf{ Therefore, by the }\mathit{axiom-interpretation}\mathsf{ inference rule, it follows that }\left(\left(\left(\left(\mathbf{n}_{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{2} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\left(\mathbf{n}_{4}\right)\mathit{++} \mathit{=} \left(\mathbf{m}_{2}\right)\mathit{++}\right)\right) \mathit{\implies} \left(\mathbf{n}_{4} \mathit{=} \mathbf{m}_{2}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}### \boldsymbol\mathsf{6 is not equal to 2.}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{33}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right) \mathit{\implies} \left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathbf{n}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathbf{n}_{3} \mathit{\neq} \mathbf{m}_{1}\right)\right) \mathit{\implies} \left(\left(\mathbf{n}_{3}\right)\mathit{++} \mathit{\neq} \left(\mathbf{m}_{1}\right)\mathit{++}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{31})\mathsf{.}\mathsf{ Let }\mathbf{n}_{3} = 4\mathsf{, }\mathbf{m}_{1} = 0\mathsf{.}\mathsf{ Therefore, by the }\mathit{variable-substitution}\mathsf{ inference rule, it follows that }\left(\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right) \mathit{\implies} \left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{conjunction-introduction}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{conjunction-introduction}\mathsf{ defined as }\left\ulcorner(P, Q) โŠข (P โ‹€ Q)\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{34}\mathsf{)}\mathsf{: }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{26})\mathsf{. }\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{1})\mathsf{.}\mathsf{ Therefore, by the }\mathit{conjunction-introduction}\mathsf{ inference rule, it follows that }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{35}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{34})\mathsf{. }\left(\mathit{4} \mathit{\neq} \mathit{0}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} \boldsymbol\mathsf{2.1.6}} (\mathit{P}_{30})\mathsf{.}\mathsf{ Therefore, by the }\mathit{conjunction-introduction}\mathsf{ inference rule, it follows that }\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{36}\mathsf{)}\mathsf{: }\left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right) \mathit{\implies} \left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{33})\mathsf{.}\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{35})\mathsf{.}\mathsf{ Therefore, by the }\mathit{modus-ponens}\mathsf{ inference rule, it follows that }\left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{37}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{=} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{def.}} (\mathit{D}_{1})\mathsf{. }\left(\mathit{5} \mathit{=} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ is an interpretation of that definition.}\mathsf{ Therefore, by the }\mathit{definition-interpretation}\mathsf{ inference rule, it follows that }\left(\mathit{5} \mathit{=} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{38}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{5} \mathit{=} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{37})\mathsf{. }\mathsf{ Therefore, by the }\mathit{equality-commutativity}\mathsf{ inference rule, it follows that }\left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{39}\mathsf{)}\mathsf{: }\left(\left(\mathit{4}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{38})\mathsf{. }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{23})\mathsf{.}\mathsf{ Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule, it follows that }\left(\left(\mathit{4}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{40}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{=} \left(\mathit{4}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{4}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{39})\mathsf{. }\mathsf{ Therefore, by the }\mathit{equality-commutativity}\mathsf{ inference rule, it follows that }\left(\mathit{5} \mathit{=} \left(\mathit{4}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{41}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\left(\mathit{5}\right)\mathit{++} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathbf{n}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathbf{n}_{3} \mathit{\neq} \mathbf{m}_{1}\right)\right) \mathit{\implies} \left(\left(\mathbf{n}_{3}\right)\mathit{++} \mathit{\neq} \left(\mathbf{m}_{1}\right)\mathit{++}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{31})\mathsf{.}\mathsf{ Let }\mathbf{n}_{3} = 5\mathsf{, }\mathbf{m}_{1} = 1\mathsf{.}\mathsf{ Therefore, by the }\mathit{variable-substitution}\mathsf{ inference rule, it follows that }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\left(\mathit{5}\right)\mathit{++} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{42}\mathsf{)}\mathsf{: }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{4}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathbf{n}_{1} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{1}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{2})\mathsf{.}\mathsf{ Let }\mathbf{n}_{1} = 4\mathsf{.}\mathsf{ Therefore, by the }\mathit{variable-substitution}\mathsf{ inference rule, it follows that }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{4}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{43}\mathsf{)}\mathsf{: }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{4}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{42})\mathsf{. }\left(\left(\mathit{4}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{39})\mathsf{.}\mathsf{ Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule, it follows that }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{44}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{43})\mathsf{.}\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{26})\mathsf{.}\mathsf{ Therefore, by the }\mathit{modus-ponens}\mathsf{ inference rule, it follows that }\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{45}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\left(\mathit{5}\right)\mathit{++} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathbf{n}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathbf{n}_{3} \mathit{\neq} \mathbf{m}_{1}\right)\right) \mathit{\implies} \left(\left(\mathbf{n}_{3}\right)\mathit{++} \mathit{\neq} \left(\mathbf{m}_{1}\right)\mathit{++}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{31})\mathsf{.}\mathsf{ Let }\mathbf{n}_{3} = 5\mathsf{, }\mathbf{m}_{1} = 1\mathsf{.}\mathsf{ Therefore, by the }\mathit{variable-substitution}\mathsf{ inference rule, it follows that }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\left(\mathit{5}\right)\mathit{++} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{46}\mathsf{)}\mathsf{: }\left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right) \mathit{\implies} \left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{33})\mathsf{.}\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{35})\mathsf{.}\mathsf{ Therefore, by the }\mathit{modus-ponens}\mathsf{ inference rule, it follows that }\left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{47}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{46})\mathsf{. }\left(\left(\mathit{4}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{39})\mathsf{.}\mathsf{ Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule, it follows that }\left(\mathit{5} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{48}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{=} \left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{def.}} (\mathit{D}_{1})\mathsf{. }\left(\mathit{6} \mathit{=} \left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ is an interpretation of that definition.}\mathsf{ Therefore, by the }\mathit{definition-interpretation}\mathsf{ inference rule, it follows that }\left(\mathit{6} \mathit{=} \left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{49}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{6}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{6} \mathit{=} \left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{48})\mathsf{. }\mathsf{ Therefore, by the }\mathit{equality-commutativity}\mathsf{ inference rule, it follows that }\left(\left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{6}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{50}\mathsf{)}\mathsf{: }\left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} \boldsymbol\mathsf{2.2.3}} (\mathit{P}_{4})\mathsf{. }\left(\left(\mathit{0}\right)\mathit{++} \mathit{=} \mathit{1}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{15})\mathsf{.}\mathsf{ Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule, it follows that }\left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{51}\mathsf{)}\mathsf{: }\left(\left(\mathit{5}\right)\mathit{++} \mathit{=} \mathit{6}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{6}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{49})\mathsf{. }\left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{38})\mathsf{.}\mathsf{ Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule, it follows that }\left(\left(\mathit{5}\right)\mathit{++} \mathit{=} \mathit{6}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{52}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{=} \left(\mathit{5}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{5}\right)\mathit{++} \mathit{=} \mathit{6}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{51})\mathsf{. }\mathsf{ Therefore, by the }\mathit{equality-commutativity}\mathsf{ inference rule, it follows that }\left(\mathit{6} \mathit{=} \left(\mathit{5}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}#### \boldsymbol\mathsf{Proof by contradiction}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Hypothesis}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{H}_{1}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{=} \mathit{2}\right)\mathsf{.}\mathsf{ This hypothesis is elaborated in theory }\mathcal{H}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{inconsistency-by-inequality-introduction}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{inconsistency-by-inequality-introduction}\mathsf{ defined as }\left\ulcorner((P = Q), (P โ‰  Q)) โŠข Inc(๐’ฏ)\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{66}\mathsf{)}\mathsf{: }\mathit{Inc}\left(\mathcal{H}_{1}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\mathit{P}_{65}\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{65})\mathsf{. }\mathit{P}_{30}\mathsf{ follows from }\boldsymbol\mathsf{prop.}} \boldsymbol\mathsf{2.1.6}} (\mathit{P}_{30})\mathsf{. }\mathsf{ Therefore, by the }\mathit{inconsistency-by-inequality-introduction}\mathsf{ inference rule, it follows that }\mathit{Inc}\left(\mathcal{H}_{1}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{proof-by-refutation-of-equality}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{proof-by-refutation-of-equality}\mathsf{ defined as }\left\ulcorner(โ„‹(P=Q), Inc(โ„‹)) โŠข (P โ‰  Q)\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}} \boldsymbol\mathsf{2.1.8}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{67}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{\neq} \mathit{2}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\mathsf{Let }\boldsymbol\mathsf{hyp.}} (\mathit{H}_{1})\mathsf{ be the hypothesis }\left(\mathit{6} \mathit{=} \mathit{2}\right)\mathsf{. }\mathit{Inc}\left(\mathcal{H}_{1}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{66})\mathsf{.}\mathsf{ Therefore, by the }\mathit{proof-by-refutation-of-equality}\mathsf{ inference rule, it follows that }\left(\mathit{6} \mathit{\neq} \mathit{2}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}#### \boldsymbol\mathsf{Direct proof}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{68}\mathsf{)}\mathsf{: }\left(\left(\mathit{1}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{17})\mathsf{. }\left(\left(\mathit{0}\right)\mathit{++} \mathit{=} \mathit{1}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{15})\mathsf{.}\mathsf{ Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule, it follows that }\left(\left(\mathit{1}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{69}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{\neq} \mathit{1}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{5} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{47})\mathsf{. }\left(\left(\mathit{0}\right)\mathit{++} \mathit{=} \mathit{1}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{15})\mathsf{.}\mathsf{ Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule, it follows that }\left(\mathit{5} \mathit{\neq} \mathit{1}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{70}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\mathit{6} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\left(\mathit{5}\right)\mathit{++} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{45})\mathsf{. }\left(\left(\mathit{5}\right)\mathit{++} \mathit{=} \mathit{6}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{51})\mathsf{.}\mathsf{ Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule, it follows that }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\mathit{6} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{71}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\mathit{6} \mathit{\neq} \mathit{2}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\mathit{6} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{70})\mathsf{. }\left(\left(\mathit{1}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{68})\mathsf{.}\mathsf{ Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule, it follows that }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\mathit{6} \mathit{\neq} \mathit{2}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{72}\mathsf{)}\mathsf{: }\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{44})\mathsf{. }\left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{50})\mathsf{.}\mathsf{ Therefore, by the }\mathit{conjunction-introduction}\mathsf{ inference rule, it follows that }\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{73}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{72})\mathsf{. }\left(\mathit{5} \mathit{\neq} \mathit{1}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{69})\mathsf{.}\mathsf{ Therefore, by the }\mathit{conjunction-introduction}\mathsf{ inference rule, it follows that }\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{74}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{\neq} \mathit{2}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\mathit{6} \mathit{\neq} \mathit{2}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{71})\mathsf{.}\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{73})\mathsf{.}\mathsf{ Therefore, by the }\mathit{modus-ponens}\mathsf{ inference rule, it follows that }\left(\mathit{6} \mathit{\neq} \mathit{2}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.5: the principle of mathematical induction}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom schema}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{6}\mathsf{)} - Principle of mathematical induction\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{6}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{Let P(n) be any property pertaining to a natural number n. Suppose that P(O) is true, and suppose that whenever P(n) is true, P(n++) is also true. Then P(n) is true for every natural number n.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{75}\mathsf{)}\mathsf{: }\left(\left(\left(\mathbf{n}_{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{P}_{1}\left(\mathit{0}\right) \mathit{\land} \left(\mathbf{P}_{1}\left(\mathbf{n}_{5}\right) \mathit{\implies} \mathbf{P}_{1}\left(\left(\mathbf{n}_{5}\right)\mathit{++}\right)\right)\right)\right) \mathit{\implies} \left(\left(\mathbf{m}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \mathbf{P}_{1}\left(\mathbf{m}_{3}\right)\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{Let P(n) be any property pertaining to a natural number n. Suppose that P(O) is true, and suppose that whenever P(n) is true, P(n++) is also true. Then P(n) is true for every natural number n.}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{axiom schema}} (\mathit{A}_{6})\mathsf{. }\left(\left(\left(\mathbf{n}_{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{P}_{1}\left(\mathit{0}\right) \mathit{\land} \left(\mathbf{P}_{1}\left(\mathbf{n}_{5}\right) \mathit{\implies} \mathbf{P}_{1}\left(\left(\mathbf{n}_{5}\right)\mathit{++}\right)\right)\right)\right) \mathit{\implies} \left(\left(\mathbf{m}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \mathbf{P}_{1}\left(\mathbf{m}_{3}\right)\right)\right)\mathsf{ is a valid formula statement interpreted from that axiom.}\mathsf{ Therefore, by the }\mathit{axiom-interpretation}\mathsf{ inference rule, it follows that }\left(\left(\left(\mathbf{n}_{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{P}_{1}\left(\mathit{0}\right) \mathit{\land} \left(\mathbf{P}_{1}\left(\mathbf{n}_{5}\right) \mathit{\implies} \mathbf{P}_{1}\left(\left(\mathbf{n}_{5}\right)\mathit{++}\right)\right)\right)\right) \mathit{\implies} \left(\left(\mathbf{m}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \mathbf{P}_{1}\left(\mathbf{m}_{3}\right)\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}### \boldsymbol\mathsf{The number system n}}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Recursive definitions}}\mathsf{} \ No newline at end of file +\mathsf{}\mathsf{}\section{\boldsymbol\mathsf{Theory properties}}}\mathsf{}\boldsymbol\mathsf{Consistency: }}undetermined\mathsf{}\mathsf{}\boldsymbol\mathsf{Stabilized: }}False\mathsf{}\mathsf{}\boldsymbol\mathsf{Extended theory: }}N/A\mathsf{}\section{\boldsymbol\mathsf{Simple-objects declarations}}}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{0}\right\ulcorner, \left\ulcorner\mathit{natural-number}\right\ulcorner, \left\ulcorner\mathit{1}\right\ulcorner, \left\ulcorner\mathit{2}\right\ulcorner, \left\ulcorner\mathit{3}\right\ulcorner, \left\ulcorner\mathit{4}\right\ulcorner, \left\ulcorner\mathit{5}\right\ulcorner, \left\ulcorner\mathit{6}\right\ulcorner\mathsf{ be }\mathit{simple-objects}\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\section{\boldsymbol\mathsf{Relations}}}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{++}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{Inc}\right\ulcorner\mathsf{ be }\mathit{unary}\mathit{-relations}\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{\land}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{\neq}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{is-a}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{=}\right\ulcorner\mathsf{, }\left\ulcorner\mathit{\implies}\right\ulcorner\mathsf{ be }\mathit{binary}\mathit{-relations}\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\section{\boldsymbol\mathsf{Inference rules}}}\mathsf{}\mathsf{The following inference rules are considered valid under this theory:}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{axiom-interpretation}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner๐’œ โŠข P\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{conjunction-introduction}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(P, Q) โŠข (P โ‹€ Q)\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{definition-interpretation}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner๐’Ÿ โŠข P\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{equal-terms-substitution}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(P, (Q = R)) โŠข P'\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{equality-commutativity}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(x = y) โŠข (y = x)\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{inconsistency-by-inequality-introduction}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner((P = Q), (P โ‰  Q)) โŠข Inc(๐’ฏ)\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{modus-ponens}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner((P โŸน Q), P) โŠข Q\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{proof-by-refutation-of-equality}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(โ„‹(P=Q), Inc(โ„‹)) โŠข (P โ‰  Q)\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\mathsf{}\mathsf{Let }\left\ulcorner\mathit{variable-substitution}\right\ulcorner\mathsf{ be an }\mathit{inference-rule}\mathsf{ defined as }\left\ulcorner(P, ๐›ท) โŠข P'\right\ulcorner\mathsf{ in }\mathcal{U}_{1}\mathsf{.}\mathsf{}\section{\boldsymbol\mathsf{Theory elaboration sequence}}}\mathsf{}# \boldsymbol\mathsf{2}}: \boldsymbol\mathsf{The natural numbers}}\mathsf{}\mathsf{}## \boldsymbol\mathsf{2.1}}: \boldsymbol\mathsf{The peano axioms}}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Informal definition of natural number}}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.1}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom}} \boldsymbol\mathsf{2.1}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{1}\mathsf{)}\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{1}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{0 is a natural number.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{axiom-interpretation}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{axiom-interpretation}\mathsf{ defined as }\left\ulcorner๐’œ โŠข P\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{1}\mathsf{)}\mathsf{: }\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{0 is a natural number.}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{axiom}} \boldsymbol\mathsf{2.1}} (\mathit{A}_{1})\mathsf{. }\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ is a valid formula statement interpreted from that axiom.}\mathsf{Therefore, by the }\mathit{axiom-interpretation}\mathsf{ inference rule: }๐’œ โŠข P\mathsf{, it follows that }\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.2}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom}} \boldsymbol\mathsf{2.2}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{2}\mathsf{)}\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{2}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{If n is a natural number, then n++ is a natural number.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{2}\mathsf{)}\mathsf{: }\left(\left(\mathbf{n}_{1} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{1}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{If n is a natural number, then n++ is a natural number.}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{axiom}} \boldsymbol\mathsf{2.2}} (\mathit{A}_{2})\mathsf{. }\left(\left(\mathbf{n}_{1} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{1}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ is a valid formula statement interpreted from that axiom.}\mathsf{Therefore, by the }\mathit{axiom-interpretation}\mathsf{ inference rule: }๐’œ โŠข P\mathsf{, it follows that }\left(\left(\mathbf{n}_{1} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{1}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{variable-substitution}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{variable-substitution}\mathsf{ defined as }\left\ulcorner(P, ๐›ท) โŠข P'\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{3}\mathsf{)}\mathsf{: }\left(\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathbf{n}_{1} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{1}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{2})\mathsf{.}\mathsf{ Let }\mathbf{n}_{1} = 0\mathsf{.}\mathsf{Therefore, by the }\mathit{variable-substitution}\mathsf{ inference rule: }(P, ๐›ท) โŠข P'\mathsf{, it follows that }\left(\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{modus-ponens}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{modus-ponens}\mathsf{ defined as }\left\ulcorner((P โŸน Q), P) โŠข Q\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}} \boldsymbol\mathsf{2.2.3}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{4}\mathsf{)}\mathsf{: }\left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{3})\mathsf{.}\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{1})\mathsf{.}\mathsf{Therefore, by the }\mathit{modus-ponens}\mathsf{ inference rule: }((P โŸน Q), P) โŠข Q\mathsf{, it follows that }\left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Definition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{D}_{1}\mathsf{)}\mathsf{: Let }\mathit{definition}\mathsf{ }\mathcal{D}_{1}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{definition-interpretation}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{definition-interpretation}\mathsf{ defined as }\left\ulcorner๐’Ÿ โŠข P\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{5}\mathsf{)}\mathsf{: }\left(\mathit{1} \mathit{=} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{def.}} (\mathit{D}_{1})\mathsf{. }\left(\mathit{1} \mathit{=} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{ is an interpretation of that definition.}\mathsf{Therefore, by the }\mathit{definition-interpretation}\mathsf{ inference rule: }๐’Ÿ โŠข P\mathsf{, it follows that }\left(\mathit{1} \mathit{=} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{6}\mathsf{)}\mathsf{: }\left(\mathit{2} \mathit{=} \left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{def.}} (\mathit{D}_{1})\mathsf{. }\left(\mathit{2} \mathit{=} \left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ is an interpretation of that definition.}\mathsf{Therefore, by the }\mathit{definition-interpretation}\mathsf{ inference rule: }๐’Ÿ โŠข P\mathsf{, it follows that }\left(\mathit{2} \mathit{=} \left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{7}\mathsf{)}\mathsf{: }\left(\mathit{3} \mathit{=} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{def.}} (\mathit{D}_{1})\mathsf{. }\left(\mathit{3} \mathit{=} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ is an interpretation of that definition.}\mathsf{Therefore, by the }\mathit{definition-interpretation}\mathsf{ inference rule: }๐’Ÿ โŠข P\mathsf{, it follows that }\left(\mathit{3} \mathit{=} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{8}\mathsf{)}\mathsf{: }\left(\mathit{4} \mathit{=} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{def.}} (\mathit{D}_{1})\mathsf{. }\left(\mathit{4} \mathit{=} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ is an interpretation of that definition.}\mathsf{Therefore, by the }\mathit{definition-interpretation}\mathsf{ inference rule: }๐’Ÿ โŠข P\mathsf{, it follows that }\left(\mathit{4} \mathit{=} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{9}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathbf{n}_{1} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{1}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{2})\mathsf{.}\mathsf{ Let }\mathbf{n}_{1} = (0)++\mathsf{.}\mathsf{Therefore, by the }\mathit{variable-substitution}\mathsf{ inference rule: }(P, ๐›ท) โŠข P'\mathsf{, it follows that }\left(\left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{10}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{9})\mathsf{.}\left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} \boldsymbol\mathsf{2.2.3}} (\mathit{P}_{4})\mathsf{.}\mathsf{Therefore, by the }\mathit{modus-ponens}\mathsf{ inference rule: }((P โŸน Q), P) โŠข Q\mathsf{, it follows that }\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{11}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathbf{n}_{1} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{1}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{2})\mathsf{.}\mathsf{ Let }\mathbf{n}_{1} = ((0)++)++\mathsf{.}\mathsf{Therefore, by the }\mathit{variable-substitution}\mathsf{ inference rule: }(P, ๐›ท) โŠข P'\mathsf{, it follows that }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{12}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{11})\mathsf{.}\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{10})\mathsf{.}\mathsf{Therefore, by the }\mathit{modus-ponens}\mathsf{ inference rule: }((P โŸน Q), P) โŠข Q\mathsf{, it follows that }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{13}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathbf{n}_{1} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{1}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{2})\mathsf{.}\mathsf{ Let }\mathbf{n}_{1} = (((0)++)++)++\mathsf{.}\mathsf{Therefore, by the }\mathit{variable-substitution}\mathsf{ inference rule: }(P, ๐›ท) โŠข P'\mathsf{, it follows that }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{14}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{13})\mathsf{.}\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{12})\mathsf{.}\mathsf{Therefore, by the }\mathit{modus-ponens}\mathsf{ inference rule: }((P โŸน Q), P) โŠข Q\mathsf{, it follows that }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{equality-commutativity}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{equality-commutativity}\mathsf{ defined as }\left\ulcorner(x = y) โŠข (y = x)\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{15}\mathsf{)}\mathsf{: }\left(\left(\mathit{0}\right)\mathit{++} \mathit{=} \mathit{1}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{1} \mathit{=} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{5})\mathsf{. }\mathsf{Therefore, by the }\mathit{equality-commutativity}\mathsf{ inference rule: }(x = y) โŠข (y = x)\mathsf{, it follows that }\left(\left(\mathit{0}\right)\mathit{++} \mathit{=} \mathit{1}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{equal-terms-substitution}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{equal-terms-substitution}\mathsf{ defined as }\left\ulcorner(P, (Q = R)) โŠข P'\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{16}\mathsf{)}\mathsf{: }\left(\mathit{2} \mathit{=} \left(\mathit{1}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{2} \mathit{=} \left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{6})\mathsf{. }\left(\left(\mathit{0}\right)\mathit{++} \mathit{=} \mathit{1}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{15})\mathsf{.}\mathsf{Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule: }(P, (Q = R)) โŠข P'\mathsf{, it follows that }\left(\mathit{2} \mathit{=} \left(\mathit{1}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{17}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{2} \mathit{=} \left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{6})\mathsf{. }\mathsf{Therefore, by the }\mathit{equality-commutativity}\mathsf{ inference rule: }(x = y) โŠข (y = x)\mathsf{, it follows that }\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{18}\mathsf{)}\mathsf{: }\left(\mathit{3} \mathit{=} \left(\mathit{2}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{3} \mathit{=} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{7})\mathsf{. }\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{17})\mathsf{.}\mathsf{Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule: }(P, (Q = R)) โŠข P'\mathsf{, it follows that }\left(\mathit{3} \mathit{=} \left(\mathit{2}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}### \boldsymbol\mathsf{3 is a natural number}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{19}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{3}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{3} \mathit{=} \left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{7})\mathsf{. }\mathsf{Therefore, by the }\mathit{equality-commutativity}\mathsf{ inference rule: }(x = y) โŠข (y = x)\mathsf{, it follows that }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{3}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{20}\mathsf{)}\mathsf{: }\left(\left(\mathit{2}\right)\mathit{++} \mathit{=} \mathit{3}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{3}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{19})\mathsf{. }\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{17})\mathsf{.}\mathsf{Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule: }(P, (Q = R)) โŠข P'\mathsf{, it follows that }\left(\left(\mathit{2}\right)\mathit{++} \mathit{=} \mathit{3}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}} \boldsymbol\mathsf{2.1.4}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{21}\mathsf{)}\mathsf{: }\left(\mathit{3} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{12})\mathsf{. }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{3}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{19})\mathsf{.}\mathsf{Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule: }(P, (Q = R)) โŠข P'\mathsf{, it follows that }\left(\mathit{3} \mathit{is-a} \mathit{natural-number}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{22}\mathsf{)}\mathsf{: }\left(\mathit{4} \mathit{=} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{def.}} (\mathit{D}_{1})\mathsf{. }\left(\mathit{4} \mathit{=} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ is an interpretation of that definition.}\mathsf{Therefore, by the }\mathit{definition-interpretation}\mathsf{ inference rule: }๐’Ÿ โŠข P\mathsf{, it follows that }\left(\mathit{4} \mathit{=} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{23}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{4} \mathit{=} \left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{8})\mathsf{. }\mathsf{Therefore, by the }\mathit{equality-commutativity}\mathsf{ inference rule: }(x = y) โŠข (y = x)\mathsf{, it follows that }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{24}\mathsf{)}\mathsf{: }\left(\left(\mathit{3}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{23})\mathsf{. }\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{3}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{19})\mathsf{.}\mathsf{Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule: }(P, (Q = R)) โŠข P'\mathsf{, it follows that }\left(\left(\mathit{3}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{25}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{13})\mathsf{. }\left(\left(\mathit{3}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{24})\mathsf{.}\mathsf{Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule: }(P, (Q = R)) โŠข P'\mathsf{, it follows that }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{26}\mathsf{)}\mathsf{: }\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{14})\mathsf{. }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{23})\mathsf{.}\mathsf{Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule: }(P, (Q = R)) โŠข P'\mathsf{, it follows that }\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.3}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom}} \boldsymbol\mathsf{2.3}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{3}\mathsf{)}\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{3}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{0 is not the successor of any natural number; i.e., we have n++ 0 for every natural number n.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{27}\mathsf{)}\mathsf{: }\left(\left(\mathbf{n}_{2} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{2}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{0 is not the successor of any natural number; i.e., we have n++ 0 for every natural number n.}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{axiom}} \boldsymbol\mathsf{2.3}} (\mathit{A}_{3})\mathsf{. }\left(\left(\mathbf{n}_{2} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{2}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\right)\mathsf{ is a valid formula statement interpreted from that axiom.}\mathsf{Therefore, by the }\mathit{axiom-interpretation}\mathsf{ inference rule: }๐’œ โŠข P\mathsf{, it follows that }\left(\left(\mathbf{n}_{2} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{2}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}### \boldsymbol\mathsf{4 is not equal to 0.}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{28}\mathsf{)}\mathsf{: }\left(\left(\mathit{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{3}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathbf{n}_{2} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{2}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{27})\mathsf{.}\mathsf{ Let }\mathbf{n}_{2} = 3\mathsf{.}\mathsf{Therefore, by the }\mathit{variable-substitution}\mathsf{ inference rule: }(P, ๐›ท) โŠข P'\mathsf{, it follows that }\left(\left(\mathit{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{3}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{29}\mathsf{)}\mathsf{: }\left(\left(\mathit{3}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{3}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{28})\mathsf{.}\left(\mathit{3} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} \boldsymbol\mathsf{2.1.4}} (\mathit{P}_{21})\mathsf{.}\mathsf{Therefore, by the }\mathit{modus-ponens}\mathsf{ inference rule: }((P โŸน Q), P) โŠข Q\mathsf{, it follows that }\left(\left(\mathit{3}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}} \boldsymbol\mathsf{2.1.6}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{30}\mathsf{)}\mathsf{: }\left(\mathit{4} \mathit{\neq} \mathit{0}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{3}\right)\mathit{++} \mathit{\neq} \mathit{0}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{29})\mathsf{. }\left(\left(\mathit{3}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{24})\mathsf{.}\mathsf{Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule: }(P, (Q = R)) โŠข P'\mathsf{, it follows that }\left(\mathit{4} \mathit{\neq} \mathit{0}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.4}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom}} \boldsymbol\mathsf{2.4}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{4}\mathsf{)}\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{4}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{Different natural numbers must have different successors; i.e., if n, m are natural numbers and n m, then n++ m++. Equivalently, if n++ = m++, then we must have n = m.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{31}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathbf{n}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathbf{n}_{3} \mathit{\neq} \mathbf{m}_{1}\right)\right) \mathit{\implies} \left(\left(\mathbf{n}_{3}\right)\mathit{++} \mathit{\neq} \left(\mathbf{m}_{1}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{Different natural numbers must have different successors; i.e., if n, m are natural numbers and n m, then n++ m++. Equivalently, if n++ = m++, then we must have n = m.}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{axiom}} \boldsymbol\mathsf{2.4}} (\mathit{A}_{4})\mathsf{. }\left(\left(\left(\left(\mathbf{n}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathbf{n}_{3} \mathit{\neq} \mathbf{m}_{1}\right)\right) \mathit{\implies} \left(\left(\mathbf{n}_{3}\right)\mathit{++} \mathit{\neq} \left(\mathbf{m}_{1}\right)\mathit{++}\right)\right)\mathsf{ is a valid formula statement interpreted from that axiom.}\mathsf{Therefore, by the }\mathit{axiom-interpretation}\mathsf{ inference rule: }๐’œ โŠข P\mathsf{, it follows that }\left(\left(\left(\left(\mathbf{n}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathbf{n}_{3} \mathit{\neq} \mathbf{m}_{1}\right)\right) \mathit{\implies} \left(\left(\mathbf{n}_{3}\right)\mathit{++} \mathit{\neq} \left(\mathbf{m}_{1}\right)\mathit{++}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{32}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathbf{n}_{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{2} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\left(\mathbf{n}_{4}\right)\mathit{++} \mathit{=} \left(\mathbf{m}_{2}\right)\mathit{++}\right)\right) \mathit{\implies} \left(\mathbf{n}_{4} \mathit{=} \mathbf{m}_{2}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{Different natural numbers must have different successors; i.e., if n, m are natural numbers and n m, then n++ m++. Equivalently, if n++ = m++, then we must have n = m.}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{axiom}} \boldsymbol\mathsf{2.4}} (\mathit{A}_{4})\mathsf{. }\left(\left(\left(\left(\mathbf{n}_{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{2} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\left(\mathbf{n}_{4}\right)\mathit{++} \mathit{=} \left(\mathbf{m}_{2}\right)\mathit{++}\right)\right) \mathit{\implies} \left(\mathbf{n}_{4} \mathit{=} \mathbf{m}_{2}\right)\right)\mathsf{ is a valid formula statement interpreted from that axiom.}\mathsf{Therefore, by the }\mathit{axiom-interpretation}\mathsf{ inference rule: }๐’œ โŠข P\mathsf{, it follows that }\left(\left(\left(\left(\mathbf{n}_{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{2} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\left(\mathbf{n}_{4}\right)\mathit{++} \mathit{=} \left(\mathbf{m}_{2}\right)\mathit{++}\right)\right) \mathit{\implies} \left(\mathbf{n}_{4} \mathit{=} \mathbf{m}_{2}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}### \boldsymbol\mathsf{6 is not equal to 2.}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{33}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right) \mathit{\implies} \left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathbf{n}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathbf{n}_{3} \mathit{\neq} \mathbf{m}_{1}\right)\right) \mathit{\implies} \left(\left(\mathbf{n}_{3}\right)\mathit{++} \mathit{\neq} \left(\mathbf{m}_{1}\right)\mathit{++}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{31})\mathsf{.}\mathsf{ Let }\mathbf{n}_{3} = 4\mathsf{, }\mathbf{m}_{1} = 0\mathsf{.}\mathsf{Therefore, by the }\mathit{variable-substitution}\mathsf{ inference rule: }(P, ๐›ท) โŠข P'\mathsf{, it follows that }\left(\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right) \mathit{\implies} \left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{conjunction-introduction}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{conjunction-introduction}\mathsf{ defined as }\left\ulcorner(P, Q) โŠข (P โ‹€ Q)\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{34}\mathsf{)}\mathsf{: }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ (}\mathit{P}\mathsf{) follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{26})\mathsf{. }\left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ (}\mathit{Q}\mathsf{) follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{1})\mathsf{.}\mathsf{Therefore, by the }\mathit{conjunction-introduction}\mathsf{ inference rule: }(P, Q) โŠข (P โ‹€ Q)\mathsf{, it follows that }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{35}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ (}\mathit{P}\mathsf{) follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{34})\mathsf{. }\left(\mathit{4} \mathit{\neq} \mathit{0}\right)\mathsf{ (}\mathit{Q}\mathsf{) follows from }\boldsymbol\mathsf{prop.}} \boldsymbol\mathsf{2.1.6}} (\mathit{P}_{30})\mathsf{.}\mathsf{Therefore, by the }\mathit{conjunction-introduction}\mathsf{ inference rule: }(P, Q) โŠข (P โ‹€ Q)\mathsf{, it follows that }\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{36}\mathsf{)}\mathsf{: }\left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right) \mathit{\implies} \left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{33})\mathsf{.}\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{35})\mathsf{.}\mathsf{Therefore, by the }\mathit{modus-ponens}\mathsf{ inference rule: }((P โŸน Q), P) โŠข Q\mathsf{, it follows that }\left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{37}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{=} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{def.}} (\mathit{D}_{1})\mathsf{. }\left(\mathit{5} \mathit{=} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ is an interpretation of that definition.}\mathsf{Therefore, by the }\mathit{definition-interpretation}\mathsf{ inference rule: }๐’Ÿ โŠข P\mathsf{, it follows that }\left(\mathit{5} \mathit{=} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{38}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{5} \mathit{=} \left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{37})\mathsf{. }\mathsf{Therefore, by the }\mathit{equality-commutativity}\mathsf{ inference rule: }(x = y) โŠข (y = x)\mathsf{, it follows that }\left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{39}\mathsf{)}\mathsf{: }\left(\left(\mathit{4}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{38})\mathsf{. }\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{4}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{23})\mathsf{.}\mathsf{Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule: }(P, (Q = R)) โŠข P'\mathsf{, it follows that }\left(\left(\mathit{4}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{40}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{=} \left(\mathit{4}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{4}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{39})\mathsf{. }\mathsf{Therefore, by the }\mathit{equality-commutativity}\mathsf{ inference rule: }(x = y) โŠข (y = x)\mathsf{, it follows that }\left(\mathit{5} \mathit{=} \left(\mathit{4}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{41}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\left(\mathit{5}\right)\mathit{++} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathbf{n}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathbf{n}_{3} \mathit{\neq} \mathbf{m}_{1}\right)\right) \mathit{\implies} \left(\left(\mathbf{n}_{3}\right)\mathit{++} \mathit{\neq} \left(\mathbf{m}_{1}\right)\mathit{++}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{31})\mathsf{.}\mathsf{ Let }\mathbf{n}_{3} = 5\mathsf{, }\mathbf{m}_{1} = 1\mathsf{.}\mathsf{Therefore, by the }\mathit{variable-substitution}\mathsf{ inference rule: }(P, ๐›ท) โŠข P'\mathsf{, it follows that }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\left(\mathit{5}\right)\mathit{++} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{42}\mathsf{)}\mathsf{: }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{4}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathbf{n}_{1} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathbf{n}_{1}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{2})\mathsf{.}\mathsf{ Let }\mathbf{n}_{1} = 4\mathsf{.}\mathsf{Therefore, by the }\mathit{variable-substitution}\mathsf{ inference rule: }(P, ๐›ท) โŠข P'\mathsf{, it follows that }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{4}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{43}\mathsf{)}\mathsf{: }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\left(\mathit{4}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{42})\mathsf{. }\left(\left(\mathit{4}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{39})\mathsf{.}\mathsf{Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule: }(P, (Q = R)) โŠข P'\mathsf{, it follows that }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{44}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{43})\mathsf{.}\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{26})\mathsf{.}\mathsf{Therefore, by the }\mathit{modus-ponens}\mathsf{ inference rule: }((P โŸน Q), P) โŠข Q\mathsf{, it follows that }\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{45}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\left(\mathit{5}\right)\mathit{++} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathbf{n}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{m}_{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathbf{n}_{3} \mathit{\neq} \mathbf{m}_{1}\right)\right) \mathit{\implies} \left(\left(\mathbf{n}_{3}\right)\mathit{++} \mathit{\neq} \left(\mathbf{m}_{1}\right)\mathit{++}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{31})\mathsf{.}\mathsf{ Let }\mathbf{n}_{3} = 5\mathsf{, }\mathbf{m}_{1} = 1\mathsf{.}\mathsf{Therefore, by the }\mathit{variable-substitution}\mathsf{ inference rule: }(P, ๐›ท) โŠข P'\mathsf{, it follows that }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\left(\mathit{5}\right)\mathit{++} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{46}\mathsf{)}\mathsf{: }\left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right) \mathit{\implies} \left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{33})\mathsf{.}\left(\left(\left(\mathit{4} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{0} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{4} \mathit{\neq} \mathit{0}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{35})\mathsf{.}\mathsf{Therefore, by the }\mathit{modus-ponens}\mathsf{ inference rule: }((P โŸน Q), P) โŠข Q\mathsf{, it follows that }\left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{47}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{4}\right)\mathit{++} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{46})\mathsf{. }\left(\left(\mathit{4}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{39})\mathsf{.}\mathsf{Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule: }(P, (Q = R)) โŠข P'\mathsf{, it follows that }\left(\mathit{5} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{48}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{=} \left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{def.}} (\mathit{D}_{1})\mathsf{. }\left(\mathit{6} \mathit{=} \left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ is an interpretation of that definition.}\mathsf{Therefore, by the }\mathit{definition-interpretation}\mathsf{ inference rule: }๐’Ÿ โŠข P\mathsf{, it follows that }\left(\mathit{6} \mathit{=} \left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{49}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{6}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{6} \mathit{=} \left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{48})\mathsf{. }\mathsf{Therefore, by the }\mathit{equality-commutativity}\mathsf{ inference rule: }(x = y) โŠข (y = x)\mathsf{, it follows that }\left(\left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{6}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{50}\mathsf{)}\mathsf{: }\left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{0}\right)\mathit{++} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} \boldsymbol\mathsf{2.2.3}} (\mathit{P}_{4})\mathsf{. }\left(\left(\mathit{0}\right)\mathit{++} \mathit{=} \mathit{1}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{15})\mathsf{.}\mathsf{Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule: }(P, (Q = R)) โŠข P'\mathsf{, it follows that }\left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{51}\mathsf{)}\mathsf{: }\left(\left(\mathit{5}\right)\mathit{++} \mathit{=} \mathit{6}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{6}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{49})\mathsf{. }\left(\left(\left(\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{5}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{38})\mathsf{.}\mathsf{Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule: }(P, (Q = R)) โŠข P'\mathsf{, it follows that }\left(\left(\mathit{5}\right)\mathit{++} \mathit{=} \mathit{6}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{52}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{=} \left(\mathit{5}\right)\mathit{++}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{5}\right)\mathit{++} \mathit{=} \mathit{6}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{51})\mathsf{. }\mathsf{Therefore, by the }\mathit{equality-commutativity}\mathsf{ inference rule: }(x = y) โŠข (y = x)\mathsf{, it follows that }\left(\mathit{6} \mathit{=} \left(\mathit{5}\right)\mathit{++}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}#### \boldsymbol\mathsf{Proof by contradiction}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Hypothesis}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{H}_{1}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{=} \mathit{2}\right)\mathsf{.}\mathsf{ This hypothesis is elaborated in theory }\mathcal{H}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{inconsistency-by-inequality-introduction}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{inconsistency-by-inequality-introduction}\mathsf{ defined as }\left\ulcorner((P = Q), (P โ‰  Q)) โŠข Inc(๐’ฏ)\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{66}\mathsf{)}\mathsf{: }\mathit{Inc}\left(\mathcal{H}_{1}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{4} \mathit{=} \mathit{0}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{65})\mathsf{. }\left(\mathit{4} \mathit{\neq} \mathit{0}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} \boldsymbol\mathsf{2.1.6}} (\mathit{P}_{30})\mathsf{. }\mathsf{Therefore, by the }\mathit{inconsistency-by-inequality-introduction}\mathsf{ inference rule: }((P = Q), (P โ‰  Q)) โŠข Inc(๐’ฏ)\mathsf{, it follows that }\mathit{Inc}\left(\mathcal{H}_{1}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Inference rule}}\mathsf{ (}\mathit{proof-by-refutation-of-equality}\mathsf{)}\mathsf{: Let }\mathit{inference-rule}\mathsf{ }\mathit{proof-by-refutation-of-equality}\mathsf{ defined as }\left\ulcorner(โ„‹(P=Q), Inc(โ„‹)) โŠข (P โ‰  Q)\right\ulcorner\mathsf{ be included and considered valid in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}} \boldsymbol\mathsf{2.1.8}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{67}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{\neq} \mathit{2}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\mathsf{Let }\boldsymbol\mathsf{hyp.}} (\mathit{H}_{1})\mathsf{ be the hypothesis }\left(\mathit{6} \mathit{=} \mathit{2}\right)\mathsf{. }\mathit{Inc}\left(\mathcal{H}_{1}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{66})\mathsf{.}\mathsf{Therefore, by the }\mathit{proof-by-refutation-of-equality}\mathsf{ inference rule: }(โ„‹(P=Q), Inc(โ„‹)) โŠข (P โ‰  Q)\mathsf{, it follows that }\left(\mathit{6} \mathit{\neq} \mathit{2}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}#### \boldsymbol\mathsf{Direct proof}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{68}\mathsf{)}\mathsf{: }\left(\left(\mathit{1}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\mathit{0}\right)\mathit{++}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{17})\mathsf{. }\left(\left(\mathit{0}\right)\mathit{++} \mathit{=} \mathit{1}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{15})\mathsf{.}\mathsf{Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule: }(P, (Q = R)) โŠข P'\mathsf{, it follows that }\left(\left(\mathit{1}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{69}\mathsf{)}\mathsf{: }\left(\mathit{5} \mathit{\neq} \mathit{1}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{5} \mathit{\neq} \left(\mathit{0}\right)\mathit{++}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{47})\mathsf{. }\left(\left(\mathit{0}\right)\mathit{++} \mathit{=} \mathit{1}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{15})\mathsf{.}\mathsf{Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule: }(P, (Q = R)) โŠข P'\mathsf{, it follows that }\left(\mathit{5} \mathit{\neq} \mathit{1}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{70}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\mathit{6} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\left(\mathit{5}\right)\mathit{++} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{45})\mathsf{. }\left(\left(\mathit{5}\right)\mathit{++} \mathit{=} \mathit{6}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{51})\mathsf{.}\mathsf{Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule: }(P, (Q = R)) โŠข P'\mathsf{, it follows that }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\mathit{6} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{71}\mathsf{)}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\mathit{6} \mathit{\neq} \mathit{2}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\mathit{6} \mathit{\neq} \left(\mathit{1}\right)\mathit{++}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{70})\mathsf{. }\left(\left(\mathit{1}\right)\mathit{++} \mathit{=} \mathit{2}\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{68})\mathsf{.}\mathsf{Therefore, by the }\mathit{equal-terms-substitution}\mathsf{ inference rule: }(P, (Q = R)) โŠข P'\mathsf{, it follows that }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\mathit{6} \mathit{\neq} \mathit{2}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{72}\mathsf{)}\mathsf{: }\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ (}\mathit{P}\mathsf{) follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{44})\mathsf{. }\left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\mathsf{ (}\mathit{Q}\mathsf{) follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{50})\mathsf{.}\mathsf{Therefore, by the }\mathit{conjunction-introduction}\mathsf{ inference rule: }(P, Q) โŠข (P โ‹€ Q)\mathsf{, it follows that }\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{73}\mathsf{)}\mathsf{: }\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right)\mathsf{ (}\mathit{P}\mathsf{) follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{72})\mathsf{. }\left(\mathit{5} \mathit{\neq} \mathit{1}\right)\mathsf{ (}\mathit{Q}\mathsf{) follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{69})\mathsf{.}\mathsf{Therefore, by the }\mathit{conjunction-introduction}\mathsf{ inference rule: }(P, Q) โŠข (P โ‹€ Q)\mathsf{, it follows that }\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{74}\mathsf{)}\mathsf{: }\left(\mathit{6} \mathit{\neq} \mathit{2}\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left(\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right) \mathit{\implies} \left(\mathit{6} \mathit{\neq} \mathit{2}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{71})\mathsf{.}\left(\left(\left(\mathit{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathit{1} \mathit{is-a} \mathit{natural-number}\right)\right) \mathit{\land} \left(\mathit{5} \mathit{\neq} \mathit{1}\right)\right)\mathsf{ follows from }\boldsymbol\mathsf{prop.}} (\mathit{P}_{73})\mathsf{.}\mathsf{Therefore, by the }\mathit{modus-ponens}\mathsf{ inference rule: }((P โŸน Q), P) โŠข Q\mathsf{, it follows that }\left(\mathit{6} \mathit{\neq} \mathit{2}\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Axiom 2.5: the principle of mathematical induction}}\mathsf{}\mathsf{}\boldsymbol\mathsf{Axiom schema}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{A}_{6}\mathsf{)} - Principle of mathematical induction\mathsf{: Let }\mathit{axiom}\mathsf{ }\mathcal{A}_{6}\mathsf{ }\left\ulcorner\text{\sffamily{\itshape{Let P(n) be any property pertaining to a natural number n. Suppose that P(O) is true, and suppose that whenever P(n) is true, P(n++) is also true. Then P(n) is true for every natural number n.}}}\right\ulcorner\mathsf{ be included (postulated) in }\mathcal{T}_{1}\mathsf{.}\mathsf{}\mathsf{}\boldsymbol\mathsf{Proposition}}\mathsf{ (}\mathcal{T}_{1}\mathsf{.}\mathit{P}_{75}\mathsf{)}\mathsf{: }\left(\left(\left(\mathbf{n}_{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{P}_{1}\left(\mathit{0}\right) \mathit{\land} \left(\mathbf{P}_{1}\left(\mathbf{n}_{5}\right) \mathit{\implies} \mathbf{P}_{1}\left(\left(\mathbf{n}_{5}\right)\mathit{++}\right)\right)\right)\right) \mathit{\implies} \left(\left(\mathbf{m}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \mathbf{P}_{1}\left(\mathbf{m}_{3}\right)\right)\right)\mathsf{.}\mathsf{ }\boldsymbol\mathsf{Proof}}\mathsf{: }\left\ulcorner\text{\sffamily{\itshape{Let P(n) be any property pertaining to a natural number n. Suppose that P(O) is true, and suppose that whenever P(n) is true, P(n++) is also true. Then P(n) is true for every natural number n.}}}\right\ulcorner\mathsf{ is postulated by }\boldsymbol\mathsf{axiom schema}} (\mathit{A}_{6})\mathsf{. }\left(\left(\left(\mathbf{n}_{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{P}_{1}\left(\mathit{0}\right) \mathit{\land} \left(\mathbf{P}_{1}\left(\mathbf{n}_{5}\right) \mathit{\implies} \mathbf{P}_{1}\left(\left(\mathbf{n}_{5}\right)\mathit{++}\right)\right)\right)\right) \mathit{\implies} \left(\left(\mathbf{m}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \mathbf{P}_{1}\left(\mathbf{m}_{3}\right)\right)\right)\mathsf{ is a valid formula statement interpreted from that axiom.}\mathsf{Therefore, by the }\mathit{axiom-interpretation}\mathsf{ inference rule: }๐’œ โŠข P\mathsf{, it follows that }\left(\left(\left(\mathbf{n}_{5} \mathit{is-a} \mathit{natural-number}\right) \mathit{\land} \left(\mathbf{P}_{1}\left(\mathit{0}\right) \mathit{\land} \left(\mathbf{P}_{1}\left(\mathbf{n}_{5}\right) \mathit{\implies} \mathbf{P}_{1}\left(\left(\mathbf{n}_{5}\right)\mathit{++}\right)\right)\right)\right) \mathit{\implies} \left(\left(\mathbf{m}_{3} \mathit{is-a} \mathit{natural-number}\right) \mathit{\implies} \mathbf{P}_{1}\left(\mathbf{m}_{3}\right)\right)\right)\mathsf{. }\mathsf{\qed}\mathsf{}\mathsf{}### \boldsymbol\mathsf{The number system n}}\mathsf{}\mathsf{}### \boldsymbol\mathsf{Recursive definitions}}\mathsf{} \ No newline at end of file diff --git a/theory/build/tao_2006_2_1_the_peano_axioms_report_proof_enus_plaintext.txt b/theory/build/tao_2006_2_1_the_peano_axioms_report_proof_enus_plaintext.txt index a7dfd12f..3d21055a 100644 --- a/theory/build/tao_2006_2_1_the_peano_axioms_report_proof_enus_plaintext.txt +++ b/theory/build/tao_2006_2_1_the_peano_axioms_report_proof_enus_plaintext.txt @@ -10,7 +10,7 @@ Let "0", "natural-number", "1", "2", "3", "4", "5", "6" be simple-objects in U1. # Relations Let "++", "Inc" be unary-relations in U1. -Let "=", "and", "is-a", "neq", "==>" be binary-relations in U1. +Let "and", "neq", "is-a", "=", "==>" be binary-relations in U1. # Inference rules The following inference rules are considered valid under this theory: @@ -31,90 +31,90 @@ Let "variable-substitution" be an inference-rule defined as "(P, ๐›ท) โŠข P'" i ### Axiom 2.1 Axiom 2.1 (T1.A1): Let axiom A1 "0 is a natural number." be included (postulated) in T1. Inference rule (axiom-interpretation): Let inference-rule axiom-interpretation defined as "๐’œ โŠข P" be included and considered valid in T1. -Proposition (T1.P1): (0 is-a natural-number). Proof: "0 is a natural number." is postulated by axiom 2.1 (A1). (0 is-a natural-number) is a valid formula statement interpreted from that axiom. Therefore, by the axiom-interpretation inference rule, it follows that (0 is-a natural-number). QED +Proposition (T1.P1): (0 is-a natural-number). Proof: "0 is a natural number." is postulated by axiom 2.1 (A1). (0 is-a natural-number) is a valid formula statement interpreted from that axiom.Therefore, by the axiom-interpretation inference rule: ๐’œ โŠข P, it follows that (0 is-a natural-number). QED ### Axiom 2.2 Axiom 2.2 (T1.A2): Let axiom A2 "If n is a natural number, then n++ is a natural number." be included (postulated) in T1. -Proposition (T1.P2): ((n1 is-a natural-number) ==> ((n1)++ is-a natural-number)). Proof: "If n is a natural number, then n++ is a natural number." is postulated by axiom 2.2 (A2). ((n1 is-a natural-number) ==> ((n1)++ is-a natural-number)) is a valid formula statement interpreted from that axiom. Therefore, by the axiom-interpretation inference rule, it follows that ((n1 is-a natural-number) ==> ((n1)++ is-a natural-number)). QED +Proposition (T1.P2): ((n1 is-a natural-number) ==> ((n1)++ is-a natural-number)). Proof: "If n is a natural number, then n++ is a natural number." is postulated by axiom 2.2 (A2). ((n1 is-a natural-number) ==> ((n1)++ is-a natural-number)) is a valid formula statement interpreted from that axiom.Therefore, by the axiom-interpretation inference rule: ๐’œ โŠข P, it follows that ((n1 is-a natural-number) ==> ((n1)++ is-a natural-number)). QED Inference rule (variable-substitution): Let inference-rule variable-substitution defined as "(P, ๐›ท) โŠข P'" be included and considered valid in T1. -Proposition (T1.P3): ((0 is-a natural-number) ==> ((0)++ is-a natural-number)). Proof: ((n1 is-a natural-number) ==> ((n1)++ is-a natural-number)) follows from prop. (P2). Let n1 = 0. Therefore, by the variable-substitution inference rule, it follows that ((0 is-a natural-number) ==> ((0)++ is-a natural-number)). QED +Proposition (T1.P3): ((0 is-a natural-number) ==> ((0)++ is-a natural-number)). Proof: ((n1 is-a natural-number) ==> ((n1)++ is-a natural-number)) follows from prop. (P2). Let n1 = 0.Therefore, by the variable-substitution inference rule: (P, ๐›ท) โŠข P', it follows that ((0 is-a natural-number) ==> ((0)++ is-a natural-number)). QED Inference rule (modus-ponens): Let inference-rule modus-ponens defined as "((P โŸน Q), P) โŠข Q" be included and considered valid in T1. -Proposition 2.2.3 (T1.P4): ((0)++ is-a natural-number). Proof: ((0 is-a natural-number) ==> ((0)++ is-a natural-number)) follows from prop. (P3).(0 is-a natural-number) follows from prop. (P1). Therefore, by the modus-ponens inference rule, it follows that ((0)++ is-a natural-number). QED +Proposition 2.2.3 (T1.P4): ((0)++ is-a natural-number). Proof: ((0 is-a natural-number) ==> ((0)++ is-a natural-number)) follows from prop. (P3).(0 is-a natural-number) follows from prop. (P1).Therefore, by the modus-ponens inference rule: ((P โŸน Q), P) โŠข Q, it follows that ((0)++ is-a natural-number). QED Definition (T1.D1): Let definition D1 "We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)" be included (postulated) in T1. Inference rule (definition-interpretation): Let inference-rule definition-interpretation defined as "๐’Ÿ โŠข P" be included and considered valid in T1. -Proposition (T1.P5): (1 = (0)++). Proof: "We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)" is postulated by def. (D1). (1 = (0)++) is an interpretation of that definition. Therefore, by the definition-interpretation inference rule, it follows that (1 = (0)++). QED -Proposition (T1.P6): (2 = ((0)++)++). Proof: "We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)" is postulated by def. (D1). (2 = ((0)++)++) is an interpretation of that definition. Therefore, by the definition-interpretation inference rule, it follows that (2 = ((0)++)++). QED -Proposition (T1.P7): (3 = (((0)++)++)++). Proof: "We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)" is postulated by def. (D1). (3 = (((0)++)++)++) is an interpretation of that definition. Therefore, by the definition-interpretation inference rule, it follows that (3 = (((0)++)++)++). QED -Proposition (T1.P8): (4 = ((((0)++)++)++)++). Proof: "We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)" is postulated by def. (D1). (4 = ((((0)++)++)++)++) is an interpretation of that definition. Therefore, by the definition-interpretation inference rule, it follows that (4 = ((((0)++)++)++)++). QED -Proposition (T1.P9): (((0)++ is-a natural-number) ==> (((0)++)++ is-a natural-number)). Proof: ((n1 is-a natural-number) ==> ((n1)++ is-a natural-number)) follows from prop. (P2). Let n1 = (0)++. Therefore, by the variable-substitution inference rule, it follows that (((0)++ is-a natural-number) ==> (((0)++)++ is-a natural-number)). QED -Proposition (T1.P10): (((0)++)++ is-a natural-number). Proof: (((0)++ is-a natural-number) ==> (((0)++)++ is-a natural-number)) follows from prop. (P9).((0)++ is-a natural-number) follows from prop. 2.2.3 (P4). Therefore, by the modus-ponens inference rule, it follows that (((0)++)++ is-a natural-number). QED -Proposition (T1.P11): ((((0)++)++ is-a natural-number) ==> ((((0)++)++)++ is-a natural-number)). Proof: ((n1 is-a natural-number) ==> ((n1)++ is-a natural-number)) follows from prop. (P2). Let n1 = ((0)++)++. Therefore, by the variable-substitution inference rule, it follows that ((((0)++)++ is-a natural-number) ==> ((((0)++)++)++ is-a natural-number)). QED -Proposition (T1.P12): ((((0)++)++)++ is-a natural-number). Proof: ((((0)++)++ is-a natural-number) ==> ((((0)++)++)++ is-a natural-number)) follows from prop. (P11).(((0)++)++ is-a natural-number) follows from prop. (P10). Therefore, by the modus-ponens inference rule, it follows that ((((0)++)++)++ is-a natural-number). QED -Proposition (T1.P13): (((((0)++)++)++ is-a natural-number) ==> (((((0)++)++)++)++ is-a natural-number)). Proof: ((n1 is-a natural-number) ==> ((n1)++ is-a natural-number)) follows from prop. (P2). Let n1 = (((0)++)++)++. Therefore, by the variable-substitution inference rule, it follows that (((((0)++)++)++ is-a natural-number) ==> (((((0)++)++)++)++ is-a natural-number)). QED -Proposition (T1.P14): (((((0)++)++)++)++ is-a natural-number). Proof: (((((0)++)++)++ is-a natural-number) ==> (((((0)++)++)++)++ is-a natural-number)) follows from prop. (P13).((((0)++)++)++ is-a natural-number) follows from prop. (P12). Therefore, by the modus-ponens inference rule, it follows that (((((0)++)++)++)++ is-a natural-number). QED +Proposition (T1.P5): (1 = (0)++). Proof: "We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)" is postulated by def. (D1). (1 = (0)++) is an interpretation of that definition.Therefore, by the definition-interpretation inference rule: ๐’Ÿ โŠข P, it follows that (1 = (0)++). QED +Proposition (T1.P6): (2 = ((0)++)++). Proof: "We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)" is postulated by def. (D1). (2 = ((0)++)++) is an interpretation of that definition.Therefore, by the definition-interpretation inference rule: ๐’Ÿ โŠข P, it follows that (2 = ((0)++)++). QED +Proposition (T1.P7): (3 = (((0)++)++)++). Proof: "We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)" is postulated by def. (D1). (3 = (((0)++)++)++) is an interpretation of that definition.Therefore, by the definition-interpretation inference rule: ๐’Ÿ โŠข P, it follows that (3 = (((0)++)++)++). QED +Proposition (T1.P8): (4 = ((((0)++)++)++)++). Proof: "We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)" is postulated by def. (D1). (4 = ((((0)++)++)++)++) is an interpretation of that definition.Therefore, by the definition-interpretation inference rule: ๐’Ÿ โŠข P, it follows that (4 = ((((0)++)++)++)++). QED +Proposition (T1.P9): (((0)++ is-a natural-number) ==> (((0)++)++ is-a natural-number)). Proof: ((n1 is-a natural-number) ==> ((n1)++ is-a natural-number)) follows from prop. (P2). Let n1 = (0)++.Therefore, by the variable-substitution inference rule: (P, ๐›ท) โŠข P', it follows that (((0)++ is-a natural-number) ==> (((0)++)++ is-a natural-number)). QED +Proposition (T1.P10): (((0)++)++ is-a natural-number). Proof: (((0)++ is-a natural-number) ==> (((0)++)++ is-a natural-number)) follows from prop. (P9).((0)++ is-a natural-number) follows from prop. 2.2.3 (P4).Therefore, by the modus-ponens inference rule: ((P โŸน Q), P) โŠข Q, it follows that (((0)++)++ is-a natural-number). QED +Proposition (T1.P11): ((((0)++)++ is-a natural-number) ==> ((((0)++)++)++ is-a natural-number)). Proof: ((n1 is-a natural-number) ==> ((n1)++ is-a natural-number)) follows from prop. (P2). Let n1 = ((0)++)++.Therefore, by the variable-substitution inference rule: (P, ๐›ท) โŠข P', it follows that ((((0)++)++ is-a natural-number) ==> ((((0)++)++)++ is-a natural-number)). QED +Proposition (T1.P12): ((((0)++)++)++ is-a natural-number). Proof: ((((0)++)++ is-a natural-number) ==> ((((0)++)++)++ is-a natural-number)) follows from prop. (P11).(((0)++)++ is-a natural-number) follows from prop. (P10).Therefore, by the modus-ponens inference rule: ((P โŸน Q), P) โŠข Q, it follows that ((((0)++)++)++ is-a natural-number). QED +Proposition (T1.P13): (((((0)++)++)++ is-a natural-number) ==> (((((0)++)++)++)++ is-a natural-number)). Proof: ((n1 is-a natural-number) ==> ((n1)++ is-a natural-number)) follows from prop. (P2). Let n1 = (((0)++)++)++.Therefore, by the variable-substitution inference rule: (P, ๐›ท) โŠข P', it follows that (((((0)++)++)++ is-a natural-number) ==> (((((0)++)++)++)++ is-a natural-number)). QED +Proposition (T1.P14): (((((0)++)++)++)++ is-a natural-number). Proof: (((((0)++)++)++ is-a natural-number) ==> (((((0)++)++)++)++ is-a natural-number)) follows from prop. (P13).((((0)++)++)++ is-a natural-number) follows from prop. (P12).Therefore, by the modus-ponens inference rule: ((P โŸน Q), P) โŠข Q, it follows that (((((0)++)++)++)++ is-a natural-number). QED Inference rule (equality-commutativity): Let inference-rule equality-commutativity defined as "(x = y) โŠข (y = x)" be included and considered valid in T1. -Proposition (T1.P15): ((0)++ = 1). Proof: (1 = (0)++) follows from prop. (P5). Therefore, by the equality-commutativity inference rule, it follows that ((0)++ = 1). QED +Proposition (T1.P15): ((0)++ = 1). Proof: (1 = (0)++) follows from prop. (P5). Therefore, by the equality-commutativity inference rule: (x = y) โŠข (y = x), it follows that ((0)++ = 1). QED Inference rule (equal-terms-substitution): Let inference-rule equal-terms-substitution defined as "(P, (Q = R)) โŠข P'" be included and considered valid in T1. -Proposition (T1.P16): (2 = (1)++). Proof: (2 = ((0)++)++) follows from prop. (P6). ((0)++ = 1) follows from prop. (P15). Therefore, by the equal-terms-substitution inference rule, it follows that (2 = (1)++). QED -Proposition (T1.P17): (((0)++)++ = 2). Proof: (2 = ((0)++)++) follows from prop. (P6). Therefore, by the equality-commutativity inference rule, it follows that (((0)++)++ = 2). QED -Proposition (T1.P18): (3 = (2)++). Proof: (3 = (((0)++)++)++) follows from prop. (P7). (((0)++)++ = 2) follows from prop. (P17). Therefore, by the equal-terms-substitution inference rule, it follows that (3 = (2)++). QED +Proposition (T1.P16): (2 = (1)++). Proof: (2 = ((0)++)++) follows from prop. (P6). ((0)++ = 1) follows from prop. (P15).Therefore, by the equal-terms-substitution inference rule: (P, (Q = R)) โŠข P', it follows that (2 = (1)++). QED +Proposition (T1.P17): (((0)++)++ = 2). Proof: (2 = ((0)++)++) follows from prop. (P6). Therefore, by the equality-commutativity inference rule: (x = y) โŠข (y = x), it follows that (((0)++)++ = 2). QED +Proposition (T1.P18): (3 = (2)++). Proof: (3 = (((0)++)++)++) follows from prop. (P7). (((0)++)++ = 2) follows from prop. (P17).Therefore, by the equal-terms-substitution inference rule: (P, (Q = R)) โŠข P', it follows that (3 = (2)++). QED ### 3 is a natural number -Proposition (T1.P19): ((((0)++)++)++ = 3). Proof: (3 = (((0)++)++)++) follows from prop. (P7). Therefore, by the equality-commutativity inference rule, it follows that ((((0)++)++)++ = 3). QED -Proposition (T1.P20): ((2)++ = 3). Proof: ((((0)++)++)++ = 3) follows from prop. (P19). (((0)++)++ = 2) follows from prop. (P17). Therefore, by the equal-terms-substitution inference rule, it follows that ((2)++ = 3). QED -Proposition 2.1.4 (T1.P21): (3 is-a natural-number). Proof: ((((0)++)++)++ is-a natural-number) follows from prop. (P12). ((((0)++)++)++ = 3) follows from prop. (P19). Therefore, by the equal-terms-substitution inference rule, it follows that (3 is-a natural-number). QED -Proposition (T1.P22): (4 = ((((0)++)++)++)++). Proof: "We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)" is postulated by def. (D1). (4 = ((((0)++)++)++)++) is an interpretation of that definition. Therefore, by the definition-interpretation inference rule, it follows that (4 = ((((0)++)++)++)++). QED -Proposition (T1.P23): (((((0)++)++)++)++ = 4). Proof: (4 = ((((0)++)++)++)++) follows from prop. (P8). Therefore, by the equality-commutativity inference rule, it follows that (((((0)++)++)++)++ = 4). QED -Proposition (T1.P24): ((3)++ = 4). Proof: (((((0)++)++)++)++ = 4) follows from prop. (P23). ((((0)++)++)++ = 3) follows from prop. (P19). Therefore, by the equal-terms-substitution inference rule, it follows that ((3)++ = 4). QED -Proposition (T1.P25): (((((0)++)++)++ is-a natural-number) ==> (((((0)++)++)++)++ is-a natural-number)). Proof: (((((0)++)++)++ is-a natural-number) ==> (((((0)++)++)++)++ is-a natural-number)) follows from prop. (P13). ((3)++ = 4) follows from prop. (P24). Therefore, by the equal-terms-substitution inference rule, it follows that (((((0)++)++)++ is-a natural-number) ==> (((((0)++)++)++)++ is-a natural-number)). QED -Proposition (T1.P26): (4 is-a natural-number). Proof: (((((0)++)++)++)++ is-a natural-number) follows from prop. (P14). (((((0)++)++)++)++ = 4) follows from prop. (P23). Therefore, by the equal-terms-substitution inference rule, it follows that (4 is-a natural-number). QED +Proposition (T1.P19): ((((0)++)++)++ = 3). Proof: (3 = (((0)++)++)++) follows from prop. (P7). Therefore, by the equality-commutativity inference rule: (x = y) โŠข (y = x), it follows that ((((0)++)++)++ = 3). QED +Proposition (T1.P20): ((2)++ = 3). Proof: ((((0)++)++)++ = 3) follows from prop. (P19). (((0)++)++ = 2) follows from prop. (P17).Therefore, by the equal-terms-substitution inference rule: (P, (Q = R)) โŠข P', it follows that ((2)++ = 3). QED +Proposition 2.1.4 (T1.P21): (3 is-a natural-number). Proof: ((((0)++)++)++ is-a natural-number) follows from prop. (P12). ((((0)++)++)++ = 3) follows from prop. (P19).Therefore, by the equal-terms-substitution inference rule: (P, (Q = R)) โŠข P', it follows that (3 is-a natural-number). QED +Proposition (T1.P22): (4 = ((((0)++)++)++)++). Proof: "We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)" is postulated by def. (D1). (4 = ((((0)++)++)++)++) is an interpretation of that definition.Therefore, by the definition-interpretation inference rule: ๐’Ÿ โŠข P, it follows that (4 = ((((0)++)++)++)++). QED +Proposition (T1.P23): (((((0)++)++)++)++ = 4). Proof: (4 = ((((0)++)++)++)++) follows from prop. (P8). Therefore, by the equality-commutativity inference rule: (x = y) โŠข (y = x), it follows that (((((0)++)++)++)++ = 4). QED +Proposition (T1.P24): ((3)++ = 4). Proof: (((((0)++)++)++)++ = 4) follows from prop. (P23). ((((0)++)++)++ = 3) follows from prop. (P19).Therefore, by the equal-terms-substitution inference rule: (P, (Q = R)) โŠข P', it follows that ((3)++ = 4). QED +Proposition (T1.P25): (((((0)++)++)++ is-a natural-number) ==> (((((0)++)++)++)++ is-a natural-number)). Proof: (((((0)++)++)++ is-a natural-number) ==> (((((0)++)++)++)++ is-a natural-number)) follows from prop. (P13). ((3)++ = 4) follows from prop. (P24).Therefore, by the equal-terms-substitution inference rule: (P, (Q = R)) โŠข P', it follows that (((((0)++)++)++ is-a natural-number) ==> (((((0)++)++)++)++ is-a natural-number)). QED +Proposition (T1.P26): (4 is-a natural-number). Proof: (((((0)++)++)++)++ is-a natural-number) follows from prop. (P14). (((((0)++)++)++)++ = 4) follows from prop. (P23).Therefore, by the equal-terms-substitution inference rule: (P, (Q = R)) โŠข P', it follows that (4 is-a natural-number). QED ### Axiom 2.3 Axiom 2.3 (T1.A3): Let axiom A3 "0 is not the successor of any natural number; i.e., we have n++ 0 for every natural number n." be included (postulated) in T1. -Proposition (T1.P27): ((n2 is-a natural-number) ==> ((n2)++ neq 0)). Proof: "0 is not the successor of any natural number; i.e., we have n++ 0 for every natural number n." is postulated by axiom 2.3 (A3). ((n2 is-a natural-number) ==> ((n2)++ neq 0)) is a valid formula statement interpreted from that axiom. Therefore, by the axiom-interpretation inference rule, it follows that ((n2 is-a natural-number) ==> ((n2)++ neq 0)). QED +Proposition (T1.P27): ((n2 is-a natural-number) ==> ((n2)++ neq 0)). Proof: "0 is not the successor of any natural number; i.e., we have n++ 0 for every natural number n." is postulated by axiom 2.3 (A3). ((n2 is-a natural-number) ==> ((n2)++ neq 0)) is a valid formula statement interpreted from that axiom.Therefore, by the axiom-interpretation inference rule: ๐’œ โŠข P, it follows that ((n2 is-a natural-number) ==> ((n2)++ neq 0)). QED ### 4 is not equal to 0. -Proposition (T1.P28): ((3 is-a natural-number) ==> ((3)++ neq 0)). Proof: ((n2 is-a natural-number) ==> ((n2)++ neq 0)) follows from prop. (P27). Let n2 = 3. Therefore, by the variable-substitution inference rule, it follows that ((3 is-a natural-number) ==> ((3)++ neq 0)). QED -Proposition (T1.P29): ((3)++ neq 0). Proof: ((3 is-a natural-number) ==> ((3)++ neq 0)) follows from prop. (P28).(3 is-a natural-number) follows from prop. 2.1.4 (P21). Therefore, by the modus-ponens inference rule, it follows that ((3)++ neq 0). QED -Proposition 2.1.6 (T1.P30): (4 neq 0). Proof: ((3)++ neq 0) follows from prop. (P29). ((3)++ = 4) follows from prop. (P24). Therefore, by the equal-terms-substitution inference rule, it follows that (4 neq 0). QED +Proposition (T1.P28): ((3 is-a natural-number) ==> ((3)++ neq 0)). Proof: ((n2 is-a natural-number) ==> ((n2)++ neq 0)) follows from prop. (P27). Let n2 = 3.Therefore, by the variable-substitution inference rule: (P, ๐›ท) โŠข P', it follows that ((3 is-a natural-number) ==> ((3)++ neq 0)). QED +Proposition (T1.P29): ((3)++ neq 0). Proof: ((3 is-a natural-number) ==> ((3)++ neq 0)) follows from prop. (P28).(3 is-a natural-number) follows from prop. 2.1.4 (P21).Therefore, by the modus-ponens inference rule: ((P โŸน Q), P) โŠข Q, it follows that ((3)++ neq 0). QED +Proposition 2.1.6 (T1.P30): (4 neq 0). Proof: ((3)++ neq 0) follows from prop. (P29). ((3)++ = 4) follows from prop. (P24).Therefore, by the equal-terms-substitution inference rule: (P, (Q = R)) โŠข P', it follows that (4 neq 0). QED ### Axiom 2.4 Axiom 2.4 (T1.A4): Let axiom A4 "Different natural numbers must have different successors; i.e., if n, m are natural numbers and n m, then n++ m++. Equivalently, if n++ = m++, then we must have n = m." be included (postulated) in T1. -Proposition (T1.P31): ((((n3 is-a natural-number) and (m1 is-a natural-number)) and (n3 neq m1)) ==> ((n3)++ neq (m1)++)). Proof: "Different natural numbers must have different successors; i.e., if n, m are natural numbers and n m, then n++ m++. Equivalently, if n++ = m++, then we must have n = m." is postulated by axiom 2.4 (A4). ((((n3 is-a natural-number) and (m1 is-a natural-number)) and (n3 neq m1)) ==> ((n3)++ neq (m1)++)) is a valid formula statement interpreted from that axiom. Therefore, by the axiom-interpretation inference rule, it follows that ((((n3 is-a natural-number) and (m1 is-a natural-number)) and (n3 neq m1)) ==> ((n3)++ neq (m1)++)). QED -Proposition (T1.P32): ((((n4 is-a natural-number) and (m2 is-a natural-number)) and ((n4)++ = (m2)++)) ==> (n4 = m2)). Proof: "Different natural numbers must have different successors; i.e., if n, m are natural numbers and n m, then n++ m++. Equivalently, if n++ = m++, then we must have n = m." is postulated by axiom 2.4 (A4). ((((n4 is-a natural-number) and (m2 is-a natural-number)) and ((n4)++ = (m2)++)) ==> (n4 = m2)) is a valid formula statement interpreted from that axiom. Therefore, by the axiom-interpretation inference rule, it follows that ((((n4 is-a natural-number) and (m2 is-a natural-number)) and ((n4)++ = (m2)++)) ==> (n4 = m2)). QED +Proposition (T1.P31): ((((n3 is-a natural-number) and (m1 is-a natural-number)) and (n3 neq m1)) ==> ((n3)++ neq (m1)++)). Proof: "Different natural numbers must have different successors; i.e., if n, m are natural numbers and n m, then n++ m++. Equivalently, if n++ = m++, then we must have n = m." is postulated by axiom 2.4 (A4). ((((n3 is-a natural-number) and (m1 is-a natural-number)) and (n3 neq m1)) ==> ((n3)++ neq (m1)++)) is a valid formula statement interpreted from that axiom.Therefore, by the axiom-interpretation inference rule: ๐’œ โŠข P, it follows that ((((n3 is-a natural-number) and (m1 is-a natural-number)) and (n3 neq m1)) ==> ((n3)++ neq (m1)++)). QED +Proposition (T1.P32): ((((n4 is-a natural-number) and (m2 is-a natural-number)) and ((n4)++ = (m2)++)) ==> (n4 = m2)). Proof: "Different natural numbers must have different successors; i.e., if n, m are natural numbers and n m, then n++ m++. Equivalently, if n++ = m++, then we must have n = m." is postulated by axiom 2.4 (A4). ((((n4 is-a natural-number) and (m2 is-a natural-number)) and ((n4)++ = (m2)++)) ==> (n4 = m2)) is a valid formula statement interpreted from that axiom.Therefore, by the axiom-interpretation inference rule: ๐’œ โŠข P, it follows that ((((n4 is-a natural-number) and (m2 is-a natural-number)) and ((n4)++ = (m2)++)) ==> (n4 = m2)). QED ### 6 is not equal to 2. -Proposition (T1.P33): ((((4 is-a natural-number) and (0 is-a natural-number)) and (4 neq 0)) ==> ((4)++ neq (0)++)). Proof: ((((n3 is-a natural-number) and (m1 is-a natural-number)) and (n3 neq m1)) ==> ((n3)++ neq (m1)++)) follows from prop. (P31). Let n3 = 4, m1 = 0. Therefore, by the variable-substitution inference rule, it follows that ((((4 is-a natural-number) and (0 is-a natural-number)) and (4 neq 0)) ==> ((4)++ neq (0)++)). QED +Proposition (T1.P33): ((((4 is-a natural-number) and (0 is-a natural-number)) and (4 neq 0)) ==> ((4)++ neq (0)++)). Proof: ((((n3 is-a natural-number) and (m1 is-a natural-number)) and (n3 neq m1)) ==> ((n3)++ neq (m1)++)) follows from prop. (P31). Let n3 = 4, m1 = 0.Therefore, by the variable-substitution inference rule: (P, ๐›ท) โŠข P', it follows that ((((4 is-a natural-number) and (0 is-a natural-number)) and (4 neq 0)) ==> ((4)++ neq (0)++)). QED Inference rule (conjunction-introduction): Let inference-rule conjunction-introduction defined as "(P, Q) โŠข (P โ‹€ Q)" be included and considered valid in T1. -Proposition (T1.P34): ((4 is-a natural-number) and (0 is-a natural-number)). Proof: (4 is-a natural-number) follows from prop. (P26). (0 is-a natural-number) follows from prop. (P1). Therefore, by the conjunction-introduction inference rule, it follows that ((4 is-a natural-number) and (0 is-a natural-number)). QED -Proposition (T1.P35): (((4 is-a natural-number) and (0 is-a natural-number)) and (4 neq 0)). Proof: ((4 is-a natural-number) and (0 is-a natural-number)) follows from prop. (P34). (4 neq 0) follows from prop. 2.1.6 (P30). Therefore, by the conjunction-introduction inference rule, it follows that (((4 is-a natural-number) and (0 is-a natural-number)) and (4 neq 0)). QED -Proposition (T1.P36): ((4)++ neq (0)++). Proof: ((((4 is-a natural-number) and (0 is-a natural-number)) and (4 neq 0)) ==> ((4)++ neq (0)++)) follows from prop. (P33).(((4 is-a natural-number) and (0 is-a natural-number)) and (4 neq 0)) follows from prop. (P35). Therefore, by the modus-ponens inference rule, it follows that ((4)++ neq (0)++). QED -Proposition (T1.P37): (5 = (((((0)++)++)++)++)++). Proof: "We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)" is postulated by def. (D1). (5 = (((((0)++)++)++)++)++) is an interpretation of that definition. Therefore, by the definition-interpretation inference rule, it follows that (5 = (((((0)++)++)++)++)++). QED -Proposition (T1.P38): ((((((0)++)++)++)++)++ = 5). Proof: (5 = (((((0)++)++)++)++)++) follows from prop. (P37). Therefore, by the equality-commutativity inference rule, it follows that ((((((0)++)++)++)++)++ = 5). QED -Proposition (T1.P39): ((4)++ = 5). Proof: ((((((0)++)++)++)++)++ = 5) follows from prop. (P38). (((((0)++)++)++)++ = 4) follows from prop. (P23). Therefore, by the equal-terms-substitution inference rule, it follows that ((4)++ = 5). QED -Proposition (T1.P40): (5 = (4)++). Proof: ((4)++ = 5) follows from prop. (P39). Therefore, by the equality-commutativity inference rule, it follows that (5 = (4)++). QED -Proposition (T1.P41): ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> ((5)++ neq (1)++)). Proof: ((((n3 is-a natural-number) and (m1 is-a natural-number)) and (n3 neq m1)) ==> ((n3)++ neq (m1)++)) follows from prop. (P31). Let n3 = 5, m1 = 1. Therefore, by the variable-substitution inference rule, it follows that ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> ((5)++ neq (1)++)). QED -Proposition (T1.P42): ((4 is-a natural-number) ==> ((4)++ is-a natural-number)). Proof: ((n1 is-a natural-number) ==> ((n1)++ is-a natural-number)) follows from prop. (P2). Let n1 = 4. Therefore, by the variable-substitution inference rule, it follows that ((4 is-a natural-number) ==> ((4)++ is-a natural-number)). QED -Proposition (T1.P43): ((4 is-a natural-number) ==> (5 is-a natural-number)). Proof: ((4 is-a natural-number) ==> ((4)++ is-a natural-number)) follows from prop. (P42). ((4)++ = 5) follows from prop. (P39). Therefore, by the equal-terms-substitution inference rule, it follows that ((4 is-a natural-number) ==> (5 is-a natural-number)). QED -Proposition (T1.P44): (5 is-a natural-number). Proof: ((4 is-a natural-number) ==> (5 is-a natural-number)) follows from prop. (P43).(4 is-a natural-number) follows from prop. (P26). Therefore, by the modus-ponens inference rule, it follows that (5 is-a natural-number). QED -Proposition (T1.P45): ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> ((5)++ neq (1)++)). Proof: ((((n3 is-a natural-number) and (m1 is-a natural-number)) and (n3 neq m1)) ==> ((n3)++ neq (m1)++)) follows from prop. (P31). Let n3 = 5, m1 = 1. Therefore, by the variable-substitution inference rule, it follows that ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> ((5)++ neq (1)++)). QED -Proposition (T1.P46): ((4)++ neq (0)++). Proof: ((((4 is-a natural-number) and (0 is-a natural-number)) and (4 neq 0)) ==> ((4)++ neq (0)++)) follows from prop. (P33).(((4 is-a natural-number) and (0 is-a natural-number)) and (4 neq 0)) follows from prop. (P35). Therefore, by the modus-ponens inference rule, it follows that ((4)++ neq (0)++). QED -Proposition (T1.P47): (5 neq (0)++). Proof: ((4)++ neq (0)++) follows from prop. (P46). ((4)++ = 5) follows from prop. (P39). Therefore, by the equal-terms-substitution inference rule, it follows that (5 neq (0)++). QED -Proposition (T1.P48): (6 = ((((((0)++)++)++)++)++)++). Proof: "We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)" is postulated by def. (D1). (6 = ((((((0)++)++)++)++)++)++) is an interpretation of that definition. Therefore, by the definition-interpretation inference rule, it follows that (6 = ((((((0)++)++)++)++)++)++). QED -Proposition (T1.P49): (((((((0)++)++)++)++)++)++ = 6). Proof: (6 = ((((((0)++)++)++)++)++)++) follows from prop. (P48). Therefore, by the equality-commutativity inference rule, it follows that (((((((0)++)++)++)++)++)++ = 6). QED -Proposition (T1.P50): (1 is-a natural-number). Proof: ((0)++ is-a natural-number) follows from prop. 2.2.3 (P4). ((0)++ = 1) follows from prop. (P15). Therefore, by the equal-terms-substitution inference rule, it follows that (1 is-a natural-number). QED -Proposition (T1.P51): ((5)++ = 6). Proof: (((((((0)++)++)++)++)++)++ = 6) follows from prop. (P49). ((((((0)++)++)++)++)++ = 5) follows from prop. (P38). Therefore, by the equal-terms-substitution inference rule, it follows that ((5)++ = 6). QED -Proposition (T1.P52): (6 = (5)++). Proof: ((5)++ = 6) follows from prop. (P51). Therefore, by the equality-commutativity inference rule, it follows that (6 = (5)++). QED +Proposition (T1.P34): ((4 is-a natural-number) and (0 is-a natural-number)). Proof: (4 is-a natural-number) (P) follows from prop. (P26). (0 is-a natural-number) (Q) follows from prop. (P1).Therefore, by the conjunction-introduction inference rule: (P, Q) โŠข (P โ‹€ Q), it follows that ((4 is-a natural-number) and (0 is-a natural-number)). QED +Proposition (T1.P35): (((4 is-a natural-number) and (0 is-a natural-number)) and (4 neq 0)). Proof: ((4 is-a natural-number) and (0 is-a natural-number)) (P) follows from prop. (P34). (4 neq 0) (Q) follows from prop. 2.1.6 (P30).Therefore, by the conjunction-introduction inference rule: (P, Q) โŠข (P โ‹€ Q), it follows that (((4 is-a natural-number) and (0 is-a natural-number)) and (4 neq 0)). QED +Proposition (T1.P36): ((4)++ neq (0)++). Proof: ((((4 is-a natural-number) and (0 is-a natural-number)) and (4 neq 0)) ==> ((4)++ neq (0)++)) follows from prop. (P33).(((4 is-a natural-number) and (0 is-a natural-number)) and (4 neq 0)) follows from prop. (P35).Therefore, by the modus-ponens inference rule: ((P โŸน Q), P) โŠข Q, it follows that ((4)++ neq (0)++). QED +Proposition (T1.P37): (5 = (((((0)++)++)++)++)++). Proof: "We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)" is postulated by def. (D1). (5 = (((((0)++)++)++)++)++) is an interpretation of that definition.Therefore, by the definition-interpretation inference rule: ๐’Ÿ โŠข P, it follows that (5 = (((((0)++)++)++)++)++). QED +Proposition (T1.P38): ((((((0)++)++)++)++)++ = 5). Proof: (5 = (((((0)++)++)++)++)++) follows from prop. (P37). Therefore, by the equality-commutativity inference rule: (x = y) โŠข (y = x), it follows that ((((((0)++)++)++)++)++ = 5). QED +Proposition (T1.P39): ((4)++ = 5). Proof: ((((((0)++)++)++)++)++ = 5) follows from prop. (P38). (((((0)++)++)++)++ = 4) follows from prop. (P23).Therefore, by the equal-terms-substitution inference rule: (P, (Q = R)) โŠข P', it follows that ((4)++ = 5). QED +Proposition (T1.P40): (5 = (4)++). Proof: ((4)++ = 5) follows from prop. (P39). Therefore, by the equality-commutativity inference rule: (x = y) โŠข (y = x), it follows that (5 = (4)++). QED +Proposition (T1.P41): ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> ((5)++ neq (1)++)). Proof: ((((n3 is-a natural-number) and (m1 is-a natural-number)) and (n3 neq m1)) ==> ((n3)++ neq (m1)++)) follows from prop. (P31). Let n3 = 5, m1 = 1.Therefore, by the variable-substitution inference rule: (P, ๐›ท) โŠข P', it follows that ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> ((5)++ neq (1)++)). QED +Proposition (T1.P42): ((4 is-a natural-number) ==> ((4)++ is-a natural-number)). Proof: ((n1 is-a natural-number) ==> ((n1)++ is-a natural-number)) follows from prop. (P2). Let n1 = 4.Therefore, by the variable-substitution inference rule: (P, ๐›ท) โŠข P', it follows that ((4 is-a natural-number) ==> ((4)++ is-a natural-number)). QED +Proposition (T1.P43): ((4 is-a natural-number) ==> (5 is-a natural-number)). Proof: ((4 is-a natural-number) ==> ((4)++ is-a natural-number)) follows from prop. (P42). ((4)++ = 5) follows from prop. (P39).Therefore, by the equal-terms-substitution inference rule: (P, (Q = R)) โŠข P', it follows that ((4 is-a natural-number) ==> (5 is-a natural-number)). QED +Proposition (T1.P44): (5 is-a natural-number). Proof: ((4 is-a natural-number) ==> (5 is-a natural-number)) follows from prop. (P43).(4 is-a natural-number) follows from prop. (P26).Therefore, by the modus-ponens inference rule: ((P โŸน Q), P) โŠข Q, it follows that (5 is-a natural-number). QED +Proposition (T1.P45): ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> ((5)++ neq (1)++)). Proof: ((((n3 is-a natural-number) and (m1 is-a natural-number)) and (n3 neq m1)) ==> ((n3)++ neq (m1)++)) follows from prop. (P31). Let n3 = 5, m1 = 1.Therefore, by the variable-substitution inference rule: (P, ๐›ท) โŠข P', it follows that ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> ((5)++ neq (1)++)). QED +Proposition (T1.P46): ((4)++ neq (0)++). Proof: ((((4 is-a natural-number) and (0 is-a natural-number)) and (4 neq 0)) ==> ((4)++ neq (0)++)) follows from prop. (P33).(((4 is-a natural-number) and (0 is-a natural-number)) and (4 neq 0)) follows from prop. (P35).Therefore, by the modus-ponens inference rule: ((P โŸน Q), P) โŠข Q, it follows that ((4)++ neq (0)++). QED +Proposition (T1.P47): (5 neq (0)++). Proof: ((4)++ neq (0)++) follows from prop. (P46). ((4)++ = 5) follows from prop. (P39).Therefore, by the equal-terms-substitution inference rule: (P, (Q = R)) โŠข P', it follows that (5 neq (0)++). QED +Proposition (T1.P48): (6 = ((((((0)++)++)++)++)++)++). Proof: "We define 1 to be the number 0++, 2 to be the number (0++)++, 3 to be the number ((0++)++)++,etc. (In other words, 1 := 0++, 2 := 1++, 3 := 2++, etc. In this text I use "x := y" to denote the statement that x is defined to equal y.)" is postulated by def. (D1). (6 = ((((((0)++)++)++)++)++)++) is an interpretation of that definition.Therefore, by the definition-interpretation inference rule: ๐’Ÿ โŠข P, it follows that (6 = ((((((0)++)++)++)++)++)++). QED +Proposition (T1.P49): (((((((0)++)++)++)++)++)++ = 6). Proof: (6 = ((((((0)++)++)++)++)++)++) follows from prop. (P48). Therefore, by the equality-commutativity inference rule: (x = y) โŠข (y = x), it follows that (((((((0)++)++)++)++)++)++ = 6). QED +Proposition (T1.P50): (1 is-a natural-number). Proof: ((0)++ is-a natural-number) follows from prop. 2.2.3 (P4). ((0)++ = 1) follows from prop. (P15).Therefore, by the equal-terms-substitution inference rule: (P, (Q = R)) โŠข P', it follows that (1 is-a natural-number). QED +Proposition (T1.P51): ((5)++ = 6). Proof: (((((((0)++)++)++)++)++)++ = 6) follows from prop. (P49). ((((((0)++)++)++)++)++ = 5) follows from prop. (P38).Therefore, by the equal-terms-substitution inference rule: (P, (Q = R)) โŠข P', it follows that ((5)++ = 6). QED +Proposition (T1.P52): (6 = (5)++). Proof: ((5)++ = 6) follows from prop. (P51). Therefore, by the equality-commutativity inference rule: (x = y) โŠข (y = x), it follows that (6 = (5)++). QED #### Proof by contradiction Hypothesis (T1.H1): (6 = 2). This hypothesis is elaborated in theory H1. Inference rule (inconsistency-by-inequality-introduction): Let inference-rule inconsistency-by-inequality-introduction defined as "((P = Q), (P โ‰  Q)) โŠข Inc(๐’ฏ)" be included and considered valid in T1. -Proposition (T1.P66): Inc(H1). Proof: P65 follows from prop. (P65). P30 follows from prop. 2.1.6 (P30). Therefore, by the inconsistency-by-inequality-introduction inference rule, it follows that Inc(H1). QED +Proposition (T1.P66): Inc(H1). Proof: (4 = 0) follows from prop. (P65). (4 neq 0) follows from prop. 2.1.6 (P30). Therefore, by the inconsistency-by-inequality-introduction inference rule: ((P = Q), (P โ‰  Q)) โŠข Inc(๐’ฏ), it follows that Inc(H1). QED Inference rule (proof-by-refutation-of-equality): Let inference-rule proof-by-refutation-of-equality defined as "(โ„‹(P=Q), Inc(โ„‹)) โŠข (P โ‰  Q)" be included and considered valid in T1. -Proposition 2.1.8 (T1.P67): (6 neq 2). Proof: Let hyp. (H1) be the hypothesis (6 = 2). Inc(H1) follows from prop. (P66). Therefore, by the proof-by-refutation-of-equality inference rule, it follows that (6 neq 2). QED +Proposition 2.1.8 (T1.P67): (6 neq 2). Proof: Let hyp. (H1) be the hypothesis (6 = 2). Inc(H1) follows from prop. (P66).Therefore, by the proof-by-refutation-of-equality inference rule: (โ„‹(P=Q), Inc(โ„‹)) โŠข (P โ‰  Q), it follows that (6 neq 2). QED #### Direct proof -Proposition (T1.P68): ((1)++ = 2). Proof: (((0)++)++ = 2) follows from prop. (P17). ((0)++ = 1) follows from prop. (P15). Therefore, by the equal-terms-substitution inference rule, it follows that ((1)++ = 2). QED -Proposition (T1.P69): (5 neq 1). Proof: (5 neq (0)++) follows from prop. (P47). ((0)++ = 1) follows from prop. (P15). Therefore, by the equal-terms-substitution inference rule, it follows that (5 neq 1). QED -Proposition (T1.P70): ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> (6 neq (1)++)). Proof: ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> ((5)++ neq (1)++)) follows from prop. (P45). ((5)++ = 6) follows from prop. (P51). Therefore, by the equal-terms-substitution inference rule, it follows that ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> (6 neq (1)++)). QED -Proposition (T1.P71): ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> (6 neq 2)). Proof: ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> (6 neq (1)++)) follows from prop. (P70). ((1)++ = 2) follows from prop. (P68). Therefore, by the equal-terms-substitution inference rule, it follows that ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> (6 neq 2)). QED -Proposition (T1.P72): ((5 is-a natural-number) and (1 is-a natural-number)). Proof: (5 is-a natural-number) follows from prop. (P44). (1 is-a natural-number) follows from prop. (P50). Therefore, by the conjunction-introduction inference rule, it follows that ((5 is-a natural-number) and (1 is-a natural-number)). QED -Proposition (T1.P73): (((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)). Proof: ((5 is-a natural-number) and (1 is-a natural-number)) follows from prop. (P72). (5 neq 1) follows from prop. (P69). Therefore, by the conjunction-introduction inference rule, it follows that (((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)). QED -Proposition (T1.P74): (6 neq 2). Proof: ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> (6 neq 2)) follows from prop. (P71).(((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) follows from prop. (P73). Therefore, by the modus-ponens inference rule, it follows that (6 neq 2). QED +Proposition (T1.P68): ((1)++ = 2). Proof: (((0)++)++ = 2) follows from prop. (P17). ((0)++ = 1) follows from prop. (P15).Therefore, by the equal-terms-substitution inference rule: (P, (Q = R)) โŠข P', it follows that ((1)++ = 2). QED +Proposition (T1.P69): (5 neq 1). Proof: (5 neq (0)++) follows from prop. (P47). ((0)++ = 1) follows from prop. (P15).Therefore, by the equal-terms-substitution inference rule: (P, (Q = R)) โŠข P', it follows that (5 neq 1). QED +Proposition (T1.P70): ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> (6 neq (1)++)). Proof: ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> ((5)++ neq (1)++)) follows from prop. (P45). ((5)++ = 6) follows from prop. (P51).Therefore, by the equal-terms-substitution inference rule: (P, (Q = R)) โŠข P', it follows that ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> (6 neq (1)++)). QED +Proposition (T1.P71): ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> (6 neq 2)). Proof: ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> (6 neq (1)++)) follows from prop. (P70). ((1)++ = 2) follows from prop. (P68).Therefore, by the equal-terms-substitution inference rule: (P, (Q = R)) โŠข P', it follows that ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> (6 neq 2)). QED +Proposition (T1.P72): ((5 is-a natural-number) and (1 is-a natural-number)). Proof: (5 is-a natural-number) (P) follows from prop. (P44). (1 is-a natural-number) (Q) follows from prop. (P50).Therefore, by the conjunction-introduction inference rule: (P, Q) โŠข (P โ‹€ Q), it follows that ((5 is-a natural-number) and (1 is-a natural-number)). QED +Proposition (T1.P73): (((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)). Proof: ((5 is-a natural-number) and (1 is-a natural-number)) (P) follows from prop. (P72). (5 neq 1) (Q) follows from prop. (P69).Therefore, by the conjunction-introduction inference rule: (P, Q) โŠข (P โ‹€ Q), it follows that (((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)). QED +Proposition (T1.P74): (6 neq 2). Proof: ((((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) ==> (6 neq 2)) follows from prop. (P71).(((5 is-a natural-number) and (1 is-a natural-number)) and (5 neq 1)) follows from prop. (P73).Therefore, by the modus-ponens inference rule: ((P โŸน Q), P) โŠข Q, it follows that (6 neq 2). QED ### Axiom 2.5: the principle of mathematical induction Axiom schema (T1.A6) - Principle of mathematical induction: Let axiom A6 "Let P(n) be any property pertaining to a natural number n. Suppose that P(O) is true, and suppose that whenever P(n) is true, P(n++) is also true. Then P(n) is true for every natural number n." be included (postulated) in T1. -Proposition (T1.P75): (((n5 is-a natural-number) and (P1(0) and (P1(n5) ==> P1((n5)++)))) ==> ((m3 is-a natural-number) ==> P1(m3))). Proof: "Let P(n) be any property pertaining to a natural number n. Suppose that P(O) is true, and suppose that whenever P(n) is true, P(n++) is also true. Then P(n) is true for every natural number n." is postulated by axiom schema (A6). (((n5 is-a natural-number) and (P1(0) and (P1(n5) ==> P1((n5)++)))) ==> ((m3 is-a natural-number) ==> P1(m3))) is a valid formula statement interpreted from that axiom. Therefore, by the axiom-interpretation inference rule, it follows that (((n5 is-a natural-number) and (P1(0) and (P1(n5) ==> P1((n5)++)))) ==> ((m3 is-a natural-number) ==> P1(m3))). QED +Proposition (T1.P75): (((n5 is-a natural-number) and (P1(0) and (P1(n5) ==> P1((n5)++)))) ==> ((m3 is-a natural-number) ==> P1(m3))). Proof: "Let P(n) be any property pertaining to a natural number n. Suppose that P(O) is true, and suppose that whenever P(n) is true, P(n++) is also true. Then P(n) is true for every natural number n." is postulated by axiom schema (A6). (((n5 is-a natural-number) and (P1(0) and (P1(n5) ==> P1((n5)++)))) ==> ((m3 is-a natural-number) ==> P1(m3))) is a valid formula statement interpreted from that axiom.Therefore, by the axiom-interpretation inference rule: ๐’œ โŠข P, it follows that (((n5 is-a natural-number) and (P1(0) and (P1(n5) ==> P1((n5)++)))) ==> ((m3 is-a natural-number) ==> P1(m3))). QED ### The number system n ### Recursive definitions diff --git a/theory/build/tao_2006_2_1_the_peano_axioms_report_proof_enus_unicode.txt b/theory/build/tao_2006_2_1_the_peano_axioms_report_proof_enus_unicode.txt index dbc0c9b5..2ade0260 100644 --- a/theory/build/tao_2006_2_1_the_peano_axioms_report_proof_enus_unicode.txt +++ b/theory/build/tao_2006_2_1_the_peano_axioms_report_proof_enus_unicode.txt @@ -10,7 +10,7 @@ # ๐—ฅ๐—ฒ๐—น๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐˜€ ๐–ซ๐–พ๐— โŒœ++โŒ, โŒœ๐ผ๐‘›๐‘โŒ ๐–ป๐–พ ๐‘ข๐‘›๐‘Ž๐‘Ÿ๐‘ฆ-๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘  ๐—‚๐—‡ ๐’ฐโ‚. -๐–ซ๐–พ๐— โŒœ=โŒ, โŒœโˆงโŒ, โŒœ๐‘–๐‘ -๐‘ŽโŒ, โŒœโ‰ โŒ, โŒœโŸนโŒ ๐–ป๐–พ ๐‘๐‘–๐‘›๐‘Ž๐‘Ÿ๐‘ฆ-๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘  ๐—‚๐—‡ ๐’ฐโ‚. +๐–ซ๐–พ๐— โŒœโˆงโŒ, โŒœโ‰ โŒ, โŒœ๐‘–๐‘ -๐‘ŽโŒ, โŒœ=โŒ, โŒœโŸนโŒ ๐–ป๐–พ ๐‘๐‘–๐‘›๐‘Ž๐‘Ÿ๐‘ฆ-๐‘Ÿ๐‘’๐‘™๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘  ๐—‚๐—‡ ๐’ฐโ‚. # ๐—œ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฟ๐˜‚๐—น๐—ฒ๐˜€ ๐–ณ๐—๐–พ ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—‚๐—‡๐—€ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ๐—Œ ๐–บ๐—‹๐–พ ๐–ผ๐—ˆ๐—‡๐—Œ๐—‚๐–ฝ๐–พ๐—‹๐–พ๐–ฝ ๐—๐–บ๐—…๐—‚๐–ฝ ๐—Ž๐—‡๐–ฝ๐–พ๐—‹ ๐—๐—๐—‚๐—Œ ๐—๐—๐–พ๐—ˆ๐—‹๐—’: @@ -31,90 +31,90 @@ ### ๐—”๐˜…๐—ถ๐—ผ๐—บ ๐Ÿฎ.๐Ÿญ ๐—”๐˜…๐—ถ๐—ผ๐—บ ๐Ÿฎ.๐Ÿญ (๐’ฏโ‚.๐ดโ‚): ๐–ซ๐–พ๐— ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š ๐’œโ‚ โŒœ๐Ÿข ๐˜ช๐˜ด ๐˜ข ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ.โŒ ๐–ป๐–พ ๐—‚๐—‡๐–ผ๐—…๐—Ž๐–ฝ๐–พ๐–ฝ (๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ) ๐—‚๐—‡ ๐’ฏโ‚. ๐—œ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฟ๐˜‚๐—น๐—ฒ (๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘›): ๐–ซ๐–พ๐— ๐‘–๐‘›๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’-๐‘Ÿ๐‘ข๐‘™๐‘’ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐–พ๐–ฝ ๐–บ๐—Œ โŒœ๐’œ โŠข PโŒ ๐–ป๐–พ ๐—‚๐—‡๐–ผ๐—…๐—Ž๐–ฝ๐–พ๐–ฝ ๐–บ๐—‡๐–ฝ ๐–ผ๐—ˆ๐—‡๐—Œ๐—‚๐–ฝ๐–พ๐—‹๐–พ๐–ฝ ๐—๐–บ๐—…๐—‚๐–ฝ ๐—‚๐—‡ ๐’ฏโ‚. -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚): (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐Ÿข ๐˜ช๐˜ด ๐˜ข ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ.โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฎ๐˜…๐—ถ๐—ผ๐—บ ๐Ÿฎ.๐Ÿญ (๐ดโ‚). (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐—‚๐—Œ ๐–บ ๐—๐–บ๐—…๐—‚๐–ฝ ๐–ฟ๐—ˆ๐—‹๐—†๐—Ž๐—…๐–บ ๐—Œ๐—๐–บ๐—๐–พ๐—†๐–พ๐—‡๐— ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–พ๐–ฝ ๐–ฟ๐—‹๐—ˆ๐—† ๐—๐—๐–บ๐— ๐–บ๐—‘๐—‚๐—ˆ๐—†. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚): (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐Ÿข ๐˜ช๐˜ด ๐˜ข ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ.โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฎ๐˜…๐—ถ๐—ผ๐—บ ๐Ÿฎ.๐Ÿญ (๐ดโ‚). (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐—‚๐—Œ ๐–บ ๐—๐–บ๐—…๐—‚๐–ฝ ๐–ฟ๐—ˆ๐—‹๐—†๐—Ž๐—…๐–บ ๐—Œ๐—๐–บ๐—๐–พ๐—†๐–พ๐—‡๐— ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–พ๐–ฝ ๐–ฟ๐—‹๐—ˆ๐—† ๐—๐—๐–บ๐— ๐–บ๐—‘๐—‚๐—ˆ๐—†.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ๐’œ โŠข P, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). โˆŽ ### ๐—”๐˜…๐—ถ๐—ผ๐—บ ๐Ÿฎ.๐Ÿฎ ๐—”๐˜…๐—ถ๐—ผ๐—บ ๐Ÿฎ.๐Ÿฎ (๐’ฏโ‚.๐ดโ‚‚): ๐–ซ๐–พ๐— ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š ๐’œโ‚‚ โŒœ๐˜๐˜ง ๐˜ฏ ๐˜ช๐˜ด ๐˜ข ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ, ๐˜ต๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ฏ++ ๐˜ช๐˜ด ๐˜ข ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ.โŒ ๐–ป๐–พ ๐—‚๐—‡๐–ผ๐—…๐—Ž๐–ฝ๐–พ๐–ฝ (๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ) ๐—‚๐—‡ ๐’ฏโ‚. -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚): ((๐งโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜๐˜ง ๐˜ฏ ๐˜ช๐˜ด ๐˜ข ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ, ๐˜ต๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ฏ++ ๐˜ช๐˜ด ๐˜ข ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ.โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฎ๐˜…๐—ถ๐—ผ๐—บ ๐Ÿฎ.๐Ÿฎ (๐ดโ‚‚). ((๐งโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐—‚๐—Œ ๐–บ ๐—๐–บ๐—…๐—‚๐–ฝ ๐–ฟ๐—ˆ๐—‹๐—†๐—Ž๐—…๐–บ ๐—Œ๐—๐–บ๐—๐–พ๐—†๐–พ๐—‡๐— ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–พ๐–ฝ ๐–ฟ๐—‹๐—ˆ๐—† ๐—๐—๐–บ๐— ๐–บ๐—‘๐—‚๐—ˆ๐—†. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((๐งโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚): ((๐งโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜๐˜ง ๐˜ฏ ๐˜ช๐˜ด ๐˜ข ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ, ๐˜ต๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ฏ++ ๐˜ช๐˜ด ๐˜ข ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ.โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฎ๐˜…๐—ถ๐—ผ๐—บ ๐Ÿฎ.๐Ÿฎ (๐ดโ‚‚). ((๐งโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐—‚๐—Œ ๐–บ ๐—๐–บ๐—…๐—‚๐–ฝ ๐–ฟ๐—ˆ๐—‹๐—†๐—Ž๐—…๐–บ ๐—Œ๐—๐–บ๐—๐–พ๐—†๐–พ๐—‡๐— ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–พ๐–ฝ ๐–ฟ๐—‹๐—ˆ๐—† ๐—๐—๐–บ๐— ๐–บ๐—‘๐—‚๐—ˆ๐—†.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ๐’œ โŠข P, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((๐งโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ ๐—œ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฟ๐˜‚๐—น๐—ฒ (๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘›): ๐–ซ๐–พ๐— ๐‘–๐‘›๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’-๐‘Ÿ๐‘ข๐‘™๐‘’ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐–พ๐–ฝ ๐–บ๐—Œ โŒœ(P, ๐›ท) โŠข P'โŒ ๐–ป๐–พ ๐—‚๐—‡๐–ผ๐—…๐—Ž๐–ฝ๐–พ๐–ฝ ๐–บ๐—‡๐–ฝ ๐–ผ๐—ˆ๐—‡๐—Œ๐—‚๐–ฝ๐–พ๐—‹๐–พ๐–ฝ ๐—๐–บ๐—…๐—‚๐–ฝ ๐—‚๐—‡ ๐’ฏโ‚. -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒ): ((0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((๐งโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚). ๐–ซ๐–พ๐— ๐งโ‚ = 0. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒ): ((0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((๐งโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚). ๐–ซ๐–พ๐— ๐งโ‚ = 0.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, ๐›ท) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ ๐—œ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฟ๐˜‚๐—น๐—ฒ (๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ ): ๐–ซ๐–พ๐— ๐‘–๐‘›๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’-๐‘Ÿ๐‘ข๐‘™๐‘’ ๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘  ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐–พ๐–ฝ ๐–บ๐—Œ โŒœ((P โŸน Q), P) โŠข QโŒ ๐–ป๐–พ ๐—‚๐—‡๐–ผ๐—…๐—Ž๐–ฝ๐–พ๐–ฝ ๐–บ๐—‡๐–ฝ ๐–ผ๐—ˆ๐—‡๐—Œ๐—‚๐–ฝ๐–พ๐—‹๐–พ๐–ฝ ๐—๐–บ๐—…๐—‚๐–ฝ ๐—‚๐—‡ ๐’ฏโ‚. -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป ๐Ÿฎ.๐Ÿฎ.๐Ÿฏ (๐’ฏโ‚.๐‘ƒโ‚„): ((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒ).(0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘  ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป ๐Ÿฎ.๐Ÿฎ.๐Ÿฏ (๐’ฏโ‚.๐‘ƒโ‚„): ((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒ).(0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘  ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ((P โŸน Q), P) โŠข Q, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). โˆŽ ๐——๐—ฒ๐—ณ๐—ถ๐—ป๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐ทโ‚): ๐–ซ๐–พ๐— ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐’Ÿโ‚ โŒœ๐˜ž๐˜ฆ ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ ๐Ÿฃ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐Ÿข++, ๐Ÿค ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ (๐Ÿข++)++, ๐Ÿฅ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ((๐Ÿข++)++)++,๐˜ฆ๐˜ต๐˜ค. (๐˜๐˜ฏ ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ธ๐˜ฐ๐˜ณ๐˜ฅ๐˜ด, ๐Ÿฃ := ๐Ÿข++, ๐Ÿค := ๐Ÿฃ++, ๐Ÿฅ := ๐Ÿค++, ๐˜ฆ๐˜ต๐˜ค. ๐˜๐˜ฏ ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ต๐˜ฆ๐˜น๐˜ต ๐˜ ๐˜ถ๐˜ด๐˜ฆ "๐˜น := ๐˜บ" ๐˜ต๐˜ฐ ๐˜ฅ๐˜ฆ๐˜ฏ๐˜ฐ๐˜ต๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ต๐˜ข๐˜ต๐˜ฆ๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜น ๐˜ช๐˜ด ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ต๐˜ฐ ๐˜ฆ๐˜ฒ๐˜ถ๐˜ข๐˜ญ ๐˜บ.)โŒ ๐–ป๐–พ ๐—‚๐—‡๐–ผ๐—…๐—Ž๐–ฝ๐–พ๐–ฝ (๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ) ๐—‚๐—‡ ๐’ฏโ‚. ๐—œ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฟ๐˜‚๐—น๐—ฒ (๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘›): ๐–ซ๐–พ๐— ๐‘–๐‘›๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’-๐‘Ÿ๐‘ข๐‘™๐‘’ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐–พ๐–ฝ ๐–บ๐—Œ โŒœ๐’Ÿ โŠข PโŒ ๐–ป๐–พ ๐—‚๐—‡๐–ผ๐—…๐—Ž๐–ฝ๐–พ๐–ฝ ๐–บ๐—‡๐–ฝ ๐–ผ๐—ˆ๐—‡๐—Œ๐—‚๐–ฝ๐–พ๐—‹๐–พ๐–ฝ ๐—๐–บ๐—…๐—‚๐–ฝ ๐—‚๐—‡ ๐’ฏโ‚. -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚…): (1 = (0)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜ž๐˜ฆ ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ ๐Ÿฃ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐Ÿข++, ๐Ÿค ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ (๐Ÿข++)++, ๐Ÿฅ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ((๐Ÿข++)++)++,๐˜ฆ๐˜ต๐˜ค. (๐˜๐˜ฏ ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ธ๐˜ฐ๐˜ณ๐˜ฅ๐˜ด, ๐Ÿฃ := ๐Ÿข++, ๐Ÿค := ๐Ÿฃ++, ๐Ÿฅ := ๐Ÿค++, ๐˜ฆ๐˜ต๐˜ค. ๐˜๐˜ฏ ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ต๐˜ฆ๐˜น๐˜ต ๐˜ ๐˜ถ๐˜ด๐˜ฆ "๐˜น := ๐˜บ" ๐˜ต๐˜ฐ ๐˜ฅ๐˜ฆ๐˜ฏ๐˜ฐ๐˜ต๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ต๐˜ข๐˜ต๐˜ฆ๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜น ๐˜ช๐˜ด ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ต๐˜ฐ ๐˜ฆ๐˜ฒ๐˜ถ๐˜ข๐˜ญ ๐˜บ.)โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฑ๐—ฒ๐—ณ. (๐ทโ‚). (1 = (0)++) ๐—‚๐—Œ ๐–บ๐—‡ ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–บ๐—๐—‚๐—ˆ๐—‡ ๐—ˆ๐–ฟ ๐—๐—๐–บ๐— ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐—‚๐—๐—‚๐—ˆ๐—‡. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (1 = (0)++). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚†): (2 = ((0)++)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜ž๐˜ฆ ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ ๐Ÿฃ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐Ÿข++, ๐Ÿค ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ (๐Ÿข++)++, ๐Ÿฅ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ((๐Ÿข++)++)++,๐˜ฆ๐˜ต๐˜ค. (๐˜๐˜ฏ ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ธ๐˜ฐ๐˜ณ๐˜ฅ๐˜ด, ๐Ÿฃ := ๐Ÿข++, ๐Ÿค := ๐Ÿฃ++, ๐Ÿฅ := ๐Ÿค++, ๐˜ฆ๐˜ต๐˜ค. ๐˜๐˜ฏ ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ต๐˜ฆ๐˜น๐˜ต ๐˜ ๐˜ถ๐˜ด๐˜ฆ "๐˜น := ๐˜บ" ๐˜ต๐˜ฐ ๐˜ฅ๐˜ฆ๐˜ฏ๐˜ฐ๐˜ต๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ต๐˜ข๐˜ต๐˜ฆ๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜น ๐˜ช๐˜ด ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ต๐˜ฐ ๐˜ฆ๐˜ฒ๐˜ถ๐˜ข๐˜ญ ๐˜บ.)โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฑ๐—ฒ๐—ณ. (๐ทโ‚). (2 = ((0)++)++) ๐—‚๐—Œ ๐–บ๐—‡ ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–บ๐—๐—‚๐—ˆ๐—‡ ๐—ˆ๐–ฟ ๐—๐—๐–บ๐— ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐—‚๐—๐—‚๐—ˆ๐—‡. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (2 = ((0)++)++). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‡): (3 = (((0)++)++)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜ž๐˜ฆ ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ ๐Ÿฃ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐Ÿข++, ๐Ÿค ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ (๐Ÿข++)++, ๐Ÿฅ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ((๐Ÿข++)++)++,๐˜ฆ๐˜ต๐˜ค. (๐˜๐˜ฏ ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ธ๐˜ฐ๐˜ณ๐˜ฅ๐˜ด, ๐Ÿฃ := ๐Ÿข++, ๐Ÿค := ๐Ÿฃ++, ๐Ÿฅ := ๐Ÿค++, ๐˜ฆ๐˜ต๐˜ค. ๐˜๐˜ฏ ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ต๐˜ฆ๐˜น๐˜ต ๐˜ ๐˜ถ๐˜ด๐˜ฆ "๐˜น := ๐˜บ" ๐˜ต๐˜ฐ ๐˜ฅ๐˜ฆ๐˜ฏ๐˜ฐ๐˜ต๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ต๐˜ข๐˜ต๐˜ฆ๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜น ๐˜ช๐˜ด ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ต๐˜ฐ ๐˜ฆ๐˜ฒ๐˜ถ๐˜ข๐˜ญ ๐˜บ.)โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฑ๐—ฒ๐—ณ. (๐ทโ‚). (3 = (((0)++)++)++) ๐—‚๐—Œ ๐–บ๐—‡ ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–บ๐—๐—‚๐—ˆ๐—‡ ๐—ˆ๐–ฟ ๐—๐—๐–บ๐— ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐—‚๐—๐—‚๐—ˆ๐—‡. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (3 = (((0)++)++)++). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ˆ): (4 = ((((0)++)++)++)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜ž๐˜ฆ ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ ๐Ÿฃ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐Ÿข++, ๐Ÿค ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ (๐Ÿข++)++, ๐Ÿฅ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ((๐Ÿข++)++)++,๐˜ฆ๐˜ต๐˜ค. (๐˜๐˜ฏ ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ธ๐˜ฐ๐˜ณ๐˜ฅ๐˜ด, ๐Ÿฃ := ๐Ÿข++, ๐Ÿค := ๐Ÿฃ++, ๐Ÿฅ := ๐Ÿค++, ๐˜ฆ๐˜ต๐˜ค. ๐˜๐˜ฏ ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ต๐˜ฆ๐˜น๐˜ต ๐˜ ๐˜ถ๐˜ด๐˜ฆ "๐˜น := ๐˜บ" ๐˜ต๐˜ฐ ๐˜ฅ๐˜ฆ๐˜ฏ๐˜ฐ๐˜ต๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ต๐˜ข๐˜ต๐˜ฆ๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜น ๐˜ช๐˜ด ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ต๐˜ฐ ๐˜ฆ๐˜ฒ๐˜ถ๐˜ข๐˜ญ ๐˜บ.)โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฑ๐—ฒ๐—ณ. (๐ทโ‚). (4 = ((((0)++)++)++)++) ๐—‚๐—Œ ๐–บ๐—‡ ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–บ๐—๐—‚๐—ˆ๐—‡ ๐—ˆ๐–ฟ ๐—๐—๐–บ๐— ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐—‚๐—๐—‚๐—ˆ๐—‡. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (4 = ((((0)++)++)++)++). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‰): (((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (((0)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((๐งโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚). ๐–ซ๐–พ๐— ๐งโ‚ = (0)++. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (((0)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚€): (((0)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (((0)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‰).((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. ๐Ÿฎ.๐Ÿฎ.๐Ÿฏ (๐‘ƒโ‚„). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘  ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((0)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚): ((((0)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((๐งโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚). ๐–ซ๐–พ๐— ๐งโ‚ = ((0)++)++. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((0)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚‚): ((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((0)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚).(((0)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚€). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘  ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚ƒ): (((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (((((0)++)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((๐งโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚). ๐–ซ๐–พ๐— ๐งโ‚ = (((0)++)++)++. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (((((0)++)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚„): (((((0)++)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (((((0)++)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚ƒ).((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚‚). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘  ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((((0)++)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚…): (1 = (0)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜ž๐˜ฆ ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ ๐Ÿฃ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐Ÿข++, ๐Ÿค ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ (๐Ÿข++)++, ๐Ÿฅ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ((๐Ÿข++)++)++,๐˜ฆ๐˜ต๐˜ค. (๐˜๐˜ฏ ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ธ๐˜ฐ๐˜ณ๐˜ฅ๐˜ด, ๐Ÿฃ := ๐Ÿข++, ๐Ÿค := ๐Ÿฃ++, ๐Ÿฅ := ๐Ÿค++, ๐˜ฆ๐˜ต๐˜ค. ๐˜๐˜ฏ ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ต๐˜ฆ๐˜น๐˜ต ๐˜ ๐˜ถ๐˜ด๐˜ฆ "๐˜น := ๐˜บ" ๐˜ต๐˜ฐ ๐˜ฅ๐˜ฆ๐˜ฏ๐˜ฐ๐˜ต๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ต๐˜ข๐˜ต๐˜ฆ๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜น ๐˜ช๐˜ด ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ต๐˜ฐ ๐˜ฆ๐˜ฒ๐˜ถ๐˜ข๐˜ญ ๐˜บ.)โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฑ๐—ฒ๐—ณ. (๐ทโ‚). (1 = (0)++) ๐—‚๐—Œ ๐–บ๐—‡ ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–บ๐—๐—‚๐—ˆ๐—‡ ๐—ˆ๐–ฟ ๐—๐—๐–บ๐— ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐—‚๐—๐—‚๐—ˆ๐—‡.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ๐’Ÿ โŠข P, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (1 = (0)++). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚†): (2 = ((0)++)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜ž๐˜ฆ ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ ๐Ÿฃ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐Ÿข++, ๐Ÿค ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ (๐Ÿข++)++, ๐Ÿฅ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ((๐Ÿข++)++)++,๐˜ฆ๐˜ต๐˜ค. (๐˜๐˜ฏ ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ธ๐˜ฐ๐˜ณ๐˜ฅ๐˜ด, ๐Ÿฃ := ๐Ÿข++, ๐Ÿค := ๐Ÿฃ++, ๐Ÿฅ := ๐Ÿค++, ๐˜ฆ๐˜ต๐˜ค. ๐˜๐˜ฏ ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ต๐˜ฆ๐˜น๐˜ต ๐˜ ๐˜ถ๐˜ด๐˜ฆ "๐˜น := ๐˜บ" ๐˜ต๐˜ฐ ๐˜ฅ๐˜ฆ๐˜ฏ๐˜ฐ๐˜ต๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ต๐˜ข๐˜ต๐˜ฆ๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜น ๐˜ช๐˜ด ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ต๐˜ฐ ๐˜ฆ๐˜ฒ๐˜ถ๐˜ข๐˜ญ ๐˜บ.)โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฑ๐—ฒ๐—ณ. (๐ทโ‚). (2 = ((0)++)++) ๐—‚๐—Œ ๐–บ๐—‡ ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–บ๐—๐—‚๐—ˆ๐—‡ ๐—ˆ๐–ฟ ๐—๐—๐–บ๐— ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐—‚๐—๐—‚๐—ˆ๐—‡.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ๐’Ÿ โŠข P, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (2 = ((0)++)++). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‡): (3 = (((0)++)++)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜ž๐˜ฆ ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ ๐Ÿฃ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐Ÿข++, ๐Ÿค ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ (๐Ÿข++)++, ๐Ÿฅ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ((๐Ÿข++)++)++,๐˜ฆ๐˜ต๐˜ค. (๐˜๐˜ฏ ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ธ๐˜ฐ๐˜ณ๐˜ฅ๐˜ด, ๐Ÿฃ := ๐Ÿข++, ๐Ÿค := ๐Ÿฃ++, ๐Ÿฅ := ๐Ÿค++, ๐˜ฆ๐˜ต๐˜ค. ๐˜๐˜ฏ ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ต๐˜ฆ๐˜น๐˜ต ๐˜ ๐˜ถ๐˜ด๐˜ฆ "๐˜น := ๐˜บ" ๐˜ต๐˜ฐ ๐˜ฅ๐˜ฆ๐˜ฏ๐˜ฐ๐˜ต๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ต๐˜ข๐˜ต๐˜ฆ๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜น ๐˜ช๐˜ด ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ต๐˜ฐ ๐˜ฆ๐˜ฒ๐˜ถ๐˜ข๐˜ญ ๐˜บ.)โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฑ๐—ฒ๐—ณ. (๐ทโ‚). (3 = (((0)++)++)++) ๐—‚๐—Œ ๐–บ๐—‡ ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–บ๐—๐—‚๐—ˆ๐—‡ ๐—ˆ๐–ฟ ๐—๐—๐–บ๐— ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐—‚๐—๐—‚๐—ˆ๐—‡.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ๐’Ÿ โŠข P, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (3 = (((0)++)++)++). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ˆ): (4 = ((((0)++)++)++)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜ž๐˜ฆ ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ ๐Ÿฃ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐Ÿข++, ๐Ÿค ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ (๐Ÿข++)++, ๐Ÿฅ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ((๐Ÿข++)++)++,๐˜ฆ๐˜ต๐˜ค. (๐˜๐˜ฏ ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ธ๐˜ฐ๐˜ณ๐˜ฅ๐˜ด, ๐Ÿฃ := ๐Ÿข++, ๐Ÿค := ๐Ÿฃ++, ๐Ÿฅ := ๐Ÿค++, ๐˜ฆ๐˜ต๐˜ค. ๐˜๐˜ฏ ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ต๐˜ฆ๐˜น๐˜ต ๐˜ ๐˜ถ๐˜ด๐˜ฆ "๐˜น := ๐˜บ" ๐˜ต๐˜ฐ ๐˜ฅ๐˜ฆ๐˜ฏ๐˜ฐ๐˜ต๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ต๐˜ข๐˜ต๐˜ฆ๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜น ๐˜ช๐˜ด ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ต๐˜ฐ ๐˜ฆ๐˜ฒ๐˜ถ๐˜ข๐˜ญ ๐˜บ.)โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฑ๐—ฒ๐—ณ. (๐ทโ‚). (4 = ((((0)++)++)++)++) ๐—‚๐—Œ ๐–บ๐—‡ ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–บ๐—๐—‚๐—ˆ๐—‡ ๐—ˆ๐–ฟ ๐—๐—๐–บ๐— ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐—‚๐—๐—‚๐—ˆ๐—‡.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ๐’Ÿ โŠข P, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (4 = ((((0)++)++)++)++). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‰): (((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (((0)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((๐งโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚). ๐–ซ๐–พ๐— ๐งโ‚ = (0)++.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, ๐›ท) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (((0)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚€): (((0)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (((0)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‰).((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. ๐Ÿฎ.๐Ÿฎ.๐Ÿฏ (๐‘ƒโ‚„).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘  ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ((P โŸน Q), P) โŠข Q, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((0)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚): ((((0)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((๐งโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚). ๐–ซ๐–พ๐— ๐งโ‚ = ((0)++)++.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, ๐›ท) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((0)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚‚): ((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((0)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚).(((0)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚€).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘  ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ((P โŸน Q), P) โŠข Q, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚ƒ): (((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (((((0)++)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((๐งโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚). ๐–ซ๐–พ๐— ๐งโ‚ = (((0)++)++)++.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, ๐›ท) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (((((0)++)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚„): (((((0)++)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (((((0)++)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚ƒ).((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚‚).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘  ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ((P โŸน Q), P) โŠข Q, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((((0)++)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). โˆŽ ๐—œ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฟ๐˜‚๐—น๐—ฒ (๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ): ๐–ซ๐–พ๐— ๐‘–๐‘›๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’-๐‘Ÿ๐‘ข๐‘™๐‘’ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐–พ๐–ฝ ๐–บ๐—Œ โŒœ(x = y) โŠข (y = x)โŒ ๐–ป๐–พ ๐—‚๐—‡๐–ผ๐—…๐—Ž๐–ฝ๐–พ๐–ฝ ๐–บ๐—‡๐–ฝ ๐–ผ๐—ˆ๐—‡๐—Œ๐—‚๐–ฝ๐–พ๐—‹๐–พ๐–ฝ ๐—๐–บ๐—…๐—‚๐–ฝ ๐—‚๐—‡ ๐’ฏโ‚. -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚…): ((0)++ = 1). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (1 = (0)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚…). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((0)++ = 1). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚…): ((0)++ = 1). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (1 = (0)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚…). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (x = y) โŠข (y = x), ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((0)++ = 1). โˆŽ ๐—œ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฟ๐˜‚๐—น๐—ฒ (๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘›): ๐–ซ๐–พ๐— ๐‘–๐‘›๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’-๐‘Ÿ๐‘ข๐‘™๐‘’ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐–พ๐–ฝ ๐–บ๐—Œ โŒœ(P, (Q = R)) โŠข P'โŒ ๐–ป๐–พ ๐—‚๐—‡๐–ผ๐—…๐—Ž๐–ฝ๐–พ๐–ฝ ๐–บ๐—‡๐–ฝ ๐–ผ๐—ˆ๐—‡๐—Œ๐—‚๐–ฝ๐–พ๐—‹๐–พ๐–ฝ ๐—๐–บ๐—…๐—‚๐–ฝ ๐—‚๐—‡ ๐’ฏโ‚. -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚†): (2 = (1)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (2 = ((0)++)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚†). ((0)++ = 1) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚…). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (2 = (1)++). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚‡): (((0)++)++ = 2). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (2 = ((0)++)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚†). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((0)++)++ = 2). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚ˆ): (3 = (2)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (3 = (((0)++)++)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‡). (((0)++)++ = 2) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚‡). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (3 = (2)++). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚†): (2 = (1)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (2 = ((0)++)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚†). ((0)++ = 1) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚…).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, (Q = R)) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (2 = (1)++). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚‡): (((0)++)++ = 2). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (2 = ((0)++)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚†). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (x = y) โŠข (y = x), ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((0)++)++ = 2). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚ˆ): (3 = (2)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (3 = (((0)++)++)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‡). (((0)++)++ = 2) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚‡).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, (Q = R)) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (3 = (2)++). โˆŽ ### ๐Ÿฏ ๐—ถ๐˜€ ๐—ฎ ๐—ป๐—ฎ๐˜๐˜‚๐—ฟ๐—ฎ๐—น ๐—ป๐˜‚๐—บ๐—ฏ๐—ฒ๐—ฟ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚‰): ((((0)++)++)++ = 3). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (3 = (((0)++)++)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‡). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((0)++)++)++ = 3). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚โ‚€): ((2)++ = 3). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((0)++)++)++ = 3) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚‰). (((0)++)++ = 2) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚‡). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((2)++ = 3). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป ๐Ÿฎ.๐Ÿญ.๐Ÿฐ (๐’ฏโ‚.๐‘ƒโ‚‚โ‚): (3 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚‚). ((((0)++)++)++ = 3) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚‰). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (3 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚โ‚‚): (4 = ((((0)++)++)++)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜ž๐˜ฆ ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ ๐Ÿฃ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐Ÿข++, ๐Ÿค ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ (๐Ÿข++)++, ๐Ÿฅ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ((๐Ÿข++)++)++,๐˜ฆ๐˜ต๐˜ค. (๐˜๐˜ฏ ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ธ๐˜ฐ๐˜ณ๐˜ฅ๐˜ด, ๐Ÿฃ := ๐Ÿข++, ๐Ÿค := ๐Ÿฃ++, ๐Ÿฅ := ๐Ÿค++, ๐˜ฆ๐˜ต๐˜ค. ๐˜๐˜ฏ ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ต๐˜ฆ๐˜น๐˜ต ๐˜ ๐˜ถ๐˜ด๐˜ฆ "๐˜น := ๐˜บ" ๐˜ต๐˜ฐ ๐˜ฅ๐˜ฆ๐˜ฏ๐˜ฐ๐˜ต๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ต๐˜ข๐˜ต๐˜ฆ๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜น ๐˜ช๐˜ด ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ต๐˜ฐ ๐˜ฆ๐˜ฒ๐˜ถ๐˜ข๐˜ญ ๐˜บ.)โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฑ๐—ฒ๐—ณ. (๐ทโ‚). (4 = ((((0)++)++)++)++) ๐—‚๐—Œ ๐–บ๐—‡ ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–บ๐—๐—‚๐—ˆ๐—‡ ๐—ˆ๐–ฟ ๐—๐—๐–บ๐— ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐—‚๐—๐—‚๐—ˆ๐—‡. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (4 = ((((0)++)++)++)++). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚โ‚ƒ): (((((0)++)++)++)++ = 4). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (4 = ((((0)++)++)++)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ˆ). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((((0)++)++)++)++ = 4). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚โ‚„): ((3)++ = 4). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (((((0)++)++)++)++ = 4) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚ƒ). ((((0)++)++)++ = 3) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚‰). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((3)++ = 4). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚โ‚…): (((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (((((0)++)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (((((0)++)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚ƒ). ((3)++ = 4) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚„). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (((((0)++)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚โ‚†): (4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (((((0)++)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚„). (((((0)++)++)++)++ = 4) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚ƒ). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚โ‚‰): ((((0)++)++)++ = 3). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (3 = (((0)++)++)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‡). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (x = y) โŠข (y = x), ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((0)++)++)++ = 3). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚โ‚€): ((2)++ = 3). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((0)++)++)++ = 3) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚‰). (((0)++)++ = 2) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚‡).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, (Q = R)) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((2)++ = 3). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป ๐Ÿฎ.๐Ÿญ.๐Ÿฐ (๐’ฏโ‚.๐‘ƒโ‚‚โ‚): (3 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚‚). ((((0)++)++)++ = 3) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚‰).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, (Q = R)) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (3 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚โ‚‚): (4 = ((((0)++)++)++)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜ž๐˜ฆ ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ ๐Ÿฃ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐Ÿข++, ๐Ÿค ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ (๐Ÿข++)++, ๐Ÿฅ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ((๐Ÿข++)++)++,๐˜ฆ๐˜ต๐˜ค. (๐˜๐˜ฏ ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ธ๐˜ฐ๐˜ณ๐˜ฅ๐˜ด, ๐Ÿฃ := ๐Ÿข++, ๐Ÿค := ๐Ÿฃ++, ๐Ÿฅ := ๐Ÿค++, ๐˜ฆ๐˜ต๐˜ค. ๐˜๐˜ฏ ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ต๐˜ฆ๐˜น๐˜ต ๐˜ ๐˜ถ๐˜ด๐˜ฆ "๐˜น := ๐˜บ" ๐˜ต๐˜ฐ ๐˜ฅ๐˜ฆ๐˜ฏ๐˜ฐ๐˜ต๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ต๐˜ข๐˜ต๐˜ฆ๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜น ๐˜ช๐˜ด ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ต๐˜ฐ ๐˜ฆ๐˜ฒ๐˜ถ๐˜ข๐˜ญ ๐˜บ.)โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฑ๐—ฒ๐—ณ. (๐ทโ‚). (4 = ((((0)++)++)++)++) ๐—‚๐—Œ ๐–บ๐—‡ ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–บ๐—๐—‚๐—ˆ๐—‡ ๐—ˆ๐–ฟ ๐—๐—๐–บ๐— ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐—‚๐—๐—‚๐—ˆ๐—‡.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ๐’Ÿ โŠข P, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (4 = ((((0)++)++)++)++). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚โ‚ƒ): (((((0)++)++)++)++ = 4). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (4 = ((((0)++)++)++)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ˆ). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (x = y) โŠข (y = x), ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((((0)++)++)++)++ = 4). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚โ‚„): ((3)++ = 4). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (((((0)++)++)++)++ = 4) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚ƒ). ((((0)++)++)++ = 3) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚‰).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, (Q = R)) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((3)++ = 4). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚โ‚…): (((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (((((0)++)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (((((0)++)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚ƒ). ((3)++ = 4) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚„).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, (Q = R)) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((((0)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (((((0)++)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚โ‚†): (4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (((((0)++)++)++)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚„). (((((0)++)++)++)++ = 4) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚ƒ).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, (Q = R)) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). โˆŽ ### ๐—”๐˜…๐—ถ๐—ผ๐—บ ๐Ÿฎ.๐Ÿฏ ๐—”๐˜…๐—ถ๐—ผ๐—บ ๐Ÿฎ.๐Ÿฏ (๐’ฏโ‚.๐ดโ‚ƒ): ๐–ซ๐–พ๐— ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š ๐’œโ‚ƒ โŒœ๐Ÿข ๐˜ช๐˜ด ๐˜ฏ๐˜ฐ๐˜ต ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ถ๐˜ค๐˜ค๐˜ฆ๐˜ด๐˜ด๐˜ฐ๐˜ณ ๐˜ฐ๐˜ง ๐˜ข๐˜ฏ๐˜บ ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ; ๐˜ช.๐˜ฆ., ๐˜ธ๐˜ฆ ๐˜ฉ๐˜ข๐˜ท๐˜ฆ ๐˜ฏ++ โ‰  ๐Ÿข ๐˜ง๐˜ฐ๐˜ณ ๐˜ฆ๐˜ท๐˜ฆ๐˜ณ๐˜บ ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐˜ฏ.โŒ ๐–ป๐–พ ๐—‚๐—‡๐–ผ๐—…๐—Ž๐–ฝ๐–พ๐–ฝ (๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ) ๐—‚๐—‡ ๐’ฏโ‚. -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚โ‚‡): ((๐งโ‚‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚‚)++ โ‰  0)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐Ÿข ๐˜ช๐˜ด ๐˜ฏ๐˜ฐ๐˜ต ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ถ๐˜ค๐˜ค๐˜ฆ๐˜ด๐˜ด๐˜ฐ๐˜ณ ๐˜ฐ๐˜ง ๐˜ข๐˜ฏ๐˜บ ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ; ๐˜ช.๐˜ฆ., ๐˜ธ๐˜ฆ ๐˜ฉ๐˜ข๐˜ท๐˜ฆ ๐˜ฏ++ โ‰  ๐Ÿข ๐˜ง๐˜ฐ๐˜ณ ๐˜ฆ๐˜ท๐˜ฆ๐˜ณ๐˜บ ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐˜ฏ.โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฎ๐˜…๐—ถ๐—ผ๐—บ ๐Ÿฎ.๐Ÿฏ (๐ดโ‚ƒ). ((๐งโ‚‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚‚)++ โ‰  0)) ๐—‚๐—Œ ๐–บ ๐—๐–บ๐—…๐—‚๐–ฝ ๐–ฟ๐—ˆ๐—‹๐—†๐—Ž๐—…๐–บ ๐—Œ๐—๐–บ๐—๐–พ๐—†๐–พ๐—‡๐— ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–พ๐–ฝ ๐–ฟ๐—‹๐—ˆ๐—† ๐—๐—๐–บ๐— ๐–บ๐—‘๐—‚๐—ˆ๐—†. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((๐งโ‚‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚‚)++ โ‰  0)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚โ‚‡): ((๐งโ‚‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚‚)++ โ‰  0)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐Ÿข ๐˜ช๐˜ด ๐˜ฏ๐˜ฐ๐˜ต ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ถ๐˜ค๐˜ค๐˜ฆ๐˜ด๐˜ด๐˜ฐ๐˜ณ ๐˜ฐ๐˜ง ๐˜ข๐˜ฏ๐˜บ ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ; ๐˜ช.๐˜ฆ., ๐˜ธ๐˜ฆ ๐˜ฉ๐˜ข๐˜ท๐˜ฆ ๐˜ฏ++ โ‰  ๐Ÿข ๐˜ง๐˜ฐ๐˜ณ ๐˜ฆ๐˜ท๐˜ฆ๐˜ณ๐˜บ ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐˜ฏ.โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฎ๐˜…๐—ถ๐—ผ๐—บ ๐Ÿฎ.๐Ÿฏ (๐ดโ‚ƒ). ((๐งโ‚‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚‚)++ โ‰  0)) ๐—‚๐—Œ ๐–บ ๐—๐–บ๐—…๐—‚๐–ฝ ๐–ฟ๐—ˆ๐—‹๐—†๐—Ž๐—…๐–บ ๐—Œ๐—๐–บ๐—๐–พ๐—†๐–พ๐—‡๐— ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–พ๐–ฝ ๐–ฟ๐—‹๐—ˆ๐—† ๐—๐—๐–บ๐— ๐–บ๐—‘๐—‚๐—ˆ๐—†.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ๐’œ โŠข P, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((๐งโ‚‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚‚)++ โ‰  0)). โˆŽ ### ๐Ÿฐ ๐—ถ๐˜€ ๐—ป๐—ผ๐˜ ๐—ฒ๐—พ๐˜‚๐—ฎ๐—น ๐˜๐—ผ ๐Ÿฌ. -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚โ‚ˆ): ((3 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((3)++ โ‰  0)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((๐งโ‚‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚‚)++ โ‰  0)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚‡). ๐–ซ๐–พ๐— ๐งโ‚‚ = 3. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((3 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((3)++ โ‰  0)). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚โ‚‰): ((3)++ โ‰  0). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((3 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((3)++ โ‰  0)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚ˆ).(3 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. ๐Ÿฎ.๐Ÿญ.๐Ÿฐ (๐‘ƒโ‚‚โ‚). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘  ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((3)++ โ‰  0). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป ๐Ÿฎ.๐Ÿญ.๐Ÿฒ (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚€): (4 โ‰  0). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((3)++ โ‰  0) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚‰). ((3)++ = 4) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚„). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (4 โ‰  0). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚โ‚ˆ): ((3 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((3)++ โ‰  0)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((๐งโ‚‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚‚)++ โ‰  0)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚‡). ๐–ซ๐–พ๐— ๐งโ‚‚ = 3.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, ๐›ท) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((3 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((3)++ โ‰  0)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‚โ‚‰): ((3)++ โ‰  0). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((3 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((3)++ โ‰  0)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚ˆ).(3 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. ๐Ÿฎ.๐Ÿญ.๐Ÿฐ (๐‘ƒโ‚‚โ‚).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘  ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ((P โŸน Q), P) โŠข Q, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((3)++ โ‰  0). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป ๐Ÿฎ.๐Ÿญ.๐Ÿฒ (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚€): (4 โ‰  0). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((3)++ โ‰  0) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚‰). ((3)++ = 4) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚„).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, (Q = R)) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (4 โ‰  0). โˆŽ ### ๐—”๐˜…๐—ถ๐—ผ๐—บ ๐Ÿฎ.๐Ÿฐ ๐—”๐˜…๐—ถ๐—ผ๐—บ ๐Ÿฎ.๐Ÿฐ (๐’ฏโ‚.๐ดโ‚„): ๐–ซ๐–พ๐— ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š ๐’œโ‚„ โŒœ๐˜‹๐˜ช๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ต ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ๐˜ด ๐˜ฎ๐˜ถ๐˜ด๐˜ต ๐˜ฉ๐˜ข๐˜ท๐˜ฆ ๐˜ฅ๐˜ช๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ต ๐˜ด๐˜ถ๐˜ค๐˜ค๐˜ฆ๐˜ด๐˜ด๐˜ฐ๐˜ณ๐˜ด; ๐˜ช.๐˜ฆ., ๐˜ช๐˜ง ๐˜ฏ, ๐˜ฎ ๐˜ข๐˜ณ๐˜ฆ ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ๐˜ด ๐˜ข๐˜ฏ๐˜ฅ ๐˜ฏ โ‰  ๐˜ฎ, ๐˜ต๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ฏ++ โ‰  ๐˜ฎ++. ๐˜Œ๐˜ฒ๐˜ถ๐˜ช๐˜ท๐˜ข๐˜ญ๐˜ฆ๐˜ฏ๐˜ต๐˜ญ๐˜บ, ๐˜ช๐˜ง ๐˜ฏ++ = ๐˜ฎ++, ๐˜ต๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ธ๐˜ฆ ๐˜ฎ๐˜ถ๐˜ด๐˜ต ๐˜ฉ๐˜ข๐˜ท๐˜ฆ ๐˜ฏ = ๐˜ฎ.โŒ ๐–ป๐–พ ๐—‚๐—‡๐–ผ๐—…๐—Ž๐–ฝ๐–พ๐–ฝ (๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ) ๐—‚๐—‡ ๐’ฏโ‚. -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚): ((((๐งโ‚ƒ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐ฆโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (๐งโ‚ƒ โ‰  ๐ฆโ‚)) โŸน ((๐งโ‚ƒ)++ โ‰  (๐ฆโ‚)++)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜‹๐˜ช๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ต ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ๐˜ด ๐˜ฎ๐˜ถ๐˜ด๐˜ต ๐˜ฉ๐˜ข๐˜ท๐˜ฆ ๐˜ฅ๐˜ช๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ต ๐˜ด๐˜ถ๐˜ค๐˜ค๐˜ฆ๐˜ด๐˜ด๐˜ฐ๐˜ณ๐˜ด; ๐˜ช.๐˜ฆ., ๐˜ช๐˜ง ๐˜ฏ, ๐˜ฎ ๐˜ข๐˜ณ๐˜ฆ ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ๐˜ด ๐˜ข๐˜ฏ๐˜ฅ ๐˜ฏ โ‰  ๐˜ฎ, ๐˜ต๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ฏ++ โ‰  ๐˜ฎ++. ๐˜Œ๐˜ฒ๐˜ถ๐˜ช๐˜ท๐˜ข๐˜ญ๐˜ฆ๐˜ฏ๐˜ต๐˜ญ๐˜บ, ๐˜ช๐˜ง ๐˜ฏ++ = ๐˜ฎ++, ๐˜ต๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ธ๐˜ฆ ๐˜ฎ๐˜ถ๐˜ด๐˜ต ๐˜ฉ๐˜ข๐˜ท๐˜ฆ ๐˜ฏ = ๐˜ฎ.โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฎ๐˜…๐—ถ๐—ผ๐—บ ๐Ÿฎ.๐Ÿฐ (๐ดโ‚„). ((((๐งโ‚ƒ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐ฆโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (๐งโ‚ƒ โ‰  ๐ฆโ‚)) โŸน ((๐งโ‚ƒ)++ โ‰  (๐ฆโ‚)++)) ๐—‚๐—Œ ๐–บ ๐—๐–บ๐—…๐—‚๐–ฝ ๐–ฟ๐—ˆ๐—‹๐—†๐—Ž๐—…๐–บ ๐—Œ๐—๐–บ๐—๐–พ๐—†๐–พ๐—‡๐— ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–พ๐–ฝ ๐–ฟ๐—‹๐—ˆ๐—† ๐—๐—๐–บ๐— ๐–บ๐—‘๐—‚๐—ˆ๐—†. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((๐งโ‚ƒ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐ฆโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (๐งโ‚ƒ โ‰  ๐ฆโ‚)) โŸน ((๐งโ‚ƒ)++ โ‰  (๐ฆโ‚)++)). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚‚): ((((๐งโ‚„ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐ฆโ‚‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง ((๐งโ‚„)++ = (๐ฆโ‚‚)++)) โŸน (๐งโ‚„ = ๐ฆโ‚‚)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜‹๐˜ช๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ต ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ๐˜ด ๐˜ฎ๐˜ถ๐˜ด๐˜ต ๐˜ฉ๐˜ข๐˜ท๐˜ฆ ๐˜ฅ๐˜ช๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ต ๐˜ด๐˜ถ๐˜ค๐˜ค๐˜ฆ๐˜ด๐˜ด๐˜ฐ๐˜ณ๐˜ด; ๐˜ช.๐˜ฆ., ๐˜ช๐˜ง ๐˜ฏ, ๐˜ฎ ๐˜ข๐˜ณ๐˜ฆ ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ๐˜ด ๐˜ข๐˜ฏ๐˜ฅ ๐˜ฏ โ‰  ๐˜ฎ, ๐˜ต๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ฏ++ โ‰  ๐˜ฎ++. ๐˜Œ๐˜ฒ๐˜ถ๐˜ช๐˜ท๐˜ข๐˜ญ๐˜ฆ๐˜ฏ๐˜ต๐˜ญ๐˜บ, ๐˜ช๐˜ง ๐˜ฏ++ = ๐˜ฎ++, ๐˜ต๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ธ๐˜ฆ ๐˜ฎ๐˜ถ๐˜ด๐˜ต ๐˜ฉ๐˜ข๐˜ท๐˜ฆ ๐˜ฏ = ๐˜ฎ.โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฎ๐˜…๐—ถ๐—ผ๐—บ ๐Ÿฎ.๐Ÿฐ (๐ดโ‚„). ((((๐งโ‚„ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐ฆโ‚‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง ((๐งโ‚„)++ = (๐ฆโ‚‚)++)) โŸน (๐งโ‚„ = ๐ฆโ‚‚)) ๐—‚๐—Œ ๐–บ ๐—๐–บ๐—…๐—‚๐–ฝ ๐–ฟ๐—ˆ๐—‹๐—†๐—Ž๐—…๐–บ ๐—Œ๐—๐–บ๐—๐–พ๐—†๐–พ๐—‡๐— ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–พ๐–ฝ ๐–ฟ๐—‹๐—ˆ๐—† ๐—๐—๐–บ๐— ๐–บ๐—‘๐—‚๐—ˆ๐—†. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((๐งโ‚„ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐ฆโ‚‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง ((๐งโ‚„)++ = (๐ฆโ‚‚)++)) โŸน (๐งโ‚„ = ๐ฆโ‚‚)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚): ((((๐งโ‚ƒ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐ฆโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (๐งโ‚ƒ โ‰  ๐ฆโ‚)) โŸน ((๐งโ‚ƒ)++ โ‰  (๐ฆโ‚)++)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜‹๐˜ช๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ต ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ๐˜ด ๐˜ฎ๐˜ถ๐˜ด๐˜ต ๐˜ฉ๐˜ข๐˜ท๐˜ฆ ๐˜ฅ๐˜ช๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ต ๐˜ด๐˜ถ๐˜ค๐˜ค๐˜ฆ๐˜ด๐˜ด๐˜ฐ๐˜ณ๐˜ด; ๐˜ช.๐˜ฆ., ๐˜ช๐˜ง ๐˜ฏ, ๐˜ฎ ๐˜ข๐˜ณ๐˜ฆ ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ๐˜ด ๐˜ข๐˜ฏ๐˜ฅ ๐˜ฏ โ‰  ๐˜ฎ, ๐˜ต๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ฏ++ โ‰  ๐˜ฎ++. ๐˜Œ๐˜ฒ๐˜ถ๐˜ช๐˜ท๐˜ข๐˜ญ๐˜ฆ๐˜ฏ๐˜ต๐˜ญ๐˜บ, ๐˜ช๐˜ง ๐˜ฏ++ = ๐˜ฎ++, ๐˜ต๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ธ๐˜ฆ ๐˜ฎ๐˜ถ๐˜ด๐˜ต ๐˜ฉ๐˜ข๐˜ท๐˜ฆ ๐˜ฏ = ๐˜ฎ.โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฎ๐˜…๐—ถ๐—ผ๐—บ ๐Ÿฎ.๐Ÿฐ (๐ดโ‚„). ((((๐งโ‚ƒ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐ฆโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (๐งโ‚ƒ โ‰  ๐ฆโ‚)) โŸน ((๐งโ‚ƒ)++ โ‰  (๐ฆโ‚)++)) ๐—‚๐—Œ ๐–บ ๐—๐–บ๐—…๐—‚๐–ฝ ๐–ฟ๐—ˆ๐—‹๐—†๐—Ž๐—…๐–บ ๐—Œ๐—๐–บ๐—๐–พ๐—†๐–พ๐—‡๐— ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–พ๐–ฝ ๐–ฟ๐—‹๐—ˆ๐—† ๐—๐—๐–บ๐— ๐–บ๐—‘๐—‚๐—ˆ๐—†.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ๐’œ โŠข P, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((๐งโ‚ƒ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐ฆโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (๐งโ‚ƒ โ‰  ๐ฆโ‚)) โŸน ((๐งโ‚ƒ)++ โ‰  (๐ฆโ‚)++)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚‚): ((((๐งโ‚„ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐ฆโ‚‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง ((๐งโ‚„)++ = (๐ฆโ‚‚)++)) โŸน (๐งโ‚„ = ๐ฆโ‚‚)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜‹๐˜ช๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ต ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ๐˜ด ๐˜ฎ๐˜ถ๐˜ด๐˜ต ๐˜ฉ๐˜ข๐˜ท๐˜ฆ ๐˜ฅ๐˜ช๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ต ๐˜ด๐˜ถ๐˜ค๐˜ค๐˜ฆ๐˜ด๐˜ด๐˜ฐ๐˜ณ๐˜ด; ๐˜ช.๐˜ฆ., ๐˜ช๐˜ง ๐˜ฏ, ๐˜ฎ ๐˜ข๐˜ณ๐˜ฆ ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ๐˜ด ๐˜ข๐˜ฏ๐˜ฅ ๐˜ฏ โ‰  ๐˜ฎ, ๐˜ต๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ฏ++ โ‰  ๐˜ฎ++. ๐˜Œ๐˜ฒ๐˜ถ๐˜ช๐˜ท๐˜ข๐˜ญ๐˜ฆ๐˜ฏ๐˜ต๐˜ญ๐˜บ, ๐˜ช๐˜ง ๐˜ฏ++ = ๐˜ฎ++, ๐˜ต๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ธ๐˜ฆ ๐˜ฎ๐˜ถ๐˜ด๐˜ต ๐˜ฉ๐˜ข๐˜ท๐˜ฆ ๐˜ฏ = ๐˜ฎ.โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฎ๐˜…๐—ถ๐—ผ๐—บ ๐Ÿฎ.๐Ÿฐ (๐ดโ‚„). ((((๐งโ‚„ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐ฆโ‚‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง ((๐งโ‚„)++ = (๐ฆโ‚‚)++)) โŸน (๐งโ‚„ = ๐ฆโ‚‚)) ๐—‚๐—Œ ๐–บ ๐—๐–บ๐—…๐—‚๐–ฝ ๐–ฟ๐—ˆ๐—‹๐—†๐—Ž๐—…๐–บ ๐—Œ๐—๐–บ๐—๐–พ๐—†๐–พ๐—‡๐— ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–พ๐–ฝ ๐–ฟ๐—‹๐—ˆ๐—† ๐—๐—๐–บ๐— ๐–บ๐—‘๐—‚๐—ˆ๐—†.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ๐’œ โŠข P, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((๐งโ‚„ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐ฆโ‚‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง ((๐งโ‚„)++ = (๐ฆโ‚‚)++)) โŸน (๐งโ‚„ = ๐ฆโ‚‚)). โˆŽ ### ๐Ÿฒ ๐—ถ๐˜€ ๐—ป๐—ผ๐˜ ๐—ฒ๐—พ๐˜‚๐—ฎ๐—น ๐˜๐—ผ ๐Ÿฎ. -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚ƒ): ((((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (4 โ‰  0)) โŸน ((4)++ โ‰  (0)++)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((๐งโ‚ƒ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐ฆโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (๐งโ‚ƒ โ‰  ๐ฆโ‚)) โŸน ((๐งโ‚ƒ)++ โ‰  (๐ฆโ‚)++)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚). ๐–ซ๐–พ๐— ๐งโ‚ƒ = 4, ๐ฆโ‚ = 0. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (4 โ‰  0)) โŸน ((4)++ โ‰  (0)++)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚ƒ): ((((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (4 โ‰  0)) โŸน ((4)++ โ‰  (0)++)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((๐งโ‚ƒ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐ฆโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (๐งโ‚ƒ โ‰  ๐ฆโ‚)) โŸน ((๐งโ‚ƒ)++ โ‰  (๐ฆโ‚)++)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚). ๐–ซ๐–พ๐— ๐งโ‚ƒ = 4, ๐ฆโ‚ = 0.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, ๐›ท) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (4 โ‰  0)) โŸน ((4)++ โ‰  (0)++)). โˆŽ ๐—œ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฟ๐˜‚๐—น๐—ฒ (๐‘๐‘œ๐‘›๐‘—๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘œ๐‘›): ๐–ซ๐–พ๐— ๐‘–๐‘›๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’-๐‘Ÿ๐‘ข๐‘™๐‘’ ๐‘๐‘œ๐‘›๐‘—๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘œ๐‘› ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐–พ๐–ฝ ๐–บ๐—Œ โŒœ(P, Q) โŠข (P โ‹€ Q)โŒ ๐–ป๐–พ ๐—‚๐—‡๐–ผ๐—…๐—Ž๐–ฝ๐–พ๐–ฝ ๐–บ๐—‡๐–ฝ ๐–ผ๐—ˆ๐—‡๐—Œ๐—‚๐–ฝ๐–พ๐—‹๐–พ๐–ฝ ๐—๐–บ๐—…๐—‚๐–ฝ ๐—‚๐—‡ ๐’ฏโ‚. -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚„): ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚†). (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘๐‘œ๐‘›๐‘—๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚…): (((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (4 โ‰  0)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚„). (4 โ‰  0) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. ๐Ÿฎ.๐Ÿญ.๐Ÿฒ (๐‘ƒโ‚ƒโ‚€). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘๐‘œ๐‘›๐‘—๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (4 โ‰  0)). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚†): ((4)++ โ‰  (0)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (4 โ‰  0)) โŸน ((4)++ โ‰  (0)++)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚ƒ).(((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (4 โ‰  0)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚…). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘  ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((4)++ โ‰  (0)++). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚‡): (5 = (((((0)++)++)++)++)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜ž๐˜ฆ ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ ๐Ÿฃ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐Ÿข++, ๐Ÿค ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ (๐Ÿข++)++, ๐Ÿฅ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ((๐Ÿข++)++)++,๐˜ฆ๐˜ต๐˜ค. (๐˜๐˜ฏ ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ธ๐˜ฐ๐˜ณ๐˜ฅ๐˜ด, ๐Ÿฃ := ๐Ÿข++, ๐Ÿค := ๐Ÿฃ++, ๐Ÿฅ := ๐Ÿค++, ๐˜ฆ๐˜ต๐˜ค. ๐˜๐˜ฏ ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ต๐˜ฆ๐˜น๐˜ต ๐˜ ๐˜ถ๐˜ด๐˜ฆ "๐˜น := ๐˜บ" ๐˜ต๐˜ฐ ๐˜ฅ๐˜ฆ๐˜ฏ๐˜ฐ๐˜ต๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ต๐˜ข๐˜ต๐˜ฆ๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜น ๐˜ช๐˜ด ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ต๐˜ฐ ๐˜ฆ๐˜ฒ๐˜ถ๐˜ข๐˜ญ ๐˜บ.)โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฑ๐—ฒ๐—ณ. (๐ทโ‚). (5 = (((((0)++)++)++)++)++) ๐—‚๐—Œ ๐–บ๐—‡ ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–บ๐—๐—‚๐—ˆ๐—‡ ๐—ˆ๐–ฟ ๐—๐—๐–บ๐— ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐—‚๐—๐—‚๐—ˆ๐—‡. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (5 = (((((0)++)++)++)++)++). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚ˆ): ((((((0)++)++)++)++)++ = 5). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (5 = (((((0)++)++)++)++)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚‡). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((((0)++)++)++)++)++ = 5). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚‰): ((4)++ = 5). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((((0)++)++)++)++)++ = 5) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚ˆ). (((((0)++)++)++)++ = 4) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚ƒ). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((4)++ = 5). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚€): (5 = (4)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((4)++ = 5) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚‰). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (5 = (4)++). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚): ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน ((5)++ โ‰  (1)++)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((๐งโ‚ƒ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐ฆโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (๐งโ‚ƒ โ‰  ๐ฆโ‚)) โŸน ((๐งโ‚ƒ)++ โ‰  (๐ฆโ‚)++)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚). ๐–ซ๐–พ๐— ๐งโ‚ƒ = 5, ๐ฆโ‚ = 1. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน ((5)++ โ‰  (1)++)). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚‚): ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((4)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((๐งโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚). ๐–ซ๐–พ๐— ๐งโ‚ = 4. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((4)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚ƒ): ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((4)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚„โ‚‚). ((4)++ = 5) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚‰). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚„): (5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚„โ‚ƒ).(4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚†). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘  ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚…): ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน ((5)++ โ‰  (1)++)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((๐งโ‚ƒ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐ฆโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (๐งโ‚ƒ โ‰  ๐ฆโ‚)) โŸน ((๐งโ‚ƒ)++ โ‰  (๐ฆโ‚)++)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚). ๐–ซ๐–พ๐— ๐งโ‚ƒ = 5, ๐ฆโ‚ = 1. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน ((5)++ โ‰  (1)++)). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚†): ((4)++ โ‰  (0)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (4 โ‰  0)) โŸน ((4)++ โ‰  (0)++)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚ƒ).(((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (4 โ‰  0)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚…). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘  ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((4)++ โ‰  (0)++). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚‡): (5 โ‰  (0)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((4)++ โ‰  (0)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚„โ‚†). ((4)++ = 5) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚‰). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (5 โ‰  (0)++). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚ˆ): (6 = ((((((0)++)++)++)++)++)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜ž๐˜ฆ ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ ๐Ÿฃ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐Ÿข++, ๐Ÿค ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ (๐Ÿข++)++, ๐Ÿฅ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ((๐Ÿข++)++)++,๐˜ฆ๐˜ต๐˜ค. (๐˜๐˜ฏ ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ธ๐˜ฐ๐˜ณ๐˜ฅ๐˜ด, ๐Ÿฃ := ๐Ÿข++, ๐Ÿค := ๐Ÿฃ++, ๐Ÿฅ := ๐Ÿค++, ๐˜ฆ๐˜ต๐˜ค. ๐˜๐˜ฏ ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ต๐˜ฆ๐˜น๐˜ต ๐˜ ๐˜ถ๐˜ด๐˜ฆ "๐˜น := ๐˜บ" ๐˜ต๐˜ฐ ๐˜ฅ๐˜ฆ๐˜ฏ๐˜ฐ๐˜ต๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ต๐˜ข๐˜ต๐˜ฆ๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜น ๐˜ช๐˜ด ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ต๐˜ฐ ๐˜ฆ๐˜ฒ๐˜ถ๐˜ข๐˜ญ ๐˜บ.)โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฑ๐—ฒ๐—ณ. (๐ทโ‚). (6 = ((((((0)++)++)++)++)++)++) ๐—‚๐—Œ ๐–บ๐—‡ ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–บ๐—๐—‚๐—ˆ๐—‡ ๐—ˆ๐–ฟ ๐—๐—๐–บ๐— ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐—‚๐—๐—‚๐—ˆ๐—‡. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (6 = ((((((0)++)++)++)++)++)++). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚‰): (((((((0)++)++)++)++)++)++ = 6). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (6 = ((((((0)++)++)++)++)++)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚„โ‚ˆ). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((((((0)++)++)++)++)++)++ = 6). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚…โ‚€): (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. ๐Ÿฎ.๐Ÿฎ.๐Ÿฏ (๐‘ƒโ‚„). ((0)++ = 1) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚…). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚…โ‚): ((5)++ = 6). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (((((((0)++)++)++)++)++)++ = 6) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚„โ‚‰). ((((((0)++)++)++)++)++ = 5) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚ˆ). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((5)++ = 6). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚…โ‚‚): (6 = (5)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((5)++ = 6) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚…โ‚). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (6 = (5)++). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚„): ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) (๐‘ƒ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚†). (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) (๐‘„) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘๐‘œ๐‘›๐‘—๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, Q) โŠข (P โ‹€ Q), ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚…): (((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (4 โ‰  0)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) (๐‘ƒ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚„). (4 โ‰  0) (๐‘„) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. ๐Ÿฎ.๐Ÿญ.๐Ÿฒ (๐‘ƒโ‚ƒโ‚€).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘๐‘œ๐‘›๐‘—๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, Q) โŠข (P โ‹€ Q), ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (4 โ‰  0)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚†): ((4)++ โ‰  (0)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (4 โ‰  0)) โŸน ((4)++ โ‰  (0)++)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚ƒ).(((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (4 โ‰  0)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚…).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘  ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ((P โŸน Q), P) โŠข Q, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((4)++ โ‰  (0)++). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚‡): (5 = (((((0)++)++)++)++)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜ž๐˜ฆ ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ ๐Ÿฃ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐Ÿข++, ๐Ÿค ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ (๐Ÿข++)++, ๐Ÿฅ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ((๐Ÿข++)++)++,๐˜ฆ๐˜ต๐˜ค. (๐˜๐˜ฏ ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ธ๐˜ฐ๐˜ณ๐˜ฅ๐˜ด, ๐Ÿฃ := ๐Ÿข++, ๐Ÿค := ๐Ÿฃ++, ๐Ÿฅ := ๐Ÿค++, ๐˜ฆ๐˜ต๐˜ค. ๐˜๐˜ฏ ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ต๐˜ฆ๐˜น๐˜ต ๐˜ ๐˜ถ๐˜ด๐˜ฆ "๐˜น := ๐˜บ" ๐˜ต๐˜ฐ ๐˜ฅ๐˜ฆ๐˜ฏ๐˜ฐ๐˜ต๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ต๐˜ข๐˜ต๐˜ฆ๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜น ๐˜ช๐˜ด ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ต๐˜ฐ ๐˜ฆ๐˜ฒ๐˜ถ๐˜ข๐˜ญ ๐˜บ.)โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฑ๐—ฒ๐—ณ. (๐ทโ‚). (5 = (((((0)++)++)++)++)++) ๐—‚๐—Œ ๐–บ๐—‡ ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–บ๐—๐—‚๐—ˆ๐—‡ ๐—ˆ๐–ฟ ๐—๐—๐–บ๐— ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐—‚๐—๐—‚๐—ˆ๐—‡.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ๐’Ÿ โŠข P, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (5 = (((((0)++)++)++)++)++). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚ˆ): ((((((0)++)++)++)++)++ = 5). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (5 = (((((0)++)++)++)++)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚‡). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (x = y) โŠข (y = x), ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((((0)++)++)++)++)++ = 5). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚ƒโ‚‰): ((4)++ = 5). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((((0)++)++)++)++)++ = 5) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚ˆ). (((((0)++)++)++)++ = 4) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚ƒ).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, (Q = R)) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((4)++ = 5). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚€): (5 = (4)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((4)++ = 5) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚‰). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (x = y) โŠข (y = x), ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (5 = (4)++). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚): ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน ((5)++ โ‰  (1)++)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((๐งโ‚ƒ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐ฆโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (๐งโ‚ƒ โ‰  ๐ฆโ‚)) โŸน ((๐งโ‚ƒ)++ โ‰  (๐ฆโ‚)++)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚). ๐–ซ๐–พ๐— ๐งโ‚ƒ = 5, ๐ฆโ‚ = 1.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, ๐›ท) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน ((5)++ โ‰  (1)++)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚‚): ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((4)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((๐งโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((๐งโ‚)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚). ๐–ซ๐–พ๐— ๐งโ‚ = 4.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, ๐›ท) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((4)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚ƒ): ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((4)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚„โ‚‚). ((4)++ = 5) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚‰).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, (Q = R)) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚„): (5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚„โ‚ƒ).(4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‚โ‚†).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘  ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ((P โŸน Q), P) โŠข Q, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚…): ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน ((5)++ โ‰  (1)++)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((๐งโ‚ƒ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐ฆโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (๐งโ‚ƒ โ‰  ๐ฆโ‚)) โŸน ((๐งโ‚ƒ)++ โ‰  (๐ฆโ‚)++)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚). ๐–ซ๐–พ๐— ๐งโ‚ƒ = 5, ๐ฆโ‚ = 1.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘ฃ๐‘Ž๐‘Ÿ๐‘–๐‘Ž๐‘๐‘™๐‘’-๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, ๐›ท) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน ((5)++ โ‰  (1)++)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚†): ((4)++ โ‰  (0)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (4 โ‰  0)) โŸน ((4)++ โ‰  (0)++)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚ƒ).(((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (4 โ‰  0)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚…).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘  ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ((P โŸน Q), P) โŠข Q, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((4)++ โ‰  (0)++). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚‡): (5 โ‰  (0)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((4)++ โ‰  (0)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚„โ‚†). ((4)++ = 5) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚‰).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, (Q = R)) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (5 โ‰  (0)++). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚ˆ): (6 = ((((((0)++)++)++)++)++)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜ž๐˜ฆ ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ ๐Ÿฃ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐Ÿข++, ๐Ÿค ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ (๐Ÿข++)++, ๐Ÿฅ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ((๐Ÿข++)++)++,๐˜ฆ๐˜ต๐˜ค. (๐˜๐˜ฏ ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ธ๐˜ฐ๐˜ณ๐˜ฅ๐˜ด, ๐Ÿฃ := ๐Ÿข++, ๐Ÿค := ๐Ÿฃ++, ๐Ÿฅ := ๐Ÿค++, ๐˜ฆ๐˜ต๐˜ค. ๐˜๐˜ฏ ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ต๐˜ฆ๐˜น๐˜ต ๐˜ ๐˜ถ๐˜ด๐˜ฆ "๐˜น := ๐˜บ" ๐˜ต๐˜ฐ ๐˜ฅ๐˜ฆ๐˜ฏ๐˜ฐ๐˜ต๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ต๐˜ข๐˜ต๐˜ฆ๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜น ๐˜ช๐˜ด ๐˜ฅ๐˜ฆ๐˜ง๐˜ช๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ต๐˜ฐ ๐˜ฆ๐˜ฒ๐˜ถ๐˜ข๐˜ญ ๐˜บ.)โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฑ๐—ฒ๐—ณ. (๐ทโ‚). (6 = ((((((0)++)++)++)++)++)++) ๐—‚๐—Œ ๐–บ๐—‡ ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–บ๐—๐—‚๐—ˆ๐—‡ ๐—ˆ๐–ฟ ๐—๐—๐–บ๐— ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐—‚๐—๐—‚๐—ˆ๐—‡.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ๐’Ÿ โŠข P, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (6 = ((((((0)++)++)++)++)++)++). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚„โ‚‰): (((((((0)++)++)++)++)++)++ = 6). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (6 = ((((((0)++)++)++)++)++)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚„โ‚ˆ). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (x = y) โŠข (y = x), ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((((((0)++)++)++)++)++)++ = 6). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚…โ‚€): (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((0)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. ๐Ÿฎ.๐Ÿฎ.๐Ÿฏ (๐‘ƒโ‚„). ((0)++ = 1) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚…).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, (Q = R)) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚…โ‚): ((5)++ = 6). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (((((((0)++)++)++)++)++)++ = 6) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚„โ‚‰). ((((((0)++)++)++)++)++ = 5) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚ƒโ‚ˆ).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, (Q = R)) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((5)++ = 6). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚…โ‚‚): (6 = (5)++). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((5)++ = 6) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚…โ‚). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘๐‘œ๐‘š๐‘š๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘–๐‘ก๐‘ฆ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (x = y) โŠข (y = x), ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (6 = (5)++). โˆŽ #### ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ ๐—ฏ๐˜† ๐—ฐ๐—ผ๐—ป๐˜๐—ฟ๐—ฎ๐—ฑ๐—ถ๐—ฐ๐˜๐—ถ๐—ผ๐—ป ๐—›๐˜†๐—ฝ๐—ผ๐˜๐—ต๐—ฒ๐˜€๐—ถ๐˜€ (๐’ฏโ‚.๐ปโ‚): (6 = 2). ๐–ณ๐—๐—‚๐—Œ ๐—๐—’๐—‰๐—ˆ๐—๐—๐–พ๐—Œ๐—‚๐—Œ ๐—‚๐—Œ ๐–พ๐—…๐–บ๐–ป๐—ˆ๐—‹๐–บ๐—๐–พ๐–ฝ ๐—‚๐—‡ ๐—๐—๐–พ๐—ˆ๐—‹๐—’ โ„‹โ‚. ๐—œ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฟ๐˜‚๐—น๐—ฒ (๐‘–๐‘›๐‘๐‘œ๐‘›๐‘ ๐‘–๐‘ ๐‘ก๐‘’๐‘›๐‘๐‘ฆ-๐‘๐‘ฆ-๐‘–๐‘›๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘–๐‘›๐‘ก๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘œ๐‘›): ๐–ซ๐–พ๐— ๐‘–๐‘›๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’-๐‘Ÿ๐‘ข๐‘™๐‘’ ๐‘–๐‘›๐‘๐‘œ๐‘›๐‘ ๐‘–๐‘ ๐‘ก๐‘’๐‘›๐‘๐‘ฆ-๐‘๐‘ฆ-๐‘–๐‘›๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘–๐‘›๐‘ก๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘œ๐‘› ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐–พ๐–ฝ ๐–บ๐—Œ โŒœ((P = Q), (P โ‰  Q)) โŠข Inc(๐’ฏ)โŒ ๐–ป๐–พ ๐—‚๐—‡๐–ผ๐—…๐—Ž๐–ฝ๐–พ๐–ฝ ๐–บ๐—‡๐–ฝ ๐–ผ๐—ˆ๐—‡๐—Œ๐—‚๐–ฝ๐–พ๐—‹๐–พ๐–ฝ ๐—๐–บ๐—…๐—‚๐–ฝ ๐—‚๐—‡ ๐’ฏโ‚. -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚†โ‚†): ๐ผ๐‘›๐‘(โ„‹โ‚). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ๐‘ƒโ‚†โ‚… ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚†โ‚…). ๐‘ƒโ‚ƒโ‚€ ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. ๐Ÿฎ.๐Ÿญ.๐Ÿฒ (๐‘ƒโ‚ƒโ‚€). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘–๐‘›๐‘๐‘œ๐‘›๐‘ ๐‘–๐‘ ๐‘ก๐‘’๐‘›๐‘๐‘ฆ-๐‘๐‘ฆ-๐‘–๐‘›๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘–๐‘›๐‘ก๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ๐ผ๐‘›๐‘(โ„‹โ‚). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚†โ‚†): ๐ผ๐‘›๐‘(โ„‹โ‚). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (4 = 0) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚†โ‚…). (4 โ‰  0) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. ๐Ÿฎ.๐Ÿญ.๐Ÿฒ (๐‘ƒโ‚ƒโ‚€). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘–๐‘›๐‘๐‘œ๐‘›๐‘ ๐‘–๐‘ ๐‘ก๐‘’๐‘›๐‘๐‘ฆ-๐‘๐‘ฆ-๐‘–๐‘›๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ-๐‘–๐‘›๐‘ก๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ((P = Q), (P โ‰  Q)) โŠข Inc(๐’ฏ), ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ๐ผ๐‘›๐‘(โ„‹โ‚). โˆŽ ๐—œ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ฟ๐˜‚๐—น๐—ฒ (๐‘๐‘Ÿ๐‘œ๐‘œ๐‘“-๐‘๐‘ฆ-๐‘Ÿ๐‘’๐‘“๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘›-๐‘œ๐‘“-๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ): ๐–ซ๐–พ๐— ๐‘–๐‘›๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’-๐‘Ÿ๐‘ข๐‘™๐‘’ ๐‘๐‘Ÿ๐‘œ๐‘œ๐‘“-๐‘๐‘ฆ-๐‘Ÿ๐‘’๐‘“๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘›-๐‘œ๐‘“-๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐–พ๐–ฝ ๐–บ๐—Œ โŒœ(โ„‹(P=Q), Inc(โ„‹)) โŠข (P โ‰  Q)โŒ ๐–ป๐–พ ๐—‚๐—‡๐–ผ๐—…๐—Ž๐–ฝ๐–พ๐–ฝ ๐–บ๐—‡๐–ฝ ๐–ผ๐—ˆ๐—‡๐—Œ๐—‚๐–ฝ๐–พ๐—‹๐–พ๐–ฝ ๐—๐–บ๐—…๐—‚๐–ฝ ๐—‚๐—‡ ๐’ฏโ‚. -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป ๐Ÿฎ.๐Ÿญ.๐Ÿด (๐’ฏโ‚.๐‘ƒโ‚†โ‚‡): (6 โ‰  2). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ๐–ซ๐–พ๐— ๐—ต๐˜†๐—ฝ. (๐ปโ‚) ๐–ป๐–พ ๐—๐—๐–พ ๐—๐—’๐—‰๐—ˆ๐—๐—๐–พ๐—Œ๐—‚๐—Œ (6 = 2). ๐ผ๐‘›๐‘(โ„‹โ‚) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚†โ‚†). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘๐‘Ÿ๐‘œ๐‘œ๐‘“-๐‘๐‘ฆ-๐‘Ÿ๐‘’๐‘“๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘›-๐‘œ๐‘“-๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (6 โ‰  2). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป ๐Ÿฎ.๐Ÿญ.๐Ÿด (๐’ฏโ‚.๐‘ƒโ‚†โ‚‡): (6 โ‰  2). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ๐–ซ๐–พ๐— ๐—ต๐˜†๐—ฝ. (๐ปโ‚) ๐–ป๐–พ ๐—๐—๐–พ ๐—๐—’๐—‰๐—ˆ๐—๐—๐–พ๐—Œ๐—‚๐—Œ (6 = 2). ๐ผ๐‘›๐‘(โ„‹โ‚) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚†โ‚†).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘๐‘Ÿ๐‘œ๐‘œ๐‘“-๐‘๐‘ฆ-๐‘Ÿ๐‘’๐‘“๐‘ข๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘›-๐‘œ๐‘“-๐‘’๐‘ž๐‘ข๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (โ„‹(P=Q), Inc(โ„‹)) โŠข (P โ‰  Q), ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (6 โ‰  2). โˆŽ #### ๐——๐—ถ๐—ฟ๐—ฒ๐—ฐ๐˜ ๐—ฝ๐—ฟ๐—ผ๐—ผ๐—ณ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚†โ‚ˆ): ((1)++ = 2). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (((0)++)++ = 2) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚‡). ((0)++ = 1) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚…). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((1)++ = 2). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚†โ‚‰): (5 โ‰  1). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (5 โ‰  (0)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚„โ‚‡). ((0)++ = 1) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚…). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (5 โ‰  1). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‡โ‚€): ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน (6 โ‰  (1)++)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน ((5)++ โ‰  (1)++)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚„โ‚…). ((5)++ = 6) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚…โ‚). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน (6 โ‰  (1)++)). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‡โ‚): ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน (6 โ‰  2)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน (6 โ‰  (1)++)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‡โ‚€). ((1)++ = 2) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚†โ‚ˆ). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน (6 โ‰  2)). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‡โ‚‚): ((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚„โ‚„). (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚…โ‚€). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘๐‘œ๐‘›๐‘—๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‡โ‚ƒ): (((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‡โ‚‚). (5 โ‰  1) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚†โ‚‰). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘๐‘œ๐‘›๐‘—๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)). โˆŽ -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‡โ‚„): (6 โ‰  2). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน (6 โ‰  2)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‡โ‚).(((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‡โ‚ƒ). ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘  ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (6 โ‰  2). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚†โ‚ˆ): ((1)++ = 2). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (((0)++)++ = 2) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚‡). ((0)++ = 1) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚…).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, (Q = R)) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((1)++ = 2). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚†โ‚‰): (5 โ‰  1). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (5 โ‰  (0)++) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚„โ‚‡). ((0)++ = 1) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚โ‚…).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, (Q = R)) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (5 โ‰  1). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‡โ‚€): ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน (6 โ‰  (1)++)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน ((5)++ โ‰  (1)++)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚„โ‚…). ((5)++ = 6) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚…โ‚).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, (Q = R)) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน (6 โ‰  (1)++)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‡โ‚): ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน (6 โ‰  2)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน (6 โ‰  (1)++)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‡โ‚€). ((1)++ = 2) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚†โ‚ˆ).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘™-๐‘ก๐‘’๐‘Ÿ๐‘š๐‘ -๐‘ ๐‘ข๐‘๐‘ ๐‘ก๐‘–๐‘ก๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, (Q = R)) โŠข P', ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน (6 โ‰  2)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‡โ‚‚): ((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: (5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) (๐‘ƒ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚„โ‚„). (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) (๐‘„) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚…โ‚€).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘๐‘œ๐‘›๐‘—๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, Q) โŠข (P โ‹€ Q), ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— ((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‡โ‚ƒ): (((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) (๐‘ƒ) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‡โ‚‚). (5 โ‰  1) (๐‘„) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚†โ‚‰).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘๐‘œ๐‘›๐‘—๐‘ข๐‘›๐‘๐‘ก๐‘–๐‘œ๐‘›-๐‘–๐‘›๐‘ก๐‘Ÿ๐‘œ๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: (P, Q) โŠข (P โ‹€ Q), ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‡โ‚„): (6 โ‰  2). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน (6 โ‰  2)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‡โ‚).(((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐–ฟ๐—‹๐—ˆ๐—† ๐—ฝ๐—ฟ๐—ผ๐—ฝ. (๐‘ƒโ‚‡โ‚ƒ).๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘š๐‘œ๐‘‘๐‘ข๐‘ -๐‘๐‘œ๐‘›๐‘’๐‘›๐‘  ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ((P โŸน Q), P) โŠข Q, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (6 โ‰  2). โˆŽ ### ๐—”๐˜…๐—ถ๐—ผ๐—บ ๐Ÿฎ.๐Ÿฑ: ๐˜๐—ต๐—ฒ ๐—ฝ๐—ฟ๐—ถ๐—ป๐—ฐ๐—ถ๐—ฝ๐—น๐—ฒ ๐—ผ๐—ณ ๐—บ๐—ฎ๐˜๐—ต๐—ฒ๐—บ๐—ฎ๐˜๐—ถ๐—ฐ๐—ฎ๐—น ๐—ถ๐—ป๐—ฑ๐˜‚๐—ฐ๐˜๐—ถ๐—ผ๐—ป ๐—”๐˜…๐—ถ๐—ผ๐—บ ๐˜€๐—ฐ๐—ต๐—ฒ๐—บ๐—ฎ (๐’ฏโ‚.๐ดโ‚†) - Principle of mathematical induction: ๐–ซ๐–พ๐— ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š ๐’œโ‚† โŒœ๐˜“๐˜ฆ๐˜ต ๐˜—(๐˜ฏ) ๐˜ฃ๐˜ฆ ๐˜ข๐˜ฏ๐˜บ ๐˜ฑ๐˜ณ๐˜ฐ๐˜ฑ๐˜ฆ๐˜ณ๐˜ต๐˜บ ๐˜ฑ๐˜ฆ๐˜ณ๐˜ต๐˜ข๐˜ช๐˜ฏ๐˜ช๐˜ฏ๐˜จ ๐˜ต๐˜ฐ ๐˜ข ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐˜ฏ. ๐˜š๐˜ถ๐˜ฑ๐˜ฑ๐˜ฐ๐˜ด๐˜ฆ ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜—(๐˜–) ๐˜ช๐˜ด ๐˜ต๐˜ณ๐˜ถ๐˜ฆ, ๐˜ข๐˜ฏ๐˜ฅ ๐˜ด๐˜ถ๐˜ฑ๐˜ฑ๐˜ฐ๐˜ด๐˜ฆ ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜ธ๐˜ฉ๐˜ฆ๐˜ฏ๐˜ฆ๐˜ท๐˜ฆ๐˜ณ ๐˜—(๐˜ฏ) ๐˜ช๐˜ด ๐˜ต๐˜ณ๐˜ถ๐˜ฆ, ๐˜—(๐˜ฏ++) ๐˜ช๐˜ด ๐˜ข๐˜ญ๐˜ด๐˜ฐ ๐˜ต๐˜ณ๐˜ถ๐˜ฆ. ๐˜›๐˜ฉ๐˜ฆ๐˜ฏ ๐˜—(๐˜ฏ) ๐˜ช๐˜ด ๐˜ต๐˜ณ๐˜ถ๐˜ฆ ๐˜ง๐˜ฐ๐˜ณ ๐˜ฆ๐˜ท๐˜ฆ๐˜ณ๐˜บ ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐˜ฏ.โŒ ๐–ป๐–พ ๐—‚๐—‡๐–ผ๐—…๐—Ž๐–ฝ๐–พ๐–ฝ (๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ) ๐—‚๐—‡ ๐’ฏโ‚. -๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‡โ‚…): (((๐งโ‚… ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐โ‚(0) โˆง (๐โ‚(๐งโ‚…) โŸน ๐โ‚((๐งโ‚…)++)))) โŸน ((๐ฆโ‚ƒ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ๐โ‚(๐ฆโ‚ƒ))). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜“๐˜ฆ๐˜ต ๐˜—(๐˜ฏ) ๐˜ฃ๐˜ฆ ๐˜ข๐˜ฏ๐˜บ ๐˜ฑ๐˜ณ๐˜ฐ๐˜ฑ๐˜ฆ๐˜ณ๐˜ต๐˜บ ๐˜ฑ๐˜ฆ๐˜ณ๐˜ต๐˜ข๐˜ช๐˜ฏ๐˜ช๐˜ฏ๐˜จ ๐˜ต๐˜ฐ ๐˜ข ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐˜ฏ. ๐˜š๐˜ถ๐˜ฑ๐˜ฑ๐˜ฐ๐˜ด๐˜ฆ ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜—(๐˜–) ๐˜ช๐˜ด ๐˜ต๐˜ณ๐˜ถ๐˜ฆ, ๐˜ข๐˜ฏ๐˜ฅ ๐˜ด๐˜ถ๐˜ฑ๐˜ฑ๐˜ฐ๐˜ด๐˜ฆ ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜ธ๐˜ฉ๐˜ฆ๐˜ฏ๐˜ฆ๐˜ท๐˜ฆ๐˜ณ ๐˜—(๐˜ฏ) ๐˜ช๐˜ด ๐˜ต๐˜ณ๐˜ถ๐˜ฆ, ๐˜—(๐˜ฏ++) ๐˜ช๐˜ด ๐˜ข๐˜ญ๐˜ด๐˜ฐ ๐˜ต๐˜ณ๐˜ถ๐˜ฆ. ๐˜›๐˜ฉ๐˜ฆ๐˜ฏ ๐˜—(๐˜ฏ) ๐˜ช๐˜ด ๐˜ต๐˜ณ๐˜ถ๐˜ฆ ๐˜ง๐˜ฐ๐˜ณ ๐˜ฆ๐˜ท๐˜ฆ๐˜ณ๐˜บ ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐˜ฏ.โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฎ๐˜…๐—ถ๐—ผ๐—บ ๐˜€๐—ฐ๐—ต๐—ฒ๐—บ๐—ฎ (๐ดโ‚†). (((๐งโ‚… ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐โ‚(0) โˆง (๐โ‚(๐งโ‚…) โŸน ๐โ‚((๐งโ‚…)++)))) โŸน ((๐ฆโ‚ƒ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ๐โ‚(๐ฆโ‚ƒ))) ๐—‚๐—Œ ๐–บ ๐—๐–บ๐—…๐—‚๐–ฝ ๐–ฟ๐—ˆ๐—‹๐—†๐—Ž๐—…๐–บ ๐—Œ๐—๐–บ๐—๐–พ๐—†๐–พ๐—‡๐— ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–พ๐–ฝ ๐–ฟ๐—‹๐—ˆ๐—† ๐—๐—๐–บ๐— ๐–บ๐—‘๐—‚๐—ˆ๐—†. ๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((๐งโ‚… ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐โ‚(0) โˆง (๐โ‚(๐งโ‚…) โŸน ๐โ‚((๐งโ‚…)++)))) โŸน ((๐ฆโ‚ƒ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ๐โ‚(๐ฆโ‚ƒ))). โˆŽ +๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (๐’ฏโ‚.๐‘ƒโ‚‡โ‚…): (((๐งโ‚… ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐โ‚(0) โˆง (๐โ‚(๐งโ‚…) โŸน ๐โ‚((๐งโ‚…)++)))) โŸน ((๐ฆโ‚ƒ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ๐โ‚(๐ฆโ‚ƒ))). ๐—ฃ๐—ฟ๐—ผ๐—ผ๐—ณ: โŒœ๐˜“๐˜ฆ๐˜ต ๐˜—(๐˜ฏ) ๐˜ฃ๐˜ฆ ๐˜ข๐˜ฏ๐˜บ ๐˜ฑ๐˜ณ๐˜ฐ๐˜ฑ๐˜ฆ๐˜ณ๐˜ต๐˜บ ๐˜ฑ๐˜ฆ๐˜ณ๐˜ต๐˜ข๐˜ช๐˜ฏ๐˜ช๐˜ฏ๐˜จ ๐˜ต๐˜ฐ ๐˜ข ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐˜ฏ. ๐˜š๐˜ถ๐˜ฑ๐˜ฑ๐˜ฐ๐˜ด๐˜ฆ ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜—(๐˜–) ๐˜ช๐˜ด ๐˜ต๐˜ณ๐˜ถ๐˜ฆ, ๐˜ข๐˜ฏ๐˜ฅ ๐˜ด๐˜ถ๐˜ฑ๐˜ฑ๐˜ฐ๐˜ด๐˜ฆ ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜ธ๐˜ฉ๐˜ฆ๐˜ฏ๐˜ฆ๐˜ท๐˜ฆ๐˜ณ ๐˜—(๐˜ฏ) ๐˜ช๐˜ด ๐˜ต๐˜ณ๐˜ถ๐˜ฆ, ๐˜—(๐˜ฏ++) ๐˜ช๐˜ด ๐˜ข๐˜ญ๐˜ด๐˜ฐ ๐˜ต๐˜ณ๐˜ถ๐˜ฆ. ๐˜›๐˜ฉ๐˜ฆ๐˜ฏ ๐˜—(๐˜ฏ) ๐˜ช๐˜ด ๐˜ต๐˜ณ๐˜ถ๐˜ฆ ๐˜ง๐˜ฐ๐˜ณ ๐˜ฆ๐˜ท๐˜ฆ๐˜ณ๐˜บ ๐˜ฏ๐˜ข๐˜ต๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ถ๐˜ฎ๐˜ฃ๐˜ฆ๐˜ณ ๐˜ฏ.โŒ ๐—‚๐—Œ ๐—‰๐—ˆ๐—Œ๐—๐—Ž๐—…๐–บ๐—๐–พ๐–ฝ ๐–ป๐—’ ๐—ฎ๐˜…๐—ถ๐—ผ๐—บ ๐˜€๐—ฐ๐—ต๐—ฒ๐—บ๐—ฎ (๐ดโ‚†). (((๐งโ‚… ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐โ‚(0) โˆง (๐โ‚(๐งโ‚…) โŸน ๐โ‚((๐งโ‚…)++)))) โŸน ((๐ฆโ‚ƒ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ๐โ‚(๐ฆโ‚ƒ))) ๐—‚๐—Œ ๐–บ ๐—๐–บ๐—…๐—‚๐–ฝ ๐–ฟ๐—ˆ๐—‹๐—†๐—Ž๐—…๐–บ ๐—Œ๐—๐–บ๐—๐–พ๐—†๐–พ๐—‡๐— ๐—‚๐—‡๐—๐–พ๐—‹๐—‰๐—‹๐–พ๐—๐–พ๐–ฝ ๐–ฟ๐—‹๐—ˆ๐—† ๐—๐—๐–บ๐— ๐–บ๐—‘๐—‚๐—ˆ๐—†.๐–ณ๐—๐–พ๐—‹๐–พ๐–ฟ๐—ˆ๐—‹๐–พ, ๐–ป๐—’ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š-๐‘–๐‘›๐‘ก๐‘’๐‘Ÿ๐‘๐‘Ÿ๐‘’๐‘ก๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐—‚๐—‡๐–ฟ๐–พ๐—‹๐–พ๐—‡๐–ผ๐–พ ๐—‹๐—Ž๐—…๐–พ: ๐’œ โŠข P, ๐—‚๐— ๐–ฟ๐—ˆ๐—…๐—…๐—ˆ๐—๐—Œ ๐—๐—๐–บ๐— (((๐งโ‚… ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐โ‚(0) โˆง (๐โ‚(๐งโ‚…) โŸน ๐โ‚((๐งโ‚…)++)))) โŸน ((๐ฆโ‚ƒ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ๐โ‚(๐ฆโ‚ƒ))). โˆŽ ### ๐—ง๐—ต๐—ฒ ๐—ป๐˜‚๐—บ๐—ฏ๐—ฒ๐—ฟ ๐˜€๐˜†๐˜€๐˜๐—ฒ๐—บ ๐—ป ### ๐—ฅ๐—ฒ๐—ฐ๐˜‚๐—ฟ๐˜€๐—ถ๐˜ƒ๐—ฒ ๐—ฑ๐—ฒ๐—ณ๐—ถ๐—ป๐—ถ๐˜๐—ถ๐—ผ๐—ป๐˜€ From abd2a419414ad2e87c68861289e6c9bab58d8c01 Mon Sep 17 00:00:00 2001 From: David Doret Date: Thu, 24 Aug 2023 05:56:19 +0200 Subject: [PATCH 05/21] tests --- punctilious/locale_en_us.py | 1 - tests/test_axiom_declaration.py | 12 +++++++----- tests/test_note.py | 6 +++--- 3 files changed, 10 insertions(+), 9 deletions(-) diff --git a/punctilious/locale_en_us.py b/punctilious/locale_en_us.py index daea8a10..fd096705 100644 --- a/punctilious/locale_en_us.py +++ b/punctilious/locale_en_us.py @@ -434,7 +434,6 @@ def compose_note_report(self, o: InferredStatement, **kwargs) -> collections.abc yield o.compose_title(cap=True) yield SansSerifNormal(': ') yield from o.compose_content() - yield SansSerifNormal('.') return True def compose_parent_hypothesis_statement_report(self, o: Hypothesis, diff --git a/tests/test_axiom_declaration.py b/tests/test_axiom_declaration.py index 6c8c50df..3cb56d0b 100644 --- a/tests/test_axiom_declaration.py +++ b/tests/test_axiom_declaration.py @@ -20,6 +20,8 @@ def test_axiom_declaration(self): pu.configuration.echo_default = False pu.configuration.encoding = pu.encodings.plaintext u = pu.UniverseOfDiscourse() + u_plaintext = u.nameset.rep_symbol(encoding=pu.encodings.plaintext) + u_unicode = u.nameset.rep_symbol(encoding=pu.encodings.unicode) content1 = '๐’ทโ„ดโ„ด๐“‡โ„ด๐’ถ ๐’ทโ„ฏโ„ฏ๐’น๐“Š ๐“‡๐’พโ„ด๐’ท๐“โ„ด ๐’ท๐“Ž๐“Š๐’น๐’พโ„ฏ๐“€๐“Š.' # random_data.random_sentence() content2 = '๐“‡โ„ฏ๐’น๐“Š ๐’นโ„ด๐’ทโ„ดโ„ฏ ๐’น๐’พ๐“ƒ๐“Š ๐’ท๐’ถ๐’น๐“‡๐“Ž๐“Š ๐’ฝ๐“Ž๐“‹๐’พ๐“‹โ„ด๐’พ ๐’ทโ„ฏ๐’ท๐’พ ๐“๐“Ž๐’ถโ„Š๐“ƒ๐“Š ๐’น๐“Ž๐’ถ๐“€โ„ฏ ๐“ˆ๐’พ๐“โ„ดโ„ด ๐’ท๐’ถ๐“โ„ด ๐“…โ„ด๐’ถ๐’นโ„ดโ„ฏ ๐’ท๐’พ๐“ƒโ„ด๐’ท๐“‡๐“Š ๐’ป๐“โ„ด๐’น๐’พโ„ด ๐“๐’พ๐’ฝ๐’ถ ๐“‡๐“Žโ„ฏ๐“…โ„ฏ ๐“…โ„ด๐’พ๐“ˆ๐“‰๐’พ๐’ป๐“๐“Žโ„ด ๐“‰โ„ฏ๐’ท๐“โ„ดโ„ฏ ๐’นโ„ด๐’ท๐“‡โ„ฏ ๐’ฟโ„ดโ„ฏ๐’ท๐’พ ๐’ท๐’ถ๐’ฟ๐“Ž๐“Š ๐“ˆ๐“‰๐’ถ๐’ท๐“Ž๐’ถ๐“๐’ถ โ„Š๐“ƒ๐’ถ๐’ท๐“‡๐’พ ๐“‚โ„ด๐’ถ๐’ปโ„ด๐“Š ๐’นโ„ด๐“Š๐“‰๐“Š ๐“ˆ๐“Š๐’น๐’พ โ„Š๐“ƒโ„ด๐’ท๐“Š ๐“‚๐“Š๐’นโ„ฏ๐’ท๐’พ ๐’ทโ„ฏ๐’นโ„ด๐’ทโ„ฏ ๐’ป๐“๐’พโ„ด๐’ท๐’พ ๐’น๐’ถ๐“๐’ถโ„ฏ.' # random_data.random_sentence(min_words=30) content3 = '๐’ท๐“‡๐“Žโ„ฏ๐’ท๐“‡๐’พ ๐’ท๐“Ž๐’ถ๐’ท๐“‡๐“Žโ„ด๐’ทโ„ด๐“Š ๐’ท๐“Š๐’ท๐’พ.' # random_data.random_sentence() @@ -31,17 +33,17 @@ def test_axiom_declaration(self): a4 = u.declare_axiom(content4, symbol='C', name='the axiom of test') a5 = u.declare_axiom(content5, acronym='oaot', symbol='d', name='the other axiom of test') self.assertEqual( - f'๐–ซ๐–พ๐— โŒœ๐’œโ‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š โŒœ๐’ทโ„ดโ„ด๐“‡โ„ด๐’ถ ๐’ทโ„ฏโ„ฏ๐’น๐“Š ๐“‡๐’พโ„ด๐’ท๐“โ„ด ๐’ท๐“Ž๐“Š๐’น๐’พโ„ฏ๐“€๐“Š.โŒ ๐—‚๐—‡ ๐’ฐโ‚.', + f'๐–ซ๐–พ๐— โŒœ๐’œโ‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š โŒœ๐’ทโ„ดโ„ด๐“‡โ„ด๐’ถ ๐’ทโ„ฏโ„ฏ๐’น๐“Š ๐“‡๐’พโ„ด๐’ท๐“โ„ด ๐’ท๐“Ž๐“Š๐’น๐’พโ„ฏ๐“€๐“Š.โŒ ๐—‚๐—‡ {u_unicode}.', a1.rep_report(encoding=pu.encodings.unicode, wrap=False)) self.assertEqual( - f'๐–ซ๐–พ๐— โŒœ๐’œโ‚‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š โŒœ๐“‡โ„ฏ๐’น๐“Š ๐’นโ„ด๐’ทโ„ดโ„ฏ ๐’น๐’พ๐“ƒ๐“Š ๐’ท๐’ถ๐’น๐“‡๐“Ž๐“Š ๐’ฝ๐“Ž๐“‹๐’พ๐“‹โ„ด๐’พ ๐’ทโ„ฏ๐’ท๐’พ ๐“๐“Ž๐’ถโ„Š๐“ƒ๐“Š ๐’น๐“Ž๐’ถ๐“€โ„ฏ ๐“ˆ๐’พ๐“โ„ดโ„ด ๐’ท๐’ถ๐“โ„ด ๐“…โ„ด๐’ถ๐’นโ„ดโ„ฏ ๐’ท๐’พ๐“ƒโ„ด๐’ท๐“‡๐“Š ๐’ป๐“โ„ด๐’น๐’พโ„ด ๐“๐’พ๐’ฝ๐’ถ ๐“‡๐“Žโ„ฏ๐“…โ„ฏ ๐“…โ„ด๐’พ๐“ˆ๐“‰๐’พ๐’ป๐“๐“Žโ„ด ๐“‰โ„ฏ๐’ท๐“โ„ดโ„ฏ ๐’นโ„ด๐’ท๐“‡โ„ฏ ๐’ฟโ„ดโ„ฏ๐’ท๐’พ ๐’ท๐’ถ๐’ฟ๐“Ž๐“Š ๐“ˆ๐“‰๐’ถ๐’ท๐“Ž๐’ถ๐“๐’ถ โ„Š๐“ƒ๐’ถ๐’ท๐“‡๐’พ ๐“‚โ„ด๐’ถ๐’ปโ„ด๐“Š ๐’นโ„ด๐“Š๐“‰๐“Š ๐“ˆ๐“Š๐’น๐’พ โ„Š๐“ƒโ„ด๐’ท๐“Š ๐“‚๐“Š๐’นโ„ฏ๐’ท๐’พ ๐’ทโ„ฏ๐’นโ„ด๐’ทโ„ฏ ๐’ป๐“๐’พโ„ด๐’ท๐’พ ๐’น๐’ถ๐“๐’ถโ„ฏ.โŒ ๐—‚๐—‡ ๐’ฐโ‚.', + f'๐–ซ๐–พ๐— โŒœ๐’œโ‚‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š โŒœ๐“‡โ„ฏ๐’น๐“Š ๐’นโ„ด๐’ทโ„ดโ„ฏ ๐’น๐’พ๐“ƒ๐“Š ๐’ท๐’ถ๐’น๐“‡๐“Ž๐“Š ๐’ฝ๐“Ž๐“‹๐’พ๐“‹โ„ด๐’พ ๐’ทโ„ฏ๐’ท๐’พ ๐“๐“Ž๐’ถโ„Š๐“ƒ๐“Š ๐’น๐“Ž๐’ถ๐“€โ„ฏ ๐“ˆ๐’พ๐“โ„ดโ„ด ๐’ท๐’ถ๐“โ„ด ๐“…โ„ด๐’ถ๐’นโ„ดโ„ฏ ๐’ท๐’พ๐“ƒโ„ด๐’ท๐“‡๐“Š ๐’ป๐“โ„ด๐’น๐’พโ„ด ๐“๐’พ๐’ฝ๐’ถ ๐“‡๐“Žโ„ฏ๐“…โ„ฏ ๐“…โ„ด๐’พ๐“ˆ๐“‰๐’พ๐’ป๐“๐“Žโ„ด ๐“‰โ„ฏ๐’ท๐“โ„ดโ„ฏ ๐’นโ„ด๐’ท๐“‡โ„ฏ ๐’ฟโ„ดโ„ฏ๐’ท๐’พ ๐’ท๐’ถ๐’ฟ๐“Ž๐“Š ๐“ˆ๐“‰๐’ถ๐’ท๐“Ž๐’ถ๐“๐’ถ โ„Š๐“ƒ๐’ถ๐’ท๐“‡๐’พ ๐“‚โ„ด๐’ถ๐’ปโ„ด๐“Š ๐’นโ„ด๐“Š๐“‰๐“Š ๐“ˆ๐“Š๐’น๐’พ โ„Š๐“ƒโ„ด๐’ท๐“Š ๐“‚๐“Š๐’นโ„ฏ๐’ท๐’พ ๐’ทโ„ฏ๐’นโ„ด๐’ทโ„ฏ ๐’ป๐“๐’พโ„ด๐’ท๐’พ ๐’น๐’ถ๐“๐’ถโ„ฏ.โŒ ๐—‚๐—‡ {u_unicode}.', a2.rep_report(encoding=pu.encodings.unicode, wrap=False)) self.assertEqual( - f'๐–ซ๐–พ๐— โŒœ๐ตโ‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š โŒœ๐’ท๐“‡๐“Žโ„ฏ๐’ท๐“‡๐’พ ๐’ท๐“Ž๐’ถ๐’ท๐“‡๐“Žโ„ด๐’ทโ„ด๐“Š ๐’ท๐“Š๐’ท๐’พ.โŒ ๐—‚๐—‡ ๐’ฐโ‚.', + f'๐–ซ๐–พ๐— โŒœ๐ตโ‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š โŒœ๐’ท๐“‡๐“Žโ„ฏ๐’ท๐“‡๐’พ ๐’ท๐“Ž๐’ถ๐’ท๐“‡๐“Žโ„ด๐’ทโ„ด๐“Š ๐’ท๐“Š๐’ท๐’พ.โŒ ๐—‚๐—‡ {u_unicode}.', a3.rep_report(encoding=pu.encodings.unicode, wrap=False)) self.assertEqual( - f'๐–ซ๐–พ๐— โŒœ๐ถโ‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š โŒœ๐’ท๐“โ„ด๐“โ„ฏ ๐’ท๐“โ„ด๐’ฟโ„ฏ ๐’ฝ๐“Ž๐“Šโ„Š๐“ƒโ„ฏโ„ฏ.โŒ ๐—‚๐—‡ ๐’ฐโ‚, ๐—„๐—‡๐—ˆ๐—๐—‡ ๐–บ๐—Œ ๐—๐—๐–พ ๐–บ๐—‘๐—‚๐—ˆ๐—† ๐—ˆ๐–ฟ ๐—๐–พ๐—Œ๐—.', + f'๐–ซ๐–พ๐— โŒœ๐ถโ‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š โŒœ๐’ท๐“โ„ด๐“โ„ฏ ๐’ท๐“โ„ด๐’ฟโ„ฏ ๐’ฝ๐“Ž๐“Šโ„Š๐“ƒโ„ฏโ„ฏ.โŒ ๐—‚๐—‡ {u_unicode}, ๐—„๐—‡๐—ˆ๐—๐—‡ ๐–บ๐—Œ ๐—๐—๐–พ ๐–บ๐—‘๐—‚๐—ˆ๐—† ๐—ˆ๐–ฟ ๐—๐–พ๐—Œ๐—.', a4.rep_report(encoding=pu.encodings.unicode, wrap=False)) self.assertEqual( - f'๐–ซ๐–พ๐— โŒœ๐‘‘โ‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š โŒœ๐’น๐’พ๐“…๐’พ๐“‹๐’พ ๐“ˆ๐“‰๐’พ๐“‚โ„ด๐“‹โ„ด ๐’ป๐“‡๐’พ๐’ป๐“Š๐’ท๐“Š ๐’นโ„ด๐’ทโ„ฏ ๐’น๐“‡๐“Š๐“‚๐“Š๐’นโ„ด๐’พ๐“‰๐“Š.โŒ ๐—‚๐—‡ ๐’ฐโ‚, ๐—„๐—‡๐—ˆ๐—๐—‡ ๐–บ๐—Œ ๐—๐—๐–พ ๐—ˆ๐—๐—๐–พ๐—‹ ๐–บ๐—‘๐—‚๐—ˆ๐—† ๐—ˆ๐–ฟ ๐—๐–พ๐—Œ๐—, ๐—ˆ๐—‹ ๐—Œ๐—‚๐—†๐—‰๐—…๐—’ ๐—ˆ๐–บ๐—ˆ๐—.', + f'๐–ซ๐–พ๐— โŒœ๐‘‘โ‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘Ž๐‘ฅ๐‘–๐‘œ๐‘š โŒœ๐’น๐’พ๐“…๐’พ๐“‹๐’พ ๐“ˆ๐“‰๐’พ๐“‚โ„ด๐“‹โ„ด ๐’ป๐“‡๐’พ๐’ป๐“Š๐’ท๐“Š ๐’นโ„ด๐’ทโ„ฏ ๐’น๐“‡๐“Š๐“‚๐“Š๐’นโ„ด๐’พ๐“‰๐“Š.โŒ ๐—‚๐—‡ {u_unicode}, ๐—„๐—‡๐—ˆ๐—๐—‡ ๐–บ๐—Œ ๐—๐—๐–พ ๐—ˆ๐—๐—๐–พ๐—‹ ๐–บ๐—‘๐—‚๐—ˆ๐—† ๐—ˆ๐–ฟ ๐—๐–พ๐—Œ๐—, ๐—ˆ๐—‹ ๐—Œ๐—‚๐—†๐—‰๐—…๐—’ ๐—ˆ๐–บ๐—ˆ๐—.', a5.rep_report(encoding=pu.encodings.unicode, wrap=False)) diff --git a/tests/test_note.py b/tests/test_note.py index b44c10f5..d9dcd449 100644 --- a/tests/test_note.py +++ b/tests/test_note.py @@ -17,6 +17,6 @@ def test_note_introduction(self): note = t.take_note('Hello world!', ref='1.1.1') self.assertEqual('๐—ก๐—ผ๐˜๐—ฒ ๐Ÿญ.๐Ÿญ.๐Ÿญ (๐Ÿ—…โ‚): ๐–ง๐–พ๐—…๐—…๐—ˆ ๐—๐—ˆ๐—‹๐—…๐–ฝ!', note.rep_report()) comment = t.take_note('Foo', ref='1.1.2', paragraph_header=pu.paragraph_headers.comment) - self.assertEqual('๐—–๐—ผ๐—บ๐—บ๐—ฒ๐—ป๐˜ ๐Ÿญ.๐Ÿญ.๐Ÿฎ (๐Ÿ—…โ‚ƒ): Foo', comment.rep_report()) - remark = t.take_note('Bar', ref='1.1.3', paragraph_header=pu.paragraph_headers.remark) - self.assertEqual('๐—ฅ๐—ฒ๐—บ๐—ฎ๐—ฟ๐—ธ ๐Ÿญ.๐Ÿญ.๐Ÿฏ (๐Ÿ—…โ‚„): Bar', remark.rep_report()) + self.assertEqual('๐—–๐—ผ๐—บ๐—บ๐—ฒ๐—ป๐˜ ๐Ÿญ.๐Ÿญ.๐Ÿฎ (๐Ÿ—…โ‚‚): ๐–ฅ๐—ˆ๐—ˆ', comment.rep_report()) + remark = t.take_note('Bar', paragraph_header=pu.paragraph_headers.remark) + self.assertEqual('๐—ฅ๐—ฒ๐—บ๐—ฎ๐—ฟ๐—ธ (๐Ÿ—…โ‚ƒ): ๐–ก๐–บ๐—‹', remark.rep_report()) From 43917a3a9c2f735a9ce162625972303bc98a7062 Mon Sep 17 00:00:00 2001 From: David Doret Date: Thu, 24 Aug 2023 12:34:52 +0200 Subject: [PATCH 06/21] tests --- punctilious/core.py | 18 +++++++++--------- punctilious/locale_en_us.py | 13 +++++++++++++ tests/test_conjunction_elimination_left.py | 9 ++++++--- tests/test_universe_of_discourse.py | 16 ++++++++-------- 4 files changed, 36 insertions(+), 20 deletions(-) diff --git a/punctilious/core.py b/punctilious/core.py index b05902e9..052e560f 100644 --- a/punctilious/core.py +++ b/punctilious/core.py @@ -4057,11 +4057,12 @@ def __init__(self, universe_of_discourse: UniverseOfDiscourse, echo: (None, bool explicit_name=explicit_name, echo=echo) def infer_formula(self, p_land_q: FormulaStatement = None, t: TheoryElaborationSequence = None, - echo: (None, bool) = None) -> Formula: + echo: (None, bool) = None, **kwargs) -> Formula: """ :param p_land_q: A formula-statement of the form: (P โ‹€ Q). :param t: The current theory-elaboration-sequence. + :param echo: :return: The (proven) formula: P. """ p = unpack_formula(p_land_q).parameters[0] @@ -7155,18 +7156,17 @@ def __init__(self, t: TheoryElaborationSequence, echo: (None, bool) = None, def infer_formula(self, p_land_q: (None, FormulaStatement) = None, echo: (None, bool) = None): return super().infer_formula(p_land_q, echo=echo) - def infer_statement(self, p_land_q: (None, FormulaStatement) = None, - nameset: (None, str, NameSet) = None, ref: (None, str) = None, + def infer_statement(self, p_land_q: (None, FormulaStatement) = None, ref: (None, str) = None, paragraph_header: (None, ParagraphHeader) = None, subtitle: (None, str) = None, echo: (None, bool) = None) -> InferredStatement: """Apply the conjunction elimination (left) inference-rule and return the inferred-statement. - :param p_iff_q: (mandatory) The conjunction statement. + :param p_land_q: :return: The proven inferred-statement p implies q in the current theory. """ - return super().infer_statement(p_land_q, nameset=nameset, ref=ref, - paragraph_header=paragraph_header, subtitle=subtitle, echo=echo) + return super().infer_statement(p_land_q, ref=ref, paragraph_header=paragraph_header, + subtitle=subtitle, echo=echo) class ConjunctionEliminationRightInclusion(InferenceRuleInclusion): @@ -8049,7 +8049,7 @@ def conjunction_elimination_left(self) -> ConjunctionEliminationLeftDeclaration: return self._conjunction_elimination_left @property - def conjunction_elimination_right(self) -> InferenceRuleInclusion: + def conjunction_elimination_right(self) -> ConjunctionEliminationRightInclusion: """The well-known conjunction-elimination (right) inference-rule: P โˆง Q โŠข Q. Abridged property: t.i.cer @@ -8062,7 +8062,7 @@ def conjunction_elimination_right(self) -> InferenceRuleInclusion: return self._conjunction_elimination_right @property - def cel(self) -> InferenceRuleInclusion: + def cel(self) -> ConjunctionEliminationLeftDeclaration: """The well-known conjunction-elimination (left) inference-rule: (P โˆง Q) โŠข P. Unabridged property: universe_of_discourse.inference_rules.conjunction_elimination_left() @@ -8073,7 +8073,7 @@ def cel(self) -> InferenceRuleInclusion: return self.conjunction_elimination_left @property - def cer(self) -> InferenceRuleInclusion: + def cer(self) -> ConjunctionEliminationRightInclusion: """The well-known conjunction-elimination (right) inference-rule: P โˆง Q โŠข Q. Unabridged property: universe_of_discourse.inference_rules.conjunction_elimination_right() diff --git a/punctilious/locale_en_us.py b/punctilious/locale_en_us.py index fd096705..c7a9d5e4 100644 --- a/punctilious/locale_en_us.py +++ b/punctilious/locale_en_us.py @@ -121,6 +121,19 @@ def compose_biconditional_introduction_paragraph_proof(self, o: InferredStatemen yield SansSerifNormal('. ') return True + def compose_conjunction_elimination_left_paragraph_proof(self, o: InferredStatement) -> \ + collections.abc.Generator[Composable, Composable, bool]: + global text_dict + # Retrieve the parameters from the statement + p_and_q: FormulaStatement = o.parameters[0] + yield from p_and_q.valid_proposition.compose_formula() + yield SansSerifNormal(', is of the form ') + yield '(๐‘ท โˆง ๐‘ธ)' # TODO: Replace hardcoded formula with real formula + yield SansSerifNormal(', and follows from ') + yield from p_and_q.compose_ref_link() + yield SansSerifNormal('. ') + return True + def compose_conjunction_introduction_paragraph_proof(self, o: InferredStatement) -> \ collections.abc.Generator[Composable, Composable, bool]: global text_dict diff --git a/tests/test_conjunction_elimination_left.py b/tests/test_conjunction_elimination_left.py index 77159c74..378552e2 100644 --- a/tests/test_conjunction_elimination_left.py +++ b/tests/test_conjunction_elimination_left.py @@ -5,7 +5,10 @@ class TestConjunctionEliminationLeft(TestCase): def test_cel(self): + pu.configuration.echo_default = True u = pu.UniverseOfDiscourse() + u_plaintext = u.nameset.rep_symbol(encoding=pu.encodings.plaintext) + u_unicode = u.nameset.rep_symbol(encoding=pu.encodings.unicode) o1 = u.o.declare() o2 = u.o.declare() o3 = u.o.declare() @@ -14,8 +17,8 @@ def test_cel(self): t = u.t() a = u.declare_axiom(random_data.random_sentence()) ap = t.include_axiom(a) - phi1 = t.i.axiom_interpretation.infer_statement(ap, u.f(u.r.conjunction, u.f(r1, o1, o2), - u.f(r2, o3))) + phi1 = t.i.axiom_interpretation.infer_statement(axiom=ap, + formula=u.f(u.r.conjunction, u.f(r1, o1, o2), u.f(r2, o3))) self.assertEqual('(๐‘Ÿโ‚(๐‘œโ‚, ๐‘œโ‚‚) โˆง ๐‘Ÿโ‚‚(๐‘œโ‚ƒ))', phi1.rep_formula(pu.encodings.unicode)) - phi2 = t.i.cel.infer_statement(phi1) + phi2 = t.i.conjunction_elimination_left.infer_statement(p_and_q=phi1) self.assertEqual('๐‘Ÿโ‚(๐‘œโ‚, ๐‘œโ‚‚)', phi2.rep_formula(pu.encodings.unicode)) diff --git a/tests/test_universe_of_discourse.py b/tests/test_universe_of_discourse.py index 9bcfcdc2..1101e697 100644 --- a/tests/test_universe_of_discourse.py +++ b/tests/test_universe_of_discourse.py @@ -6,16 +6,16 @@ class TestUniverseOfDiscourse(TestCase): def test_universe_of_discourse(self): u1 = pu.create_universe_of_discourse() - self.assertEqual('U1', u1.rep(encoding=pu.encodings.plaintext)) - self.assertEqual('๐’ฐโ‚', u1.rep(encoding=pu.encodings.unicode)) - self.assertEqual('Let "U1" be a universe-of-discourse.', + u1_plaintext = u1.nameset.rep_symbol(encoding=pu.encodings.plaintext) + u1_unicode = u1.nameset.rep_symbol(encoding=pu.encodings.unicode) + self.assertEqual(f'Let "{u1_plaintext}" be a universe-of-discourse.', u1.rep_creation(encoding=pu.encodings.plaintext)) - self.assertEqual('๐–ซ๐–พ๐— โŒœ๐’ฐโ‚โŒ ๐–ป๐–พ ๐–บ ๐‘ข๐‘›๐‘–๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’-๐‘œ๐‘“-๐‘‘๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘Ÿ๐‘ ๐‘’.', + self.assertEqual(f'๐–ซ๐–พ๐— โŒœ{u1_unicode}โŒ ๐–ป๐–พ ๐–บ ๐‘ข๐‘›๐‘–๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’-๐‘œ๐‘“-๐‘‘๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘Ÿ๐‘ ๐‘’.', u1.rep_creation(encoding=pu.encodings.unicode)) u2 = pu.create_universe_of_discourse() - self.assertEqual('U2', u2.rep(encoding=pu.encodings.plaintext)) - self.assertEqual('๐’ฐโ‚‚', u2.rep(encoding=pu.encodings.unicode)) - self.assertEqual('Let "U2" be a universe-of-discourse.', + u2_plaintext = u2.nameset.rep_symbol(encoding=pu.encodings.plaintext) + u2_unicode = u2.nameset.rep_symbol(encoding=pu.encodings.unicode) + self.assertEqual(f'Let "{u2_plaintext}" be a universe-of-discourse.', u2.rep_creation(encoding=pu.encodings.plaintext)) - self.assertEqual('๐–ซ๐–พ๐— โŒœ๐’ฐโ‚‚โŒ ๐–ป๐–พ ๐–บ ๐‘ข๐‘›๐‘–๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’-๐‘œ๐‘“-๐‘‘๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘Ÿ๐‘ ๐‘’.', + self.assertEqual(f'๐–ซ๐–พ๐— โŒœ{u2_unicode}โŒ ๐–ป๐–พ ๐–บ ๐‘ข๐‘›๐‘–๐‘ฃ๐‘’๐‘Ÿ๐‘ ๐‘’-๐‘œ๐‘“-๐‘‘๐‘–๐‘ ๐‘๐‘œ๐‘ข๐‘Ÿ๐‘ ๐‘’.', u2.rep_creation(encoding=pu.encodings.unicode)) From 388df72545d7d4e217e2693757438e3a1eb44b29 Mon Sep 17 00:00:00 2001 From: David Doret Date: Thu, 24 Aug 2023 13:30:57 +0200 Subject: [PATCH 07/21] tests --- punctilious/__init__.py | 11 +- punctilious/core.py | 155 +++++++++--------- punctilious/locale_en_us.py | 13 ++ tests/test_conjunction_elimination_right.py | 6 +- tests/test_definition_declaration.py | 12 +- tests/test_objct_header.py | 42 ----- ...on.py => test_proof_by_contradiction_1.py} | 6 +- tests/test_proof_by_refutation.py | 2 +- tests/test_theory_elaboration_sequence.py | 7 +- tests/test_theory_elaboration_stabilized.py | 31 ++-- .../package/tao_2006_2_1_the_peano_axioms.py | 3 +- 11 files changed, 127 insertions(+), 161 deletions(-) delete mode 100644 tests/test_objct_header.py rename tests/{test_proof_by_contradiction.py => test_proof_by_contradiction_1.py} (89%) diff --git a/punctilious/__init__.py b/punctilious/__init__.py index a43d656c..8a0a9576 100644 --- a/punctilious/__init__.py +++ b/punctilious/__init__.py @@ -8,11 +8,12 @@ configuration, consistency_values, DashedName, create_universe_of_discourse, \ DefinitionInclusion, Encoding, encodings, FailedVerificationException, Formula, FreeVariable, \ Header, InconsistencyWarning, interpret_formula, interpret_statement_formula, is_in_class, \ - InferredStatement, NoteInclusion, Paragraph, prioritize_value, QuasiQuotation, Relation, \ - rep_two_columns_proof_item, ScriptNormal, SansSerifBold, SansSerifNormal, SerifBoldItalic, \ - SerifItalic, SerifNormal, SimpleObjct, Statement, Subscript, subscriptify, paragraph_headers, \ - ComposableText, NameSet, SymbolicObject, TextStyle, text_styles, TheoreticalObject, \ - TheoryElaborationSequence, TheoryPackage, paragraph_headers, UniverseOfDiscourse + InferredStatement, NoteInclusion, Paragraph, ParagraphHeader, paragraph_headers, \ + prioritize_value, QuasiQuotation, Relation, rep_two_columns_proof_item, ScriptNormal, \ + SansSerifBold, SansSerifNormal, SerifBoldItalic, SerifItalic, SerifNormal, SimpleObjct, \ + Statement, Subscript, subscriptify, paragraph_headers, ComposableText, NameSet, SymbolicObject, \ + TextStyle, text_styles, TheoreticalObject, TheoryElaborationSequence, TheoryPackage, \ + paragraph_headers, UniverseOfDiscourse # from foundation_system_1 import foundation_system_1, ft, u diff --git a/punctilious/core.py b/punctilious/core.py index 052e560f..44b561d5 100644 --- a/punctilious/core.py +++ b/punctilious/core.py @@ -2571,8 +2571,8 @@ class Formula(TheoreticalObject): def __init__(self, relation: (Relation, FreeVariable), parameters: tuple, universe_of_discourse: UniverseOfDiscourse, nameset: (None, str, NameSet) = None, - lock_variable_scope: bool = False, title: (None, str, TitleOBSOLETE) = None, - dashed_name: (None, str, DashedName) = None, echo: (None, bool) = None): + lock_variable_scope: bool = False, dashed_name: (None, str, DashedName) = None, + echo: (None, bool) = None): """ """ echo = prioritize_value(echo, configuration.echo_formula_declaration, @@ -4105,8 +4105,8 @@ def __init__(self, universe_of_discourse: UniverseOfDiscourse, echo: (None, bool name = 'conjunction elimination (right)' # Assure backward-compatibility with the parent class, # which received these methods as __init__ arguments. - infer_formula = BiconditionalEliminationRightDeclaration.infer_formula - verify_args = BiconditionalEliminationRightDeclaration.verify_args + infer_formula = ConjunctionEliminationRightDeclaration.infer_formula + verify_args = ConjunctionEliminationRightDeclaration.verify_args super().__init__(infer_formula=infer_formula, verify_args=verify_args, universe_of_discourse=universe_of_discourse, symbol=symbol, auto_index=auto_index, dashed_name=dashed_name, acronym=acronym, abridged_name=abridged_name, name=name, @@ -4120,7 +4120,8 @@ def infer_formula(self, p_land_q: FormulaStatement = None, t: TheoryElaborationS :param t: The current theory-elaboration-sequence. :return: The (proven) formula: Q. """ - q = unpack_formula(p_land_q).parameters[1] + p_land_q = interpret_formula(u=t.u, arity=2, flexible_formula=p_land_q) + q = p_land_q.parameters[1] return q def compose_paragraph_proof(self, o: InferredStatement) -> collections.abc.Generator[ @@ -4819,7 +4820,7 @@ def verify_args(self, p_implies_q: FormulaStatement, p: FormulaStatement, return True -class ProofByContradictionDeclaration(InferenceRuleDeclaration): +class ProofByContradiction1Declaration(InferenceRuleDeclaration): def __init__(self, universe_of_discourse: UniverseOfDiscourse, echo: (None, bool) = None): symbol = 'proof-by-contradiction' acronym = 'pbc' @@ -4829,8 +4830,8 @@ def __init__(self, universe_of_discourse: UniverseOfDiscourse, echo: (None, bool name = 'proof by contradiction' # Assure backward-compatibility with the parent class, # which received these methods as __init__ arguments. - infer_formula = ProofByContradictionDeclaration.infer_formula - verify_args = ProofByContradictionDeclaration.verify_args + infer_formula = ProofByContradiction1Declaration.infer_formula + verify_args = ProofByContradiction1Declaration.verify_args super().__init__(infer_formula=infer_formula, verify_args=verify_args, universe_of_discourse=universe_of_discourse, symbol=symbol, auto_index=auto_index, dashed_name=dashed_name, acronym=acronym, name=name, explicit_name=explicit_name, @@ -4882,7 +4883,7 @@ def verify_args(self, not_p: Hypothesis, inc_not_p: InferredStatement, return True -class ProofByContradictionOfInequalityDeclaration(InferenceRuleDeclaration): +class ProofByContradiction2Declaration(InferenceRuleDeclaration): def __init__(self, universe_of_discourse: UniverseOfDiscourse, echo: (None, bool) = None): symbol = 'proof-by-contradiction-of-inequality' acronym = 'pbci' @@ -4892,8 +4893,8 @@ def __init__(self, universe_of_discourse: UniverseOfDiscourse, echo: (None, bool name = 'proof by contradiction of inequality' # Assure backward-compatibility with the parent class, # which received these methods as __init__ arguments. - infer_formula = ProofByContradictionOfInequalityDeclaration.infer_formula - verify_args = ProofByContradictionOfInequalityDeclaration.verify_args + infer_formula = ProofByContradiction2Declaration.infer_formula + verify_args = ProofByContradiction2Declaration.verify_args super().__init__(infer_formula=infer_formula, verify_args=verify_args, universe_of_discourse=universe_of_discourse, symbol=symbol, auto_index=auto_index, dashed_name=dashed_name, acronym=acronym, name=name, explicit_name=explicit_name, @@ -4941,7 +4942,7 @@ def verify_args(self, p_neq_q: Hypothesis, inc_p_neq_q: InferredStatement, return True -class ProofByRefutationDeclaration(InferenceRuleDeclaration): +class ProofByRefutation1Declaration(InferenceRuleDeclaration): def __init__(self, universe_of_discourse: UniverseOfDiscourse, echo: (None, bool) = None): symbol = 'proof-by-refutation' acronym = 'pbr' @@ -4951,8 +4952,8 @@ def __init__(self, universe_of_discourse: UniverseOfDiscourse, echo: (None, bool name = 'proof by refutation' # Assure backward-compatibility with the parent class, # which received these methods as __init__ arguments. - infer_formula = ProofByContradictionDeclaration.infer_formula - verify_args = ProofByContradictionDeclaration.verify_args + infer_formula = ProofByContradiction1Declaration.infer_formula + verify_args = ProofByContradiction1Declaration.verify_args super().__init__(infer_formula=infer_formula, verify_args=verify_args, universe_of_discourse=universe_of_discourse, symbol=symbol, auto_index=auto_index, dashed_name=dashed_name, acronym=acronym, name=name, explicit_name=explicit_name, @@ -4997,7 +4998,7 @@ def verify_args(self, p: Hypothesis, inc_p: InferredStatement, t: TheoryElaborat return True -class ProofByRefutationOfEqualityDeclaration(InferenceRuleDeclaration): +class ProofByRefutation2Declaration(InferenceRuleDeclaration): def __init__(self, universe_of_discourse: UniverseOfDiscourse, echo: (None, bool) = None): symbol = 'proof-by-refutation-of-equality' acronym = 'pbre' @@ -5008,8 +5009,8 @@ def __init__(self, universe_of_discourse: UniverseOfDiscourse, echo: (None, bool definition = '(โ„‹(P=Q), Inc(โ„‹)) โŠข (P โ‰  Q)' # Assure backward-compatibility with the parent class, # which received these methods as __init__ arguments. - infer_formula = ProofByRefutationOfEqualityDeclaration.infer_formula - verify_args = ProofByRefutationOfEqualityDeclaration.verify_args + infer_formula = ProofByRefutation2Declaration.infer_formula + verify_args = ProofByRefutation2Declaration.verify_args super().__init__(definition=definition, infer_formula=infer_formula, verify_args=verify_args, universe_of_discourse=universe_of_discourse, symbol=symbol, auto_index=auto_index, dashed_name=dashed_name, acronym=acronym, name=name, @@ -6389,10 +6390,10 @@ def __init__(self, u: UniverseOfDiscourse): self._inconsistency_by_inequality_introduction = None self._inconsistency_by_negation_introduction = None self._modus_ponens = None - self._proof_by_contradiction = None - self._proof_by_contradiction_of_non_equality = None - self._proof_by_refutation = None - self._proof_by_refutation_of_equality = None + self._proof_by_contradiction_1 = None + self._proof_by_contradiction_2 = None + self._proof_by_refutation_1 = None + self._proof_by_refutation_2 = None self._variable_substitution = None @property @@ -6851,7 +6852,7 @@ def mp(self) -> InferenceRuleDeclaration: return self.modus_ponens @property - def pbc(self) -> ProofByContradictionDeclaration: + def pbc(self) -> ProofByContradiction1Declaration: """ Unabridged property: u.i.proof_by_contradiction @@ -6859,10 +6860,10 @@ def pbc(self) -> ProofByContradictionDeclaration: If the well-known inference-rule does not exist in the universe-of-discourse, the inference-rule is automatically declared. """ - return self.proof_by_contradiction + return self.proof_by_contradiction_1 @property - def pbr(self) -> ProofByRefutationDeclaration: + def pbr(self) -> ProofByRefutation1Declaration: """ Unabridged property: u.i.proof_by_refutation @@ -6870,10 +6871,10 @@ def pbr(self) -> ProofByRefutationDeclaration: If the well-known inference-rule does not exist in the universe-of-discourse, the inference-rule is automatically declared. """ - return self.proof_by_refutation + return self.proof_by_refutation_1 @property - def proof_by_contradiction(self) -> ProofByContradictionDeclaration: + def proof_by_contradiction_1(self) -> ProofByContradiction1Declaration: """ Abridged property: u.i.pbc @@ -6882,20 +6883,20 @@ def proof_by_contradiction(self) -> ProofByContradictionDeclaration: If the well-known inference-rule does not exist in the universe-of-discourse, the inference-rule is automatically declared. """ - if self._proof_by_contradiction is None: - self._proof_by_contradiction = ProofByContradictionDeclaration( + if self._proof_by_contradiction_1 is None: + self._proof_by_contradiction_1 = ProofByContradiction1Declaration( universe_of_discourse=self.u) - return self._proof_by_contradiction + return self._proof_by_contradiction_1 @property - def proof_by_contradiction_of_non_equality(self) -> ProofByContradictionOfInequalityDeclaration: - if self._proof_by_contradiction_of_non_equality is None: - self._proof_by_contradiction_of_non_equality = ProofByContradictionOfInequalityDeclaration( + def proof_by_contradiction_2(self) -> ProofByContradiction2Declaration: + if self._proof_by_contradiction_2 is None: + self._proof_by_contradiction_2 = ProofByContradiction2Declaration( universe_of_discourse=self.u) - return self._proof_by_contradiction_of_non_equality + return self._proof_by_contradiction_2 @property - def proof_by_refutation(self) -> ProofByRefutationDeclaration: + def proof_by_refutation_1(self) -> ProofByRefutation1Declaration: """ Abridged property: u.i.pbr @@ -6904,16 +6905,17 @@ def proof_by_refutation(self) -> ProofByRefutationDeclaration: If the well-known inference-rule does not exist in the universe-of-discourse, the inference-rule is automatically declared. """ - if self._proof_by_refutation is None: - self._proof_by_refutation = ProofByRefutationDeclaration(universe_of_discourse=self.u) - return self._proof_by_refutation + if self._proof_by_refutation_1 is None: + self._proof_by_refutation_1 = ProofByRefutation1Declaration( + universe_of_discourse=self.u) + return self._proof_by_refutation_1 @property - def proof_by_refutation_of_equality(self) -> ProofByRefutationOfEqualityDeclaration: - if self._proof_by_refutation_of_equality is None: - self._proof_by_refutation_of_equality = ProofByRefutationOfEqualityDeclaration( + def proof_by_refutation_2(self) -> ProofByRefutation2Declaration: + if self._proof_by_refutation_2 is None: + self._proof_by_refutation_2 = ProofByRefutation2Declaration( universe_of_discourse=self.u) - return self._proof_by_refutation_of_equality + return self._proof_by_refutation_2 @property def variable_substitution(self) -> VariableSubstitutionDeclaration: @@ -7153,19 +7155,19 @@ def __init__(self, t: TheoryElaborationSequence, echo: (None, bool) = None, abridged_name=abridged_name, name=name, explicit_name=explicit_name, echo=echo, proof=proof) - def infer_formula(self, p_land_q: (None, FormulaStatement) = None, echo: (None, bool) = None): - return super().infer_formula(p_land_q, echo=echo) + def infer_formula(self, p_and_q: (None, FormulaStatement) = None, echo: (None, bool) = None): + return super().infer_formula(p_and_q, echo=echo) - def infer_statement(self, p_land_q: (None, FormulaStatement) = None, ref: (None, str) = None, + def infer_statement(self, p_and_q: (None, FormulaStatement) = None, ref: (None, str) = None, paragraph_header: (None, ParagraphHeader) = None, subtitle: (None, str) = None, echo: (None, bool) = None) -> InferredStatement: """Apply the conjunction elimination (left) inference-rule and return the inferred-statement. - :param p_land_q: + :param p_and_q: :return: The proven inferred-statement p implies q in the current theory. """ - return super().infer_statement(p_land_q, ref=ref, paragraph_header=paragraph_header, + return super().infer_statement(p_and_q, ref=ref, paragraph_header=paragraph_header, subtitle=subtitle, echo=echo) @@ -7186,20 +7188,20 @@ def __init__(self, t: TheoryElaborationSequence, echo: (None, bool) = None, abridged_name=abridged_name, name=name, explicit_name=explicit_name, echo=echo, proof=proof) - def infer_formula(self, p_iff_q: (None, FormulaStatement) = None, echo: (None, bool) = None): - return super().infer_formula(p_iff_q, echo=echo) + def infer_formula(self, p_and_q: (None, FormulaStatement) = None, echo: (None, bool) = None): + return super().infer_formula(p_and_q, echo=echo) - def infer_statement(self, p_iff_q: (None, FormulaStatement) = None, + def infer_statement(self, p_and_q: (None, FormulaStatement) = None, nameset: (None, str, NameSet) = None, ref: (None, str) = None, paragraph_header: (None, ParagraphHeader) = None, subtitle: (None, str) = None, echo: (None, bool) = None) -> InferredStatement: """Apply the conjunction elimination (right) inference-rule and return the inferred-statement. - :param p_iff_q: (mandatory) The conjunction statement. + :param p_and_q: (mandatory) The conjunction statement. :return: The proven inferred-statement p implies q in the current theory. """ - return super().infer_statement(p_iff_q, nameset=nameset, ref=ref, + return super().infer_statement(p_and_q, nameset=nameset, ref=ref, paragraph_header=paragraph_header, subtitle=subtitle, echo=echo) @@ -7685,25 +7687,25 @@ def infer_statement(self, p_implies_q: (None, FormulaStatement) = None, paragraph_header=paragraph_header, subtitle=subtitle, echo=echo) -class ProofByContradictionInclusion(InferenceRuleInclusion): +class ProofByContradiction1Inclusion(InferenceRuleInclusion): """ """ def __init__(self, t: TheoryElaborationSequence, echo: (None, bool) = None, proof: (None, bool) = None): - i = t.universe_of_discourse.inference_rules.proof_by_contradiction - dashed_name = 'proof-by-contradiction' - acronym = 'pbc' + i = t.universe_of_discourse.inference_rules.proof_by_contradiction_1 + dashed_name = 'proof-by-contradiction-1' + acronym = 'pbc1' abridged_name = None - name = 'proof by contradiction' - explicit_name = 'proof by contradiction inference rule' + name = 'proof by contradiction #1' + explicit_name = 'proof by contradiction #1 inference rule' super().__init__(t=t, i=i, dashed_name=dashed_name, acronym=acronym, abridged_name=abridged_name, name=name, explicit_name=explicit_name, echo=echo, proof=proof) def infer_formula(self, not_p: (None, Hypothesis) = None, - inc_not_p: (None, FormulaStatement) = None, echo: (None, bool) = None): + inc_not_p: (None, FormulaStatement) = None, echo: (None, bool) = None) -> Formula: """Apply the proof-by-contradiction inference-rule and return the inferred-formula. :param not_p: (mandatory) The (ยฌP) hypothesis-statement. @@ -7727,19 +7729,19 @@ def infer_statement(self, not_p: (None, FormulaStatement) = None, paragraph_header=paragraph_header, subtitle=subtitle, echo=echo) -class ProofByContradictionOfInequalityInclusion(InferenceRuleInclusion): +class ProofByContradiction2Inclusion(InferenceRuleInclusion): """ """ def __init__(self, t: TheoryElaborationSequence, echo: (None, bool) = None, proof: (None, bool) = None): - i = t.universe_of_discourse.inference_rules.proof_by_contradiction_of_non_equality - dashed_name = 'proof-by-contradiction-of-inequality' - acronym = 'pbci' + i = t.universe_of_discourse.inference_rules.proof_by_contradiction_2 + dashed_name = 'proof-by-contradiction-2' + acronym = 'pbc2' abridged_name = None - name = 'proof by contradiction of inequality' - explicit_name = 'proof by contradiction of inequality inference rule' + name = 'proof by contradiction #2' + explicit_name = 'proof by contradiction #2 inference rule' super().__init__(t=t, i=i, dashed_name=dashed_name, acronym=acronym, abridged_name=abridged_name, name=name, explicit_name=explicit_name, echo=echo, proof=proof) @@ -7763,7 +7765,7 @@ class ProofByRefutationInclusion(InferenceRuleInclusion): def __init__(self, t: TheoryElaborationSequence, echo: (None, bool) = None, proof: (None, bool) = None): - i = t.universe_of_discourse.inference_rules.proof_by_refutation + i = t.universe_of_discourse.inference_rules.proof_by_refutation_1 dashed_name = 'proof-by-refutation' acronym = 'pbr' abridged_name = None @@ -7805,7 +7807,7 @@ class ProofByRefutationOfEqualityInclusion(InferenceRuleInclusion): def __init__(self, t: TheoryElaborationSequence, echo: (None, bool) = None, proof: (None, bool) = None): - i = t.universe_of_discourse.inference_rules.proof_by_refutation_of_equality + i = t.universe_of_discourse.inference_rules.proof_by_refutation_2 dashed_name = 'proof-by-refutation-of-equality' acronym = 'pbre' abridged_name = None @@ -7914,7 +7916,7 @@ def __init__(self, t: TheoryElaborationSequence): self._inconsistency_by_inequality_introduction = None self._inconsistency_by_negation_introduction = None self._modus_ponens = None - self._proof_by_contradiction = None + self._proof_by_contradiction_1 = None self._proof_by_contradiction_of_non_equality = None self._proof_by_refutation = None self._proof_by_refutation_of_equality = None @@ -8036,7 +8038,7 @@ def biconditional_introduction(self) -> BiconditionalIntroductionInclusion: return self._biconditional_introduction @property - def conjunction_elimination_left(self) -> ConjunctionEliminationLeftDeclaration: + def conjunction_elimination_left(self) -> ConjunctionEliminationLeftInclusion: """The well-known conjunction-elimination (left) inference-rule: P โˆง Q โŠข P. Abridged property: t.i.cel() @@ -8265,7 +8267,7 @@ def mp(self) -> ModusPonensInclusion: return self.modus_ponens @property - def pbc(self) -> ProofByContradictionInclusion: + def pbc(self) -> ProofByContradiction1Inclusion: """ Unabridged property: u.i.proof_by_contradiction @@ -8273,7 +8275,7 @@ def pbc(self) -> ProofByContradictionInclusion: If the well-known inference-rule does not exist in the universe-of-discourse, the inference-rule is automatically declared. """ - return self.proof_by_contradiction + return self.proof_by_contradiction_1 @property def pbr(self) -> ProofByRefutationInclusion: @@ -8287,7 +8289,7 @@ def pbr(self) -> ProofByRefutationInclusion: return self.proof_by_refutation @property - def proof_by_contradiction(self) -> ProofByContradictionInclusion: + def proof_by_contradiction_1(self) -> ProofByContradiction1Inclusion: """ Abridged property: u.i.pbc @@ -8295,15 +8297,14 @@ def proof_by_contradiction(self) -> ProofByContradictionInclusion: If the well-known inference-rule does not exist in the universe-of-discourse, the inference-rule is automatically declared. """ - if self._proof_by_contradiction is None: - self._proof_by_contradiction = ProofByContradictionInclusion(t=self.t) - return self._proof_by_contradiction + if self._proof_by_contradiction_1 is None: + self._proof_by_contradiction_1 = ProofByContradiction1Inclusion(t=self.t) + return self._proof_by_contradiction_1 @property - def proof_by_contradiction_of_non_equality(self) -> ProofByContradictionOfInequalityInclusion: + def proof_by_contradiction_of_non_equality(self) -> ProofByContradiction2Inclusion: if self._proof_by_contradiction_of_non_equality is None: - self._proof_by_contradiction_of_non_equality = ProofByContradictionOfInequalityInclusion( - t=self.t) + self._proof_by_contradiction_of_non_equality = ProofByContradiction2Inclusion(t=self.t) return self._proof_by_contradiction_of_non_equality @property diff --git a/punctilious/locale_en_us.py b/punctilious/locale_en_us.py index c7a9d5e4..61dbee2d 100644 --- a/punctilious/locale_en_us.py +++ b/punctilious/locale_en_us.py @@ -134,6 +134,19 @@ def compose_conjunction_elimination_left_paragraph_proof(self, o: InferredStatem yield SansSerifNormal('. ') return True + def compose_conjunction_elimination_right_paragraph_proof(self, o: InferredStatement) -> \ + collections.abc.Generator[Composable, Composable, bool]: + global text_dict + # Retrieve the parameters from the statement + p_and_q: FormulaStatement = o.parameters[0] + yield from p_and_q.valid_proposition.compose_formula() + yield SansSerifNormal(', is of the form ') + yield '(๐‘ท โˆง ๐‘ธ)' # TODO: Replace hardcoded formula with real formula + yield SansSerifNormal(', and follows from ') + yield from p_and_q.compose_ref_link() + yield SansSerifNormal('. ') + return True + def compose_conjunction_introduction_paragraph_proof(self, o: InferredStatement) -> \ collections.abc.Generator[Composable, Composable, bool]: global text_dict diff --git a/tests/test_conjunction_elimination_right.py b/tests/test_conjunction_elimination_right.py index b48c49d0..aaa2d478 100644 --- a/tests/test_conjunction_elimination_right.py +++ b/tests/test_conjunction_elimination_right.py @@ -14,8 +14,8 @@ def test_cer(self): t = u.t() a = u.declare_axiom(random_data.random_sentence()) ap = t.include_axiom(a) - phi1 = t.i.axiom_interpretation.infer_statement(ap, u.f(u.r.conjunction, u.f(r1, o1, o2), - u.f(r2, o3))) + phi1 = t.i.axiom_interpretation.infer_statement(ap, + u.f(u.r.conjunction, u.f(r1, o1, o2), u.f(r2, o3))) self.assertEqual('(๐‘Ÿโ‚(๐‘œโ‚, ๐‘œโ‚‚) โˆง ๐‘Ÿโ‚‚(๐‘œโ‚ƒ))', phi1.rep_formula(pu.encodings.unicode)) - phi2 = t.i.cer.infer_statement(phi1) + phi2 = t.i.cer.infer_statement(p_and_q=phi1) self.assertEqual('๐‘Ÿโ‚‚(๐‘œโ‚ƒ)', phi2.rep_formula(encoding=pu.encodings.unicode)) diff --git a/tests/test_definition_declaration.py b/tests/test_definition_declaration.py index 9a93db86..2fbc26ae 100644 --- a/tests/test_definition_declaration.py +++ b/tests/test_definition_declaration.py @@ -21,6 +21,8 @@ def test_definition_declaration(self): pu.configuration.echo_default = False pu.configuration.encoding = pu.encodings.plaintext u = pu.UniverseOfDiscourse() + u_plaintext = u.nameset.rep_symbol(encoding=pu.encodings.plaintext) + u_unicode = u.nameset.rep_symbol(encoding=pu.encodings.unicode) content1 = '๐’ทโ„ดโ„ด๐“‡โ„ด๐’ถ ๐’ทโ„ฏโ„ฏ๐’น๐“Š ๐“‡๐’พโ„ด๐’ท๐“โ„ด ๐’ท๐“Ž๐“Š๐’น๐’พโ„ฏ๐“€๐“Š.' # random_data.random_sentence() content2 = '๐“‡โ„ฏ๐’น๐“Š ๐’นโ„ด๐’ทโ„ดโ„ฏ ๐’น๐’พ๐“ƒ๐“Š ๐’ท๐’ถ๐’น๐“‡๐“Ž๐“Š ๐’ฝ๐“Ž๐“‹๐’พ๐“‹โ„ด๐’พ ๐’ทโ„ฏ๐’ท๐’พ ๐“๐“Ž๐’ถโ„Š๐“ƒ๐“Š ๐’น๐“Ž๐’ถ๐“€โ„ฏ ๐“ˆ๐’พ๐“โ„ดโ„ด ๐’ท๐’ถ๐“โ„ด ๐“…โ„ด๐’ถ๐’นโ„ดโ„ฏ ๐’ท๐’พ๐“ƒโ„ด๐’ท๐“‡๐“Š ๐’ป๐“โ„ด๐’น๐’พโ„ด ๐“๐’พ๐’ฝ๐’ถ ๐“‡๐“Žโ„ฏ๐“…โ„ฏ ๐“…โ„ด๐’พ๐“ˆ๐“‰๐’พ๐’ป๐“๐“Žโ„ด ๐“‰โ„ฏ๐’ท๐“โ„ดโ„ฏ ๐’นโ„ด๐’ท๐“‡โ„ฏ ๐’ฟโ„ดโ„ฏ๐’ท๐’พ ๐’ท๐’ถ๐’ฟ๐“Ž๐“Š ๐“ˆ๐“‰๐’ถ๐’ท๐“Ž๐’ถ๐“๐’ถ โ„Š๐“ƒ๐’ถ๐’ท๐“‡๐’พ ๐“‚โ„ด๐’ถ๐’ปโ„ด๐“Š ๐’นโ„ด๐“Š๐“‰๐“Š ๐“ˆ๐“Š๐’น๐’พ โ„Š๐“ƒโ„ด๐’ท๐“Š ๐“‚๐“Š๐’นโ„ฏ๐’ท๐’พ ๐’ทโ„ฏ๐’นโ„ด๐’ทโ„ฏ ๐’ป๐“๐’พโ„ด๐’ท๐’พ ๐’น๐’ถ๐“๐’ถโ„ฏ.' # random_data.random_sentence(min_words=30) content3 = '๐’ท๐“‡๐“Žโ„ฏ๐’ท๐“‡๐’พ ๐’ท๐“Ž๐’ถ๐’ท๐“‡๐“Žโ„ด๐’ทโ„ด๐“Š ๐’ท๐“Š๐’ท๐’พ.' # random_data.random_sentence() @@ -33,17 +35,17 @@ def test_definition_declaration(self): a5 = u.declare_definition(content5, acronym='oaot', symbol='d', name='the other definition of test') self.assertEqual( - f'๐–ซ๐–พ๐— โŒœ๐’Ÿโ‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘› โŒœ๐’ทโ„ดโ„ด๐“‡โ„ด๐’ถ ๐’ทโ„ฏโ„ฏ๐’น๐“Š ๐“‡๐’พโ„ด๐’ท๐“โ„ด ๐’ท๐“Ž๐“Š๐’น๐’พโ„ฏ๐“€๐“Š.โŒ ๐—‚๐—‡ ๐’ฐโ‚.', + f'๐–ซ๐–พ๐— โŒœ๐’Ÿโ‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘› โŒœ๐’ทโ„ดโ„ด๐“‡โ„ด๐’ถ ๐’ทโ„ฏโ„ฏ๐’น๐“Š ๐“‡๐’พโ„ด๐’ท๐“โ„ด ๐’ท๐“Ž๐“Š๐’น๐’พโ„ฏ๐“€๐“Š.โŒ ๐—‚๐—‡ {u_unicode}.', a1.rep_report(encoding=pu.encodings.unicode, wrap=False)) self.assertEqual( - f'๐–ซ๐–พ๐— โŒœ๐’Ÿโ‚‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘› โŒœ๐“‡โ„ฏ๐’น๐“Š ๐’นโ„ด๐’ทโ„ดโ„ฏ ๐’น๐’พ๐“ƒ๐“Š ๐’ท๐’ถ๐’น๐“‡๐“Ž๐“Š ๐’ฝ๐“Ž๐“‹๐’พ๐“‹โ„ด๐’พ ๐’ทโ„ฏ๐’ท๐’พ ๐“๐“Ž๐’ถโ„Š๐“ƒ๐“Š ๐’น๐“Ž๐’ถ๐“€โ„ฏ ๐“ˆ๐’พ๐“โ„ดโ„ด ๐’ท๐’ถ๐“โ„ด ๐“…โ„ด๐’ถ๐’นโ„ดโ„ฏ ๐’ท๐’พ๐“ƒโ„ด๐’ท๐“‡๐“Š ๐’ป๐“โ„ด๐’น๐’พโ„ด ๐“๐’พ๐’ฝ๐’ถ ๐“‡๐“Žโ„ฏ๐“…โ„ฏ ๐“…โ„ด๐’พ๐“ˆ๐“‰๐’พ๐’ป๐“๐“Žโ„ด ๐“‰โ„ฏ๐’ท๐“โ„ดโ„ฏ ๐’นโ„ด๐’ท๐“‡โ„ฏ ๐’ฟโ„ดโ„ฏ๐’ท๐’พ ๐’ท๐’ถ๐’ฟ๐“Ž๐“Š ๐“ˆ๐“‰๐’ถ๐’ท๐“Ž๐’ถ๐“๐’ถ โ„Š๐“ƒ๐’ถ๐’ท๐“‡๐’พ ๐“‚โ„ด๐’ถ๐’ปโ„ด๐“Š ๐’นโ„ด๐“Š๐“‰๐“Š ๐“ˆ๐“Š๐’น๐’พ โ„Š๐“ƒโ„ด๐’ท๐“Š ๐“‚๐“Š๐’นโ„ฏ๐’ท๐’พ ๐’ทโ„ฏ๐’นโ„ด๐’ทโ„ฏ ๐’ป๐“๐’พโ„ด๐’ท๐’พ ๐’น๐’ถ๐“๐’ถโ„ฏ.โŒ ๐—‚๐—‡ ๐’ฐโ‚.', + f'๐–ซ๐–พ๐— โŒœ๐’Ÿโ‚‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘› โŒœ๐“‡โ„ฏ๐’น๐“Š ๐’นโ„ด๐’ทโ„ดโ„ฏ ๐’น๐’พ๐“ƒ๐“Š ๐’ท๐’ถ๐’น๐“‡๐“Ž๐“Š ๐’ฝ๐“Ž๐“‹๐’พ๐“‹โ„ด๐’พ ๐’ทโ„ฏ๐’ท๐’พ ๐“๐“Ž๐’ถโ„Š๐“ƒ๐“Š ๐’น๐“Ž๐’ถ๐“€โ„ฏ ๐“ˆ๐’พ๐“โ„ดโ„ด ๐’ท๐’ถ๐“โ„ด ๐“…โ„ด๐’ถ๐’นโ„ดโ„ฏ ๐’ท๐’พ๐“ƒโ„ด๐’ท๐“‡๐“Š ๐’ป๐“โ„ด๐’น๐’พโ„ด ๐“๐’พ๐’ฝ๐’ถ ๐“‡๐“Žโ„ฏ๐“…โ„ฏ ๐“…โ„ด๐’พ๐“ˆ๐“‰๐’พ๐’ป๐“๐“Žโ„ด ๐“‰โ„ฏ๐’ท๐“โ„ดโ„ฏ ๐’นโ„ด๐’ท๐“‡โ„ฏ ๐’ฟโ„ดโ„ฏ๐’ท๐’พ ๐’ท๐’ถ๐’ฟ๐“Ž๐“Š ๐“ˆ๐“‰๐’ถ๐’ท๐“Ž๐’ถ๐“๐’ถ โ„Š๐“ƒ๐’ถ๐’ท๐“‡๐’พ ๐“‚โ„ด๐’ถ๐’ปโ„ด๐“Š ๐’นโ„ด๐“Š๐“‰๐“Š ๐“ˆ๐“Š๐’น๐’พ โ„Š๐“ƒโ„ด๐’ท๐“Š ๐“‚๐“Š๐’นโ„ฏ๐’ท๐’พ ๐’ทโ„ฏ๐’นโ„ด๐’ทโ„ฏ ๐’ป๐“๐’พโ„ด๐’ท๐’พ ๐’น๐’ถ๐“๐’ถโ„ฏ.โŒ ๐—‚๐—‡ {u_unicode}.', a2.rep_report(encoding=pu.encodings.unicode, wrap=False)) self.assertEqual( - f'๐–ซ๐–พ๐— โŒœ๐‘โ‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘› โŒœ๐’ท๐“‡๐“Žโ„ฏ๐’ท๐“‡๐’พ ๐’ท๐“Ž๐’ถ๐’ท๐“‡๐“Žโ„ด๐’ทโ„ด๐“Š ๐’ท๐“Š๐’ท๐’พ.โŒ ๐—‚๐—‡ ๐’ฐโ‚.', + f'๐–ซ๐–พ๐— โŒœ๐‘โ‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘› โŒœ๐’ท๐“‡๐“Žโ„ฏ๐’ท๐“‡๐’พ ๐’ท๐“Ž๐’ถ๐’ท๐“‡๐“Žโ„ด๐’ทโ„ด๐“Š ๐’ท๐“Š๐’ท๐’พ.โŒ ๐—‚๐—‡ {u_unicode}.', a3.rep_report(encoding=pu.encodings.unicode, wrap=False)) self.assertEqual( - f'๐–ซ๐–พ๐— โŒœ๐‘โ‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘› โŒœ๐’ท๐“โ„ด๐“โ„ฏ ๐’ท๐“โ„ด๐’ฟโ„ฏ ๐’ฝ๐“Ž๐“Šโ„Š๐“ƒโ„ฏโ„ฏ.โŒ ๐—‚๐—‡ ๐’ฐโ‚, ๐—„๐—‡๐—ˆ๐—๐—‡ ๐–บ๐—Œ ๐—๐—๐–พ ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐—‚๐—๐—‚๐—ˆ๐—‡ ๐—ˆ๐–ฟ ๐—๐–พ๐—Œ๐—.', + f'๐–ซ๐–พ๐— โŒœ๐‘โ‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘› โŒœ๐’ท๐“โ„ด๐“โ„ฏ ๐’ท๐“โ„ด๐’ฟโ„ฏ ๐’ฝ๐“Ž๐“Šโ„Š๐“ƒโ„ฏโ„ฏ.โŒ ๐—‚๐—‡ {u_unicode}, ๐—„๐—‡๐—ˆ๐—๐—‡ ๐–บ๐—Œ ๐—๐—๐–พ ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐—‚๐—๐—‚๐—ˆ๐—‡ ๐—ˆ๐–ฟ ๐—๐–พ๐—Œ๐—.', a4.rep_report(encoding=pu.encodings.unicode, wrap=False)) self.assertEqual( - f'๐–ซ๐–พ๐— โŒœ๐‘‘โ‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘› โŒœ๐’น๐’พ๐“…๐’พ๐“‹๐’พ ๐“ˆ๐“‰๐’พ๐“‚โ„ด๐“‹โ„ด ๐’ป๐“‡๐’พ๐’ป๐“Š๐’ท๐“Š ๐’นโ„ด๐’ทโ„ฏ ๐’น๐“‡๐“Š๐“‚๐“Š๐’นโ„ด๐’พ๐“‰๐“Š.โŒ ๐—‚๐—‡ ๐’ฐโ‚, ๐—„๐—‡๐—ˆ๐—๐—‡ ๐–บ๐—Œ ๐—๐—๐–พ ๐—ˆ๐—๐—๐–พ๐—‹ ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐—‚๐—๐—‚๐—ˆ๐—‡ ๐—ˆ๐–ฟ ๐—๐–พ๐—Œ๐—, ๐—ˆ๐—‹ ๐—Œ๐—‚๐—†๐—‰๐—…๐—’ ๐—ˆ๐–บ๐—ˆ๐—.', + f'๐–ซ๐–พ๐— โŒœ๐‘‘โ‚โŒ ๐–ป๐–พ ๐—๐—๐–พ ๐‘‘๐‘’๐‘“๐‘–๐‘›๐‘–๐‘ก๐‘–๐‘œ๐‘› โŒœ๐’น๐’พ๐“…๐’พ๐“‹๐’พ ๐“ˆ๐“‰๐’พ๐“‚โ„ด๐“‹โ„ด ๐’ป๐“‡๐’พ๐’ป๐“Š๐’ท๐“Š ๐’นโ„ด๐’ทโ„ฏ ๐’น๐“‡๐“Š๐“‚๐“Š๐’นโ„ด๐’พ๐“‰๐“Š.โŒ ๐—‚๐—‡ {u_unicode}, ๐—„๐—‡๐—ˆ๐—๐—‡ ๐–บ๐—Œ ๐—๐—๐–พ ๐—ˆ๐—๐—๐–พ๐—‹ ๐–ฝ๐–พ๐–ฟ๐—‚๐—‡๐—‚๐—๐—‚๐—ˆ๐—‡ ๐—ˆ๐–ฟ ๐—๐–พ๐—Œ๐—, ๐—ˆ๐—‹ ๐—Œ๐—‚๐—†๐—‰๐—…๐—’ ๐—ˆ๐–บ๐—ˆ๐—.', a5.rep_report(encoding=pu.encodings.unicode, wrap=False)) diff --git a/tests/test_objct_header.py b/tests/test_objct_header.py deleted file mode 100644 index 8b00c5c4..00000000 --- a/tests/test_objct_header.py +++ /dev/null @@ -1,42 +0,0 @@ -from unittest import TestCase -import punctilious as pu -import random_data - - -class TestHeader(TestCase): - def test_header_1(self): - header_reference = random_data.random_word() - header = pu.TitleOBSOLETE(header_reference, cat=pu.paragraph_headers.axiom_declaration) - self.assertEqual(f'axiom {header_reference}', str(header)) - self.assertEqual(f'axiom {header_reference}', - header.rep(encoding=pu.encodings.plaintext)) - self.assertEqual(f'axiom {header_reference}', - header.rep_title(encoding=pu.encodings.plaintext)) - self.assertEqual(f'axiom {header_reference}', - header.rep_ref(encoding=pu.encodings.plaintext)) - self.assertEqual(f'Axiom {header_reference}', - header.rep(encoding=pu.encodings.plaintext, cap=True)) - self.assertEqual(f'Axiom {header_reference}', - header.rep_title(encoding=pu.encodings.plaintext, cap=True)) - self.assertEqual(f'Axiom {header_reference}', - header.rep_ref(encoding=pu.encodings.plaintext, cap=True)) - - def test_header_2(self): - header_reference = random_data.random_word() - header_title = random_data.random_sentence() - header = pu.TitleOBSOLETE(header_reference, - cat=pu.paragraph_headers._hypothesis_statement_in_child_theory, - subtitle=header_title) - self.assertEqual(f'prop. {header_reference}', str(header)) - self.assertEqual(f'prop. {header_reference}', - header.rep(encoding=pu.encodings.plaintext)) - self.assertEqual(f'proposition {header_reference} - {header_title}', - header.rep_title(encoding=pu.encodings.plaintext)) - self.assertEqual(f'prop. {header_reference}', - header.rep_ref(encoding=pu.encodings.plaintext)) - self.assertEqual(f'Prop. {header_reference}', - header.rep(encoding=pu.encodings.plaintext, cap=True)) - self.assertEqual(f'Proposition {header_reference} - {header_title}', - header.rep_title(encoding=pu.encodings.plaintext, cap=True)) - self.assertEqual(f'Prop. {header_reference}', - header.rep_ref(encoding=pu.encodings.plaintext, cap=True)) diff --git a/tests/test_proof_by_contradiction.py b/tests/test_proof_by_contradiction_1.py similarity index 89% rename from tests/test_proof_by_contradiction.py rename to tests/test_proof_by_contradiction_1.py index 50cea2b3..b4bc7f0a 100644 --- a/tests/test_proof_by_contradiction.py +++ b/tests/test_proof_by_contradiction_1.py @@ -5,7 +5,7 @@ # TODO: Proof by contradiction: design test class TestProofByContradiction(TestCase): - def test_proof_by_contradiction(self): + def test_proof_by_contradiction_1(self): pu.configuration.echo_default = False pu.configuration.echo_inferred_statement = True # Prepare the universe of discourse @@ -36,11 +36,11 @@ def test_proof_by_contradiction(self): t2 = t1_h1.hypothesis_child_theory t2_a1 = t1_h1.hypothesis_statement_in_child_theory t2_p5 = t2.i.conjunction_introduction.infer_statement(p=t1_p1, q=t1_p2) - t2_p6 = t2.i.variable_substitution.infer_statement(t1_p3_implication, o1, o2, o3) + t2_p6 = t2.i.variable_substitution.infer_statement(p=t1_p3_implication, phi=(o1, o2, o3)) # p7: ๐‘Ÿโ‚(๐‘œโ‚, ๐‘œโ‚ƒ) by modus ponens t2_p7 = t2.i.modus_ponens.infer_statement(p_implies_q=t2_p6, p=t2_p5) # p7 is in contradiction with the hypothetical_formula t1_p8 = t1.i.inconsistency_by_negation_introduction.infer_statement(p=t2_p7, not_p=t2_a1, inconsistent_theory=t2) - t1_p9 = t1.i.proof_by_contradiction.infer_statement(not_p=t1_h1, inc_not_p=t1_p8) + t1_p9 = t1.i.proof_by_contradiction_1.infer_statement(not_p=t1_h1, inc_not_p=t1_p8) pass diff --git a/tests/test_proof_by_refutation.py b/tests/test_proof_by_refutation.py index c9cf94bf..162a450f 100644 --- a/tests/test_proof_by_refutation.py +++ b/tests/test_proof_by_refutation.py @@ -42,5 +42,5 @@ def test_proof_by_refutation(self): # p7 is in refutation with the hypothetical_formula t1_p8 = t1.i.inconsistency_by_negation_introduction.infer_statement(p=t2_a1, not_p=t2_p7, inconsistent_theory=t2) - t1_p9 = t1.i.proof_by_refutation.infer_statement(p=t1_h1, inc_p=t1_p8) + t1_p9 = t1.i.proof_by_refutation_1.infer_statement(p=t1_h1, inc_p=t1_p8) pass diff --git a/tests/test_theory_elaboration_sequence.py b/tests/test_theory_elaboration_sequence.py index 8f9accd4..954dc52b 100644 --- a/tests/test_theory_elaboration_sequence.py +++ b/tests/test_theory_elaboration_sequence.py @@ -6,10 +6,13 @@ class TestTheoryElaborationSequence(TestCase): def test_theory_elaboration_sequence(self): u1 = pu.UniverseOfDiscourse() + u_plaintext = u1.nameset.rep_symbol(encoding=pu.encodings.plaintext) + u_unicode = u1.nameset.rep_symbol(encoding=pu.encodings.unicode) t1 = u1.declare_theory() self.assertEqual('T1', t1.rep(encoding=pu.encodings.plaintext)) self.assertEqual('๐’ฏโ‚', t1.rep(encoding=pu.encodings.unicode)) - self.assertEqual('Let T1 be a theory-elaboration-sequence in U1.', + self.assertEqual(f'Let "T1" be a theory-elaboration-sequence in {u_plaintext}.', t1.rep_report(encoding=pu.encodings.plaintext)) - self.assertEqual('Let ๐’ฏโ‚ be a theory-elaboration-sequence in ๐’ฐโ‚.', + self.assertEqual( + f'๐–ซ๐–พ๐— โŒœ๐’ฏโ‚โŒ ๐–ป๐–พ ๐–บ ๐‘กโ„Ž๐‘’๐‘œ๐‘Ÿ๐‘ฆ-๐‘’๐‘™๐‘Ž๐‘๐‘œ๐‘Ÿ๐‘Ž๐‘ก๐‘–๐‘œ๐‘›-๐‘ ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘’ ๐—‚๐—‡ {u_unicode}.', t1.rep_report(encoding=pu.encodings.unicode)) diff --git a/tests/test_theory_elaboration_stabilized.py b/tests/test_theory_elaboration_stabilized.py index d70d7f65..937f4d85 100644 --- a/tests/test_theory_elaboration_stabilized.py +++ b/tests/test_theory_elaboration_stabilized.py @@ -17,28 +17,17 @@ def test_theory_elaboration_stabilized(self): robust_theory = u.t() ap1 = robust_theory.include_axiom(a=a1) with u.v() as x, u.v() as y, u.v() as z: - implication = robust_theory.i.axiom_interpretation.infer_statement( - ap1, - u.f(u.r.implies, - u.f(u.r.land, u.f(r1, x, y), - u.f(r1, y, z)), - u.f(r1, x, z))) - r1o1o2 = robust_theory.i.axiom_interpretation.infer_statement( - ap1, u.f(r1, o1, o2)) - r1o2o3 = robust_theory.i.axiom_interpretation.infer_statement( - ap1, - u.f(r1, o2, o3)) - r1o1o2_and_r1o2o3 = robust_theory.i.ci.infer_statement( - r1o1o2, - r1o2o3) - implication_2 = robust_theory.i.vs.infer_statement(implication, o1, o2, o3) - robust_theory.i.mp.infer_statement( - implication_2, - r1o1o2_and_r1o2o3) + implication = robust_theory.i.axiom_interpretation.infer_statement(ap1, + u.f(u.r.implies, u.f(u.r.land, u.f(r1, x, y), u.f(r1, y, z)), u.f(r1, x, z))) + r1o1o2 = robust_theory.i.axiom_interpretation.infer_statement(ap1, u.f(r1, o1, o2)) + r1o2o3 = robust_theory.i.axiom_interpretation.infer_statement(ap1, u.f(r1, o2, o3)) + r1o1o2_and_r1o2o3 = robust_theory.i.ci.infer_statement(r1o1o2, r1o2o3) + implication_2 = robust_theory.i.variable_substitution.infer_statement(p=implication, + phi=(o1, o2, o3)) + robust_theory.i.mp.infer_statement(p_implies_q=implication_2, p=r1o1o2_and_r1o2o3) robust_theory.stabilize() self.assertTrue(robust_theory.stabilized, - 'The stabilized property of the original-theory is not True.') + 'The stabilized property of the original-theory is not True.') - hypothesis = robust_theory.pose_hypothesis( - hypothesis_formula=u.f(r1, o2, o3)) + hypothesis = robust_theory.pose_hypothesis(hypothesis_formula=u.f(r1, o2, o3)) hypothesis_theory = hypothesis.hypothesis_child_theory diff --git a/theory/package/tao_2006_2_1_the_peano_axioms.py b/theory/package/tao_2006_2_1_the_peano_axioms.py index 756c02c6..691ece90 100644 --- a/theory/package/tao_2006_2_1_the_peano_axioms.py +++ b/theory/package/tao_2006_2_1_the_peano_axioms.py @@ -258,8 +258,7 @@ def develop_theory(self, t: pu.TheoryElaborationSequence) -> pu.TheoryElaboratio p=h1_p11) p072 = t.i.inconsistency_by_inequality_introduction.infer_statement(p_eq_q=h1_p071, p_neq_q=p031, inconsistent_theory=h1.hypothesis_child_theory) - p073 = t.i.proof_by_refutation_of_equality.infer_statement(p_eq_q=h1, inc_p_eq_q=p072, - ref='2.1.8') + p073 = t.i.proof_by_refutation_2.infer_statement(p_eq_q=h1, inc_p_eq_q=p072, ref='2.1.8') t.open_section('Direct proof', section_parent=s55, numbering=False) From ae18653fa662d0ef789410bc979e063e7562e3d3 Mon Sep 17 00:00:00 2001 From: David Doret Date: Thu, 24 Aug 2023 14:02:29 +0200 Subject: [PATCH 08/21] tests --- docs/source/proof_by_contradiction_1.rst | 35 +++ punctilious/core.py | 268 +++++++++++++---------- punctilious/locale_en_us.py | 53 ++++- 3 files changed, 236 insertions(+), 120 deletions(-) create mode 100644 docs/source/proof_by_contradiction_1.rst diff --git a/docs/source/proof_by_contradiction_1.rst b/docs/source/proof_by_contradiction_1.rst new file mode 100644 index 00000000..cf06634a --- /dev/null +++ b/docs/source/proof_by_contradiction_1.rst @@ -0,0 +1,35 @@ +proof-by-contradiction-1 +========================= + +Definition +---------- + +*proof-by-contradiction-1* is the :doc:`inference_rule`: + +.. math:: + + \left( \left(P \implies Q\right) \land P \right) \vdash Q + +Python implementation +--------------------- + +ProofByContradiction1Declaration +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +.. module:: core + :noindex: +.. autoclass:: ProofByContradiction1Declaration + :members: + :special-members: __init__ + +ProofByContradiction1Inclusion +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +.. autoclass:: ProofByContradiction1Inclusion + :members: + :special-members: __init__ + +Bibliography +------------ + +.. footbibliography:: \ No newline at end of file diff --git a/punctilious/core.py b/punctilious/core.py index 44b561d5..2abae74f 100644 --- a/punctilious/core.py +++ b/punctilious/core.py @@ -4769,6 +4769,11 @@ def __init__(self, universe_of_discourse: UniverseOfDiscourse, echo: (None, bool auto_index=auto_index, dashed_name=dashed_name, acronym=acronym, abridged_name=abridged_name, name=name, explicit_name=explicit_name, echo=echo) + def compose_paragraph_proof(self, o: InferredStatement) -> collections.abc.Generator[ + Composable, Composable, bool]: + output = yield from configuration.locale.compose_modus_ponens_paragraph_proof(o=o) + return output + def infer_formula(self, p_implies_q: FormulaStatement, p: FormulaStatement, t: TheoryElaborationSequence, echo: (None, bool) = None) -> Formula: """ @@ -4784,11 +4789,6 @@ def infer_formula(self, p_implies_q: FormulaStatement, p: FormulaStatement, # is true in t. return q # TODO: Provide support for statements that are atomic propositional formula, # that is # without relation or where the objct is a 0-ary relation. - def compose_paragraph_proof(self, o: InferredStatement) -> collections.abc.Generator[ - Composable, Composable, bool]: - output = yield from configuration.locale.compose_modus_ponens_paragraph_proof(o=o) - return output - def verify_args(self, p_implies_q: FormulaStatement, p: FormulaStatement, t: TheoryElaborationSequence) -> bool: """ @@ -4828,54 +4828,57 @@ def __init__(self, universe_of_discourse: UniverseOfDiscourse, echo: (None, bool dashed_name = 'proof-by-contradiction' explicit_name = 'proof by contradiction inference rule' name = 'proof by contradiction' + definition = '(๐“— ๐‘Ž๐‘ ๐‘ ๐‘ข๐‘š๐‘’ ยฌ๐‘ท, ๐ผ๐‘›๐‘(๐“—)) โŠข ๐‘ท' # Assure backward-compatibility with the parent class, # which received these methods as __init__ arguments. infer_formula = ProofByContradiction1Declaration.infer_formula verify_args = ProofByContradiction1Declaration.verify_args - super().__init__(infer_formula=infer_formula, verify_args=verify_args, - universe_of_discourse=universe_of_discourse, symbol=symbol, auto_index=auto_index, - dashed_name=dashed_name, acronym=acronym, name=name, explicit_name=explicit_name, - echo=echo) + super().__init__(definition=definition, infer_formula=infer_formula, + verify_args=verify_args, universe_of_discourse=universe_of_discourse, symbol=symbol, + auto_index=auto_index, dashed_name=dashed_name, acronym=acronym, name=name, + explicit_name=explicit_name, echo=echo) - def infer_formula(self, not_p: Hypothesis, inc_not_p: FormulaStatement, + def compose_paragraph_proof(self, o: InferredStatement) -> collections.abc.Generator[ + Composable, Composable, bool]: + output = yield from configuration.locale.compose_proof_by_contradiction_1_paragraph_proof( + o=o) + return output + + def infer_formula(self, not_p_hypothesis: Hypothesis, inc_hypothesis: FormulaStatement, t: TheoryElaborationSequence, echo: (None, bool) = None) -> Formula: - not_p = not_p.hypothesis_formula + not_p = not_p_hypothesis.hypothesis_formula p = not_p.parameters[0] return p - # def compose_paragraph_proof(self, o: InferredStatement) -> collections.abc.Generator[ - # Composable, Composable, bool]: - # output = yield from configuration.locale.compose_modus_ponens_paragraph_proof( - # o=o) - # return output - - def verify_args(self, not_p: Hypothesis, inc_not_p: InferredStatement, + def verify_args(self, not_p_hypothesis: Hypothesis, inc_hypothesis: InferredStatement, t: TheoryElaborationSequence, echo: (None, bool) = None) -> bool: """ - :param not_p: The hypothesis-statement in the parent theory. - :param inc_not_p: The contradiction-statement Inc(Tn) where Tn is the hypothesis-theory. + :param not_p_hypothesis: The hypothesis-statement in the parent theory. + :param inc_hypothesis: The contradiction-statement Inc(Tn) where Tn is the hypothesis-theory. :param t: The current (parent) theory. :param echo: :return: """ - verify(is_in_class(not_p, classes.hypothesis), 'โŒœnot_pโŒ must be an hypothesis.', - not_p=not_p, slf=self) - verify(is_in_class(inc_not_p, classes.inferred_proposition), - 'โŒœinc_not_pโŒ must be an inferred-statement.', inc_not_p=inc_not_p, slf=self) - verify(t.contains_theoretical_objct(not_p), 'โŒœnot_pโŒ must be in theory โŒœtโŒ.', not_p=not_p, - t=t, slf=self) - verify(not_p.hypothesis_child_theory.extended_theory is t, + verify(is_in_class(not_p_hypothesis, classes.hypothesis), 'โŒœnot_pโŒ must be an hypothesis.', + not_p=not_p_hypothesis, slf=self) + verify(is_in_class(inc_hypothesis, classes.inferred_proposition), + 'โŒœinc_not_pโŒ must be an inferred-statement.', inc_not_p=inc_hypothesis, slf=self) + verify(t.contains_theoretical_objct(not_p_hypothesis), 'โŒœnot_pโŒ must be in theory โŒœtโŒ.', + not_p=not_p_hypothesis, t=t, slf=self) + verify(not_p_hypothesis.hypothesis_child_theory.extended_theory is t, 'โŒœnot_p.hypothetical_theoryโŒ must extend the parent theory โŒœtโŒ.', - not_p_hypothetical_theory=not_p.hypothesis_child_theory, not_p=not_p, t=t, slf=self) - verify(inc_not_p.relation is t.u.relations.inconsistency, + not_p_hypothetical_theory=not_p_hypothesis.hypothesis_child_theory, + not_p=not_p_hypothesis, t=t, slf=self) + verify(inc_hypothesis.relation is t.u.relations.inconsistency, 'โŒœinc_not_p.relationโŒ must be of form (Inc(Hn)).', - inc_not_p_relation=inc_not_p.relation, inc_not_p=inc_not_p, t=t, slf=self) - verify(inc_not_p.valid_proposition.parameters[0] is not_p.hypothesis_child_theory, + inc_not_p_relation=inc_hypothesis.relation, inc_not_p=inc_hypothesis, t=t, slf=self) + verify(inc_hypothesis.valid_proposition.parameters[ + 0] is not_p_hypothesis.hypothesis_child_theory, 'โŒœinc_not_pโŒ must be of form (Inc(Hn)) where parameter[0] Hn is the ' 'hypothetical-theory.', - inc_not_p_parameters_0=inc_not_p.valid_proposition.parameters[0], - not_p_hypothetical_theory=not_p.hypothesis_child_theory, t=t, slf=self) + inc_not_p_parameters_0=inc_hypothesis.valid_proposition.parameters[0], + not_p_hypothetical_theory=not_p_hypothesis.hypothesis_child_theory, t=t, slf=self) # TODO: ProofByContradictionDeclaration.verify_args: check that the parent theory is # stable??? # TODO: ProofByContradictionDeclaration.verify_args: check that the hypothetical-theory @@ -4885,56 +4888,63 @@ def verify_args(self, not_p: Hypothesis, inc_not_p: InferredStatement, class ProofByContradiction2Declaration(InferenceRuleDeclaration): def __init__(self, universe_of_discourse: UniverseOfDiscourse, echo: (None, bool) = None): - symbol = 'proof-by-contradiction-of-inequality' - acronym = 'pbci' + symbol = 'proof-by-contradiction-2' + acronym = 'pbc2' auto_index = False - dashed_name = 'proof-by-contradiction-of-inequality' - explicit_name = 'proof by contradiction of inequality inference rule' - name = 'proof by contradiction of inequality' + dashed_name = 'proof-by-contradiction-2' + explicit_name = 'proof by contradiction #2 inference rule' + name = 'proof by contradiction #2' + definition = '(๐“— ๐‘Ž๐‘ ๐‘ ๐‘ข๐‘š๐‘’ (๐‘ท โ‰  ๐‘ธ), ๐ผ๐‘›๐‘(๐“—)) โŠข (๐‘ท = ๐‘ธ)' # Assure backward-compatibility with the parent class, # which received these methods as __init__ arguments. infer_formula = ProofByContradiction2Declaration.infer_formula verify_args = ProofByContradiction2Declaration.verify_args - super().__init__(infer_formula=infer_formula, verify_args=verify_args, - universe_of_discourse=universe_of_discourse, symbol=symbol, auto_index=auto_index, - dashed_name=dashed_name, acronym=acronym, name=name, explicit_name=explicit_name, - echo=echo) + super().__init__(definition=definition, infer_formula=infer_formula, + verify_args=verify_args, universe_of_discourse=universe_of_discourse, symbol=symbol, + auto_index=auto_index, dashed_name=dashed_name, acronym=acronym, name=name, + explicit_name=explicit_name, echo=echo) + + def compose_paragraph_proof(self, o: InferredStatement) -> collections.abc.Generator[ + Composable, Composable, bool]: + output = yield from configuration.locale.compose_proof_by_contradiction_2_paragraph_proof( + o=o) + return output - def infer_formula(self, p_neq_q: Hypothesis, inc_p_neq_q: FormulaStatement, + def infer_formula(self, p_neq_q_hypothesis: Hypothesis, inc_hypothesis: FormulaStatement, t: TheoryElaborationSequence, echo: (None, bool) = None) -> Formula: - p_neq_q = p_neq_q.hypothesis_formula + p_neq_q = p_neq_q_hypothesis.hypothesis_formula p = p_neq_q.parameters[0] q = p_neq_q.parameters[1] return t.u.f(t.u.r.equality, p, q) - def verify_args(self, p_neq_q: Hypothesis, inc_p_neq_q: InferredStatement, + def verify_args(self, p_neq_q_hypothesis: Hypothesis, inc_hypothesis: InferredStatement, t: TheoryElaborationSequence, echo: (None, bool) = None) -> bool: """ - :param p_neq_q: The hypothesis-statement in the parent theory. - :param inc_p_neq_q: The contradiction-statement Inc(Tn) where Tn is the hypothesis-theory. + :param p_neq_q_hypothesis: The hypothesis-statement in the parent theory. + :param inc_hypothesis: The contradiction-statement Inc(Tn) where Tn is the hypothesis-theory. :param t: The current (parent) theory. :param echo: :return: """ - verify(is_in_class(p_neq_q, classes.hypothesis), 'โŒœp_neq_qโŒ must be an hypothesis.', - p_neq_q=p_neq_q, slf=self) - verify(is_in_class(inc_p_neq_q, classes.inferred_proposition), - 'โŒœinc_p_neq_qโŒ must be an inferred-statement.', inc_p_neq_q=inc_p_neq_q, slf=self) - verify(t.contains_theoretical_objct(p_neq_q), 'โŒœp_neq_qโŒ must be in theory โŒœtโŒ.', - p_neq_q=p_neq_q, t=t, slf=self) - verify(p_neq_q.hypothesis_child_theory.extended_theory is t, + verify(is_in_class(p_neq_q_hypothesis, classes.hypothesis), + 'โŒœp_neq_qโŒ must be an hypothesis.', p_neq_q=p_neq_q_hypothesis, slf=self) + verify(is_in_class(inc_hypothesis, classes.inferred_proposition), + 'โŒœinc_p_neq_qโŒ must be an inferred-statement.', inc_p_neq_q=inc_hypothesis, slf=self) + verify(t.contains_theoretical_objct(p_neq_q_hypothesis), 'โŒœp_neq_qโŒ must be in theory โŒœtโŒ.', + p_neq_q=p_neq_q_hypothesis, t=t, slf=self) + verify(p_neq_q_hypothesis.hypothesis_child_theory.extended_theory is t, 'โŒœp_neq_q.hypothetical_theoryโŒ must extend the parent theory โŒœtโŒ.', - p_neq_q_hypothetical_theory=p_neq_q.hypothesis_child_theory, p_neq_q=p_neq_q, t=t, - slf=self) - verify(inc_p_neq_q.relation is t.u.relations.inequality, + p_neq_q_hypothetical_theory=p_neq_q_hypothesis.hypothesis_child_theory, + p_neq_q=p_neq_q_hypothesis, t=t, slf=self) + verify(inc_hypothesis.relation is t.u.relations.inequality, 'โŒœinc_p_neq_q.relationโŒ must be the inequality relation.', - inc_p_neq_q_relation=inc_p_neq_q.relation, inc_p_neq_q=inc_p_neq_q, t=t, slf=self) + inc_p_neq_q_relation=inc_hypothesis.relation, inc_p_neq_q=inc_hypothesis, t=t, slf=self) p_neq_q_prime: FormulaStatement - p_neq_q_prime = inc_p_neq_q.parameters[0] - verify(p_neq_q.is_formula_syntactically_equivalent_to(p_neq_q_prime), + p_neq_q_prime = inc_hypothesis.parameters[0] + verify(p_neq_q_hypothesis.is_formula_syntactically_equivalent_to(p_neq_q_prime), 'โŒœp_neq_qโŒ must be formula-syntactically-equivalent to โŒœp_neq_qโŒ in โŒœinc_p_neq_qโŒ.', - p_neq_q=p_neq_q, p_neq_q_prime=p_neq_q_prime, t=t, slf=self) + p_neq_q=p_neq_q_hypothesis, p_neq_q_prime=p_neq_q_prime, t=t, slf=self) # TODO: ProofByContradictionDeclaration.verify_args: check that the parent theory is # stable??? # TODO: ProofByContradictionDeclaration.verify_args: check that the hypothetical-theory @@ -4950,47 +4960,55 @@ def __init__(self, universe_of_discourse: UniverseOfDiscourse, echo: (None, bool dashed_name = 'proof-by-refutation' explicit_name = 'proof by refutation inference rule' name = 'proof by refutation' + definition = '(๐“— ๐‘Ž๐‘ ๐‘ ๐‘ข๐‘š๐‘’ ๐‘ท, ๐ผ๐‘›๐‘(๐“—)) โŠข ยฌ๐‘ท' # Assure backward-compatibility with the parent class, # which received these methods as __init__ arguments. infer_formula = ProofByContradiction1Declaration.infer_formula verify_args = ProofByContradiction1Declaration.verify_args - super().__init__(infer_formula=infer_formula, verify_args=verify_args, - universe_of_discourse=universe_of_discourse, symbol=symbol, auto_index=auto_index, - dashed_name=dashed_name, acronym=acronym, name=name, explicit_name=explicit_name, - echo=echo) + super().__init__(definition=definition, infer_formula=infer_formula, + verify_args=verify_args, universe_of_discourse=universe_of_discourse, symbol=symbol, + auto_index=auto_index, dashed_name=dashed_name, acronym=acronym, name=name, + explicit_name=explicit_name, echo=echo) - def infer_formula(self, p: Hypothesis, inc_p: FormulaStatement, t: TheoryElaborationSequence, - echo: (None, bool) = None) -> Formula: - p = p.hypothesis_formula + def compose_paragraph_proof(self, o: InferredStatement) -> collections.abc.Generator[ + Composable, Composable, bool]: + output = yield from configuration.locale.compose_proof_by_refutation_1_paragraph_proof(o=o) + return output + + def infer_formula(self, p_hypothesis: Hypothesis, inc_hypothesis: FormulaStatement, + t: TheoryElaborationSequence, echo: (None, bool) = None) -> Formula: + p = p_hypothesis.hypothesis_formula not_p = t.u.f(t.u.r.negation, p) return not_p - # def compose_paragraph_proof(self, o: InferredStatement) -> collections.abc.Generator[ # Composable, Composable, bool]: # output = yield from # # # # # # configuration.locale.compose_modus_ponens_paragraph_proof( # o=o) # # # # return output - - def verify_args(self, p: Hypothesis, inc_p: InferredStatement, t: TheoryElaborationSequence, - echo: (None, bool) = None) -> bool: + def verify_args(self, p_hypothesis: Hypothesis, inc_hypothesis: InferredStatement, + t: TheoryElaborationSequence, echo: (None, bool) = None) -> bool: """ - :param p: The hypothesis-statement in the parent theory. - :param inc_p: The refutation-statement Inc(Tn) where Tn is the hypothesis-theory. + :param p_hypothesis: The hypothesis-statement in the parent theory. + :param inc_hypothesis: The refutation-statement Inc(Tn) where Tn is the hypothesis-theory. :param t: The current (parent) theory. :param echo: :return: """ - verify(is_in_class(p, classes.hypothesis), 'โŒœpโŒ must be an hypothesis.', p=p, slf=self) - verify(is_in_class(inc_p, classes.inferred_proposition), - 'โŒœinc_pโŒ must be an inferred-statement.', inc_p=inc_p, slf=self) - verify(t.contains_theoretical_objct(p), 'โŒœpโŒ must be in theory โŒœtโŒ.', p=p, t=t, slf=self) - verify(p.hypothesis_child_theory.extended_theory is t, + verify(is_in_class(p_hypothesis, classes.hypothesis), 'โŒœpโŒ must be an hypothesis.', + p=p_hypothesis, slf=self) + verify(is_in_class(inc_hypothesis, classes.inferred_proposition), + 'โŒœinc_pโŒ must be an inferred-statement.', inc_p=inc_hypothesis, slf=self) + verify(t.contains_theoretical_objct(p_hypothesis), 'โŒœpโŒ must be in theory โŒœtโŒ.', + p=p_hypothesis, t=t, slf=self) + verify(p_hypothesis.hypothesis_child_theory.extended_theory is t, 'โŒœp.hypothetical_theoryโŒ must extend the parent theory โŒœtโŒ.', - p_hypothetical_theory=p.hypothesis_child_theory, p=p, t=t, slf=self) - verify(inc_p.relation is t.u.relations.inconsistency, - 'โŒœinc_p.relationโŒ must be of form (Inc(Hn)).', inc_p_relation=inc_p.relation, - inc_p=inc_p, t=t, slf=self) - verify(inc_p.valid_proposition.parameters[0] is p.hypothesis_child_theory, + p_hypothetical_theory=p_hypothesis.hypothesis_child_theory, p=p_hypothesis, t=t, + slf=self) + verify(inc_hypothesis.relation is t.u.relations.inconsistency, + 'โŒœinc_p.relationโŒ must be of form (Inc(Hn)).', inc_p_relation=inc_hypothesis.relation, + inc_p=inc_hypothesis, t=t, slf=self) + verify( + inc_hypothesis.valid_proposition.parameters[0] is p_hypothesis.hypothesis_child_theory, 'โŒœinc_pโŒ must be of form (Inc(Hn)) where parameter[0] Hn is the hypothetical-theory.', - inc_p_parameters_0=inc_p.valid_proposition.parameters[0], - p_hypothetical_theory=p.hypothesis_child_theory, t=t, slf=self) + inc_p_parameters_0=inc_hypothesis.valid_proposition.parameters[0], + p_hypothetical_theory=p_hypothesis.hypothesis_child_theory, t=t, slf=self) # TODO: ProofByContradictionDeclaration.verify_args: check that the parent theory is # stable??? # TODO: ProofByContradictionDeclaration.verify_args: check that the hypothetical-theory @@ -5000,13 +5018,13 @@ def verify_args(self, p: Hypothesis, inc_p: InferredStatement, t: TheoryElaborat class ProofByRefutation2Declaration(InferenceRuleDeclaration): def __init__(self, universe_of_discourse: UniverseOfDiscourse, echo: (None, bool) = None): - symbol = 'proof-by-refutation-of-equality' - acronym = 'pbre' + symbol = 'proof-by-refutation-2' + acronym = 'pbr2' auto_index = False - dashed_name = 'proof-by-refutation-of-equality' - explicit_name = 'proof by refutation of equality inference rule' - name = 'proof by refutation of equality' - definition = '(โ„‹(P=Q), Inc(โ„‹)) โŠข (P โ‰  Q)' + dashed_name = 'proof-by-refutation-2' + explicit_name = 'proof by refutation #2 inference rule' + name = 'proof by refutation #2' + definition = '(๐“— ๐‘Ž๐‘ ๐‘ ๐‘ข๐‘š๐‘’ (๐‘ท = ๐‘ธ), ๐ผ๐‘›๐‘(๐“—)) โŠข (๐‘ท โ‰  ๐‘ธ)' # Assure backward-compatibility with the parent class, # which received these methods as __init__ arguments. infer_formula = ProofByRefutation2Declaration.infer_formula @@ -5018,40 +5036,41 @@ def __init__(self, universe_of_discourse: UniverseOfDiscourse, echo: (None, bool def compose_paragraph_proof(self, o: InferredStatement) -> collections.abc.Generator[ Composable, Composable, bool]: - output = yield from configuration.locale.compose_proof_by_reputation_of_equality_paragraph_proof( - o=o) + output = yield from configuration.locale.compose_proof_by_refutation_2_paragraph_proof(o=o) return output - def infer_formula(self, p_eq_q: Hypothesis, inc_p_eq_q: FormulaStatement, + def infer_formula(self, p_eq_q_hypothesis: Hypothesis, inc_hypothesis: FormulaStatement, t: TheoryElaborationSequence, echo: (None, bool) = None) -> Formula: - p_eq_q = p_eq_q.hypothesis_formula + p_eq_q = p_eq_q_hypothesis.hypothesis_formula p_neq_q = t.u.f(t.u.r.inequality, p_eq_q.parameters[0], p_eq_q.parameters[1]) return p_neq_q # def compose_paragraph_proof(self, o: InferredStatement) -> collections.abc.Generator[ # Composable, Composable, bool]: # output = yield from # # # # # # configuration.locale.compose_modus_ponens_paragraph_proof( # o=o) # # # # return output - def verify_args(self, p_eq_q: Hypothesis, inc_p_eq_q: InferredStatement, + def verify_args(self, p_eq_q_hypothesis: Hypothesis, inc_hypothesis: InferredStatement, t: TheoryElaborationSequence, echo: (None, bool) = None) -> bool: """ - :param p_eq_q: The hypothesis-statement in the parent theory. - :param inc_p_eq_q: The refutation-statement Inc(Tn) where Tn is the hypothesis-theory. + :param p_eq_q_hypothesis: The hypothesis-statement in the parent theory. + :param inc_hypothesis: The refutation-statement Inc(Tn) where Tn is the hypothesis-theory. :param t: The current (parent) theory. :param echo: :return: """ - verify(is_in_class(p_eq_q, classes.hypothesis), 'โŒœpโŒ must be an hypothesis.', p=p_eq_q, - slf=self) - verify(is_in_class(inc_p_eq_q, classes.inferred_proposition), - 'โŒœinc_pโŒ must be an inferred-statement.', inc_p=inc_p_eq_q, slf=self) - verify(t.contains_theoretical_objct(p_eq_q), 'โŒœpโŒ must be in theory โŒœtโŒ.', p=p_eq_q, t=t, - slf=self) - verify(p_eq_q.hypothesis_child_theory.extended_theory is t, + verify(is_in_class(p_eq_q_hypothesis, classes.hypothesis), 'โŒœpโŒ must be an hypothesis.', + p=p_eq_q_hypothesis, slf=self) + verify(is_in_class(inc_hypothesis, classes.inferred_proposition), + 'โŒœinc_pโŒ must be an inferred-statement.', inc_p=inc_hypothesis, slf=self) + verify(t.contains_theoretical_objct(p_eq_q_hypothesis), 'โŒœpโŒ must be in theory โŒœtโŒ.', + p=p_eq_q_hypothesis, t=t, slf=self) + verify(p_eq_q_hypothesis.hypothesis_child_theory.extended_theory is t, 'โŒœp.hypothetical_theoryโŒ must extend the parent theory โŒœtโŒ.', - p_hypothetical_theory=p_eq_q.hypothesis_child_theory, p=p_eq_q, t=t, slf=self) - verify(inc_p_eq_q.valid_proposition.relation is t.u.relations.inconsistency, + p_hypothetical_theory=p_eq_q_hypothesis.hypothesis_child_theory, p=p_eq_q_hypothesis, + t=t, slf=self) + verify(inc_hypothesis.valid_proposition.relation is t.u.relations.inconsistency, 'โŒœinc_p.relationโŒ must be of form (Inc(Hn)).', - inc_p_relation=inc_p_eq_q.valid_proposition.relation, inc_p=inc_p_eq_q, t=t, slf=self) + inc_p_relation=inc_hypothesis.valid_proposition.relation, inc_p=inc_hypothesis, t=t, + slf=self) # TODO: ProofByContradictionDeclaration.verify_args: check that the parent theory is # stable??? # TODO: ProofByContradictionDeclaration.verify_args: check that the hypothetical-theory @@ -6852,7 +6871,7 @@ def mp(self) -> InferenceRuleDeclaration: return self.modus_ponens @property - def pbc(self) -> ProofByContradiction1Declaration: + def pbc1(self) -> ProofByContradiction1Declaration: """ Unabridged property: u.i.proof_by_contradiction @@ -6862,6 +6881,17 @@ def pbc(self) -> ProofByContradiction1Declaration: """ return self.proof_by_contradiction_1 + @property + def pbc2(self) -> ProofByContradiction2Declaration: + """ + + Unabridged property: u.i.proof_by_contradiction + + If the well-known inference-rule does not exist in the universe-of-discourse, + the inference-rule is automatically declared. + """ + return self.proof_by_contradiction_2 + @property def pbr(self) -> ProofByRefutation1Declaration: """ @@ -7758,7 +7788,7 @@ def infer_statement(self, p_neq_q: (None, FormulaStatement) = None, paragraph_header=paragraph_header, subtitle=subtitle, echo=echo) -class ProofByRefutationInclusion(InferenceRuleInclusion): +class ProofByRefutation1Inclusion(InferenceRuleInclusion): """ """ @@ -7800,7 +7830,7 @@ def infer_statement(self, p: (None, FormulaStatement) = None, paragraph_header=paragraph_header, subtitle=subtitle, echo=echo) -class ProofByRefutationOfEqualityInclusion(InferenceRuleInclusion): +class ProofByRefutation2Inclusion(InferenceRuleInclusion): """ """ @@ -8278,7 +8308,7 @@ def pbc(self) -> ProofByContradiction1Inclusion: return self.proof_by_contradiction_1 @property - def pbr(self) -> ProofByRefutationInclusion: + def pbr(self) -> ProofByRefutation1Inclusion: """ Unabridged property: u.i.proof_by_refutation @@ -8286,7 +8316,7 @@ def pbr(self) -> ProofByRefutationInclusion: If the well-known inference-rule does not exist in the universe-of-discourse, the inference-rule is automatically declared. """ - return self.proof_by_refutation + return self.proof_by_refutation_1 @property def proof_by_contradiction_1(self) -> ProofByContradiction1Inclusion: @@ -8302,13 +8332,13 @@ def proof_by_contradiction_1(self) -> ProofByContradiction1Inclusion: return self._proof_by_contradiction_1 @property - def proof_by_contradiction_of_non_equality(self) -> ProofByContradiction2Inclusion: + def proof_by_contradiction_2(self) -> ProofByContradiction2Inclusion: if self._proof_by_contradiction_of_non_equality is None: self._proof_by_contradiction_of_non_equality = ProofByContradiction2Inclusion(t=self.t) return self._proof_by_contradiction_of_non_equality @property - def proof_by_refutation(self) -> ProofByRefutationInclusion: + def proof_by_refutation_1(self) -> ProofByRefutation1Inclusion: """ Abridged property: u.i.pbr @@ -8317,13 +8347,13 @@ def proof_by_refutation(self) -> ProofByRefutationInclusion: the inference-rule is automatically declared. """ if self._proof_by_refutation is None: - self._proof_by_refutation = ProofByRefutationInclusion(t=self.t) + self._proof_by_refutation = ProofByRefutation1Inclusion(t=self.t) return self._proof_by_refutation @property - def proof_by_refutation_of_equality(self) -> ProofByRefutationOfEqualityInclusion: + def proof_by_refutation_2(self) -> ProofByRefutation2Inclusion: if self._proof_by_refutation_of_equality is None: - self._proof_by_refutation_of_equality = ProofByRefutationOfEqualityInclusion(t=self.t) + self._proof_by_refutation_of_equality = ProofByRefutation2Inclusion(t=self.t) return self._proof_by_refutation_of_equality @property diff --git a/punctilious/locale_en_us.py b/punctilious/locale_en_us.py index 61dbee2d..e253b3bd 100644 --- a/punctilious/locale_en_us.py +++ b/punctilious/locale_en_us.py @@ -475,7 +475,58 @@ def compose_parent_hypothesis_statement_report(self, o: Hypothesis, yield SansSerifNormal('.') return True - def compose_proof_by_reputation_of_equality_paragraph_proof(self, o: InferredStatement) -> \ + def compose_proof_by_contradiction_1_paragraph_proof(self, o: InferredStatement) -> \ + collections.abc.Generator[Composable, Composable, bool]: + global text_dict + # Retrieve the parameters from the statement + p_eq_q: Hypothesis = o.parameters[0] + yield SansSerifNormal('Let ') + yield from p_eq_q.compose_ref_link() + yield SansSerifNormal(' be the hypothesis ') + yield from p_eq_q.hypothesis_formula.compose_formula() + yield SansSerifNormal('. ') + inc_p_eq_q: FormulaStatement = o.parameters[1] + yield from inc_p_eq_q.valid_proposition.compose_formula() + yield SansSerifNormal(' follows from ') + yield from inc_p_eq_q.compose_ref_link() + yield SansSerifNormal('.') + return True + + def compose_proof_by_contradiction_2_paragraph_proof(self, o: InferredStatement) -> \ + collections.abc.Generator[Composable, Composable, bool]: + global text_dict + # Retrieve the parameters from the statement + p_eq_q: Hypothesis = o.parameters[0] + yield SansSerifNormal('Let ') + yield from p_eq_q.compose_ref_link() + yield SansSerifNormal(' be the hypothesis ') + yield from p_eq_q.hypothesis_formula.compose_formula() + yield SansSerifNormal('. ') + inc_p_eq_q: FormulaStatement = o.parameters[1] + yield from inc_p_eq_q.valid_proposition.compose_formula() + yield SansSerifNormal(' follows from ') + yield from inc_p_eq_q.compose_ref_link() + yield SansSerifNormal('.') + return True + + def compose_proof_by_refutation_1_paragraph_proof(self, o: InferredStatement) -> \ + collections.abc.Generator[Composable, Composable, bool]: + global text_dict + # Retrieve the parameters from the statement + p_eq_q: Hypothesis = o.parameters[0] + yield SansSerifNormal('Let ') + yield from p_eq_q.compose_ref_link() + yield SansSerifNormal(' be the hypothesis ') + yield from p_eq_q.hypothesis_formula.compose_formula() + yield SansSerifNormal('. ') + inc_p_eq_q: FormulaStatement = o.parameters[1] + yield from inc_p_eq_q.valid_proposition.compose_formula() + yield SansSerifNormal(' follows from ') + yield from inc_p_eq_q.compose_ref_link() + yield SansSerifNormal('.') + return True + + def compose_proof_by_refutation_2_paragraph_proof(self, o: InferredStatement) -> \ collections.abc.Generator[Composable, Composable, bool]: global text_dict # Retrieve the parameters from the statement From 0dcfc299546f6ef47bc00ec90ba722baf14fd4ef Mon Sep 17 00:00:00 2001 From: David Doret Date: Thu, 24 Aug 2023 22:53:27 +0200 Subject: [PATCH 09/21] cleanup --- punctilious/core.py | 68 +++++++++--------- tests/test_proof_by_contradiction_1.py | 3 +- ...ation.py => test_proof_by_refutation_1.py} | 8 +-- tests/test_section.py | 16 ++--- tests/test_tao_2006_the_peano_axioms.py | 4 +- tests/test_theory_elaboration_stabilized.py | 7 +- tests/test_variable_substitution.py | 4 +- .../package/tao_2006_2_1_the_peano_axioms.py | 70 ++++++++++--------- 8 files changed, 92 insertions(+), 88 deletions(-) rename tests/{test_proof_by_refutation.py => test_proof_by_refutation_1.py} (88%) diff --git a/punctilious/core.py b/punctilious/core.py index 2abae74f..4c704d36 100644 --- a/punctilious/core.py +++ b/punctilious/core.py @@ -7734,28 +7734,28 @@ def __init__(self, t: TheoryElaborationSequence, echo: (None, bool) = None, abridged_name=abridged_name, name=name, explicit_name=explicit_name, echo=echo, proof=proof) - def infer_formula(self, not_p: (None, Hypothesis) = None, - inc_not_p: (None, FormulaStatement) = None, echo: (None, bool) = None) -> Formula: + def infer_formula(self, not_p_hypothesis: (None, Hypothesis) = None, + inc_hypothesis: (None, FormulaStatement) = None, echo: (None, bool) = None) -> Formula: """Apply the proof-by-contradiction inference-rule and return the inferred-formula. - :param not_p: (mandatory) The (ยฌP) hypothesis-statement. - :param inc_not_p: (mandatory) The proof of inconsistency of the not_p + :param not_p_hypothesis: (mandatory) The (ยฌP) hypothesis-statement. + :param inc_hypothesis: (mandatory) The proof of inconsistency of the not_p hypothetical-theory: Inc(ยฌP). :return: The inferred formula . """ - return super().infer_formula(not_p, inc_not_p, echo=echo) + return super().infer_formula(not_p_hypothesis, inc_hypothesis, echo=echo) - def infer_statement(self, not_p: (None, FormulaStatement) = None, - inc_not_p: (None, FormulaStatement) = None, nameset: (None, str, NameSet) = None, + def infer_statement(self, not_p_hypothesis: (None, FormulaStatement) = None, + inc_hypothesis: (None, FormulaStatement) = None, nameset: (None, str, NameSet) = None, ref: (None, str) = None, paragraph_header: (None, ParagraphHeader) = None, subtitle: (None, str) = None, echo: (None, bool) = None) -> InferredStatement: """Apply the modus-ponens inference-rule and return the inferred-statement. - :param not_p: (mandatory) The implication statement. - :param inc_not_p: (mandatory) The p statement, proving that p is true in the current theory. + :param not_p_hypothesis: (mandatory) The implication statement. + :param inc_hypothesis: (mandatory) The p statement, proving that p is true in the current theory. :return: An inferred-statement proving p in the current theory. """ - return super().infer_statement(not_p, inc_not_p, nameset=nameset, ref=ref, + return super().infer_statement(not_p_hypothesis, inc_hypothesis, nameset=nameset, ref=ref, paragraph_header=paragraph_header, subtitle=subtitle, echo=echo) @@ -7776,15 +7776,15 @@ def __init__(self, t: TheoryElaborationSequence, echo: (None, bool) = None, abridged_name=abridged_name, name=name, explicit_name=explicit_name, echo=echo, proof=proof) - def infer_formula(self, p_neq_q: (None, Hypothesis) = None, - inc_p_neq_q: (None, FormulaStatement) = None, echo: (None, bool) = None): - return super().infer_formula(p_neq_q, inc_p_neq_q, echo=echo) + def infer_formula(self, p_neq_q_hypothesis: (None, Hypothesis) = None, + inc_hypothesis: (None, FormulaStatement) = None, echo: (None, bool) = None): + return super().infer_formula(p_neq_q_hypothesis, inc_hypothesis, echo=echo) - def infer_statement(self, p_neq_q: (None, FormulaStatement) = None, - inc_p_neq_q: (None, FormulaStatement) = None, nameset: (None, str, NameSet) = None, + def infer_statement(self, p_neq_q_hypothesis: (None, FormulaStatement) = None, + inc_hypothesis: (None, FormulaStatement) = None, nameset: (None, str, NameSet) = None, ref: (None, str) = None, paragraph_header: (None, ParagraphHeader) = None, subtitle: (None, str) = None, echo: (None, bool) = None) -> InferredStatement: - return super().infer_statement(p_neq_q, inc_p_neq_q, nameset=nameset, ref=ref, + return super().infer_statement(p_neq_q_hypothesis, inc_hypothesis, nameset=nameset, ref=ref, paragraph_header=paragraph_header, subtitle=subtitle, echo=echo) @@ -7805,28 +7805,28 @@ def __init__(self, t: TheoryElaborationSequence, echo: (None, bool) = None, abridged_name=abridged_name, name=name, explicit_name=explicit_name, echo=echo, proof=proof) - def infer_formula(self, p: (None, Hypothesis) = None, inc_p: (None, FormulaStatement) = None, - echo: (None, bool) = None): + def infer_formula(self, p_hypothesis: (None, Hypothesis) = None, + inc_hypothesis: (None, FormulaStatement) = None, echo: (None, bool) = None): """Apply the proof-by-refutation inference-rule and return the inferred-formula. - :param p: (mandatory) The (ยฌP) hypothesis-statement. - :param inc_p: (mandatory) The proof of inconsistency of the not_p hypothetical-theory: + :param p_hypothesis: (mandatory) The (ยฌP) hypothesis-statement. + :param inc_hypothesis: (mandatory) The proof of inconsistency of the not_p hypothetical-theory: Inc(ยฌP). :return: The inferred formula . """ - return super().infer_formula(p, inc_p, echo=echo) + return super().infer_formula(p_hypothesis, inc_hypothesis, echo=echo) - def infer_statement(self, p: (None, FormulaStatement) = None, - inc_p: (None, FormulaStatement) = None, nameset: (None, str, NameSet) = None, + def infer_statement(self, p_hypothesis: (None, FormulaStatement) = None, + inc_hypothesis: (None, FormulaStatement) = None, nameset: (None, str, NameSet) = None, ref: (None, str) = None, paragraph_header: (None, ParagraphHeader) = None, subtitle: (None, str) = None, echo: (None, bool) = None) -> InferredStatement: """Apply the modus-ponens inference-rule and return the inferred-statement. - :param p: (mandatory) The implication statement. - :param inc_p: (mandatory) The p statement, proving that p is true in the current theory. + :param p_hypothesis: (mandatory) The implication statement. + :param inc_hypothesis: (mandatory) The p statement, proving that p is true in the current theory. :return: An inferred-statement proving p in the current theory. """ - return super().infer_statement(p, inc_p, nameset=nameset, ref=ref, + return super().infer_statement(p_hypothesis, inc_hypothesis, nameset=nameset, ref=ref, paragraph_header=paragraph_header, subtitle=subtitle, echo=echo) @@ -7847,19 +7847,19 @@ def __init__(self, t: TheoryElaborationSequence, echo: (None, bool) = None, abridged_name=abridged_name, name=name, explicit_name=explicit_name, echo=echo, proof=proof) - def infer_formula(self, p_eq_q: (None, Hypothesis) = None, - inc_p_eq_q: (None, FormulaStatement) = None, echo: (None, bool) = None): + def infer_formula(self, p_eq_q_hypothesis: (None, Hypothesis) = None, + inc_hypothesis: (None, FormulaStatement) = None, echo: (None, bool) = None): """Apply the proof-by-refutation inference-rule and return the inferred-formula. - :param p_eq_q: (mandatory) The (ยฌP) hypothesis-statement. - :param inc_p_eq_q: (mandatory) The proof of inconsistency of the not_p hypothetical-theory: + :param p_eq_q_hypothesis: (mandatory) The (ยฌP) hypothesis-statement. + :param inc_hypothesis: (mandatory) The proof of inconsistency of the not_p hypothetical-theory: Inc(ยฌP). :return: The inferred formula . """ - return super().infer_formula(p_eq_q, inc_p_eq_q, echo=echo) + return super().infer_formula(p_eq_q_hypothesis, inc_hypothesis, echo=echo) - def infer_statement(self, p_eq_q: (None, FormulaStatement) = None, - inc_p_eq_q: (None, FormulaStatement) = None, nameset: (None, str, NameSet) = None, + def infer_statement(self, p_eq_q_hypothesis: (None, FormulaStatement) = None, + inc_hypothesis: (None, FormulaStatement) = None, nameset: (None, str, NameSet) = None, ref: (None, str) = None, paragraph_header: (None, ParagraphHeader) = None, subtitle: (None, str) = None, echo: (None, bool) = None) -> InferredStatement: """Apply the modus-ponens inference-rule and return the inferred-statement. @@ -7868,7 +7868,7 @@ def infer_statement(self, p_eq_q: (None, FormulaStatement) = None, :param inc_p: (mandatory) The p statement, proving that p is true in the current theory. :return: An inferred-statement proving p in the current theory. """ - return super().infer_statement(p_eq_q, inc_p_eq_q, nameset=nameset, ref=ref, + return super().infer_statement(p_eq_q_hypothesis, inc_hypothesis, nameset=nameset, ref=ref, paragraph_header=paragraph_header, subtitle=subtitle, echo=echo) diff --git a/tests/test_proof_by_contradiction_1.py b/tests/test_proof_by_contradiction_1.py index b4bc7f0a..dfb6b037 100644 --- a/tests/test_proof_by_contradiction_1.py +++ b/tests/test_proof_by_contradiction_1.py @@ -42,5 +42,6 @@ def test_proof_by_contradiction_1(self): # p7 is in contradiction with the hypothetical_formula t1_p8 = t1.i.inconsistency_by_negation_introduction.infer_statement(p=t2_p7, not_p=t2_a1, inconsistent_theory=t2) - t1_p9 = t1.i.proof_by_contradiction_1.infer_statement(not_p=t1_h1, inc_not_p=t1_p8) + t1_p9 = t1.i.proof_by_contradiction_1.infer_statement(not_p_hypothesis=t1_h1, + inc_hypothesis=t1_p8) pass diff --git a/tests/test_proof_by_refutation.py b/tests/test_proof_by_refutation_1.py similarity index 88% rename from tests/test_proof_by_refutation.py rename to tests/test_proof_by_refutation_1.py index 162a450f..02f6d35c 100644 --- a/tests/test_proof_by_refutation.py +++ b/tests/test_proof_by_refutation_1.py @@ -4,8 +4,8 @@ # TODO: Proof by refutation: design test -class TestProofByRefutation(TestCase): - def test_proof_by_refutation(self): +class TestProofByRefutation1(TestCase): + def test_proof_by_refutation_1(self): pu.configuration.echo_default = False pu.configuration.echo_inferred_statement = True # Prepare the universe of discourse @@ -36,11 +36,11 @@ def test_proof_by_refutation(self): t2 = t1_h1.hypothesis_child_theory t2_a1 = t1_h1.hypothesis_statement_in_child_theory t2_p5 = t2.i.conjunction_introduction.infer_statement(p=t1_p1, q=t1_p2) - t2_p6 = t2.i.variable_substitution.infer_statement(t1_p3_implication, o1, o2, o3) + t2_p6 = t2.i.variable_substitution.infer_statement(p=t1_p3_implication, phi=(o1, o2, o3)) # p7: ๐‘Ÿโ‚(๐‘œโ‚, ๐‘œโ‚ƒ) by modus ponens t2_p7 = t2.i.modus_ponens.infer_statement(p_implies_q=t2_p6, p=t2_p5) # p7 is in refutation with the hypothetical_formula t1_p8 = t1.i.inconsistency_by_negation_introduction.infer_statement(p=t2_a1, not_p=t2_p7, inconsistent_theory=t2) - t1_p9 = t1.i.proof_by_refutation_1.infer_statement(p=t1_h1, inc_p=t1_p8) + t1_p9 = t1.i.proof_by_refutation_1.infer_statement(p_hypothesis=t1_h1, inc_hypothesis=t1_p8) pass diff --git a/tests/test_section.py b/tests/test_section.py index 61e00f98..b787a709 100644 --- a/tests/test_section.py +++ b/tests/test_section.py @@ -10,17 +10,17 @@ def test_section(self): u = p.UniverseOfDiscourse() t = u.t(subtitle='A test theory') s_1 = t.open_section('something interesting', echo=True) - self.assertEqual('# ๐Ÿญ ๐—ฆ๐—ผ๐—บ๐—ฒ๐˜๐—ต๐—ถ๐—ป๐—ด ๐—ถ๐—ป๐˜๐—ฒ๐—ฟ๐—ฒ๐˜€๐˜๐—ถ๐—ป๐—ด', s_1.rep_report()) + self.assertEqual('# ๐Ÿญ: ๐—ฆ๐—ผ๐—บ๐—ฒ๐˜๐—ต๐—ถ๐—ป๐—ด ๐—ถ๐—ป๐˜๐—ฒ๐—ฟ๐—ฒ๐˜€๐˜๐—ถ๐—ป๐—ด', s_1.rep_report()) s_2 = t.open_section('something else', echo=True) - self.assertEqual('# ๐Ÿฎ ๐—ฆ๐—ผ๐—บ๐—ฒ๐˜๐—ต๐—ถ๐—ป๐—ด ๐—ฒ๐—น๐˜€๐—ฒ', s_2.rep_report()) + self.assertEqual('# ๐Ÿฎ: ๐—ฆ๐—ผ๐—บ๐—ฒ๐˜๐—ต๐—ถ๐—ป๐—ด ๐—ฒ๐—น๐˜€๐—ฒ', s_2.rep_report()) s_2_1 = t.open_section('some details on this topic', section_parent=s_2, echo=True) - self.assertEqual('## ๐Ÿฎ.๐Ÿญ ๐—ฆ๐—ผ๐—บ๐—ฒ ๐—ฑ๐—ฒ๐˜๐—ฎ๐—ถ๐—น๐˜€ ๐—ผ๐—ป ๐˜๐—ต๐—ถ๐˜€ ๐˜๐—ผ๐—ฝ๐—ถ๐—ฐ', s_2_1.rep_report()) + self.assertEqual('## ๐Ÿฎ.๐Ÿญ: ๐—ฆ๐—ผ๐—บ๐—ฒ ๐—ฑ๐—ฒ๐˜๐—ฎ๐—ถ๐—น๐˜€ ๐—ผ๐—ป ๐˜๐—ต๐—ถ๐˜€ ๐˜๐—ผ๐—ฝ๐—ถ๐—ฐ', s_2_1.rep_report()) s_2_2 = t.open_section('some more details on this topic', section_parent=s_2, echo=True) - self.assertEqual('## ๐Ÿฎ.๐Ÿฎ ๐—ฆ๐—ผ๐—บ๐—ฒ ๐—บ๐—ผ๐—ฟ๐—ฒ ๐—ฑ๐—ฒ๐˜๐—ฎ๐—ถ๐—น๐˜€ ๐—ผ๐—ป ๐˜๐—ต๐—ถ๐˜€ ๐˜๐—ผ๐—ฝ๐—ถ๐—ฐ', s_2_2.rep_report()) + self.assertEqual('## ๐Ÿฎ.๐Ÿฎ: ๐—ฆ๐—ผ๐—บ๐—ฒ ๐—บ๐—ผ๐—ฟ๐—ฒ ๐—ฑ๐—ฒ๐˜๐—ฎ๐—ถ๐—น๐˜€ ๐—ผ๐—ป ๐˜๐—ต๐—ถ๐˜€ ๐˜๐—ผ๐—ฝ๐—ถ๐—ฐ', s_2_2.rep_report()) s_2_2_1 = t.open_section('zooming in', section_parent=s_2_2, echo=True) - self.assertEqual('### ๐Ÿฎ.๐Ÿฎ.๐Ÿญ ๐—ญ๐—ผ๐—ผ๐—บ๐—ถ๐—ป๐—ด ๐—ถ๐—ป', s_2_2_1.rep_report()) + self.assertEqual('### ๐Ÿฎ.๐Ÿฎ.๐Ÿญ: ๐—ญ๐—ผ๐—ผ๐—บ๐—ถ๐—ป๐—ด ๐—ถ๐—ป', s_2_2_1.rep_report()) s_2_2_7 = t.open_section('jumping sections', section_number=7, section_parent=s_2_2, - echo=True) - self.assertEqual('### ๐Ÿฎ.๐Ÿฎ.๐Ÿณ ๐—๐˜‚๐—บ๐—ฝ๐—ถ๐—ป๐—ด ๐˜€๐—ฒ๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€', s_2_2_7.rep_report()) + echo=True) + self.assertEqual('### ๐Ÿฎ.๐Ÿฎ.๐Ÿณ: ๐—๐˜‚๐—บ๐—ฝ๐—ถ๐—ป๐—ด ๐˜€๐—ฒ๐—ฐ๐˜๐—ถ๐—ผ๐—ป๐˜€', s_2_2_7.rep_report()) s_2_3 = t.open_section('yet more details on this topic', section_parent=s_2, echo=True) - self.assertEqual('## ๐Ÿฎ.๐Ÿฏ ๐—ฌ๐—ฒ๐˜ ๐—บ๐—ผ๐—ฟ๐—ฒ ๐—ฑ๐—ฒ๐˜๐—ฎ๐—ถ๐—น๐˜€ ๐—ผ๐—ป ๐˜๐—ต๐—ถ๐˜€ ๐˜๐—ผ๐—ฝ๐—ถ๐—ฐ', s_2_3.rep_report()) + self.assertEqual('## ๐Ÿฎ.๐Ÿฏ: ๐—ฌ๐—ฒ๐˜ ๐—บ๐—ผ๐—ฟ๐—ฒ ๐—ฑ๐—ฒ๐˜๐—ฎ๐—ถ๐—น๐˜€ ๐—ผ๐—ป ๐˜๐—ต๐—ถ๐˜€ ๐˜๐—ผ๐—ฝ๐—ถ๐—ฐ', s_2_3.rep_report()) diff --git a/tests/test_tao_2006_the_peano_axioms.py b/tests/test_tao_2006_the_peano_axioms.py index 461fbf11..21978a48 100644 --- a/tests/test_tao_2006_the_peano_axioms.py +++ b/tests/test_tao_2006_the_peano_axioms.py @@ -3,8 +3,8 @@ # from package.tao_2006_the_peano_axioms import p -u = tpa.u -t = tpa.t +t = tpa.Tao2006ThePeanoAxioms.develop_theory() +u = t.u class TestTao2006ThePeanoAxioms(unittest.TestCase): diff --git a/tests/test_theory_elaboration_stabilized.py b/tests/test_theory_elaboration_stabilized.py index 937f4d85..6bc23f04 100644 --- a/tests/test_theory_elaboration_stabilized.py +++ b/tests/test_theory_elaboration_stabilized.py @@ -22,9 +22,10 @@ def test_theory_elaboration_stabilized(self): r1o1o2 = robust_theory.i.axiom_interpretation.infer_statement(ap1, u.f(r1, o1, o2)) r1o2o3 = robust_theory.i.axiom_interpretation.infer_statement(ap1, u.f(r1, o2, o3)) r1o1o2_and_r1o2o3 = robust_theory.i.ci.infer_statement(r1o1o2, r1o2o3) - implication_2 = robust_theory.i.variable_substitution.infer_statement(p=implication, - phi=(o1, o2, o3)) - robust_theory.i.mp.infer_statement(p_implies_q=implication_2, p=r1o1o2_and_r1o2o3) + implication_2 = robust_theory.i.variable_substitution.infer_statement( + p_hypothesis=implication, phi=(o1, o2, o3)) + robust_theory.i.mp.infer_statement(p_implies_q=implication_2, + p_hypothesis=r1o1o2_and_r1o2o3) robust_theory.stabilize() self.assertTrue(robust_theory.stabilized, 'The stabilized property of the original-theory is not True.') diff --git a/tests/test_variable_substitution.py b/tests/test_variable_substitution.py index 073b64e0..8324ee98 100644 --- a/tests/test_variable_substitution.py +++ b/tests/test_variable_substitution.py @@ -19,7 +19,7 @@ def test_variable_substitution_without_variable(self): p_statement = t.i.axiom_interpretation.infer_statement(axiom=ap, formula=p_formula, echo=True) # y_sequence = tuple() - p_prime = t.i.vs.infer_statement(p=p_statement, phi=(), echo=True) + p_prime = t.i.vs.infer_statement(p_hypothesis=p_statement, phi=(), echo=True) self.assertTrue(p_prime.is_formula_syntactically_equivalent_to(p_statement)) self.assertEqual('๐‘Ÿโ‚(๐‘Ÿโ‚‚(๐‘œโ‚, ๐‘œโ‚‚))', p_prime.rep_formula(encoding=pu.encodings.unicode)) @@ -43,7 +43,7 @@ def test_variable_substitution_with_free_variables(self): formula=f(g(g(z, g(f(x), y)), g(x, y))), echo=True) self.assertEqual('๐‘“(๐‘”(๐‘”(๐ณ, ๐‘”(๐‘“(๐ฑ), ๐ฒ)), ๐‘”(๐ฑ, ๐ฒ)))', p_statement.rep_formula(encoding=pu.encodings.unicode)) - p_prime = t.i.vs.infer_statement(p=p_statement, phi=(o4, o6, o5), echo=True) + p_prime = t.i.vs.infer_statement(p_hypothesis=p_statement, phi=(o4, o6, o5), echo=True) self.assertEqual('๐‘“(๐‘”(๐‘”(๐‘œโ‚„, ๐‘”(๐‘“(๐‘œโ‚†), ๐‘œโ‚…)), ๐‘”(๐‘œโ‚†, ๐‘œโ‚…)))', p_prime.rep_formula(encoding=pu.encodings.unicode)) p_prime.is_formula_syntactically_equivalent_to(o2=f(g(g(o4, g(f(o6), o5)), g(o6, o5)))) diff --git a/theory/package/tao_2006_2_1_the_peano_axioms.py b/theory/package/tao_2006_2_1_the_peano_axioms.py index 691ece90..f128dc97 100644 --- a/theory/package/tao_2006_2_1_the_peano_axioms.py +++ b/theory/package/tao_2006_2_1_the_peano_axioms.py @@ -53,7 +53,7 @@ def develop_theory(self, t: pu.TheoryElaborationSequence) -> pu.TheoryElaboratio p002 = t.i.axiom_interpretation.infer_statement(a04, ( (n | u.r.is_a | natural_number) | u.r.implies | ( (n & plusplus) | u.r.is_a | natural_number))) - p003 = t.i.variable_substitution.infer_statement(p=p002, phi=tuple([zero])) + p003 = t.i.variable_substitution.infer_statement(p_hypothesis=p002, phi=tuple([zero])) p004 = t.i.mp.infer_statement(p003, p001, ref='2.2.3') # DEFINITION 2.1.3 @@ -78,7 +78,7 @@ def develop_theory(self, t: pu.TheoryElaborationSequence) -> pu.TheoryElaboratio u.f(u.r.equal, four, ((((zero & plusplus) & plusplus) & plusplus) & plusplus))) zero_plusplus = (zero & plusplus) - p009 = t.i.variable_substitution.infer_statement(p=p002, phi=zero_plusplus) + p009 = t.i.variable_substitution.infer_statement(p_hypothesis=p002, phi=zero_plusplus) p010 = t.i.mp.infer_statement(p009, p004) zero_plus_plus_plusplus = u.f(plusplus, zero_plusplus) p011 = t.i.variable_substitution.infer_statement(p002, zero_plus_plus_plusplus) @@ -161,13 +161,13 @@ def develop_theory(self, t: pu.TheoryElaborationSequence) -> pu.TheoryElaboratio # Take ๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (Pโ‚ƒโ‚): ((((๐งโ‚ƒ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (๐ฆโ‚ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (๐งโ‚ƒ โ‰  ๐ฆโ‚)) โŸน ((๐งโ‚ƒ)++ โ‰  (๐ฆโ‚)++)). # Substitute ๐งโ‚ƒ with 4, and ๐ฆโ‚ with 0. # ๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (Pโ‚ƒโ‚‚): ((((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (4 โ‰  0)) โŸน ((4)++ โ‰  (0)++)). - p033 = t.i.variable_substitution.infer_statement(p=p032, phi=(four, zero)) + p033 = t.i.variable_substitution.infer_statement(p_hypothesis=p032, phi=(four, zero)) # It follows that ((((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (4 โ‰  0)) โŸน ((4)++ โ‰  (0)++)). # Pair two true propositions (4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) and (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). # ๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป(Pโ‚ƒโ‚„): ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). - p034 = t.i.conjunction_introduction.infer_statement(p=p027, q=p001) + p034 = t.i.conjunction_introduction.infer_statement(p_hypothesis=p027, q=p001) # ๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (Pโ‚ƒโ‚…): (((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (4 โ‰  0)). - p035 = t.i.conjunction_introduction.infer_statement(p=p034, q=p031) + p035 = t.i.conjunction_introduction.infer_statement(p_hypothesis=p034, q=p031) # ๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (Pโ‚ƒโ‚†): ((4)++ โ‰  (0)++). p036 = t.i.modus_ponens.infer_statement(p033, p035) five = u.o.declare(symbol='5', auto_index=False) @@ -181,7 +181,7 @@ def develop_theory(self, t: pu.TheoryElaborationSequence) -> pu.TheoryElaboratio # ๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (Pโ‚„โ‚€): (5 = (4)++). p040 = t.i.equality_commutativity.infer_statement(p039) # ๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (Pโ‚„โ‚): ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน ((5)++ โ‰  (1)++)). - p041 = t.i.variable_substitution.infer_statement(p=p032, phi=(five, one)) + p041 = t.i.variable_substitution.infer_statement(p_hypothesis=p032, phi=(five, one)) # ๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (Pโ‚„โ‚‚): ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน ((4)++ ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). p042 = t.i.variable_substitution.infer_statement(p002, four) # ๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (Pโ‚„โ‚ƒ): ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โŸน (5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). @@ -189,11 +189,11 @@ def develop_theory(self, t: pu.TheoryElaborationSequence) -> pu.TheoryElaboratio # ๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป(Pโ‚„โ‚„): (5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ). p044 = t.i.modus_ponens.infer_statement(p043, p027) # ๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (Pโ‚„โ‚…): ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง (5 โ‰  1)) โŸน ((5)++ โ‰  (1)++)). - p045 = t.i.variable_substitution.infer_statement(p=p032, phi=(five, one)) + p045 = t.i.variable_substitution.infer_statement(p_hypothesis=p032, phi=(five, one)) # ๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (Pโ‚„โ‚†): ((4)++ โ‰  (0)++). p046 = t.i.modus_ponens.infer_statement(p033, p035) # ๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป (Pโ‚„โ‚‡): (5 โ‰  (0)++). - p047 = t.i.equal_terms_substitution.infer_statement(p=p046, q_equal_r=p039) + p047 = t.i.equal_terms_substitution.infer_statement(p_hypothesis=p046, q_equal_r=p039) six = u.o.declare(symbol='6', auto_index=False) # ๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป: (6 = ((((((0)++)++)++)++)++)++). p049 = t.i.definition_interpretation.infer_statement(d02, u.f(u.r.equal, six, @@ -204,7 +204,7 @@ def develop_theory(self, t: pu.TheoryElaborationSequence) -> pu.TheoryElaboratio p054 = t.i.equal_terms_substitution.infer_statement(p004, p015) p051 = t.i.equal_terms_substitution.infer_statement(p050, p038) # (6 = (5)++) - p057 = t.i.equality_commutativity.infer_statement(p_eq_q=p051) + p057 = t.i.equality_commutativity.infer_statement(p_eq_q_hypothesis=p051) t.open_section('Proof by contradiction', section_parent=s55, numbering=False) @@ -218,47 +218,49 @@ def develop_theory(self, t: pu.TheoryElaborationSequence) -> pu.TheoryElaboratio # Then 5++ = 1++, # ((5)++ = 2) h1_p2 = h1.hypothesis_child_theory.i.equal_terms_substitution.infer_statement( - p=hypothesis_statement, q_equal_r=p057) + p_hypothesis=hypothesis_statement, q_equal_r=p057) # ((5)++ = (1)++) - h1_p3 = h1.hypothesis_child_theory.i.equal_terms_substitution.infer_statement(p=h1_p2, - q_equal_r=p016) + h1_p3 = h1.hypothesis_child_theory.i.equal_terms_substitution.infer_statement( + p_hypothesis=h1_p2, q_equal_r=p016) # so by Axiom 2.4 we have 5 = 1 # ((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) - h1_p4 = h1.hypothesis_child_theory.i.conjunction_introduction.infer_statement(p=p044, - q=p054) + h1_p4 = h1.hypothesis_child_theory.i.conjunction_introduction.infer_statement( + p_hypothesis=p044, q=p054) # (((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง ((5)++ = (1)++)) - h1_p5 = h1.hypothesis_child_theory.i.conjunction_introduction.infer_statement(p=h1_p4, - q=h1_p3) + h1_p5 = h1.hypothesis_child_theory.i.conjunction_introduction.infer_statement( + p_hypothesis=h1_p4, q=h1_p3) # ((((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง ((5)++ = (1)++)) โŸน (5 = 1)) - h1_p6 = h1.hypothesis_child_theory.i.variable_substitution.infer_statement(p=p032b, - phi=tuple([five, one])) + h1_p6 = h1.hypothesis_child_theory.i.variable_substitution.infer_statement( + p_hypothesis=p032b, phi=tuple([five, one])) # (5 = 1) h1_p7 = h1.hypothesis_child_theory.i.modus_ponens.infer_statement(p_implies_q=h1_p6, - p=h1_p5) + p_hypothesis=h1_p5) # so that 4++ = 0++. # ((4)++ = 1) - h1_p8 = h1.hypothesis_child_theory.i.equal_terms_substitution.infer_statement(p=h1_p7, - q_equal_r=p040) + h1_p8 = h1.hypothesis_child_theory.i.equal_terms_substitution.infer_statement( + p_hypothesis=h1_p7, q_equal_r=p040) # ((4)++ = (0)++) - h1_p9 = h1.hypothesis_child_theory.i.equal_terms_substitution.infer_statement(p=h1_p8, - q_equal_r=p005) + h1_p9 = h1.hypothesis_child_theory.i.equal_terms_substitution.infer_statement( + p_hypothesis=h1_p8, q_equal_r=p005) # ((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) - h1_p10 = h1.hypothesis_child_theory.i.conjunction_introduction.infer_statement(p=p027, - q=p001) + h1_p10 = h1.hypothesis_child_theory.i.conjunction_introduction.infer_statement( + p_hypothesis=p027, q=p001) # (((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง ((4)++ = (0)++)) - h1_p11 = h1.hypothesis_child_theory.i.conjunction_introduction.infer_statement(p=h1_p10, - q=h1_p9) + h1_p11 = h1.hypothesis_child_theory.i.conjunction_introduction.infer_statement( + p_hypothesis=h1_p10, q=h1_p9) # ((((4 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (0 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)) โˆง ((4)++ = (0)++)) โŸน (4 = 0)) - h1_p12 = h1.hypothesis_child_theory.i.variable_substitution.infer_statement(p=p032b, - phi=tuple([four, zero])) + h1_p12 = h1.hypothesis_child_theory.i.variable_substitution.infer_statement( + p_hypothesis=p032b, phi=tuple([four, zero])) # (4 = 0) # By Axiom 2.4 again we then have 4 = 0, which contradicts our previous proposition. h1_p071 = h1.hypothesis_child_theory.i.modus_ponens.infer_statement(p_implies_q=h1_p12, - p=h1_p11) - p072 = t.i.inconsistency_by_inequality_introduction.infer_statement(p_eq_q=h1_p071, - p_neq_q=p031, inconsistent_theory=h1.hypothesis_child_theory) - p073 = t.i.proof_by_refutation_2.infer_statement(p_eq_q=h1, inc_p_eq_q=p072, ref='2.1.8') + p_hypothesis=h1_p11) + p072 = t.i.inconsistency_by_inequality_introduction.infer_statement( + p_eq_q_hypothesis=h1_p071, p_neq_q_hypothesis=p031, + inconsistent_theory=h1.hypothesis_child_theory) + p073 = t.i.proof_by_refutation_2.infer_statement(p_eq_q_hypothesis=h1, inc_hypothesis=p072, + ref='2.1.8') t.open_section('Direct proof', section_parent=s55, numbering=False) @@ -274,7 +276,7 @@ def develop_theory(self, t: pu.TheoryElaborationSequence) -> pu.TheoryElaboratio # ๐—ฃ๐—ฟ๐—ผ๐—ฝ๐—ผ๐˜€๐—ถ๐˜๐—ถ๐—ผ๐—ป: ((5 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ) โˆง (1 ๐‘–๐‘ -๐‘Ž ๐‘›๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘Ž๐‘™-๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ)). p055 = t.i.conjunction_introduction.infer_statement(p044, p054) p056 = t.i.conjunction_introduction.infer_statement(p055, p048) - p057 = t.i.modus_ponens.infer_statement(p_implies_q=p053, p=p056) + p057 = t.i.modus_ponens.infer_statement(p_implies_q=p053, p_hypothesis=p056) t.open_section('Axiom 2.5: The principle of mathematical induction', section_parent=section_2_1, numbering=False) From 60cb3122d55d50138c12e8315eed1fa9d634eb6e Mon Sep 17 00:00:00 2001 From: David Doret Date: Thu, 24 Aug 2023 23:10:22 +0200 Subject: [PATCH 10/21] cleanup --- tests/test_proof_by_contradiction_2.py | 45 +++++++++++++++++++++ tests/test_text.py | 31 +++++--------- tests/test_theory_elaboration_stabilized.py | 7 ++-- tests/test_variable_substitution.py | 4 +- 4 files changed, 61 insertions(+), 26 deletions(-) create mode 100644 tests/test_proof_by_contradiction_2.py diff --git a/tests/test_proof_by_contradiction_2.py b/tests/test_proof_by_contradiction_2.py new file mode 100644 index 00000000..cb64e662 --- /dev/null +++ b/tests/test_proof_by_contradiction_2.py @@ -0,0 +1,45 @@ +from unittest import TestCase +import punctilious as pu +import random_data + + +# TODO: Proof by contradiction: design test +class TestProofByContradiction1(TestCase): + def test_proof_by_contradiction_2(self): + pu.configuration.echo_default = False + pu.configuration.echo_inferred_statement = True + # Prepare the universe of discourse + u = pu.UniverseOfDiscourse() + blah_blah_blah = random_data.random_sentence(min_words=3) + a1 = u.declare_axiom(blah_blah_blah) + o1 = u.o.declare() + o2 = u.o.declare() + o3 = u.o.declare() + r1 = u.r.declare(2, signal_proposition=True) + # Elaborate the parent theory + t1 = u.t() + t1_a2 = t1.include_axiom(a=a1) + t1_p1 = t1.i.axiom_interpretation.infer_statement(axiom=t1_a2, formula=(o1 | u.r.eq | o2)) + t1_p2 = t1.i.axiom_interpretation.infer_statement(axiom=t1_a2, formula=(o2 | u.r.eq | o3)) + with u.v('x') as x, u.v('y') as y, u.v('z') as z: + t1_p3_implication = t1.i.axiom_interpretation.infer_statement(axiom=t1_a2, + formula=((x | u.r.eq | y) | u.r.land | (y | u.r.eq | z))) + t1.stabilize() + hypothetical_formula = (o1 | u.r.neq | o3) + t1_h1 = t1.pose_hypothesis(hypothesis_formula=hypothetical_formula) + # TODO: The hypothetical-theory must be stabilized immediately, + # otherwise new axioms or definitions may be introduced, + # leading to inconsistent results from the perspective of the + # base theory. + t2 = t1_h1.hypothesis_child_theory + t2_a1 = t1_h1.hypothesis_statement_in_child_theory + t2_p5 = t2.i.conjunction_introduction.infer_statement(p=t1_p1, q=t1_p2) + t2_p6 = t2.i.variable_substitution.infer_statement(p=t1_p3_implication, phi=(o1, o2, o3)) + # p7: ๐‘Ÿโ‚(๐‘œโ‚, ๐‘œโ‚ƒ) by modus ponens + t2_p7 = t2.i.modus_ponens.infer_statement(p_implies_q=t2_p6, p=t2_p5) + # p7 is in contradiction with the hypothetical_formula + t1_p8 = t1.i.inconsistency_by_negation_introduction.infer_statement(p=t2_a1, not_p=t2_p7, + inconsistent_theory=t2) + t1_p9 = t1.i.proof_by_contradiction_2.infer_statement(p_hypothesis=t1_h1, + inc_hypothesis=t1_p8) + pass diff --git a/tests/test_text.py b/tests/test_text.py index d18b35d9..338580c1 100644 --- a/tests/test_text.py +++ b/tests/test_text.py @@ -12,38 +12,29 @@ def test_1(self): def test_styled_text(self): pangram = 'The quick brown fox jumps over the lazy dog 0123456789!' - x = pu.ComposableText(pangram, text_style=pu.text_styles.serif_bold) + x = pu.SansSerifBold(pangram) x_plaintext = x.rep(encoding=pu.encodings.plaintext) - self.assertEqual( - 'The quick brown fox jumps over the lazy dog 0123456789!', - x_plaintext) + self.assertEqual('The quick brown fox jumps over the lazy dog 0123456789!', x_plaintext) x_unicode = x.rep(encoding=pu.encodings.unicode) self.assertEqual( - '๐“๐ก๐ž ๐ช๐ฎ๐ข๐œ๐ค ๐›๐ซ๐จ๐ฐ๐ง ๐Ÿ๐จ๐ฑ ๐ฃ๐ฎ๐ฆ๐ฉ๐ฌ ๐จ๐ฏ๐ž๐ซ ๐ญ๐ก๐ž ๐ฅ๐š๐ณ๐ฒ ๐๐จ๐  ๐ŸŽ๐Ÿ๐Ÿ๐Ÿ‘๐Ÿ’๐Ÿ“๐Ÿ”๐Ÿ•๐Ÿ–๐Ÿ—!', - x_unicode) + '๐—ง๐—ต๐—ฒ ๐—พ๐˜‚๐—ถ๐—ฐ๐—ธ ๐—ฏ๐—ฟ๐—ผ๐˜„๐—ป ๐—ณ๐—ผ๐˜… ๐—ท๐˜‚๐—บ๐—ฝ๐˜€ ๐—ผ๐˜ƒ๐—ฒ๐—ฟ ๐˜๐—ต๐—ฒ ๐—น๐—ฎ๐˜‡๐˜† ๐—ฑ๐—ผ๐—ด ๐Ÿฌ๐Ÿญ๐Ÿฎ๐Ÿฏ๐Ÿฐ๐Ÿฑ๐Ÿฒ๐Ÿณ๐Ÿด๐Ÿต!', x_unicode) x_latex = x.rep(encoding=pu.encodings.latex) self.assertEqual( - '\\mathbf{The quick brown fox jumps over the lazy dog 0123456789!}', + '\\boldsymbol\\mathsf{The quick brown fox jumps over the lazy dog 0123456789!}}', x_latex) - x = pu.ComposableText(pangram, text_style=pu.text_styles.serif_normal) - self.assertEqual( - 'The quick brown fox jumps over the lazy dog 0123456789!', + x = pu.ComposableText(pangram) + self.assertEqual('The quick brown fox jumps over the lazy dog 0123456789!', x.rep(pu.encodings.plaintext)) - self.assertEqual( - 'The quick brown fox jumps over the lazy dog 0123456789!', + self.assertEqual('The quick brown fox jumps over the lazy dog 0123456789!', x.rep(pu.encodings.unicode)) - self.assertEqual( - '\\mathnormal{The quick brown fox jumps over the lazy dog 0123456789!}', + self.assertEqual('\\mathnormal{The quick brown fox jumps over the lazy dog 0123456789!}', x.rep(pu.encodings.latex)) x = pu.ComposableText(pangram, pu.text_styles.double_struck) - self.assertEqual( - 'The quick brown fox jumps over the lazy dog 0123456789!', + self.assertEqual('The quick brown fox jumps over the lazy dog 0123456789!', x.rep(pu.encodings.plaintext)) self.assertEqual( - '๐•‹๐•™๐•– ๐•ข๐•ฆ๐•š๐•”๐•œ ๐•“๐•ฃ๐• ๐•จ๐•Ÿ ๐•—๐• ๐•ฉ ๐•›๐•ฆ๐•ž๐•ก๐•ค ๐• ๐•ง๐•–๐•ฃ ๐•ฅ๐•™๐•– ๐•๐•’๐•ซ๐•ช ๐••๐• ๐•˜ ๐Ÿ˜๐Ÿ™๐Ÿš๐Ÿ›๐Ÿœ๐Ÿ๐Ÿž๐ŸŸ๐Ÿ ๐Ÿก!', - x.rep(pu.encodings.unicode)) - self.assertEqual( - '\\mathbb{The quick brown fox jumps over the lazy dog 0123456789!}', + '๐•‹๐•™๐•– ๐•ข๐•ฆ๐•š๐•”๐•œ ๐•“๐•ฃ๐• ๐•จ๐•Ÿ ๐•—๐• ๐•ฉ ๐•›๐•ฆ๐•ž๐•ก๐•ค ๐• ๐•ง๐•–๐•ฃ ๐•ฅ๐•™๐•– ๐•๐•’๐•ซ๐•ช ๐••๐• ๐•˜ ๐Ÿ˜๐Ÿ™๐Ÿš๐Ÿ›๐Ÿœ๐Ÿ๐Ÿž๐ŸŸ๐Ÿ ๐Ÿก!', x.rep(pu.encodings.unicode)) + self.assertEqual('\\mathbb{The quick brown fox jumps over the lazy dog 0123456789!}', x.rep(pu.encodings.latex)) def test_equality(self): diff --git a/tests/test_theory_elaboration_stabilized.py b/tests/test_theory_elaboration_stabilized.py index 6bc23f04..937f4d85 100644 --- a/tests/test_theory_elaboration_stabilized.py +++ b/tests/test_theory_elaboration_stabilized.py @@ -22,10 +22,9 @@ def test_theory_elaboration_stabilized(self): r1o1o2 = robust_theory.i.axiom_interpretation.infer_statement(ap1, u.f(r1, o1, o2)) r1o2o3 = robust_theory.i.axiom_interpretation.infer_statement(ap1, u.f(r1, o2, o3)) r1o1o2_and_r1o2o3 = robust_theory.i.ci.infer_statement(r1o1o2, r1o2o3) - implication_2 = robust_theory.i.variable_substitution.infer_statement( - p_hypothesis=implication, phi=(o1, o2, o3)) - robust_theory.i.mp.infer_statement(p_implies_q=implication_2, - p_hypothesis=r1o1o2_and_r1o2o3) + implication_2 = robust_theory.i.variable_substitution.infer_statement(p=implication, + phi=(o1, o2, o3)) + robust_theory.i.mp.infer_statement(p_implies_q=implication_2, p=r1o1o2_and_r1o2o3) robust_theory.stabilize() self.assertTrue(robust_theory.stabilized, 'The stabilized property of the original-theory is not True.') diff --git a/tests/test_variable_substitution.py b/tests/test_variable_substitution.py index 8324ee98..073b64e0 100644 --- a/tests/test_variable_substitution.py +++ b/tests/test_variable_substitution.py @@ -19,7 +19,7 @@ def test_variable_substitution_without_variable(self): p_statement = t.i.axiom_interpretation.infer_statement(axiom=ap, formula=p_formula, echo=True) # y_sequence = tuple() - p_prime = t.i.vs.infer_statement(p_hypothesis=p_statement, phi=(), echo=True) + p_prime = t.i.vs.infer_statement(p=p_statement, phi=(), echo=True) self.assertTrue(p_prime.is_formula_syntactically_equivalent_to(p_statement)) self.assertEqual('๐‘Ÿโ‚(๐‘Ÿโ‚‚(๐‘œโ‚, ๐‘œโ‚‚))', p_prime.rep_formula(encoding=pu.encodings.unicode)) @@ -43,7 +43,7 @@ def test_variable_substitution_with_free_variables(self): formula=f(g(g(z, g(f(x), y)), g(x, y))), echo=True) self.assertEqual('๐‘“(๐‘”(๐‘”(๐ณ, ๐‘”(๐‘“(๐ฑ), ๐ฒ)), ๐‘”(๐ฑ, ๐ฒ)))', p_statement.rep_formula(encoding=pu.encodings.unicode)) - p_prime = t.i.vs.infer_statement(p_hypothesis=p_statement, phi=(o4, o6, o5), echo=True) + p_prime = t.i.vs.infer_statement(p=p_statement, phi=(o4, o6, o5), echo=True) self.assertEqual('๐‘“(๐‘”(๐‘”(๐‘œโ‚„, ๐‘”(๐‘“(๐‘œโ‚†), ๐‘œโ‚…)), ๐‘”(๐‘œโ‚†, ๐‘œโ‚…)))', p_prime.rep_formula(encoding=pu.encodings.unicode)) p_prime.is_formula_syntactically_equivalent_to(o2=f(g(g(o4, g(f(o6), o5)), g(o6, o5)))) From 5e8fb9c95132884d19c8f5ac04e5251a173ef7e4 Mon Sep 17 00:00:00 2001 From: David Doret Date: Thu, 24 Aug 2023 23:29:34 +0200 Subject: [PATCH 11/21] cleanup --- .../.doctrees/disjunction_elimination.doctree | Bin 0 -> 2508 bytes docs/build/.doctrees/environment.pickle | Bin 1085371 -> 1312370 bytes docs/build/.doctrees/index.doctree | Bin 6010 -> 6283 bytes .../proof_by_contradiction_1.doctree | Bin 0 -> 35504 bytes .../proof_by_contradiction_2.doctree | Bin 0 -> 34140 bytes .../.doctrees/proof_by_refutation_1.doctree | Bin 0 -> 35176 bytes .../.doctrees/proof_by_refutation_2.doctree | Bin 0 -> 35131 bytes .../.doctrees/universe_of_discourse.doctree | Bin 102197 -> 107660 bytes .../_sources/disjunction_elimination.rst.txt | 2 + docs/build/_sources/index.rst.txt | 8 + .../_sources/proof_by_contradiction_1.rst.txt | 35 ++ .../_sources/proof_by_contradiction_2.rst.txt | 35 ++ .../_sources/proof_by_refutation_1.rst.txt | 35 ++ .../_sources/proof_by_refutation_2.rst.txt | 35 ++ docs/build/absorption.html | 48 ++- .../absorption_declaration_python_class.html | 4 +- .../absorption_inclusion_python_class.html | 4 +- docs/build/absorption_math_object.html | 8 +- docs/build/bibliography.html | 2 +- .../build/biconditional_elimination_left.html | 2 +- .../biconditional_elimination_right.html | 2 +- docs/build/biconditional_introduction.html | 2 +- docs/build/conjunction_elimination_left.html | 2 +- docs/build/conjunction_elimination_right.html | 2 +- docs/build/conjunction_introduction.html | 32 +- docs/build/disjunction_elimination.html | 247 ++++++++++++ docs/build/disjunction_introduction.html | 32 +- docs/build/disjunction_introduction_left.html | 32 +- .../build/disjunction_introduction_right.html | 32 +- docs/build/double_negation_elimination.html | 2 +- docs/build/double_negation_introduction.html | 32 +- docs/build/elimination_rule.html | 10 +- docs/build/inconsistency_by_inequality.html | 8 +- ...onsistency_by_inequality_introduction.html | 8 +- ...consistency_by_inequality_math_object.html | 6 +- docs/build/index.html | 58 ++- docs/build/inference-rule.html | 10 +- docs/build/inference_rule.html | 12 +- docs/build/inference_rule_math_object.html | 12 +- docs/build/introduction_rule.html | 12 +- docs/build/is_a.html | 34 +- docs/build/meta_object.html | 26 +- docs/build/modus_ponens.html | 48 ++- docs/build/notation_form.html | 8 +- docs/build/objects.inv | Bin 1617 -> 1874 bytes docs/build/paragraph_proof.html | 6 +- docs/build/proof_by_contradiction_1.html | 330 +++++++++++++++ docs/build/proof_by_contradiction_2.html | 375 +++++++++++++++++ docs/build/proof_by_refutation_1.html | 376 ++++++++++++++++++ docs/build/proof_by_refutation_2.html | 376 ++++++++++++++++++ docs/build/relation.html | 26 +- docs/build/search.html | 44 ++ docs/build/searchindex.js | 2 +- docs/build/theory_elaboration_sequence.html | 88 ++-- docs/build/universe_of_discourse.html | 84 ++-- docs/build/variable_substitution.html | 48 ++- docs/source/disjunction_elimination.rst | 2 + docs/source/index.rst | 8 + docs/source/proof_by_contradiction_1.rst | 2 +- docs/source/proof_by_contradiction_2.rst | 35 ++ docs/source/proof_by_refutation_1.rst | 35 ++ docs/source/proof_by_refutation_2.rst | 35 ++ 62 files changed, 2475 insertions(+), 284 deletions(-) create mode 100644 docs/build/.doctrees/disjunction_elimination.doctree create mode 100644 docs/build/.doctrees/proof_by_contradiction_1.doctree create mode 100644 docs/build/.doctrees/proof_by_contradiction_2.doctree create mode 100644 docs/build/.doctrees/proof_by_refutation_1.doctree create mode 100644 docs/build/.doctrees/proof_by_refutation_2.doctree create mode 100644 docs/build/_sources/disjunction_elimination.rst.txt create mode 100644 docs/build/_sources/proof_by_contradiction_1.rst.txt create mode 100644 docs/build/_sources/proof_by_contradiction_2.rst.txt create mode 100644 docs/build/_sources/proof_by_refutation_1.rst.txt create mode 100644 docs/build/_sources/proof_by_refutation_2.rst.txt create mode 100644 docs/build/disjunction_elimination.html create mode 100644 docs/build/proof_by_contradiction_1.html create mode 100644 docs/build/proof_by_contradiction_2.html create mode 100644 docs/build/proof_by_refutation_1.html create mode 100644 docs/build/proof_by_refutation_2.html create mode 100644 docs/source/disjunction_elimination.rst create mode 100644 docs/source/proof_by_contradiction_2.rst create mode 100644 docs/source/proof_by_refutation_1.rst create mode 100644 docs/source/proof_by_refutation_2.rst diff --git a/docs/build/.doctrees/disjunction_elimination.doctree b/docs/build/.doctrees/disjunction_elimination.doctree new file mode 100644 index 0000000000000000000000000000000000000000..ba5d154e0b5f835e117fadb8faf2ad503d07bb5e GIT binary patch literal 2508 zcmaJ@TW=gS6mFC5CYx+FNiTrZ282*46-@#WNT{#nEh4Ha;Atz%JNB;KciRID#ku9vtP|pf zr?Y&O#IATKhT@S}7YFgxi|6Ct9Jg-#Grf>({PMC8)Rr%;c>{FZxT;fD(gZg~tZv-I zI9@`7ETM5^9TNNebPb`4FA%Tz67hW$J1V{c+>ifXe^wt{ADTnOW`{JbT`Fs?zDLxV6yX49AfD-HxLo*jz2r)n>SmG&PEw zj(acl42<0GC^of5d#+iE{oknyC{D-Gz6rhxKAnl(vpAS>%`NrDCL9<=l|3yh9JU*W z1YXW@+-i@(Dx7w_DM+qvzJ=o+BD9w&-klobwefuE^7MAx$xPRwB=f1UWrAenK&pxq zrpyiGVDe!j;fmK1@>Y65794}e_CZU!vpBT8GS(BtFF4>^i(7)K?%0d_d@g~Sr#`ra zQZM!xpM)9QjownLff_U{rzIo%uT-r8o$Fdic|!llXpg^OA6D zjU|F=rnm*-In=_ZxZ5DTWTjVIN%3IiX2pbf9Y>AP>j3&i_5I0@C-8prX60$z%Nc-a zP5>ZHhg zgE!<_6xSrkwZlSLk&b|XwH8Ql&uXf&!QEO?Q#%*`T2wh6m?85r6KapoE8{p>epz#* z@Z>@|*${M>pzY~Il>YES1x$eB?11$*x(lZiic zB}JS45zy5RK;5g)&5M1y| z7z=mvpm1Tbq9@BtUS(+0i+MYpCvc{maE1oHLI*!%6W z1zFX!8ERK?o$HId<>F>DOwhfcqSQ>HIXv;y&Nzk>*26x60<}CAIB3K2PJ4%OcSG9j zJ&0j#+8z42g|IRq-^jw|Tbzhv7YAA3FDpd&E{T&XC%(krV=;7bXSrDQ>zzWPwe zHj>lu+tvgusB$FtsmXJVIRZQ`aI1atlDaCu+uOx z3KQ}?NO8L`NpfSs}NqLqI@^6%3tupj@JppWpcghRa>huz?~A>Qu9b;-7+E>vKd UBC}krEtY3nI|lN)4wIw*0J-V#SpWb4 literal 0 HcmV?d00001 diff --git a/docs/build/.doctrees/environment.pickle b/docs/build/.doctrees/environment.pickle index 601fbeb4c90dee68f74ac66d454eb9b920c08678..0ddce662319b6dcea206bb4f0037fd633e05c239 100644 GIT binary patch literal 1312370 zcmeEv378y5b-#|ib>EULQ(ja{V!U)VBrG#XRo%ZMWcLTTrVFpYL)VgUamLom5*;2rNWiIM|U^3 zJga$IbJSj(tyY_p_DG?Uuh(?FVAPuSt^%CY;EScTE*1! zb?Z>IQO?(ml2K_`hwz?tC`aHAjY}9-(;l#Dc?R{!q@b)yqn6hJAzvv^8PiRBne34B zd*BLD;Pzm+a!jw)jDl{VLw3KV*Bjg;{X|_aTSld9HE%^nUBaBGk7pb83Xp9o4`;IV zqM1F>wAYFj(O|u1MGuCC+pM)5c!U(VELt2#(sM|amaLLt{uB}Z_}9k+TKb{$Fl)6T&!St zmMD)0YkEn~S|C~f&hZ`NJDTEEa%sg|;J-O5x!Ac8fLai8J!mHLT%sZr3WxUScj+V)7XK2wrC zE}mhpr7qkeR7U4V=PrXVAiQ0E2-fH;6m! z;l%u?)~I1X2A^O|kMpDcdNxusbo5iz>T5&IK>{XJ7GCrPJ(6svqYp!`#@nOY%RC5rMgC;?p zQ?F&q7PyaR@ti#<>rfZ%&A!46=rLW>F{t@c*0MmmIf2f|Ox6NdW_Y&u8|4CKvg{op z!_SL(@no5hJsGPpHD#P2VbV8Vvq*dba=q5b*D}ZfoELTK-$@CTD$G<04GalU z*)3RIujDh890}|UUaA>h(b?gmj8z291$^S*LS-gvI75CG-kt&9SL)?TUC-3?DIIv^ z^^Aqtr#qBh${>V{a>>8EIy+4&$ih^gp@ zQXDOA5zM{9neLe!6aW}?QaoRFMAxgCwQN~3tPous>Zv|=A48Y_t5iz@+HdgU-{U}K7NLBg966XyF6NiE$ z^^%o=Ff*oRokvUPQ64;4gA$gnjx=DnWI!RFcfO*~VSnYe3$x11{_~>3; z4$4}8xzuoEUyRzrj`U*jx5&&w2M)0T1VIaG!lc3&L3Xg9&>NCcf`>Curp2sfSWuTG zAYQDL3iO(kR?Ap7<)F=3Viq?SujWDL$BrPs>hd8r^%mHD^qghk2-gr6M)7OKuhCnp zy=NKU4B|3b->73wq7{C&gzHNq1B!+p3XGgCH;V_wW1&RRddaYgdadbHm&(;OWT1r@ z%nF7L8?9V7rVPAb4>rn2%9Z1gF}}vFJljacAB%@W{8qy#H1UMzioiQh7GHCV|IsvR z>CPjG9k|g^@uI50qFSNJDGehoDDEom7A*>zITnpl$rhx5?39yXu>dN_Mvq~3%GvH# zwVtv7(H3Cir+b2GsqMntpcSz0+Z8t8cgAANijQQ~I2xLwp=!Sx}VYgx75>jY?6 z9GOP70Gk=Qo6RY1MwpZq_%xTrl!r3o$KoZZaZtTd&Xxd@Si>n^!!U)`pb<9mEX4R# zfk;({K?;UALc)!oujO~V=Naypz3Aibm2C=x*UvNjo}_cNWYi@y%?W^_fNaf-^v{%* zm^VcM;o+dMp3(50JBAg^syb{a0b2BrP{B+oTY9#ZFOp5_Lx`rK^R65+feV-ojHKugBUTt4Ql zyKX&VJH}#cW~MZjC)`k35{<15`0*i{EO(lc;*(VMqC=x_ZVqi}>H>ZD<$_^BLC>;2 zUv%gxROwcyk_!k7K?aH(5a-=pupwJL-yMAJI6RU&z=cmGy}ia(&u!!7cJOFdh|Q?gS;oefSMxJ?kQ(%qsc!=@+Pc;J9Gx#yZI zwZ~q0&7OS+F5k0v@AX&SaKmLy(egU)RpBNgERdZ+_~gKz$*XSMa~0k@aNzQiFHdh zl2816y?E|ZEv`Ys<*P(FhbE+dMss2)SE(GqLs%LJNtG(KTIDzbCj#aY`3~D@=F4c_ zGc1XpFa~@&p9>|mRZD?OBeiU(-dZwsn*-UpRyUJfh_}1`^_-$WN-I&p#9h|ZE zl^n0sj*!{Ezd!U+ww#BZLrQ|dZS-1_B_2WSMNd7);c+dh9(h*mD{c`0H+vOpn0b)o zGtl-9s#jfJ`zSjXqVh1NlC(#_8JLM`#B!ByUJCP#h^S@vFLdYLGJ@c7wB*<`=;=)M z2-LcmA{0)-T?M*WR#{_V+LUymvK^br9CH=TD#!t&JXN6x4jYV)uuxEhZ=;$2jF;@Q zuPy6DBwh2_#9C!abEC1#t}(2#dHyl+6lye5k#riU2lCwK4TOz z2ofWx-XK>Tyux)?Q%o4vLaVZs`HV2MkLa_QH3c4Jdl2?60uIz6zN<_DcZjVL9*{OI zk&YN9C(9_4eP<6*90c(R_~pxF7@ER_H3avT){8Yv?+nK=A?6sRv-4ojHbNU4^3|#^ zmBWD}2DFMRwCwg;DvIp*IaJyf4lAi9470{G`cOFnFVvYrUIB9%t?xKxqh|J4R``bP zwXz8jP^0P#^yCnEM`+e60wj0!oa!vrC(0R8i;eP8s9$Y@5RJWXr&n#cS4}vWE&yLUM{*RxE+EEC z!F_LiZA`4`xUa1AfZ-L60lH;Aa5a5~LbYo72Jc-F>vVL@oC{);S7pX1!=S6pxWPQP zl8<^8Y#lKziwE6uAC6*i0AVAyaD~@`bmdq2x~pA{!ShIWrdOGK4~jBEhENa*V#OOT z-$1z4MD+Dm57v4Q7WW<=7cXepE4DYR+V-4L-d;2sSl0Aj@e$00E8bb^8a0lmu1=o~PH(1*KdFU^(^InC*?#VHcS5@&-`RlswD(118&oX`2x;G<@URC%;Bmgwj9Up} z+l|j^rqs-56 zij6WtxiAJ@D!BT7lT(G3PxRU`EdPncDp&Nb6-&y_bLmdl{XA-pXD;i|B&Zuzg3iH; zb%E#dWf^-Yo>x4d>lH63UMOBTL%x7N-kP?s(J>c9orlRfWK+e}TQBRm_LGZx3Ebuk z#F;*5o~h+j?W0B{v6su5c_=8zDi@#CJ_x}w2M1K~`r~`o>2IhnzB*@SOUJXbmTL}^ zWs#k6^&=B{lgD^djZ$eg<0@%Khi~+1fD72J&eZ6c!z^pO3Z&O@vw+;3>2Guvf5H7BLFml&{<4Z z!7Ho$B^g9Wcw#fj*1JVA&gaaq#Z`Fq;`KAxNpaFVXn6su9AR4WU>qLbq|_-o%b&g) zDil{^khrE4W{y~{BlfG=1@E$o6hREQY_MF)}gJ+R3Pmx5Qvq z(_RPmCu5>!vKPtkIXfCXnM}0757UP} z)FfL%NNsZIgq|V@h>#d3901WJGw?iRA_34omaQ3V(pZfgGFIv^n8-BlGptM&maBrX z7^BTW;`-|}ZOAr1b=AUAo!305KwYcE3rgm{z00Ft8+fsnZnqO(zi1kY{u zx8NHEF|c=Gdbz1Ow-L9?*&@OR)_A_Tf3cH-hD19`BEZ8UGIXGk>ogZP1m7^^A{xq^ zn9lb~4>uc!C{Je^UUK=PeQ%PP&@|jRNb<{fq2%fwzR`*4*D0YM;_-@InwR zt6sq4;s&5LAYe83Pc-bc(yt=J%w?A5oV{9kjwKf4Iv`0%qJ?0hJp|g&VkQ|)qxNz# zV<-qAvpeiXP@wiQUW|qB47R82w>}b#2*Z>4iQot2tzeBCG@i59$UtH6?O++I=^7g(A(z&s^1gR3aNflNVit2T zk4WLTq1UGv03_meQUU~t-culf9hIf1;*7lqSwQ#K__HOPgfL_Za^hNXu{~b~k-f}W z-NN`{)wy`kUdkY0p@^)FhCKwcm`zh2%D_xKHMnBp&Od(k;sHhao*I1M@?-CO2cD_| z|J2}ry-7TuPqv>LJh1sVLzq|0o*I1INl`UUq@5c4=%N!0FkT*<8ay&B>dm9$P7S{C zW1?cT2s<@+_SiGI(RtL%slmHH`$t@HK5=?#@Pki#4%duTo~H&MTylr#Zmb$OHMsPy zJGow1%byxN`sC+wS^MhX)ZoW|B;E;%=u?BGU!P=XEtJ)%!AHDqjthlCJ2g0P_Vf6+ zq6SY5e(YW1v8wt{4Ziw6Y_1+s)29Y+dC?zpQM8IUHTa6Z{1dL@shm@T)vw;g&tmo0 zslo3bx|^#-7#61n@A%P+M1|HW{M6v>jTdu;NOR%T;2(^?{=+n#q}_08aN$=!@(Fqn z)u~<0Q-iTgNRv>DE9lmcQnN=qXAy$syEFK6X0R$ zs6g9%J3SbX2v4%{jWq5?E(g$X;ZeBSV|~X@{^MBb@vNlAfXi-$7}h1C!h`kh%@<5*fB z{22`M#KuULSBM?Q4tnAVZ~NwN1dgg8aOOSs zRAE1d*tw?gj{W#U6cHW0PCLZme%;cZbcn-mTeL&R3dj}ELKRRKzJI~3=&~nImTmwP zBost{G{)LWBpfN6#6f7uIkZm(*}90^^os?eNqYeM7_jLRY%+|jmkF^e3b~DPt*j}z z!cVp!y@v&QL3#%V729+@C6QHSdZ4U@gvV49{!>%5);4WCZCISkm>+2zSPyT^_2@6}Z&$$dp9boET<~IwM2y!_M=+jG}>~} zW}BuXW%JTWEdOkActAF?f*Z+}on-?RC41LX9(x{T(oJX=GG#8jY@7C22QRU^azb;f zXct~~84NkcL}&RZGba?TdU1I01LSf0E_ZOMeP5_KjR^gZ-wOO!#lVkH`S!x&&1?+o z!ZVShAu$pIO+9Jkf9Ji0eX*(T01lX0`d#OeXyqz*#5q#(IFW%B4bM= zk5E==3}Xu`dZCRhw_^ zr&vf@@kk-jP=8|o%KQylij%hHZ&5+u-v{uHAX>$2NJEaDcra;@A*M>Bg_o-6;z&t={e z!6=0Ez-;ZAa1s3N?BO;K;nu-IQl*z_Y+WaD5)8RA-q+*^T`^dbO zXhe_i#C8BK@M=l}!L>ZZ`2|hknfdgU=&4OZ=f*jlDI?S$QW7|iRhcb5d-JETwf)i| zdl2EUg6BApy+9E%5w6L)zQy6_@K{zBwbToT$DIiOfAHOk&Xgb`(Y$=3!&|& zgp?5%5u9EgNA=12AL=L7-W)DH1vKZ35M1b`E65ecQ!J)=CyY_ zVU&|hl?WDW>DRxQZ}sSjoJDMCEt}37^=UkQv>AI1(jlv~&SAxKPDP0kNg?qAR(ulpvEiN1bGg zO6`*>U(Dx4^l#L>OD(Z4Z;7JYdXjL`=L4XJ9CEmmk43ikSdo`MRmMo|PlQw(HNQpV z_#0f>iv^f}OZAz2KMpr%S58lK#U*aj3pac(K)VFqbkMPjn5&ME3;KBTRBzi+UNn$c zCMNL${~P0#OaunqW1lzj9}KLAF7X+?CB}MyhZNg@Zuq2_c?R*cUzY{F-_aCkod=+? zp8AE$PQ*23R?L<-z?N8;A5lPge8qHX47t8~E3z37YMgkR~Bw1t>5 z|D8&mKxL@42bm_)do}k_-6!G_As{DFBpp`sI;u;asQDy%`mlJ-&@`{7`ZrRoHDsrta%!8Zpz&8)lXmjaltIl$(=0Z3{ z2LEw#5Ark-7GP~388r|)0h*>kgd9YOftUDAlYVk|*Y|s{ToKzJ=Io{Nme#g#Acei6 zT#-IL4(8)WvP)u}$)lI(6k88OUe_n-kxg_dopn&brUME~`Zfi%Ya;E6F_9ub_t;|E z(VB%LkQuG`7Tkgs(uRnaRD&t9mSR7hN-jS;v7hb?H)lWdG}%v)RC9!)88D|zQeut* z3fN0ZS-?0_%0#@OqWUne43oi~Q4v;a607Is0N*vM=OrBgi%?H3xWN2VB8f8+A@%eu zlsZ`HbM?Rn~2qpE*mw2A==!*BGMLx zcG0kxzELV@IbD+{&0|l3mYdbAs-8EH#`rY7fB=i!2slO?0W}U!BmJpfp-e`cp|5M% ze7->^F42R^l;y@~MXc>~G^mKQ`xN4|mt4==&oyCV_+1C3L>ZL_6?{7#72A)T zAjo&A0XF@-=|b*~pDwuyj-z9Ob6xpKPsB$Z>e{FN)NjLRMoOz&@UR=qVuQ- zAhX>$RGl3YD^RUXe`y}NSPI(z2e3<~aAKm!Bj|xI(kK_iBJ)<~knK4;Ay?5%7S-s4 zpnFp|CcGlCDRKlH=fPc|Fuz9BW@XeTI{2^jz%OuFtuI>e6qWdDHI?|Gg{I9adm!%T z@s`IF|AUr&UW)l}8ecynjCgOU$Xs|jIKf;&t*{?|9`3rv1UmsN2@{x`2@e{5^DMe! zhm^;C1-k-1B1yTPe6+U())`L2Xz!!Gv^CoMsiw=JD(gjn=@;Cwdg8YtWGsNk;-_Uwg}j6_PhA&A&pYD z-MClG`r)_&u*cD^t6TfL3JRk*UzCo{!WUnTa*p{ntuFt%Nro{|uw@D`*NA4rEKsHh z)6di3d!wpEGb0sc`W3@ZhnutOrzzqUppX+?3C6kX^V%2*hrpwu^{M@r zVpsxES9?H62#0q@%^-*2d~U^F#&3n2HsT9I31@$j$m?2wPs2?Yq(CbHH%YY8antS; zxOL7=0_EOvQ}>eD52T<`f@JoqQ?k_`q(CbHTS>IivDI`6+&X6~fpS;bDjl$hrI8lq zg86L{=Z^9Ywf0Grc4cYgyf$n$xgc^9V;8v~5-`4;Wsuf8CsnJo)#8V*_rg{9l%m}r zZ6g=*zX1c@7dvxfy`$!LB1^unme?cLIlGsTb+1HXdG%7FhcIeHnK?mH7vFBBu6@Y!?P*qF9Q zqoerXuZ+<_s=QlTlUo3&U_!$N`UhY60qsd!+(ja1Uzc<2JvJIva8{ubq)%lxzQ3!( zU@s3KD2C*nXapm`PDj7?;O%z@LWEQvWp0SKE=oc(h0o$(honT30LI(6QxU#UT-3qG zK!QAP66AR+{)hrioo$4{X5*nF$9%IH7ponwC(OI+zfjIWKb-b26Tw~R2j-MhNF2T#W;8hWCHYximFgtiPre?)-IMM z%C7KG@>yZN(PhIwp()lqG3JG1RU0eFGuY`Kfp%Njiy|C*kVcoou{Y8khhzEfe`Pp! zCk|w$L;mRq{dR+~7sMnX`oQ%#6#JOgX1x!A$UtmN^mU2vebp{jN|gCrrg2Wjt)1i= zn&IZ`+G&csD%5dYw@}=5qtAR+BH#{1PkXTSjxf!-8EkzPz{5I9yaVCx6lf)gV@R~p z#WC(pfm`Qs41scl6mDs%#sph$6T^};*gC(N{ecv;Ne~u$kH9-IJAEnzS_#-mqLq%F zzLEmB&e=(z+*Ni;2P`5i)&mc-UvNhD2j?%7##m<>mf6AcPKcmISpqQc+osd{W z#LcHXS_Q;>{TBYrw8AowuTcT9a5nJKo7k-3LmI4Ee48GpkmD<4V|n_lciqSt^gR*^ z;qdntG&iba@kyuRD@5ACT01I6lwiI_<(U zcnI28Op^anNXK^Wy!tLCR_EmkKZJ&cV2b}xdIqM53Wg?dVwLP(CBCARC=^~jlGx~L zslH@RhUd(#Ai(U*dJ}?-i^ynb(3utKL{2w?$-C`maBU$({E^`n8C(}7r$R^Bc^9I+ zWFBrzLhd5~EO~YwiNjznW<&~&#W?LrUZTkhcd4j}m;u<@iT`SM2Ot|RDJ*#DZxHV zznShWNM(MKP;lHwGq}gPr4&+Fr)3RAPJJa!C(~z|&fm$v{$_h))GUsSKPn-gK<=GV zCbm5XlJEXsa)KmDzWaNCPi8BIX4hic@y#sreFhdvcI{ru*#GpF82>5oPaGRtwgePN zs9Y1o#w1$lVq<5dz^(Jxm_RvbbE&3P{8`<;GlU}8YJ|5=vj+9%USNLN{anc@7XcLc zOp!agQ;;b^)O9<+!xT!)S$k5Tm4LG(TIo1zG6im(bCy84tDKb%SVYuyUX2oJ?OsS7 z$LmObP6HCs=nNtAYa|-^oS+Jg3;n!PoCL)8QoVa;{rFV55Z3HxHPoAIKer#&m_2hv)F%n zt0G!%kHH|)Zd(sKEaf@2&p><0RC-Jt>lA?b;#iC6qe+q5%1^d&j_ql+wgqPs3xJ>5 zyjtpK#11$m;eocVAs+B^OYjI+g=1bvwcV+x2CaI*F|T3*ML=#Ds*B;6w*gpEjtNpj zN~?>=8R2mC%ZVbw@d%G;%L8o_&HHnOyo!@Mt_cxPmgaqgnty0xKh3L*^QY<6(>Tt5 zjrO`G8NLEwNyj;sG|2`%c*Jeoc!yN365>BVH!dtW6QDxM67U0_Eoax#kb;=DZ zcn92`6BX(5&Or5lL&3WZ@zln5DicK59@!!&>H=&h)E10hcqb?- zv)OyBOx^yaDW-1vIK{$na}UWF?WYg+Jk%kPGsDD~FA$a_B(f3UlS#>#kjPpF*29p< zuHF)3T;QMBalJeRS_vFiiB>=tw|V~UH7RiG+;J5sCs9So*{Z7{k*O49N)QssrR1!7 z3bYb%mP9KZXFV$gZk=|0IP4d@0ge&9U0~W|4>lBz`4gEz5zHcWb%=|ARmf!DtgVItmH7!khFNZ@N z3gKz`#w&8wF~N?Fj}yL}!|@5a;~WmYOOnmN7CJj4EE?~7QFi5e$Wu5o zym`Z=zY}0N?fW-=9VVO0eNi#71a{6Z03MSyu?4+w8RSK>;1D089h+9+eL+H^mCnvt zo&vYd?Hqw}$XJL8=EPXgKNZ6g+`rMiwdxB~&?o_0od@t~*y<4}&`MxFOSICl)#Fp( z);U`Vl)K7S>3~I;&n?8d`41$sBF*QoptLLIvu__qq_F2T$2>+Z!iJ7G+N4$f-uwrf z`1&oZ>8}wXTq%hO5oJw>_i^mqQ>~U}c^gO8O$7}a)7f%ClUp`mQj5}>UKo>Sb_9&- z?toNG>r#q2(T-{TP+A6J=nSQ27`mw47QH=s=2;3FZ5e4Tm&BxZ;cd2fCIM!v-Q!vk z*==vOc!bYdqBA~5XTXj0CFa>JeBKA21ewQ{qe|J^W#n??s2MonBh`s8_jH#!-k~2a z1Yi&&@)Q^<_a?SFEaI&T+N6gvo#MbIk=p)cBF=q#KKCceUW}QM-i`@km`I;9j_14` z6HgaZZU3ky_cRS<(ZhYJ(C%X~Lz1H7-c0!j0q$g`@F$Jg(}Qew&e+h7x^qD=Ok^#k zmtXE~FL@!6IphmGHYo_@aR?ErD;$!7)xAA6s^C_qW(vSwJVsUKL5}Fko|^xp(dBr| zZ|RQXF?^RQ9^?9nJ&MK11C8A+r0qpxf(IH0O*a=@kK-}VjE={+D71*k(8p6O-8t5{ zrccRZ9=y+*74>XEugS+&BUd--C0+h>;|VbbajXzQAr}cJ^dQ7Us8kUT>y}6BrHHxR z$$=cJ!p-&cDCB5faovqjROiV)J4KE{m&VW;nA08;+7>3eJJ%ydImr_9D8R$`NgNZJ zNP$)Y=Ut+e&UwEo1#X=??*io{S|=tZbiNptU`%MKpPN0F45pe7%4$vxAx+$;iWE7V zf>;THLx)6167yF%1zHLCOQMyIzn-1~x6b)Xpxj&j8gg`;!#Uw2x)-C0Q!4n1pC~-l zOhKRoJatz}o_ci(v=Z=?L@OOny)6Z9o%57HxwkyEuBEl)uuz!6RtD=kRRy<&ixt+p zKLs5Vu-+$AvfkHIpp}62BwFcM?*}Px>zwrj%DrX1Wr{`a@KKoMhMam%6~SuWV}-?j zn}S{mSnM|`S!`rQVs{|PDxE|t9gA&9fm`P+CQ$Azi*;|6Zbu3lC19&<0H4Otzbpk> z2_%<9D;-piGz?wgzZ4V6TMty#f+~+w0QS}cRf8eOZ(Ugr>{|&&=JmjSy5sdgzUyo~ zu%m9PCoza_`;Kdf9B`SI-o_bwtKD9&aeK{oNqWskrI8G9S4M)pw%2%xRfcmsMCgRQ zh)SKDuZLsjLb$A}&en^S@)!vg{>l<3&V;a$)mZ*0)#CAaALtNJe!gSymP2p0f8O8H z#~ZnlQJJn~tHoJ0IHDFQa%wA$q?-w+&cYNz#yjEf!Z2W8*UmxL-iS|X_)au)zma7I zK4N6=DAwy$YhwF$y*z&0IAT=wf{`7s)TX!7ukGG?ab~nsnKtt78g6hejCm;`C3f9A zU*bZDT*vp1@_OJySlbges!}}h+sdHq4b#q@ElCE2&s%8JjHdYnKoq8oJ?!;Z*yoR< zGHIbL+@hXtL1j_w5u7V==QR1vC^i7TNu1A4?s)=>$1oO2dM9CeA3wSzjI76U*!q$L zxIG{~=GL?qZf(kzM(CW~*4V4u-a?Kn&G~1iG^wpte7 z^4nwO)uN;%wknMpCLRxxy|!M6&g?&D)xzc7MH6&z73|7uX|C9ld~` z4aw0%I9{ePgKwBM?d8(a%Sh0Z_EP6b$tdg1NqY!MB6S#xR?}WZ@70ZxH9mze;nnqW zp=l4?lr1%M%M}LpK&4TyHtNku^Mjtk)=?62OL$SgFGfovGr-647P`4IRPH z5&5%GE8*9&dL^I9W%Ea<6m9nd-P&x^UOiQ*)XSB+?kn8C&|YTg`FgoAlQ}^t!%aL{ zj?eWO)eH`Nr=D5>d8T-x3%z7zjvMu2CSS^07Vt-l@&)(7(wbha)bM#i{g@7FF0x08 z*^>LS-(IDkFzOkysvDM5so(A|=()x;;4MF%t(8GI)Trs%89W)rXykS3RP&^b!&pG3 z3?yl#fLcv^xKW=PyJXBVaKBkC%;>dRrIsneMlb0#5S>uXWB67GV*8-7%-S9k7u#4aG9mIU6mS5haydsY!NDxp(Nds!)4o^E8Pb&$M(-;4Be z(_T~4abQLvQ_!p67PNy;s)G;%`AT^T{RByj0(e)SGEN{%%3hvr)GHb9kvR$$vX>Pa zGu4dChM+7zFu;MeGS2V^m=*klnVrVpdsMabMxl~9F+)7HQa@3xSbE0)CbLPto;hY% zhTzc^nSxJ31QlRb7alTlu<(eZf)A@=??8!dX4giF+K#a zfMH)!%N}=sf=yS^Gz0gPr@@RRW5%dAuUUDay}YVdGp^#H{w$>@xh&A931W^DW!BL% zZVJyb_^Ktwq7K>*;rZCZcU+A5xx6-&4*;Sk9-y5BXt&;h;I+OIef`p2YRzOZDULQU2Q74H4gVHDGo=bX(SXP11VKG3U&I$m^B5*E zJwOodEdU&8RGV`c$O^vdfUGh(ZRar7l|0hMFk;R;UQILGS;O+`88gIcrAn43kGYlF zTdB|F^aAGFEO035dL2!y%cIVbj6Rb!N||h-Kthu7UPW+eY%IMrC1lWCaWAxa}!;T(xr?`!yYE^_1P-A1?kVQ z<`~W#!{#^gOW6reXbu20=D$uelz z%Um%JiZQ*GdswM9?6k`8S1a%# z`D=AjHS2<~WC`>yWLdt_AW79U4-=0LULk+pjlsI3c|B$*asn``k&S7ArA0fgBvT$Q zaUU~pE@5Y{K(k<)*m491tXH6EK_h5i*GBeav#vrn--+6u zuMy>6nIBSt+Nuww64GBe9 z-+{mTAprT0w5`qO;+J_6mq~Muuczq2ALAlt++F;XZDaEVeE&ke-p$u0Utff)c@JG) zjLZIo=AVi`FTtNl^QC-!8DC#c1&hpA(4T(u&%~csa?!nfeHE@J%~#`UzJ@NZr3)E< z=AYB$^>lfI`|OQ$_a?gh1zp}um$%U6t#o-CE|ccl`T7oAF_7=1=VYas@8ZYr=IeX- z`d+@ikFW3N>j(JyL0knTKg7R3OuzqPuesz?bW2u@c^~fBd@=8*XP>6aXK*=bewJ>@CNV#UyE*goe0=~{H1q}j@kLzO zj4;2%zrT#@N%Jdo&t`%7RoqURU&Hm*ruhy0xvgn_OZ@q^`14)y=kLUyhtt$N7Z=O? zzV~F#GJn9oM!C#nx%6nNdND3E1$H&X*U^U@)e|L()!AcSkM{!tMx8v4_vgaJ97cP) zaeggcZKV**KognvnlPV=dII>x?E^Ow1Aj#Oz^%l0dJUpFJ{S)#h;(x4<_1A#h;&xKfe%vekK0=TKxGJ{J}K-SNgNS{5SkD z{~Z@hPZCV~hb=O*%>Tk8!22KZXCZK#G#BBDXMOy`wK~ALqcE*1Wy`P-!b`)(6pBp&8#zcil6w z-WLXJ=Tn+k?b6?8ej%EcfaW86;fa+EHkK9R)L)>`?Q`Mor3x~KOw&(?0h{;JGsmtA zhUM+6w<`3B;h3$OVeyKtIC__NWPzpiOs!GU4^KEj_)+s$m?}OMU~g@|2?vPCSxCv1 ze;X!3C)8cwTFrk0z)rM&$f1TBw5KXjGa__&dBP*9|A}DxXKnBhW`)Q8IR=vm_eXw= zZ?RQJv}X|4F__5B*59F#thd=E&M%ob5s+K%h4zl5z7`zAiz9^!f-B{w`QHGR^r+$> zH6(@?5r!n0d=p_%820}0TsYDGKqfKxB^GX0SQra+&Ngx{8dxYO+P-pLLYc|diwLnj{ork~ ziaPmv-I!ojF%W00hH0B@jmY!fn0W>eu+MQQqra5RA;yl#aJh0E3$o3*(EhP&TCl{h zz$7>r!J($eh%4*^CUT%GemSRwhV!uoJn#exXy8dAf~p7y=b<7L9tA>2iKiq}H>7wj z4g>aehgQ?yLvwsd4q@FRBI2w1BDdTGrayO&_{bW4kius)X~&IHNh@ZL=~}&_S;fln zZCVZ=;jLD6m{CYR!cz(zU~vX^m3R}|jX8W}X~&C3zUY3jx1`r~oFUUFW0?zabW8#x zzYS_FTXzzcC|V4#)(ky3iUlcB?3#gcODkjjrlukCZ(&K1u|Ycq;Z@Y#Qw)CjiWmHe z_Tb#T8r^KuDm9$^$mQh( zi*Ua5iR#2*yjhu|<@n659lLgA3Y7+ME9=wT|HC6A?z|3s8}^oizbAQ5NbV4Pl+Bo1 z#z5u=Z-4pkd3%1|e(?5JfV)*qygw{jTysuH6>lLI@%)wB3=ToL*-q@SkD~t+@9*bToThz&Goi;^JjZA@!vgcqW|(De)ROd`ki))}Y>xm! zpAqqB-N>qxj$zS|PJ<7sw776(jP={xA&Kr;*n=8hMx$Cv0xmP7#rHQrzaEMGF?R zE*HsM<~t)Rw4PBf4WsAI>fnr;zu&gB`UFqj69YTs0N;Ndsn46CKF77aJlUY-h3?e0 zYhwC&Py8Vi6!T=&$N?VLZqTb(Hir?a(Zn6sZoK}$gyv+jxwG2KofC~^CS_yW1HUu- ze9@ZijAZ6|G^CAkegRHRf>nZ+c8~42WNg>YEpBGD&^q?8+b>m=y&;Y`;)9msiQfo_ z?D^YxY$v2njhDoT}TG|bC)SCvvlVzzLIB>-_jL^=DgG1BL4XVBP zs5>lCOR5P(5d^+S=2Eqq_gHZX9&nq!pYFOB#rtd+uzf|!D4x@!(-@`uUKsrjM3hf7 ze>V)+{0=>fjMDvPkG9pJ0LS678j_gEO#*wu;wfm=tWmR6zo1Y#&PihhmwDkJ?0EFy z@sTT!HjHD)t|`|`v)iOUk|kkQMUv4hfdzC+vl?)m$TiwVz71RvoV|Ixf-e}6l(XDw z6BJ39IGjDq&Wik%JG@PE3a-x`Cg({S!yTNC47V}K{uQKlD2B&?x;S=ydSq=^_#RYb)0^&mj{ zV?}2^<-CaTpU>7ETI0kB<`)M^Y+X|aiZ(b&c&@N)nLWom_JqZ|1B*h_ME09q>((sN zZ%$ia3K;mwUo~R#UDs`HPC#=GY4j2ItG1Ip>~Q{JmCqJtRp@6YAaxr?kU+&FmBV8F zJTcX#W0~n;z{}4}PJeR2{^V4kySmyRbBw^b1Ml=^(Y7QqAlQ{9&d@+8se`jPdwrlg zdrwDqHbsg?mA0`17M%TSpK@MMmWHPNE*1Vw2|6os3j$7;njv62F0PpNo7`zH@fw4S z$9&(3RsBTsePO^jjU!7(p01~mDQ3`h+svAn5($2N)$Q~ScE$lt*!57~t^a+1XMrSBvm7IyR zQ`X@W+-#Jx<0Jd(_^v7v#LHq$Z>mBcr=eKtjGiT{fnur#Yyc#^Biso*ec{cQzhGkI zm#=vF3pC2V$Hpfl$dU?kk;v)wOWa^)P0S&HDWxf>R7S4UZiETf0 zx_rMr>$sn^tw&kN3>GS^_T}!fnioF(LKv{Gd#fO7p8!9^ZzPw;gchUaIRxn^4r6N> zFTr8AKyBtQ9+SGwmMFr{DwUQMM-N`R_u2^vYsy3>o$D*imbTDKyyL*gkGTS!fx4

_Xftm=Ygw1N0WoX-gu3j{FOl^Xg8wv37uVrVJ`c@Sb9=R5?H{A1G%E|Hw=4CB z3?f8_wXMb{k}M0>dSn?;GcrtnS>S9grHozGWeP*6+IWZ>;k3c|oo?v~c9gBtkM@!g z*UQ!+*IdcgSq)%GvvmT*kPA&-vW_R}*9dl4lo;dC;#COdfA@^Vb|s(dkqo$tc*8$0 z(*Rc{@x=r&8Mn2};EJK}S}|%n(vI4^lX&C2f-xZ9>D^*&oqphA^Y{?R`%GWJ1 zz2Zrswcx$=Rd0O9Xne=S_y&22m|(U;<@N-P>Nr*udMk-V4D{nv$k@UpL<*o!b->zq|7|*W!1;8cVc9GPD5}_ zc4ZK(YM;F|jHgS0P*7-zyUt{7Ri`};fDwT@O9lVl81N~qYHy{9@CFfCvmusP!w2!4 z)0E~Rk23yo-A|%dVho1!#e7s5qQ&@MyGO$p)Uw#9Obd|5b%c?RAk(+3@B!jqbi##! zY|HF1Y}cnF6P)}`hYx5?e|$X12OFcns{{5x%z$-)AHE&~z9W7hyghzsmrM`d{^#v? zzf1gZK?FavuZV}7kyhuR_gG=^Uv-z{o{0O$FkqjE+k(;P&1bh4@lOWuJ z16CA)81+%97KnQ??|G^x?3x9m=3Q#ZEssL_tAomDql_GAI-{U6MQ5YnKm+_B!G!St zHW}-XUnIhD8Ttu%PwA4_EayFt>lip{p(?8ghl@@xa)K*rfzN`-%v5UFZ*I*vEjc2Q zBP;SD?Uuj^AQYF8PqKL&RW$3ol+D$Q!n9h$R~cL4O9nEu{Q!`h>ENV(0*l^5#)T|w z^+BwARHE9up7Pl9utmN;pd*NlbWe%)e7ws3C_o^tEufcD{kXRU4m)#r#ElP;J89-ydhy8YHmDhv`*|2#QXNQJ1 zg1pZKwla*X{p19xN zEuSevwIhtMJ2@kWJ8FK4`guNpTe+yc`w|e+h0~OFBCB&EQwM=Bdu6 zZA2Y~#SSKCu_RxJyAI%!MN~u6Z84pM#Io%G12co)H46mrgOmysGi6%E@Jqd=MDa9G zVu^_5F$+4J6aHY$fT-nE5Yp6ns4&NKdP|bq#ds$EyxR*?pq1dOA`-17s;sm7CNa-d zqKQWe$zGWPx6Z#RB2Z4^Vl&C);VVhlzYorD*}#;!#-j58u4m6l?0FZ3lv8CSqiEpV6^|2lF|Mn z1zHIhO`?^K(FWI(J&ff{v+Y$^vvWohDEF4pRt6nphl#?Rw!~M}sU=uVDN%S$OF_5< zytWzO;Zh`4m*XkWO2BIpt#rKhm=w5m&T9hY-tyXph|r6}OktK=9e%^9EI6-K1%&|* zrl4j52D~mM1Ljhom4E>yTIm?Dk^;BR8Bn0yTLzSgRhh^TpTk^XPCQd`Vyjo3w**VZ z)>L@&WC}tj;LYcxzp?Q%Dv^yHST(w7hHB2E6k3|)!I%) z!GXa-h3P(=f`SQ{?)@p5?lURSO2Bjyt#nNHjTE?b&U6Ch-ZI_F;NpeDNMVj!;;ZV^ zlGdNUMB%kxrXXAbUi(=}UivZTe9Jy@H7O`@yo+5a&`Q8x60LOn^|%zcbuP;U%Dv^U)!~I!hlj#kwoIw) z)DyfGC{sA@mK5Ymz;Opta@SRi`dT9!@60ns-D;-zu^|%DrW=rT&Z}hke2v#$P={)}&KIdX(~I zHDCEq3SuSTuUk^`mze^s1pFn@O2=QvQ{dJ)e+iU(%U{E8f~~_kVdm|REb&MY zTX&_PQ3AHIQ?k{cr9dkITS>IivDIIsz^!w(5-4|-tu`^B{U^~Yms4`a^>p_+8W;L`C%($# z6iGa9q~E+#)0grq5*3#z*&WcaH>0jEpV_xBAh?n1#)Cy&b2bKO;#==VUXyzj#IZ!` zatP&7W1-I5KImJulZPC++j+#C?NJ+w5cpCGj{YKYPLPn_>TqKBM1<3je=f%G0i^>N z!`|#iIVXc19M}+%8Qp>%DawvK91vBk6tFR6z4CnAc_V6vii$b2sG9_DK2ObR^l@Tv zhsx!?9V%{{zu&4tS)lD^dv9@c#fIEunMgaG*GMoNIVMcXGBlk6=-w5!laC3I9 zXZt=}=JIU-`Ta(N4tGg;oEJ=&kJuI9uwgKLexB-WZ!}oC3FKL^M*FK2xOL8G0_EN^T8}pxd@}{%67bqrQ}Wu6QlOQ9*Cbl$ zc?Dnw6dc4u#4JinhfY)A|lGomw0<8qRCecdAYoADgTj#tc zQ0^_S^$Ge%Sb1ho-HD|D zpT?bdSPHZfaGXRd9midi0=LdNPN3Xdj_ck=gS{zelt7SOo|3JuPk~kfwvuS2W2;OG z+&X6~fpTxz>a=V$IFW*U2{^8vlH=}7fmQ;JlW3*mxVux});Y%slzYo@UD{~y<`e`< zz*BEX$x|OpfmQ;Zl4zylsrypk);UiJlzYolz1e8+y%h9Hz+&G?$zuPQ0<8orCecdA zV*i-}x6WBipxj#)>%m5YwVQit->(GtH1_?uDbPy5UlOf!{Ixv=Zk_X&K)JX4)xC`d zSEry+0C0pH;0<8pWCDBU9R{0dTb$K~~po%~A7nBD*Ul$xCjD&<8*>@o93U5wT6ehe_lK^`rKp>TJ^< z5V`Noh>aU%YUdtel`)og$Dy#zV`cCmLE+X19_o=k$3p4aZ~0(;D5UKQ3TK2=e1J_xaO z>yhKx+O!puN55Qs-AQ{E8(o5hN>2Sdl8eGoGks3|Tf)tq?h)EgUnB@**4t}a5!@kT z_?Y?;uew($m^0qbm7H=h7V?=g1oww&;?Bc}Z4F5dpZ_Glr?Csao&v1|3S6R*_eA0~TRuwGe{lU(t|78d|SMX;%!b4G{{b zDRz2p#lZN@t)S{~jIK=)U|N}8zMcuI=uHZD#+hEhZJ}dVRA%r6C*9Jr*yu?X1onJp z>l%IBsAlBwypB&dX_cI*G>VGf_a(hukTSjTXwJTY_n}{#GxK%&YGn9>dTZH}2~>;nU|Mv;wFMLS6{`cyjW&GF z!|C~6oE;tzuP2GW7uSq|7R5Jj#w2L-dvSzpq)ce}dGnBE=Y22kWEfZbaM!)izzF+x z4X6EV+#AApyCW7s<4!&s*Mdyu>j?$N3JUEOUlHoF|FhYlQbq8*H%;f#`?>RXF6ea+Co@w*GiNa!A;NK}Pj&z-!q%R5 zAc6|ld^V6sZ)-cJr@WuY&LPZypga2MoSs7WQcrsUN+0J7THHaextcP@N*)b;27AvQ ztpHVo@0@3A^pR^=$T${~?PlLMku6qSq`&iZ7}S=Aa79(G)eYSWn9f~*r?BKNl&-N& zGM}JnDT5^uU32>MNm(&OKU4bAGZSOfvGU~6C;=(xjN2^ENI9#OtugMrA7yl?{owJi zjb1A(533Y$(~SWd_<%VdvJF}}kMO>VD;a$@`G;|boL5yDyY^xJxvDaBif`k_K#S1B zW&&G>knNhSvoeh9X=fdFTSA|hb(!ALoU9!^k4ce8JHp+VPa<^^1#dw$b338nm_8w; zG=kFfN{Q7EpXz1D%pBHMd(n^`GNpW;rVIg@SE6D_i}^YsMC3B+RXQzpA)Nt6A4;A$ z?2P4M`I{WijEM3ac6F8fc6A@UrcTcT3KD_oIiN1q*ee1}x>i{rQf=NuQ2hpI1aI9E z(|W{o9yQkkD|@k3FEs5zT*p9$h-E-I2Af@v{~+2+W|7$g2m(+G=FJEq*u(s5CToR`sU6m}=QeC}tqPVcwkMVk}UVnmq~e~|7t@XU8f!mn)js)DK0z_aSMiO&0c zyZJibM&S8Ax99h}J?Fb5J?A*15`7I0xvd0o9os|lSFo_vVU;(z8Yw;ojo56c?RDbF z&oT9k&tMqbmesUSwRn6!yE-J)eX-(mAwSv=f-il%kt-RM=~}j0oK+=*TBOYEzoU^$ zrdHx+wigEfP8hJSYZK_&3()!2hp@gVvg9QZB~owiROSA!!#K=mOviQZ^)y->9{Obr z;E>4w;oeGPx`eRC-pcW^QJx;xC_FD?A~-Denk-I;oxz9q@|Jc`ugzH6n6|rC(5@^P zRBK#&e707rlrQAC$dqnb^lC|)ZWvf?^h&q!OHdWMcyF7wYsZd9k8AsGc>E+^#&+(W z&>sD$OU8DLJ?fDc?;N{$=k7<3?UqG5CN%%!UD^R7SEHZ}5WJ#Np01%?x~bPHC2g`X zlhbPx)W9W=-o5jYmpnRX`>qW3Ssj=KXGe3L`4J-XuVAG4n8O}RL^GBB6TYj=kD(Y$ zlNd)*^DS^i5s|>PHv{&{{N!PUf3{$Z2XB8#Yt~3ga|U{j2Q-4CQi1JfHcap;BhyE3 zC4Ff_1fwT~<8NF{dm0x@`UsC7+u8A)Q8+Db(1U8pY|}_}g;iLynH$%5j=ZBxwW&&_ zj+0JxxOptA#=P+D7>N@oK1HLMs|kwTN8f?Rs;xOqbC-NK!SD7E0W4SQIMJJN`8fn9 zxIVRj-=z-X)!m()o`AnH2C(^2bTTv|Q!U83$tCAZK3mAnSYz2z33S|fafptGW9ew_ zC477o3^q@T^8|EWzOaY$5aRHt^;%Qdgx(tbV?_(9<_>d?y)@^yGy;u=N)>*QV$ie5 z;w>PU389{PPJN(dhcojChDT;0+)oUu+B-h8WRa=kWeVdZk?re=dHRCvllH=lFVx9{e#bQrq3dPd|t$G-x*zT z@1e_!aly3vQ}O2|_%ms~l&>%2>&vNNk@*Vx({KKn`149Gx|gr7!u6#2YFy3N(B-vs zc^zH;oG!1Y%NyKhZ=}07(d94b@@Bfcg)VQU%iD07G~dqGci@T@sCUxyQFO+97e9VC zU*E&m_wx09e0@J(Kfu=y;wmWlA^!bg`u&%5`3Np2&A-AGef}u^T(j~*^JDlsX?`46 zbDSFb1l@g-E`QA>pQ78HRB|8g_74^RaL&A+o_(4wpTXs%`B}Q1pgNz!-JJP(zCM5} z8u|kN_#&?6R;uzP{{3ZKPnut$`{G{8wf-t@C(W&x@@nrGiCi>AZzbmVdRCcS7Ou-LX!gwhjD&T8b2v2#hws3xzzQtaB~kT-SKWI>mqJ622P-%I3UhUv## z#rz5W+=`tT+#5n)H-9Q0(cp4Fbo1x@$oz%)^DFV^*W%B=;LrZW=D*UP1?IoukNNMo zfM;m7?C-PgXkOnm{|k@60Pn#gd$~1h)%BUo3@q{NwBEeC>9ddB?*@dtkBjy;swE?z zt?TTZ8qn@q9ZCFpU89c>O=#yjG3|3*BVKq@+vj`p!P{T%y!+touL#(%e@1jw1#Kt3 z7suRK0lo}?lgVe3cqVK2m-J(L308{TCt}Eb`zD`oEjG9KrMKNzf^KZ?-y#i|Ak~G6 zWd2h-=hGrv2)+LiL$`1hNrgqYVjTPUhx;Cch7$M?WMB00dsQQc%#A2YidPn2IUa~u z&;QQgHTgYck|b?wVPKr+Z)sr?+=71J);*;Xd&t_&m0AHlwC6gHX*cLFW?V;Eb^4OL zsMz5TbeC~GkB=x7^7sTlQ4t&q_I%m#Iro4urEB{rz4(TD1#b9twMwp}&u9k@TtSZg z&WjTaL(qhp-%2#S=|)-F8%K=sN^N>O-E2qT0ffp->eGm*RLa5MnSB(( zC^R?#vmI2eOl7WblmcJL?L`9$ll_y+WMN7rGd-~a)~FfHp3p?vtT%xCf=_9b92VZB zjUF>B_=*LsQYLQLJ+|YLv0Xd2Bw&h;IP)GxCIn&%j{}~8eSzzUxf}yGY}YQhxx_7H z$t)qSEJLsY-tDze#*#3eSN1~2B{*{AmF;TBD>Dnk52Ost`)TIz!sL2E^FIV=A^wR~ zS~x`AbjRLDt+Rr1`O=5cx)!aE8f6G!%YbcC&d-kJX2+mEk2bJuRi|5TvIXg2CwVj8 ziDX4Uz_7s=D7MvuIlr*7&uQ}2L5T9 z#ti&oYJspaNnDyF&=@;z#$?&Do?2xACOx1)*A$xb#^Ct_w7pV9~69pMd4h!H~}seSIU*h$YOmbf=i@uGA-SZ#8d4 zq6~i?Q0M!8{?scy9V#@c-j7^1e+0Ul>PT0kzi!mY5MeLp`f!8xtqMq&?swr8q?a&-P*2Q6FYWJ?7|IfgYl6kR~lMAThy+58f_Ra>2xYpXQNxBi(Xc3QAkkrOgoh6DY zTTBlTnyl?70bF>qUc!Vz7Ewj>aXi+Jl{tNmI`CUszr_oSf%lZ*cqx%f#oXn@0mxpgy0&u?ABYhG*I4N%a*h0aqL1o%WOB3k=Bwkg;MV7}Q0?VLS<2Cj z3t^SNmiM^NurgV0LdjkvC`)G$b+9s3e6F-?ag}9Q7ZsyFRjJMJqZO_|%CMu#4>$5H zVTlo`*Rpa+HnTIfbQhPdbKj*nfox8^*s@5x(tyy{o!4!;Z9y;8TMaQx=BTE4p3qd5PrG}gzy1f*RW2sTl$q3*nWPXTd{a@1M zujukIx_p8ze@&PB=<;d0e3mYsr^^@U@+G=_g)U#C%QxuqExLT0F5jig-_hm!bol{Y z{+=#Brpr(0@>9C}oG!nh%dhD2Yr6akF1kH5lRZ&D*sDmPwtfRLCtJgp;34Ib8Ew~v7& zX7eIyRJu%oT?2Wy%~u;L)lx0i@#84{* znFIIyG6%8fWs|08!&zKWms3RA*!)W<3tKFq_*2B@SvsK@Vd4 zM;ryoiY{2FI7P$ff;O!17SmnpMV0nXJNEV-4TJ&P`%*8S_=7)zRh0H!$dSDWbd)*t z=eku)A%B5FoioFoXkmD^eHOGwosD6@<_3Dki$nb|#smJIUE5REwz^R;9_FnY)^D&y zbr!2c2xjLs7RD6F5{pK}3fl3akuPe=HGRgwv5LXvo5jFDwU)Mod*PBNw0me}5PNkDV!3o@OhaCfyX|rC^1-MFAU1PB zrq|?DSSyZpp3-i+OPnmm4uZ!Ev9^csoS5c zLpRKpE9F__Mk=z*d#n)iV0Zb$o2O3-1NL=kNla)b%+q5n%#`pmP-Ah(RTruKU4sRZQhey{EMs7wZEt@JjYgx zx&4~N=t`KaM2>{{%Cs;&k@IqZ2-v$GJGKgf?hrhuWLU)R7Ta>afyy#EdA zgXHZX|N6_Af7@SYRph~U!gT5>cYiDK(8h50j{qzwcehWc7~Wqac>imOI}^kE66TlE z!fc=SlbD@tsarX1RTa=e-JVOawXw?7n5W*5wk&-&^>_q4}m)+^HCzx?LRx?8&$N>l3Nl4MJcA z(>J1(?kF`Lp>+LaL80X@W2%KyMilDp2zPQm>UE@g$IxEaRPO|UB^6F#dc+8!je@zi zCPq3&2uYY1q=o4Tq4NMDkpkZ2s7)^=h?9L{H0{QySKPT7RH;uTtRhsZzl^!FMdFdd zp80SWd&-`N6OT%a?wkRzr0m&(ATj*8N$}^P#8}7hr-XS+TA1zgXV;aaoLZ{jZlNTH zEM3Rh6;LoiRY)a5^<-bPXu-k-^v^knA>u<2@tTj+MEjagJ=w~cMLbi~B4v`i977e5 z1M^Li_B7y2!hn4maC0IJ_>4d#W?Z`x8?5pr9F1KtvSfYu4vrch;XReKFB01#X(yIb zu`-2-Y?1dzawf%iwOD-|r=MNwHNZmcf=a1i6fWJp`%$|e5zOGO(|z5iE;DKu;VNAIftb!EiEgpLrah+ShX7FuLT^tf(J(AB z+TCLu2pd04$mh2(%p^!kv^-h*rf~1Qso2WdzQBod5i8--O;cW!Yh1e-J5qSwxeF7) zMH2Jt)Sy)3Jg)5mR0i#vVYFS2OhJ!U0S!&i_^S^AjW2bj6z$&D%j2|VThP_rz)izI ziNrh%bmMwsQ9{Z5xkq{_8d_~J|3wUGLzDdyXN!4iB$)@&gHgERUt>^D!WG_B{tb=3 z`Sr!%S#K&6g}OGC&k=0)Q-+xY$;4B+>t>OZLaH_o6DF|5BWM~0_hokyvWMvq?4@rp zUo5-_+Yhd4&KHs3MR;{N-jkU7Q}3eYHNoHSqQ)sOot}xsl=L!jeizQf3MS#4e?A1# zIdqvs%+cIWmy>k4gDxu|OU$KoxrZ)y(`7SN-h_*nqC-ID7{DCAJjXB2@k?|3f-h-@ z8)KJ*8{-9QZj2Y|xG|0)a%1c$QDY{_hKDw#ho&o1dc>BaZY1&m(pc8jv8=wtBSjTW zQtw$xTupb~OWN5V25dhrZPE_5VV%ZQox@?&J2Be4i0Z9jz~&)(7MZGZVqe+6@pBvU zb}*_kTPKI@hB!;eIkZb_SlG#pyc}#wq45^$nnAJ z`3mw>c>^mM$)a*7VP|C!57qH1hdbs{ER?-7Ao?&bYaWXMn!*6_GIa=B`0hL}gAgQtz@vX(DakXTF{1pXmz;w|~s z>`V@aL{CuMVd5}OA2`fB2D2V}SQ>^^6r2A`6?_K_%!DigoCm-uU^9HOlvOmU#95Y( zuYpx+;?oD=l(20{kWsnsPhuFwd>9V!^BpT;FY$FmWx>Vhn+o`z7{DnwaE#6pX^QuT0sA_;6ui@ZXQfHuk7bBQN>@G;ZqXItDR|xM%6(zLzOJl5S9R^L^9>mbO0$<7(fUz!dducs|5jQ=O$%LE7X|o+i~6 zW+h?K;oxaA?MHKm9}e`B8RngQG`9tf%ppR7O;hSf@I!b@{rs$IQng4CGaJ%$EB)tk z=kM0{z$QNXK>6g3yfdzL)#(4uC~`FL&ON z2pSIN4>4_>AlRt6uOH0#L|h_1-ZY6KyN_mK)4UG%I5p-;^vb4(N?pHX*J)S1~z1&ON`d)5L>M2;_G2hDV5SB6tuO&(( zlPz%zrtYf5X_Bg9Tn;Fm=$RRD4xIrbKalH}c>b^Bt`8}IaXvYwc=cqxiPPXYE z(F${px!Ad$>LY;;%W_&Pd!8!0d>nk2T4JyAcUeLahUBPuPoQouKZILX23rkNCI1la zGh(21!FVBLyJoyp!?>P4W@-5a-1hv5yTW+8=4J$qJNfc$3o@C{Clnm}C8SdX+#dIvm3$+ixVVVia;2L_)?%3M_RA*s%;`V?=xT`q07#<@lnVxxjp}~ z+jG84(sTBpm8FGXuj#DSouOLi`}SMZ;D5*7AaHt zCp1*uv+ulE&X2-?eX*Pk5KU3XQw29*xi*LCoY(j{o|bVgzMT7BQqaG}qO&QPWQo~^ z;Dy#@a;Qp&7918#7EmU2DA6E3l^~v^Kp4QU4B4w{d;uzHeJ3+m*rGt2`*l;0KGcL zug&o*b6kCntNPLe7&uQX2F{BZ44jn-181d0F$j}G7i2D)Y-Lh|CP{!EBn*hpMJ-Hn zj5*IZ=n@#{}IeT0eyu>FJ(J!+`Cp5_ruN zv2~76XY}Rat*0@u;QDYE=JSc->_Cq;*MNs3~BeD7m+7j{uV5VQqhdv<4r8)1RPg#|g6YdI8nL(fd_P8T!N zLm$AP2;M9YA?V%*e=ZMn*(NMyAkLefMZ+NGjs!xCJa87D3P97ho#!a!G!iUb+BRtRY8v>5L0R zV(ngdf>~_giT?Z25lA9dI>SepfOm#+Bx|JQehYM2(698Bw^Cm+c z>V=Sh8qV+A)L8^MC?JXP^fqHb;?$UKRbdBF&PDqrx3GhlX(!Z=m|iLUO1vecfQ)y` zI|QJga3A)ugHw&3U>^CXS#YSaJ2*9Vms2rA`spG;`o=08p(1mQQ(W3!BF%lkq$U`9Cba)^coe_`XsVg2#^9 z1fAWhJJ?(xIPm-<_ij}$Z>=k>7ANYgUf)+b5@OGW2O<1yusI1?57(9aS4ykbuZQe} zdbL4_G3Br#==iPKi9vgv;~M^)P?~MtbBJp|VoifRX%aDnVi4ExOOw{lRtJqZU0g#v z4%FF0St1-(thTFB7FK78aERfSw;V~(D+ES_gH1RQd2M@%VDzb+rt+g6x;Hfv_0TDG z8`i-k2e&374NpyQ%40B77grx_#v(zP=q92NP^dFv#+R7<#QPXM=PSGn0 z^P-$v>I+THt+K(c1^AABEKL>p6=BAS#WLeKN&l`3iD~2Q4u6xeF!v~GD4ok7Yi}sD zlBBJy##+UKiXtmwLUk74G!$W(_=>P>ghAUuR@ypGYPKgQ>y6f6a~zINyQB>P_|0i> zIEkhIJrEfolB3G1ll+guidUE=N~f#jFlzf5OhVez%#YI96MI7}n!XJ0@J}73gZGM$ zL6lBNa7)Jig3N`WxuuWN8Qwfvg%EgOL&bhzR z(_=Ii*9j+%{;0dL_rpkudSD1vK89~w5L*OR?h;(FlpH&WB>1B~4~4m6CCZH`TD%V+ zN5a7m;f`D+B}ax)zlR+4@lwY+{2xZ5!kwB%;rapoXa@WCyHHZHHjptEd`(2=?q$ZX;+uxMnALSAXUJ#Z zb2sEX_%|>_O^*8hC)>>QC(tGmjhw&v7DGQ2?%$u2WaS6J~1vlyZ=a>^?sr?j`usBINI=>eMc|*W^Qsx|^HqwPQ6BQD%_AA1iRAMdGf2F(+zTLmw z2rG$!$4N6mKY0-5_|W$1AngBpmIr0;5&ERF?96Jb-Iyq~rY0lHI^+pq_x#>47BjQ^ zH>jxyonsCbj5Z`_DSSUvuaAWy zAEFV3`>uoh10sN8-9;}9vNtscDnr8qe(6DK{eM!@yxp-0Vej8k|3`FA*u$NPD!Opq z}KV$R@nW;0q<}4dogD$ka&4A;UNG;%)ayHoKIOzU!!<6mU{M}0BBSP0`%Cs zeLYeV?)IMGSCp7%6PhV8RuxRF`0)DuNT@Hjem@Bc%ctLW6iR!DNrvY)ZEyEQ4m+HI z-X2Qb+aojF+ZW~8+Y|q8y}dFtws9V?kLQ<1dw2o9Pe<}KGu*c?&9iS`lUv_P&TxnC z+zTmFlSZ#$CZt@#5xT`HXYQ#cy}_SCQ9ZHxXOa}kxA{f<9i}ihX{@NY-7kV_fph|4 za47IhQ4=Gohe0r+rE~|+)E9w+(ld2G-U-i?xZ5s0QwIw}Xb=zTZI4w_`=ff3{86OH zg1u13SnN@&y)))!XoYNh&rA+dnEONW^LJ6Sy~qQnSRTNag2RQ=*i>>>7&1xOv}?>^+zb) zO$a6|kNi#)X7Fb2q>Urq$~6&P9o{9)-w9uEgQ!dN>kd$S!Oiz}UlO!2>aGkwlkUnE zZGXAg_U}`C`#bqX{~lc|Gma3<@SGQ2Pi2thu;{AD;w`#9k3n1ZMOR6(MMsI%&bmq! zUSSq5c+5=X{T2nSo)(PSz5`El@q#}yjUu3Y-_M86v-`dyGrRV9TlQQHkO?r(&mCfb zbm@E#IpWLSq%~NZ^Rw)w_kQ-A4jbpdGhS^(&gBk2AaldD3~YZDJeuHgj7tp?_O z1qmmYn~-K8^n z`@}BwO6bw)dQL5SchTBA3$Q5tSZ$>cUlH!TBVX>_i?f`t?%oOoYyaQE(xX@37;y^W z^8i*<>y*@%Q}ckdD5+p$K)cwhZx$`GXvDGNOj(LS2A?-brrb%p$_|HxEyRNEM5B+1 zQW2{-JdnU;MoWV3ylcf$svvi`9Zp zf>YqTc&RADLAoxMYfBNa;D1ZT(VVsR9%QgTkgI7r{h-lB};>B8ry({9Y zj=($N#S(Yhr5Ec!Sm&>8nHt2|IJFOJb&?M&RA9j#tV1k{Yls5Vf0YnRwJh{QJ;SPIa3ZR!X9mx81AZ7A-|J!8ERh6ppWWelTUg2sJ24!Zh|(! znj98|MSWDn5fydPbahg_xY+hzH3RJrJEEfP4?m05HD6b3`)|s>{Vwxm049q!Ax2Di zL&y?6YK_`XhNroB6ZYyZl$9^xE~wJ(OCTawdlGD}ijZWA^CN_sE)Bv{kr%#xvHkfG z?j`hP)_($h_p?~A@FN5~0ZI1ni3EG_>y4@7APrevrlvZpdP%zq=hyXS^fC1G*?WM|%Ao5P zLBYD~=atHINdzBS`#l;%xHc4K0x^UTLT2TLJpyGwwtvOO6t=SNVPC1Q()m! z1>Y#eUmHO0>2neml?ew_ek-We$|0QR+BMKo)9av>OQJt$DZnjKwlWb zf?f25sDDhxf9YmKWnub|yB8oKVSyJDa`!@aE@YBzS3rGkR$zi`y9Nr&N48l)?v6n2 z2>oBhM_)?V<<<}dl)&}abmoQOdPJ-Niw`7pLm+*^fcP>u>0wjDwbR&Zyf!IZc9{U^WG;?AYjB8e-GM&Dr= zZFOgtam-96v-5|tml?-?*x!p=?LWs)JdvCW7?b0sPkj93kU!?ciQ%z!6H>-&kE}FG z<6j}tVsU@2V`LH zuSsjCTI33hkIqo)9`4D;$D73a-DY8Qmb||)yz-7i60{rI$om^Fiik=R{|b>-n>o$o zN0E1LW+azD=P9;pt?hJ8>S>6K0yV(!M01FZ&4T-{{%V9aj>|R|g zGhQI+caGV;oT2nY>iBJ7Q?mQAtChNvD5QP2)zu54|zD}BOTVH5ZA~A z5R?}Re``^*M+<$16>kY~M1o!kTpq?_2EaIGhJGf(APkvkE@T3lePc-)@Tb1)EnYYr z5B25N&zqqzSK*Mz8n;f5=88`0Z)5IF8E_#y{08)XM<$lS{9XMzGjd#zukT_AGDYuY zb$kV>ge@L0+9D~aCuYP$5|AcFHyrWq;Bk9aoR`lpF^%gjx(Pl=L`p_<@HG+BFXs$j zzSH8xW_6ue>7|qLAgkGSki604MmNWpi-Y9#P`sO{OmL9gBnm6gLGr<3nekppzq5nn z(+sj4%veQMWI|4vN%{c>ZQ0FONwUj)del zV)B!R)1LdfSfF~uWG4@`Ra!7t5eUPKYID4J(Fm>eqDDyDTCQANDOJYC>X-Gx-tK6g zS8>pmv_<+u9u@z1E$J1_S{TuY`WVnp*iA1&RD=@#!T>3fd%dJ4x0zZQ8bO=`?Fym) zcEP4JARIDf9gFme@Q#gmC&D|#olBsD(99ILW0|rCO_Y1 zc&=Gpv4PRH{`SSZVL0raq9e5P#aLwRtc?CTcs05vMDk;i4kJ%UcePCZ`FOOrZ(Xd6 zNhlr$u(M+QVg^|b>W?Cer~bT(L0fk9N0Myl5DAW+1jTwxc1z^UfX*T*Agl-@8$jhI z$4Dl!+ZeoY(57#dbUVZ8!wj+<;H1dn!Ra#$+Ooq*l3XmD^2=%VT?UUFVD%sqRzGKu z3pvzuX?2`KP?KP@nWuIfzhQE6Y)YJ!JdUx*{W2IiYP3}*MoJBJgu^JV zu5W=;J*p%9DrHT?c+0C$qVtr1zmBU?u_2kt%<_%6Syen`|LsYd2K_fXN#_nBWTY|z zk~kb}{yGo~76xJfT~siw2X5q$bncLl29A4y%j1AyJhEe|wk8D$vQ+CPpPJ#o-ad#O~j`_!N5Q3hD>~J8!Pfx`=;av8G=d0x(NL65ES{QP8992 zSuP2#m|*w#@scH}caNVo8Hb9=01F~4{?gjSRuGPrR%x;XryI2zZ4`b&T*A>r4NPPx zU0HVIbXUKp5_*fllK>`d$rCF~@Od&!PKv@L1A_>ZlB&)GrG{uTgKbeLF{lW(3?Iv- zBG|izLep)tff`mpD!u(g5e22vdoL7j0}q4!!EEs!EZAkXh&rNo74luFD1KJGOZ*`! zC7|^!g428QZKcpUgvk4Z=o<#30)!x=azO|K>cQ?ts=QFGfl+Ya{-#=O6cPFCZp7Y| zyBqON?ry|8miyax!4>5CRtH7+IdoG-;1~x*L`@C9z=GZ1uSjrz`!s|T?L{2m6Oco> zS#7Cr8&$bw4d!XcuDrETnH(J)tyV^=4fR5^J=ChT#;OkP^Btux-X});)TG2Po)Sqh z{{X;^Yt$Uyh5k>3DXp&96DRDb@y&3Oe&Mie2&$)F7gSPC>ElIM=OqAe)-$`~${x0}U4Bj~SN>7q>JHzRG23ZbpQe^Sq zG|HeYJDeoR#lmTMc%};^Ty*7dv3gCvA!jN7TQWPnh`}red|k=J*Q*$0Ip9l?#lzPd z8MI}`mn6AZd@a$slSWS2IL~Q5yrQ2BD$!;>CeZsigO3i-`!N%GPcX=GfSw|Y2fYOc8U}-J zu-e=Z*`X&%E*5$#h^41-WI}F*k z4BE0oOp;tI#PSP@ID^3>2UwlTgw-H}EC*OAvUso>W6+izR+8jgVZ|%V5)={R0P^c517pFe_Qxel{uKixex1-;44woqd0g_u3KM*u43okFB$BGm z1f`#eHZ#~3g%X2`AVA`7E)~J@Hww*+%ir%1MHCbuvClzv@G#gP%oclL!7j5!RI@pB zgW8pcA)LORf@wfSyc2{vC5AXj0m&_dXf224%cCH?;vguPwf!!@7qU4Qd@%+}5MDu5 zAF6XO3J$_6sAe3+Q!e2ZgV?(wyy7Cf6X6x&E?am-re@Q`VzSwx>|@prPoF$`+;8=S z-)eE^(rS_Y7st4-mPA|Kd9n!Dmhsv(o$ky?9c_CnOX6tArfg8N^W;=(v_8>agSc98 z!m|jiHONt~m5kSt={ag&LzafJJMRFho-L8J_c35%$l&WNKc+S`R;!DEktym4q>qT8 zdKq>l4Y%-nh9S&@ywxu@3l6pH8Kw;DEFTItKpXTb65Dv1g|AS%(a$oGn%X8{bZ_)& za_#F9dv%`K_N0`Zokh)hyD?mymh5}U$~kkcoGyDWgU^%acrOp&Y#>;Era`Ig7b@Jo&@UhAJPjP*N zxV{k|%=6xa9}B%V%a6B+N4JRUTj6?*_cpkCZ^z56czFk2-ieoY;pH~}yW8>Z-FW#g zyu1f5ci`ntyu24Ko4ogl>-*sfDH%V2-804w?|-hB=)pBGQ=#oGh$ z$$fBl@{-Z3ws~K`@4kqa`{8np_a(ethwpqD?zVYf5!VOc3Kjj2_~WZ^_154kUlV_S z9j@1S-@yCPjkxLjn{d0y`xaa;oc11sk1MCWhvdh1<;TPF;|JoS?A?On?@f5Q3(@!? zyj+EUz5p+CF{#!+@C<;<@Xr=rUWb>P;L`RU2^F$U6tGSFc$@g)Hu0lv;s@K>-ec-z zQJD~EqO#MlMp2o_)-Ng(M+f{2AN&$8tIBZM1uwVZz#^KjwH(z=!u|xLgT2<<6Y;{tmZL&OhbH+*Q~+^WX~KEf9bBGPOO_ z*)doXREcum3tb%&-oc^rHgR7zasNrrI zI%S3*5cYh}Y(+j3=0j$|-v8ov!tcEhniVy7KDNeZgM`2u+{;mctsa1Y{`wY$3%Sjs z0U@RnE!gTYT9xM_$jqEg*a$KP-{??NOe@=}UfwE=R9ltW7;Y1(!LORF>SVJIe_U&n zymqry+oCoZ^+76>kx;3_b*-`ul-6yj*IUE2R(0Lvx{E4J*rZgOs1F{v{{j2^2lth| z-_oJbS!J|}_DnFCWcz52$6uLT%+ft`{4)}M0R=-J2$#yMwlh9c79gdz0qkwwi3py~ zs`K|I9dqFz<@VeIXyJ1Xwih0i4xRb6kprTtlt)yj&Vow2Ri6eqTLr>8yJ*1lYohuQ zEz{msc8;I7{;7?4G7uD*L^s2BgQaBxg!L~>iO-H0zdZ%Y3kRDNe zl|CblRyCjFV=G27MuvX+X@TncWJ4c)M5NkY4&9o9seu{rbhF@4)0V=BdNuT2>{NJ@ zI6FB?SjcXQ7mCqP!JTSaYC+ zP#-9reda0aN~5jTWOLnq`(1X~WdoH4is4p$qB%TTua7kc>W!`Y4UaeX8>ufM2QmdxBSLN=8K$0l(=h|0Mo*I%qM7~@dFC$V#+ z+gosx_fydY4nI8>w7?LAJC(w_j|%A-sEP#lP7=!>vOy2pLbaOrtQ@M0=?7RA29vx}>@a1v=XF zP8TC8!hU0t7uFQDt3op&+bJZpmX`pi|DRI`n2^OOBslqR<`kNOp$#qx)Y>aePq~Ot zs03eXhtaFyTkm?j?17iv@Pa=VGRWJ8cQ1!a;2gpqY!feU6E9vPUJ5ycL}5a=6@>|P z8te9i;)LQ!5GIQCgrv9%zZ2p}yKQI#s1pZ^soXSo&fGcpPy2L4TfMHHop~{y9pOtn zd0x}O!-Jz5JUp=TU`#FycwYb&q?4F=-^;=Kqbdkz8tvC-w@~FE@l7(heG0iRB-Gt_ zm!Ie7<7UB~bC{kVnU*5<%$gbW0)5SFQ5Ksbu$LY%3--Q(-&wst&s-x}5(@?45gHf> zY4uTe%btlp=R)Z*vl&_V6S!f100nEMZ85rG9=-aVR8z+{Y$%Q@07=TJn!x>l!B96W zmdXw7s~Giy`T(eEL!TupHZkKTL=CzI)B6W@K3%M5Mi(lHqrmbG5f+OMv9md~J<{l1P1>@+I%xEh&4NRX#&zIgvJUrJ z8Dt*y`!sRliS-AzBnvT3^LgfwWB4uBip%Z3Qgdp2s6M8);)i#c_Cb0#olik;lhKJ2 zE^k#QMyex&Edi4FZwJR}<29X{0YZv~z$bo1b>yhyD`U-SUnwqk@y+1Z3wr|&JpahO z(WSnww0d}~(rm6?-&Zp?k_Cmbm!%tG-yD(2Ri zhzZzw3njsOJGvUfhbBecGRGv8W*g1#fkG=uiPC}thLKoPJ|>9;W3PH}!0@3atsT!n zo0x1*47Z>g>+R+R0@9OHcpg;~oM*7w0sgoyIQKUqc-&Kl&oNuz_nn2?Sxy;_VVHL| zlAw1~7^e&;$U_37g!hQt9N{#WpF^a3gQLgkymWhzA;GAR zu`KDxRyb#+cr$}6hs|n=EZ%0d|63-rR z5_I7Q1ZiJju+0H!pJO8J+YGWCkfz9rB5k2?r&7+T?+DW#V^EhJYm(?R>uP{p@o~~Y0qqYOU zhSbq&W$#4v>YW6aYV0C`w+S9~7NE0z+B+TYA$AAPkM*{op(}Fi9ESaZf4+R$+pHg{ zb=kA=ZxM7Ba%D>=;z3w|Z<2z=kv=!hxvV&K={zCX{EVjswT}N6}*rMoxgM+vyXmHR^ zL~kHMFC#~fVzs{LA69HzCZ%no!8Z=eq_=gaV0&9H{R&;I3?2VWjBy*Mz(pxN^HJ#$3#Art6|k1| z83wZ)?1@h@@%2>(Sq}J8WbyFzFoU-2_>v?Si?5v4vi`_mkOQWE$Hdfv!@`C`DqX^J zz?343hpANz+OlIxl3XmNidoBA!{C<##P)^aIcr&mG01X&m?Db@vEvxDWrvs~xmbwJ z;9AyyFqr6oyXP@+H^v~#0e6Zl9`2?Xv}MPgB)M4J&FWg#YZz>GK;rdGB;LXx%K?ds zEFKc?V9=HwiIU`Ekyz+j*1Zh2IUwybOr(92L6!s36j@QErCrNh$N^Y?WCCl+;f2}>imWKG(ye9f%%CkhtR%^~!irazWi2blZR^$12-RC4jM~nF zr~I`nxrl|!S)IMoICI5v*P+mLorEnFA#y!#;u z6Q&yYGJL{5r3CMl@>vC$d1)nb@h(J(b%T&fQM+io3Yl0(rY*~f6N{ibPeAmG%)BS! zoyg29?z-ow6?>kAZ%r)4kloJ(?Y=t+c7wGWRak9mRU4BH$hd}y=mtk>O;~5FjaM5k z3s6TVZ(ADZR+q!VROgj5x815c-C_)5j?7omg(N?zV%fWaKIt51A2!|CRF2#77hS@F z+zUe&QE zD=`Dky97C9RaTx0PjgXL*6{`7w2ayL2#}Jf#B>*STDdurPfVQB6JnuMdM-eoril|W zlKEY=VGGRIBJ1gv8swfWwVRc#RopvVf!)I}n@_abl`%MOB0R6dpIfSp>cnuhztJA6 z_Vrv=X-vq3tnH>Kt8-AKqOm#6?ZEUGG#;YTKIu996H0#t5 zG59IM)pUy}X~K@Y^RZw#1Z4kxoYdsDZf_{36bw>14Iw5E<@DP~uTV}O#5Z13RZqBtGA)4OIqKpr46+>5MMV}*UEG^NTXuC(lAM#e zI7f6#uIggU81w##l`KC{|tHzq*SYgEB!gIV>3+Xl2j(BG<;<9AI+?2KvgRi=FS zt2J81{~@kCqP%40JhZP7q*rKPRlF10 zm$>6;Up_yI)4mSVV+ep&Z?s&Lul|(Emn_*u_nMjo-Ahr)P`%c7ml}$>!Svr(TC?V2 zu+6qM6Lhd0Xy4H3KKhW1(5uL}Nj2|h(ZHT>R@a&BK8#hso*dT$ny+QUZ0ZmNkk)?crT34i~icUb@w$(w&fc;jN; z8IDNGXsHT^dLs{2_$kO4p$hMYcS02wcRW?t=SOj>@FCz;Z`R-xvWej-$V>}+h6k+Z z#`AQ*Ro!AN%{C(6150r!bJ!xW*1;DmIE+=pAcyUKCas-W1(i_AqhSoo z!o!1X#wAaP)IH5?SvOTWi+K~nNN*F8peJ$z(5qf3WWuqbk?({54hU-MJlW69EHVYR z<+%>p%$uB=?kt8cT2qrM^@Mod0+YYmn(nML@X=WY zZ#O5a!?+wfy{)qpGDhPegfeG=Ayf%olHbH<1J8YqT)(~h|*fUx5BSflY|ySwZ+MNtx-@+TXAk%b}0nkw~=P#sG_dLg2QX&?;te+ z!=i`Do_>10*@OewtEEdTV{P&G;`Xzrxz@Mo2)9MSptWD6b+mKElA|A$T6Gn_e z{>2kUeuOly5Jt|I$cr-47;Fh)M24p69HL~0$J$K@kacl{AJxqONUX`lCfGKUHbFAg z3^U<~1T!JAvT`NCOa8Rvj-)zNx0lI)|C#%M&!T4j$gHljy>)o3SAA~9XL7{P>HQho zq%xyL9Es$aJXD}U72JQA4C$ukyF@Si6^eITQZ$UM`F^g9Co&Xf@gK(E!TTe!M4KJP zwD5g+nu`v07Jxn>K~ldzr@-=jNlYs}m(^OM;*5JZ3lvmBrS6r=wJq>1hFwn7 zTcyfaqgol6ik33c+t-8Z{IGQcLjr28W@-Qap-K~uRjz?9bU9pAHn{;&Su^6^+`dUA z0(W14P0$}XYFIxEhK=m`y-7`OQozu#D2$|r6~bCK4J*x_qoa^spa@uC434oMgpA+y21FpkNN`cJHoB=<@fEsgTQ|&}wq+rnp>!RST9n7vSsqEy zz4l4f$-Z_VX8DxAA%fvNGF(#$hAf)cX0y7^b_#}gg>1xUc~l{*Vbd%MS@@Y$$VR9_ zHevE5PlfDaDBevJCn#iFGZbb~$YNmOZ9$e;6|zn6G#7>J=!~OS>1EdeJ&EqJl!H^N zXB#q-6{n?zI4bArGmynBE$z0nT3TpEnkii^RAp3S``00x2a2FO>QE?(B3G#r1loVU>@4r9Z0Xx-tNRZp}mPap7!SRqd4vDjL5|9Zz~(b zZDl+++3{}ro2^P04em9wr@>jtXXtPnQ;S(!t>s#R7PmTOXZuQpP!3Z6iU^4>kfEDO zNMzCEK4(_f*=|7*ugleZwnufjhp=%LT`v4g>T)%z%YEPEOrE;jccFMU!JMGWJ(!^| zi!K)f4DZ{>600uvNqCxzE|*?uvW;e?&HWuHO4R034^gep9h+Uy#B7WS@l|ScpGHQr zG`bh3)#!ZIiG9!(r7nD?LRx2B#JjdV5JUv*qNBpRO(kH{X<_#SqeJ%Md{UF!U^lcd z3JIx&g>aLH7PcqSE3~ku;hoUJ#2rry^Z8Mn7IsWzV#c5WXSdn2+|(|=4i`P^C9|hz z1@tl$tE64ibVbsyrku26=P9-h^XG6e7u#PWL-{Z=z)}t6EV|OcW_6wIr(@%lqo&W; zsB&~7w#K3yg`Y{~s7aNhO(rYyRE|!D;@#wBf^zhn424;gqZlN3$0JLu%FzHk%|$sn zFtrBak4U8rjROgZ+K_$JY4zt|_sZiuSRq!)neqVS9ZTPNXF7eSW4YPK&xz zO10dWdbQE7GwQ$kS0S1R+e=9wr4qL3^rro>;IQ|qNosPF1BTv2p(XXE5dQMeo32B8 zh2C^M-U+=)-0}1#pC85PO>0M7))iq9KWVGSz=(?`G&X~p5Ulbbu8@zfv;;q!X$jA< z%eay91O%lvDr19Vm5Hrw$TrniYEF$0)yG82l0FDQP|8D zsYYHFHRo2dy3Q>0TC6^EIJ*P19%OD}UKuS@zv@K-vO4xRg_2}GCIa-6CSUW^nLY}| zyUEG~o#`W@Fk`>>vJl!em(1ili{xAS1-ZXKe@R&K?P6K-b=iu@#$j)F3`$d)uhedj zqT20`7-Tu@8&+iTwtWAVL0k4M-;!h_o-QHG+8tawQ0b}RW8w?lK=zD^) zp7qe*zIK^Pe!7H7E`s7=hH*yOQy649piGg)L)ktI+Onfel3XmxdV)DwqsK(pLh+J* zF43jFBgk6MV3WfJ{&h@box&i?0a=PH9J%C zU38U?Uj0s}k_ep_Ge%I{eoP~bWfM=%ZDb07&;9u(hT)$&j`Z2EvOEL64>9H@FEX>okzYmIc6Tb=O*JnjxhHal~ zF1N>u<;M?X6P!)1-!jN@P>dB>JjM7Q4BE0Q#*$>7E~}>a`Tib13$j)a3984OX>~2p z@99^h;T3#MhTN`47i!f%35w@f_4_c$a)6j3iwCg-8MI}Gm?Sw@i17-u*j_QypZ6IY zj8@z0-S9LQ+iQQjtz=UsL{^Wppd*tEGOI44jkJVSAri1irU5qDE zw2Rd=lP4@hIKWxgWj6~di_IIuRPS~q!EanN2jer!o9Yv= z;BTF>LmNnjU^{&%Q=M1E?e$?^L{rs$+`aW(Q`LEwV67tc*?&XvFdaK5ru!m;EQiE& zimXMJ*bJ%u%M*7AR=&+3D{l4COEth^DDa9S^6;i6~5cyL??c7%<0I-WL+3(-1}VFGbEL5XJ! zDcv%0nxPWWsOP27_qmusF1m-XfA)o*OtgQDxked2-fH-zYI=~_FeLb;ynF>gwTmHh zDozp@M=C5CFlHd#b{%rpNY%6tKh-^az)>|}gGbJfkn<2;YFt)pMva}E%O+!EAg8gR zcpL0ZemSyIPO6f(Ye`KR4IPw6vjDqTcISXNVM zG@-N{OeG}NI!s+nr3*}2JKG7+#6ngyxA)G8sFC`wS{HEpv1*6I{U=1O(gVD zNYJV0zy7d&q;gDOS`BvX^-Bd7&UQxw%1=TaSq&pLgK&T*ao1?J z2AflGhAf1D4p+v;rUt8*v}=%qA2M(b`r9~N_RO8!#eQkZ!)eEXxaP&FVU@ok5G&jmN&){=)@i-J-KR z+^2qDL^27)zh#E^ELMg2<%ozn|69^s$D91~p>3104jU_uf#PBEa*iL{%pl7lxJQx2 z3+|~fXv-elBS|*2As4MHh#y-oy2aMNakFT!Y-$Pai5ZCAQOGHcd4u$Q;b|_4-0}Iy zRka7>#Xwe~e&;3}bs*3Q`4AZw9u#7;R36L7cV7l4D39iOL6gs^;Q>Jv+?|1w3~sd+ z+1^nd6!UkWD@w;YxZcT(-XF~9axX}&)mN%FO4?sPfqr{PJ`Xj(2|5wQa^|Zi((sjp zarx<-+x?UzadQo6KH%oTMP!=tPckce-?Kh>gg)u?oL*^E#_^=2AVrRtkirj0FWf@N z$lMFR0fJ=v-h>5zVLn`fA%oM??hCY<*|qH5wS;h~e?Z z+WO&q+j=jMBHQ|YC>WY1IK8m+=+!rts2c*G2Qq>(*$~wUvrO2$5+M+Gii%z47FEO> z7HitEpR9&btgBiT@ixDR|CG&757WhG3ON_SsQ)eLwC^SGj?wS{pbufe82}m}_kKY6 zmD6SK%kX*OwCB=+zYwfrv?J(1Y)38~$Ux%lJ_e{b%M9_VFGuM78tt&T)|M+9Kg}^4 ztBwIA2n&BFyb~6_xMNxPzDn;+QNx1+n9gD_)*H2IbNWI6*vp{6&f1#Gl4rLxH#G-4 zd`1(dKmuIUX3|3!}4mR$_SNJqJm!8gzTX(_9R?A8edIEMSbE3n6Bq;L<==Mo$wxPwEcBWj<09 zyW1;`sS-HRY4YEG-=E&Z^SW9UJUSFl&BEZM9z};MO{4WeO)~3q+pjR`|=s|&r%{8)Aw)eej8GD8C)fyq+NY5tl>yJwX?m_ zhI|9zFGecOQP@W_0fw=D1rqj7OpWWmh8nezt@Mr1%dmB9tTtS0g$saCSoPy(dnm}g z(^taZHLET45YGLpY;9B~M+ZmYjK69_eO(NW(8@mwtuCG8F@wo$}}0~ zsRT-viR%Wly3Q;^E_QSMeg7ti(LgZv|C4i7{|{A|$ur@kfU{c(YTj*jV>fljC7IZ} zpm?_#$IvSSfBM@+Va87XytDXyx>%NcLbk$rvF3jmWH~I>D6)8qHQ!^@1 zv}FgHB)M3it&FO{8bl`2mW5u`Z%L?;Cj@I3G8pH8wdXRib}@r22dpWwcv!ofL0fjL zNs^1j+VV=sz|sgZakf~!rr(el^S>qddNqSt4*0r`iLbXX$a27!B8!Kw_b_P7jxR}a zvH04lVwmh2Lng{rkeBs)5^IrX1aY5du+IT;pJpQN8w|1>5U0rEA?}9^+Oi`~l3Xm} zmii7M4ImR}3-BHNSmH~5MPT)329F$I^#>-b7H=$6`&VS~VD)4MZP{TZNiG&vJDJW! z4ImR=E6B_GJtfHKGlIB&2KyWk*9*mS%zz^pWH|^jMHUZnCopKsjyOqjv4~ruUDp~v zCeG%=EBdKKm-vQYs={E91EwxyVyey{%K=l0EFPv_z@RNVrXgNpkh3d2{B@!GB)*P+#{&rlo#dfCiI^ zy9M};ek`#jzascLfWa&WeDy=|9F6~I23ZcGO_9aJ*C`Czvg1pVoU3T#6=vCJ78Bm# zy$zQyt#OIh!qZ&h5?7~;1=8mLL;oekD0U)2GkU97LY6iXffKhEEW`;JV|N`{*>#C( zJmkcQ;juQPgs#ATu*+-paUH3MagLEl#r`Jj`hu+T(M)R0GKl23lraqAwlEs;h@Aj6 zl2=VqlUsC%Dm~aFKp8LN5ktMxEgmt=CV}gaUJ;FWJ>H3EL~+N9M)dhnTr}d58o;5$ zo_f3P9e~|qqxF&A>COQuLlT41UE&h2oQ1f=5T%UZ#P4?(NI?bVk$;T{MPKDe2u0k< z#1Yj%;$9$9?;4L;X@qPblNYQ<7h9HK|e2xT1bw3aKlV+#o z8G`sRDBf+7Nl@VL5``5Wg7~dsS@Jd63g`Hp#~5TesPT#{o*Mrf25s5Zcu6u(^H#dd z{Dq)Yh&{a)aOE0;xb%3a?Y{YNx%*(a;4aua2irm@o?{^H${@=DS&A$kvYyGHEjzL# z$;Be8$PmP%7+iDkL>$fp+Q|&E9Dt_C;sNbE25s4aCP^+9Xa$ELUcz9U1J=fwSi6cr zmIKxlSv;(D7_?=_nk2bctQ8P~_zniM9Pss4CcZw%Aj<(?iYy+!?qSfD9bb~v}H$}B)M3`~j!gM==q18iOnc#3{0Ph`WG6TXw`rl8Z%LP9cbG z27??hbqNzwFJX}7fGI^54^uZVXv>Z%Npi86DkcQ+b_Ty3AodO>#O`8{d zW6+izVv^)yAyz;L;=>GPIpFIdCcYkLkmZ0cMHUZVe`3&<9bb~?lok5)4&7wbhtMplxEAG>5vW=iM0xe z*fg9*%utXH_oXJSoqrLa#--5h9Kw<#I(STOU0{|$=B8UszIF>`$r4)_(~aKSkp!zs z^g?)=i%OKg1Q6MM{~PE_)S8&Rq!R+)4dtt;IYD@wmO_# z9HJM9LP!A|Om3h)smZM$C$|zDrQ%O+Dl4#xweRaWzB1OVT2CyWi3$nC?;*UQLenPZ zQmJ28W5E)*vKKx!M^G)>X-(s+?bmiz4;X8C9fg1T&PSgOZdbYdy1}5dDsfI6Ai76{5c+ zlxC9@4hj(xYaO<(3em4jT07ej;9`}Y-K=AmDmDr45y`&8iQ!p~_P(XRvM4VxEcaF* z30CFhXV6KxC@;JbDHN2wfWkxtC4t*o3E3OUFqDu`)8+K{IDw>#5>ni80pwh(;;JFA zT;mSQ*wL>z9-K<>3uJIu;aE*-%BXPA?vn~fsE@6Z%SqwbfD{Xb;~2aX3WvDkDI7jW zic>gFslj=0l~y%4^B4U(gDtVKbZ~eSPR4LKs$fGm&7*5=4l0Om$~hbYbW+0P-<7ts z2mbEWovCz6Nb>_S2+t=&qwu-mT(i2)bu+2|b?q8?AXMxox>-BYw_$S4hpc4+cS)Q- z0mXBc+OB4h<*?MI$l@)vUB{p;`%;@EnYTKorm^`8LEeikTAt_@TmQzH-hpG#veXtc z{Ja`+%Bq^32~TrT&5q0>FV)i9oj^>Yj+RFJ>7}^!SqO?-nhP;fcHm~@Y#MKqd1&vc zCrUvD&Z0)Wy>%3wMx`<=f8bHRaP)2yPulGb4(>%alXz#i-GH@~mU1%ni+MM4=v2;S zlj-Cx(&SXrNh+OgJDntCKYxfc8YJoL9J2dmLPloZ|7MXEL|?>$#Tljn#Bst%eaLPl zbjWTQ)&)muE$~ED#(GP~*Tw+o%~E|rA5Y!iY=IUz4j66%h$}61u(UY3y5DvzwU6*@ zNB2IGF9(C8dmn~^fnnC8d+~W7DQMTpU!7AB-^l1qBEw};3tMDjD*KLTzsppniUaJBLl2=yCg@cWHy>%2WI`)+= ztu=v{Bi#=3+b0#nslOoQZ^$fhK0?k{Yv~ZONV+WUOdcnu56gR^~HjvE1et*P&~`Az#z-Tu^`DZ91A$w zDC-u8uL#SoW6+j^V?mJYGC>8t0MoG`+y9dV^GUHzdgXZwa&B z$zYbl)`PdnhB)UI`VfOG2Ye~A418^>Pek!0z9KC9G=sM6_>v^&iZ5PaHpi986|aWh z*&SE#G#AI!(HUoS<-2+m=t=ZlrJRbj`)Wf*vSK}00Y{Yw3%~HEdJyI3f_F0R0Cm%Y zwaN5gK`>NhVx&|V8xyXo(1hAA^}} z-z3?e{<`G$tF_3^{uyaEboS$ruq)KrosS8~Nljk&*mz}1AABF~x>mh3-X3e!CLsn6 z`+Nj?v7w{gq;ry#Gf>)CFHO{2Sk{&{yx1DW&^h4*1y@n2zD2+$1dhvUtg|yqr6n92QBL8yxsqmSMrt z&*C>7wO6Z`^Y$fVc=&#nvUjKDi7}#9hPC!me}73URi+=4YVjmqgFYhg=*^c~fk$&6 zC>WSy^=RVrVCJCRJIzY?`%O@OdHK@*GhygZ5~*Fu>8XRQK#2Tq*)LC5nNJZptO12(K7F z^NXNxTMshWAIQHKV!bSAWP#q$e!QF6{KKdq3UdB1jLhO+y#uo|dVcev5ob{imLcbu^s}VTLlp_QE z9Ktsu`4I7oIsTT2^*+X6NHDhox7YR}tYy#il4e5BMAX>MbpVHwKKuwbaIOn8yf6I6 z>Sn2WIb=A1)CK*rKk#ui`sM0okMUZyH9SyiPqb>%7mBOBstBwS0{w=o&1SV3>EBnU zr|r?JU!RUTd@%!k1Vcv<=B82&Vr5j=E)XWkIxINsjWW9NBh*>xTO(!fWAsU9!KQl4 zT!(?LNK;P9w(bqjd9^Lg`bq*m`RKoovaLBT-jPJT{c<=4{Rt74<4gq zwpkm2sEv`HODkiw5$$EA0jC2!8x=vqZQtjYiGJdtYTzOsDGg1P;1sBeM1Adw+QimA zjBJHC*3qfSI*p+@0;R7$%Au1*N&6o(rrNok&AkzN)K#oI(y5~ zLsPuj7SGwnp2B_*Hue>GCv0qSw_V!Uo3$b&hW;R?;i*GR5^g8YvdQbjl$Lk*S{>~1 z&P}smJf>)YnBH)I-Ycm^8Jfv%pier-gJ6ea8Sg-`D zCRP-Cpc>Flk*Yzc=kibuzJc@#)!>_WCsYG*$5IVEpC85T{XP`3@=XjjA@~9`0+)#H zwOtf|aJep1{ADvZ#SOi5D)qtk^r)snLX-;EZ90AL0fjvNs@~N-41l- z*Dx~iw$y)7zaya*`ktWdWek=%pzK9Vl-GIEFQ{kVbGQxWs>A#QI_9{5_dCr zn8z-B=`PGYH~AOjAbX<71Fm9>aRR}OFM7UzNKC8PWYC@ z9nZJq^P@Q5(&4buR2>YKgk9WA16|xpk)mBZOjpdHhbc-X!^!l2>=GkVdO2YApi0{V zex<4Lq57EeAJrhV;Bs|eX}9XI0vLQTQfZD>M+PS<<5m62aHBpkHLm{}YSc!y(lQDR~#5btF(zvyDj5L<2yT(%@RQAUKcx*Z|N7LwW+@(EEz18CFjdlID65?8Du%w1d1%4O>hN+w(K^6 zB$=niD@|xVE(MExVHR-p1T&3>j)|>>;wAlDLQ8!|kaZ)2O%8+YRZL{Pl|hyRvJ_c7 zWZlW2EjzL#$;BdT$A}`M;bX$9CwNo8Brz6#K!A21gKG{z`z#Y^-(ryE05nAw4``1v zXv+>XNpi73TNzc5HHb{4EepM>-;z)xPYBlj%3z!W)}CNuZRu&wy0hniHANN=Yr8OL z%Z@ckasW&NJSTI3l)+%SWE4u~6MBJL6fSq_L(WbqL9LI!Qw z5hqD57I8~`SCIyg3A6?Hj(#lhCBGuDdM$%T4zRkB39EN7$Z~*{B8vyB4=`xU4l7A= zv9Q|7bUSJQnfO{kUe@m^K}Meu#C?guJ_p3z$3)yi46+;$r^wqd+R9*-1HOit_-ZrAa=@1&i-)flGib|>FG+H-_{uMq>N?v~C&xx`Efn42GdQ|qF7i0KmoV~J<{p+M zlAh=_S(9gU(>_qVn>D1Q9svENRXny5pN3{1Oxjmb$+;p*%dAmB zhUS@si>Wql$7c3W8j7F$&+Ea0!^s#KZ?_T4u-^SL$$Hm6#!;9G_+B*C)LC}gOk-pYpQp;)0_P2Kv1fSe$$>o{U$^q zL!Wu3T||Wo{-DT5R`za=Y;Zp0{3G{nL6*mLrPZ3LtJn9HjvT2rhX`~_3s(P>rXqYP88dWrdbdzQytl*O zKCD%QZX&VPffrkZF%9447k0HtYiBkgCA6n#lB^yRAF?~c4~V$E#cWnLO(=^_8pB2J zEl7e@^SA<@=AwC|993sx zp?5~ypySu@QycI`y455wmzs;xwtxrnJ`_P6J6%@ z0l!d}xwA54iH|IE&o9jCIBNsFcmF;L3Hc+8GQsIjm-%%0$*6gDeMRDYAIT z8e`Cw9a)m(Vv$wkUbUAoxaI(~7cqf$BZDjlpeeF=K)Z!OTXvvHl8Xge!F$#2W-!hH zYaeD}?LG!s4p>uU@v!zy25s4~CP^+9YX$68`z3=}4*2>x6JLL2kmZ0cMHUZVOU`mv z>a*iZl3XmlW@NA0GZ^f1K-`{CJSSFqKL%M2h*MONpi8UnvuO~+ZgO~K-|lihXrO4vptHq!#JH8~z z#o{Z!ZIah9c;o=9ZA@6bfkBo7tQ1*1Slz~;Ejz3v$+^OcSD0mYLrk29_cx6Fu*Mkv z2%hE=W4L#Ua3Hmr;fv6Bi6Mres2RO?VV@Mm$8A*zwO$4x{*;8mxNKE8bTb5r;igCk z6YDFD%Rh$e+I_c@TUqs{7HZn$*un( zHMxa?7#jsB>t*m^sDHWzA1;!+M5dEM4}XsIiqOMf;GGCP6nDJPL!TcIdgwAxjiw)j zN2}5}9q(-X&N?v3S=I}O$12TcV#}ZKTmC1%<>JnzIwkJ|bg&$FmIz z{7zy796ty|$sxYnEZ7U0_7rH^?MvdD=G{pjbmk8X1mf;-+H7wxtVeF#kS?hCk6!&w zx+&tBCMj9k7;JzF+OxZCbO~x=Nwe=llVuTmn#2Zt19{=nDW10yioF;vN^Z3GZK~$h4G~)ceUxG6MdQm_W%w+Qxcq%0Izc?om{4&|4@=gD)tmy3_K>YP`=U*0uv+2m~#*K6^M>)@gUzzyQt zk3#ot@?I_OUn8zJitDtv-UL_gX1u%>E+^0RUMD|Z4fDgdgAMs<3_XK=+e}>DIFu|QU?fo5Yp`8DGx-TM#j$j-eUp;#Q za#+Gi-mrTV4$EnRK(Cg>p*tnm+uRtdO;k%@aI_kgiDnJ;oPnOrjVfq76I)BQR;kj2 zrz5qAN@J>o+aXIs)!|ATGP=}StDB`}z0@3q+#JDFEdtE97FOq@SHC`7D^Y7Eko8ot z$~@(Z9gr7ecREeNorPo7ORHnkC(rFHXiZJRRPZ6_ug(JG_VmfS(-}fd1$V(4RHOK( z?CQCzP?F4pEA;yU@rU2a_E2Z%_CyUj63*1BZy6k^HHTsHX+n+f1>qE@MLMXLe$oB) zE&ZXQ!>X6%9nv$e@_S|*-Vv+7MYmC$3KY(cS#alchh0x2_2K3Pa<;x8mW>0AW@}nn zR-gqqu&!rgbql5#K*NEks^JHONpCgVk_Em2liq9=?7a!U69(f#XjVkO?mTUcW(Mi_ zHJDW)q?eby-%^ZqcD4MFvLFp)K4=o1g&TAH9mwy6f}zQBBMdgkFdgs>DMw7SMs-wA z+Sak#pcPsJ(;;B`VmZ)h&%|iJJtF~%qS`lomaN~#jFSii(%YOnpDwK9sM$+EZh42` z{o4s_&LkARVHO-}teb)Tq_dT9J#EXzK(vPCU+f#Cp+5zBZdx{H?i~DQ16HOM|0uD= z;NtM60ROR*!Tm6T(K`7ue8TjS0O!tP@PssK)#mhtXw5)@oxNkY11T!d!Gx|$Oh5sN zD4rq`QN+Az+shi$9DnS4ue7wJ?A<`0bk2#XvK-EL8re!3I-MnS9$~^^gwd1{2L>r4 z1P|QvMJVSSfltplcGS2hi`XflG#dsTl0_h~rW{Lxm9fh&NEWfkq_s2RFuPB-Cx%;) zIHlfhULY_yIkgUFd_XZMx3JOQ3QXUZ>U}fz+{w}=preSVGan3Z1J~;rv}FgEB)M2{ z6}%Jh0}RGFVC_yO*6v}D<$yIs77uG*VbGQxYm($*v6kPynV&FtCCX`p#Nwz=>N?bs`OC!$Vx5?m~% z(I$A*S%4Pkw0An(!;0z|_>)7iUXgO|9PAhT^X1dtX8lN6i$OZQkYy;%$N7YC0PDH% z+mIm@3PFkbijRkAx>Ag%r6hxBYQrVz4;rtJRL7d7N~x_pYQ(i1SwPCGP%_NVXJ9r> zsN2l?BxHx3N7_=DgRd`?Ct0Sbi|c6_Ob4F6XV@Gne!gX!%a68)t`Ir6{03vl^Xtyl z_ZM}iEYX~zvrX_df#Ox9`)G45vvQW4ZO=EW>x|EYBhBZ%T0@%)Nc|W0(cEnEvYTVi z#YgiRD4wG%+{z%!L0M2_@sx%4Gib}MEJ%`#88=~tBf&>=z3i5veKhwoIOU*;-YZ+- z?4$W#23Zc^Qe^SK^ZG}1YPZko;> zN!F>_(D*j!v`*~Gdnd3Z^-jj8B^4OAg)!7n=|{MnC;=c?ZH^x=eV~wXH&rozzX(pC zmB_s)Axf%L`8_{9aC!U;iwQwxflI()bRk=TQf zG``w^!wjo~mCI}OasRx4m|j)KT7i#c!0Ka(Ewo^VOJ5AF1F?jZD+#9r?i~9Q>PoS^ zL;NZaxQo0jewF*p>N;1=#)hYa#fyo5=oY(%CXb}UNHeqVCJg2F^eNKb#Sd^^SZ0>2m{Zk7Q@ zgNCGXOJqf3O0 z%#8kxubS+M1&htG0ZP%n{2e9PU;i=y*Gm^NZMB6yc?pmCN*Tbz&D`cz}>6gom%d&i3cm9Hr$;vEVGya=}o&KIY4SsQg$N zk{|e@U0S>u2?;Yp7EHKsi#r#}UIq#AMyStCRZWl(?}ozikr0wI2?Ak}6bP>)>~d>} zG1zW$=7llX5No*%Hip!=-5;-1|Di*PQE=cBp*nDMP{BI6rE~|M$ivv9!YA^5yc0eV zakpLiMAk=5+F*RCsU0Ih$pw2y4oG7+1=N&B5?my^+xg=QR53Rvy+{P)6Nn18 zX(EfWt z;4xX0p)iZbBnAfFLS%{6WAZBiPA(pk0k`3(+$L**IEzOZ#j}fKf&lY38hXQ%)pgP^HGj z!c{t3;7vIm3l{c409g=5>AfjyMoQ(4e#!&Gr4mAFf-9w~1pbeF+aI`6o(Bb6T`Bm` zhH=A{vN~i6NmoiNTkICnC0JY7LfSdD06H}_6G*fGBa_Kg7yPo696P`hOr|TLFn5y) zrF+z=vb)eEIflX&<% z)aRzkCWwb`KwJUDUJ@RTs$g^&WAxFJSvOvPIy$r-FE3wIU?#Y*ivtdx5p~!+$sB~cBiOf3-+a? zvZHhhCr4`uu9RIZjG=xM>sw@YEg=xxW`-+4bv`If@*cw4F$xEC&%dp09+-J1L z>Rc)UYm5q4I@lN-3al|Y$wmcSF4ox35qt809=sFQ*e~#IyR^oRi5eZX2_604XpdFX z8D-B(ZIsc{3%1P;O{1bwipsS{f`#_9WM=tRg%BFuUM3=8{sjOKU-_eew+P=X_S!!Y zkF>hZOJ>DhqwKdYe0S#68a{ucR$KU4)MyJo6a9i;5Z>?Z&U=@Y?_Hqy+)TEeG8ASp z*^h*i=s_!}8pPIlY| z(~g?}15OF#eiX<~_FN9-k&$vN!h(v8uFj2AsfxBI*&}=L*`%on=3Ti^`|dnKMyh!s zRw-9{USQvyjRgz)E&#BTeRoi;Q7WIPv3Vvy(^waeVmHC=>n^3o^W{Wf_0^zYtJQ}O zZHPClzBPu`XXB6E415t*7&Zf+Vk?7AVlPP`)T%&a2rIryaLrP3ECdtm!t0*< zFB%3T3X+Tl2Y{OF79E^AsCrd?$gJknOLL$zgxQg4^Vf#r@J}R@b?5R@^U|*9nf7 zxmLf6w*lLsW}JxMg*+2o0p$>$A8#_Dt1;=2I_X#_-c4X9tdt*}p)iZvB?bfDdSr>! z?Xnu4=Hhlql^rEOhFB`ELgf~Ri+zk~S4*lL4!XiPCrgMi(md})PWc1Y$;q+>ECrE~FhLqa=TjF8E39#dI2YyDA z>`E>bfk{TCD;;nQ4h1F|ooJ&HE*F#Rj|e_tl0AWU!Xy)S+oehN?5N?`1BO8Fj1T%smg@~dR_Uilw@4`1t}D7VPmEN0qr zv%1cUX2nbk^WAQ$d6>dg&x(;Xa`G%{tA&3jZM8a`M)xr}k*BS;7ZjhHt@iW`g;{L1 z7$A60LzY-=wZ-r>7h5gW{sIaQVXtij0xb4g@_^GeTdKABaK&+UTZl>03RsF<^GC3g z-L^i)Zj<%*3)$;ryJanmh^13Wqf&{bSXI!l-?krNBYW>8($Lwm;f4qmnb{rKaD!N| zu;BvSI@xf0)l22GggS5P1F5Jygn=Y}Jtu|fvU+q{aQTP+Vne=;x)e_islg_r>4Uy&DUM3RZ*N7BfKcslK2;nRi-s5IPGTx`5_rWP5VDhzsW zV5-H+>o)APotG*MnxZq#(hIRl+6q4-L(9q1dv=_qr<%{O^|BX7L{uMRoNUKI(6no{ zb4m7LFKOy**?SuZ6{+TgSjAkac!9mQ9t#%sUVvUSgi>c&Ujz0YoHGmuAGd15l`$~- zs)5x<0Gq|`J15`v2X^0?P_WhR!-uw+*s%NdHtarwEq3d#hBbw)zg5PMsSS8>0%=wy zA%hLLRq)ADaxBymY```Y=57O`ppV*sy9gW5CXMSw14FFb&AZ5I)7gfX zw&hXl#>SV*k9A#CKH9M`-@rxlMXBqG`Xb7D;UGzEyR^ezC z5tiG7Ad!8wgfwxsY_$@hA~T}{TWwD)SlDU-N}X)AwJl|kZlF&( z--}aFNvY+DN~_(dj17)eCbqUKTdRG_lXKLj`ULzjQfZD>M+PV0>`e7d1#HEMsd4?+ zP@^`omA(;rSsyJJE&xs(R6lOEhg!APm@at|&a&Lvs7#Iyj#eup)rNWti)&U}>aXhX zXkFYUn6oQL6R8y&c}6tJJ8=N`Dlr|#mPsbd0_D5S>ShmECxbAF+N_W+=onoDJaO^f7P z`UQEatNxO(iU2j#J)7uoud*IQnA(CA* zmxTSb7I3YMPA!@jCc>75Ue#|&n2{%hajPoMvfL%&VFeTq0@E35PiK(jfHg%H4{Lo4 z+OlI!l3Xm-mWP!VjUW?ei`8rT4T&-TTY|6S7|e3m;l6>1ud^6rIp9l?#lzP{4BE2e zOOjkHzILh@YOuzTiLw>sW&NJSTI3l)+!TX-4v1?r5%&rPSq_L(WbqI;&7dti;v~t% zB5tW~WN84IKwE(C=*JRY@+$(XI~Y82fYt3xSbdB^mIJI5Sv**Mfk9h#SV@wLh1E`` z!L9*h;%fzYS-+D7Rz}~~ zuS&?7j|udyWbn}edQ(j3y^=we1N0PGJm|fSL0fj{Ns^0&-tzE*h=!4gxW(!<{e}dZ z|1H7S`x(q~z}Fp2e0_>RmIJ;NSv-7wnL%52d`Xgv#n)1QiA_Vt1lIz5M?aRxl3x*6 z{g}Zc2UtDAgw^jEWI4b}k;Q}6oMCr8Han~&$+^OcSC}QnGiIgK`#7$QSYteIg{Qg1 zcs`@+61v*1_YCMc%XYoUnzN4R+`DVhahvf%?Usu*?;=Y?V5OW3>p!6dFh4%Pdwf25 z&^cTObX7~0(nR&LQswemeZ2IWH@*6Lr$EjOvcv87DZ*pq7vuM298m*5^S7VnGy@^GD^9@L^2+}zQ??jM}xMKzB z1pL5ok}0|{8NlWK`E%x6IbHU?44)THdkOn;I*Y3ltws&j5-)`JUj_ws4%IOjBh@Xn ziCX%+)@!>)>jWjbgzQ{4qaiyX8X0jrKTVPhLDAiUcWM(O)yq}fOr_nb4~D-8t*Po) z3XALsYpi`GU%yBQ;n~TA4^=nfULeBc0vsqa7tC{>SzTv#Ar~9b^Qma`OC;VajF9aS zG8zQ47uVA?J37y}o;nooHXkK~UR*2+D?F~}mBq5;6|xo1u@}9a)m(Vv)6DWJ1#LG2IhA!JGOeiLvkl0<_;VxaI(~Uo(L=cf?tV5lMtn zh9)YqctG2ML0fj9Ns@~NTEU@-s~L=Qz}ntWJZG))5C&NeLQRpy!`d+n+OlI!l3Xm- z3J6U+pTR5#e4We0SB*iI1HKelJbYcspe;MTB+13%Yeqs7U&Uab1L9uEMBJMgWH}&C zk;OyYyBV})N1Ps3sAy_G?h1HKelJbc~Bpe;MTB+13%E5G=#`xrcOfYoQ2u=*B*EC*OAvUsq1ltEi| zSV@v|g%z(bOMF<&;=AXeN8cJBb|yT{B|dE5bfFq5NNoNVYmiu6K!c7HE2pa@E?g|c z1{wNvHd*QTR}L3j4$O3n@Q4kuQY)K&;y-V503FG*rKBde<#{7qjCOzw7Yp@L9^qnp zBfTPA?3s8c!o|cLFI>#$M{(g|2kCg9E%nBDd#sW!9dEg7te7g!B~Yw2qk&?YKt`0< zc#>4meAMSm_m$S*78HmztTvi`B^r@6Rv*52@X|`7RvCiRPMgE^Nu84^O{~_Ak-no# zuEtZc?z*0gtin?+tuw3Z%wm7XhG?CTSC{F2Fk_{_voTh|kWBrGk<`b0L!{0Lz9zkR zw#n8!W1`N0;@yO9LQK@DqA)WiDl|MaSIS0ymy1_|I1OjUoV$kR5*lZ4!a;YeN#dj7 zG(Ex4*0ig5htLDkV^=WfbWpt|oje`S2sEMHbH> zxr0Glc7sHcTr9qxVw)B95HsVBo)q&F{k9yCv2T!(c`t*Z4kPn3ObmXLL6!ps6 z65PQ_Q=^c;a=6_p0dq>nD|bPAqIM}5w$;JvQd2bD(ol7{(r#8uwHE#kp8?zP;W+H`>+7ivR0l%OCaS~LW)r*zV^gJ8qYXcs zfU@C-@=Oq)?`6sO6@(~iKAoSyJMXvi>Gsv0pg~m0TA~|D3m;A>+>+iosbl6W0HG(+ zr6Sb;U11^b63<&oiBmI|=zgJ%TqJvo7TlhRCZ3)Vvfs9X1H~O@v|^~{4h!n zb^%kNFWtJKnIR9i?#A7#*%-B^?)yUbe&p7Bq~ZZQr_h-L~1a2WMNlXUDv#E>UMu>6(5 zI0vjfAsgk4wWXsVB;C>nxa_=BWbv@J3xl@oSd%0di?srFL+!_4mIJ=lLh&3~b`*mw z2U(`b;^FHg25s5#B}pz8Uo)~BYM8-32gD6B5qAlLEC<9XvUrGlA%nK;h?682i@5xD zL%o*4BL`UB$b{897-TuXN|D8b)dv`~Wrvj{xmZ}u$Zn`FG1%vTxciuhdx$}n1L71} zJjDHkL0fjjNs^02Tz*TD|77sU0akxy!fHjWP>o-a#e>!E4BE28N|Kx_tayc4mLg-E zMBXRSoU|@Qz6+k_vJ}~y+8wAOzmI?(v@A$k+;4hWa&79W;^MzU{E$xX+ljpmrpvht zi9^fJ|7b2w9=g$AoZJH5v3?yf>M!`{Rk;58mVSQ~&R_qL3nbh^h|^#rV?3l;pxhpO zjIx_HkQPEWMHfbo`Ty8^^8iVTDt~qTT_WkhCn&-%0fh{~?aihS|jCtkdG??uF_NF=mf8^Ux>9ufu7obBcEmVAlOxM&-K zqJ4eA_KRFF87qA9k`FGY!KgDx6LJiMo{kl>KJEoVC1yQ3Plf64D)0P|-f?@@1^Lpx z$BQ#6dV`>HQ@#!U4G_e^FpL#{3BsQd^@d)D-%*l-t}B71hdZgQ-d@XZOUb!o0b!Es zpV>(qcm9{8p%>=c&1~5vC6ld zpgP_)-=`ggq>S<<1(I(Fswng3r^o30(``7uxz_ZB$~hN&ON4e~0`CkO9-{MoSaAk) zhOkY) z0cv(-6rc`5P6cgIeYhVZ<#{UUqSDK{Mx}Xe1&5<=N-_$)_K?6NUGU={x&^!c(lglY zZ7myijUFE0b$B~N3*Qb@D`OS^Kz2w&8LU(*Z?K1tJF#4C!kO`D;?uiO-c$W0-Xv=5 zcZe*#z)Y4v^snUCxy>mJM0e5B7(4v~Ujt zvNT*$9$99-gO?i6mfd&2N!A+c(xxmd)=bO9@Xjx%7EhHvT>ydm27T4O+#2EIJ9 z%VBm>M(0)Wrs5X<*7D%M4Sl0d3ha z#Yrv}Q^jlmb&~>dN!vO|oMTr9+P7tHl8Dr~XvxUcNE zFG0FXjPb_|n5cofM+|ZIQvZ}PI9rh+e-jaWSZz>N?tO%H1`3G!7mLItqEo`hlZ?Nf@KOIE z4!YbbJo^tHpLbHioog$1KP5~ij$lxtjsD?b|~{A zehyyFT=F9J@9vlO5+ZH`(J2xlME|d!3GveImB*z(M4HZ{j87AvE)47GQy`8AQy}ob zRPLMA%6~Abfq?!_1JEZ#FoS*Xrq!>_C36R98c0UWdN}lq=<4q?N9}rJB0kB1r#J}7 zCptgJgoZvEe*Q8ckH+Qd;5O`k|1k)Kx zq%it#*^3RZ{CJSV@heVyYO(BBX?oGdfsuN8bBu;+ZtH0&e$dx zIlWtl-MJy?W+mqeddD4zn`n-d{9SVk z+)H^T&`b809icOj`w>S|m;H3F{JN=?+uzC#$={V38KgI=1{)3E-glt-+;&KQm{nHP z4$03La6-eK_!~~Vn5Ut?L-Ncq?VhHSX~yZ)8Nd?qqZAS=AU|r)V!5&uss~N2ogcN# zfGiDAd1RUSs9$D4TXr8cC%IUBP16p^rx-9)LzkXxh{5v>$kM=|N0u1|M-6DpjzLax zu^7xR{PrdT9%;bpB12fc-GD3&Sb1cb!Rp-xv}K1CCplMGnN_9;zr`5M&bQF&QHI~{ zg1fnd-mDiT4`-I!$QJ`CKS}&Z_&!n}Ah<6UaT7M7nS%<32dFWw73WZFs>^&QD3gt&OFf zjhCnSWlVJITZAO)X;IBlG#l@&*A*MD)BU`VMd-(&pyPg=2r`u(tdcuxe4^vd<9kbY z?ARrmP7N2~{tt47`Ej1cE9S>xS4MuE5Ddj_yn6H|y9F_nvB7$EV641tpaP4!wxx6L z^eWvuadm2Ve1ZwDh9~CGIAs(^hqvo$u%^A_d`)ob>>l?s>TQXCglLF4wWx|q)k(4} zKbs-H&YhSN$5}kL{2@$Qgyydk_cgM(R!6)qPSC~sEcEGrNhGkh%#r|EDmA5Hr|kjN z=jKY;Ekk7r>mmjb&aTK3Uo?_3{VV9KT&#=OV<_Ws!VY0L2FQvxINbQ2=9?fZQuq3p z;}{~$;6v?mWL(p-O4ji8^_b^ljaD{|+D+IIA5|&aX`?k-ZdqK(_70YDzkJ;I-nQD_ zVFXFrpyXOJ=^v{R41p1rN<+mCebL+ijArcsdWXw%6=@*IQXu2g4U!c&Fo&Oe@dfz;*D8pl9l}Bib8TgnkoLW>iHO;6+Kr^K?CT)J4V@&~!ifRZ`(lU6CBXY}lqj1Rd;+i7#DHBH zO$-7vrl1Wk4y;(p6LYQc2AulZXiY5dxat6JMZ?^mqCjEAB)}W%CxM!{wktW;2s-n~ z^N&5C1xZc))-s<@%Z^`Z9Xo6{hX$IJO#{vG@{rwc1y5Pajz1o7>et7t*#-VjX-M}g zh@3zxQ2aaZql7p&qIQYum;QSX1Cvm!sTe? z(tb{mwn6RTFi)W);Y+ElJpW&)m6JSxdmwMvK>s4VVgo(9G8*WefFs3u01svJRL=*P z&hvMm((@OsOTz>R)S`yRFV@KreSddP-%ioT{Xv)~)6-i7{)g$qKZ{!Lm0#y>o)XU< z<&Hm!OruBdH8Lv#$w&xhDNjb_$;eLCw6!&5shHdK0U)~JkU3VV_#idebaviq-=NWFmc>ZA&!(Y?EmlTEFdInvRVn#aG;3yg|E zIZ28YyjMl&1-^t;p`jN^P=)jda)rS`1IQLkA01YGqjvd7?I!B~6L#$VGq#DnE>u zQA3sLL4%4zM;e`Ni2}G#o(zQXS*VyHq|Jh5obeU^;C`I zvkK#EZ(7gl!Ev(%)lsf!7cGfm`fG(%XF8` z@IWvyQGqE~oW%}^;gYj6lHl6`QX1J(&rw_%8?V}@4mv}v)sV9iqI>Wdf^Nr#|7nZ+ zX^Z#MZ?UsvMVD-^&G=U4UECY0hw)uI32mhTSsGaP$PzsAp_hR9aTlK?p*<CW6wZidBzbb=}i6gx;_Q9^q!xAvdG1_Rq1|a&YlMXi#KPPUhpm0 z*CS$`Z^O{wgcfY1Q*vBCP4ruW1uMsuk4H!UP`z4(^e;Sd6#~3XCeYqG_UC4@F&G5L z__QW#Wdzb2bAq(TzR)E6ALLflB-}vW1nd*nAH4jmT6wTh8Quipb+m|qQT;)>9XX1& zk27z8GtbwAoIA#~5Vq6^v8e`y*x@pPE#9iuu57veoG_`7f(BCxVa-9k2@JzLLY~m* z=Z2+GN-4M!C8Y5){Jh#GYtHn3mujtmmaUDi$NLWlAHJ1}tZ4RmLFG0f6gg zCqpGY<)IS?xTp8y~kLx#AXU_B}RBtk8`k4V)8bJ5RN}eo&6Yq9u-VemhH|!q>cF2Zy$~LgW=oO2$W56K5z!~imZW*W zTNP__{EbwztjY=NFj$YXBN0Zr**+iZ=#y-CcLIYtZGn<>vfWudm>gG zHFNJGZ^~%qQiyOfH-aPOIILynK7tf8Gxytg#mroGWoG6E94XGsJ&Xi#()nZ$QkuG? zG7WP#7~3_>&zHoRpOk=UF+qP#P)qxVz6tuLgxXZSO=Ac~VwKR>H9?=2X>}V@GLI3& z9$0O{{xI&&!h=!Qs&J3!yhTmu%~O}162nNR2T2GTCgxJ*o}IFZ2vajhpU196E-GD}yS?+0oa9#gfO{oZ1t5TRy?IaD>2}XfOTbL6?heJ_dU0187+xG2#!~&a(KY&+k zF3zru=HlTDbwUv!(SVFQA9fvTKyF}X11yHP3@UUFY^B@hO})QstKj+eJL2ZsEpJD+ zpg^@n*JY`pgdy8B;f}dt83q6eStKLWN-N_yh&8`zF3Q zkSB%d5TPFvD#-^|MraG4`i0N}|EvijYyV3!^87)TK+v;Q2A9Tmb-#t`VYtyg195gs z8;2})K5^&YWx>XG9$AY7w#~s#>vNSGt^6y(vLyzzWj`p4ldLn!NFkAMC%ITm?MzH5A38Fy7WmKkk8pH_ zUlWL3X}~WHh+S?7vG*E~r2#RIEHjARYCv0dh;fpOh1l+K=D80e8EK1!$NeWc;H0|* zclR4GQ3H4P8shF-24rdA&LhhVcTX75mK}GTxmYAF5#0?wo@D&>gpc|UanMC?5Tx}Q zuuTJL%b|LcDZ()ZWNGL;k1P>sbD1}Xa?bmXFzq!4)MdvSC%Ray<#z~r*?>nHz}jF4 zthxbN8o=_%5`mS@w{f8XZP{VPNzN5kW|b)pHHdLjI=?{2neRfB-u7*{n@glVb{`3F zUb5)?^&qYI=sffEdLel?_7HS%ulw6ihnq`88pY#B-@#S}{$Nm}=?_6aVzmv25W-#n zWvgay#YOscILydDRG=NVy_m2<->3$nC2ul-bDD7SR6D7;Fm52N0bz(y_=Dub(!CuN z1~~gmeSOji>)n48bG-Ve2q`oYrg9snVXX5>tT-B{ml~}K%@%ucg6_M?2+ z6P|JK1E?6dq1??L?}rMC0#VY+-9xf$qZk%B|1Nv60hS-f7#pkNF;07GvFulAdi``@ zq~5L#vjyUC=vA|2k0pz0?}T4c@g+VwDozq9-Y-O?Guev`Xg3$> zZo+IlS&Wizh{W%tyF^^Q30yO1awx9lUBrd=3lY~rd5OzF5A-bbJMp(o^+1@sf+{{^ z^2&W&m83rdJjgR55DLB}(Ak(EK?CT7W7`I-SZ8b#44PnU(?}(WX8tiPTr-7HC_rpS zE&?<_VwinIEuqXqU6_4DjeJpHU9*qojoENy>9FG1bEk&MXjdZ=Snkm^c*Sy$*wqf1 zd(_)1UtkZ^>Mc864w8DQdr*-^F47dOQVvOD_O{+q_g}~6J_THBtz<{kLQ>aC?>H?l znTDNH=UtcEt@=Rpi{Wx})E*u{v(tZMs8O#?jQRh0ImXc^A`koL+(&PZmmB3xjq>>D zz^Gjwwi{keejFO8qls9a$?H9qBBjb*7~x|yvnujEQMR8z{0B2?+KUy+Hp{-Qx5}@Z z9(=J?@M5ObH~!Xu;v3si;ucB06OtatJvP%3)AAmWrI=@y))%09y#(Ea+@jC3%A~}# z`FLhEC;j?~R%5Bc{!7YqN6bhhONY|;p$90=8eJ3t#*FE=1d zBaGsaWrnQP2DD{I7ALt_WGxn~HXlARyn4bX{fE3jaO4I7+6DuzX#nj!L!ez?K$Zs3 zJhIGyw#|UH>_For7Yno{;%vYNk&LuOkw^WfIMm1;g0(9R7^i`?%MG#iUIVf;u;!6v zhP7J_Xv>Z@PI9qW+o>FxXZi?|aW>z3%zuJoEclk->wW`fY2fQ#LwtS9fGiDsd1RU4 z>j?wevg3=BTr9qJ^$!pTT@yZrWR&ep9`>K(SQG9M#64@kJ`KeE!4Prtw-q`8@W?Vl z-0lXnWk(z*xmd(44E$m~fMlS}!Dsy29AEq^0;^sF9%;a8IaF_A{U2jMmWCqp$TEY~ zYYb@14l7P_v9Q`z_Obc^lJT`OdDwr>Q)KiWL0s8@eHw_{V2HT70a+S|^T;wo+=T|T zWk(z*xmd(4jrHLBV3I+%M10ccmfpZZsfE19~1=X3+bD0d3i# z$4M?0dO59D{IUUqG%$6)A*LQRAWH*N9$99X`mq6R*)hdQE*4Y8tX6!^fL|IAd)5$Q zizW&+{XMeGAod~y+Ok88lUyvs3RuK{m;tji@YM^|o6G_J!GJ6c73Ps;hOgHd(3Txv zoaAEhmEZat+ki(JuqqqEs%b!$2CO`?%wTni0d3h~#YxT;R%VsOug|%9&WxEe@Xv|K zc5&{;z_@au&IjRcE(>*Hw|bA{2C)S@?+5Y4FW8CZ5&7$O_DfE(idnxCX)8}bzZn}J zWE+8!RjuEV)(9*+6SBE*?G9wYt+dAYKSTAgF_zR-Z&(d`tlYRjShAD)S7h3Civg-r zttREJ*c*XK2*_Bb=q!aL? zxc$=)+>$P5QoV267M)zlktx|udyC0AmePkfnh&k1R8+-C{sncC2xdi^W<2`DI@) zV3r2HK5vMxZyJ!LfiI6NGkksDfVS-T;v^S~uPMnd`;!6tG!XZDL&VMfr$Q$H9$99H z+tq-!?1Z`PI9q`%P*RFl>v`5VD)xGSiRqXEDczBWSPP0 zV+OQkhZQF|S6G=<79Y)YVjSMi|Dg9(8N_@D?&cE2jNNSz+~6#D`5;IuK6vST9|-WH zma)4HLQqKFZ7|X(9-VsxTbU+WDW3{>RJhyVNW->!x0D-|@?h20+Hlac5)vMH)Bx0} zf|(D87~t%Bn7j$B9AWz$_qsDjD@}`U&tkz9BwgD>EqmB%)vZAY?lzG-Wov7tHEO}O zy|B#~26uZZEo-7;SBINcxduC-}b;{XNb4mE%WCT7I{x*WcnHNSiWg$51iD$FUP$y+fPzBG( z?lQFTEgLm5CSHV`VHp#9;uXu7U{_`t6M@o&jEPK5pMAC@G3P-1PC2TRrq6}Fbeqk@ zJ+=-CTD~l3IlIzn`H#;6l5oqmAh;{G+TG3HySF|vTmc2&ZZz$VZ+>`3q^ll!2x{KY zaUNzL9z4#5Q>ZxBzJ)Ij#(xfv>+w6rqg`YPxJ$<;VDGV7Zv{0Wj$UlfOo@*m~m)IS}yIF7# z;E;5}QeP+Z)<=5PT0!|(GCh-t{cx5Z*WGzdP+3E;@|EG^Qegi@c<3m6u9@Myg?+R= zf&2^n=WK^!tux8Wx8fI(dn;#w%y%yizt zKi&x+Yn|&@`7Tzz8*j{VuE&qL&U^UBd)ck`vGV;;Zg*~g(zy|f4`6W<79YgoLs)z` z`0i%Bx&@1mU~wxJAI0KhSbQ9cwazD4c^j0l+2-x|eF=5MC)wAZV&%WH^3$xmgO#6Q zC_Tw{Og{w*DYpnb_l<=Yl*+1Wa(piCz ze3SkE5R}`UZ{hXmYD|877%ta3k3b2-(WCHjQO9|Ve>~1VzQ;d)z&=XO1a|x_SbPJ~ z_%$q!#($5*;!rGlvDl174T`q&!^lr3+0Q1~PbS&plkCySw(}$JF;+Pna#-c>!8fqV z*|5keXQT5>v>N7NvE>{n{t1iw&xPVESp4cdD1MK{9_K@`4;FvH;(08VZGd7W7W4lR zik+}{3X7+)xPJhOuVC?kjZoZz#py#(oQuWFMxf}&;zOIDxD|_^SD^S67I#&lxEG7R zjzKY_2E{#CJb*>14n;2(Zybl>%~<>li(g^!fz43dg2n0v6tBhNDJ-7G0?$%#*bxkv ztj%-0(c{4#CCF+AwPV})$r2{UpYo5N!w1OrY5ws`{_$)6@mv1!d;akU_yFYm5kF=) ze}WI^Stu@ona$}P=Q+59dam0q==8S(uEMQpg%QuS&#DFU?D2ZD32NE4*kQj`eT&_w zR%$SpZdk2Gxz?<-U=q^Tb7sQ^y9H(-F!P4#TfH${sg>cdgceLxV4^-$#_33sE8L-Vo={n+kg;O!}g4CC171$ol+@lW_0#>rk9pL#aErYHzWtoi#JvIjxCtQ0|`s zdAW0t+nqIgQJwE8_dDPTY8O1uMLqKcs2gTM338vq{s~&y9(0%bbHM@FJhTatZKD)B z&c^{3akij_kr-6nORJ6=P>N@WWbO_m^BKG%_PmaTBAJbM$rZcnG*YmK>qE`;eEeM> z%f`M&(?6OS#&r$W^{lo>DmB)jsC6B^L74Onxh+}j&d|30nq0B-Rs4=kW9CA$M4j>4 z6+SbF;8&p24*h9c?P|66f?9nmxa+`Sv87zC3|sxc%>Ip)+KAn-!9h3BXjkox{eI(1 z&TlCm-8~d9@qfYnL22Oiq};$PoSP9$0KX3v1AExcpZg{@o_d||cU%+6cz5OrryMVh zWn91oA(Y|#5$le2z+EWIDJ6eSphVI0O3n*`LU(qvHQaIML)i<0Rm}9g4!KXjv1b^^ z6g9_A1>JeD`!T-3c|8EcUC90$D_1~+&AJG_m=9kt73$8$r`$#GzrR~YXOi9CT5i-j z+nwb|w#W^S!h?}QHkApH?>X+GLY~=A*_R|panj+WJkBGY3ff5lbVmcl5%ul9WIZ~n zOV+xT*7|j$6>EK?vT3xn+_Khh!Tsi})0PF0VR%jPJXb$_%y}{Jx~VtD%?Ek#J$sns z=GEF`gLb2{76!laAPjzM-FcuQV7Keeq_kz|DKYX`$SILHA!?_m&KU(2)8DhgT8DkI zT$}JT&`7;8)~=R&gV+Hmt8$BN{SA0(TD2e$&|HbX1}@_7t){)XjVjB6m_m&!H>?T* z6JCurK7Ja1c&t8L8L7a%b^hJR`yjFaCrtUulf^UES)=7GHkeHib7oqX2Hu=@D7!lA$#rgl2Mw21&PynS$kLu_cPYHysm{1Aq91l9NbGtpm z;dm~3Gw8i!-$9JUA`HgqeRxaPF>j;jMkJ$y;u*r`lk;VBXnC9{R~%{VZdwM_erJ1; zzB3|LE|0QuCo5@o*QW^sUN6&`#efJIaE@GYgaI!E224;jAI{^x0;3^1g1!o$VD~2s zF7AAAG&d@Cv$FvmM^K@ANEc>VCFZ}!cq`~2dwIuwDSq~K`I%}ZWK1&y{yA?`w6Nq{ zLGQS$y1c&Rd-VqDBLjg~Z>1Htitrkt?!(VN_5hr}_FKzX)0Z8;(mHn7ZVnAJE1L$I z6)B+408%)47>d;s&4>@*u#uNS1Hd@b^&?oEzbP0@9flwKgtGs7Stk3Z9po2apY4gu;&Hyu`NuN@APy z4kW=3yE$JI8q!sh5lD4?n!xu%CXIg#8}r}k8~=Tc#y=r6-s;xleF4i0P6OXQQ5OF5 z(s2)69%m-C;u*ry&*`(&(MY@dEL5-Oiju%MJ6KKm@2oQEXpH=F5FaU)8Qc347BF!F_)HD%)^3WE}HX$N0k1 z+lH_0LUurhj*%#iwF`pAkU=&4nyC7N6I!M;9n441W%BFXiK(`@0ygs!e zC3p%FY(Wkyv&s~Mc8tPuUV)tQ=Q`5c_J_OXgEk+naol!GX-5lhEx|SLVz=wu$qfer ze|5o%v@eQVa1dbzw-#PXaFk#z=pR5E9?*V>&d6 z{Yi64a!%}__>un$?sri>Ma-%D2>4Sa31m5m^ltfe?)E7+rMA&XozI7_> zgGBC$hkD{z=>Lv+GiKJQC+ty~A$b}>4@3328A0F7P?=)1iot{P4P=Qg32C(YEZogy zw0gN=*YpOjKLQ;o1}|kV^vAMS7?Ke;v_&|_hqk+rmBBPHVQ7=r()FGSd1{RcIO|!^ zbdz1P88hxCrS=ybc)Zoq0gmIN0~TOoG{-*>+_3YE-!{|%7D8~6gOn5AEY@C2RY z{EiYGwo}YJSauR(uiUCP&Od?K47j9or4_v%tkeVVN zfW(DgedWQSzM%Gv!T9++CCxb)n-FE=!r(_#oA>H7(M$Z9H9paC7mQEzCN1&tFui!b z&)enjK0WoGkofa*s4SBB<3-+-sXvp>K1c`ZL1$mQVs1N@4z#C|$Nu`?gE2h8K(RBj zjA{Eh94`kF9s*FR0EkD0=uwOPRHP&-_MY%pl$g^9&6F6W zQ;H>gnaTYWcwcUEKOZW~NA8Q6B_3gt2UvY+uM~o`Qy}eTYH7EpSlXNOl=j7cYtmj4 z>DxFCsQdG^qJ-z*^Ry?wbBbkqb)K@lF*n(A&X{)JnHwlmlX|aY;3s&}qBb4#R_w3M zJ+F#)1w$yBCra;2l4W^AP{l5$RNNd?L9IYKfEaKn^gGcR03UKgJ8Y)1dYO%~%!{zd8oAWe>k{l66cXebutS9}Io{QW7QS&RVg;zv=lW;0vN&E;V3} zhUhNlh!QlvJCBdzls5lMLf@4J^l79_a{6+WlUZeoz(b6c;LJjn_#?ISwx_|a$R+U5 zt7Wfw;fC9QwiMw8!4C6-4Bb{H^bvCHg4R_Q1l9*Xqp@nnNL)31;g7{I}Uw_3H zjlsICcD2>CMjG`ot2{nloxr^G7H(k2D8%(*y|~1cZ+8Z}{=k}eFk9QW>rYdNLKOEJ z(vj{o=tyaHgWFMzRxa*4NGlV<6eTBpoT6u4xlx9l3GGIcYOLrD!t4hL8L8$HNptux zO7T^!m^q|Fq=OBsj#8+0Mk}HTqXE#@xE#f$Oq8F^!Y%Lk@N;hm+SbL ze#Dxln5ZU!E8H*Y3C^95QE{n(u@dGs92(sh$*SStrkMrp`X;qt4B8wbVi%}52@!Zd z84(ArO0h;*SXh))YbF#dV$Ct&h&c*+TZn-(VT>GV!;0lv3&+cPW1`oFmELs-h(ZXn z*9V9i24t2PI};!OQZ3fdLh4V>qU5zh|nF zLbo@LcS`4Pl2!}d-e2ZgE&XsmpQj}VV}0-~k>KV8Xc%BJ9O!FUvCcp*rX%cEI+5>q zu$=WxW|ua?T?>Ma$cMGAPm@;vbH1%+OYa$CE;hw&h!|vCE{HLJei$gBb|^If4Jr-; zC3HR`A|#hU$wyGSEJ62Hykdb8cC|wWN{)g2ugb{807eD$!z72M3X?=$p%El;FPw6B zew0w=BEanf-=0xrAoU zGGLE}=uYE^5_-KxXlBTOK8?@}r!QAInN_9;&BWLU&ciq&C_^*<0e5o=%^a*@r+I;y zOF>vE0yD${^TRS-BS8^^E-ok&;R<)dex3}RV4|uvK9Dvaef8PQ+P5krEGiSkRKNob zrz%WX%?UVG0kY=#89(d@AB^76sEjc8&8bdeuet_(BTcl$xjRG{=j9}MliqmgWf_LE zODY&XyNpOrIj`18!@CjbWwXl<;1!!)vMZz6WylYh>F9KCsp)hx4&L<0jvdO{y{4x) z^W?Um<+ledXIDBcXS=DPUnsD)#a6rfZSgk4i|)(J4+x4saU{hLlJ_l4-pUVmvP-{j z;l6RY?c~}}wT*`$(fMMRXGxE|7kREXgG}--hTHhvEms`b#&17pd@-B1#A@Y$QSv5! z`zu`?!H-nVjhH3|@Y8TF#4cqFUS6V^o^0LTack=}*nrSm-BNOei;jixt2ivUiN>wtX`$)$Zz9w(W~y zn)5s|(l-R9mGNEl7Fo>I*B-efV{ z$}uv$bLIU#VmKvuG>Y2F@hE?H!o(P8U}c3HIUd}7S`hB*H~N~jtxnlv$0RO}XG7Pm z$TT{)a<@*c*%;Dj5chm#;+!+6I?W6v+pdxK%Zv1DyTOYw>Y+t`&($cb6^lpmN@SWHyo7-5MY#4%K74+T9SoXn`xIfIAk8bVdXBW6Yu zm=_umkJlut2in$g7VTi$UU*k=XBUYR3}GoH@f{2INT+!>figp1(82JtuQs91XQYpb59vCNW;i}k`u3OWItm- zmIkIgvdl0w^RlRklu9!?*)hdQE*4Yy#gg_i;E@KbUI^8jsH&0ySsJkN$TEY~kp{G7 zhZQF|S6G=N1i>}{e8RLWTpKxv6|)IR$P-i-%B`An*aTq#t}nxd&f#z@ zY-`}o!AJbtJXp%VB6jyB`En&(#e5-D3`}4vHRAR*!299MpAKs}T{=2TX3?Js_F~1H zAvOcat0G);zJ=4Cdgp-!I5X-Z4SYn92K$Og~M%3M`kE*gL-k zkigt`yWkab-?1wr_g&yiD9Cl^ZCM*^52Txkpx&}pw332X6zsm+p2mF_5L1%fMm5+r zs%f`8cV5FD@m+kdq12{Ed3?2Bti+ z%rNB|(3TxjoaACLwNrFR3pJS#>u~3LkNHpVX=(5+8HR2$V3r2H-fxJnPa2S=fiI6N zGko1+KwEZvagvM0*8<;2@{v=LcTI;!{JR`iv+)~(smBZ$q=BhN3^Dan1F|$Q<&kBE zsb>sm%Z@2daUcB%nc8W8iy zGK1K91KP4fjFVg}#PSR3whefs0jtf1u)5TMEDczBWSPP03Ip1*!-|ufE3C{aQv`Km zJUz~lXkI9Tx-W*ixde5ScSZ1$|03Qp7S_EDq}VmAEBVs=z;5iR1xlAwTxd7K8y?!V zh%E-g{W)_D86xa35Mz$r&#-o68m zDCZ**xMR??P%MXZ5ewcgL@X<(UM%y$Ta_#l=FcMHkUd=ICU7K^D9-F63cO#4C{CMt zQS2^ydXnWLdwz(Jv|I-t5R0MM{CE-@Ep>pw-6*t!7s`t!CSZCbrt$*Y{aPT~?J~_gCLV=s6*}Kb~dZ zTG+Z(l#07_d;(7Mto2r4w`m(s^Nin7*L%#89!sX@t_ulNn7;Wce#iW#yTQCQ{XV)o zy{a-;t<+hT;e*|90+Sp<;V!wS%N0j<$vp^~rdp&S9#rYh?&}ME zl7gOfM)5tLgr2pb!y7yM$xA*+a|0Zil%N|LDA&Nl7-I z_rNlI9fBQa2@rJw6rO5gwt;{$k8~=pn4YlHU=&|s#}w~o!99RO?uWjfAinL6NXAmt zW6AVTF4#iq$l9g}8 zFD{3|J3sXb_U)Z)Vr7SwS3~JsgT=K_teNS&gMYjeKGr(dvGQH4d^g^h zd!I}hOHVR+|@aJ6Q^=*5%H zm+-qUWAPOzwmbiYm;Lz6SK(^X`5G&~4kf(kLH5r#pmbK?Bj05IKLq7==UaF^x*B)O zco;6%I*&jJis@1KxTxbi#y=kCAK&92KVTnlHWzmM%dt4&A}C&o#i{u3>#(>B_Z$2S z7AN7qtFhRQ#br>mogYRjnPe4AvL8>fA5O9#O|l<=mGUF+VfHdM1hJQW4LbpQ8Qb2S zy^QTX-$GI*u-N~NP%OjZvsm1X1)e|duw%>dxC@7!lEKJhqd#uf=&)TLaSI-Y?c9S4 zIvutS6r+F+3m#%K9MnN==O>&mKjj}khY#T3)BNL?{NvaBv=d>oqL4|$_fD$c7=d#$JI==e4v|BvLu8~k!GbD#d6iMKM7T#J@JJwm2l0wn%)xl?&aMnMI~zLg z{Gn>O*|gd9T;{dMZx;-=$HRXH%R?7{*BPJTY;xx^>~=V(9+F?^zD8sJ&f)q{b3GsB z))O}NHJUANLw6W8HLTa3)%HlG#yS$UU86S$(|#$pA;zlvK0F2De}aEJ$v=L~Kb~SA z9*lkl|8VB~4_+~(1k!MRj^8n(d@eLgutD9$D|{v}!LJBf@LP&0=Q*qB!JP zcY!@NK3Z;8V8t@)oqvVuqrEdNr`&~s552=@o*{GQ$8j)f&GDDGJ;R~2%TzeRy% zH{1*GgzAwx?%IY!5=Cfpg;j3YRO0DB{e;qN2R3*23{M7LpDnc zd-f7e&EI}?Bf0uWTI^N+}%Xm=ETNBZSPe3)wP00aiI*$t}` z_^>nQ!+ORC{W{%+RZuVkm6i=GW@0~&)g-ZJ9`A2TzHC9-qI~gxKp3(OpDLCiyYObT z3>o4yk;EiUEbtYMk{6eYya<0nxbgPlxv`ixjSXbTpbfZ?Ijh+AyHoyW`CA+hC5li}-f~*byZ)=XLM14XGu@3x@*Nm^xH@ zbnYJ7NQ_obX$bnrV{e}+!Hb2rcv>mO5aF71&CW6A9L&#vm!cu(e;Z@MIr|{+Qdn&~)k;OT&?yd1O4LJS?VFx5`&m4zKI?eX3N4}IBir;BeE96VpnUymRrCu?l=M~5cPsVDO*g059Islv}(~zZcGv>gXnGJFlR2&_SQ}ZVb1&6%wd|;Ge z(czZYPE18Hj7j}t$+62A^a_$u8Bj9d(z(C3<|~J=BevvRvpYc{1*Y!^#yj_PgcE*Y5aHEEprNwwV@C!AF4Jg{##4hj1zk$b|% zH{>4kw9IT%_v|D3E!Wu|;vuMBZ|st~&TLp~$_K&+GgPKn8r)S9;XIV6kCJmTlJ#0B z?AVMmXD!@v=U`{-IP2gVywL1y$1fnm*)rc}@CyI+&vwLXPv?h6=0rfxxo`#kEHE@- z)JeY>chxFu81y{^r&!>BwA`{Fi=YnCT5GFat@d6}t8cAYO*T59X*ASoVyXblVaM%8 zt712WjDQ^KBi-;>(zMJrbYTBXor2{e`Xgz_6c`5dg^Y1-rRYJWuVHg12OnK9t>|qq zsK!qouAq0^7YW)rQW;m;agp(r+#E5IM2z_?6bN!*+9M0Q?aH&2exg z^jpDG*0SS|hsl;-AJcye{GU=axVIbaR1|rRwmot{LT!q%($TO-kl5Vpkv(KuryM%$ zm`(8{A=rA$hgWnU55Fd=u1J;@XRRalcS9Ii(^Fnx;JGy|hpfVR%_p)3ycQ!udE`tAI%&%64 zDy_~WyS=sCsCBkG%aQC5D;{kJBW*0Ivm5e)!r3D56sj$@g&q}wCFV#d zT1TV=coK3f+}E9X>grSbVN)1B8sO=AzTd9jIt8*_VRM;E(`wbNvekr?*h;xtc>^R3 zu{=aL5ppDR4&J!tuZLCe{dPRp4Wki-|nR%1#s3we_`L-1`DkL?tMyuXjE(bL;WT_<$lJ}y@r zap01Wx90^HL*A61;@vEKB_VI`?IhSFI^l(z$?s;}hO#u$auV()ZjM;KhT(1&R`~l0 zA_!M!T|vY+83wBV7FQ5Gi@ooUSZqf3NDYhc;J=Sx@mnl@1w|O6#ve?whbP&ClkA~L zjG9$;cu*OOX|c+fhQ!Jo?DEqaqsFcWG3tGW>up%0Gf=ZP@x+h{q-NBI+g_@84$C{d zH}v{%=%sIn+RVw15GKB*Ph7%)ThNSu##NBih5^p}*94GEMedSxcR#CeQkikf3F z98PUd5&aUIpfcU5t;h{&b{lpFFT)`! z`JjJsL0`vV@|{;}j}6+5&RSR_SssKnl55?05KMwIr8<*RMDLWqrxfyQA*V#-mne$2&r6wiTD#tY6_2F<`d^X};(hx4Hnw+3BgFM`#gXRh0>C?QR|33q&wx~~ z{n6iw>K*e2_<&*g<^wFL3Jnxgl4WmrfMZ2jjw(E0p=S}65|3Eb`liZ|HEhEG0$B)K zE3MJ6qWf-z#mDHPVH>AFw1x!~>wH~ux$6BE#~)Z50P)Fk%jVy$WZoNi4J_$vRfgKt za>J^XTkQt?XxR2_r@o$5NE?K8fDG0aSl4bLTqSyYOlSg3Cvxdqw z$dkZ*T!wAy!K+u|12w!cR-S<8N9=}m->vuE`ry@l`@@>D{*ijU1^!aIf4qMqd(qa) z1(kur4?XXfW)4#VZaxS7a%x{zU9@`rb*^Av3Vlg-i^Sf)u*#u9s5zN!5qxe7bFEVaa;9m?*io=khQQ$3y z`53faFUsRlw*{$VKF@IA^y;JofK0JFZ!;gHL_bpaJz=Q##d^V2z<5Xqra$$bKi|7>%>j)4_UKZ9}Z5!Q3j-l+L=_zd|=rcuDlr zNA^yrO(lPg^bsUhRuD-*k}UWzoprHHt2?IQ#z~jXnk4QVa$66P8xf#V!SF1(tuZ`v z`j7-ac|^)>-6xp=QNKa*qeRafXVPr*oSE*;p0cdh)AU=ell8h5s@EIfr5+Y$y{^en znIh}8t0WZmj(OJWKOnid*a?3YXjmAj(r3NCah27s zRbW@Frrlc~=^d^#hhPUh*z5{yL(FTP!08{P!m>GTG=m__mE|*0_Eb#5ESoUmVAPBA z&*YTZ=_ZCKfHq-jX6Js8o!eQYaOe|z^U^?CtSpC3&?zkhR zNRI5~z|Jrh#TM$Y`z`Qt!_F-33Js*N+*)Qoj8ujow{{_{%o~Fce-(lxX!XF30u%i# zE3v~2AkXMIIB>CW)+ubS*f@Y>Hii?kuH8cM9(@~+HHK%Xrx;L}5%@f^BYCC*`N}Y; z`5Ego-X3ElMtV8#5?2t2Xc>vGL7#CX9L^nu@!@kGAqWhN;`LZ z=2tE03-f^;p*2iLNY$7Y*B3kp28NsScI03*$$JiY6R=c>Yq)2f3b9GpNw$iKxuf;r z{=nECsE-T;#x_6dGRP-r_HhQs=fl9Elti-@^bW$(rKF*Su+&S~?aI=Bf*=(}tRirv zQw)gJ!88NI#r8Hx^z?*_idj+@Gbh+A zhQ$^F9e^wPigpOI*9P-?#vu2tQ#^S}%*;b&h>Um}H6jCp2DV10cidMb&#DsNHXYNg z(-XRuzIpljgxXX?lZJVT#O5~LS}W7K7Kb=qR$7NncIa>J!ll|ncL+CWNCCQkF5M>Zr2&m9cQiXxHC7-I>lHXYbhkm+`4uP z#d|W%+_DT>Y)W@02)WyoE?E`%bG^H;d$8S5oiHE}(F@#6TSGtv-6?%Q;B|S-^-A~M zT3WY!xnMBoTQyP6_mKwYI6-+WRvex4eV)7tSS!x?_F6UAs0?qyvq!uT3e5WYDp8Ly zpZ+F2NE-JI^2$OQ=gq#lHf~zyJY?ECt&|Y)e7|_{c(X52JPKVGt5c=f7u6Ab_7zbi zN;^_(_Vowk4V!)a5wFg%)@ces!(e%* z;0~C}LI~8M>3v6Z>``(f0`Vyro+Sw>hG))^NJ23A5;x>Y_SchH z5$O(m&aoT*EYPr8bB^iG`yt(Px``nQ;6lRG{7nC88UZ*`CPOmipGz2NP;j4DLEfNJwmM*3@+}tnpFWre**KVPBkG_q^tU0|Tqvt4ym&k}xF{Zlo{ZJUk{g_AB!((#oG5D7a)Ylz-Y_@#tMH0B zgV~jiGnma{SQ1j81EwMgiM=+M*E0s~czGay+et|0C3G!)^Rk>!n`&s%FfWnV+@@P+ z$+Yfx;ESDyC5Q8g4o`lRDA~5mk0NJoG3<9*NWyf_-2O$M4>~iqOQCv`nOnzzERC+^ zk(K|l7y6M=Ehm47|UZVg@lk=*KVPBPo|k$<|L$hLCED`FLrg-7 z=mkF4JDq?^Yp$1XrVvrK`BqJo^Os43bDW@@h80KWd=HQ}#mxDVa*GH%k{%?Ddz8Gg zkj8nluda=o);SO1-n3Fe#PgHl#pBJsMDZweU93)(W?xiC@Yz>Hktpp*t=ZTAB5&C2 z>p8q)voCgKHv0;CW7Z@j8ZqUKkAzjbHGVE%E}3+gK+nJVEnkFJtmW)Vr{!`Ik|=Vw z$4hmDQ_#e%$b@^z`)DO^Erok9rQb(u{t0k~Hk{r@lS_hcN$=SUxkKl;-OTDFe205w z?IBkj*;HydG$`lTXUVw?yw&cJsn!r%B?ci}B8Pc6%k`G@j=pAXt5f#6ba)PHOp^m% zYAh5wDOC$f{<1!@o^qvS4~^E3TU)O|n>>Xr@6vF1cw`!5gZ_DGUJoQtI!=~&*nI6! z(5n+_%VDmL#46QHEW#74;#bJDx?6Hzt(FQFIc$4%p4^&1jtb6a$vBH)o^vje5X`j2 zjI)&61Q2^AWPJXqYF5kd}{8^5MHq60z|@RX2#xHMLM_|H4P(0iQi-k_+G zu=FB*mg*$8O+fXzCAYO%Wsby6exa}4&9_O?QWqeQ+9t9zaB{5?*xX!~hxjTmm+#$jbvnIdPhtLBj2_A=n3 zzvZjGZ^qA@te`Yl=Hxf=3jg&pC-GWxltk1z$HGzgv%vb)a+F+#tF`$41Z;~>3-q*6s0)W|+ujl`=lrT$nhiaCvqckmQTds&{+KGHzi z3a01@eWq~KYEti&hI4WNA>9JsqasYBlA!l3#A47p3v>(b1$AA2S~u|h$rN4VBRbkXKaH!L#2VU-m*Z!VS@S91FG=gkIW z>CBrsS%Qi0rkpn$(3ZoznUSnBT6Kk$S!IfObBx+@TF5Ei^(eh<1Kc&AH?tWs&qhx- z_(hZ%pJv1B-IT6OHyj$gEmYh?HHWL^9nX3QH(ZIZhtEI;kY7>jLABwE^A&KaT+}H! z-H(y;-Wu+gM_n?)g7LgY$oyYf}>?8#Ye}wH|q0%4Y6$==$D-0M;CZ0YX?v}^Q zib8iS@SrHzA&Oj?~g7fr72OtnxA2GG9UZr7MDPCQ$srAZq*i{f$sz<_M zqG`2<;zz->h)u7RPZ7iGIno`dVX2(znj2ov%CB?(b(#z>B^P~d>Iin2gQK5s%?fUI za!-gxkbB(qQKwVmT{}^wlu8OZ=F(!QJ~wk|rwo-T#F8Z6@pmUZr@PT?SqKfKurb}8fMB)Y3I(?YvpKVmMh4QMya z*U`Ni-(=|MJ~4qxrOM9W=zbNvPfvR!IJ(zCWxC!;O-J_*I-c;JhY(Xaz_s9~=>V@F zXrh1D!!gUFGn13W6oS)iE+ z|B@srjb%E{P>GC}6G;KG9tHD152_Ym9Xm|~4jZdh;N)pI zO=Nz<9@$!M)ZjezeUJ_`ot%B~iUsGFV?1_GC69g6Caz!3;duEl;i0c;XU#aDvYI|d z@hSme9|`~n1%&8Pi~S*_Br5iv@K=K?`*M@}_o1?ULW}_ z(89^mUMYl@r$E|&OfBs{PqDP0$y3_1uKpX7_L4~7#&JO1pZ9{Mlm0vhpQk-}AAH8h za5B^2FM{{w){_s)O}3mfrrmeu2Flc=-fL=2vDChsw0nlvq;~~FD4HjFdD&hSHw0B& zX-dV-K^4>rqyvZnheAg-brgtpnEFV04M+9{>@v)e{f~IX9NFw@hje70z}y=HBlX5u zyIMANUmvaEz9ug$*lE2so$HB^R2pZ?H{kSH?=#3ZPHSjH|5v4Z=NQ1wZJjoH7Yu(-944^@Y!6FV%_ujZ^8#e4>lg?NXEXI<5WlgtIVl9 z1O9J?>cN)Rj&Z-sfGmv|w?~#)jQhg|v}KQRbCPuig@hRQTew(+Scp51s{%Eg_F5pq zsYT&*uK{oV40FfCoc{mCTv#^ne~#0w4X3Xgkfi}9k1R7dJ#Ii-b~tg8i-l8uD_EW} z;E@Kbeq#u$S=VTfYAmLhi1u&=i$|6jtQH&4mK|1{Cy$f934^^VF{dQ$n`o~Z zABWRFGcKp84ODcv(gdQWg7BelEIRW1k^)Mz! z%7`WX>I5p2eU4_!Wmduaa`RN23YA5Cj$<=5LWMP+MC;UZ3rG2 zEw`+(Hk=GURIjzlu*^BJFLZS(Je{wA!@lrS&Jl*HxW0h*lL7GRXkRd955;rhTTMI3 zjBC|RF+f$=NfN1LoRvCB(oZsVk{>g98Z^helPo~5Irfv#X(s4;H{B*32j(lF5acg` zijx#R-dBMhL{h^_C7FMidXo)#oC!k7{X5`lTYOUUa(jIA*=s)YM^^MA=(bn?dQ=GoPFuqEv zLMsUzaYPk*glA`HP$gI-2W$M461q8oPy^A0YB`Yu@oG8gCk9=RtpsPb%Lp`5&xPQb z{9zYFB<9iu4H^=L>*>Ub&S(rO4#V}-hbDHpT*CDqK%}v7{Y`kq!u9NGhYZ)R+F~~< zBNGGV#-^reu>L5GV149u1&8WarE>#E2oeJI3DNmQkze`t2%oc&J7n;<8_}Ta_A!sl z-zmS&{pV?l%oA?;0RSm3zYC4a`+O}T82^aOoIHc^--PPH64Z{KK50OfM)cGp%Ph?G zYXjP{hq*Y(Ix0UQ82>dcmi&Y93*MpKwRKh}&VlMp;I!0$EDbn$WSPNfe*@aG!-0#Q#r57_j0VJ6^W=e)fKVq6PU>g}l;^L(d zK5?(&9YkY62TC6=-F!B)idew3IRUOUSkE$4uJ#VW(oXQf4OXg^)&x4CE4A@<%Ze=I zjKnI=Y_#p33fshR!YVgxaMJN#h*jj1Y!Q_iu5!3K~VynE)pm)X{ zqT)?2*bD`yw>y#r!a;H}X(@n26~fVQDUd~AB=|t?5RR7#9dyQHFh31l3;&1}GuJ}c zL2xut#&AT}0#8-ZAeHoNE)*`;0^j*$h6L93%pNn!kn2>>mFOod%?@ioMHkHE3ObM?!CX1HHdJjlAx0-3N6~GE#NekYw@6Nh zQ6%i=5s*-7MYfz@X|aunrsoKXA0QqA4M+R3{&A5%O{h&Z$ZDKvhr}v-Lu{grG+DhP z$iRMFrqyjtq5mcTLuA{70g z=_JAuh8OEIM8|8gH&m}@&q%#-c5ueQ9;`BHSx|n7_eU1XjKetn+8)Uh49L=OA$eq( zxscWw(3ahW#7WjMsPtilXOPuL*oYhUJ)wWObJ;`weNXxF?}*;17_doWNr!EStgQxQ zX&}oZ%M4j>HlQs#vN*}PBFn5Yg>$m&h$6l1+c4;wJ16}^Nfx0r*lwve;T8VtA4-DP z-b6Os(KIsDb05!li20%A2%N+uh)Q797keZLI0GToZy=KDH{hrGNe7cGjU|lcJlulp zQW?*pBPY{3i%;R3qUKTZS^}b8Uctd*YN^SK8qi}-wsSZ6V< zMnCUB2qfq>+=>&@n6*Hrxvt_dghmur;z|Mnq{s1T1>6i7G%mpNwnmnh@_&W*<)%UwUZ*elMAqoRKs=@-N#4=`-`#r}gnk?ej2|LW1N|~V-3#H4b?G-6 zcjv=)str85cLQup&d!fL)<0(>MS4>(*$)pXIjl=^Q}B~;Yj?#FCA7V)hq@O{hes!* zlqm-|`&r|JloM09N`e=paU_bqm~fYSq7A~YiPAp?dXIM3H}|T%Tz=gSA;UEgeUK8W zrrM!%n#`PTZay7{&RVEmPwOVkykE;IE6|}cS}Ze$IsMuWoh=4rX-vC4vV^fc<(Vdz z8qk(~+RaJU8QSz=m8(PN-3DyZaOk|l5Lvevkfnhvk1R7}-C;mmc4Tpqb48X}WeSH* z%wXo6jGXf0B+}asgS+Mq9p<{>r{%2Fu_C-gv+uym-BfXxn3Hl6j^~jrxVZGP2xItM z>SY8|F#M|0%cLdF$FnyM+g7Q3LD?!-tM#qRVUasO7yuV`_BPs8bURsP%s>;Ce+sE$ zSt}#f)DKCUXt-5pq8m*vVKdPqu;S=U^!wyZdc(R`dzhF(MZxF35qT+NvKpH({u$|I zi5bu06-&%uS2`&QYz9F2fyQ?+^PW}04l`ZPXbk#6IQi+evLpCOA9>|HzO4BPYGYMV8&{ z8!j%F`4fOmrOPzTqywRP=)2km_)!LAX_!eKSz2b&)w5>IoPmFMm>bIlJi&m-?Di6; zT{1cnoJKmu-a-sTXtA+l5>TX zS!D_{JVuc_7II2yhA)J>xtQSzi$0XjAQOX^WFGnuKCNp?XUGZoI^&80u)3k#??Pp| zuoAf;0?GL@awIx|jtWwHi@YRB>x^yEJYOR7Jw%d#Jk|QDVzYp_#$yjo3vZ!^(9bmfWL72nM7*ix1UM+iD~C& zv&LPS2o0JO?h3Y;qagLxdAaQhc1FGe3UPfZZxItk9Io-c3fGyW@jCY69He1DMYt>2 zPNr0Zs|r!YDqXlq$|XEO=+CSQjU~Ln{$Ipq3BD!9%3Bg7Xu$q(Y`GLG))`yGrMs&! zNmSYute@@#Mz+-IzAe}uiaMzhy*7a-JJh~l?@b`oKzN~IPUJwmVov&rK__IXS4=T? zppkmBCU1BSJ0W5*mriKVkZ@@)wI-<1xJwHoIZjSkQBs_YOp(Z)AkSZg5z4fW4(f- z-UmkQ^03|TzHYV$Ta{MT_WliG9|_xwE#|?i;MIPZgxk5&T{0T|0>Py_bvBPe{Y-w{ zl%5QrMo{2BmEusR`f;e7B$SzHlT-IRh!196+EIoj24rbO89cJgq73^Q z(3U;Qz)98_gc5>Rf8}BkgI7C60UM%DTp2jud(3}=tBv4WqArdyV3tM{>u{*v1YfHS z$kM=C%ITmEsZscd+Qj+Jy5eZvBR7ODzIL)KHP>4X6v<$7Jr7he{dnd z04@aBs6GIXJ=m~^!;{g1)d3|wh$#=@T$9jw^35+g3*Qt?{YcKCA%pEX2~;ZF^O^FC z&VcvndCC*=i^@=$ZX!rBZ#=jB!Tt*W9n00mI|~8}x=3t>krwDQGmPGVP>I4!%&8&3 zx)7fZx-^X>6alPlj4O(oV}qCpzou?X-Q90r7M!irfyI2@v|uN9eWqoX+ z?&ooSAz$W&i5Q=UihaElmxzJ)RT_b7v)=JoDq7_E&y!CZ4E*V2&t&S>7~db`joJfjW~|{>WZDrDB;6uIFTtq;XE~|6Vmm44M;);>A#Ll77Mag@|Hr z_F@Ct&3nl1qLVgRF0#{>^cnd!={zSTFwUUWp~Oz;A~C#Qh{Rqw^%C33_i-jmD)f00 z358!1$y5^kpO=X9dRyJ#7V!}+O{kzvr z&D=*47_~#?wSF&wPy>mEQ-eef#7+&8eqqot!?f0ippAOYI&Y#Ac1*-)E*;aLAz@l8 z^;=MffkDM#S}S#2iybkSwALl>gC5S(T3>)yEUlGYWlL+#)NH!pv)AnC0T7DX)1O%L z;-J<01+8XRI<1yZtP$yQ=MPoO%_eMT>Bnb0M^W^~LvZHJhK}e4;g4uk}{O#;f)i?5D{B6%qyBW0v$-GCfuzJ$t|m>eJAW z$Pr_~HlQWvE_%n^=~b1%YNfuZQ63+ipuu~3i&(8kp~NUhf^2F7)%Yk7#aVrXTycce zM?urB+%>*w&ee(=CFh-rJD!96FgiZHRwf}!+dc#@=WRPFp<-!+t1qp?^9#+pLK>k-m=FA?S^&up@$#dXPtHW>-w$HR%^W3 zf5;*1!L9g`dSlZecyS1S*}z&axF-HTaB?Krb_gSK;B?$-tF)!kthDT53r=o=HyzP? z=+V80AGTaH7ZwKXqFg^Gi8--jVv1h~4#e)iI5rEbH5zm`f`YYbu^=C#O6D@5YW(zs zC8QI%r{@m{s!NJ^0ntd!1pMe|Bo;DiH!2-xrUiD5^KDd3X8^l+A4UlI9;!Xnm?xwq z!A=~loP?cvJYquQ4Hb$!_&8sI;Xxeh4jQS~TSL%4dxI|Di~69KYZ70zzz9W#9_K%? zE_Y73-Kuxi%yc#(ZchQ0c(knE&u7ePMvKU4cXnm?aB{AM#nI*>Ed0|K=1A0Sf4z$!T=;n%=N;}y*>|nqsmxpd)KFvsoOVk$;(?(h-zQUEz_Gjthzu9@Myg?+R=2K@{6fbCGMbtYN)R{Y{}C_FRc3ij=t0FAZI zmF)W8Sa}sIJFL7KO6M9Zu7v{N^bY>rb)r-&y%-R^GwN&#>~dth^IS&dIyj|Nnvie-4Ygq1f(x9!hBQJ@9eL zl4Z`l@VVBx4@##GU-SjM`cEwGXLlaJ%fs-_7vXBng3*g7oiE{cU&i7qP;7Vp3orZe znXkgtr1LdaejQ49(Sz)tZ$Rm+z(>Bx{(lI{?asIGdUQ4JocJ(Yu5})P5)9x+;p3u? z^BDhloPS&aT^sJ*iK?LKe2;&LN+$gB2kgs|^I>?@xe1Hw5UJN<@m(w)!vZT}+Q~T- zuX?fA{okN?0Tw0v_dqP(hsE_!w4EPDDxPGOPO=IoS!LTDSJ(=N*=4BcSQ9x}%;aZe{RVFwh_$e}#>DkuiAcm|7S zv8Y`QMH34=RNP@_k>d$I4m@fTH8oXi()%gkM zHgYcH_D}hjKZg(a63H(+PxF76kepxge}2tBe#<|8&p-YEAJDb_h#xbYKf#CdEEE@Y z7~a>+YF^ekz2iIwUqRi^^N*P?K#a_S626c zO+++iDAC%fZYBP8^uuUd7M8 zMziIeB?-D-gNHqi76R;x>Cqs68vU zGz$x71pbIWK*hchx^E&2=#&6|r^3FJuc(+Dt=5L1E4#a z9x&s+blpnpG;95q;c{~nHpQ?#B#m^0mD5iy+5|JMwx80uM zP}7Pt5qdA#(vKNVBGjOoOz-2HcUrsN0tYDRpZ=Fb>z@vc*6f!_X?Nl1c&c1+q&d4l zb57iqSPJK!G;_ub9$P~15}Xp6ME+G<-vusJ=nfW6EbtOG$0 zUd^g{aQjNUKUSUqT1LQ4*BXVV>to~fHoQH^@yEx3YU{!6ef#(HTK)cfzJI)bV=$#3 zz$raTc#kk^V^1J>VPrk`#J}@6Cm#DO=1T_7eK9ch$xGhNLZg3&FZRw5zE56qJph;v zXv4C42uvmCOsW~&{m(xj8Sxtid~w8k_^SzTi}PR|CVFwG2P<@s*+8kg%$Ti?lQ&h zyv=+B5=X@F`z)g&4j<`9!=>w3Y)%Zik-<^%3>hms8YoI3vT&@tQm!~MR_cZKa3C7D zVWbj=|L6_UtefPw2VGI@99qq~L9RH`ti3>nIUnNT;dU~ZH^op8G)?2|jQvi=aT?c_ z;rPDVhWK)W#dlX%hFYa|VC|NiYXoEY@biy7pk;4s^;^qWPjSwSQLNixsx2r9c*rqvzO@VSgLrxk?1+fDGfH0-|d30ytcgyS#4 zY-Bbke3>L}&l`hB2i^%}MOBPNgsUxdPrWxK?) z|4QPS^8}K>{4dxL@ifVOk{J*MQ}Uyv*}pbvw)rMoF;Eej{REYt^T57gPZ4$zBKL&t zUC2EixNg(_I{OBc9Sr+UdKaX|?gulVdc6T&Ld)#AKpg9?&w-RoD^o14?kWj|y;E{d zMzUTDg#z?z;g&lGyIsdw2iFkDISqgETZ9^0BE3Jd9{+ty$2rr#<&6_(;s4COiF60f zg}Vt>p^Kzny!^&hR=ZZ&VmF$0Z+)b9xY8Vgpj*>s^Gz6-Csx9QuMD$SoY6MN?V$?H zS>FI@6fo&zbI}Gof%8!Il)Vk+s4!WL_&eF8F*xxIYT;8^KIRA67hL^JH!(y3EHmf^ z-+*2NLt>n<$im_%zG)f(I8t6p8Z`wr4SgZQuRA`aLtx(!Bun7nfziabQ6(BlJiCJ4 zaTBd5R;O?Hh*s2*p%n%5K(uZr^bM&6{!giHKAFgmhKC$&Tk5og+7v^(qhU)SvANk& zua;?@E+Da!m_;jO7Q!rQYv30|q1bW@x*JmF7DWuhoM9v(Fr-A_mfpxr!V|)1X*8KG zGLi5bT5<-DAx5QR!~cW}VrXEiJ`>o2;zaX(GrpDC15KzNy18~wc(Van8a=@yYaZ1x zf%f5}-~K5WPXKkL0nu?I6p0>P4!jJbN6b!P_gmn|wp$%{Sz3&^iy$V&EQXQFP-oIz z2$PpF*aoEv)(_e_?gIFNPZycV)IO>@6osFxH*T0U5YV; zS$(%5HhkqhmN?!$rJ;B)-if0)cS{+X7&) z?a8;^03kLE2An3?cRAKeI>Kj3Q|YLv8pq-~g2&XrRC88g#av%$cEsY<}HvV!+=?NSmE7ig@lmj;m(t1ZZdf^Ix-xMLS!)I$S5b23`aBn)oXb>|hfQ^I4du9mzlX z4xJAFvTg+^%vXH(6uU~o^iwpDy#sa7Dnl5$t*(m)r#tCZ&AFU#0ir%K&FziJ?F_By zrXveu5`oRlt(p;s)!(L=F45VNE8G-Dm8VMmYebHjY^zH1Fb=z0v_J3t0-l%GohH(E;crdvqIh%sA3C({-XT5R2do$E>Y1X!^`Q8ZTVT%-ThGdgJ0Y_ZR}8#3u}G2!DspX^ zXyRs0f)jJ({)u?x`jsPg6X_|zk=t!$f*aRYks`kw8HV@B(B45h%+aY5Lkpa$wnLj% zSB69frxg-Ho(nrqp1`S6$)nM4iF!2VR8jrFohnI*Xw5_`r|Pqa8|GA9iFeGYVs~y% zRm8C1RAm}GO?&deOSw^P>*@D^_;NJz8>5l4JDZWSvL5PEblR1Co>mgwheV(ra%8C6 zyJ-&@TGN>QHrX!(R?C8k(rvJk?vBGcO?hOPDqSmyo`?@3BA*7~St^MVaOORZAaFYX z2BPNh%rST}bD3WyQ_J67hVAZNwjcJCRT6c7S}(5}g4>*I*9FbH7XJh@si-8Hlc6z9 zB~e>SXl6fq*CwnadInjIIVnAedi*o2B*OcczafbOH;eBeylUldOn31P5zpxchA4nO z2Qf$r2dG}nG|d2 zbpXpk5(2Pt4p@KK0qCR|YU%^lXy?e4M3R}a&m3S;meA!$(^y-!u2@@X(DY+()iL{x zm58UUB>Db@Nz~ zAgHFAcRV)C^(9B@*GW%+)aPR*(fwqQ9YJRh^lppJX$>_K-knxR2)F;V^W+JF-YR)C zIxP3u-c@Bc>Ju%P$f@Qww&*_}=3m-#Fh`W5m&6_rG+TN)?b zwu(CJ94OapEiVO`+Df8@p8;Z1)JLYdy)pShLuAI?)&~KeoibE>|Gcg(3` zcWzEqB#T)qiD=rB4_?ZRwi|q~>y2q)%GaWie?1yGyR#X2ypl*Ix!)ZuI>QZ>)ZMJ; zv!qQ5PM-r*VIfoVCQrB3Z}I_DpT)^z-6;WZ$zTJ4g^ z*aidm$vCWjBliVl?Rg@HO{W%KVXX$Tl!_%_&g(`HB1c*+6-%>NpQyVuKOmZLHy0GR zCwbeWKq(vZqeZql(HD~cThL7M-ebEYYK`!H?+ilA)J0k#9Qu=y`+w8qD4_2xih6gF!Pwjd1` zCNGI5a}Kg<=~-<_I6E3YXDheHG-Zx$HAk$s-+l(^#gCG*kG_P(jxRxKusF&)@ecnC ziyiSk77~#ZI_HHa01RPkT7^W;!^Ks6rvSFKW&t*1#LWe8d&d6tx{VyxC!hI%d!q3p zA#jgyXoc^!61<$KD%VH569gM?F4h1m1;0M4 zR3Dq%>h*wl8xE!kn0Fsk0+>IXRy&SM3-S)g2;VYN*_73auPjgQxCyyJ=B6E@9X!~+ zDU`#%if?N;yc0b1Wrh_^%ZUa&JHZdRBYtwn?a-Jl52@HtImf#eF(L;nWkT+%(>)Zc zR`gxM^+vMZ(khLgAeb_l(-?F=!yio{wSNTt<)$$nhsJEFtwD+%(P#Fhr*3TSPI&+% zD|(2r-uZ-H9gDdfJ^-6SRGI?=#U6;Q;Ks@Aoz}u=8ID9AhTzM7DSy!y_A;r7!qCyu zK)pp2=A`z(N1)h*V^o)Rel#8;hvI88S?~H;2hnqPPj`-Y=f8CtVjB^rr69-iz%hBEd%!!wV}b93PuP09y?G+)NNFcQ%F{@nAY|ds z8s9SM&*K)uq$%xpF*e5%o*%?JmhfbEnD(1UxgQ;~BRaZ)K#;3?Ej!n%Q67N9!%7?B z@VSuzNGH}dIGIteOlwAII_F4EO30i%Q!)$W8INq#sBiS`I8O4kjJ^fU z=Vlq*nxQex6qdje-q#T&Atho{*cI?Jmnp2@T|k2w?biTGx*1I?j^PA%ggY=v^PPl3 zKHpu5I88I(6=Um!&ORCsW5iQ8FmxPgZhpEO#-&-f3^ugwjSg#U6b4HT*r2$^!_95t zyqci38i8J!84fCWe;_EK$}hiI_201k#NCN#0`m<9MhB)J_EA1msdc3H?r)_f1;9`b6rHf%(@tb7~`z3&I!ewgImQ4FE z#kV76Ksmn?ytNzjmm6>G?Z8_qHdK!Cc1DcIF>INTvkFQ)(?rSGeAV7zI5#K>S|-BrY(o z!G>8ZS4>$bL4Tz{i*c%}Soc1zJXVI|2W#~=^7)}OSS>Fv$oGS_T2(qnP+39Y@6{ik z6VbmO4k)R@A*FcmRHLsnIMf%lzCJ?LzbI(ldK`kR;TJ?dq7%-bJraZTBXbAgIE!9> zoP|-P@7NXM_D#@VZemx3#-wCIP?4%lKu&l|5Dv7EyqDq~OQy4=87qFE_eh2#w`K_Z^MGES z?^7u}2j8cXeE$^F_MSXx`@`I5%Q0gxqKwLV<{1>JCh2vxrdTQ7>#VUC4C&Hn3Ptn8 zu6#OZ;!{x*N4r9CRn!Ev0_gdu@ z+a?3luVS%`fep3#XscRs3QHf9HY`oL>TobR#X^fd0#9*#d0`VA&6>Q>LXAmpPktL& z$}HfiJR@#J53+=xe?`1I|GeplKP%`8W1VW$+21Kng%G(#H9^gmxQ7O*8iro9 zOfgnxj#DN4$~bEB3_~9Q&D)uzhD_?AtTA=`{>)7wZq$Nx?^GO}Y^%e&gb`2g?C?+S z{P4XO&lh7<$uB?SS%@Ybf3>sYuXKL=etruV-q~4Xyp18lv#!s$$N?;i`iuZ9xB85a zJHVE`K7)g7V*$0*DsGKwl3NM$jduuQDpdHf-U{$Em*m!dDe_6mEW}nid;pfg9Q+!9XTgZ}JH0z<;- z=g^oGrOJD8#I|E3a&bUT3S*x$m0*|^mszHn{((Fq^Ol-eAsqEAzHMvWXGmc_&9I{3 z)x>m!fum-B&Yq)GY{ViYe?g4MX(pMFOADp8nug%lMCsVfVv~l7fq4g^BygTC4OR5g z=b^gSKoJ;}xRvXT$Z%)Isr-Np_!U4CONL4$dq5YFg<6UYvn-UDc~HQ#S*WYP*iK5r z6}@XTPhw>i2aXqddke);AUbBRw)7NMhBJyNqzIS&;Zy@>UQ1KWO|&24{c#gt@$g=i zFY@k0cY}r5j(~HC|N1o| z3d~WphBkVd0b(2V67X3sfFV$2Mnx>wY#N}ekTbF!#>nO{oS#ILKbTWKJ!^eE*Wi`Mrf0T#PpL)Lh=PhPlw^S3(0)kPXy&8v;&KtV&3@awjB9Wz626X{(FWLJ(J^e z9g}CG#^ZTW!vTu!1)<$?fGZRtlZqyG#!TuStO*Mbql;I%Degt|E%7a0_IW)89fU#n z7Q17^Hok>g;kF;D#8}j+u&!F(&@95Nu&#=JTwxf# zr|Qc>U`OjfP;8A|b?;FS`VAmBP(Wx`l8~Wt zktBzKh?)c%5}?6MhlWK>0uA-5l9NkK!YFbYt4SEcJ64mx?zYLAgrhc>>y-^#21@mf z4X28P1JYI`NF8;!9^sG_=?Mv%uo}UzEN-FndT2)Q`I={UPBH$A=ggQn1OIu~9gZ zCJe|$1EI$nMWE~cNjFlUWFz}Ac9eIwT04vouSB7C#W3wh@lZR_9SSBzqR^G@0 zIIu5JvtAo+u_YwB?f9fHK9h*UoME6A^iu>4)Fz81nD^wXGL7(us^3$pLcIUQp5#Q} z5>q=A%I6GFYV7<>yYM{={n^a~hO}VU)%IyYGj7x*;WlFuaM41Z3bQ+Es@aO)EK|(| zKs4bnHMvSGxuy7aqyQ-AcY>#OhyHTospSqlrD8+nB5yauh@5Jc2^kBynGS{{Qq(3EDE zEBWG6L|)6#aHxM~6^e8!!G}7rk4<<>rKLcy&J&jTsW=mHD|LLrp(%ogY{{bkLe{gW-s5(*SEC zec{bW*$NZx&6l)7Ti(TS5fD+)miTZ=wB^sSBMWW$O9NmUot9}~{7)H{G%Y8} zkU?Ai9vYi2Z5f=?B~xA1mPVp$wPpKXWzd$!#&z1VT>;DdFX)-uhSD)@X@oXeTbh27 zNn3u~nsGC0%Sy9QgajhgsT?cHR89%1RANS^bM;2H;+Ecgi7)hN4>YW`KJj5{eY#J~ z`qW}oZ-%}Kdz2OHZrVnu&Gc#ms2b_Wq+yR@c+<3Ot6@)s#`4jyyEA)KkF!8p_K7y+ z5r%0O4~NJMp{iOVKWJ5L`(JgUKFZjuP6xNEkMiufERh#tI@kzpvJN)=B$E!_%bK+{ zI@kdUQIWIGbtVvX1Q@BvSVwR?Yr>);hwLy#G#Pn9VtXIUm#ai&&PT9en^28fnZx(N z2#2BWE0uohksA;YS*<5*J#wQx7BXq@>!H8gBAnlZ#`4kNnyp8Kp6=#)`Wk{RyMYAq zDvEYKZ;gwf2_bCAYf~+3QK1{*t>{}KWRDYkr3#>%RJRba-(bU8glyTV^;Wr1#Lakm z3Kf0|mXwt%)ysIODdz2>v>LDbu=ydu#WVThLh#Ykj0tS4q8J|`I&B$?{i0E`JDX9nQ-4vGqe7hyooTGA5m+@gRBbh2okaXZ<5w`#UQ<>U{Z3cbmeYC0 zx-F%n{)_U4I?J)7ptfOpPBC7EY@o@QdY6F%BrR|BE=Pw*Hc-?|@LEG_I(>IFG-^Cl z^IGhcMTrquJFO?mZUPm0Q`Fe8aajFLQ&ol+ae{Qb&&>dugl&H=W96v!f_skqJ2Fp| z;{%BVQ-ky@XBa2o%^OA#LM7#?+d{!EtYcnljMc)dlImh4B*;wF{&h0^hRg8Xt2f&Z zUpX_t-&H5NVnABDs$Y#=M$Yp z#-$v7>rH&V-~g7zCO!dJO1W0bLzZrKfGztbJ{)8l^U0pAy2V5*WKWSVe=d6|d>*Xz z;@=Uy^8*JoS)66|fFo!9$^k43&I-VC;RUmuVrNx>ZsiC)^Muf-7rk0ZP+80%|cq?09$qoiGv(7Gu&+NMVu_k5zGEOt_Ae$)ONdt6C7}3 zVQ?SE;kIU{*E@h^!A=2KZtPTcfGs;aagaO9PWhb`ajpZ7EZFMJj%?*SfMvl}0a$Kq zb%_IP+1ZMNoGV+oHKy_75^Mr*N5quYk9!8Jh+OIuC1P7K;khs%AAtz4>LImU%ZkS=H}3c=a)``X>Q)uR z^ZFaUZR>eu;HSSZtY|njv7*_)PyYvv+47T$jUXVh4~Pg4emsd7k;5%AA+67dFj3lO z{)$C~VqkugP!c$AdN%ebTxZQtiDVB3EDG6QiVd>>keGK+z&g3H$5fvYad^JS6YD4s zfrdk6l(ahoKG&%MuEH{`H#Rozy4G!t0b(2V67ZSWt=0%_@>)03Ph5qZ)!iP*$mTE{ zu{*>5obuc384;~~=_pu!6CXIQ-c2|b1)q0}<&BN&Siap7`wI*ZJMf5Lc_XyREN}Wr zCYB##WOEpfJIm*`{rwm7C6M6d&oiV1C6NidjL&tvoQWD&=0yz$D8yphK36Ej`aiTD zw7D#k0U{0(e=%#qVzF(s(vO(q(YM47e+(MeQP4pcgxT~9Y}m$ZQWx1y$@cgEZ5aL( zZGZp21`r%5AhfG-Y{}Zy^b-e35-TA80)w=3=L7plND?wsE|TOh5U~Q1dOM84ql}?L z!y+F}V_2%>45lzc|R9<*)gnffRC1(NlSAHoOu(<$T4y zAw2c01A;7g>S;%w>iUwkwdGmxQ~;J6PwnggTXvq}Aa|Chc1bj~Ll%lN*dq1)@Kw%j z@yCSqdL8g+!FoN=yo>d9xC2-gtQUag#(Kv)z?Pl$ILMu4z3quR7xGb@<>rU)g|Bc{ z6JHY+D>>lHg2m2oWU-n9SQac6faS(wZ*_nzJBx9UJIiAERY_j#fFldGy2z2OE_VRS zf~^9u+}P?`2iUT+6$d$2wsLDsQze-Yk! zROg@JdByc|vsE8sjfk_283ya+;oc~K7Oj{o@_DOU^i6lT{;@$`@++JC4fY}zx1}tb z{H*~xP2eoknP-nde|C8mLz&xOpfTGrH$7g0gw8%;!P_Sz?P-?=e^q#`X!Ule1oS1CGLr?KR ze}T@g#@2NeW$g|O*k}M*GcB4JP1HOXp=C7>GyBqy&sE4-4dn@pY!0Il1!c!`%6G1Y zvcIs_!18U^R{HspQLy}0K5%UfB|h&Q%NtwQv3$EC%1;_Vc3=|0@E)EOe}vs zBb&o$+*y8MkQTyIFT+Sz(NmPSRr2W0dX`wQ!;Y&AZhEw(=oNdVm}vs67Fb_ z-uv}s@Er?N_r!7G?=rrnIZ_+zt&EOW%cHRId8rA<9mOCBUMs|2GsE*B_N|3yF&Nf2 z!XA*xS-@N96Mwr`R|cz<8e3?vC3LyDS4$reee^G+7=@s11-W6D%0~exj_QBL8Y5`yJZ5VnvTSi7$viq6jOP#+4YdO7RON zZr%PDZLwql^sPuU26?wYt<&%4GJ072^yo!|z5PBrT2cwN{V|d8BMfAc`C zT8||#HBJGPa0x;#2*U=u>DiVH!^Ao2T;UmZJCxIYY*s*Vj;ns}tuR@rGtJ%`YPIGN zh*)nVk-aFcY?on4s$qg4n%~=ujrns*t!8cVgqhw(Q>}Sw1O2a(%$G|PdMncL zWa_w$Z~hFuPyKzP%Y(VzqY>yMI5set=yk+4W+$dLP8ghu{Ki^kM#S34E;fKEke- zvg=3j!7T4%_%YY}IRE$rdvqDQeiE)*y-&f_yBsf{#>;2$as^&KiveF2Ql;zh`yv_xUt(Y1z^-3r*BjaOCU*S_yMC2jZ-y(! z@!`$4#F z^?rc&Bgf#5(+|PzYVTpVo-ye?3Loc8dOzYHKj9y50Fj1gRa5~D?`Ql=)Gp%7U$8HW zUL9WbYIr#jo_nkC@*jA4FJ7=Ark1>C(YpFOUhe!1TyDq9Q~2kf@Z#Zn8{yLOekC?&-=F|7VEzpu!cln496|-hhRDHU zmNo^#Z3I)BB)Q|WyjCLWoNuxftSzYrEnEoUV)c$KM$98;sp;`^4Qr-xKqBz zHrU6#7Cp8_Bi0jotPBwc>@l-*J>D@z>irkTHYLI1{LA0L2ao{4FL_V$KNyj`Kk`5R z%s-yuAOFoio`w$)t-s^P4DTQC;XMl%pgQvV39}mKPo6yKJqKSw+yCMpGhcu_G7GNo z-5mBuWOKI${auGEjqqGXQm{AaeG%GBvi~g{1G#moS4n(Y{~DQvKY_Sqz+ZxQIMc)( z2Ar<&cqrkS!Tns862x!k54Xm}AA_Z#Ga)U7?{j78&t>bPC;6=P(RhdcDHaDi4cCSm z>$sv`r^9n!z0nMo2E!a+f!pq5${Q+U73LEXY|0M^{%(p7CyqbwN_Y!c<#YVwYW{Hz z|G1WY1oO)E@CV1!4R}Wh<9!LgW4`TN7?v6rJZYJP55gJC3Y7*c1wE@=t@fTdRyzyM zPk^}K=2EpXT<8as_OEBPp?Jc=0G_b0zCScri{4X|XZ;uJ`w4%dsWLX{JqcZ; zuTx|{ZIx4MS9XfQ_CT&O&Os_{e0AnAxA6>cYe&xK6}H0MCLb zD?F(IhRQiG>Y)(clBNhBqxhSLON|jZs$Z*%pgtA4_OEl^;;7i}rWrFDgH}ZD0(F7f ze$sme$v1DTH9A1n>2~0etCO^uj0fDS?p;_Y(3nkLShI(zZP_DqK zKG66EHeH1PH2Riy_ZIp?XT5*CfBjIccILo}{q{R-V7S77D%H1)k5sC)Mh!lO@Z_M4 zm7(>pTg#!{5fRiG^Wo>^c*EfaOFBOJ*xNt4t&;Vzw|@)>OEvH-<7_MD-BT5gUG~O3 z({aKX10hk&WW;#6-oyii$q3~K zWLR6{y+;DCik{W5&W|@N4GYt8ZI2gg&$ROK$$^Z{t&9zq&kn>g0f=aH7RP(-v1%+3 zcT5x=Q-<7Wo#if%f$6W<>IrdO^ggKAk1O7I#GcLa+0FjK-Yns|_fg9WM+}!6Lj#S< z#sOxW^%tU73VR=Q6nLuKHwk8tAZJX7c2yj=Vpx|^5WLGVV=KEm>bkG%46SKd02(cs zZ0{ZDAOm_J;BkFn;wx`=gl-S~o%aa%!v2n|;nEnWVV*wbD&sTpLHMHn>blmz}<_T!MSd=3o0BXqqhK8T2}8cG!X zg}_OWK`Ar0z~3Ix!&r^|T~4G?45{03qz(^r--0RO1dMujB7l4u8VIm@LfsNGdSo6n zzemXN2G9!%*V0WAY%bTh7~51{qMXxUn*oy*;5Qr4x8K#h=LH_}Iva=v!T*Y+&I^m<`CU~h_Qh%4BVSl$#EW8`QNXbCdF#HK2 zM~JgC1+fz&U-XbY)9MJy(Ha}92!Wi+#!0^$nW{GEf!{irELi@$QSj5M;Be1Dk%u@f z6Ghl<)1SYgRjqRT{unUecMmjcLpX*eOx3%51^5NOe)pumfISdz2E&RJ>R1UDmxs2Q zB#?ZJpMpk&LkmKhe(C$UD+{f$%I0#tQSPm60Qj8EY!gsMxZcdy^2(EEO8# z<)I2hFy9OX62g*R&LW%4=PaK+UW59gf)w?Pyi%6og;pA2(_pVebroDaPB$<_1?_?4 zq2b_mdO1<=a#9MreVS${&M8aCpgLubd7ngvWD^SQkU1{?yQg%D?h9iYPb=zV(7BEmPDLHwgFsf`t>0cx2>x?)KBI;}C zRrG$1DEtjvl4m+~viF`aq1;=CAVh|v%KF7~nSp$a$lR`yBA$}J6`IgRZ}4yuJ@v}) zH}!Iq+(OMB32Z&Q(aYJH*&1LL3^4zpC3_@iLWiJGtflK52S6>PD*$UA)n<{N<5c7Y4fkih_NmxO}k43$4?d&b4!g`VZl5-BVuWeG>v(fIMv7G!>E#|d}#V9dOISP7r{j%lRG1Z zxaG;P#RlUo#&2C`t6j0n&tnT_m(7rMguR|#jICS^mjJUb!M|DLQc?`uO6bQ&k*#HA zz#fn5X(W47n(awOUZh8uAqsn96dt?aQ-vaYY`wCuR+RX1VaTspA~Ihh1Eq7aMk^@a3g^?SoSN?6I$L42{MIyF!hF&sE|)(nXfH{ zVHO`O4=Wzcv_eA2^FZgxGdGz$8qH?lYoCXvpd7df3r2zv0@V>QMWQtxgJn3vNKV$H z{=Be8;&H%~-vur|pMjphKUq9U`nzka#zW3q{q2HVfV92^=9wMGY60Ml;43by{v5O$ zCWV^g*kTS6(~6M@gG*wMGw;_(VCHktZ~(`Y6f@Aat}a+giXM4?z;6DDmp|g=IlTNS zy8AQSZT0>FSEz=>YoMt9if=>;o`ZQl&a|ZbtuxsH$s1)|3NUEr>Ak>hEj94MuM+Ii zVOiUvFEO;HoukrwdI+qR1rwEm!K~Ub4(l|e8hA4Gds?Lm~DAHXG9oyBnW zXk^zW;LPho5F%Gi^-RrHAo0M=uaX(*NS9%|d#LS)J!Jv?we}-#8_@Uu84-9jG@mVs z@6ASi%_fr*GBoCOOH;tYsL8gJ(9C}Jz7Tl0=m>eQM1(W1W*qPE&vyq73f{*Y6iFO7 z7PiBmMH7dWgEHMgZ6co24Gd8LErL{P3TP*qg!qB#3{BGvz&WK(1_hkbk%|Y&rlB1& zEN)xD&gXB0{X>M-l!5JIfS)k5rWJ?ub{7Jho89$+IIP+ z;IiZKbhN7Ec)Da%iFi6kn#Q)Xb^O{&gQg#Q865);A;^Zrka6q6}2KXt*4Bl^YCy# z;)aEX563$e9%gqo;bG?2u)ugEi&+EX)QjhXmt1|Vb(}shetb0YRnf@Voz2MOfpL{6 zes_?w!@G$mHu{!G&+8F8Q9LEHauW+HPK!4z ztw7i-e}B9Po0vegIF^5|XkS24D6)zJOgLg4L(in2x}IU=_|?tHQb0jbV3#o9$P2M3 zY&)hs?8PuWikoIZnw=MlE-#daMr!N`_9tA zcPxf4%1O?S!|FG3FRN_N6FIDZ_;7qE5fL?LFM96Tj|9wlA3_i!H(Jepq^XM{Dlg3s zh&H^!1qJSrg!U*Z>*=0IZ< zmW2dsWy7+GzksXCJ$eqkY6sdZqLXrZoZ;LW)8zEp>XcY-4M1sVy4pu&!pz>4NEnvc z+vyg#!#~5!9^MD$k|;ftR6R#*3mb?mQL9kNd02YL3%^(ma3R=4fp6~v7E)0{61<$KMAt{fX2G)2#TtOd9>*c-;PDzUZ)ot6Tw!0HY_HcWOc}}FsfRC zZ7-od3~QUuD%Hm(w|f7FVC(Do1LkEBRCI)=)xzV_g1iGV!j~y3+eldPmF4zLuR*Sm zxk=rPh-mBM@of!5#ChmsXv~&}RBWi65 zJsI@I60SFr^_Es?cnGFU<}{{W6@N5^)EsZnDD% zUCa?cA+{-rvEI&vULA1*%K7GTZtNNpIxGW(_c zMPJwpEcZ=}&(P5-vu*m4)05f*AAw>Ms8OBW`O$cY9Ez`rqWvr(B^{hb9cEc%c6q!z z|E<#y^@uPng+Knk?=s&S$8NhojE&2DGc<3fHe>NGQI&WjYpjDV^CO)_#)BMwYnS;q z4q&x&nY}-w3&e^&1F#fZKBbTRlml%43teY(j5)|QGgMo)a%)WE7$@i~@5_j(Fy0vJ z?c?y&-7#h^Fkk++kHwrZ8932jgPAi;{L&XQLa@}&@3rWz*c0qY=?T|d!V2fc%Lqdm zTyyUp@Q!fj`1YGe1?GuJh|*5j6xN15-1rG{g7dh=pxGLPr$b*3Nag9!SKu8>hq60N z3QnY4EyL^xy0RnZ%F-gYn_fFq8^v8b*j6j-Fq{EMHr6&cnNhDyYes20?XXpKWD1tm zKvt|t=`PiZTCDj|*ohmEC0VW>Dg#pLpEq6@87 zB@IEIsT(lKzvGdO8uffniQ^l>) zyMP8WS{*=1H=}9AF`VFza0e!7zLQYM=et7?r;(%^=DT97`0VVXxzgsF&f`8 zS)!WXV}MTU{$_|(zZ3eiQxt|+^+nK_ZRAOh7d7~_P0kry%#f#aF>EV-vy5SX4!K3< zGBs*TcJ5mOe^E<&?S2C<;Kg{=66w8#@UUl037Rjd3sfkt0xaHub8eSKtS|BHg={RM|0qjN#@BRcW?Rfo)r zXU~{91OGuWszzFh9@Ft`CnMNosF!atl)O$mKz3IZj>M~%szI&7pP+Yb^NB<=DEfaw zW0EiiyHje@k`rX7BxXKIJ0-DvJIh<{rbU0~+DC~?Np$CM9sGNO-cTFQn(;DctYgz^Ri`~_p_Ib!kG6^`f@zoNkGhHpA)WD8F4W@0Za7`F@D<;DbiLSr^e;O&5L zAoaZ+@lMcvN9NK?NHQpDGqsm13FIlD_Te}dS^l-uJ`&%YLTVod{pCjOqNxM^1+mTLi4oDMWZ5m5Zt+tt3Bv^#CKZ8=lR{30k zcPy;U?zYLW_N!O~WMD(B4!en$oPya0r4442t~wmTPO)&KkHAwLUtZV*yLu-t+)yLg z+mqi$b~Ou=D$j^B@(pAO+v(FiYJE$*JO8}th*~S?3L~UytlHlxPK6M;u^M`|U_P{3 z)Zq1^Wq@eeqM12P_431U)Z`hweh`|svs(=L*ZWyxYFghr70);^Um_TjSid$ovoLIty<9!!3O{no>z1;{;bIFPAmm&?NOhase z#Hm2YbeS+^Vh{6QDb}|trba@QhlC_p`Ry za$s;=DxNe0XFmmIqMF|779CP0dxk+sVu32>H5D7N7kRGN=VOR5Rxvxivw~}7!OqsZL{Js%j}eoJRjqf~6fq9*4fM&#_2Ovt6|h$OS7A^0^> zIySS|WUpdizJX8@I8T?oDthVDSKVvE^S@$8Qi=y;z&8^xQZZB_*#o-#76aET$At1__g0;d`{j6j-dZle7V_m7+Ss*9H^^86iwWYhp0gjgHf7(~6k51oXHX>Q@M zw|_v1-s5wfO5h8|mfK*2&acMCcYh(Fn7^PO&pGd3zeYrfIoj6HMxQi5Y@=#|7~vf3 zRYH~-8L@=5X^5^O&m`b}MmUE7Ex+0|H4Lu9m zkKcO?`GcWw2WZ&D`}o{U?hL$dY+T3tYgOJ~OL>291H=xfdX}KdjEWfNn+BMP^A|F* zISi*8vBM~D%kn2RRhGv!*}+t!^p>lo!5TkHxVKT>)WRdhVJav!3!^PKj08`Q zD8V9d~mti1QxPzJVPqi=t=VcJ~uPKvGP3Nj2_C*#$I(o(r$t%8HVD(RYFLN z(6YHICM2exWD=5N89g0_<1Qrgamy%_6A|)OY#x6Oz7js>%*MYWR^z+#C6Hk9cQB;r znH-<%m^>3T-j)|N?4j@%4#H`*5ieHhh=3~+6_(PYC0w>9RxhkAtgBZx zjx>8@%ZaIw7bX9k>dku%qxV$3xkq4FYamcej>VeSC;&e&0N{Xrp<|6BOV+WbpV-S2 zKk}E!z}+xNyMS2W$4X+vns9(Z6(ffxE{!CSMhmE$?$EHPSD;Z~RcvypSD5!rkVjUp z(1mxbUV+_hll2Nm!I|8Z4O<3E^^FauYJ~&RRx3yyb+}gHkQA8<37W7{!LZP7q4YYn z7RVE#@C!(N+t{UhX~L3tcmCU^qcnk_Doj(w3KP15!h{f;Iaebb9LGkU)d&Yb^LC2X zkT%?xHI{ER!ik+7|Eeh%zwCOd)fnNIJYq=X*sQ0#{Iiu5;x<|eo|ncNyK5!Fi^w!0)hr=ip5gSdj`upP4I^r-&;tx$n++$Cpk5^WZ2LSh4O<2 zC^hDNuzbcX_56P5&u#)Rq@FK>#%vRXX56T0!)?YA;G%^*6~?*MN&#n0PjdNj0!Au^NhE84cM;+W>GB(89Oz*j7{p;yIszB ztpQF4eh}{TZu z?Q+KNH4MdptAvmkp-mPN(@!!9NsZCdVK}OgI6(0^NQ7{2gG#Mk#($s+aMED~zy20T3?#Ha{e8 z-vjyLg6&YvESmdVxmoZLqB9phau5iSoqG?kqE3xEG%T`nG~}l8O)lBFXOOxqJNGQ! zvFseX%a)zXG;De{2p_g|fQXjh>CX$CcUw5>F1+J8NxZWeH9GGF;_9d4)FMKJ2WD6fWIj=|sBhUq!du7JeX#J22@ z!7dtF)6U-MkF-NzwL*{>1P}?5z$p|*+AWF0>TjB=JZZ!U(vI#o(=fO{m$7mbC1)mA z@Ew__j))H=5=;%!vm9ubfH&`O1R+c*dFq<}f+h_wAwiDCwtt-r|Ftf|&yZe^cc%ynrjOfhK z0f&W$2em6$j4Tat;8I^IM?svtqd9Kr34#OWviWbGaw}4R$*eHgD%9dA?xWk8XHn~E z+!odN6X$l2guD2fDAk#_%Phsv+0J&!a=_Db+amQ&fcQqNOmeD?$i?=AurVTchURlK zA{Vj7I%q`pbru=RIQ-T|FSxof-SZ-7ODhJrIPxTz+*nDZIDKQw48n(*Sh#Yi4 zlZ6raCP&U1cL2+RvjVW(IO`k-*s^mL2RT>Ha%)UuL?+B+-j0Z=Fe(%4?H@4rxf_wp zT;#`o^`y2Rf+JEs4siMHqdW;me(6pai|jjLsw8X$CEV7*e}e%V+i~M4*5fcF zq)KO&3Z-hbc2*DUxx$Y^;WeEe-=tu&a14#Rx(ss8zUCfXC1^N>7e+){1@k{ zK8wiW+{Cf>Y0{J3Y#y{OGCq_PJoO>bOB?mI*gy7GgqLM}zJYfv_rdOLav#jzXL-yB zA82iN#=kj=Y^&zrvy%MPLir;1kzrtEm#z z=TP>OBaVmijL6Op2}gI_`*!=@17%>-QH!Uf`U|B4X?a$-C5icmww)T4s z{W*@Li0w4l4I4+~NoXGA*V^{}rvq3P7E%C~n}xLC+o0Z}xJ)WG_Oe?@9ORgp;bwb3 z&dH*js^`z+T0qZEZMW=M>VO*ygL`*q-i4j^bpXqPodU4j*y#ud*s`+|2f4HCl;1wT zr#axrg00p%vel3SSQcy*faS(k;|{Q8XDbeJu59Jjn8uGwunD~1;#|Wm?*u#e0eG5= zAE#TeskIbX?%*OIV;W~pvAfzW*wl2Iv|v+04|hzyPv&NWTNgjqa@*PA_ag@Jh%L8t z-r@Jt*o$0zk#dLMD-6(Stg=kYEI$SP*?E|TC2`k6W424;^mqwe+34`GZN`M>!hn1P zBEYJL)FqZyJZ8DX@;k^OGH0oa3W?`+FTQPOvS#9^yBJn9oSIlkX5goXp)p&2Qn8_O zk#`$nge(0xA+7iKHBs7T{)$C~VqkuVP!c$AdX`}RgMg9F2Qq}gL?Qd%uwfPe67voU z*z;)#=1zB5OJkzU1l%Il?Ukw~&#|VK`#>&3x8G`Yo-eW(nqr`BG0X`tf|Yyk<9H^J;uk&X2}4j13w7%HbTqL7GrPIPcpIhv5Z&_!*OTt{B|VGmq3Dp-@%X)ls_hL zFh19Da3*TJEiY;~Kq1!p&2@!BtkFVCA;Dia1Vn>LK2!k+@Zp4OdOeA%!-&AZwdXHiBQ?e21g9ZQ`&@WW0ab(G=)$|hwF%nB1?}9f;_Us_dL8~iEno2l=zOa zZyic{2M4D{=ax96y^RN_s*%O0qYfv&CsHQ9BY0w|?=jdcu2F6ViST-vFByd8gRqU< z#(HUdWMHIR8ZOs^7aFa>W~EszTO`hR*gqnwAKn}9>M|E$@iljz_Lhd1z@?Q zwbnSmmOZV-LAIHQ427?KoGke#-zyHdv0$e%hufN+Hamc2!A=2KZtV0<2iUT+69>7o z?6jS%|AZ1#3WWTw;I;4#J{3jZk}2q;4#=|LuMa!&*XJC-vf!@(EI0nT$pNN5Wx-PcSZ+M^qyuc(d5VMF zS)SS@(bNuED9&Ju)c33jc5(pAg7pHh+*of92iUT+ z9tXLzthYUJ=R!V;v)ugfz3>&zYT|3cVuw25%R;*y=*VKPaRAGL#R9P0SnL!B*s`-2 z2f4E>mR~t!)d5EqY&GJ@R&RCy%Yv-}u-w?{Jr1yCXDbeJu59Jjn5G;uA6q%u@$u>w`B;id!)uKVHDL#~R7X<4xzup3T(ealV~vO-<`@R+1WLLc zZ1Qu46%DT@R(lyZ>JQMEEk~)?Q2EIF5n@C~$X-~DYoT-qs!c?W#Mcm_ z0uxS8vE&YSTk}>T2LuBal>iH|VO9ws<|CA~ZK_zZzpzG{b(DjF+b>Y;$rpK|0_PRb zaHyA(iY4*6P9yNivo~=Ye=*t08~XPb==^GIT~|)lZnN^E3?SR6nt;(n&4UqIUi;pc zetfP%&Wa_MGO{_0MpTpS!6~2myov+$=T+#4z1G0;Z5L4vx zwytCOb`_Lo8$fno62bCDXcJl9^ovX^zmAd3VKnY6zc5G(nNM|((nQ40ioPYY{>Snq zlwj&h7M@VtY)RSUo zHTPhqOFS1rWG4QY2+!jN#ATw`uiH=zpLc{}znprCZ5M{_&6E1W1W@T(6-vf;Vb^8nJ zs^tyMVqp#3)ar$`g?07H#*t=ELGnVF$-1tpuPqBJ|ZUN4RE$tJoC3yN1i*AiZ{f%hU?9OJ?@e_;GQTts()l#ETZcK*B z!yv*bKez_M>1RxO*Rqd*!+W9~`F*z&lISn zqLAtrL_)T^Cszr1G?EY;Y3QBJR6^fIEbz!-m<-_jh(Blqd&s<4&pWo%=?a+5;&%na z7XxvzjzbB4O+!_u0I&VZTwxKRh{iR#_j;HE)CpwY4YgWxsM0L=4uORBqI~rZM=}b6 zDde+?;tBenD0XixHtNqQwVJib6J~n;v0AenXpi48&{W&gpIsSV zp-wHdqoBP7Lp7L*Dr4pPB%jd5Bz91e`i-N(-)>NzE>wi5PswOw)2ewI16{Au(U)rx zdMjhidTqGHRH8b3?yZnM@bRVPoF;dh7cl!xKZR>%s&wV@Uo5|iH6MR-2r1iM}USMPmr={XOZ@h)WF z-VFL~wRaJ_e?Pl^fL$lq^`vQJHt2{R8eG%?fd)Kn-b#R5s zrt9IuE5dlaFR`z0VAn6R>y7Ms6T5zeUBAk%H^Y@16}PazzXn$@{%(bjt=>1_3JCco ze4MmsZ|__1x!Su8u3jJZay#7l^T*5My|38sz~M>n4)**`e7-+EzYFe8m_PEi3GZ%v zb56B32H3aXr)_rg{;eD4~?}saN_yGIkdvNuZ;Va)~e?JJ63I8}0FbmI)L)Fsoe#XBUX%fI2}Zv68Oyu23QI}R=_?^ja86Rgn**5Cwd zY%6PMf;9s8f!|KBA5XNrUk5*Az%aeQfVlx>kpZ&|A;M93%!ES4$%e?mVg@<`>wJ8` zz+#?313^6-FCV`JE|=rwps&HDA1^n49WJ-vWig(2y96(I0+Yv1Ld0$KJ+}M)1GmE+ z+rJTO5It79hy(VRwfaiDW2)KvFOF?Wg2(xnzk?4T0fJxhp5%WpB6)x0fBcz$JjFl$ zn}0kFA0U5!$B!A_Kj6cA7A`<_Wcm|kHO`+rdD43hzJj*@#Xn}g0C{8k{9o7{24PYn-qzoDk)XDX58$GqDSEmKJQ%+Z`gmmMKv2}=f*m&>em_3+gEP@idk(F zOeGd5?LMZwp)yv%%1mmS$`1&#J`o>NKFIoLykYNB{EiK4E(}YJBc8lWLQ0$=mK7=u zRzG@HxmxW#bF6k2oUQ;xUYkqR%5b3{klVkW75d@%3j=um!utLY2}Mt}?)PZZS@=tC zZQ8Kkb@72`!RU-RA^Uv+8V+sxml}~lEo%IoP99>VvX(`RcVOGHpsHnigxT&gKq3rQ zBAG?+MSy^K5u-t1mqZx5oncJVvX|6^C}Mmqh`ql6^4Y_+QLu(5z3)R~7DbFb2)2ri zK&9-15VDZFkccj>V`L)F>`zZfVFeTPB@Qxx;$S@#RCs~u4uy9mb?;*+fAcUHU}0z< zV)_``hp%~PpUO}B*EyeX9Q+Y5-59hYTNj8wmV``tjBfMBTBC#Dz^o1fE35r^pfF&Q zjL8Y_1RVE?a0&2mQUV?pa7a`IVxXv_4$x_N6` z;0-n?1;Q_hJa*p;{dZ!f?20!m4QB^nsMpYFoBzntmBYhq;wlt@kEEFZ5=z2_TV8;N z@L&F}C)9=P%pHh%MY8}*7o{dYo~Kc$jg#Bn{p0=X(TyKKH-5n6#;=EsSq|-vh@eh(4?i!*8xA*Ez46J%-u}^Tm8_4w z{bN8_s$iGI**2QGy;BvAUG~O3({aKX10h=D3<(fKL$f%JYmZf98_IR`m`(6kKPLF+8=h*_j!t0&Z4Mel>qwQK>d zc;gX!Hp^!>`wM%s)al+wEiW7~Ty6{vKxl8EF%D6={zCLhVeg}k0&kmp3c>6!m;H|F zj`QM(6~nrWg5X__*pQtMHQzH~XiZ1|tD(`7$!xwBdu8enfsHE&6C=fJ&zqvg&WXe7 zk6Hv5#@UKYNYb_%>)6@W<6F=t#^5Rx<$zVgzBG|Lh&bT!!#4w1GO_2fABXhg(^&8w z5x9@V2N97^gYcqvC*t5PxRevo9>dwaCY*U6MG*M1Fc^q>G~5z10%T?~ze0TkaHB7nWhd93}LAfITAE(s83Fu?c%+p2WV;Jg60G@p_d5SQg?HfHjZmv`E|W ziFmJ+$R~_-k^|sL79+{fybtgxGBnI=V$YkU`o?l|(%;91SNw&L`(Z}R2B^uJ@E3qT zH42qPRWQiV^n&`1E&besWmZ^Vd9l=vL{p6cn9kD?-eFtG(DY+(XmSe^ZOv?R7qd}E zfy}vjx9gxlZ3x|Ngz7o`7FZI<-b?Mb-yL^4JtQy`v<7C8oHs=^); zg~u-VRG|nTTdypv?NN-?oZBX%)XGVe0^~-vr}rG_*lp!ty)wKJ zEdJ28=r6STDq!Y>s+X$_!+T_C?<5^kTSR9)Bxwo5&}OF`+FMrfypY5o)LSVG*T9*9 zI?O`(>`J2v48rnAi4N29Zb&sLEQCocEb$zL@EeqB!-iYKEE-oHR(NSzAtB_ssPp8R zn@k>!woBBi0rAW8!pWBE2*y>^%FwhPELstEv&MBF!=A20+|=;yD!dzy?l!^QR<91% z39o_I0KO)^5&7kO*vuhfZhRz*;C*PoOE-Ax{`0|0F#>Jt>WZBtG4t5SZ;VEMQ#5jR zXEX9Qq3*$vN9N}LA5nLUsDBrUAoz;n)Y{;D*wC6zBU>1p2&|R`6B#@f?-MrDcjB;4 zQ#=KxO4o?`@8W}qL_&k`ED`ktoOw?m2$2V-x}Ik1jyP53SIN}!50_!PJD%-_J!KK~ zh2Pc7tA^k<5%u}dd~Ol-xfvSMMAX|-LNoi>J33)R{aIu+=B+G4)Z?FFL>=#g=~?(3 zk~r{L`cA^DAnWOUj_D3!6Y-pGV2A?P*Fg-DY!cPWWosZGru}p*7w7U}1qFu(?@aC&gji2H9^)BkH4Zl(e_!+zp!q3V2ln zA+qPDE2923dqmho)ZYTlgMzgdFW&(y3-JoT>Oe&O5(mJOCd}!HsH5p6N7NH|P zMbsl%%oiG049J-DU_T?fH8+}WpXD7stCe-bqx5X-k9pep4<^Hg>SKf|%(K{b%F8qVj zl~xprtPTNFj#%N)V_E4ia{TJ%WGN78vBDr>(2=KNQ2=**x-k^PMCm|n1FWkHDod9a z%0nYHc7pkoFGV;gPINJTYro=1Lu)$TwD2nsSgoc>RN{uj$^LOz{j+kf!%W8)IV?(8 z8y`+YNDb<P$O;qK83r^g_5bbfI>i*eSqmUT5Wins*3FTlOfmN!)CL=5tHjjIzc&WhscC-wBZK z>nt)RIQ)yDN=;to@?u=}AlJIiJdzeSU+MrBKLOI<-|daPvXZ|5tcA2*(x0;$)}BZF z$Cu5ruL%EK=>XdS&~4*v|Zf_NW`n@Ad-^Fkl~EHXx|;wJCL zNOCwN<9pnIag=!aA}jS?pS%$cuB74n_1IQ4ZIBZ%^gb{`Mzm=+ z__!1yJAv%*ntWxq1}j#x+}G$iWDl9Q)SY~Y>i!qL9mzUn`c5#@|1zv-T28d~4a~IQ z0efarv7vI0_jkmI9O;w^xvNecWl$wcxGG6jWm*;TG8j7{a~eZ$PyEpoQhN{RFE`cE z>p*P{QtXJX?m}#m-q@UO*zP2NLX@q?SnpmUogE9-ymA0mUR9a{1H~Q)$Uq#XFP(>5 z7%jst@WT+bInd%)ePM5tn(z%BHPuNL;hVMT1`&Z{6UR~g;Q7&*h)jyFiPC+Oix|4Q zuy2TW=f8cLf+7*NrRd1>z=4iqxLusa%7KRF?bK*2L?(GUtg%iy(49rb1c%?=fp!4P z#)0NwDVBa(2igI)92{r{vdxUumaW_x(>TxxddsUKrowP!thdwPsk;NsTxDMEu&?FZ zF&Q}A(7&HHs_Bc_Ay_Hs?{C>{u_xSKNfh}?7~+n|>kws;(Pwbyy?bEQ3huJreuJmL zbP;(}+6kMp+t7*|MnNiZ9=9YWP3w|=g5zLW)Su!V%O$cq%q32wT$jXb3%Zgd=StQf z0k(RmHj2B142Z)lAxBx;;A~wK669YM?9Dq)eG=VJ+7DC~}aPqpf|5 z*k4Z*iJ%6i#x*T^?)KMH@$UTpoG$xIi^fo?dWt#b;UpMZwMy8XJo^KU9g}A~3R0t9 za`*RS#gvK+Hda#?G@qN*G$%u2n&~ZpExg%?l8_Ry>Fp1|NV!aJM`aV#V7BW4VAIcb zTG0$AzgJ}gDrqj1(8=e*KM_$h%!S2RJ=-})bA`@#a*wonFVpH6=Vptl$?1`e!eFTZ zOUi3}L3Nstu_g$vMzmLE28N2_3go-UMxdgYbL{&F>`IPLwh8YN&3%*sPOaw75c}?j z{_J#!AzXPpG}h_Z_qIB(aPdPn)5XNCSkN*iUP88!c}|T26DAwNw>84h2__q0Skbg> z8xtRe#%!5P#YQYV`Ub>^921ub89U6?M9J8kW)mNcfw3>46mZs~;0j1-b+O;iPc;vU z-mmBrf8ojHW~&Ywd&{_z`6f>Y$NVROgQ`y(x(0~<3xLE0#>a+P(WjWoP=fwSffnOb ztFZSzt_;Vam72Bs8~Kz`8myL=!-TCFN=aH}lv@b~HucMIxY4_j7Mt7Wz$ zVxzA#IMf%lzCN^`wf~fw+JBj1YX2cmYX8skjoOPO*~WQ5FV8!DUy z*wtj zO>T9IUa8jI9uTdwfns5+Y%4StV^^{TV3VcV%>bu4qUE+iV;AVp&Rj5LsrH1%BtN(# zD>Sw(OOlHTGFKQdRZnBHVm!;-)Dg%mGN-B87~%#Tg>T!s0a+5D3@aL@O`I|etaUsz zX3JVCHez9wgAgNfZb~NPQg&#QS@{tBnkXHceQa`9F)+IcC4uvFxvQd=K6%x>1`a`l zTDo#wIYe20KnCm)Flg|^hU@`dMCxiIHq262Vn#v%)26Pj0)sp$cUSbT(L9OOXdF0R z=s;aYJe{}TW*5|I?Wmz-~EMzO8$a=*!F*jf|bs?4Z}C8$jUbQN+&wsRTT9ES6gi1KgYluym_%Qk6Qo-q1a6Qj5F z_rH-Z^#r5e!iURPCW+DUxtY346B(V1opPeFNgaEyRoQzjZS)}noDTdT*xLv#LtBi! zO+U%R-d|zFau|*~d!N))*&Ek#2W!B=F99XrTdtM{Yy9lr-bQ&-3(o}R$2pF+;5d_^ z+E}v$i^q+szHP+k*?b8sB;aX=RIap>BmkeACE!?D0-Vu9`Pta3PDt9#0XzIaKNJV9 z5<+5xHd#naKglE{f1P?EnU7mdp`3_lw_?ipbMTe$F=saZ6)^@6$d^EZ$@hhZP4)~v z*D-k}YAk0RJ2023vK*l3UI2q)cEQ=MJRwr8XijSrj){&~EY&*9ny~ODx_Bv^;z~r{ z64u#Zpr8Z#gdžcqt;Y6;xFs1jpAr^31_9I;p|tc9Ce9VUl$^~%PPW{+$pG0pL! zs@3!p2Qgyn~5Q^Sa|j3 za=o%)%K)6C*>J8`IK-x2LF%x>)e48F%vnefg|!NXg?0<2*Qvoko)G1KA98|iRMNdT z;qG{M{yV3uIDw!mOjN~66S{)Zgb<@S*CRX@$4H*_2)}^l?G&#earhI~SibcL&vbVD zPfx-4We-%X$B>_~Id`T~kFdi-)&gj=lyV_7pELb!ra8e(n#6H}Lhyc!ED_3Mthd|Y zX)cN574}LvSU%YcNKKzMCdxNV8mG-#OFAlPnWTg&?yuZI#0ea?^eN-!>1@JfIb)bM z>#$m6tlVgX@i<&J$@3F<(C+5SFf5O3*5nLxtpzJo2FA)8*#?5-NO;{Afl>&cNylN% zFi@lVV1rb}^38h&%R5c*huYs$sz$t5VNY@raLKTt9SY^E4Nz)K|6u)uTekTq=+90W z7*c{KLSwcmK{IaD1mQMi8F2AJz6zruYO2|a=PXmrW#kl@%hcp5G3qwr+qOnshE($q z!-|Gu6C)f3zS;zh+47Z&4V9C;Hz7vkRI^OTSQy?!$=G~klS+<(aR8wdaMtvsl0QJe zpkA#FSp&R_5YUC#Fbe^RnFl8ue4aj~?i zej&+%S;wt1U*7aFNHizMe!1bp&<+rg^@)P+|PcZs#_;4AWk{BJI zn;G3Ym27NM$KLHy$hZZ*0y>dOHukC$l6I-&LkvT4z@ZQlBecmvV){uYA$bX-r^9emA#s30BriYd zDykyuf(Bg1tjqgY6CFxkdiipbuv|A{!#0+yn!H?gYQ0r16mhL}PocsOQ;=dPrFt0; z&cY~56a?W$o6Qf2+xM1yaUrsIXS;H<;3Gt5E_~!55F&d=-7V_pI5aG>cQov#@=Y$; zyH6u^S@!NTc*nAL>@HjOF4M64$S&u6*wUdST7suPhVc4m)L)85&F*YQ%}$j=S&lL* z9XdPD6xCfdHdJjjDzKwm?Bu+jc3H~kx4OJ!PUq&Cb{C9bD9Y=lmt!!vwqbfs%exO* zLKEk*KZW}tLuS{yrP>^18?(xu zt?*#vVA2(`r^uH-m%S7|56aZ}cSP@;?trFe+Rc0ajHarS9XV^*0W1s73czyXtW6HE zW#=poa;}`^)|jrAquq=W>+N>V`*e_ep|9+$k{uv&di1&fE8%J#4nf?R@zYCT!*73aaGvLGqcINhx;UPq63LPVhLmc9?BDDh{ zPVvzk;WQa%ZU5Y9u`C6s%raXIba}4^`$g|U`oupjjmZ}EkjAA^jY4q-2uaL~uZfcV zLL9B_ZCrQb?y7iq+XfX+fLKVZ#B!<)%iH7FX-5nj!}6QZd~Sy2*H~j6G%SDIS!6uI z;kPy{pKt)nV)_rja-062c7QGW^v^+#&7p?+6N6!?VXIsX%N-t-r&Stl&B1@`hUP(; zSaa4A2e2$SD*(%lvw9q0%g$LG~c4Eb3M=TUi?;7S$;ZqGC8Tn`OILzV9=FvpDwF zke=*j_Q3fNnIcLGo-&c>rHv3<>`dz+yew06Cf>135xcX=nJ_W?xwcRTgL^_WD;{vcGHq046elj-~K%Q8}Wh?ool~C(WP-jMeLV@ z_4FZV-o<*l(g7?B>nQ-s&3gK>18mu?Ck}GV1aY&=KfuYNoYv>hR^6?G#%x#JwLwnc`tF07V00w6DKno739=T52CGa`mvdUNo#k@Q z7P5-WXX*k*;-Q^|Z%66Llpb1!<(v(M6%ETKR;n2o>pW=8ma$Z9sGQ`DAx7looH8M; zcMdjD+GdUmz!Z_B7??*BN&@Fi&vMVp2^gsuDv|8LfJM>#W!Nwa8j1M`1?>5>-1F9a zktfyw-3$$f$|z|S96r~nfy~Q2jg7l5_4$DTVjJ}m@R?ZZV}v$&sgLO=u0qc0dT(N6 za~O_T>T?69{5H1S^O=09Cm8*2e7L+GIAM!yd~RlR>*b!tCUxxHZn@|7KhneLzz>4G zjnF2ux9KOD*!w9)EQjH^vv+QrqOQo7K!St&pkb4$#^*W?&P0uUSjRa~!vPAhuJAfn zo)GK7&{ELmx=hA~IDhhEtceb-D=Zr*=zxAD52sE3bs;|+VkQ6W{ERy9kh^2~6F3T#fLr!DK^6T-ACCk~JQ?fkD&~+$L9vtHuorvO? zDsOv?s~UNXI_z+={CyV5@(89_x_k^as%w;+LGrv_=F1adsUmD)x3OLt9~l@amxjyr z;DttOuvuwV%NEJ@9eKV!0wGMJa6c^el!SBcMLx3)=eU;w-xcp}YR`k!^HLPskEPsS zr>5LkR9k9l)|kg#}=_rNaK{09*D{7zf#A zVlouc{+N>`|AhT6KekpAHbv?$faYD;X{iHP7VH#&<;G6?I>45lojAyyWvA_A{U?-| zQdH!31+Rr~@aZV}mP|v(J0QzKT^-}dU#B~OWx-zoSZ@3^iglVoZI4$3F}?!fJY0~yV{ZUZgl|5g7pHh+*t2k2iUT+9tXLzthYUJ=|Vn= zv)ugfz3>&zYT|3cV!v^~mj#Rc(vijf>HwAniv?i0vDm*HV9U;89OTZjSbimxyZ)r3 zhW^gbyo;f~mjhT9Y!!gz##RS7z?Pk@ILNuOm0M$)63T=~kM|?=u(c(Wx53j~N+?rp zeAX8Wnz16vQ-PRiizs7}wXlrxV5h)g!rD0rVZ27{+ayK-lJvT{lOge{K^>y0m`|iawB#n*SfVS8zfV1#Q>)!rk1IuvJCy%rDP1HZw+Y7w)CwHa)JcV zK2c5O`O~vCM@*9CVmxFnkQ0_oQ>!Yi7|*h*(nn^IIZdr2B&_ux__l2rK0{UI1q>@1 zrcKOv8(8bZ(3mZ2sn}3?$vYo0q9bH4topUkLj=_(qT9@X0mP!fG6wM*2vLCvr>DU3 zW&#FHh}v*KFkn$Va1%Dnst3e8g|fCy6~VW#NPV0-bV=t?NqA+HI!(djrT0j3(+NjL>q; z-j{xSu0qZVEbnJza~O@NK)aVyKJNm{{=!-Vqqkj>x#Lgu{N^xR!RQO2VH2a{b2Fpw znaJoS_BOVuWAAnqmM=E|>VP4^-bQE>+1vDsOzb_M5zApT?(DrVNE4Y4o{!Q-#HNbA zB{Tf0du6>hqHa^#}awf98dg{s21sN7INz&wC#tay7;4(o9uMH{ic}GaG zaq3C2vzm)A(zVWUHuh(;&+|Qf}#zYyNkXhg1qQwdI~zQj&R7g$A)bjaDJk>sF#zB|7Gd8T zN5+s9JM`7`69@4UW&XRvAnjtxLD)x#7jjuH;^i<9QRYvBYc#6m(6A`;rzsXyoN_7i zUx%E=%KXp3J67h;?y{BnXBze$WZQ8*Y-w+DEy2^Dp5#TNJ~J9MyR#W}{PZMs)PC1c zwbW?9j^<%9F^Ff&4<3XqAkLWd9%3H>ho6pl3>M@$>0Y>_(RlCDd*C}3kKQYe3xAjK zEzObISZ`%?yjmWGE!Ekn^Dzj5*9x)M%+{haK9dIr8M9z z^ohUSt1E-mN{y{N*g|J3`iM+f??8%C2-=pD8}_$+6oBHWep|d@3DpO{&@S33d1&6n zng>Pi63vq!3$#C-cs>{hAv;a22AMyMC- zxx|(ZT>)EJ{7%5JSjUS5lcqtbn%*<)YA9#tm`+Dwj4N*MKv4DSJhAVFTCF)$X_kA3 zKo)yZl6r?DX#^1zl2}DS1T|0ex7UY_`g2OHW^M9>nchaE#cP2r1E7xCBh(NVGN4or z@n=_tSEzFb?ILJt7+YcnznGp5N>Z%xk^9>X$`gT#1NA8xU~IxPPf(!6Rnqx#X+duV zjv%QGx0t@`MgKw_eEZkU@V&=4fzGlsi2ZquTB|-(p5znNI~UEEf%ES9@Oi=v@7?U9 z6`<%n@Rzq0E~~u>cD(?Nqs!R!lW^VYeG0DL<#_otUOt1DEAaAJ zyj&T5cNN}!4lkd_%hh=K0$#4c%NOCY+PjuruY)TX9oOUcMV#Ef#J;|PUBAq(H?r$Z z?D`dU{VKcO3|EfHTiD-U!@s|dms{bo)%ylqVa(rzkCPVd?R^VAS9`a?)$7BKZpXWC zcPGprdE10{H-7gWyxaqqt=_$O+mG+u2X_K3vYk%k4ja%iVav zUXtGMTAg z{&S=NO33bbhqF)?vst(VFN-(q|GPzH*>G*Bv5u?gb!H6r)f>&=$WWLAEU?;rOnF0P ztb(PJ)O3^|5NsVBA5=crIw0P#w*tRozUo{UmKx+cWtoJP1fEz{s5Dq{=UL@ywfD@i z+F5X(0+d^AE>$bTg?>P9|9Vz(hbJx!;E4u%k28s=k3?Ow)3k zg2EF(b@&S)-#lC!Emc6GMxe3W3kro$ba4w=Ci2Yw^n_Gx*|cs5v(sZxQ27O>I~1Hh zN$L9-YTrCuYK-VY?^J-=zs~uDBgWH*}6ahV9Ca$$LKb1tTj4Vu1~J^=T=LD zwvX)lk7QWN+UVz&HvykTiLJHT*WL!)8-BTH8f53{+eP=wu?q{#ph zKL3xsFM*SzC>PJ2O}HW$E)fS%GJ)(uq6jXBk3$JYV~7Yo2ySL~d$ZHb&Mb2zEErIE zVpdy48SnrRJW!q}JbfI3Cn_r9E&5lV2Pob?<)H|Q^8dcCy1Tlnx~ivYdNz?C`Q_Ks zJKa+AcEsuC1owEaOsaOtxz$i7@kvxq;t?Ct;HTJMj5_%Y` z*Cq;H8BXVc#>Ys^L;y4f4qV({7>tbX!O6jmXnzl({XJx|zc)fLm7^BNlOW5xd!LZw zjfNX;uDJI8S6{WGPV4=zem6|4$Y4LNl5H%y{nI3hJ>;x|I-`WMha$A3yL#_1^eQt! z^unx^9TB1zhP!w?fH<)B8!^uive9r^kE5rE+*O31GWT?)mrKuzKW;owNF->nOq_hi(MUuX#rh z1i!K%!49U33xZ#$4JQPFU65$;x_WKWt2gmnU}1#G2g0x(QG1Wqv%IpbhV>V<;l!}^ zf;r6j6tIwPr(+*{3Iy@cERNoK#wpb?uZ}j;dN7$z@*qlCrzjx?dWx;(5u%I!6_N(H z>a1f9YI^522Mfz6w7KlK6@_C)y~fB;qr7RTF{ksqcUxJI5igpEOUp3*(e>Q@^wrIgXt)cqoq$)UWiISR zX3KS57maE5lV{F^M&Bv=ryy7_f{TXe*TSP<9xl7KzYgvpj&Umf36QLBS+hyTD8$Mc88NlAmj&i_n~IferOsWuNtp!yRsg2`H ze<7)-C-K1LDG8V1`tqjnX2Pm~Mm2e2%bSP0evk+H=rkBQ@Donl`gtzS4mo|eHW1Zv&{2<3qq(w^vfvsB;Y zHQT`oD{2XLf*24fGh>icH61JhyJ`aRf-0bxp$ZoC!57Suy?pMh*|YE;sb!%mMukWc z)2q=4J2QQ_xtO_1H2v6Xo=oLL<+Dp!Mq2B_U7ez;y9-2`Spq;3orS_5TJeIicGIEdjr zVQBjb9rk2sb2}W`1*foJQG!H76Q(d)0}H2GYZkoo%8e#a2nCl?t*8}?A^s%M5Jt8z zVRHg}a*$#Tm9j?3Mdyu5#I#)@5vHfu`{|jVK0O+am&#c~y5<{fL@q&8C2Ad-*2A49 zT$R??^HtcI=RY5DLtAYA4ew}+4c*~plWl$-uG4-4uOWO*{8enMvtg5!M7Djr7QrIX zfY;gJMV|m0e8O>{ZN2ktHZO@szBV2?-Pw$seBL_l$% zOA+B@uzU{h@XyH2j`xbykys8)N}r8Ci#e>7)v>)j+rskP-oOY9;4T5F`KkWfNdhoR z`MfYFpp;&x4u~BR7I#E1=M&w{{%c|0MPj!10shI*nnoqCakC?^x#?iPP+{E>32=tp z?DOtRN(_-6G&5NA-L;#PN$}?)2(ePP-Q4VZ+GE1T&AvM{4{X-j%sI#bEDJLy1gjTr z_QM?@PxA(DCpSB)U>vU)1VyzB8=?AE(3x&qkX6aE6NTHU#K{hjg1-xZIX z?rcV`de`Mi2^NPDJj}qCw?Bx_%v&JLy8!MJk3rNyyXrCWMq> z$9`yw6uDD697QpTn-0~+VDDX+eY&FHjf~gmWbzr`u5gb!?;HWv2F7;{t!XSk8yg;h z)iRq@K5mGkd|8DxI4}2H%?=48hn)+*R>u?1qz3ohgj7<{=l=>ph^=oqq|$MMmB0r( z{*}NdA9g{8yDK6a8B(Ani1W~OoFGaqQBSd7n#x3?_mwk!GhU}n5t?@dl?4`gy(sY~7#d$Uv6$K&u^YeE$t2E4Ripfx%49q4f57 zU~Q4=YVWOy!h??>gQW1_Mw}P?GYSvlz2Y`Wuy*D)`64zDYobQMD4IEI5($7z%EO6}sijA<4PMDy^Qf0#?QyJ#QH~}r(&AFEbEOCi>1~OJ^(LAf8 zA;n8aT3CJ!`%13&tQ2`+!JTV>RI3o|iAwq0Msu_sEQD)6Y`|=%CxnG0vLF0_QN#rF zXUD<$;di)MU+~Rd0FCh!=wL3wL5a+;>8etODw2@MjAyBADb=g(ZT@luI}1A@#D^lp zXdrKYb&nwqNeUJa+ny*Dbg&{f%hE?}B#FZ2RQw}Lhh=xkwWpBYurOaebJzUa5Nx(8H;0Cb z%fTZ9j+lWC4cx+n2bJ7M!EbYf&Cdp+{@NM`jyP_SD_J;j)^|9J7#j%*0`#e))- zCI4Cw<9`umRve**J9ZOQe^Bi%c+K{5i^S+o_(z@qmh{i9d8WFItd$4V71S;FL@ z#(HT<_ZAri2EV-}?EsdICC$K+6#h;vX$RPHu%roO8>y8^R&I@HEa?=+<)OBOmP9zCp5OHPn(tMI4}yQHt>$ZsdR@y z#pw<=E0KaBZZF9>y)}%4y>z5Df%Qa&__34_tgMZ>Yg#8+XvQeI{hURlqp04boF^!Z~a~6e)KxJk3SQ zJ-^GP8VbG70z4K%PrEuJ8F+k`V5Nz~1V))id>x`VUi}7*bo#yQh{|@$*bYx{Y zd<6!6uK`l69o>aH{9DkU9VapPFMkS+*?P3Hup_&+c3k)j!OaWzmAIyS;F2d^rb$(v)PVBtmLUU?TiiitO1d2HrkZwsa zsq-3+_)jnjwqOpzhRI#b|APR(9+vRCz>nr^Lr784t#;fl8cj#5NJh20O= zYL!G;Txst|aPVMMTWD}2)VQitJgTGE7$^;o48*N(j1}_7MbP|XaR|w^wvA5Wmm>unMyz(utg}Q^i?4|sP7(S0i39)v15Q2qX)hrp$!TBA ze|!sgjtAqAjkV76b^@oc|-hG+ZY zJZJl@Pqf)yl33d)2lVUtdU=ND;rrrB{_qUX?FaLm+naNnTZS3e#9vr zDZuAgV=o*MKky#a6T58gu!;A^Qn=s>1wZg!)B;5T;(#IU;1*p5vL2Spf%m_M;WG#K zAMlPG+;q1?I=Ejzj*g+RT79BbDY?6~2d&)NLZ>};W_P*`WIzC_IJu&5E)*V5-v%Q4 zw09AH8!OJ_E0vxJR>pz{fI@8TQg{FL9JRaPlI`ZdmT(sNN@cHgu)8`H5r&mKeA=)d zDXFp>d&wb^0y}$BWX$`i_{r0ay$>{Rr=}W$wM(fnIS0T$?Rq{&dHl&|%#DApIQ~_= z9sgl7F#dh}^y5!HW8-g%<6qs|@xP$=c_)kSlMI2x0?H`~xY&Au(S4IDQ>e|AcP zA!2nqG?wsf^=1Rd4yIAEwSoi|IZx&D+^mStGEVg!B$p(y$&nd>xbDTb;}tF1y}cl= zZxL2BEvLpa48-+QXv~(lWNaudmU|E*$v9PVA`hfvpUezMz^`eh6)9vB$5Oz&R+vek zJY5{C=yx8-TD%U9QG^^judWz_D23S)7xgbPd?#=0I9 z^Rzf#(f_FCiITMOoXJ9ef1x;0s*Ym#YifDn_(;(7H=3oUH{n&A(Y{5LKyXw-LIT|? z_9K{z%p8!-!F-W-7n&yIr`sDEj+oK>!u_wlOmgqza~&ICJJMFzU_lhM#>V&GLztyt z(IA`=Fh00(9d{!$RIL*mU1@;WhP{Mz)(>ECRGCqs1glL0bY0{$ZA)p|9ES6wc;3~)No11E1Iw1hT=yiGspio9P+ljSfRck+HoQzmcR?j3Fu2jc{oe7{#I4cFM| z!Tk;I+!mfH%npQ{Xu;VhBeiO?1e-aHtUlB8b7{U4%vV4_NM%erZ3WWZ`@kL^UHhqzpe$v$@fQ>BB-)xK6m&TT*3$dH727 zm=PQMN>B#x&Ub=1k>5o~(Gxj7*AaPFv+?=7X2SuB#fu^xWj9wSc-R%y=`O>rf2Sra ztciszElx5e;%^1g`G;W!9To$(BmRaB+t?9uI^1E%5*5c&VME0mYZgH&Y^c=gg;NU~ zs8GrBq?$yWW6$)Ti|lgOU+L-Bm)YerLX}wqfuw2drFl&RU{3=84(R8s)i|6I2-P{3rAVyE+o3_apuA?oklMbAVql#h7EW-C0-YG z2H}ao|3~Z@P&f4shSctY|JZJc3Ie{Opp}xQurN$hh)|kyZo-s`l00)0Hbe7v%-0Y^ ztW#t8<|e$Qx8o0HVEjodRL;#vJ|nq1TgpxNKySzY-u%aJBkDLYX@bZp9Kk;qQ4+03 zrMENTX)ZzJXFIUra9iaU00xT?vcP|%0CLAM>;#)i+di4V7IUp`K=j4ICh$jh9zJfK zPI8yx#~?iGuz{rNH5!py4);^CFa;jYySY3H+a{Z}WVE@~f=w$!Rc{m38Whfo*A){? zc=Bn1JkJ>hQMdk@fCf=pQ$o)Nh1)(&@J9l`my$^Q?_*ENSm1u6hIT|Ke_()8V*zwk z=lX57ee!W~OHVCxGBD~j^SA!jS1vkW;uhNO}tGdajAXmu-b=P0OjVM+0H?{o0mI$}h+ldE5niJTx3Jo3uCsKG)4! z*CAzNgMPh_DeUX@c($ymQ z7|o}{aO6ee00j?X9_0!JkG`M+*JbqOnbbs&f|#>^qhA;f=;xa2KLKhh%~cL!9&%c} z}N4*^HVFpF=A&j;{3RkUgVc_mt{LrPU}ytvTh0y+bmimGO^t@yVPH z*fZ81jDaX7_fW4uhj49d`y8t`f>fb#b=jZWeU70uoiw>&9>ydLm9cJu7nq%cz-re- zY7;z$5^~gAS*G{s=<6W zhw7yu&%Y2sh(b@kTn^w_rif7j6Gh@QP$+#`OyNuk{XkPp0vJ#`SeosJoGTI?*zW{2M07g zk|p{ci>1|X94YJX4q#bORtT0GW%d15uX|`@mft;PF_3emEVssVSsm((iK12M?M(QE zdsatu(BfOLU)toq9Oni9j1F4F`%r)4r!geNJ=4xMU<0u#34s@V?nG}6CO9rSuBfB5 z$5`j!Cq6y9b2EY;_@g=R=}?upgNwG0ddXoW^=vIn%^O8EGp-<8^e+{k1gksJ+u|-d zv20}3kRKN!gy{L#0;4@iMQpaF>#pGao7&wDGLLJ(Euv&x&a`%Uriz}d*|5)h<8a zfF=v=@>)mA`nUsF7L*l&hrN?C4=X|&4}aptc_Oht|xrME$N>aJaq z9?1?LGoHX1Yh$q{5vB{@2i*r9I)YLT9y6YJrgoZ^B%DAGQ*@6ND9fPeD%CoUqaH^g ztW`RvR47#{wJpn`UJE-}1vhc`*IN}2{w$O*Gg#W{EycOIZA{Rrek+VgjO^%aF@w*R zVqcWEb__P0%pClc(372T4~-BWHxj3U1yB<6rF9lt9L_fTcQ62o8_mHxiW||LO$3Fk z0TCalhWEw}I#H*3m&MQxq#@AMJcZjyA;!9xPzL z;V(#@y6oCTt5i(I1gPV27E06rG!JXqT0MWh16USHR0x)v67^yS*t%Du7|4ny;-;P- z!lp$!+b>waSb?6LGAjgm4!E%(rxJtPnw;tmU|En;2$mZ;UE}~;_vFMt?kzbjiY1Dc zqB^Wd@(u?aS&&uRk*uzB0Ly}`La^M(>f;Wubx&3d%MnvrQ*U>8 znv1Dt+#ae`7by7fU4WrudrwlsI@%tp=|0W!OJIvxeoqw$&0zVdr)%zL)rEg73`NvZ zl`WoKRu}#i_LWTRu&OTn8v~>owXLgdo)18Oc4nzzH{L_gnC&*tEbN3<@SzwSMw@cS zQuo9_J+o6 zNlV6tOiKQI#7NRzlblHF+QO!pwvlxqnB1$RfcZm#NdV<-pN*h{_5_uhw-^qXr_&#a z4U+?j3ng4&Po#~YFV7cwe0R{P&~U_z()P#Ua~&ICEUb&#!p6p3Hv#zuh&3|NL}z>x zkP+JSO+cofxGr+q*0`3Y&0#ov6VMtq^E=o^(6{6}dz{eU$cD?Zgj0%W<8w2iTW(592O=_g&0_cod=hvB%BcWz}s=j zR3v%F;Y^fG-Q^GZ(a%WP)TIUh9MI2Mt8rxMtkv`rhh@Y!TrP$|+Sys5!p)ZvQd2I= z$YCIS!=-4}h+Z0phI!yz^km7)CYKGDtC7+uaDEEjQQ(~JoC4=@q^?In^YGBu_{$^EcZB&SRjI(0LWg*fqRn7)Y;sY~vzqVuS*Bo9d;>@u6|AH0ssE z7aFbMX1Q7MECTPlvDkeKLKIP9T7mLZ@aPQNv$t-7@2^z5o8i-A_0$ym`IYed8FKhN zr#X!#su#igDHYQ(OVG(Ji?CP=ngzTSmyMBr}Fyo(4tzyT}^nhL>kqp1N0*t(}F26As{YH6yz9g&bq zU`yopqgNTVsgDKHJJ|t`7VPXqN78$_16UTM7lP$RdczK|bx(Q>S;7 z{N!Y1DtU-Tx#72}BTc9hCmf(LL`U7}j?sX_v*EbBW~*MMrufNugweV;%8$~H_uv(o zFk8$a5D%yLvtbeConQG+?8`a7a@HTM&5Ew_D<1=B?SeCg{K~}uyloPkb$;a~+o^7c zvY?ZRc}QSUQj?rvX+?aN8I}hjxg?2A&M6eMx@XNWaUB5tVP<+kgnSPqO8y_OxZnf8dz}Yq4RtM>BrfdAuIVJk7w|VL&FhYN=vrH=eqn4CR6*9r+Xh?7^~GMT9p!) z!O@Xg_+YRgid|#tx^%RxlIyQAfUI-888*lBoCzbelru4Vp!4y$E^P%5FD$lKVaj=Zz7E$=V@>Oc^j zyp7PNlDFv>U6J>DXtEqe<4)c?h2bLeG4*lyNYJU`Zv_eevwSCtlk)!%b{O|fR;yJ{CxUOdG;EWl==RKLRgQ#N%*xh;B&XG&sJX74oFU%1CT9}!a8W7|#I=+_H zWXudc@5#)pp81){Ew#UCKuTA$F_|$N_`D~xF_G77IEXr)+CSvVUwKY4+NE9QB(I?+ zdX(D#LBk9>kPbJ<-;WL3804~}_~_HdJ#g_hT9szGx{1|W6a2b^g$)&NtXV9qgPU5t zaB5)#xr~<=61E4atOsT{C7Nuv8L%=VDgU1}0N^k!T)#JtjF6=q4Qu*|!}8)O|2M-R z?Hqqf%0E(BF3ZbdAUx$?bgt!?@-N0&Xm8y;eQ5sWng>Pyoth`ia-Y3Y6g>SZ2;GeBgU~q}+aZRAm71rO z^|h%xuQ_d?aAK`?&OqV#!bxR{&z9;_=;>NFUar&{waM}FNU2hIacxt1WT5bZ(Qbd=^jyU3Z z{YS~NdM@-W;$+YSIuluUUSs={zG!r|Ka}HkM(7@t2>zfBP${m1j(#C5kF^GLIj9b^ zVoro3jocivkK2faPa_r5MD44m65DxL7?PF6?>HQL>1a{Fq-jtxr}qt&4wKP2;_0{; zRmSaq6wG&7Ot- z{JQ~^t?i5}?isUp)Dq!dG90tiOgZ^^0S+9+@i1GE4VIiZT zgZIr4?r)T(bL@2EU_qnSs*iYWCbKSH!Vvp9_*^r~zl1(oA(CDXfBDl^Tk zH^C(o+?Ud~x5K2Y_1{YOZ=>sFbZyi1a=7|e;N|Ub0or;8`*H-lbiI|Xx6$c0^$ zS0bgp126aCDiE&u1?4+$7r*aXb8V_>evI~;{inhtV38X^OWlxPC$FZh7KBJKV2 z2;pHE{fXkc*;Bw}#;4*|4Jh{oIBLuO^zE8#Zu?VA2wHq;i z(5JLR9I#Is<*V?HxU2sF!?rjDzhYnh20ma45d4z=JN5@nlK%(x#~<0pgY4rW_VE|^ zfTi^?e$4X!3LpNXaDiDzdS5fA@w)cZpJ&5N8KpU+&H*RZ8-RMizKtr+DKyqfQNkn9M~qSbD~JpogeFyp3n^;iNg)N)*{zTwOg_PcR4A61Ao9O~AfeSfEEfF3?8AVMU%Aa??ycIy;4rTJTR?AHYAKpjOZCdaT;az?#^kKE(;LO}vD2+dZhh`!~W}+SZz^v*MDn+FF3;(ZcE=o;2$whPE zqJ+sOG#A|k$!#%QVlIl`a4w3Ed|ad3my6;`0WP|)$VHRZcpe(4*t}ruiw-!`ivrs` z646I1d?nuH$2Om%HXOV>7q*#1Y6izNp+RPr=6B6}l5i(t(SHFVpgV1ons|~==D;Tj zlTT6xf?sz6O@g&d8foBpX zpU^yW8p-VvxWqgYzu`O+ANja6w=d7cl>$8T>AHoTn|+?_L13CG)_KOe0^9sJ;*pm6 zNANB`wt17lQ8*&=A2(b za{B^YV$O-*aL$R3d|aK|mviDu0nYif(OPS`;tf^3O)Mgm&^Yrj%ft5jqxO@$Q?$#C zZwfr~LBt>}^55ZIemwJk)rN!99eJh!uNj)A5fL)K%y`+%EeU-hBK^k^2iL6 zjC>LZj#C@1%n%@-i%ir@rb@Q zLNTOLvrwv3YFiqGW~~54-60vbP)e`J(5Ov#g~k+Qh(ng!2)$DntJfw9^k5WG=M^UF z-b5Kv*p)k$!UzHoP;prfhW4+IHE+? zg(0@Zu8kvI02#B1^q9c1SkE~)tYq|7E>9zn>x4ZLx~c?KCfwMdmsf&X3&}XaBG}74 zTAL`9t8IS^G-g`~O2$Swd%Rc=UsDTN_GxlDH}rIY2s2}%5jpd;1M=jxeUt%;oFyf% zbulev#sy`KP<&=q08?1J#KJn?`?2iB2LYtbOD6GOS zsR)Q=l4f$c;*VdTIn%V9TFT16AHM~S+49FM>=^jv&WvAv&Uy%8n`ta6Z1YpDZSuMY zw?h+>;>t-GQ=eseJ(y`odU_>)q@G|O#11tCn|vk{Z1Ncqte89`5G->C3l#gPI?kR_ z?8DYmW1!f%f3~OCO!OE?b{9sn4_S}FK(b+*e{^lL3z9vEk*qE}VP>!g0q%A5ntUeH zYw{VaXIf8-fw69a z#%xuA4CEMybvH(=XIPKGK&)Y#FLQ0P3u4`$5$kA~SDH@ft$GdM^#H4mOq0)KGEF`s zGTlqlwP;AZ1-qL;0u8LE!a$(!gvM+MRErh^X)a-;Ic*KQfi%N5U+3Cp7o-_Vd_(wW z<6@mj6&x7SwLT`tX|__7fC>JF(drq~Xt4&zXUS?}5f_ zY1oJw106qw(eWMD@EhnjZ1YyvHan+d8wZx}~Bjrwb2{oHLNByW?8TrIakKa;#oDSn--y>Mm+7`jtBcYrN8wN-0EWteCY(n5>A z6xP(=VLmO_RH~;TL_hZqJ)$<8m=dhz^1|H(@6ao*nmudQfiEbHj3X|a;~tdd;=AMv z7~+Dk132^=g;t|5UfYrugTSArL>>kTFN7jqC@89;pQrY8fEt2|4@V7+Ly7resQ-X&(uy~_$*X%1 zmT5$_eKx{Tz5|8l_8+Mg6|cDR$%)&MCobXw%**|XSHf)F|LUurTxdO5X!pPR-LTX| z&3l)>=sB!^n#co#!_GR$Vr`y16wPgV#iyl)u4Oke7Gqf{S0NFLvG7VS9)KM@C*mmm z3}h@Ib5wr@J882jG3YM|MaDR^#q<@zR2lwU1J&o)i25S#(>YFU)CYsUvnPXT5unh{ zDHOK38HXh)B4L}NXiQN=7M#n(w;WI7-**#Bn~6GV$6HXIRnX};wc&(Xu`kd~&+DkY zTm>P^iEdJvcpbI%hKA*kSMbFX>a7v4u#P18io)rY(kRr@s25&b9&3z@mz(FWptECM zST9x2DV$!a-g(XHQhma!c-0jJ4+?P9>WzWI>QMHh>aZq~|AqB}0)VoMtXH1zf@6)Cxm?)IhzDL!ZCQu(XE80j@xF*?Eq={NX@w-`jiaHT?5-{g z+g|t5ts`MJO`y1nM=CCd97>f}{U_3yyTJ20c+a=iQn z9Zvs;m!t8)QFy^7i97kX;N8dJ!VAS=Bh%EtH2rv*emG4(+D1P}6o;eEXmL_!lom&w zkynvABefpk^+}OK)s4>9n8adZm(G^ zGV*Y`ZUs7mN$QxKf_)7HB>1aMFAD0;QyvDCh|;PXgN#zmhyZtmhGA?E!7M!?$n6<0 z9=kOulbb&WaUCOvJ2+Iu#ERPdouJ)pLSsFPfgBD4+wB065-+P7CF(b@hep^1kl!X6 zq1lvOG%3#odj2=WG12oN-sQKA=2*4i;Kh#HXp+GhLfs7Rqgk(xqnicKgH|t98}`@Y zcTbpoG#k|s#;8*=*t_3HGj8b4K{w!j1sq4@S4iJSV;rfJv0%H8=2bYXj`z`AXpe-h z5*g1Y+}NO(=PjHn@1xlUjoIccWbUKkYbxAFlbp^O+(%=g5gY9(sk)NSUm2jtSyX8m zh?hr|@`*g>{}r(6fCsHyT!i!iDnKM{}#8Lz{&XPBiC3I1+U> zO}bCm1Q$9tsIVnw%x)je0W51v+?S9P)jVlSGV}azA{d%23CU-2LRaz`xjDrWeM8CK zMR(`_QwJW)BF&_9#TW0Txze>0DohCM0c@lW*GInP;f!-ANkJQ|O$(>M1n&Os3G}GosMFsc`nho^%RA|hWKJ|DpP-nQMWu7(g2I>skoaNeP7t|SUK8Ta3BnqL@hk6oy z4nVA9qRD46i6);Bi9X#3fXGLW!A@t8PM>EzEe1M$Av9)7ry0mG5No)r<+;`)Fc53l z<|@}VyCBwZ+pLyWGPcT$0mwRPO+J&UHTjIFHF>y^z)*)$_R3VT*BK<&bF3%EK(6OO zW47d)g&hOEh8tVPt%qQs*Rah|*EYML*NC}Fn+gQ+ugxhEVQ9>jn$5T|&~msF=3UkUFwkzk}W zHqd0)=7?*XoztX^sO-qn4wsY2tWyMBU&HhINvOyf^!S8{o2<-vv%QQGp>rX(^9jiV z>!W2uOGA7lEQ}Ar3`t8qYhiR|JHKCTnDde~&w!!zeCypEDhS<-jc>iX&Cu|ZTkq2L z6N+BYFPrd36sv5#%l=8`*1PN`VPcmHERokqPftyi9!f@6h6N!XXS-Wl=0 zcgMMHz3Z@X&DJ~PuNf)HTko=elDYLRyNS-W-kI955o}3GOzGChp;VdW&x5aJX_e2` zyMKa>DQ~??7|49<-OU78R0Mn{Pk)sYj*R6ME(GBuVoZ1dgDk5a-Z`sVoNJ7g}9g&KYtZN7UZyy_o- zm+LY0>pHxA7kzr)!ppw!8-FjnV3Wk3{A=;gtMRfQezy-?_%=LjZkn2!re>z8iD~-z zHu~u_{VcH=k2VMO@LnUgxMAK3Tu=Yc11Dd$dba853KCG)9r;q zwi8aq4zTI2fon#TQr(zheAC_J6O6oGlP7s0a(H^Ms*?1A(3mPF<|%L(I^T4MdJXW6 z(;>*>-w2n)mP)?IxO4Bw-jnqj)M^}_>W6IJW*y4kz(GT`YX8dEVNS+^{x!jCa&1h` zS4JrAhMalE!PRQR!OI-?+|h`KhNp&v5f81L!L4^6SBH}io^Dbb_HV@Rv|I0vIz&eS zbc_{NkW6)E4@Lx1RJNMzt8X&;5woW|q^d8fgX#ub+_wK5G#uIXeRzx%j#hNZ;46$l zs}$`^e)%jnzU-?10k+-o{WOc5l<4^?OY-+T{qPnhh&!W#AL;rhziJxGpcz;4l@^ZUhHM z!3wqE1PY!4D3}u0JXg)`2G+Q>UG(pPPw)x|G$$1bT?mt3FGB(9v*G>ML4(2JS?DSh z0dtK8R7Hl`$#rjeJ9rj;4rKkVJ-&Kvvt0`3dK#A$`Abs<8e`CZqh^dn|5EWua6(r9 z#a0zg!K^pDq1xCGY{VF;wcrn^u{bhbJ9aIUWnLZ;LealMYJAmM#~jr3&T9@9meJss z9k-%z%&6BG8ETX_4K*f9Bi>*kexmhC*N7na?}NVu zNiIiB&NQ^9TZ}hAqoq_q8&1OkTt)F8d+--USi z5?s7g)GK)VstIrY1cE@iHxA@$(m=A=nLt$8uM5L}mCNvdfW!G==fnSr#qfV74?k7QeqQ4lrpn%|2FS+_yP^ zbr3XaoTFtiT0^iTTP~P~LP|mzeI=mmiw>|oTMJvTN24`~Rl|oG6Qz1HEO!ka{_lZq z;qMod6$4pTeod-JCRw>P=AQ&(iQs!djM5Z=BQj2vawOjJ&t#8~_G? z2E3af)>!K+_DCOm-Vp2)EjNdTipxRs>qOBjOn6{jjDlh~(9!z?Q4cx|@z(+l2vM<+ zwa^gPWNC;oAU3L^EO7hc(FiPre=V%mS$|JXuQ)WV{@^Y^A5$?IoIm4wSB&R2*IWMe z1@~U|Q)wf(_kiYe6WqH|V?7kyhxHa2hcfuB1^2NIU|9(65G*&r{UQh0x)ox_9d}h+-d2=`1U{J3@TkD%4N8OGxvMDb)ms3#Cx?L82~%GZkZ64c#bD0lR6AI} zw1l=sp{im(TXCXmcy}S*O~!ZU!rioAr)vYRA#_cABi5D}oTNRVa>aFq-gwSdkJKh6 zYv5m+1jphg@Fb59O`_}3L2){^GsQ{MVUP8wqce$B16Q$@aIwjH(_We%i3X4MEkUb# zJ5mcL17Y%epjBO_b{9;~yjG<}V8kkYNy+k2v_)E~5F4nMM@PMCVR)+0 znDp@6r1JT25K_FwjuM9p3O&Y=GjfsUO)3ehh+*{i~-3~-p(StpW~ zQW~y6>??T>M~hYxQ7bv|qQ$2;;DE(f=2u#XnUkpXZhdS8hs z?#JJgY?;UC#*YB!vWPKil%=s~MQ>)g90Fi)MJXUzq1?pY}wX?Inq|jdDQ0 zo-6VU&%^h{m0X?Sx%Km$+w*dpTZS3euWr zqI#nB_n1`6_r^{9+!c!J<0eEcP?Tm47~-BT(b!-jm+N7Wb)jk9!qaslE*bK4-Gq1K z>7u(G($jSunM6ZlwfaP>QgZNbJ-ajime7rbS1Y(^=DjZ>tfY-$*_Jngl9pzPs0nPZ z%ruyVE{c%GJ2W{oJ~df`l=4Qou>uU$5#jGWQyxe zwU^hPz+SNRyC2~X2t4dCd{!LQ<)yKkg-lyU>PoLe7 zp?N!X+Yo5_0X3$?FQM{Ias_A+rF)OiBtI08^k{F9^q1Zv$=|mRmThQ=%Z}aTGeXAf zrl^H1`G@tIw{h(50?qfDNb<{0Th?1-97M?Qt%KZ0IDlml}09*G#ZU(YO zOH0*HGkK3&W14tDifHryA95OPyx_C&G?#cmX4?LMq#aN)+Xzf!Cs6`PeTZTMnR^Vx zPSYX+3G^_R*XIS!44RiNQBLuVu0MWqvN8o5^B^ohgY~K-9{Ktk1>7W4ooqD=jVAc_ zajQ(DP^yj=>Y;OZ+=JUjtJ1{0^Y|Sp0MLsL1gTVUSXJ!AGI2Xd(l#W=;+>ob8J5dJ zPj;+2Y@ORx;*>GFDlxBl*i{!JykuAX2i}ogMR!hil^^2+Rr}s#5gY??sPfp(oY5y$PDPV}Ayf;s$DLJD4-~^cG29?md#aGiQF@ z+wuRb_u~)pGiUzRTVy;;$gnqO`u=Hea$1-(Ay{ta%u)x~x;JMS$Zi%$sD#bM%rA2P zGv4FYn8ut*5p4d4k+>r1qV(2=r@5FjD{QolFy-mFFo~TQGlJp}nKIe-Q$oI`88QjP zunDnbPIMKQ`;Y6r}Pkklzc2Al}yMQ?adA^lue= z4OE9~e1kHonN2*YQPdh0{xhpR~Um$ zAoJg8Tsqy(K!UvD`RNQb9h1*1M2B-kJVMo{1pPpzmEvjD<%KQdUfnC42EGMW4=6!w znM5VKrv;Ld9}0+{Hq5I7);K}Ej$utpQ25+TP%lJ+$^mP_cun1QMQE?3@j9T)ozM(s@ce%h`JO z8ZTb@GyuZRe-mP#PauvXmkD&BM4t6@4A6jXp*c(w_s)xUh&*ArWIdgLltAA36Y-9` z^K|FrosZpn4*2B577H%0VJE6GXeT^O_6jq;O}iS`#iKqo9yQ(BjGC%u;UdzGI$*m| zhNlF*YUOC6@L6PXhuo&4Uzn@ZnG3gJ)w0eDx9y*5%YzPGX*HmJY$O_)Ns{%lz}hw< z-t97%ObnS9Z97|SI8n51Ul@LGf=20Hh!|CB$+m;^VWRj~y1-D%AY&r52n?m~REv8r zCbQR8Fk0R|W!f%QCzX%)8Zo~wyG+{~4Xx?;wMCgW1XjzVQi)iJOYkyn7pbrYwV8=f z#dMIU5#m~;?LF!+;tABCyqh9zDOmHbMi3(Rr&6RXi+Kq)e%8wZr~8P@(A{%1vxhFH zN$#y%<`H{W5+VhA);fXhPJ4vdgatnX&D*J!%JSo``8%jFB`la<#ODXSMaI1he(MCb zUpatf5%CGZa*O!<*#WlhBR&jd8@<+^tQJq==4BGGeCrQGbM`B+xf6UBg4kM zaNmu%&MDXN6r30QGb-GN_n|X@7w$_4c;+E`6*dst7(lGLe8gTA?mIFnL}$(-ixn+i zwr@oT#sRP4rYY;ZMkVLqycyOVIgk$fagH~epK;rr7%K9X8(slQQ0@5F0y7;|QJJm3 zx+`%T)$X?U%%$$InQ7JWd=)QQ(_o`IZh_`=Qym-BSPxalxAqnpZ({IU3;6dqfMp@z zL$KTg{0$DUbuZu<$cmIS1lA3zqlT<*|TTQ3bOn*d-%vrorr~QkbpK z@4=xvHFo?;oIu5_$!;4HG^fRYSgwRqFeg)F8xn=$N?85|PDc!T3x%HSL)P*12i zM%a;NZQU4l$ncdTbfF7`q?kA{by);LMlzU%0E@Cih8#BX-v98+_#6g9-A!qWo?wqi z&xECQv_SA3Ev;^L{~xJ#H&dHsbW{<`5oNQ?5pq^(N0StJ)fA6+ur#$j{=V#`>n`zh zy^89XtTo{h8#`w$H1FcO+vot6g#s3W<)(m5IKbAu0>(gAv=}$l{zYtBq%yF<9%Z4V zLWX--&Oa5niTqGtCzm*2&_e5fEgPM+J=t~u%Yx`au-u65S_jy=CprdlZ;39y2-ocn zIIvn@(VzccS?(sY=%rzwFLW*t38peciGsg`SA7gc8nt1Bz#h|6ZCRGxvf z=ejrAA66@q%+36p7sT4*!oWMyl2em(LK87IKz9(`m(A{D!XROGbsN*{kDK6mu3{%5 zCjI&z={v#vE#iaVxNxgYvkZqK_p{A5gLndR@y;98Egx7s$O?N5(jKsgbP6Hq6k^&b z`dg)j_cu2j>FQy!V#dn?3GF{8S0BdJ066m~?1Bvw`wGvt-WR@r*}Fy@8c(;@PHX2? zwHGk_is*>G6o!37zQg9}=c}+`a$0Z%;IO4y+QFW<^+ZnsvKP#M0k)egaII@V80N|O z4l`yDJ|A2kTcsyLPpx5{0cY@f@r-vwo!0qe;#;(3LBe?m)?uz-an`WHwTatsEzo`r zM*21yL&%XoqhC&Yxq@|943?JZt?6@`2kv4NB{EwN39+qh-NMEA8W=xwF}@b>$i+x^ zPAaeD1yxG^0FtzL-~7iZsy+Jc4!cH^CVyV~7M z)h5-`R&1Im{>etFKT+dE&S|2f+1uXU&5x;56|)u%W!QK(KMKu*GGXm#`m6(379N2R zEH{t9*BoH$-Xp+3wh_sO#D)K4)3Uw1o4<6xpoJUiel|L5qWiN0SQbPVg5^eZv*%iK zaKC$^V<7jI=ypzWRL&OVAkM<@wdf6II>z4$;%;9DWLePHp3uAtQ!6@vWkFvdSZ?%n zgad5d(-#A|xAfH)DPs}k6qQQhbK#ZfDWfa;Mxd#+4hXWKsTVoY)CLEzENChO%Z;YW z4zP7kQw-$Z($vyawLT&tmB5zB??=p-nS&-Pr97*g84q#c3SO}IIiG9lf zw(d!cf!tdX%P-#iTL&Cjkkv08$?6dYuq?OTQAK559m*HKyd2?K&@iA=Tc;AA>w*UC zR|j{98DVvrnzfM`$s7<0TE2qDqjOpt7C5g%`ErJmjtib{C=2PJX~Z(gNrcMwY{sKe zn&YKrVUp^d)>{}>$BiHbI5oYqO1g6Ds1RqD9}39dW|&h4%yDA+4~97{G2wGFF}+A8 zrYz6R|NMO8nXl1WP)>mg4bSL?+OJ^WI#@<4RM>8HLtyR95vCS+KZoo#&yKw zfPOAwK8X$6h!|NhdhYSzzAj9ui$k+mo{QEwEOFz~W^B~85rN9TnJ ziMk)!3Gci#glS)7H< zE8i}P1umZ&L@P7Xjuu>7C`e=m<;PvpAzYQ*H{b{E^B7{?_eMAgpalUyXbl)U9Z9ibNqMX$9(^4_VFHi zbPZjvh3hu|y>Rv4hnM%`3o< zf58>3(vRWyMHr0#ar*kd>3TC=Z=vh0biIwPpP=jQaAlahgZ};`{{1Pud>Ss>{LjD@ z#{60Mc*&Aw{^#Ixt$!z6{Q>Og^LY0KynK0!gZR!pa5wFLjjmsZD|GY?`s15$^$)>UzD0k38?M{@@8JFTNw~%NyKuYKzZb5s zVfp*;v9<00fPMUkef*ex{FFY5{vfW)Bk{8L-=Nv0c-aU4+!HTnVzH<*@bVP=b632q z!pmWBY5Dgh8kwdBrs>Di^uuZT(KP*Fy5;{oe3?2UMn|39go}VWBW6sUQ4!%&5R|oe z`72%?!^@lh4wuXDf(MQIbUrDb(c{z6J_H^~8LYMCQ;9Ato#0c&1>E=I({>s3Nc!Z+ z#9{cznp*w?3@^W8AHRVQz~JxL#~;|oAKAx)?BgN!@fY}j`FR*W095$!ABD?SIG=cZ z+y4jLLObtzM!d8>2D8UKC9)bj_`?~Y=H^L<$ZuyLMETH!qEjRpDbp*XvPO>g*b%zW`p?8UdxM>x!d z4OmxH#+!^T!Y9psj9LF}@IKSXQUDWs_k}Jvg<=!IQ=9ctwNas29|C=26CBywXoJ)S zT-TZ}eT>mZD4@pS55`l!rZybB%#o*(^)fU(H6$FeFtkc!s#h% z%s68bYsm)!p6*wN6C3`qOme}~Pt}I~pWt_7B+m!Jk+rI$4$)Y1s}6~dIvWIzI=GPn zrFhKxP`y?0HV#GvQuH4b<$bWPzRBoE%%|8PRsC5VR2SF^`n-wB@lvAV=QD1}NhQFetYkz@woItQN6<_hlrHl)I(E^yBB-KD{WDL%li!d!hvJ<{- zx5A44u?K)$nA>QMf_?+newfd;=NlH@iSPq9@`cb}QWMQyy8&zs9m5`oM+J-MuZdC_ zq|#DoELaF%kcJw}#kYc;;BU~_Ay`>%wx{XwmQuai-sZ1Euw`t7tYJMui2Nl%-r<(m z0YS|&>EU307hP`@wE!Z}tVX$r11`DdSE#R~RGFf!qL}josiE0lh z8K4|`_03+SjxR=(4h>goBj>c`=~=|Ulcz_X{9y4YXX+(?Ba=>S$w<%AB-a%t$(0~k z~rfK4I#_8tC7p zQP7UT@>q3J;wU6x+}W=SC>T~D?Lwyb90fya!wD4NX-b*L33akm&?qUBnOX$n0mAha zSO}>JSxJV`K;{up#0igN68&!m{Iz z10#ot?}5+_cB6(%RS;C6V}?|zi`78{=US-gljQS(&`hhbfe3SQ3Y94|jv*nXHU{U- z*1gnRM}b=7giGJ`_@NJ|1BvHWGaJQVC!nT&kVPcJf?W_rL~itVy1u0#c4vmz(NQJ{ zby)S^j{uTV520J-aH4Ex*bVQz#RWNih#ZEQJ{+SBQWgNN!0E6FpkM3U`z+$QUhN*iBEdmr+wMh@kFxToKmP05dyE2%! z7Sf+%DkZXGUkOw;f1%zW(l9zCqOnq|(j3}csrX@C65pkxABueQ>jD4D?_D=C-4d~ z`f9{>?12E`qtDRKThsL~z;QjVqeF6%3IRVRXP_emA}+!%=)L|$IC5eP&o-HY7OrnbcShRfY3=i;T?-err`>n*&%`s)9cc8zn{+g5{W@Y~e0Lz03n!N(56pWcGM$~FeYV@g)yj}GlzG{py%timqI z8=k-iqr;Q%Q71}6Ty8YmDG{nI%won^9>x5L?8WXBn6%ChrBYt1X1idt#^M=YK};L*dahv#iVYSBGWz)gV;Vnxjm=1QU)d`J5)5y9Mg768SYBkPWGU7T&7MBn~> zoryl}LWEuJBnbyy0pa`IxnN8nk1_S1BQ`q`jB1tj;nT*;jgZwA8juMK$+5#;p$2Zw zdU+J`UJJuhg$AU;mP?iL`H&79=N0s021g;xbSyM$Y%3TX238t@?VY7&Shl?(<;~7S zhXVUs26M=f(-Hei^+knFr#M=_12Q#64bKz?489fJZh4D6j61FOz?}m-{3t6pnP?(B z5fFcj07tio4;GJM=Jrs+<@`MCfK)}kB7hU>x6R9GOUq97s>};|)`_I8l!hx14NTq- z*J_nS98XTuId~9)OSA?CH(oeWt5jHSYh$1^JTefszA+Ztk1r6in*Gyo2uXA zSOlmI{ggg2Vi*L&b(@(pl-je87VBXmhtIQojzA=m)S1VY%31-dKsqG9=gc}wM85c% zNXbg()_x*MK&X+^lb#SRKuD5=u$cc!1ZJxMvj~jVw?@fZ7L?$7*bA9KQ*f6X5xgE6 zvmpY%j&R`Y`whI18B6oN8yN)&B!&FhezsQ>LRi*LrFz4x>IZs;$! z+5Rvz_Jo@4C5g3-l0m9$uHV6H zIHljkH#kcrI4Kr46K=8aw2AOwAqQue{&$l{leKv+>|re_7paZ%|cH9@FL&jjP> znMkXg2nEv9YH{un(t_IE4l>hgF!f9hlOAq6Ly>`{9x}1J+Enzil67Tzmn?&{7ldg& zTE%mouD&Coc{}aQkmvGjYD|fi!d{7y#LCbjOZOfjN`5FH>1Dk|(o1`fB!AyN?kkr4 z!O3ULAKVmG6u-CQ-_-l@2l*AweNAtXv6YZve=N&e9Kf;&sfS>>h19QdfUWzGIs@58 z8_eWAZjEWe3@IYcUxk>`h8gySr@4d~GLy+Ab&LfUJ_X%(5?7bhh$y6xxlcpvG%b*j zKo3*bpDs`q2xeVcp0WdUeN;CWq6uP%pizM0q2=l%)Yyp2#x>*uy0G^O^ClrbKYmAw z8}y4So5ni&eeu8&oVbPtFg~joKN`7y$JCA|zRe5Y`s8rw7aImpfc9w9E=)}UpiuFMY z1Lu{Q22KK&Jk6V(679yCASpG%6Ja6!RUq$<7E(9)1`ny-&Cnsqf)OhqDiS$Q9K&YU z#jx`2>{Xi_hQ-jl9V0X-7YnGd?O@m(+*>3a*n1>(XV@Iu+wl+fe*8HaHmCI#8S4lc z_J+-{16US@O$e5oVN-K}t$V|Uf$V0Bgz6aIJj8g9TVoo-CPl#c^AS^#lu>&7Ul578 z7&a?x^o}rR>QVr$6SGE8AR?nC+mcGi*))?Tff%N2|4C2}OeT#kO{TYpO1#H`=F<|2 zLrQ!R1clhZufm2YJBH%~WUM|rCWk{MPEwt%cv8S=<6eRL+7s2o!hTh3?pML%p7w&Eo8F!)wu4>6e3>EGTuzn8D428$bOMMbHFF3W)!OVO|}u_GN62u=X>CH7!Bmb2CA` z5D6*=tO?^ab=wu8{g}qT&ABRzL!dL_i zn>YRgu3)5|CtgGo>K%;O#g!^>&VZ|4m@yMy63Y&TOO7xhqW%iYTlp_on zb{G+#+Lakoi_dja+tq9gH}Ot_!Xi(4AwCZ>zKyz_CtPIzACBXett$Wa+!^2<%9+vg8z}oIWyjyyU4Mr_5jCY&b zaH23CoF~(xfKs|&B1V;367L{=2r2%RE@+f8$av{l1dY-+zs0>5lNoL+7%d-*<$e;| zQfHR%kf%i*8YdU_NRRhnzDy}txz-oC^DhE^|74M51`=JVJP@9>(vN0Vb zs+G7Fy8D|tjCcYyC@=aqAr}4%E*e%YRSWcQHetD!nGkGL1S?)@BE=EGR1k%Z;)wc7UyW%3>hrN?C4=X`+jn z5=H6lUJ$jBVPjv32%HO8hR9!xvq41`-j8?q=OwII0^Ns(4=;L<5b(??{(V8|0L@>Q zt61!jO>ksqB?Mzdix;$6(SdQmt1ykPUfXP!LWJ=0f!C?z9Go}9x+4dYbT7MIJI9;N z&$#VQ3>8`7>xb@E04z;`OJ#(qMaAsO{yjR6b)->3tj^Bpn zb5k9^PL1_Yb^LvAk@0H=zqRW4HwUmR1bhgVn}A=qi?uE0cQ4=>$cmJ7Qyn#Am8bM^?57OA0vIZQ$vY@OGEH}zJ+5xuiDT{%eD`mMgrcoVJoh2=%I2Em zs7ENRRVc&Iz`7?d~_EC!XBFRg#qBJ}nugqK2ZTk-CjX!FpWO%RH7e2V18 z_~_xL8F7>RatLZ@4@!xb05@t3n`Yv-#Vu*N_(zIm6YGH%@eeP9M~K5!GZ)EIBNqk; zzf3zYNVY+weS3nBS$Za{sVf9ZC*q8Uul1(8TO)5%yPK)~GdjA61&FeL=19kBip)U8 z*&XbqX_5azcG0CJnF^De_JT0OA5l@BHN!TB&h^l|iw1Uw16URsSO}Jz2KHqK*t*xi z7|4nmk4FKkK-$m4jE>T z(^rB_z93($@a*v|&@doDyJG~O>$tYfstzq{vfC-`w@Dpq%#_shsIUp1%YQC|z2iMX zx#jX-V?c_-i1=(=#YUu^4Se2{*?1>)>;Stw8xAzVbNQ>TQ1Dc6T;*D?jESsxF8`U- zM2~X$zXOfyX3zosoV|S$8@6F@y~yRik5K0@4nBc6j$9_tff9Kx{~7sC6L%hTaWyA%6`ol0;qF93ozwX3(481}(qo6> z2Rd>n#?YkH;W4=s@nD07*9>2&dt>1pKR;>QD~)>f@aslvxLIyiyztLX9Fn^+k7o>^ zsGcZK1x@8Zq&Yh?ubVvA{nhSfs$Qv{x?)R2aZ9!|PDG9OIH#$O=5NPvYCcb$vY5%} zM2CeV;0S2m#Sw6_16UT0fDkMAM_c|cRf~LOZ zNK-#|0Ly}=La^Lu>Q4@^bx%_aKI7;GvMg#<*#XPZ5REI!5(}bY~4P==1)3Men-LPPhi6ojo~;! zjptt?*!=x`vBJZf-+_h!3EJ=`KG*q z<`vkm4SVZFu=!X3!fAU4pFkW(E)(cLi9Fc+ai9U+LUWiV9&8rHuRLM71e-^Z5-8a0 z;oUcJ_X^#07i@OGCm*)B;hzmVQ58Tt;o+v84hqNB<54%_QPZ8xsHu7vE}}U4C67AT ze=@CbTsbbh7HOMdVoL|_cT+SDs-`IrE}fi$gIBBl<%!9PHvz@D)9cxVuN9Qn%9vbyo05!p zeY)4H4JSr+fXdf`orjYHkY`?g+6`WzcV(XUCQ9rdp6VBiL$6Xw7nUq}C8VHB z>D$|Bt-h7+-$vKV=-Q_1<#6@y$Clm>cWY+*?_eMAq^Iwq>y>o93Lnhz-;E#h{j1r> zd+5RkUcMss*hvM(9$GczRcOS;PU*X+H@b1@mcO%@b z^>3oJMN?pU1o3;_F|eCwJlBEAh#f;BHOd_(jwHm+`yb z;X8N3-8TQL`1c^ba}V52`(LB$*Wn5seS`k^CS3hP@Re`T-`|GoHvc<#KYkK!fc!4p zuJ!MQ>)CDp`|z=~?f-y%{D^)0n0@?|K8pSaa9zF^FKe)j+-ki12mbjQyxfeXWIl$M zSK*&iczHKo-UXMIe_x`JX=-4aemqS-oTeX5(+}W?>7R!$Q)k5JsI#BqBB0Kwf+uxG zB}TU*C>P`91QfC-CtcDle+_l;UjBm`42F>{EB`220j3TzhfVNU>|>E9}lvRhuFto-~;C8Vf>io{}n#` zN8z#+PBvZN_WuF5(9YxRWA;;UcILnpzMDsX#JsjO94sZCGc-Ik1i`WvlPp6k+y0F( z;R)8xod`N%P*kJ=YZ}=ZZ@M3vPKpK1JA!=p1|p1L{tDg+(wwVqIMrvjgN0Do9N1J!)scI*UR+qqUL72F4XPq@s49-e`tZ z9)a6xWvhzL#V2`VEEwiv&j;63ezEF&q+|2{8zG8{8P5RXJ2|RlJRZ5v>&c2SsuW_R_Q$ z{et;FI-#z=s$=N}Nq>qd=^|uOG!eiXGzd$-yeQ7F=;sHx;X@95P zq3z^SgZ+qOa1cjz#3SsAknDnQceutvQYi-W&V#vZ2Xh_w>;!*%=S^11 zBjsj$njUW{)vN7o^wTD60P&jbKt@YQ?DGNp%&Ospy^yhpAyh*D9lpsR{VFV8cYIIX+UVT(ElU*20Ft!iJ`I z9we?_04%dL;jyo(-loEa6~fQfZCz0SCv|3n_420i=JG;eLwK`c^Ju9tUZ7rw$1Yg6 zHKtZt6+0w^jDxb7J_5+9F>J#sgM~nPC}~0>T~KXJ414wV+F(A^0P!ktv!Ghr0tOOL z(w`Vkw`i+g#Z^Zu;i(i2`gAU%0)#){zA(o2CMPTAKcjAkj{EP8nm2Jc}|W&o_cwY*ou}BwoWCs*MeemK!5r9XGrcg|z(u zGgHldTAf-xY^j=iFgreghiNVFw?KezH8iFnz+m<+A7X`}qz_SIgN=JkWF;X%uJ~TaVhNE-r0yG8 zn)=h|eI?s9<8{)wH17zj{2TV@4QAu%Duz}5yBLFCh1TuVeuX$6h#UJ7HP*wrpTD-p zh5tkNO^3+%1%qGO(Gbi&HlAdfHTYYYp@;3E3TD^LGqmUYXrYHdN%mwg4^JZz;bLD2 zpv~XI+KxmPHCAd>nnRmQm6oRgGuWfinw+fFn?sF>QoVU@tJVZn0$hB=__(iNOA8Ov#ztRRQAFL}tuuQv@5l zyr~^5MkZGq_Pvp&#taV@Ow>lfx6%&gp#*FDuLV0E78I%5!Qv`<-9^IF`3Sms{~t9-R# zTspnPzZ2=;^Kj`<2jNopB(=L>%gicsF_IGp^!)3K`XLpuS^A}ocsmQ4&rQ~!L5=lL z)^F)8G8zniTUq})2dHMlZ;ToU7xp1kZo>XD2iTTqVe3@FGmsT|Xoz1JBs`-kx5oSf zU@WRAPvKVn>4>SwP*Qq(KH(%3<^Hqq-Gkwx;gg5JqonjE$?UJdZx8NFP_+Gi?Bl=j zCmBYXScds9{6(>|PI&Gz*9{VAV7kHa2uB=tFz5#H;iuUeK&X+N9xJqBCrnF8K%(_I zDD{QY44m<;{#}Tbg`jp(@WKBQ{z*1w;_rpkTDdyvod;guox@vnhfTrXyH#tL?g4)` z!mq*+ya9Ep7Kq)`YF(A<4|lm&~w&rNv&vHsv}W zK5pHKv{kv}0hqhdBYDSp;t{j1Yoc}icNG~~xVKS?{tC_KrWF0Ti^eqKD}@&PhY%&v zJSgJpf8c2pWh!cpF ze|7@IkT|me8cQV3glYNO)S2mE5nwfRA^OB}0e*(&HZw$)UWFR=6R81Wcbt^;G_V;VNz%Y#{woof^8}bhV6+~w zE{LEB{pCgkuZ6~Jh`^t~(cM}@O^P5e|CoF_LF(e?cKS}EyIlK z@|}IQh*Z<+RqP3aCohDD)H_NVIoTR}VG|F=@)UIytq;hgWd0~_;@PfHd@pW7R0&0v z;(#IU{SwU%YBEYxYv$g+J3w?%}K)Gyr1^G0wvrtSJD`j?7N zf-}s9vd})%-W{KstTo5IM!6wZVO>#ZrYFeB{x#|J20>Cw&jcf9KO{?AVeKBQ+*|E# zN0{BzGldW7d}1OyNljDQIoU|`nv$KA{uXKW;v-@1o~bJsRS)ncT#qaT`q(dSo~ z>w?}QV+$ceK210?Uv1g}s@b41bQr@9p>m61zuf`0?qk>tWE;IMlkvDUrU?S12r>T< z#FRD&usb}>B?xe+g<=r~vTuXFGXvR@iV!*c&HE1qL_H=xSeS>j6Ify1tEB=#flj4M zcT>Fl>yMwDtW3d~!QktsesQl}KkkHV6l!?B@MNo5h|ddXz?s9Ng}T>l)vI{UFx)mU z;Skc(<98&lelI!@B+=)Dv5Q8G#tUXLuwpO1|5R+4(H_I{r-h#EWO!(Ya1%+KGG-zr z=2dGPcA6mY{}5O*k$!-8WFpa>lZnKUfg1b&=kC1&(c#4bj%bn-!I%sNg9E`}WBVnWU<~}o$rxi^ zV{B~rs=8;Ur>Cc9x_Wl+c)$CjXZL33nd+*itE;Pfdg}dT4xjzs4Q7^doxQF2k}T?s zKTMt{JsL410B<@(^5Z_jAZ2;HF9}FdpCQV)0HPnzu&6~kBej{oOH4LuGij#!|Ek`u zcJcrZJ|!)AJxX|bzxIV6oQ&BJ8Z&KRNm(c`0^n(mEha`7%D@I;a5AN_N}4!Au$C!AYxyRD{8aE0x{gq}xKa^n(*FvfX&XjjhBZTHNv2 zfoTRO5nY%w1U2P#CCc62fljY3gOlmT0fjp>`6kGfI5d%h18-oGFb)dzp;4=k0{Y+q z^LtXiA2%$~twm`jEJhi-#CzZ=^xDv3HIilr!*AuwBtB6I@%s(vZT z^`mt;aN~Vx_X?&&@zu14!T3z1z+3zQ8Vu^#*bNrh!rEW_SS9v;0;GYhSeg$jOmAA%1^f9l9R{g^GGkGIVTnu%XOtx_ zg-=Rae?t;-;;{;relma4 z%>B;vM91T7io_1Cje($8Qqo1;tmH_fbHhBRQA_3z>*mRV zMex#>%0_Cjo=O^(#r{(AX(Kl#`?NIEj>(k{@20Y`u5o)_TwRHnVxneqx;iLxc^dYVE#YJ>EtZbMA%L*Ye%eA7E%$2rcY6{#SZ~Ne-=hGs1-QSCGa9YYf}gIzPx$rgeB%K2*^TeT;=n++&inqS zrBDOnd)?x|M(u^SlfhnierzQke3`CU)8+qE?2i_;`SNuti)+<^j1q--EXtxi>athN zkkSV>8HXNkN?Wx8ywUSCyC?rrJNp@(cBLgKD$L2UrF+NPJFJNsbi7nz?Pwttfmp6ocEsA(Lbmk8;v(0TSax8VATgo?a~?zY z;N@AAyWIt6?Sn)f9b%kV+u9^za94=6f$?gwd7Fqm7$Y`%R70_-bzuPo@QCyt$zjGs zq{`zed$BvhR#MHG6EaPie7?A9Iy{pSdUOR>IAz@R1ua>42Tl=o^?_WxzsQM?7Sn=B zk z`$U;JVxc^nc=eUhz{gNRk6*#uMD(*IKKaFvMfVtr|5N$duE;rzh;fS_@Db)Pj)`*z zautIM2U*f3{J6aP&!{)bgohWQC*GtnM(CW>d@h$rEl(3_^WpXbjZ4(q4agHIIwJV} zgYrbmY_fH{l$e^UURS{qzYV9?>{fl=uIkk%uf~j&(aOyLZxKh`Zy^;Sj&h~4i=!U1 zkS%>2#YI+v5xW5W25yz`cBt#;q)iAC(z)T~pOWVYpOjq3+ZGxm#O|;2+EHWok1eDk zaL$#=j&s8|9gIOC7rC*VtKWRoWD6Y;ShWejTX?eVEu@~Y%7g}tb;g!@v385rV={jH zB80WvsK-k+1f%L6`l7#gL98m3Zz7K)oYMNyPgyyugLx59396p>s5rLVvao;6< z8vFy)f3+;ISe>l3%b#KA!04UYUXjn>=D)Z{h+K2;pHj6it#7r(YVC^Xo<#X8X!OY5~3j<&Lc$nVKL zDQ^#f?pBL#n%{c^D$nzKZ{jDG-(#Pw@_T-+ph0Vp-JLl7M`2^OneoFHk=@hn#OeRk z&F=Z|jm+;|o}AzF<&ZX-iOcZeD;CSyiu)5-h3|e6@8jvpW;(JZ_uu7eTP0V?XWg$R z`N0W1_2`Qx_Ylfi$%lT945Q6urddAvsd~Es*;G?cCx6VKWC@E(W>1sDt&@d4vkgX$ zal_5XG@#@d*8_M66R7!~tu3S?jLcoB>_+BuEM!YRGUp;w`r4R90PAq83|5YDp@jws z*`Nb>?WmkP%0emv=Ul1mIJd$=w)C9iA~%+E{!)iAr*mDu2goc>amb5 zJ*&9Lb!C+um}bT|B5&lZjlGX{#`j~$G}UFsH*SvwB{|6-D*F!DFk#MD$;x@Nz7hM_ zYm-+|^S%MC@bvsAQpyc{@DcF3<>(ow(B3+=1I4^AzACcZ(o-yC3*k-e!~55J^FCsu zJAX!x_dxZ7m3pwtELu*?WS>7B^uh7L=uAQxRk9Z|Ry*Bs!U43;b zc4vDSfI)@Y?HKXAZVG^3HO){XQge)hrSuK%WTDut>p@l@i|Ko@1>b#KCB~b29+Q)n zT}F|lM^J<9V6zfm;8E$yRGNC&ww|Rb&WN+^J-saq8@RXUM=>_F(3~LC2V8SnGU54n zG945qQwq&Vgp0d%D#HDR)!9OAVZvERA$A%3g{>4~4FY;s?d){o8U!}ke?5a}&@O}9 zP1cjgLj9s!*%pB*-AXtT+GSt&c_>`S=1;WZPF1X(Llci}+T4xWf=Ddiy}mjUZuLt5 zoN|o|s<|%wvS=t`NsAmK$-#*QuvqsYN77+FrQZax15L}G>&oIMw(f&{O1JJKRh{LH zE_j^-yJ2XpZMX?y$**$RuQK~YsWRK44qLas)FoWy+GfyFi=Az~flUyhOLun@^oEJv z7KjNyw%z~{_5oA`o7B?_ujMVYSN%>ifFn?HA@uq=I3D<#; zP`4YSb1x_}Fhs14-!Ipe&lOjcGCf_rayn5yCAq3|(WJDsC2^gQ*lzJ06*y3{DXJH% zjc*H9AgtZ+S!<=jts^Xq)RUJ?x6F>Pu;ynm!aNdd;bE#C;F8=Bd@Tt%FA67mJCEV~a_T_OXo$c@^Pq6P#Lb=9y3O{$v$LEHh zhL4M#KSBu-KMRM|{m%3J@B%-)$PX{GL$mWE)bjVSSd2R`F2v$&{CXx9x8eRuH)C-s ze(lBL3M?*zqUyX70O?}@eeB{sc3~g8sE=I$FDu6liE(3Sb~EM_+09YyttgN^LNts&4H3Y-g^J!`&}reFaZQN*c9=$K^UJX}AjP ztcCw$)fxfS3ODqfw~I9VcHX;Z=7Qel9?x?4_}bc5d~NOVbG>>tJ0Hr_t8Jvg^RD1S zUlS&6qSnO^=q;EuY$T|G+raM#VYR}|PIdFATrd+OeXPb^G6f6AyZJnnqS-nFOO!4tw2Y!4^DYv4lGQFwE z`*6(44hTL2*ZGuV)E#IP8pbJnwdR>j<5T>XI&s z>ykp=meBt$VFUm0h+c9OlcIkkbuA^jzldzrO8;9_fdiF|OCP8`=Hw+fxZSUJss9$V zIr9VWppYt^@LQ?!XQ?u#=`uv{afS*Us64*OBJq9QChY;ox4CS&|5zBFoB{-|sk8q< zMX9fJ*eZG-rQk)<15?iF*o;`O7*R!EcZ5BW_Kr1eGmH}84VUF?Yq7JnBUf&R6hk?? zLsQgaO#}0Whig>JifV`6@ZkIaH~SBE-9tk!M!YEoP1mRX1VA%!ZSZp6Mks7BrIgGm z#c%$=2m8J%Ypp;CsC%k~_DT-YfYtIbjCMV}7zkk^1*STSotoE+NL=*S>o~SAd3Zpr zg>OHN#+#j6Pzkp}5gimMO1m>oY0mv9!Xpp|v#o5yyLBb_FNsbGzmwskLDQ6F%d6nUxldu6SD!p~VWr1_1c(l_ZUbv{XIy)XJId==n> zi3W?-`??SI5(8`CKER(fRvG{1@`oPBayEstTnF0#Mcqx?+XKY_;KwVWpeTKSn72FNr^!SjaXJZXGRKZT)h!r>9t|w3fRwrOJub zVg*72NMJq#uEr4~HZF2F$d$udM+#&W{}!f|9hfr(>f*__m9Nr>enxhg%H6I2Zg_Ed zvoj5mwuM6Dtha|#wc*$U!OpAj8M0q9@RBEyz%%jFT(k>*g-!iud#7AI&cW|&91(Ei zoC{YWfKN4u@$@St8x#HQlDw&Zus0P?(Qls|2KpP^>*B#ZV#rL02M>&m2Yo3hfnm6Z z75nN-ovjg#z|Q)t#wz1G7l-lyPUxX=Mkd>8vB% zmD7fr^2RsH-4?=G`_7v8(%4_u)V2d$l6Y#0ed6Jb+Vd+ZuH2%U5jJTXET);TWcft)yiS6HB?CvQ-21z_X+k@Fe{XRoM z8i^Qbu0f2XxmANhrZ2^FR3lV#G4OWOaEP>#<|27Wqy3c>K)ol?o-xw5c>@Bdx76F! zzCOSKlvaD5R}60!#D<(+G#c7aMLHMS(Ly@MhM7Z)^7wa1lhpR47N^lZCG7bxXuED< z&%aZEY5J!KHaP!6hIp1x`lnanY+d>%^^L_r#{#bJ@6%&CGj%)Iw!^w|W!JGbm0^_-EF5afHWeZHSITw3nxLk( z-lj4v6Ut@sxsze3kU!tuf~yId+F=b{Ia_Y36!`*rc=br89Uh9wRNVb#%b_(z193yi zv5#>}*=D6pY$1T>7@32U&PZC{Q!>|g$nW!=T zMRI>}I9-YE`jKHhz5TF+w6}$c8NYrc>+5zY+>h3Q#H=4V9>4evhP#R8LE@Osvt4Cj1VjQFWLyneJE&ojBt3rUyWdfA4 zGX#6|W`GEnp?Jw(T+dtIJwp=r| z&3EXrvQpz(uQG&)$<75MIu=_jBx}!w_|We{F+9=cb>bqNPke}7ZKe3!hmfN{xdXA# zkjQAsBaLtzCOtMO<;w^et+l2=H_0+u!|@Z#Xt7UU$c&b|W48Og18N>ivtzb2He~~@ zR`&*k?A1VQbrK^e3&QYeqHoAcY5nILnw@XUXKLyz`Skd(Wq0<())QO1dV7kn_d+>W z4sYnZLsKPsZCW_L7J6li6rzRBNkg11ke+^IDK|20lx9B}xv6@)FM^39UjaUoXdQ2; zq^>4{SMr7I?EO|*Nfh%_7V}4(m+ZN-s^FyDC?z{L8{la{cFaXO5~U5d+fk8GXoKQo3jIIN;@;K0i3PN z%z(Njpg!nu=L7D7dne8ZgdzuT79jqifEiM-C$3*7=*;rXqNBtpgH{*|W(mwGz_ z!UTYv)h{;{af_TDcx2e$AEzAN8W8pnsOBrUT-^UnDAnJH8%UkeeNx?xBCxn2n4j8r zHbh{~J+9?nNO!7|9+h&(h++^Wn~V>l0(R979|?n~XHi}@hXK!n!w4zKMMrmFvE;Zx;JYf*!2Y`fO%va(k`T~N~aS$^u0PBZ+EP|2F zNX_R%iPT2TC(UZg_to1C#LE}8Ebu#*@B)C^|HQ}JTVPEWd zN*WdSJ;pctiUfLKFI0C2R9K}8PqpJd$FP64Ke$sj$&SdZN?G)X^HLysM}1ZO+p(Zv zHlcS50E1>(96X}w)iW*#tpmXGx|oSyHG`-lsa|pL6bGbCRNlzyrI}=i8{)R&PAp6{ zKjx}2-Zp!=oLcti1N*^L`97Bc`oIn-&4(4HH?8V|t#O(TgIoeE5R|!=$fZsm%TPz?*wCZXALZ_wp5L z$1)s$;+^IWng2^t%8VEdr!wt!38uyKI@6}I#I1q_0)TzM2(B{?M=WkNjG*Pn24-ZLOrIq{6kXO=iyz1~-GB z(-GK>%o}67t|s~C(q0>G+$}bZi{D2Lw-PhoG;T9>ngHTvcN=>t+Kv6CMN!>wBw`-MuiEid6qI!NqBh36nJZ0wJx;eNS zjlET<*tsX}OcQwWb6|E&dseljs4RKcw3lPhbgr4OYZ?lxbw`l_gfi_Qc1?Rqm9>^1 zfX7jN5(GB!u-!B5Bef2`^)&iUvu9d_%ACKW2#>6#*)uKHTUq+Gp<9#vTAG>4(T&Lk+Dqg8j%l z?&h%UFwIn9V%MVF?NR7$ zy~hI(tEHP{5;75E9idK>EDXE)#%>kI>ZJfAOkT#7p&;2-D>^>#AYP|pvv#8xrW zHCx5_KNXu3bsf04(w}ivAvRaO3Kb>~s%q7Nj2eZ6Eb5{?RI^viFw+M%8JvV4n-N>| zNkN_Xx8y+YR+X3>w%R`|bBB7nLA6=rQ!)b`G(M^-CCLVqpz-$rU$>y~Hw>(SLE{^Z zRmLk^esa+Gk%d@<9^Dnou16oTjp7Is`IEj!=OQcJV$5^BN(MkI{?X8?uCd}K7HT5I zijx2yx?eK0wzUw8z${lRJ7(=0uT2?u0YXa_UT#x_&4XaOAAda*A2p^0lcJ^LEZRd%9$!4z za*Lo3*WS_6ooL;+8!3xvCD{~wS}9;JZ625KU`rL{WwU83@zdkDKO6f*nO9;FJ)4~M z_0hlwTSCut!L$WzcRnMgfr-J3?!gw(R3vcS^hU%8#_zZZ(;Jx>nL|&mDa#F69wz*V zzWdLp7s!N18==SPq#;M>oYa!OCGne4(yzKUU2Z?__=bAB0eQwnM+m>GP@Zww#m+=t zs!Yje*EWm>6c>bZZxO3PC9_7HmrQ$&s_P`vQie0%2Y8z}>kbRC2yvDxmR+26zlCh+ z<18++60F!o@KoM%6t=Mqgno7N*KKk%t#fX?^Kk(_%^QD)~fhI*_;dfuAgy zK4a`$PLH|l*({GAO)fv0e1bGPt3w!Ld<-w*=6Q+0|0M#HB=yLWYX(M<%dL14pfKI(Nl7+g2>my3e$PkX}U1mBgC>rK@)v)&}Bz*RAFjPK>hGl#vj>hJ>WD<4ZX;3ur*3}Ehi`DI@O#OrLSGbh7o50cA-;3IoUOP& zfoCb*PvVV2UD-@Ww&ec1Ty3l5D*3GY)g;w8f#+0x`Q$!DIV*YHkC17!aa@{(svoGg z8<0Ig^|bQG8A`&j5}hB^;FX3utCfOO^9ZOPQ2q$@`PJOmr$%+bacViAV;u2^rZjSL*Ld7Rn;#DDOW5zPTg-ITY64$ksHgY zNs)2AM^=sV4p{QEZ*&h7JS90=&&IU~>zx2o!V0vZL5^3)#|BjEme@iq&rd zc|Qvs5j@vkmb6-8Ar^sFu2^=oI@UtA^t9q4*OgXwV44Z!h?J5u6n(sQ0{LA?Le*sg zIc~EDC4b2uW;+dRm@tK`B<#FN<@MetB(bZ#5Qv`a+MfwBf2aH>og;2&?Ah`w#QkC zuNJ9vWhzZQZ2!M0djtA++0+mN}hv;~n^zHNPVBz))A z0BqF-3x1)R>%uRKhVuDnFfpU39O%dqh6S)#;vt8_VLsJmZ^b2O-N!~jaVUOz-2aqr ziASnx%Nu3zY6o`H&>Gx)Z^h&MTDSVOW}hgvW?SB28}}Esglk>f4BBh4Q`%b*`crp@ zLT|+9`oW|hr`cB#wii@no7B@==_(dlau7UbyJ44l7C-ifrE-7Pr2H&ip1)59Hp$C4 z0^1#~12Ld(pGW6jQ0eqD`&aijJGa5d+W7r)ZTVbrMJdzM)hkCL@+rw}twh7h0{C{a zaP49v$Fd3>sM!?Nqt(W@1uGC%aQJK*y~5oi?2H_gS5>#niLkTgXYulU5NqdQsy3XM zhn8w1%f)J`J=@O}`ofeULy!e8!g1jc=OuQix-t06@Xc8>5nEp$E6;_}IS&e#JKtvi zy@$2W@37D3v+@E~_OtRrD4kak>0S|Vg56U&p_n~xNL%<*6r`Pe*HTdZb{B)iFzw7bSoA|#Q@Y7rP=|=qYHh#JpJ}q`` zVdbq*!VvN{JlPDDac*b-zJrx_vht^_yo;50v+`%Gya!6I$$Q!NpX2v;@CLtxPivfC zK?!xf4-N-U+}61tj*FcKpmb*7jUL2L@8ZuNVrL%4@3ZmDZ{X9y(OswaIlsmKy@$W~ z9ei5j{2ss0#ozn^KJ_{O!^%gYgd07^zB~@4vmO5A3HJR-DAzbo;peXT_z>~a@Nu#8 zM<|c&cbVD^Wet3Z&UgU?D*`e9_4z|c|Vv*khiX0X___Z60n{eBu8?flYuURbm zu=qL@Rp*reNFM{}V;A?a3;Wnbee8n1s`HxrV|Fv<;@HiG;~m+}*!H&UW^Cu(EAYhk zu~@hz6icvp6^pm9z&CI@?8Tk1z1BZ#ndKTQZ%3+&b;hqEz+sXi+G;!DiDwr~K zSf&xH;h$wyI%Jf-Q%$FTO^qZPnW7?rbFkNu^A`(}s<+9g5oUj$C`C{{qH? z+DNtxw9Go@eeoxuj#@B+4c6B#6y4XF;IkKQeu+!{9H^}vP}@s=OsfCK53lmW>-_L0 zJGf5&ZTJEnV!!0OkIl4|i=`giW*8@cXWfkk#L`D~~6DsC>$=PAY6KUthD z_2QIrE4pNP#&0Lnf@+&DC(E;`EKjabDZykxyF!yqQi^gwvM8H_ot$cc-8MC*QLMJ*vn_?}3hrP6&PMXND^kjGaI!3$hh+&GOA@A%Qkccb!b}V(qNP;L zXC(p7Oew%2$pSP(lA%~ALjaa7wD;oB4+4u5tC@VRf*&K zeOU6n#|J0lrJFyN^5)BvZ$8;y%GkmZaZSza0QvOZJiIl6j}dq*^yie)9G)!A#{A~c z8liDkN*Ro;AxdkREeY~YNYQBJhGsS&Bnb zO7YKOiNn`ODP$jYTu2H`ivbm$UzaiB1%7yuA6{k$mkOAT#bm?Se6g@1oKC>303X`p zAf1o2am4JfVJ{9=9X8^`VWPvvdN@jR*iZ|HNDdq4;PAv@V+^yLn7$mm=h<{{CwIm|zydvTbLz$Wgnc8ZORw-h8kXD>3(Ve~=kJIsV=fhuH> zitT}XjBb6Aqgz|j?A!h^a85oh+nFofBJdu>~IT_@oWqfL* zAy~_nAc@hx2KT1utd?^94(6R|V>1PKsU@81&cZ|3oLaRp@DmzhtW|q3{=MA;Jn5Gq=X=>VCgbaNlGBA*3kURs^N+vho&v zkY#(-W%xJQL2k9lS>))h1}7OJyBcR1^n%jG zuiBOIs;#SLKbLo26C(i@@J~us`Bh|_4lT~KgAU2!IHj2j=J zJ|WlBT86wUB>Gwl)$X=zseg@&EE>y2@fOuL77I5NZ_%bmU5K|_$w|{k(i`_-x>6$t zhDvW;+d9U$eucacT=>2R=>i#A`93nTOBB&9{enSgTX@~+Ff*DCm@g=nvm#&6$}(5* zh+oj#ehk9WIx?l{e?(T9Y17{^jvbo%sbu*ZT|PsyyiZ0Rbh2y{O&0!)pu7KSh$2&4 zQd6V}AZQ`DDMhBoQADbhN{q>LsSJs+DH(ati7_>r7%=;i>+EgKlvb2Ov{;g!76+5n zWJ-%|<7g46lS+z%=rS3S;s7$Th7=-!kUZ>gA;ymJ0yQ4SSU`vl?gCr4C#2xvaVjaw zObTr`Yd!i~Uo?aT{$n7)F7tdc@l9E~!PJaDJQ9zfxF!_Q&$n!eB!bx*gV1I$>Z;ZF zU^Y?RcaqiZDohMcZX+wq)MA^2{fwZDVz!&svpCKc=^b=nDDF&f!*>xY51Of`bQMlWiM8}!qXQYlZ z#{fiQ;!Gu=(9}sK#YnnLhNM`Fj6CS12n;{M3iO|!4!Mcl($iuWvZ74=zcT#L)=DMD zj&!LEi7|_etRaR)fF@!*-YZ!^2%mMmt=kh)@JJ_>6g<+jfDlp~&Vp472%(FF*$xZ; z&C0&;FdG%V@#}Kk})@jd(p-LZj%tk+{6|_7;{5g2-lcw`Rsrh)AXs!gX&~QtX+~F z53tpsu;YAN2w}&4Z6RDcvc=B>W=Hc!R;zWgB-Ssd6nN~~a#DX*|qqA=xUwh+RU7u!O(reseakWFblt6=uD^zZ9rMyyJ!8%1g(vldLqA_8;OZ*z*x9v%3yAkErhX>tsR5GV$)d-Q@ZhD(-vC=3TLq$gBVC> zv7}V&$(Aa)5QmpEOr7JV!V)X*mI{v#POrm*Y#{`X58!6dISXqZkD8ayl*=Jimm8+) z(No*q`zdvQWrYl@@xbUwBX*9Ji8c^N2;PqnGNV78d7Fm zGV-8PW|jeE0_$r-ggGERVdj%{W=fcyj0qE{ph}m0=>i(kWiK+ahAye*w0XE>0U^4} zbD68uc9-=JqMJ0V^;hdiNscqpvvf7tRHiJQ7RypmA=mUGjdC(wBtu@VV#otCvX2j- zw@6mGbP$X>n?Vdr$R0a$e|@9$mN0XFO?n;v zz!pNZhpV|6bdzxwp)XT*)Xe=K8m4Id%>5&_8WKc(*cQTA$=2S%VCMdVhAG{6=Ke3X z3KTYYhd~Uav(U`kPuP(fN=J9%ijxIr5jS%`9_~wvzm+b0j4g!V@kj>ftL|kNRbc+r)J^?w~OgVn4E|i8mJ-zu)rE57d4XOIbohjz`YpA9Q zdg&4x@?a$y*(IrPvSkLLb+UCQ%sz&M(M)iM`12ExK4o(9da@2p-N$?qe>4?V>2wWU zU_(0nfQ&roblSy`PSTWjh(yn)C($!x&6$#DE{Q}^HC5_7MHkbMI**f)2c0@Q8B!-O z`5hw8$emJqpS1vj7HOLj=Sw8w1S+Z0W(ZwKL)!eeUbL~u(uqVL52q|3L^ryCRYcp3 z+Kjp51Fx-P*y~SYNVEKVr)TRPbRrnWTH7VERa8m|w0EP6WysH681lem0^;pG)5P9> z5E^n+x%8&*r0dww^zNpor245os+}&MAqS2pBP(6ou?#}%9qJxr$8~LfJBpq4zX&8w z8CYLH)?59$Hccf}+I*WXq#CnATQPrOq$t zVj5EC9x}3qIu;>~h>CdMX8{q8iYy?66g7F>09Xg^OdHg={1s{Kakda)gA{bUNX$ioWZTTQ5HIG3IOe`O}1fZ)?dP`UWkWH_{Hd_eMAX>Q@ z24V@oHyWmB{StsRwi*&d{hBR=v68LbgTWGjn;NEc<0Sw$*eX!i;5r5|kj_H01mMwz zsWW~F!0*%R@VB-Qg2xYWGw7U!HIE~g0DRamRmUs=_^Yjw1XthVO40=h1GxlXTTK>c zX>LWAb`8J=yHEpFH(V5J0M-QvTErP0>nfp0ttB=wsnpArOe_Lehc21nC~+J^9vBxD zpPQUxXmwqBaO20Qa$4Y8BOd!I$VF8Zu#LGP05{n8P5n>?}C)P?L%av?J`HC73grAur`s5Ub4pc86WQ$k5oO7R5IuDQ)XG)#jXw(VRQYFr> z=u#RI=jUW(4RI_Ib|UA;!zv31F=`pjDx&R7ZALBe0oXQi{Pm|aq}2eQfs848%umVo zGUe;`$$S;Ha!DXU?oa4)88Y-A+_3bKR^8*LSwDWMrZ)aI0MVEcm-|dNt%9nb z+KMiqAq%!7BP)Jta|WUH5Ot?ZYzOBzrPvh#%R%In4r3`UVq-fA&n0`^f=gdsn-Wu$A!gRKl{Gk|24+&pZ_ zTwsG`$&@?R$&^^ZBva0^wSzEa3xm)$3H=n9MWh|Owqt3d^p>!;t-C>*SlRI@S%=Xvr4oqLyd<+xtz5YRNoKlSh6DY7*qYp; zdyTjFtobIo(I%O9qmBj?<8K2Hv>@Nq_+FBkR6#Y}vlU%HLl$hwkuMxJWatq5bAAVr z^y>a*=MQi^w%>V_A0Fq2C;8!Nc5u}wJniNTtDfV+c;4)7#v9E-htS08au7ak-kENt z$i+db51HpqR2k7oQ(u);htTCUWYr=v@}QGxXEQQM%N;@#`f7R#olaJqsVDNLE{rH7 z)lwzSsdOm~iPK9)9(3aDXhxjCVuuiIZca~|pODpNN}F9No+nU8l{DAWWi%wsHDqKB zX)KbhB45knDGLbEf&QI`Wc3`X#P^_6_1yI*qojP@+v&Ob2H9GsT%Df8RZ%CG03yzQ zl`fSbJ6~qV1Cs`bxAqJJYwM!y_2#Ayk0t;_W1{Ri#)kK+r~0Sybny%sFouk*_@|K! zV&FpSm`=@aM6t^__6C7dhSPhH)n@7_5<4|b9aYloMwii$G`o z^t8#56=zDD#1L9rOO-gCbSVvq(@sX#5XT~v5z!Fu^(-L5(U1j%kb$$6dDk71``NY$3u5x3HNoJD)7JfDlq_N6!Ab zZ5gG21ssbZQKyYOwb6u4PM^(IPYkTsXem|mS!wL>_c~DuE0r|Y|A8$71d0B_Ahg;W zxVipycc+F@(M?g&Tf$ubI&fcFyzY`u=y04ZglGbz8HARr^vQ^3hjDfNMY(dNso2@H zDx1%@oKPsPDl|!S-HEB)`4HGP{mgz$iQk5;>AH`gxE(%0a-0FJ7hK%JSYMWKc4s&l zdSZRZaJbWN;ZBR4M_BnV-XF!Pwo$x_DI2Cu&4Wr>ik&S&B`pz^bFD1K&a;_F7Bv(^ znPCgjK%#K-MlA~IAe+?G2Kq%I8CwkrB_C%C(QqZ}yL+tStxZY+CZ zHIvU(@MEP^?5MWm5>v@h|Ef+@!^$SbCqK7kh9K9^7=%`<0~epX)F{0r#3wJL*Wq)v z5Ta@Pk()u6v!}-=`fg|F9`y+X6@u3E-OgvW8WKeP)E1)QO4fHfTQ^MAN!`vAxO2*= zdkb5Lu);0+3^DxW{>cJDNbyr!=D6L?l7a1Z)?w4;(B)*+!S6A3A{16BsdG8X*8ZZ+ z9?l@X0G-PzjnZ2}=WZ?pQ_J2BmBHh8 zZM7uGdWkJW!xg<%M3O;v60!;IZf^4>h-B4)-uh?oyDEcK^h=wa#A7+i(vpx~6(ks@I!mQzN=agaA zP+N$w!YyJX5oYn8+5$pIvCNh^ZkToGz=m1t21oE}q_uaQIEA%JinR8yrGRL*yD^9_ zK%{kCqx6;#X&s$jhez5%h&HgCo1uP@mgzLZnN01Z{6ssQ7 z3`#4iSx+;Z#zeBHp=fNU*g`arDEfTQtz?r%Pcx`C(C2$@vel4K@(s2S4Oen>#P@W= z)EpP_Jz=XQq3B0#AsVh|eZ=?AhABHK;`?7)Z3%^cXbTZmxJ9@oB0e55SU?CVcCoF9 z8}Th2*obdmIaHX=Aie-W-r`2-Eg{HTm|lkm+Cm80 z@6XMk3-YYz8x6KJII&@hH{Q~qV5>mk08iiw9JrZWX!)&j%l}Tp6ghlqu4A^E1N&xr zwS8j%)fWE<$oQq%Jljxdey+VDdDJ_|dUcan;u-o|$(o9eR~4sRTaQ2BAqlVK&~BpN z-f&6v4VLz^nEZ`5-?~8!%uw3KOX+R+0$qub&oHYt+(@+{uYqF7=jbvR8uE{1WLG%R zhdgNuAp$r~r&Iylb?K$xPAQcXYtl<`0)t2;MMAG`(FobPPW>2WhrJsVd?seCr^B67 zhN9DKAw(143b(MCXaYPSwtx^)OiM#PSR21=V8<}yy0eu`OR>$#hC1GkI-vNgJWx(0#aEaV+RoN`xUxZ@Dfs(kNg2mpGWAV)J1IC=foH_?)iOQ=?(#rvXtC0k zN@5&XW)RwZMqTw9AJ!%-{Bp9wU5$x>%B5tDnc8eq#n%YdD2BU;E{36Zxgg%212|0C zGO7XjA$_PDc{sgkAEfKlaF8-pZ(6@TYU8|*E{~y&e?dl8dXRenE zqOF!njZNud8B${-GO~sm7NMGm_ITf90U=_}Z`*QQNWmkXR8sJm(*ij(m^olY6hVlI@LAQ zW-W8<{A_2gkW)4Ud#F)*OPC6NAiWNMWeXwN!_T=H>b=59zX0a#hN(Nr4ZdNkEkW8> zZ6U%6xA0-Y4f3XA0U@Ng!nPu=8$5hq-QdRD>%kU(u;X8)l<9!y8t~oGvn3DMG>;nF zM)$B-xg-xb8SX_3g58)FE`IYP`a=c_|wz$7h{shWHWL5U$S@8R+kmwP)z!VZ(~{VktW#ky)-tVjAHpx=4n3 zhs)#bT-Oje-p<=6sm0IahBDKSr8oH>==zP!Oe?*5ZKj#Y{ko|+r$^|r8QT6~GP06$ zdXPbAy@5rBBc3F46G>vWq~<>$cgo!LzsTA%brX9Taz;~Cl|moWMKz?*M`Ywdr_iiK z3Q6lxLe6IT{M5vm1`xEc-jq1*S}a-xRk}>23us7}CNlD%(B+K; ztT9uvxUV`)Buk)rDpi)y#WSSJ!DM6&RV;ECA`QaBBMS&I_Pf;9MG7f+FrG?^UM7XM zqqYg#S;ljVNdEX!YEtgx5^{4eIKa-J_-sgD+q4ffF9~wmmDt@bpUCOiG{;8wd2>{WUs5UN8 z(Ns^R%6PhXhEy3tMjmvkL=S<&y3{T2**iU1_8{xbvLR4OTWTx$U#q&S9!#ugAl7YXw_7QQ}Vq0f2bHfY*_ zl4iKiwdJn}oX@d^2rJyeX2R@zYSaQkNU>3xp&cyrIbvXExJQ@VE&HTV*+X@r5>_T@ zM*9I<%M0@Sia}^cU3HDfW7qV&-YC5#%xJ%oUWYH)LI~==z|EkW(YEz?>nzOnHuaQ> zJ=szvmzDP+8TDmqkQ(jt6r$E9Og$mni;Lg9+bSc>;c#zSbn8M0;tsWiXt>fhTv9E- zT9eoWGb1a?qWwaFL{aW8m9b>ruK;2x8Utt`0W)VY-_7QVT7%1A&iY+ok=rT z%W-hSj9|Q$;~-lF3L6~2AS^t%wQ5Iuo1IFO?rxYiasS^P)j@@mUUw_vb*IfX*r+Z( z=NPTiZzypO-WhUDR06z0m&A|&FOiWo1h5!j9|qll>tLK{5QRg3XH zWx}#tcTYZhNSo7MQQiTth^%5)St1TtKvtHil_qgd5|&>v*O%!M7ty!k)(l8|0BGQ_oB8pji=%N^!wVRCW3MX8$V+$c%GACCmm%LAUDY&Cb zB?a#oEFgp~4q$zY1%$9jgEC$Er`LWB%BMwPrj9Quw|~E_*~Q@gm$ndLgvL64b6T7f}N$LK7 z*^)u<>0<_=jd$ugaE?v)Z+2jPTBV}5gmnMLaNm?M<0M-M(Hhoc5Os|%nYIm*o_jS+ z@y1Ed-E9>pc>E=q(@T@D#c%hGF$d@s_P?9}sWZt+o2_ zGm)W`+70QAd>vh}kwYid$nGXt$(2&GYd@k3WoYg1laZA{)Kv^Z>r?AKirz!7!A!Ya zEoEDCg-W*6Q-T*a;hqAm9l0{>Z=dVVmO^xS4kV|={)$idBUyi@K4G5(pD-h-vMP<9 zqzh|EqsPd|gHEIE^)&L5-5FRG(VowSSTkZlYSs(`2wIqF${P0xSmU~>B>9|d%9YF|7YbQE1KLuwpOMjmu(%#EQ&saP(TvYpuy=8Rf1 zC*_LW5VyEnTZej_T6(_pk+o;a7x(#j+p4PGZ zBM&+e=IDu#Jqediwz{d9)=IIpGpD3vy3@16A#2T)9lIp4Bf5$zWmeEdG^9)i8F|nt zGd+$nFy!vYcC=R5q?|PLzAQacE+#9>lqreHyX;AF&0H&p;deh>HbaVhhm1Vv6q#vE zk=A^!J6Dm2@|*NT`88Q(rbO8}*`-KCaqFkh<$k(^hIIKQ8F|p@a-g0rE3y^nc1q<+ zYq_^j$-v`#?U{VOw-x62b1O4>7-zToF<&Tf`QP+B`jD(kQywi!;t{3dYKQe#y5NTN zdXJ1e==9o5Pp_Qhd8RB(JrvpkAR03iN(^;#Dh)QHOJhibjmgM^PJ@`Zg=JVe++=Xb zjVw-2iiKolnYs~oXQ>#1WA4bSnM#lY>5>@|WPdX9pc7<9vKmF=GsKcp(zE0wvc^nV z;_fU(sh&!eDqTE7s+7pcgHDx0Vs%;cr|ED(OsUvWWv|$PFW#&Z&+C?XY8M7fQa5y6 zdM^EltWr}hEl&zuz?WLo-?gY1PkoF>PfQN zOewWnGNp8NRA}=UT}ngR{DF)-=(O1@hBmNHFH^~i!4vu-H*M3}-j&G}LLJ<&MX6)s z&&e7zWzc?!3`(r7+Ts0&F0LV!{zXO}bSlNnhUZ+}Rxsz6WdroqB0eo!ZuOU0ltXNq znVwBM07PR(T8XpaMm1ImHJvW8A)%&`kq4bnvyy!iBUEpsH##Oge~u#S%+wpXdvnq% zsM6(dx`2jsSw==4bh>;wS(}g!%yqQl?q z7F}#ZYMntw9&~Co>!}4B2V_& zdC=(*^Rxmunrv%VZ%+|=Dp+nDV#sUh8S?+g>M~_W;)G|YZYoJ$q|0VVl0T7=2c0Cl z=zR!Z%8!|zKw1QPsbXh{FB1<=J;GWWAQ}@B&rR|u`f94w8A}(_kUFEt$b(Lum}f0v zX0r{pD?K@sAKWuNQRb5MWa?P9OCn03Qm*br(r;I~Scb&diHtnx#E5ykrII-z+gd1A z!Vkzf>6x*DtSD1vOiyBlUn|vPbkL{sP5`#!3MZz{777s?VT|D%A8Qo28c&4o;X)mKYZTTzq?6}PqLXeLu+`?vp ze0&ES3kV^_N4ER$xO*8LHL!abO{x}h@Yca{wx!tFf{)40JS0l3?n2px{Gg%IsvB!kfI3t_#}sKG8q za~h_2<6Vqq+A2`kU&1XVhW!fRBy~8q($DIz4sM_2y;ey!mK81%#<+hV+WM#sZ=?cE}kJ(R*{i4RJm~2kfB5HZ{XtGIVMUi zvlo}}wU{B^+?bv>KPIcslsE2U`_w9`+_{!6q9J#FNJiFhXW%Gf)H{`XyW5KSTze#G z{*<0H&yw|KN*Y4%Bv(?U&C_%t4QcZP8F|oYvx7-9g!NDGQihO^8MP#J@H-qJ8Wa4^ zG7o-vXMiQa0PVGE>TB+LYbM?oCgR zyUFS@rAJH_KeBErN$#Y}W=N9T$jF0ElC9&~S!6)^c6xTaLDrKgJKT4aBv(qM#jA9o z3~BK)8F|oYu~C!;!%OWa9h!P*vK~M*W@xgRKKSfZjX!}dhoSMulaUAA_}fJpA9vE? zL;lw8%t`PdMo0Ff&|qZ0^nBQxtSwW|;J!4%v}!6v_MnSqNRi#h$b(LiNl|)~w*f1r zXG5N>7*jUHc!!7$z;bjs3{BrjMjmw2Zxv~JbO)|~2ziCe)AQg`vX)GFFiqb}Fc0Te zN%aO7(M2+(#06yJL8nAy+De|Hl{eCPBt0h{CacMm6EOqOaGhMui$|{>q)TN;i~GpP zgHDUcPNFES%>Ot&5k4X-#*_##okUUf2!Er?VQBjI$;e+!)0ZUEPhFaN^w0zl13r2v zsivPym&4HXo05?S-Sm^A;sbBth1?A+Nl$@;$qF)U{ZsX!fvAnr0USh^$B+sKkdX(S z3R9w}5L{0o(_wXbI-E>ak|`ZxCbQ%kDU?`6m&uS46*BUmQzA046n@LskJA(3TC!?P zi4YSNRMf8Fhjcj%jsHC|@}L`k%P4=~Kd&AdH$I!51W%JyWJ-dV&cUybN`@!s@)(lg zQ8MzNlOfU*tPGK0__EYN;!uDX@E~!eYW&a0CNh05@uy^DjqxoW8y8QW^C#IXAjES{ zIorn?gcSVg$W&4+NH4_>3?h{j2~QteJoA;X`NC3iQ!{mzNt-VmLT;fhf5oH5i)LxxO0vwwAevvV8Rzw1Ef zb~qdhUsrBFH1doyZ({T%4)cEon=kyKVTw22eBlvW1qvQN%oV8Hd_n(UxwUGyJltJQ zv@GBX=Cj4C8O1C7rC~~Ln(FzapiAOwgSZ@S?;*1G@1$4voAK(_KA>Qu?f8ecNoJUE zSnBwCJV4YVzE=EuZ5y6}OQMxx&M|a}42M}G8S=n%4)IprEJtLNqTHAcC-CydorcWic+Sh z3%C7NHdO5du~Y8p&`wrf^w2_O%$`OrVuq%sDuIrtOKM1JjQ7^Et%#6Dv_WR;mxC1%*8t)EJk zAJFA9B+J!gWDQv?fZQP+~q=elzRbOzJTvW;RzJDxB2KqO9FxzLE3NR-)@~PRnk~|}wrV~P zkCP%`KbZQMI8)bk0Kq)Rhz0ntnl$J>E@au`nsAcYIi4Td_@RRzI@uxGvRD&C%N`xl zUh*xIEPJFSqSHDBn8xU~oIz+~a+^^(Q~C5GvUwn6wy9EV>S4_+pDR|&uby#fxv8Vr zUd2F)wYMpfS-#pRv(&box{6EGQYp3sBx)(QNb-2mPXQ$1DmvX(%T*uZR0g3PGCMZ` z!=e^FIKKmW;ZlfXuGB_Cy9cHAv&K~$1s_YfY`NdL2e517bC`OmXe-J7kjA)W2H*`<6^{2vP zu6XMfxOIzrYq#2h^Y_^*UvT~xwh&?ETi6dN0Nu>7NG#oYnELy?joD;sOIvRXyt1-V z%7B`&Nwv(8O#4BdOpBF^?0Fnv#=qFwK$!6z2BFnr{X6Ti^TA6M*o&woy{&UZeVT-# zx5(9TLWkqvzQKSjxhcA>N$7C2Ere(aBN#;eIcu;wZg#^IpRhVk*kFdO0)-8>=L*z$ z13izeL!hQ5xVB=y-g!Z1Fh{pM?$Cy5dCFAgm)d$IuQVrOeVkDE;`9n%7_acUQaOHE z49yS~vLW2|o*nH)j3<({7u|cSuFBoLB9U22hhCtI6q~{m4eNw>JL?;kMeG!B=k1f! zqMH%AGQG*aOV@AYjF4(_cl$fzx~T)0OX#v0+WtZ^vP(?Sv7OH#wBDfZB$=D2NX^o* z&1JfQ&ro6q=Q&*SM+0Ptp_TA7q`G z632ZH60L$NUH(oN(2y=4kdX(SE;ACfsb46!&5^0S%vJzF8^4&6#eGi+rFtq=wxo+^ zNR`dW$Qr6xCLnkwhlfWN5Tc9hvgN$Ugz;cJl@tduDYPB6^)P9RNdEY<(^3v#1-Utx za(T<>K@v-P2G`1oAyS7ey+r7oVG!EfN?mmwA39Tva4y*hO5}46S$C#(+&U)m5u9=b z62?56E|8%YIy2tJ12{aI9^cS(gQGjroBLL}b`1wdEhgsnYo_)-H_;_CwEGQYWTp4H zjzMU>K;4H%(SeHJYGN16y#lhP91gui)|jbNhznFS)l;eR0$n^qsys(V9(1Zi4}rqE z)Ge7?=cv?V83z!JiE879K-vnbbQw(-(2y=8$jBPHScHQjqU8OW1%!xePqXE{kb*~0 zsifd>tp$XTVtW=ETR;e1B+Tzv`1*u3bH|X|psBZwUNa|Rt)p!DD+1@kZ6U%6x3HNo zJD(c0fDlr=X*)rSQos!NaRWQUJ*fw$v~Y$SmaSF!0-n(Hc7L6Cg*8i>-u{j)4Fr?E z$sn{tu)2oltVQakw{LHh-V&y_Z%MDi8*L#(JNPj-L){<4Gnn3freTUVp5A`SR)K=Y zk8=eM;Pm!ncR0D!_XOIx?T;I#;w`+ijqpeD6Wbr9SM}fGRjnPb*<{G#vo-`1Z1R=V zA@_y=QIC*Y@$5DC3CDOsDLI?<>GBvx*b^D@z;p`n7H*E!iJ#aA%}vfrZ|r^O%8g9f zsK$1ma5Sr!I>95{vzhE35ISY*rkkv~=)r`_ zmffWUUvyuSwAqUodN_1B4au{Dj6CS%X^AIK+#L25=_zv=Sz)G>aUYK*)K2v>7t^IP zBuYOSdC-aCt*g?sKK<2zrfJ((_N79ZPAi)mcCfzMIt4ShIWwT1(q?Gg>`S4-_{meIvBwD=M-vP(zdIk#}iKcEUNzS0lW=N9NWaL37NyP9btVrGb^zG?s zatm2urZmwGZ?v^jiE<-dIzyuTn2f9;ibcRDVn*JJSwIM%Hr2KwLJA%!rILb2t`-nN z3O+Mn0U>meFgs)6-xDUMhaN-q)26K_X>$5ATeFJ*`BPhnu)-~DCd|$!HZ3586yLC& zD?uq>a{8ac2K4dk$jRy1(l~6l5U*Z?H%Gv(AJ4DLwsm=dA712#m)RkjS6H*?$?5$7 zkuUt-1@09bY9-&x^@LS;&jp9rkwIvOT6GP^V<)GNY?R(2C#QuDm#5d^Qd@`{;YB3e z42N(t)IEJ*Fgbln!xWz|IW25(lC1&-kE>jPgE~1qTle7gcN?bSh{@^M5l>wURbP@` z)fdLAT02Ioe|AQloYtD)mt+&TuJW^yUK_oatU5!_uAQ8gYU9cyOnEn5p7;pc?-cHg zw{TrMh4>7OIyoKGiJ!~}O-{d^-q>%@l^dC(QM&P(ZgM)ZV&1q)Sp8MHV1`zInT+gG zQgmZ~W)NBrU=hW~(?gw{mb7R#IX&rEc_d&QMG4oi9zf6nF;mx|o18YOr%Ij)bU6*l zGoFk*=;TqeHbPfi!p z(n(iAYWud-d!5K^YH&EFeUOc$;mXDx~1yb}A{( zkMEXk0&_N&S7%3O`x#;>DRL{hA(*l_Vsd(RE<8CcqNkf|i6uswH!uio#zY(Z*l0OE z`Y~4j(`5C#%}GQ!PmmR7YC+xPbbv~(G{TIJ(xoxrNRq9{$b(Ljh~Z6Gk-Ew0Bh%AlIay(*{e^aTqph7vl%;g(42g0G z8CgRVi-1qWjJy}KfDn=EZ*AS8kb*}_sifeMs|AFRqRN6_3kac$gxMJj|DG^8eGRz* znzo+k$!QT;{lJ#LB0#>{79y;03!4eE^NCFh2qDF+G=sNlTeUW!QfzO9J?vY(o$7I) z{e9u7$h@G#OjlpmJjVU)9spF0c>6P)FESj#z_e>(yXYdc5cVJqh-JTy7@dSv(|zFq|6 z#CK7^1-OMM{1cz0fdl5a7fz_w*1_tQv+aD>{xa+|&;Qk#TM_uzMEF&ul+Cv0`1=Cz zcMSJfP|m%$MgK3b_!SoSWAPvs4`J~eEFQt)_gMT77LQ@^1Qt(W@kcD4#o~D^Ucll- zEMCUq6)axE;ted`!r~n)-oxU3EIz>ELo7bR;vZ0C%e9H@tp=@?VrwbeR?X!*Kxi)Q zx8R6c`8E?V?;v4Egd_#qZZ>SmZ4OJw* zp{~R?RGRpP+7sVUjp7^XQ+#_x`i2@7=TOz+8|qwqL*Bueqqe zhjGCf+Qqd|@N$qsrW-C{FQ-^sn~*Cn%?5wdR~ysX-UY0Kw{P?x+h1F|HB%@S=86AQ z+iIhVZBDkm!dlY?*e-`uYh&8GGKCe{a<;;%GRpl5UmWizquXX~ zYkS{-`k+6psm>$7 zgzzGsKyCc@l;Ho+`vL%Z-(%tHn&BY&Ya^ie>PRRa8U;lsyerE2-dHI9GY*QU$3wC9 zI^YJFvxbY&S;GOHH5|}c!vUQ&9MD!CRP1}OHu3BTS9 z#lNuF=QhMg-;P(cJPQ9h{4prr$7013Q2hESEdB_^51)bJ)Muf1@Oiuny8^uG*RR08 z-hUN}vtNVav)7?G`YkNpfnxV}p;-StD8BMOUWGje2#P%iUcB@9aOSuRp!f$C#S5YM z>BUeydkGYCE`wt1ccFOwa=aKj8n_rc8aQA_0|)GA;D8+sBEGRT{QQJ%@aNd+z!~gx z@XR~Y;LLi>P+X723)7)kv^^ACwLr0Y1{BL@Lh#aoy%noIM$eaa$lf_ICJ- zIXlC@j@lK9uj~fJ+gPle3&nQ3L-8^ehwK5xudtZ8Clps9vd~I(ij@So^ZTE#@ z>V8ms1BgyI{Epm+m|Z5Kl^=1?e3!Qu@lvaAC}$%Y*c z|5|kf6b~N>#Ro@0vGLJRe2PW$u~3XY4vM$1c(@gc9~}?HvUVtT?u6pH6;QmJgW~6T zDE`w8#r*{+rWc_&y$6bSu=vr5Q0!lV;w>zmEkkkbN+_P{MR_n1KzXXG;a^ivgW?`6 z{&G4Lzc>?$KYta9pPvOq|JhJ%`E|Ss0|zi4c9C$vzyUE%8wn%qVFSs#iQu~>f+6z^j3)J9O;y)hL1n?Ui;P2s9)wKmK_htlj!0w)6@%&6{S zM-^Y5vs!q~;oTW{r%~WXYj0?Q0EdFMX`JtYP$D z!zkXz=+wuIxP}>}kJ+S;nPd%9@fxPGHC4ZJ7}nDpsAO|()AnL1J7eFraB<#On!&r#@{FF|N*BBUyf*F-)-ml5udC_pzX0@#zSlVi9q%e|vV9eJCsB<* zw-Sl$=Q`olXh@mKkflas;z%GJy@$QCDRw0J7-AEEIfWZM z#2rl$BbdnWP6H@sD_@n{#Nqh{mg=|3rf9kup`hTVh^?G} z(ktr|#G45*7srcLe;7|;FH_gv0OtJ3uk7}$vh&6JKZERDl*&MN)@06NF|72hFFeM@sIx}qqKLlx&i9H$)gjwc>(d>RdgffOY&#J{`> zh~?Kj#Q7A_lEMRagR=nJc^?K;+)8svH;6P8gZ(ccItRVw!G4JZ8$ojh`W3))_VCra zT_UJ&evjuI1`wQKA9}KJmm6m#A12yHbKgb0_dLAhx(YnK0@njPX90|7P3;l}RjAJD zeiR@&|NA!&)>UD#3h&TdoL#|U{GdON@Z~tHc6K@+iictR%%yWxXab|Ckl`JRBlFjx z;CTCS%NpS&cyb2+zX*Tag&w?XAtU%m3o+0F;5k3K*aO{#Aaex48RVUS=G^V8l}DTN zwQ~9<_vp<)o`LI~EwA?Enw=n*4-##e*_Q#@zo6ijNvfql(<^SwcLDOL%RR^>YlI;c zVzXMm26)c8ey!ns-Vl;4%|a>;ULral-X-ek2$ML@>sv$dBxG=Stu|DCJtJ3c%}AFx z@N4JS{w15SOAdyxy}YDY$QH^GO$D<;&fC+V_+$s~R$Iqhr&xditc#hXOP~n0wdfls zd3=U<9pe3Nx`)Su1r1)L5gE##0KnOOdk=+=X*4JibY~a~;d19)Up1SARpVRUGX%S8 zN()?7*wMT5R@$qg)p_a+xP1Oh?{Y0653{ z72)F$ci#@_wU@zltDY(_Y3MBYHx!3Lc92tpk3*6W6tys@e;B{*M( z{7nFLZuyUg%=?N&%=1+!?J^=8!8fX8f|KD= zXY>fj;InKGj~yeW@vo0Iz*jK8yA|YjIZ#Zs1dv`yb1+f-RY(*EokoIK98KXWQ`7kX z<@|fNhqpGPhv!~BgLHikVg?1x7U!WH5M*%?(whO zf?au7SGHK{-9MjcE0$PCvkVfY*+P5PyA)IK&g`9`_~bC}rrhIbFI7~;Fpk_6Fc$3Q zVepKN9wSpOS4%h#UCEYuN?AS+*4mLPx92mt?rcet?|9Swc$GKw!pTswX<3D<0OD-2yNARB)i|U=IajWL?t7)WO$P+$Q6Gl8wHTOE zv0R3^z${Ehwr5*2C*_LWd^VrG#>!2|F#%sfbRL z9a5dI#EUQ6%M*wXp!EV}PePZ_>M{}6FyLYa3Gv4O=2Z6f5R=HAJqb9}k?m-$u%<0R zoee0?mtii9`&6F5iW5$PYR%`mbFzgG2P|hpm{;R~3lmheB3ps_mC870U#MgtUEH3@ z=X-H-Cbu$^2mZ81n`9bJ-K__+cKkj`Cdo;)-U_aBPWCV69h|<_IllCTHysJ+Tm<^& z{+<-PgG&YyEk#1R5`dfnOg-{C9hRUw5Uc2W2=t47!X3VN&7HTDGH)zE0_ldQ!M&X4 z{2TI7OPu&Js`ubVSpt0J1*xB9>}rLj7qIdImq&1yD2u-ou${XWdN<&qU5rkGH|UKJ_%{IMoV>`xTVSXT zAb+l-wWn0gYoO)q#Sy5k5@Oqk{8j%jI(? zhlqbNqCD-R@T7zurII-z+gd1AWH4fZCd$9^1J^68o zo--7e2W)$)CqJM4i?~P$nb_4UkASQ1Jkqe zDAjo}yuSjJGwNs$k5A^A;B^*D-POFGm|$QV0gm&o55_xj6ENBFNt*vRVs3P-Cm{FL zCYa&anMt@U06G8k(RivgsJatxU+tD_kHCBrG4E{kFlXv0 zIwQ;%XwNVTkmP#^V4VKrJuE)+9983vEJWlGsk2B^g7_g^?d;d?L2xe>2chBGQh;!_ z?(}eY^Nqua;@D1by>syj4@BRVy!v$FGT4=wQZ56TWvO1*0*do|&V%Bkp*VRW)cX!x z?%a^~F!q2sc4tlkKa1<`+}NBUeF`AXEd>ur zFMuCQvCHm*E1Zps-eo-F6D0tcDEnG70ynu?25Nlp0A6lwC6iyVduk@&NKey`lb|g7Ba+} z2=Q>)lRz)HAD%P8pMfi!i(r*llHf|0$1cAH*Oxue>s_wD>q<$>Pr?<>CVr>K^Tmg| zEooV`tz5}fsw}C^Tn9@#cmTML&8e)0;-a&RJ)BIQlyIVnpYwS)DEb z9A}-cdtiEfhryKbB!k-mkepe59rcN8>77=t|HO5Y&T3pF`4dp29$&vMmYY91$rVMXWTm|})kEhS@N_Y`GWoUmz zv@3lT>J!&p#KD z>v%1Pp%g+guy+B+In=M6hLBNHez@w}IRlq`Uk}T>xhxt&1}|6C!*KS-1>?Vgg5zii zDd8j#lEMBNVTZvI^jK9%u#tphVC&&h_UC;tjR_^N2tqQbcM$5kzS=Z|6#F%Jgk%># ziL2?$lf6o52q`X(*7#kx9RDm>j?Y!2t4)|ip@4@8bOA2ve-jq<$7?wZr4W*VeGE8G z)~j9BSq4kd0}lkO1qtWCQh9#`{aWP;dsMJCuBTL7QDm#;*^>nB!v!N@RxF!m4-C{s zugDhMLDZp{p+mY3tgY=Xsm~W7hnVBHM}8nur;k}_^Q^9s*)9pQ)|*efF)}4 z=+a}m-sTG@X2_q-rRRPAaf&@9sX&a#31~vBLa}O)7P>KrGz_Y6G9$mW6kOR1>L)Q+ zGE36cPn=P_gORZ5n5A*NZyML=A$Li{;DT9tjC=z3d~w)oRx)!L*Q}xp-k_<^Lv1q8 z1=>^D^B*s~k-zkZTPtf+$%y7QZO5$J#mQ_g3pY2c%j_*gvUzMXN?WPswBR;j*{+QT z?Nr!Rvy7bg>GlrLP>to2-;u9eO{y46fR$63>|6#tB2q034?H9gJP^NSv}pYe48cQ2H8*VEI-F#_A)BCT00BPY-XEXA;P_n==4XdWDL9Qcna{tT?iyh?&l`-auFnewQFmuY&%_F#e6 z060_Eu{|24i~v3su-$%hq%%5H2!M~TN8l4{Kqy3+aeIu*zXQVgck%Oqb)Wx`S`pIc zq8y6oL0Vjs*!j~*%x+S zrsrlelQT2<%p63x1y@~DhX^<7RVog*mc*Gf%3r5;1R&(MWTPag`0pqjqk{ilCd#__ z8x#%;2S)h!@S>Xq5&Hp;A0tP=$DbewDD0gf^Jr22VJV~Ufft%y^+aH&9k6)XQy+S z>D*L4GsVKh>^wuaM+uW`#Vk1i($3rUD#3&yfQ?s+t$MYR;mk9V;rXfD>>RL$dDt=G zizv=4XpUpo-|sR=<_bO|$XcxG!Ot4WF*JywFl$^20k}zgy-8iv<{E#C;t{9#zbG2Q zudjrNYC1ne;gB$%qFAhYJ|MG7r2en)8^r0}DkMwo%foVMLPUY4_;u-CM1OC zb)u=JJ&|DYk9E%_tb5{o7iXWi2CZ0+i=ka9htzvWqki2sees@Lc08BOPfb7vnE-UN zx%}i@ekMOPJD$zv@RvnB0m>gz(9Y#EDobWI06X5~@>6r?@|l?~T#XXzL*P8zMgt$C za2sG5ipG&MK`$hcJSRVs676k)XtakAORs6RW$%lj%Sx+?VW>wL0~>}@HTNxK;Bn2` z*6IhBF}QBx6oRAgM@i~q8Z_;;C^ZtZ<%ftDvDs3I(oZQUcPoQ;1I`Z@EQ^sSWLE(x zH$F#Z*am5WF^L%KLh-jlHfKTUj|D7e`Q$lHy3GW`?k-P$X6` z-;{v3BdL;pOxwnU+n&}IyQj6oyO+xaQm${rIwYySJkzs7ZmJIXuQc(y(O2(X3eC{{b%~34>GW=)h69KWSjrw{3pUimIx>X%2}<2Z`FSCZ zhR?Smb2G`hwJ*dkU5X#{)}3ASEWJ zfi<}li{Yn-Tp7AzX*#68vtKEPF_2u`0n@yGa6#z{un>?UrgXJVT1G|x6-XyBw4^yT z183oUBU0FsQs(QDH9@qm)VEnLcEeaMx&lpHg>R>cKdL->Sm72E_$u{9C<{=A`M3@+cj)65Xaq}RN`9~t5YYzL2Lf7q#4R-@x zXNl1y;GkoLRt%{25%K#$D0RuJlk__PJJ1e||UwB3aN2XO8!gM=>Nd{zP{ zIc$8ql|}^qD}=sSOZUlta@EQILW!jRbB0!NQlI!!6ry>XKSv=FcKqiQB4F}AQ%Kf? zCF@anz6mEji#U=;XVPCp7IA;lVr5h`&r%*1q2Vg9C&|STq;OudiTlt3N^oHzOvNxJpMvc(ve*?j4Gp$9pTB&vFEk2#9|Xd3`~y5-EqDzN zG9UGukcpsY5NEYq7mHA&JpwB^UJdD9BQhQhm9+8}7)Ke@-KV&34DwlnnaH6AAC1*d zYh5tuY)>1lZaQ?}bek5u$KqzjWmu2)e0l2*&!6b)Bike|5OPk$vt7|Fk8HN1%Y&e` zhIVKojeE)Hfbb{q8F1#{uxHs{zGrg@=J0!1Klp}DaZi5POq-gtXCTU4?)0) A&Hw-a literal 1085371 zcmeFa378yLbvCSJHjVbxlI5jj8+#-)BTKTeJzhYzydhgQwpcCG>gleTuB)Ezc2~Eg zu`xD_jm8vU<0dS@tN}tGA&@xv2_YdsSdsuv0txv-SR5cBd?YM^KVK4l{`Z`FYq?cj zHC@%+A|DTW?3(Jjx6VEH-1nYy?zv0dKlr-oMT-~FKWCj?D_NBj6K3U@Rj*cN%}S%? zthu^rm5bK~9zELH{*uYo7RLB{$%|?@JWS(f472B#-?AD#As3({c zjfs4-Q3bOt?cr>`Q4;wREoXx)5d}8t*3`t5HPtZjc(Z(*Q!nQlb2Ss9ZlJpBU7>^a zOg&#K9kcHCp5~96c6HXwHA?2J*)pBsnv`S9SsoB%%UM>a*5>NgObHFPcF%=-_U<%T z{Ko!j-NdsY6kMvJd6sLBhwEn9%-ayz;O>bFCoXI`t0l)d{F%1O5X+q{=QR94gE4b+ zl!7Wz&02XcyICnzi&h09U)F3)k6$`&llWIP%-LEw-!Sc54FV!sqdD&xUSDILD3qH; zlad=|ou%!JmKw8VRpZj>&Kmw{H}Vau;F1}0hI8^s%PFNm$uS`N@J-g#VcTk$~VJ3Z3pjWqF~z)|0=WAoXX)o=Lu&Ov!^{;$&W-J)5=P77J$r6SL;9u z_nl!I-2niDNN$&R##0FV$kwc*L58ohW+wR2U?V?O#*>jl^p_uvLfYo|RJmF>iuZ4_ z>;_~{DNSeSSian3IFFUKmd{k#-BYht8~0A!GXjY@$YZ8%qEQRwylq2v^OBv>*}M%@ z=D4>HT9qPtvZ@_1!_P|v`DCTkJvqBMJ#C#JWil{Pw@H11a--fXG|;L=;<07RH&&}R z+IAhzQhI7>r_8&?szm$Ak{vr-!L2Bo)A?q(k*imM6x9Tq^Ti@WLF%?zLC>i}otI3i z-$_N4GR#(sO*9Ef*-Kd0s1|b7DN@)uyi~XRq_d+*IlBazOZtT1Vs$oexlMj1-kt^S ztBp#vVdm=Qvq<~_Wm0t>PJmP; z0M$Ng{XEs01b~7{X{@wef_t^w-E&hg008Pi`F!P3)2!u==j#>pDUX@8cC%Jvka#I~ zs=_uwgbWUJsM%Q(HEIbAAe|W=1rBm%%_>)C+@|42fL-9xIu;aJLEt4fUCyIy)lREw zkYT<)2f(ppoh3DNJ?>E}Dloec5Zmq6!GnbDHS$@&gx!l2B&?XtS8Am2a?Lt=x}-2t zu^Kh2aCELU&zV-K-#Kfh0^5OF@Z$~oV>ILpdV@+FlIqQE&Gky#LBruLS2SzT{Rb9v zd8JEBm&t<9oXwxGW|0n4QOQ&H$d#=ME@ov0`4xMs$+G4^W(pk2xY7BstH`f^#t6H5i<|*^&bn}v zb4U-P^rh05=&g1Bvs|DDahl3+HP9zf3O`%U`IVCaL&FaxM{bo{r9<+uG@>ZIY}qBV z-g2`mT&3pK;d?QeWcPq$%iBSR?{lB@Pzw{ zT}Y%os>0M!!+R(7wQ(PPm&>vTBa!P7LG7lPo=EocaGOBaz)6hz-W)c z<+SdGE1WOO0!!ni)0OsRABjQdI(0H(T_7QVJgG@#8Y9m+JKz8t?7bS$o=vhCZ1a`& zRqi7=Y2+HI-jsf*W_y+~1JK%4=m%zL1wWa_PzOR$4@(!7F6PwI(@K}fn~BmcnSV9s zhiqo4hr&Me+UoVu%Ck-$}-Oznk zHJN0H3JWDja?FtL8Y^ZuOMb}Hk>%jsSu)Bl!ye9%L0V(=rbGyJ8FK#IrjcT;Uwoz2*C&0 zVzOX1-|!J(+fcAF!%X?29H|#PRLFuq!=rB5k(|p*jYiF$+_kGvtV{^IXqK&G^@)nv z*j1^`?oxT5v3HkgU%U%#F+Mw69xo7Y$gG6M-Ui0;5t*!Vi&E;7O!bn(V;I~V-rh1L z``*h%%Z7oTV|%{j@Ew%tPB)WB2!J35MKy@~?jHD%?Vj%qKX(T_3LQY<3(0P;ai7!3 zigbdTu)EMd87ZT93~+#-AH$9_lO;qbM?mH_el5hf@WrhrxGg2$UOU4rdC#t?$Cc8F(-KkQ+SsgGF6O=m? zIne_mLvX*EuvQI>teEPkq^eXtKUyOnA@&83vPy+OIAyC$A%!IGW-%s%{wz0VE0B4R zP0DiuDj9CKe7;4#(WutS<}tGjEyIo_#Z(T;92;bgh&m6F4Osdmm8xQEy?l|=$Uwkn zCij8gTP4#F2I8R>=_h`^Nj?vl7SEyK^tCdbLlbIzMtx#rs#-mYhwwBIk}6m0_3Cj1 zP9)9c>K*pe#II7nXIhFs=?nyHJ|`+^>z)FqDAv*7JZ|?`UqdPh&S2rFKZcP7ZS_-J zH!TR4NG6UZK+|F5Zq?BqY*|&=UK!-{QkUT8Tl^C0=3R)xG;$>~&u+Ra*|otea%_#U z5x*TsYFM)-tb^P3ft2Ib`cZQG4-7_L%2x{TbI3?Axy^n_D#aIwv*d-_T#OrW`DkRt zW5w-~;2D0#I(i;7`7Erx%j)&dsDF$H7c%oQbS34F02%0sdc<;VpkGS&jf80A4=ncj z-b$k2BU&N$bb30QKMJ!hy9kAoa94#bR$12D=r(0jnrzo+662nsSqnX2Ri>*H!C{Bd zRTdhH7~2@)-|>=j_AM2Ygk%~4pV+8Q8(uVa<;|8|Fw3yBXf@kcAM4zb+GvY4Zd$bS zxhd`Yy2rjR8)w7~u_z#JbV*cDOS6%;%IM!sS3sNH)Iz~=m&6b5YW729+uemOApmqZB zUj$Ja4R5r*x{$MqIRuFjRBzHy99ZGJ>nJ7+Z=qe-BOcaJPB>=G8PuVA6r)hL3;79* zGMe9U)5b*pSYD0|J1b=iBA`|+5a^jgkSGEi&N45B z!zJszpKeAtR0qY?OBO96H)MmKTr`hSoQ%9MXV9#SLos;SHv8FBac+plS-jiNw#v^Y z2bdm#KsiUJD1==^jG2P_{`}gwoYV1MS>qGKD;xv#(gNh_<}8J3_4L#HcV(>8wKek| zi7kGXS*rqvu0HDp^Sn#}>DlmgWVb9G^3nr5%E&ron*J*R zfq8W0J8Qjn+ywtE!!HP!rTHFGVVD^sxI#w(uAVg30ACWXe$0;o;rx)Hx|S@Up2b-e zkQmILG8a5rMXF`p?RRYf}aIjy!u|g%VONX9OLFD3? zJ8BK4MMhz3X`I5&9u0>uLkqwUO6O0ikqwjqwaU$!959B`$8gbEkuM{1I%UEar$`iQ zoYUN_lAafY2E|$Hgo&`Bp3R+M3HYa+VXI3A#gdvs@XM#AOrFmcChRb7u0ad=CX8!E zOa~@~m-#d#ALqHnc$uKKz4%;C4$WGakw=I;Bnx^2p>qoj#11U8y*WxxO-^DKoV28( zvdPV-racgShEHF2jrr+rvQVwhq?>gCgXx>Tm$t&}@)R!lk? zid{aHZH2oc05XEoSxQ%lm9@c?93mv#u~}rByd)Lpb9>m*8bFtFNXm0Bd@4Y-DH zRSRLfr9AGkq0+L_OsV9IpgwX^`!$G5oQbl8I~9(=ARH79kLA>wnbm}NZZ2}AXh^UT z7$cVqvE^xuFfkd^#19M=EIXG+piLu!8FZ{Eh%2LPP6IP%f{4cgmi|bO4LF9AMCoV6 zrYjz|7OR*u!&JRFBY6+7&~nhvQNA}35G(+!glJQALEv#_1!XLmGK8J*`WYd6;N8bDjS~Y=1P1Opf9a;|q-riD~dx5q!3axVZZch|i2bQ`^z_8Gb zCh_sGgcUNdhz;rsr-k3J)Fc+t+{I_!i&%7bV41tp%%jJSDbd;zqUDd)hz)nSnM;iV z+pPmjoQ5syo!fwdt?t94+q>1<= zf!2*+ju|qZcQzJ~>nJAC5evy7G(n3w;1Hd3R@AWGgWOjh@;Fd;avA}T?FlIc3PbP0 zdN#`G8GF)DE9%pQz`N(W?_vTkkAQdqk-7=XY)mr&Xrx`FgozTpr%^&5)TV+;v(75K zz~h|U3GOuz8il+7Mg8eoHxOo<6uW<&kWa*+s4-LO^bo(F8FC7vC{OcQ+%U{d* z*KN1UU;iIs1rH5hV#{Cu$-n;jA^Gda{OkR1lfRbpdrv&=DyI2goaX%PHT>(p`Paz3 z*YdBQ@~=04QvUiG|9a--*K^wc;a_KbN&Z^FG⪙22LC1UsHF>UyJzHrJs|(7W1#e z`)}l&KVd5GIVpb)aoV@%o=Is<2P@EMIs_V(7K=H{5&SO$tAHB)QZ5~4OB$_5(X(l) z30)gWOGyDf+IpaMTWd^Q0h(m3w@ggz!heC0>MojwL}zS0EUxS%(^Z{hdU_|B_H~l! z>P|9U(@Ca5&cs+ENgPbExRo5Z!*a&_aL`rREOaXsD=&%}j5?X1KsHid}g z5UceXEM?8ndOMmyC;g7NDlJ1RnPl=d%NcG;h$N2bF4t;huVKk56y8Fw!dpD*LVr>V z^q1B1$0Z`ju^uUuu+$#GazxMBxKPB(o{+DXCf&Ehi@F1z!1l+8!ho55ne_Wm28W<>A{d<_@G0^9LqABQ+d$w zL;vIrEVVeAkBGfmvWprGN_QW3BUn!5|Da$qOf8Men$B<|kKjM8C{{HR52H}=61qG> z7ve#@78mE*jD62{jClpHcof7AENM=O`*9;1CM@Cy^b}`wKUR=p#U(kLu3%qDJOvY! zJY@ymjnq&D4syvPKG8xd#3p_Pe-YMvgZ%R*`RC2@&s+FUQ@jm-#oOt^l6fcH>5>ue zpl4jIK~#(JvCJDlg)s7*9lktv7?y3o%{Pu?s%)H>@EQ3^(ZG^*t7uFD2$M(jp~w-# zs?aPO2F7ZM(>SK$t-_=$76s1{cWq>-^cBI<-FJi(rOy}44?|Pd_z$Bs?n0D~&zdCv zdms;~F%M@Z3Pfj%-U~H^$CfybL~>*?0EC}?0&ourVq;tBdJ>^Ffx{RKjyVI&Ec^frADm%a#{q+uDdNHDtzne%{7aOY4&%-c&yQNSO6kAx{%OrbYd50Sn+wOcLk=J#4D6Nf# zM^}^Xc}teo#sCIjN@~7y>$UM#p3F6<-FaD&jPz)VBqomr@$=9?aT+g1pCqV_fKA&L zB^;>is&tjz=f%PHoA5?t0VpWjpJ1Sr(aoeVL zp4g;S9H4nJ-5Pqe8h^aMe|C^`n{z)lij>HhxGv zUftD>EWPfF4Yv?!|M6R+e>8!93~HUl$6NV?eu|NaY7NDaY-p-Ub1JL^b+sonMJF~A zbDQWrc50nS3rNa$MC;&8r||s)VT!{lOhL|;oD8N_VhO;OUi4zs2`P#KAkvVIhA4Vd z3^EzLIn*<)Ngjw+$7}MKCK+>!N0oF`0g=nz-{q!y5EUqMLk`UvvAwGzL(v24) zNS7MQ7pWxtJ|--F8-D_$d}o-a80B1;U zS;tg7Sww#Y7y_KMGKICYcoS&TVG{_XqMu?lf!Hz#fz#s$vAmZP{G7@`@H`K>AGsw* zW&wL8Yx*3Lwigm}yNon{nBwGhX_o7miH09bioAmD6Gh)VuFfNLXGKSq`2PA)W};VQqw2w@eZ0l42Lp4F;6j1c;@O zcPDTV=f;SygR?ZDq(CnmM|tVYLP8knauDl0j3jg+w)HlQ^7{<#3{U+UOI(sdkp3EObNUk#L~8H zj8M`w@#2Zjm3hP{FFZH2h|C|&kVS!Zj@Dk#9oHalz$NnxVb-vcxCI2Ai5%8xVX<*; zY&+sev@)RW5YWI7s#Gl^wsdZMCXbdDWD>ViCD|?3>l8AD&yK0zn0SGn;yj}*i(ctz z!bz_Wksfiy;dMS%+5TfqUp}t2kzSt|tu`j!N#gi5Tsn&dh+n7tEWQs$i*u@{Cc5GY zx8;W$ej_Bi6r<_zz%Hh*x=JoQ##-TScUq#gYeZPi#RnUK0&E&pfXb0`;qF6Ud4LKy8)LN1-ThX zYQQQ^r@S;06~6CC;Gy#t^c`ghL%))xV-8&LW~lGSRW^Y9>;gO~l!n2dXP& z@>`VTd0(*R+wh=EYpzDx`e3+Lfxv zcD5`a8>xqHCSi4A%f`gx(AEJf=S&?cVcDXzE(Z3-Hp@k0$~4r;(OB|sOwAc~%`8}0 z#(1|`M1V!@rW&W6QwC3@V);{}N-G(0Cbnth3xy_~ph6F-)3z6*m9e%{QJ|*M9?^u; z(U7ohpi6}*ya2)f6h$Q=@M^7=aA$bo>L|{cDB}c=$V96jtB?zzIiEfY=4DZl-=JKksyL!btBY6Z zNJqKgdb1)Y3-7pwoe|n%w9^RQ(>W`Fbt_MVy4v}ZwYf>|FOx@J9N0oKk)J9|c+`)0 zW}7)3R_A%>Y>H1&?ShhC<`K|M%b%r}^O&4zV83&uHaE^J$9SH~J@mMgvi~FsO=oZt zqR3wau|T9zEd+{Pw~Doi5VM*^6RfIH2`TrM9GLtF4dZNyZ2@=i;7w47w~`Rq7!Ak@ zeoT`pP{n3_$)Y=S;p^FSkVht(&d}k3xSx+L9~7TO$pQT>{*5>Z0%6pDOK0W>8qYd2 zF-}H$B#6JGQh3n$J>2yS1pftMX+R*pO?*)6i+`dE4@kM)SMyLHAS9*N)3^4{&^*H_ zXzlgGs7pt!y^(TyEIv|q~04De{?vH#Cq_f&_C&VhBB(kr(q|>_i17yMF~!;GbsH# zN#z|~GQ{4bB&B(sj;VxcdzSC%^zuqFlgecfbjhN>|vtt%Y)0FA!sqy_*?RUiM(P(i_;}k`_LK1SL zE8#eob8ZJM;R<*xGXJ$E{I;Jp6d1#yseY5Yxuh$trD*N-TTub_GFJ8*AP;{&^`zJz zW?(DDq?lqW+oafMGw{~^q?lwmjTK0k6nnR9mQd8y8Il^p#m<-rBMj&5YW^~QYiN2h zgJ@FBH-A;Kof=Kw&%jm+G%2>Sq3Nd?c_Zgq$yT8l?TsN!=@LH~A5$y&Nh$tmz|ki`a?$x5I%C#Lm1}@0fUZY|8ue6le5S zclQ!j-D{DUK!Rps@)>{~e?EZt0~&?!*yDvnm?PZ2Oh_&Kq0X{bO&R)LK80-rru^cH z9#r-+s(}A88tCP4TIXy`zDSIGGT_e{is~ z*m%}2pahO;Ev5iOA>fHB9FiU|=XMI8bFlHzGd@tnY)cKtAdr||}%i1u_~MiKir z8?<`_$0&{mj!_(Uk5LRj=p}jq;+v!*f}J(&2L2{qh-;Vh6&DW^IqswH#a$90C_S!V z35c*prkHj6!MG7-A zET>FEHpF|XHRU%+aOolx3B594K)ykQ(-@G)Lo=F;%`uwyH!Is+UGHgiQtl_;1Lf{( z_W-0jdQFqVk9#Wzp2%ka{E%BO1EhTnktlnDq4d2%*d7d@*INns;aJ_r3S$O4-DB8J z5sp1;8NkTl*t6-5!?Aq#KQbJ<8wb47q1|*OcBjGE^Ai>!2FUd}6nlAlw?4o?Y#=rv z`no*uzU~)mDO!KNl-fC+Uh8J9;YHEnocbw>ylT>Mhi;L$>*j#_tVO_GiJtOc>n%~4 z^)lFc0Oa8vr4EnXnSreoaSX*)wm62!z+3lm49Rkg7H;beBm`Tpm(7wk*t)Qr{jvhus=Jq`{uU zx2AE(HNGk|UZBtPHmoU&J|jRO96rz8@S-|4pL8m}Dq~y9 zddchZWgE+jF^;bv$LDsuLAx9o{2a>HT#`>~qGLaIL3@`FtMk_i{~R3+35ri@H3KN( zf}tq}vD)fhExw|qXcGR4#z)r@_M@SHM}&DW>vsrpE@Gph;lZq2PUKeOiO^8D^A%h_ zB1VG2rZy|Mew)5Bi+B9d{=a}&CKCQ=pRg7?=56b3DK7ko(cfg{!XNGHU0Ux-5&O4rz}Fw`>jos; zsd_Tn-!qC9<QiGrU^w z^J>j^X==@ff@;f@!nJlb=Dnkp0;ezGBrgpG@!7PKCKYrIk`9Nc&c;+_WQy!ne(#nUq^emU_E&W3>I#;ct!-4je9fIx5rfpeK~*k+S#* zly)|Vmo+Yc)TTO~oJ8kmeFV15c}0#j0%ybSlpDXo=foZXYyz`BeL54?j<%U!NujeK zW(mnbQyo4C>YfB@aq;3~Aewm8!QE6U_atIAR;{$PBau=2OFUxLD6dYjkMS+9@dF2t zyd2yF+qlzXU0)OB-D|ZNIgg2lsp^m55~FfMC*+FPC5cMBnpkj$k0QLsx~&${pwl*o zrl%guQpxOR)3m`usFI=m&CceyUK|^L)IvU?wRc*Y-1Zz=eD|UB0!gz<>H{F3&e4nX zuFrXpc^?ytEOzbPlCjVBR~UaP`A;1i``Zj`rHG9wwz9>>zL|ly?qg$;<*?7CyH?3( zbqCH6ihi4}+|8fR7lbbFBDC(J}cYc~dOevzS|0g4|mMIn8!$q-=fh`c(-ijchMYagOZ`L^tRb2TyO+RLe6HIEeMzx;V%7 zI+T~rq$k9&4uM!8j)l)&Cw&g7gL7<8skbeWO%MQ{*}Ym31Y#FRNqL~{EMXvsmhcg- z8e*!H+v|#Y(5fGZIm!Zxq1<+em4KKz5KD`gur!pm`Y{D5!%&aXjvJ<|-2fmqshP83bLMh_oxo7CPB zldFaJbU##a;mt~k2=p%3TCHyZuAT0gu5Ff1d0_?rfZJ_xkuLuX)ZjOi0>|6x_2K^J z%$|yvh|d{!ZG5LPMTG5XZGxg6!A?SL;pl~bf}+-&{l{9@{elL94pnsaIK`hwi~G5> z(E<8k&(Av~@~x;a7913%7^^)A^69i>LP+GROstO~k^kMswQEOtd*w zIdD|7=Y;ugN1HR10~M7cm(OSl8$BQ{&Jx+_brqM0!z0J?NApI$T&^D9jx}ZB(wUW}AY317cYdG|#kR#1Nd&SN=rr5FJ z5Wl>J<5hIWYdH8W&1wer(0Lr}$%CBb{!Faz)=og_Z154@wc&RSjab~Idz%r6=g_4X z5?s};vug~r*|pKnV{_iEfwk|0gm*-X>+9x?xK{S`dSs-qHM)7jlfN5aIpzB|J{lF9 zhrYO&SPDPq!yuo<&-wEVY^CsX6kFN+oG)kKt$RO5vK(<15`sAi9`xg~S;G4_dN)`7 zgA6iC0juvx{!_cpKg+;Y3Ro$&vcYP_%JhTA?qMZa?kTLY5sPu3+o*N%yVQ!Y?(<_v z?TPyw*vAp8?0L>{94!~)L&qF#(r*3U!UvlK>Mi}jw`y=s@TQ~tIQH+W)yi|cjU(?Z z1r0mX`AX4HTQ=ZQ%hbAA99L&{gq-T$kknl3r)B69ow(LNPtQO$-CnI`Xu7!F7X3YX z=77dVM^0MXDKRy=@HboBK!n+A_fbopK*yUcE)IB0bjHWnEYL__VxHU1=Y8-=kOgcx zs#g46Mjj%^MCgQ%Oeew|>8*79Lq86KFoY3%3Jj&k&5g;o&hJnjT6an!n?`E~r-^u( z>hrliasFaLkMws;5MW}*oJpATcT8L>rP}#XP2Oo5+N6i~RFmB+6PhGL#r>Xgk_dOx zQ}~m{Jko=1cF))_?(+JA1War$t(I@@Z7uyhHE-m$$si~nAtb1tAS46S{XI3h;?^~0 z2Eu+kMmOeRMD%1&&7V^1ay;f!bjR@+zRMJk@y3aLip8h{jlC_Toke592O5W6H;-JO z<1sIekH>f{w28>j$5U+6J=VBxPOD=c{Lh+|%zV+TtH*Y8s$n(Cruyl{6A}*MSS^D> z9uscpL8^&Js-_;kMzBe{W+VH=@83s@>+4a-@mTSO8r3PP`SyjbWw!!<_47_zec$X}vu{sGcp?{Ul5{?P2 z2%_1CWO%9hu*&AZxm zy(JeyQGl%p=XbM8v_+FO=)E?B98*B=)fu7pwhU~gfSzJ28}xoN18?0!PqN%!=&jT| zau-KY$c?!9+$<7m{$mYdpUNPw6cGD(Mu>ee16wH|rr62`v2SGHt$T<`mir5_-p$he zX9gLifYnbj!fIr7UmbnLRyJ5|%)ndsu#znI6js@Y#mv&R8K{fz(I_%@mhNwm+LKwj zgsHSZh=b?po`$xInWu|{J=_!50v{oWjSjRsb1hJNIpOnV5{DN$!T2O@O3KY;=#Qls@bWhXXqUXvjg5fl%H?ZM>gOUTHVlqKc5-9LmC@;{5dW-lOSS$9^zR< znCBsU?9w>;|Ed`~tGCkeXY5Q6hA?7h>?qyu-g>jhw=&JxC6P^|!6P$vQ(T`6fbr*J z2rymF#~hSW?az!|E1^j;RNU_=j}YN*ddhYC)VgI_OyMbLIuz-cRhcnrhWgAQ?q~_d zU08X+D>d|QTtpOlZ-{CN{awA4p+6t^4sQ7j&EVsYnxQB7%g~Yh`9R$)=p8=;VSheQ zcNoHW>&blJ=c#phKJW{4$Mb=F*WG+zSJl=}VvyAi9M=%r;GLhb_Z6?!|KQb{@6yzo zk4hsQ;LVJLYwfJ}7gkyB@eq*{_F^)1bG{yqos00Yu{PHzRV(A9SokYTyl^JMjmpOQ zN6VJX&r4{ly64-TLrt>`FVdUuC}JiR&}PHua)NX;E0~2>8XFGmee`$8YY91 z@lW{sL6mUdguiX5nvG9t1Wq*bzL6zDA2D(+EHxT6dvezn+R9z`?w7a_A~*5qQC|*uR%UL#KR?IrBrv$NO zSXgPo51p;y$8uR_4h0>>&r$WWSuf+)%0{)2o5~lCQYy+G1iSUQma}fUT5VLS4Kt8< zV6n5(HVchPb2fK^mJGM>WEDQwXVr2z@SSREgXC8E#FTc)&KG4a)Z438j=!rSAUa!`3CHUxNvksvX zs|7UQYANghl|iP`a?T8;gh+@g`o6PD()D>5D%5uGxp)s4&{INhJ8P&Cz@A-#jLN7~ z%UM~@S7w^|851He;`b7>(sI_LKkvnGDmc;1lT+y=gQ)Q}%;&RyS9`vu$SS_-fK_Fx+s>n{s|73@LyNincpdd@ zcMi+XXU!7S%GEq~9`O_^Z;d%SWfsxj=D2iR+|9UH3=u5xiQM%B_O$2`vh1ulM3mv^D_{2WiaV~hH zI&Gd2yyu1j^n&C1R2@N{LDO03sd-3@<+ZY4LDQ1Jy(gqC+` zw5%IK553&Wv~0`VQknibjXpGgy+NjCW0;mof&GOpD^#1LsaoP%!szfd>gS_qtOr`R zp@(8k0D3i6W7>eUEXUJi+T-QkW5(uk9_$sV7t9bWM{&S<6_yqVIW#}m&6!GC^0_ho#qYIOwiU)a`~k ziFz>T;wiTE*2s%*ac#su$x4M&zavw>%YUQ;SDKXke+kb*!V=%3XFM6!rf9t=p^

)IG43ru$mdb%kIjs!`1bPMIJv6EEZGp zPk}QO`D*fYni7_X8TvCQO7f4zNrJCOaXl%@xRz!`1%EsbQ`G2}awwSE^pRX_B>r46iGQPeX zSJ`|I@b3q4y|X1w;?GGjk1J&G5dOe_60gMHgTld;Jtgrf+y&es@fuEln9|7s5|7}H zJsZHafvKkt%%-Xs6KSN{1C{)q46VvG0rPv&jz8`MWAO?;UyL)0FN zaUr9=rzJnFKH}P~I6bcSHL)GO`Z`M5+Y(R3k9KxMgot09n)pSX6MuSY z;um*L{KnM8pVm3?+fx(2q;ukTrY3%A=fr1H6Thr;;&-JY-V`5@{o{l3&+p(5y4d6L z&+p4WAC`YUBL93;{`q74K?nXA{aGab1b@UQa6!kUQRjhWHhE{_(|81WpOt_99Dfdq zzmPvZ&p$l#f^IPekE~j;EgP|s!dz}@4kI4(u4bM-RY#-FdbQZ(K}Rdr2TKva)=L|o znj7~^!)>s%;K8Y#zovO+52IP6v+)q!C3vAY2NW zkM73+u41u|t@*UU1Wj)5h*q!7gu%l8M?`LKjS?1bp=Yl57mnsTH|)^llYp2VhGp|a zuspGsH*x{eX0F~Wn@1+y*!`IJ2)atZ1UNf7FTy1v7cFE&bj=v4U zZjgV(m4+Vcrz~+jB68+=%9E@=L$rgvHhgxohOs|O;3Pb1QhjsG890G)QOj9sHxMQo z#&sOdbjwuZ5Z%#M;2T=(isw@-o*3F~N%&`3uYizwR;5@)RHo7rUjnht&p75+Wi$qZ zXC0dExaAAfjy&_=_lV(W!!DleyhYQD6_mJsH=YZ<^8#o~5LyX#q!%78o70Ukc|BoV zY0Mq2Qygx)aTtNtBCeEt!Z-{AJz9Zd(@A4lB1$V^W#@2;&c3gaAED~TD zdX@~qYHGrLsHumw>rid>Q+jN=S49a2szcN9_fcP8K83jOQ5iDU$0N^s4m8R+`{Y;J z=!+Hs_sKYJmCHscf6O!*Rl_b-kMA_5@D<-$&4fdR)k}Cv!3NCkz{8SnV!txSzii`p z$tsk*PyUw8hKWOHnib5GArO!5U=?=4z~vk6iYE#;gRDJE5AMQ@7MXa%Lb`2KFacCI zFm+&KPLjDnITrDSvufzYW;t(s|FK72Z9F;uHoni8k|!t{$ceHQscJ(bL@TjO zV+tQ3mISV(Kd<4%SV4lXnK);3+?b@$BnEcoWNq>Y-mFg3e12}vg?skoiq$4~tC%xf z|0AQLt=BDG1mWVJ3y{ar76BFWyhFc~eP3kn>eey#Y@Rm`F+X|#n|}%Ng+c!0{f`0W zx=nscRL6K8o>VXXlrS8cwrf+i-EnSWceyj?wwZKB7w^`2*pKadyEXhYFW^b0Q280-#2$OCBrKY7va97|m~NzVgdEhO|4Nc{cGFGQEnXZbhOTJ40%+F>H4I=b23|*{IGQ(v0 zo2!HCRW$Sa0;+mH%QTuec^hS1gyaZt-fpBEd`Cfpy$SYQT1jJ~K5{>X{S9vv0d;(r_2OdEM4uW+w~F9aM$w3jNOA7>Lm9VkUF9p&(<7 zmm=VRCHNmGY47-jmyYk*z1>@cEzOFv%&V8KtL{q@4nuYEMCvy}I(gwTuINV8nc0)@ z2>Cfqet-U$Rs8tduAMM$F6=AjXYC1NA6(0uF(@*gi{&Y{u^+2x;P2(@bH+Ft8Xcx+ zTwCNY&xCQ4HEkL<(udV90p{ciM=AJP2XC}HtC^ei?q z_aFO=9j*j8_LeuW-iZc8fG1p7SwISZeoZ;gP@%>iou`*$8;XA;$ugo*=5!8}+71!=Gs^%`$b4XA61iemNYf4_0?y6#2~Hl6@gf z^QTc!dTkU5K92e_?5JaWE`fLk1LX$~iECJ2*0x(oG%?MotBAz9PJm=!@aAm2Cq zLgpO27$EfPj+3*@Mg9>TXN&VX^`E2=bq5~MzY{t3^Me2z-gZf&N* zwVBe1j;u%V?8o-RjPQ^W-y7?9_q>fYtE`Yl6=}81v1KOpbp4u{S?r&_aFekitq@GGHDP zQ)c71X;N&|hF4OjwWshFCc=D{_*2AK*o~Ux>zDwa7Gu5s)k_;p&h-}JeyGt0)^Z7~V+^be-KIe-vYRBanE~%N5sCJA zzcDLY*L!T~wkBN8@-`9BV8;p>=FTS{+YHx3!_v+pp{ovvE!3wGa(pY}(lXK18sh4cN3gGqr_Zoepgwy9kI97Q%M_GnGf7i| zV~1|pf6F8kFs(Z#I~qvLm$%bPyxqVmjC)F&iF)QQb|ddtWGC++TTV~9A>}DPLRAi~ z5>fdzfqyhA7jFoip?9_GvFl`a`!Gt%G&yjbHi~kO{XHfTk;8^|?Gr1OzY2)u35+uX zgB=k}`%*$0I}Cbjh~j=5JFA*I#i%gKcfa%{M`;^A$JZ+r)NA z7;5gxUuokj@b$7SznGfi$hw&b%_p+bTo7V=()aaP01j*j^~)^8wN5-l6nm#N+jZg% zvelNLr2cf`%?m2VkbZMci+RHnJonPrT$%*W?7svzN(pZ1l?2l`E`j~`A^`L{klq%VqA#>lk zH?!&1W(8w%oCeag4Qx@*8?)H9gk82l+ZvZiL)kNXi!$H4xjsrb;N5I)PL;MeBYc+0 zG3#zU=n%KTDk%F!X}?f(YmWf@qTz5ZrhxpPLgt5Jy8`Odbt@^(aod@%DTGR-=Ri06Yhk z4Qub~Z>$&r@$d9QUG@%MndhAmgb)!{_R(rOY+yAfZgb;ZyuUL%ySgS!R`<*9kMijW zAQIqN?#&q4JM`X;Q(t7z&DP1EOdy}ZoA&37h;ImyEgIs2b$kWSJwj;#@o4RzRQ)ve zB*7IsPj*Hf5N+E3mVE|3o0iA!WSUAmZXzUn6zg;=8V(T4qGK&AtdPtf!ybJ)C&68l z>EeK9=O-q@IM^IVUT?6sB{WzM@bK#ihdwxtYG0XolH=j zrV~+ci~)X-W*haDlM*;!p{BCPkrtg<H>F=Z-7R#ZLIfq;Uba>;+ftG_Js=_(BeH$njQ%NyE!x zTyWJ@*l#EuPqox*kl)k$^*=?i>bJNEv9Q>1DXNuvp*hxnOCT1b#GJ*);lIl>3);Eq z!U7KxoWyF>HB0h7#Q=>m260hlDCZIT$0)1L^HZ!j3OFQ(xnI@hD7HigDq&iTcOV2j z5Osi+@FW z-UmElPhnyr{He20SU)VNP%;aqU1a~d^nwtV;+;gj?Mve7Qy_`uGQ!6Qbb%B7hRu-7 zQ zkPUJsH(g>(J<}xiy7UrD)9W6|2C;W$;OaQuNz?^C#uQiCF!sR=ygeApTc^O1EcX{! zt3#t57d=sQjruv=OcG+j1Py0@mO*MMwEL$(9&T;utPcIf)cdQ(R?(+SUxb zbq_Vka(|(AT1<4t#ZnY;>!NSCnI-VrWzg_7qXj&NrodTL>HfSEtz*P!pDz36Y z^MMS!bq`I+a(|(@-kXv0qt7m`qG(*D=XNtn0EQDa%)KRp1XEz{P1!K_{tR5Dz?|YL z8|MBX18?19PO{uz%&iGeZn!v#0&aOAtD8%Ce!&zCYJZ(Ua4Deng=|p!Mh31@KuvL# z4Ql_Efw%6VCRy$;)K&y%&0GLQVK%I?xj7`nyr&wxMovrb!l!`O0LW)>>^5cKDh0e0 zSJ~ioUIyN}hnHlzzwlZYorZNG6b0EzEwh_XLM@c00q)8S;!6Rz%d!FPKnAW-08Vk0 z4RFuTz+3l#lPvcaaQt121!fioc-m2$!Qm=T=mpOjcJ+Pd`gY!X&T_(lRwn;NmA5q`s0tKq(;gIdt18?0!O0wKv zNUhXXez?eqs;?0@pPNN$F8{HHu(g}}>g=xs`3%nf*%`P>fiT5YHiV65;H`UvNtXMI zuoc0@L@s)w0OOCKVL7FnLyaZX%laaU>oN!{g#x=e8@vu>;3@^Y6j#~cHI;$4?%^d_ z?k~KSc?)k{(KPfw%5aC0Xt% zs(o`zX?XEaCO)dk!5lBM`VYDs$h zAih4!34TtsPV4zp6W;C_STHP?b$?x3i4DuV4c~+eY_$*UGk9FzXzx7x5Vm@`8x0Kk z#dxb=sErTu%p!gEgjQx_TF>8x7?|TzlJWKj$-dsFGBoA!$qZc~VadF=EBh3zXqRpH zCt3y2hP~e4BEABYINNgA5rPdCxv}lo-lA>s!|73_Y7x6!Hfhf%+&9{8chT8qeEORo zI^XW{jKFpmufSjKd!cosoh}aF?i$#!=pF*E3AOOri1%3QO8=}OQE$?iEhuBcpmj^z zaB2V5n#e*?f8W42qs2K>ecMLjfh(||MOM$c3Wy9HfGH{gwXNs$AID0$;Z{6cevfN*s^?5tO z=Q9W{1=Rj58`Qp%fvXfyQ(R?(+P`Grt$V0Rmir5}pT~BDrKk7Ref?QB{H@KvRSNtm zuCn3p>UX~D1{okG8?LH z$-q?#R4J~qq3X^IymgN%$#Q>DbxO7)9LpfS6o9K|1Ki6qaFqgZimPmZdu;~Zx(A$O zxxawx(RPIQWe`vbNWCW;q&}R1s}zt@TxEmQr!(-@J)|Vd{e@J2wj+E!gS=88>?_$2 z_OBVZN`WxNRW^kEcLv_NN0?-}zX%Oht8DPvoq@OR z;U!t_FT8rU9pRZ7WRyZ_U6&12&&$A73REesvY~1^18?1<^6qJVpi6E1WCcI2E2_xe3YK9br<#rR=xfak$VMN z%JGj7cl?#WuV{&n(W~ntua0eZKW63cLwdS4Gm1?1i&qh}o^z~?Zq-t=8c5ryY2`u}kT^-)~)IKfz zzd(Lq+N6&^RO^j|<^N~s%m4NFI^6`|l=`=XJH!!pq=Ud($J-5@aSz=(tucHEqw0Qc zV#ki7$Mf|WJ7Hn{D*bhL9kkr`5>C_>*?%~_uIy%!{o~Q%PIU_%piei1mfAZT+6mkh zWAvE&Q9rw%DZGe$kTbdIvMtmztqGop%Ear0Jy<0E7a*U(ZTxBmu2L9y#Z@)~|GzWv z*1dt3EJv(lwspXtk*yNmr!eAnb{95dkpSl8_F&>qq8YpS#OJd|l0dF=Wm?*SV? z^9_SsqPjJO=M8)p%7DXU;_Gla5L3RZ;q{6PcQXkBX(grG&=PS^bwNw_ zG|(DdyQjAkvu~j)9HP6odUtQb-Mn}^U*AF3PW(<^7;vG|^tVX8^RvMNTZ#3aS(BrpQ1#D@2*+2=uR~x zDosip=^tX0BJe->yWJVZ=|CpFB~>tsE%t{x|1jTjj9T*U&U1JF9B+uzQnU_KCqelG z4z1pC1}UKf`Jd;jMhOQ#&$kE4r9Zou&%T}aqTezl3Jv-cW%LVu8+h;%%GP$!(xwic z`&=Ie(nxO4R>>``G z{4dZw66Mu7((`d=sDT3;hqHc&?n6<&y#|Ys@t9acJFM4szQfx8=v*5yi4PJBuHzHg zFupoc=iukJBdMCw`B;|9W#2x&aOJ{d&c#j7MF|fB0!d*vJCMX$7r(V?|4sU8r`dA+ zS0JCxFNyRUe>3FgyC4?hTrb!RVLK}vFyWe692rD`!xT|Y9BD!!PVsRPJ3G-op*#Bd zpbTO1y>e3gh-Cox(qzAyUh`~Zf?GTm`KtE5eMS*R2wzLj*Xf(taEWn{Bs5>A*uS~h z|G=(7`CR&M?2fpv>I&94E7(zWG>f!e&R7Dm7z->?csayt&%B&7qP(7R5l_1%bR4!+&q6^?#EA+F zE>*lo+=h%13l^w^RF7MzR@p4r1$6oseRO&9h})J&)NdMY=443ch-atNSFi`@HNAH} zUt=QFJD&&zlvam|^!%|{)BiY;dt*Kvp;W=>GG zf&Zn&W$SLUsE!)USBe2=`sp67 z7`446ty!fHXw~Wnd~G43nz5Y#m&$G!7GQ?v@s~j8I$w7DfMJOBJyfjKcd=r_t)C*n zaFqGebjMLFBE0|qF3!NdDZ5-G}Y$Nq84op zH@2e%ZC$TJAuF8t9gZ|>J+-rdGXk-Zf;Y-DKF9S#J;MQSM`bf2*%Fv}$GV6j4@8B} zfzIeW+`ZyzYpQHjXX^P{X-?M$dXm-B2o0*-@Bo3>4_mW`RFh3P~; zbtk_B^I*#Nb{cywyzsIKL{0P8ue<~IM|$>GV7C6z@?Y%-TkynFAMv-Yr=Kb8)juf z!-&^Wr}zj|U;rG>cq*Cc@K5=!);~5TaGJ&;Qr7MdNV7jo7ZQQzV}^W`g~h{0{%i@1 zC+~k_duXJUITPLH6OBPsCbEMJ!xXPFGXwNi+Lum?0eV_G!NUDEv(>oZ>haxO_Zbao zNsS)1Np0s^HFGB&Q$`votEgEM|AuZBHlxOLwc5bZrY44VtgFWTaP2s$6IeaXoQdxc z6=#4x5Rds;v5)#Ljn@?3mv}1kKbZ@WS+(!co9|F>`=zhipOrvZydKqyw8a(cqk`Px z339fOFXm_M@qD=q3GTiqBEhH8>zzw5Ts+Ob6VZi-DkW+gb}ju0_A4Z?bz>a`i?d=X z=v;(Ki==80kw|deuVjx0Zb77e{=hv{tc%1lg5B*G7rd2ftUEUWA7qKB;7y9trBUS0 zkX>!o3s~jMQe2PN0xinkh`$FGiB0^csnCCd6#Z@RMGuPG`FaRf@myS#X?p=bC8z12 zxP$Kx^Yu=?zL2juT*Vg96?xpDk4?!x1x_vU)#U3mB`gs$^k-0%&?&j+~^ymihBK#5OQf=?$ z$1mpVeSE#2uP@>2OZoaTzP=n+DZ>Z&_k;BNEGp+D?oNt%Tv6MH@aN_=7l>El??K_< zDz;NWucEuNDf??UeA^vs|?HucO}=Q=VVJ-Mn}`U*CW$ z3VI{|coVMTDU{_``S+V~Jt-ce`_g_|GW{0Z9u#lI_0E=fJO13;67Q6M-o<~$#LZA4 zNcGD;&{5@To^llxOrg)#?<5B#YXY%t*`XrM*$t35Q+&q(-XEO6l z0*j<*3j(43ZlcItnwk4u>Tgsv!45Ln29|E)+ zc8zerUm``Y? z4{{dqJNR=as>!t>_D%7)dPI%O^)SWn^CR(L`R60@&qw8-KgOQ}OU1|N&m!?B_#-}n z3ot{y<-mabKc8|G|o77llQ#%w*>3b?`EXDK3sjHm8z*2-2P z-!ORqYQcyb4XnjC8wPzBW70Us4OgGz`Ra1ev}>U^pS=Ig?z>Ok|5(UXeJ{yXSFzqm zD2-ZG8k3_z?6tfbgwtteL72%qgJtuWS%x#>49M{Cz>Np5y9JwAf_mE-piiK*4s2KD z{u)(-%Vo^z6$;pl?Znb&Wpn*G{u~s4A%A?He|YafQE1T&De5I3f1B>bkUtS8J^9Mg zYbQbh=!M@IzPYfEe2%nbEe^Hq!X+(E!&`Vrw_{(q%!6O!xz&0R!()F`JZ{`>Vn>iS z2G+-OX@W8gto~q*Bo!IVNjy;!#tb~DaH0b*gO6 z8aLf^4UO4%UzDO5!roE`ZlK@ANTW5U+yTw%+szsj4+i#NV$Yrs6Zd&YeTeL-4sO44 zgU`P0rpXW}5?@`3eiKk|&TXYeqh?R;+J!0Y>hy8zs5Mco&+MX`U5F__P`QKV41y)q zO89r~Mv6`pn;cu&1*ul2bGOlFg|u0feiWdA?7uybMJ1I+Bk~kVvu?HeA`_+eRzUm` zr_@R=gtr)D$1EGez@kyD5E}N5UwG;Gp55D1fTAm8R+yOxiD%$(Xb|9>?~SxP#9*AY zXAefOgqDf|OJvw}8PN(2yH>yeE5Y~!SHZl5TaJcZdr}U&-aE&KY}oZGDw?g62TI|yv$0LlV^#$k*tXz|R0?zBQ*+}mn0GZX1=XNizo&(T;G}u; zJJNc7m;Xr7yCX$rG?wKh>3jp<`g5&+Icn=_)W$OW#TvDV(+&2)cad7K)i_O%!hvJ1 z9;%U<*n_NM7hRT92OgozA-X(^E<}i56g%kd0$lv@7QH&pug&u-^PK%8XAO+2m^k-Y zCjM6Hy-a)+l|WnxQjvm`7<0$P2-YVCmC8y>jdVg))5bPTCa*>{vYrc%XO_f{XO?K= znFai0sq>scxhq`ELHPze0dJ@?mSPTU@Wx8fJfRzW^-QzTIg%0Umgm!*=FNmPeFrX; zKkIckO4xZuiZzQ^$zmUt1C_%pmx;QK56rUBfXa&u`<|#ZEAV$P@7J^qyxg3{27306 zjM+R?ciot_%J?8!p>ASmSTv^QM(tY3s+<_Vt7#RE+881>$j0B^tQh;6Gsf<{#-2Ts z7w(?igB#fWiP7g*n?@mDF%ZS9(JnS@TO*PN?c*++4YQ1Oyj5ckF)^bIC#^EG)0k>D z3=BW*Qngtw8d&37Ho?m%%t-^wcR&N5LPVU|ID*ePHtME%1nU^;*a&AGGrh5?S~vBF z|2Nl9AAeP%(C|jea_GOhVKw02(mE#I@uZLaon@Z9bbt>lG3v#gNGL7?#E%g<9w1Xa zTt{(vu;sKKmQ>q_U-vEP1te^T@mGn=5+mFn1|&avmuut6CuUXWo8GwF+rPzgexdg?`TuHfo8Q-PZ-^2Oh-4HZ z;V{++pYzbH6m<}LT3sBcV3!Bom?&2ZnL0c2L}Fo>iP9M&*elRN=vsQ&QXs(O}hWri|ueZ-pw`NK*%jRGf%{`_f&MaEC zS41$?FXOD(EPf$d<(MYt4r+qjGNWgNGX%@x9BYCVtkdY2_|skX+|(RCdFnd*xD7b_ zlzWv`Q5q`eQCJ(y|CCU(3bEKl@;{SUprUB2Rkb^XIWXPO52s2uGVMy(Q5ig zF)wM!@$ilx`ZGdAXDjRp!YGhMeyUoREoXyy+B3@8V?L2c?`}MnuUmNvD%c2wK>aoq zPE2P7#y{m|(IjKXP!b;@t(}uq0TOqsK`zTl3?3uG#*`@L0SdxVOI~XV?X!!S1F>GKGHB6huaL)PIJ4Bjw zyipwwXx4F?7AX53QDmTcfqHL2jU1Zv*2k&IHi8sl=Qd&;{8y_$#|9ww*&txzOV`0Q z!R<0=dVgpe#Hd>=&&$YQ_I(Odgpru^bBi`Vp^= zp%t=X3l*yB|Aan1(9*t?kj6pR5w|SeN!k{z)I!pVu7XEhI$Z^S7Rrn5Fl~E>zmS@3 zTW}TpQ$Z}akec{da232K2i3d%Rq%fA-XZ(p*3`@@n(dr5Mf0?*G>-#9lC2FO5kj~R zM4F+EK^x4?0%$uxlw;5qObeqem?qKYmZhWZ_9*9lMcb{Zg`I%5J3%Zp+B`WVpzW!$ zS#M6wYy#R8%^S1Q>;i2orEas$e7#VL*KGHKwK%K=)52H_rZLurWJx;G9w6%JtUycPI{jM99>`BCb}M6CA2_PorWXLsmK^THoTrHK@N5)1i-ZN~~q z+xug-A4Ca@@6$7mpAN!T4h^`R`o4;>!wc_lGw(1E^2Y|mIYjRfqc0eZdcI;)ghtLY z5EP8#C96;}u*SK19B12A4JLuNj$yvIXkeNFD@zb-7@e+HXAPU8ptZU=YvF{vaKwKp zIMAJ$CFjJ0C$djuO_+PV4H8j0nov-Nv9rHCh-v^~GYWG37N-WSB-y30u@N80htaU~ zt8}bIEx0pEu{6~$!VZL8{yt)~#cHw;c6q7VhV(Lpi;SjL}G{CW)(~40ofh{AhuXsg)8_S8>0| z(Di)3`tm5VzH|{SNJBiqua2;;w`!a2Fam`t(HHIv!IaEhfpF7#SHPM?8}q=^1|p*6 z@uL-N{*fx2g6M1oLY<_O7c|h!MBAYo(D>b_7$xjC@PRc6-DfP)f7Z(58vGff`0@MQ zRBTMFD3}%=zX#K#SKybXo4uDtE4GltqGNajz&nji-iPwi^#^|pzX36VoQa8LPHM?@kTk(FlW*iYkdc4TW+x7AHR8(Vu$8Rl)gIz8^2H!NXQqdjHb!d95y zS->PF#<-GQRWeMS+vkznO%tOlyXy5>?tA`Yt#AD+nlhw=7V2A_jVHewCG0D=1DjIW z+S8=A3NJ^9x44VX^|ex1V+GT~8Y`H_Qj0Eu(4@DF%1IZi=*sR6p}d~i-Sr@rRx?HA zk)VM#OAWL%HPZ&6-4Y5!t=7!EuCOEuLH5P@N6TH1bl9h_`EnZ*9rJkG08K!@Y!<< zsk)Y~xZ7CB5!*CzL;(y;*bY*PG(BBdJ2DNOTRZ)@BDd#o@6eO9j?qN(r0f`-S-pCc zaKP%Fk;>}5C=_>@Fs{Y!nnD@p8yBrSxf_AgfF?$HHy!PW!-hE8hT~?eP9ykQ;+=84 zreUI1sy&?-cU|chz>4hrYPo0?uiU%$lD(IB3Mw28`X9lSTJgQtuYf_JH8+$KZ25JxKYAAngLgmuLvRFye?n2Q5MWy`w-GC&+sG8_tD@40!-dR#7 zKgcxGFsaz`_2`oCQpUgebCB_so|dA0yJlsAHtR~cdRup?8FJW<%gsPH-ta3< zDTz84Vs^NMJn;Jp4ZWmjnax zwxs~C-=|4JJ?qokB;G#BG}ADdx=;7qCsOK2H|tTsgmwyq{i5*J+{}@BI1u3~24?T& zOnbQS@HA$kYsORV`iQ|-ng=p(q~(b0FBjW%wb+Jb_=~;R=BLmQ;y>wf0S(U2qf4GH zFQm&q)8$)qsZy3QU4BfLAL8OK#UUc|Okkd0p63_m`K5V&A+R`y3*+b;7seCQTo}*E zabX-WBWK_P#VvB29`~he59G53(iCBSwC!}yO_l} zzp|9KLcc-&d6WF}X8GqW{6}f_x8sL24(CM)J5SHLI0yTPPT`WA%c88e@z^rRM%9+AmH5?)1p3h`7ZEW(z`Wx&9s^Tap{=yD6 z@5-+d7*l2$N4fF>9oo@bpR%x)2d@{ZV5>MU^_t}ah3t}5BV^fT17ondJitD>^lN7tW_0w;BmhPH z7^frzP8M*M2P&dNa4G7h6Rsu@PLDumfJE4m>XCSMF?d~%1ghaINhm$S*)my`FwVl% zLyNyOBN9q$XHpD8_`}qB+nAI9>PdZe9%kHl>s+G*l@~g&T^sJl%E*Jgw>016OSul_GB{Fe4Xh`6-semV$6yH8w9W3kT@Zr->N87=#M(C4Z zVwP$jL`?X&zb_jlU_Lxt3HC+Po!LWg30LF3!K(M zD?9q;XygV>*9jIV65|lPLbftdqzQAM}%cF$ojlYD=D4R zqNKHJ2sGKl(}lxqFVOJHqi~kg=2}kh<9_XGBQB+q9wUw~qr11z-K2MSIqv4g6@0yt zu8O~_D2H!hnNwE#>|=NmfijNZQj3s?b}rkdg*RMzUbAQ+ zxJL*5Ej(aRed}G`c|d=e$j+8@nnhfMQ!|1`XME8+I>Vo(QR_i{#LxJnNez0|q{}h7&_|QR3A*(1yGbm` zz`}u7PywBPH|f=s{WZ886tUk;dX(~-p6X!_`CeFr$iL=q77=+*; z61j_ly-X@lkOt_(k^%W`pv7s<(xwiJr33nzn!Q*;ASsTkQ#y6qgVVj5wwt8cp3~2V zblCQ6pu67Lp3|a)o$FJKnki!Ip0Ca9tMf-s;nISg(JCx7CTbhURff>F%iE)b#TY${ zU0U$G9l<8#B?WXix4%n{4|I}ec(}V>f@h>0!D?C#fmHFa5Ud`^m&eQ18LKeq4mHLi zGykjfBHfH~CSC`dhN!EemFq@o{z`yJ5QfXb-qe{i7al7CePWp2i-Wj$0`5#8w&HAT zD?P9B;Vo;o5$)i_i@)Aa9<8g1=1>ABF^=At_&PXrmfDSC%NfR%PD;f_@peN1g|lzd z^eemCx3a`yD7Piy?+AK26&pOn@`WIlVn@)A=>4!X6o)@14tZ$hqh76p2sZNOSkP)x zO={n;ucePz+KyBf4a731_gi3b3GxQfbJ<}!iF(YCfBt{=-UQB$qS_zNo{$g-OW2po znwu~)Kp-p;qJgkW2oO*hc+jBuhMaA7eKGEmC zKR3kXJ(r)$Q-417@js`ky1PzSSKqGF-80euKYZxhbGz@UQ>VUl>YP)jsy39a#2IVY z;JS3-m11w`8Mi^fb+*k4R6#J_DzSBR-pAT5W;|4H$s zmfK@+R!5^*#g!aGwdNq4{?UX}MyilLcItX)?B%}VF((LCUUAA{t?Jg+>e4cRL$kST zO;70*$UYnFhXl0#=6Gcg4yz1aDJ@&G1`goyXB&hXQvoZ2jwj7V4D0Kh*YLFjYPNCD zVQK)GH68Y(LBvpsVP3-%Ca;~%4i<5`yoPujsDo*;WH|iXWIt#)i>R|?IK)WH`x&y} z&kz_H4mRcFuEGAusVaXmq0szRjpmu|tIRx=I!ebf*!ndPO-y)JM?;5R4z*`UyYk}OA!RVV!)g%yvOB}=EP<}gb86sR^o(#+4& z`7Cq>FfCNLlZ> zGQlb$Uf|Xa{+d(f(75vQ5ZDk;Cc*yG=**ZD3q6*9{4m6b8TCTP~4h$W?%Z&HO5vF zwdxXEG=Nqi?NwMTIbs&8#{Fw2ml)w;UW%!LrMU z(-l@cVirdv>)Sb` z3)%AWNyE+6YAoG=UlaA6;O4rg)rDE5v=BM3s&QhCU#qOrd2*z;%qh!++H0{XMM7-@ z??ghaxO>*TZV9y_twh9sge^c4ObVK>StCv~hB=SOk+i8zp5u~C9t-h;Eudp9aI|n! zu4@xJQHy79%Z~yFM7XWiw}?ITQpAI+o52s2zt}9UbJJAWLsqf*O3sUzM;;DJzEv3s zCzEH9Ffw^2V+eKXm%P!GL$}Eo7c1sCyM?P~sDbc|b}abuGv9yvDMhVlw}Zo=4PE|eVDI1K4ma@;62hwJT; zA=t5|REL@7hB)84G%!(Wj#me3aH!Na*ykpQz=}=M{9Q$GCk;3&d`oQz_N^TpY(vHY zo;FplZwj}xks-9HD3GYN&k^CIa`R&2SIR^Pa*B2sWhF82SyD~Fz=JTJYY9zZ0>#6Y z2W9Ua^hsyYMb%cjF;;3#j7O$*$P*&&?-M>Ui~GaClC0o&k+8@#3-OPE*^g4D!+Jgn zscD)3I?K+gj#UAe^~M#a*GI?eO+4zmr=;Hx)axT!=0h~2@W|D$|A0uKSbg=4;r>m{ zzRJL0UqC(FP5<90Yu$> zNQmanSWY5-Ds#ko5Y2Y)XUGStRqy9`CuXGnfH{ZzT4n4T?0*c>55I}O7h}d8iI?9H z83Itm=sRo16;#ypHHuebs^Ljy0Tu);=Y5YpD8E*HTc@-6EQtvg~gp^Y_BA)R}=kZTfsX8AN zwjhD#i8VfxWKfO-B)-Mvq8X5&Rv;Zf7!nF2Q`E(X+F_84Xrb;9nR*DjjEGFV3GYN? zO5E*`k*VW_Bh-&a^0r4RspC=0lj2c?WWiCW(=2`{;h{X9FWuozG%zF%+ez5XZ~AW zBskTHeM#8K4GhX#&An#_9CQOffK@c-!GjrS~5%0gScDjoO?~>~Os@UrP zqWJ22PvdZ*>KH);c_zb^En5FsE1bKiOStlx;_KhZFZ*}jVui63$b;kRJn6cO!Is0M zt73~c>3Teax9pRyl4XmH5^J4x)hawQ>^8k8=E!Ef>{49Ivqn`^mz`{9*jKi9% zV7L$}QGY9DvvC@Uhd&DaBiuP!OFQl?}%K{pCor9$O$7(5s_=-sHrhKJ$7ce1V z^Fko($N%P*p1S#-NKgo$hp?hfljOFXS_Y&>Nra6K?c%R)6*aO%1Y^~i@>jzheA-ed zTWM3-;V`#_SnwOsXyfjN!&?)i%&1A&yl;{<5nVH`dGWcec{8=bgQ8#t@6lFZa3Qux z5`l*Xmy0lVf$GKT!6(5fj9t7ykZ{nh^X1%9L@fm0l794EAZ}|xhWJCh`Yj~vqF1AH zN{iN(R0JTp?w>p%wfSYfwGk7N0tvqmZNLynhy)Z!E=XWNI*ejnk*|cpC>Av!qAj0G z6l>3;08%1~wG{6}6ieLgkWs9aFwbAxG|`Wvaq1Y>vZNT6MzG)r)+&qPs&Qb(uM%>p z7HL29$2mFtlP9Dv_hB0c7AZ9yEFCdR4*3eRxK4Ab0#-ykzF%U5t9H}kPBLWZ%W?{1 zRA-oS$}>i_7RcuoqdHX(i^ix(ASxQ9=^CWEve^1xHU;(16r^etTmO3g^>-OB!_b5! znh>KVyi-sley=r3I|82O5=}U?yHZxMgu9_gdn|#dTtAXv3sq>EDK3tnRb4uS%TN}9 z*52{r2yZ0(r5aU|tn|>{eH{`O_HHN>bdCS1;s_tfS9+nN`9UC@6i2}4A*^V#Wr`yt z5jMKAOB~_-qDB@&B?(fY2m6Q=O6oYmArM4@HTd<$#2K&+SzT^Tb#e9Db`?&rTb?n- z@N_~8Flre#{f}fVMT}uqsZ6It@S(NczZ}UzJW5M5fgD0eA+t)uo`LdbEK#4O+Sf{i zvig?caFXcb6g~y26V|xqH656f)_yjZmJO7nq>i z27s8hO+w0~={VhHNx55!(h>H*%8%Ya#N}2I1(Y!Kc)qhN6p662A=ak4vjyR1g00|N z(#f_Hc~R>wQzyFv31{hKB-Bi5LY|P?+@Ei4LL}TLnvo%p5D6%dT#&#RKf)mNeW1B> zRH|VRntGqnmd_;!{b_7n5rqB>-iaWzxXTuVX2>(FHr*#oR$JRl%-Z1TPt5sBQ0uP- zwH9|SwHBMWVs8urhS6Gg_8P^V$>i?*+U{k>Av*T=k~cn1-U}Ev$4$Q%@Sa*c=A5y? zk#-ZdjQ1n5(kYF9g=mW(qdbFvNoL&_?gRV-ld!fA@P1I$V)g;nBT0c+%w2$C0TMW9 zu_CmbFc?#z07wqI?zfR9CbAx2u;qX(#TE})Z)5P5 z9a)m)T#>~iW|_b3I-(e*{T1wJ{`@UueToy?kHOXudqIC5@9Zd?Vi*U}yx2&5&-0A%RT=2-zdJ2DkgeSrUonpgVLL8CcPXh0(<1qtZ z9CwEPUxa}Undn}~1T-`H?9eR&G=IwzGz)=wSI|VI5rvKSXOy4xLCiLd-5J`c`yVP5 zSCaY(Y>CLI=^cuVr8n*V31leZ4xi$7E`nKnREf$&{F}ss%b(J2>WdtTLqS^v4-lO0> z>$_sE5hcR5t>wx!l~QG7q<-CUSlb=l=T#iEC4G@zEus<}uO*|RS&0#gXx`DfX`Fe| zIoP<>dwz%%DZSaGB)5@TIT~S}18oYyb{A|)2f|^etOJo>k=}6--ih=Map#igAnbJE zlmzlXi@BKj_LY&%9?S!40^o;Eh_TKvc!%yCVOwVyHi5YpA zomZd1Ns|dH4XSkpI3zMbLp3I{Pr|^lp!MrSUtjo)u$P3IlxM>#e>zC8N6kOm1H?rSn-HioU|Bo z!8-#bWp&c};At*Sn!XCzYD9>M?%zR?Hcu^Ldd00mwh)h7g{)OwdL73Q)Fk+9=4APq zYsbe&Cd66EqnL}_E0d9nA5b*NWuSrc*I@*+xXp8p}0Ol6|R zrerEND{$hb)$o+<_h(WyXg}MD8^vxqx9c&vy2;_X_4ozjai|y%u^`gox75Zq zgL162O5-Is-Kf=QV``C5mvA&u12;01p)5Ocx|`n@C$ttrCLv5NkTS8t1fM6vZkXnl*+^8S2lsjY4lZNm^$ zh!7N1E(l>jJzU*LjTbuBFbId?Z)(*>5s}a8Mr>WVx)JZ>>PEa{g};LkTtT64bx=gG zhi=LY9OIyfsH+hWEI9oA;)L*bz=OWgUL*iM274$st1a~{q=)*?VRz-tjmr3N|8TW3 zRBfoQo9%&Ctu<0rf2Ika?Q1cTb^n>24ai_S{2u%QTYWyY5JY6&AwRNYxEg14l7xxXFg>EsV{EOB>+ew|TXB?B4q9<~5+rUXY@`bD zCWY0)DX&|Ru$b}+0gP(=pFKh1jrj^RocVqL2!s5rGvD|;R135v<*!%?5=mrTl)sT6 z@fuMdTU&Uvr;BjnBendm=u;EkyLahD1A!QnIX0) zlo(uu2@>~kxd^AfQE6tJ{=P|&C@4YV86a*04@3OnXz@2B>@r$B8d<4#!dkT|4^ub; zI|a7^75Pq(>Xew`Bo!o=2(en09G9z%!t{#8K$x}sF2om#ITw5}I!c&cK}{bzQZWdJ z=@ry6j^Zho^oo{j@G)fr%2eA`PwyqyE9|!Xxm#^Hjakflnri{j!(3P>tnq&$g346Jd4y? zgB|r+$#^Z9pS_PX^n|v%^DbcO**3EFZjUIxolmO`jMVBPVPt|v0_h{7sQR%f13!{> zLxwUB_pQFtB&^l!5L1VBb{^0x;5+on(J-E7kt>vLw6ok)PAwBKnm771x%52~TXmLM z_oOX5JM)_Lc4M$QDaCjGk{L5@m@Io2z~^~0yba=`tqki6;V&@bNi@4q@t}hbT+u$lCdAs=g4*dJYc)1fUcY535 z3Uz)7e4M{znfFroT<>+@>Mh5DUWRus$IC0kle_S?2cO&xcjqk_zG=JnO8o8~yiCI7 zPVZHCy9(dA7w)!u_lfJP;R*%4M*ML3` zz)Kx2ZSNf#k?r2y@Z0U;$J@mZw~HTb7eCnE_TH&p7KI6gCJI}QC5pntZvCP#adg0^ z@WB&!`QE<@IDD2 z-lySm1MDex(WLhT+yb3{lOIpQ$9nGz@{fNPe*`+UJ1&6bL+fp)cynWhjIuB&dU zjn#0q3>`A{2Shv{Fl!N*GMU8lK9jKbUi?nPz2`!;qVCQ|Rs>>@5Lkh0IV!N!0}#+# z-=uIMmw7ZG#dNF%OFdwjo5YLQDYgjPiz9Db>d6{VR_- z_L$({zOwfb+7&vx8MUG<6Luz9Kf1@`=S(SPX`T-U==}^3hBgo(l~?Rwa;73cPHi37 z>)V|up3ZJp97Y=Es(vc%na5J%-%TJMg@0#uZRl7qr4p1xXHKQvs!xKReKs)G*~#DIK0}b79;&W{g^-veX`hvJ|ZgZZw_sm)R>0G|BFdjtJ+S`oodi< zvE$&V#pmoG*Ab(>SN8p;d*_f*;j9DK6-GpdGtta z;OO<29kX)fv8zs4dBV}BgK}@wK-W$jy{nbA)&#XYRDwmKE00-uT<e|JGdir;M#zdsh8XW@{B1b8M#s-t zfgW2Z%8oW14&5u0hi)a(VeE8~@pGY+F;)L&1&x>vF%*oaq=K^abYmzCG|}ei>>pUX z(u!19VLC_a-Ra^!MPyG|6HXKzfV44?#DcopEMY827%O}1CSyTM;S+q+y~Kwf3)+f? zO)jyZeSvPCv7q5m83@`B>54$m{&*(>LE<|R2s!}26M>)u@eTt)!y9vr0tp%34s_Rh zA_{a6mXkgTbTGc&B??r+ccwB5bTM>i@XOImuQWXs6GBB2e)%@2F-8!tfmgj@y!;8C zdw;+S{#@uCZxHXUhD#U?!XIoGFK-tw-YH(vB0z$eaPtK*VLxNpo-meBB?-m^Sx;z( z%dixog8VoQtpJVMAeo9EyAf6Nx<+tj#YAvK%<#NfO@~Mhc4LU-zzTyAIRW6k0Tf>+ zaff{`hbWIKK;Kcc*FU3$+5w4gl5y-cD0HEc?!h}tgy&w+9{`$!E#1@z5XSuPH3@ev zWkz`9_7kyZ(@bHs=N)E^V!{awQN7h9?7aoQvqpOkUm-;j3k4DR>Fd)B_-I(=z{H<( zq4c;}jV$u{JdRnyBzg=8`}Wy<47WUW^TX6A$2V*!4u|{HO%o&rYRxcT@=9Xj>Q%1E=?Q;OSd;c8e$u15e?UUAA{7(-uO zS~fURX*QRw=_#EuRBaCSH*1^wo8y(i>grPPN@>}eHGmp&1|%oV?*`fkrvc75l5 zqVNF;)NI{)OZpRqky%qwCK(gP;`CdB#raE2UOS$HSux%o8*D){*4xc11*FF(@BpeN z1k7N117dJpa2~8Y@VLhcA7j=a=n@ubXE|0lMqu92$b!Fw!Z=nqK{1jMBjG)wK-X|8 z%s;EAdxfLt=iIg<=#a42M>byYzI-6GmOAAuvOJzVlVR32)f5-I3*Ti6j}1WHErrGC z+g}X&_HzX>94){`R@$mH+gSYJXk}MaCubj4_ z_$os{4w(9PCZ>MGV9NnhiY*?de$C)5JEkPd#bTc z?#W=w0b+_R9>fk|@Rl87lI3C{wkNo(hJWnaR_3k~yGCC3-&Cms(Wk^5Tg?!ngK9g0 ziMz8IY&qagvBksPB@EuO<4&?%EbjJ;Kt+qd_?R-$w>0)g{`(SxmUjpe#~5ODK%&P) z;`I!+9FVBk;vsQ6gSYHRlq?sE#3j*qpN}UKe+$D`{g))@^aliK|H2TP1JYj4MA~~8 zY&jrJu@yzyToF#Cl2hLip*_yvE<4sF)5T&fznyo!$&ir)u)fL!*3%5O9Dt?RiUMoS z`uZ3wl~SQI5gwCY5m^0>!CQ7%NtSbk6_1!@=bf%mRHL*-;BWa0^~&BJbHSU~6E4-* zIWTV@c+{DL!S+dSKe&fgFZ<(9o`YVS*i>it6V;!0OnL|Tk5rn$!T7gGG}A)aa)Nd- zar?mINWU4*^I(<<&rN~zQ?%K`l3esz8!U;5m=df=t&ZT*iYw&Qkv<21RoVP5%%qir zLSdy4RPT+_%P+4Zm=T|j$rjnLdy*OzHYvKYzaJL?_4fxm&l`yF=aZvnuUcOWPA9fa zlhV4;EF6bv(zkZ!U`LxTy)QCfy1*Ad)!X6M1m({nn4ogA#4NJxM}MMOTmdI*b#Fv} z<0$9^|6iKRy3iDVx0zFy2-SKZpW9s4xq?{Xb6La1ieyOE!Z~QSg~67Cy{FjX*?TWy z@Rr@)lPnuX6Uh(rNJdz~T$Tk~1VJ{%f&)$3g@y;VhGUzcgHhvcP4`^2iz&Pc(}Wm!CQ9RNtTPn z-L%eSjWEROfW%=Y61OqfazLVDi-*J)GkD96M9FfoNGxx~StIUwx;Ceq%;V9Nn% zimfQp(#~alguz{QtVyPe#ae!ISzl+!$N^YiW&-Oe23romQfx(mm2NKU|1fyV4lBuW zuCU?}v&?11gl)ZZ(4+E~Kp3U1gs1$uEIEmV(^;KE(*$$Hbk~xT;q`BN)fL317oB9vS49)@>fD_(KeeN$So_*pDA6;m-}8FWFb@6LtQVC_Z~W}8~o#&`p^ zSi_y?`iE*wm}jhwRvRu8P|r?Yw$#_HEQg7y&P%6mxm9<*MIXjZF)yJLNx?3PW$$wO zq;rP7+jJ9CIc~{cbPB7~jS8LG>i#;J@;Viv?KZKSWyUrEeB&ovBfi1>I~kp8!M7!W5nl8#5`9t zi)E%cKJjHKE_d4tFS~$&02`)=Jq&lngcdRW#B@0CJd~8xSUC=!=3=a@<}1cYnX_{j zu##xRbXRu1adQfvnK+|I6QPvz2`JM*k0u#CkAl&oFX_H%?Iswp#Wts#YOvXCsokt> zuHxF^3alQ6(R{4cu8hF>68g9fe{QNas$+xI-bQ<*+OzPwN@Gm!z}jvKYL!-LtX^tX zM=N73NH*G1Z3O$O;+_}d)yAfJW3)OH?CT-ZiKd+!q6S|>q?#%rBet8UZV{v%d8?4H z>;kg=?jayVAdOQEF?krL??HaWIT4TGoiI+t9m_Zk<$<#d*y5Rse`oNP-CUF`=VUH^S2Rnm=3-1A^S*L%CLs^Fht?ptS8rsV@29HXwM3+w*IpUf;r0wt-0wovQ?>QG$TkXae zSbB{r#B6XIeG#?+YY^Q?-&37a|NKKN>DeE6#cdFAjw+2-H4*}5X zjh2h?)tl1zl9XL+uZd}}y%d)W(`!w4t)YY)4*xx+6)Ua*-)wU;!3NufwhbNbqYp_B zy^QpmR6R6{1$K#9TxYu5FxCLuGp+@Ext5K%U9Ps+xGAJOZLtv`&#}dBWU%F6iz&8v zw%AJ$1t$hn zqoa*)F|SBlP+YK76NWVRE+T+&F_?Q#m#zRVn3RL9G?j4+%tmcM7{?IZtPgnA!B)gN zcKj`Y`1c6MsRr6~rtpPGSPw*go0OE%6sCffrm)r;d6>e#M}CDV{0F=frm(osY!~=HrGw<+X94+Biq%`A2bZp#B6?wQml0B5eIHWvI%q;RUc z6ukd}Q%;kxXkkpE^F$~R24xQrrt#^GBI5MjFQR8~J(t0#L#I(}eHrAcu@z+INaJ~t z-WEiRmod1D+i$(IQ=__RNF0PV*_kyyG1-|9U$iF1)z%Z@c?(?rYHPBy#K1>q5xm_T zuMXmL?Bw>&POxJ%o=QFfKgT^PIt$($bh%19gI*Ny7xg}qWfLl93?@@e&iU)ILx*KOENA2J?BYhy-^ zLjL55Anzj8D@2g9CGw(zG&);C8j)(IFzJB8Slap;)~)7-%7_iks-&FQx1el?fOvSbHG+D%B1bqR!@+RXt-EXlx+T2^_2|7Eb+q_Ja}J5k@#+h zF)Vxtp5|hMoy6^_DxUafU?kBj>(&qb_+mn?XmYoYi#KY*ljH11P?|w(Ai=^jESU$^ z!7;LMk_*}6NNP+;msYJ zRibcboT9f!juzI3!)_y6{_l~NXBfhvg+*Z`Ei4Ud-7Ks$YmW9t$q4&uAG{OxmAK>C zSAjf=v#&0Q^w03z`hM8)yWW5dWatSlX4X14Gb_G87i;UT>9e*h%rlIx(^9MQ_%h2w z3AWb}sTw)34#X&*@;5{=taMilSuC+Wv$)O<3Wj)tY$yo_8=?l; z*`{3bG|0{X^0^sgYcmkD7-TW9@ScMru^MD$c$$kr_Uw$kSlMNpfuBUXEM@2P&9k)` z*^0B$G>OWw`Y04J%SwA|S}RQ(k*3O4(~68*Z2vfH6D2)P+9^ltZ3Pn61C67kBsY~| z#K$PSr1hp@Fc0hP#mKL)-tNRZVZDhvp7j>Uqd4pB!pOiLEGz5BWo5iD*_m$ko2^I} z3+|QEXTe$7XV`G-Qma{8spVRN6}K#9V+TfsFb-1xiYSSHAze3>lE`Aoz1}RYv%`WS z-j=HcVvpK#@59PjY&rdzwB>5lmiv$?nLKT|M}fSXVonIIJ(7W##g>Z!hW8#6iPe^S zH9XD5mP>Cm*?P0G=Dr0SC0cW-yQpu^ot|CM#4L=_NE?icMAvo%hKPdw5s_^w1sj`KWK8$okA!tA?E9o7x6W=@VH6V53e#|thZXi` z{}=Cs6(;U@R#+g9;;gXKA_Frf4LFC*PINQ7f-+p}tQSq6ofY!SFszbRP1704 zpqO&fik*FI4Hk^yVl1}5M!NFur|N1lRaeepEA3(y*V%CzHr_aD27-+mM~7i;EXI-k zOd3Z`Y8;hKQRHbH9RcLs^ksr^bVvqb7UL)e30?_BVl|Eyz|&leqm`*Gkf28@Yv?Rs zA<-JL_d4JFIo`eSxCoXeDrxU5LfNtGorlxeJEcGvrQg2pmG82cJEc_9jj3lFgEFJ> ztA7-xiL%{5+9;K>O=mYPM8dk=bUrD`O%E7$6NQ$vn>768VK;3?eudpMjCaCr5_dei zDUe5TcGFQqF7t{oiJ!F8qi@K?5*nF8O9*Cp5LYP2^xG0%YS(c?hv@L#xHw zGbghfz_)|UMa)a0H2qh-=*mv}o5Dyk9}@-oYE!Ox+Dwx`-c45~*i3f`V#a#!MHK3zhZwL7?Wq1w}jkBKi_Mc*%b*(WSm4$l7O(?zf~GnOzca_XP4_yEyBwBN=Qt zAWN~uL)LK&-m)W0vYacjc*HCLg&3R5djqU%@d~>#BzouZCAhfkw@jhSZs9gxKR&*YGD^OGywV!(!3CG~P0ERf?Jnv=u$G~V zAK%$4o-DN@Y%h@>{&LdqQkfN59R8P>#dUU+Hjj-09G<47e7Tzr|4zZr{dWvcKjszT z;%ncN7JIWP!aRNZ2Z6ks`b}`ZUMGkdzJ0EHxjkO2JRXx(a5jveWU%F67%R4ThVi!< zyk$3xCCfZpRt@oA4A%HrkhPd-P`}TaUe^NuJ^vNyc!gh+F84czyd1pxUo#>041+BP zh$*&s5Zn3L?(S-Kh)I@ng&2>R#rKLC{=5gU6|KJ4ZSXV~-|HB=uVgbO#I7E_(2z+E znbj8YowS5medzx z+mY-thu;z9aRQ?!r1GKe2!SJIavUkiZ4ftnC@Ns-Lusv$hYxi=@+*9(^>`?&xBp%4eBy$sBG-& zRpd5x!=xWkpU8d3t?>kEwx!MvJ8mJf*3KB46=B%x;Z{>aCa+U^e23Be{zpv}^P!(a5)%we03WW$}4qgzCKrSqLf@-LmeG^7{H1O!!-eY;6I_DX@B8+iJ~w zHm;`EWf9$~?q2uWcipPaI}b}0+a|se$ir~#yfNKF47MD)iDD~xV>)@_F2Txs7;MFj z-ujMo-e!Hf)7ENw%bujAY)1PE|Srk>h-|iq|TpZ)VbSchB+YQYYevX zMo7YGy+njRV({t+8*e{6Z5St_{f!J0n9B)DJZDJRmWjg*)rdwpF93Pw;s&|c9>V{b z@tiLHk1^IL$H$uqzf@H}7|(jd6NdF_N_|-&NO5sw&c{Il^GJm!1I`R=w_S(5Youw~ zgP-aiKH#Vt-QkhrBkXwyFEy^KHKWc>&a_G2SO9VfGjOSSWiyE4`i7EixC!FbC`vh~ zO4-gOC1rGoXhRvTX|=(e_U=0vITkKa3GakUB<^@FQ6Q1xT%u=3Os)Qr+9>R!1&QhDfmP1ETY&kniw=&p@8`%?_CGX=f$P=qKCtpd`IpQmMPoPaf z-06t3bT6aM4$cx6ArCRw${Qg&1znK(m+xWl<_Z(TIntQP>Z;+4 za*hG{<>Cyv+Ze(n`ZAQCI3;8mM|{WVEAV^6G18Q}n#~|6adC_;IY;-2ggpuybo%38 zukIhIJ*Kx*!&Q5|(tw4t-O+&xHldEp1{G8W8EU^xBtVTTn>iHMPYg$CB@)&hrEidu zGCE4f5n|F&(puMQfjK!!{|5^Zj?!=OPB=>9j^`)^5-HA6x)ctZfQ-9Fv(?|6fHPzv z1$3}7GBVL$y|!J0J@{b<&i-H-r^}kT^Sby?F6BD7Re{y#u;6W@-KlZmvJ8o{qwSGO zw=}sP7oxrcB~4+spOS97(^>#zu);W1x6LxWFxM=ubKewtylyfM%=WiKDvvgA(b-vV z)1WOPI|;rPgA% zcQgmZ_#N7cGO!MzcQT^)h9kOM3sP(Kl4<*0}IuXNi>We4Zuu24% zYVeAUoJDQU9ezlXxEUbT2i!b3j|@}6NoHm5Ve6B3&?lXR8!C;;D4vuQZjmDfB>e$t zg>8h5%&qWYU`W>QIwUM6qQWkN!_!A8%Rx1b!xk2)UQz1pE%~Es*}G){ky0lZX-ViL z_?Fc575UcnE?`C0^`$@DC)2 z%ig{4dDW!n(tw{4qGQw}Y(T6>E)B>)Vl%)1RcDzY9v-tn$Jc0s&9v5B`S@v$+4vD2My0H!k^ob^Vn+MK)!0CoWo>>O2dneyzm%}ve051-Nv zQ(yyJv}Q3%l75?;gk`_MhPqQbZ8`5WKvZBJ(thDSZMjPVHJcJ~h_xfL)(#ar7KE;f z8d$<;^DL9s=>SmN6s6a7pX5VL=7WB15pCNx=4%Z8C0}Ew}3u=2;?nkL7GrkJ_<@ed(e5lv>imqe5fW? zw^teyB?zL^&3}7?czP4h>uOc-=ukX03zL%;f`?UaOz1lSN1UVLiXqm`DegFn?T5N$ zC~TVlMFC6nNQs|JO3D~`r_Cn^Wvz{^I>agPelc<^hUJZTCx&Hl#~PNsKqAEj-cJ;m z8>-4$xXvy@53@cmnR+=kFDL#RaCw5tcYH5`ejR<>8#u-}0G z#ZaX=4C`pdz%lk;fem}dCPw|g1{$@Y&GZfJWmq~kQX8zbbOMkHtA5;U4}^Q~^px;- z&1y?MgmeEYn;Vt!;r?Mb*7|+7l|g(EG8B9{a@)~MxGIcGDf;NwKobF zxIDAC&NM?Vc5(d^|0IaI={<$x^377tnf#o#SFvLwsJB5T)(x#GjeoM~PdzUjXt zF{VEtK%0HK?qsF11zfcHGfbfE#$d|l%iz9PqW7iLVI;TMqbAZ1M1Q2ZOil_>wFai?7`)hRg0_$VAy<^0NP) z#9HJTLEIY{;&VXUYnh09Cxa~q#3{CTi2E>ux9o_MEEkKooq~Xn4i7V>Pt*m{g}a)1FRHVJXrmP!CQ7%NtTO+)$V3+(Fc%;uf^nL|2?J1=re-2 z`RfXG17-txj%l`(!IlH!6k9yR9m?P>JK`kE#UgHjAG-GOW8!Q!yy8EV=n~%$Og)Ps zAO|gWA`?^RFxYaylwymAsY@BWWyh3cxmZjsCX*mObWC6^@Za-ak?0D)CJ?JL2M@4qS$XFev-`xZlv4$%7=6M8>o zu;lCVrXgyr(=81#&Dwy? z$gfC39L775gedNKNr-_wa!Epb)vOsaXW+l9CSw)~oZ=%{JM3wB*R=z%dTh8pw0yF2 zY|50xkh)7=;tkV~m#A^dNKX7gcg++QP#*fn$WRPykAzgj-Ax=(QzY&MqF!z#ojz3} zLY8d$8_nW6I|ANfGZWwQkA@V#?adTK{mkb`a#Z*8pkHk^TAnG0uLAOJqfJ7V*xiCy z;VFpkE>n9J0Wo`$58wGuU#l=M`H#d;aqb-m=^Cl4YI=u8f*5LMuoM$pWri zQxJc`5R*dy;)hIR{f@zw1F{rbJY@YZgSYI+k}MaCtRhno_dXL~efMm*+;co!aA{JW zT73^7&k0E!!C=b)Xo@W!&{i^d%MLWjaWg<0al7F9;{}a`vBkrb$KWkHrXFMvRo{_^2-DJB|}CIu=+U@R)1lz zE2y94`R&&+X_!}$ph z5*7T6us)Xp4a-1>X-md)-whwX5YS*wzW-Gv)05Yv&&XsBv59c2=?Uh@U(r*Dx??kg@4TQ?A`I46@`F#x$dM1F~Q>iJlKn zb1{kX*8pO7-&X>EiB=P{mHZ8X?*aO1Xbv|7)3(i$nB6 zRR~)Ehl3lKPik=M#lfuvN2vsZo7xpvCEfQdJhL*=tXfYjpNawr#P27vp-R)H=2Dqo zmm^^bT-gfuk&-f+U$jZ3`K7hHRkJ#668s2qEDW&s;+-(S#2wE73nWsU0d{%-L}g{6 ziPfwDY+a13le!vN)RYSfaWSNBn^Hr{#xTQJIxfjrvX(O)2GJKtkE4Ct-5~mU0yUea za4?9FS!=g-HHbcE^4i&f02gcY>}&12)UZi-k7)K^m@+8Rc!?3Y_j6>yYP@_3p5|h_ z@Oq>$Q2quyBpN6Q()NvzzXJ`!2+^u8hriFFELcWJamNLabFGRihQM;pIl3IEQnIO$ zR0hXqP{6vuF_V;((cqxXCk+m*jjfu?$>7)@ITi-T0eB}24spjbI0A_jXK*~X2Is+5 zTGjB(UySSYx5Nt5{=s258N=nMg0_{RbT|a)+=RiuD{pBJ{5`b0Q0b76 z<_Dw`t|DC{RVU2i*dA*Z*Lm4g+J9Y}Mji+iyNGVuj`V%5DYXEyHcja;)pj5E2&WeT5Lm0VDMxyA|z_ z-7?Gz4%J!^iK>h&FP&K%0iZWa^)df=>fUAxtjJNoa1%gWX{m#y#nIKhwqvOSgl9Xt z_apgAFg&{VgFqMrW<9zWpNE=)Hl6&{r3J~2^xh;kTn070_X-5PU)0}aC{rZD185P1 zR^KW~hlD2xzfrbAF((NBETIV*6%TvgPmpki-WMKnnBfHB{}!TS)FW&_tVb>l$UtIv zf-u$9w5Kr$hr0yP!9Lnxxtt)p|G9t!85F=f85F=fR!|`DAPPD`_yXT|1=FS8sJ3c@ zm687XfH&A`_QT%4G6kgR5))XLGA58%V8LO5tGip3iR_itbYXv^UT>X>la4*5Ewv`d za;V#3en+GdIE@#i{0$i;Rw3j9vzB%ti-yP)GBAtl+%*j$gT!V_h#DN+rA7S)F?PD? z>}LEjd^fW5O=oBQUH>&{I?zX?DW7Y~Hc$(ergS;G>1-g+3M??#atSO*wv506_BJZI zIpQlKvds+MatJI4mR$y@Fcx427G(Y3L$~DV?5yhIjq4U*i{u>fx!M8+MH#3Cg z5V*QtR>XO4p_en*a=@2j%fQ$A`dAcS;wvJu*D`p^jxWh_uK3~+vjwh9sd%U3clN*) zJk2F=_3Vrzx{6(W6!=MuU8Nj~{qWV=jBLe5utJHd2o`=34E3POZ3n2E5v=uQ1PhX( zDq};X%E*WaRcQliue1wGwN@!K4dE7|Sc~Xk;7e_jH*wMfKT9f|%DzeRKf@T- z4r{f@#{LwkH#GL65O`aD%j6A{W$${7!F@zPPFnJQi;Y$${DbfHrfbzpqwSGaZ5(po zu+4{{6&rrGn+#48I(?;e_0m|qg|s%c;lR?L!kfAH6dXAI%%~0!0LSs2@CBy+X9d2iE{oT-wKCumY*VF8D|Nq zj@GL+%Gq2%xYy}c#hs50Z2)QTth8uSr?$L#ZT1)domVMOy8 zkP!&S8qvh(;mAP?cCieMP~zW2!8Ye4ZdOc@cr!GLMDkxG@2Oj9k+OJ`8z``VN!tY9 zl4dCv)hvet;iP84=Y=%OA)??MnuP(5uLmvrCoVX`FeR#ijA6>BB)*D?GhdO=f(-G8 z`tSKj*hT+E%!5Gxc^Tr&H7<<82E=;g(tr#khH++UOl8)8TAUfc73slUJfT;E?RM3q zN^b3{YIdAUSXt38IEtJiSwdR3sx{>n;dd1kAH;>UT;TG1WqA^wnYPFiT^%q7T39Hy5hfn^9OMU@9k-#XvQYq1;pAu zY04?jSnlIM9xMyzSlgEvY&pc*6kEJl+kY^4%N}c!EW3;@39;PAM6+1BU2Iq)BxZ@V z#dJ9DLntY0tnEQ~noF!LX?p~fxvA?t6J$o$}7;3&~MTQ&U(*Lsb7%m)d&M+Dv*J34iOuXa)`vm9DhsH z`n>1rET>ZIvG~$GHZ&)97-cP6W;UrNv`oZ|?Ys=&Q1VYf!UdeGb%FQje=KX3s#{@) z1K7HtSGET}u13FH)?8@3R&5RTmD*#inv8|wY_B4LMM9$AV71w-HY4qOcY5BQy7@Kf zxWgAS@JBGTln6IJ40(GZVLcjUG~>-QSQ&UDW$$+Sq%&uIy=BhBz*nRyN9J3V2Z0F* zz{5h zD@{1qu_#_PZq>>kpy z5WX3&H=DJAkqNm}x`ff;!HUs0{(mXiq(oqSyotW9R$@X>EtuTUAiPr?&P|WJGY8`R z)k)uOP-98(?E}zZuA1~-FFw?mQVRCDpxs|68jSfn!eUNsHQV~QGx z;SJa4T|zxdZ6v##KIxnZiXF~xOtM_N7Yz2SiddJu`yvIbNZ;;05gA5s`61CyWA6GX zOK`z6i`${`5xXvJR@j6NvDeTKRQhk%xxR@KBNgv@l$6y29D=95CNFz?Af-LwQjPTx zynWzNXAXA$NpC-V_c^QJvOj*iE)Pg6zwl+iRH9$#f>PgG%&X5Sp@*B*Xabf4=w^b= z1Rv6HVNUm5NPYE?&;-4@>W(+zVkgXVp-4LVy`*+Ix(b_+umq}<<2|ILjH|zCqe#<0 zYq>m3gLfjo!Zdgn-U-t{+_6jpFOWxZYrju`UHQiPn~;0~7J*Af_fcI80G+PO5P#hi z4)KIX#vs1UuJLrzWhLJJR;@JxN#XvVW9`v_YD46PhhIvEPJJog0RKw;o#r&wo%N#W z&`uwbKK(h;(^B>6EQ9xF%;GxJ+w!r)^F@AB<=1k4i=IfK&NSDA4>_KlW+Sk zMnIx}hmnc5oq`wr zcO=xb?+MEK86tB)*%eHbjWXDBK$&8Thq7%9-m;@ivRo|6@;g!D9)^q@VD$xa zXUmU4mD3dxm#LtMK}JVDNz7E2DASq?!0RtnN@LaQd~eheQL2Wi6}|qR*bHz*ka|tc=9YNM8Lrf0dW{rug7c$s#K$c>Qhpampyk$q0WVu*m?HVy; zeE68~S{T0Rza%lHKOjJRkRde(puLU>w0ASuasZlQiwCriGI+}lG|6(YKwAc1tSMxGF?eS;x52dsUCiM5|F*mA&{VvC2h-!gd1jy1`0u~^%=qPbo^f=ryv zSFibRNQ?#F5`67+fwL3jvSHXx}{SY6AIkprwonXtNv!IlH86k9x4br`&5hm~ZxSXk|Dh8=wXnfO{vUiRNp zii|!Zhula9CfCb+Ye63{& z%Rz;m%EZ?N47MEbrP$)(>q-W1+3_V=E*4+;<&w1-GID^`wM3Slz|o zEjz3v%elgeN6eB-7Bdg;?SmmhYcAOgc$!Nt+49s$8!Dab5op20bTT8u!Oti=Ds@qD zNoATmWLng05>s_aD(l&Rdr!!uvT*J_KCdj2Lgw~UG6;Q`0sT}7W3xh}NXdMVl;k!W zZzPOSG0TK8tu69M82bwHD-y=OigzMmOx*Dj#sYa1moT=jQ5~;0T9B0_wk&DF{yc*d zxMe|olS}T{$z5{C?4`J*k=;IpX=Di;GcwAaW!D(?g75^x`lf^p2lli7mKu{uFOshP zE7IXot#`_jw)G3MxXzB$$gvq*b49ZR0)9_q7l_E?=vu_=Aiu8xe6 ztFAcZuomp{xVp5=7wWP#J*88Is?EXvW^HqS6L#0Dt}X>{m6okp1N)o#^u(yS!2c=T zitq)b&rlP_^C%HypX>g7;qqNSnBQ&|??E8s^8gW*<6TID1tpNF+&SqZBzsBpM?+s&%LBBR2$g(Z>q8SQY0)PA*FT?DJkPvO`AZD)ml4QRfgJAF;tC~J;hGK zgm=8rI*>?lqxEsE$~Dz~+zHbqIMHQX?+b{!jMc3v9IHbH8AJ8& z?L&1y7mrJa$WLpU*RH`H9hJ?E%J^{qaJ2%v=c=`8{_H<+mvu?oPC=D@V?qu-+V@0# ze2#SLRO%zk*z*~)xXv^JEjIk|#eXWS_%JXRv&~oa^xrU6uo*81t2FqQ;OK{D!*;V_ zTrz>b2jtyG9K($KVqivoOAsr3t=gZ970DlDEu7b?&AkW)z`*!P)#IIZe3ESO<{Wot z@RohfQA(0GO{k2`uHedbt=drxF*(d;F9Y(NB%G5OY&pzkE4FyZI+MX$c4SGGi$zwE zYt{N0QgZ;>6-=OwGT3qenqrFwv~3LDvI9-BTrAKEUaNKwLvRjQdj%6~4>H(tz?x!< zhqZSxc*~A8$#St+D`2hK6AWQF;Oo;&e0_t#mIJ;NTReO{#o#SFz9h@V;%iFQs{NHA zJ_p48nTfcaE-usoP;BuKw-;F^+TMmj$vBiVc zxeVU2!%DJTEUczvt=b?%d=7}~XCm%e23rn@Q*7}NcO!$h?1+;r7mK*1u|aGQqroUo~2eJJayk&=& zWVu*~6|hY5IEJts@O3nh=lB3?8EiSIFvS)RU+WpXWyhCfxmbMVw@h*~Lq-m;8f3z% z&0xy`R*EeitZrrSmK|1-LKBW79M5R>QOeG})ytvQAtgQvOV7#@})9Y`%^cnI1q zF~v~Jn(@~z9Fc;2+)@Rt_A;IBlPHd09^PfC!U-E8NemZ7LYi1lX;l6(SRWk~2~KcC zcB494X$Ny1WwmN*tRl7Pr1LcFtoWq?0b^5G{!tVn6Sjg;h;3Sul2prV(_hg$n| zOFo<@SBXp}r5=77`4y>$pTRqkdMNIAsfU3)Aob9tqZ(CTj7O^msFPJc8o#r4%vZ}4 z_s*>GiOJ5~!I4U{nOO6$1U3I^P;+tTQuE&&4=lYBN)D2UqP6bqD`Bmr*!pKl7>9@_ zzM6cp`1g^Kh`io{-wAo`Vzx$S>G%Y!AsXwgjgF60u}fC)7)*mF^;*ezEt#Kt6Zu&L zYUE~++VWc_Zh4imZSQYbj=m&f_ER@MOczD`ugOZ5I?lk< zGeomipZ#Q|{|8E9X|p#&l_iNko6LsgfWB~P6z}*YKz0>el;-$478B1pZLgS~u=9Y9 zFMn`Xi#|Hhr&(|h;4t*V{!%~aIrzb8Ge&Rh@^Uh7_Z$y0vg(LgZY|K6*Q~c2gRo_x z!2bEr6xfw7fY0-0cpJn=TQ$yw@RxTHT-JLRi|a=G;(2gU3gB|_?QMX(_1+cY{z`GZ zN?czcuKjTJuEt9RF6Yhk2IR*ee606|#I-7}oAALbZ!><(^@im~O+50%^%}U|>5ahE z8^y~QUg~%m$IG>NX$0Rj@veoJHeR;ix;zoHn>Vj-Y)*W1OI+8Uhag;o!)l1LY-d%ALlPw=Did?*Lxkf zddsn(m*L&Z@$w4sT56O==%a6Cn zkGF}BvUm6;K7I9Exh~$6~mA4@;$tK8!ucQ7F>41%ZKptF}##dflD7=UX7R6<7L6AaM=YfTk&!uUT#|h zmzUt>1SvQxp;?{2hW4c!*~%QJq+bKgclDlc#4=O4j;okU_7yP3@+mK#M*CMRON}a zSm^qA!eheb@KCR|y>|;SdymME_rV7s;ZgbVLHY5R{P>9ccwByb96kVNpTG|gFMN2P zhRY2wz+E)yJps2s=gkKPDuUPu#?kTBOU7UiOE}3JR*%AAIZaUL)si@Lrvz)88zZ%` zY6%>UR--c3tf8ILw{T;l3Kq}U=2ERysx;y0P;IQzm?+_L$kIS{u+oMdU23gm%~G>o zY7WER9N|zc63jOjR_0STzeX>Wm^Ejk=&2IVJmiZNkY@m4$01-jnC;N5=>`7<6`NPQd0Sqy2CQQnRud#t%`tZ(sbIZ1^YPW4-qU z`NzMDKY}{92RcjJV>M`2IAN>4seh=}9E72$38W@KRmItq4#s9cy0^ZmS0k+(VwQJE zJ6#jBQx)%skKkhIs39~oKZi}ioed6apoZ#$%`4^DePyf|`x?#Gr1TrWCU6kl!gbY6 zxZwc05yWuS9}pqkVAdrIm_s3LGYNYW_?>Wv=0de1)^_Kh6}~V?!>_iwsvFsNdyAvJ_!pus%=4QOmzY| zd6!sfQuZ#VPdb;z6j|0cJ&mj<)sAS<4kb)DkubV%#L95r2q6RaO(Rrv*z%3v#;7E6Qx~#)J6vzXl)uPi^&6+WD2LAJd&EC@}X?;kWc`A*p9?#&< zVJcVg$D7Js%it~hRIX&%#TYd7-4_FVA0*o+x@BM9$8cWGkd#B7z@@Sl&P$tz8EiR# zOR>cRSDV3Gc5q3Siv?G~>jGcS5S#@mo zDTa(3VD&L3tiH@(%K=u3Egr1C&)_XPtR%|?!zwr}J~Y;%``XUIcl^gP<|Dr%_UxY+ zGID^`@0qZg^E|N2M5Nb@Ls@(YmrXwuTRd3p#^5bGtR&01!iq=Cl0nzi9WzS%KKQzR zV6W`$fqUrf2^Wixv=2P$%t2Rl(%TR2VSaUg{K@VJV6g$;N^BSW^NvaHApena8^g`@ zG#63&kv}9ZH#iH2z;88=N=rz2G!pVX6LRZHG0t>Jrqt91OENGtS|6&8G)t9ITSe4J zXgM;SlowIb%}-=tHcjH&)CMPHgB?%mQdp#~N82@7Zde!B(lWIULVkzXLVm&S%eL4b ztq+|ca)|x)$FLWaoof&<8dq81ONx#*;nxI;SCHnT)wQVhEIYV8&n&JpIu#MMK=xW_ z?H@c?(=cTj#APi_=Mt40?kqH#? zOr*@ttkB$$kDDUMGaT|!An%rlpWwtlmVuaMG>Jig_aPLC-x9`X@*q6TWi(lyy6dT- z||Ky$)`!dOXY&tTz92X#k5> zsEXGg5JCTqu#s8N9}Y~DzaU|;R5nB@`j;Q2EC=&n1|WMYrSe)Fz1LM?o~t3&jV~|t z_6E4@9SR==vs`8GmIXwP-4*R_m+74*vk2~j@?{e*2EtHdq1|Vd%2d7M!?3H;QoS!n zrUDOL4VkuLwr};-HwrT)Dw(T;_Wn02VDE4&NKZms68$Y@?8pShEMfSv_ak6f?uoEq ze4`vmZ(Mk>0104gzI`iQRxl&A} ze|Hw4TH884QX8zbCbx?huB$Z0CbxS(Lq1S{dq2lJG2ia?ST%D`}QVk?yAW~wG=h&zB-J{m$wMm1%e zLYODP-6G<0tB9f=cD8GsWuZufoei;;OJ`$fjb_kasr^I8KL+72CPHoCXs3cDC>HAK zEX6c2k;kw_MNH(wcqd{a;%V z+2s=`R53Ouy+{<~*ANwf8%D8hF?6y7OTJ_l*STq0f+eBE?P)3A>9|{kC1RpKi$+ZJ zXEI_kM6Ih|m~zN7V)9cU@20&IA|_8|AZCe}#K6G&F^a?*G5I_^%_U+Ix8~0XR_fpo zDV6gthoLw=BA?XN{MgAcjyhnuZ@h=;nwogzSp5Z*SI~2v0w|}L0hCf$Wv3uYHc~_t zEdd#a6-uRwk}TF>$^8zaV3gBEsyS`Zlp_cmnWY{22ZthI;U9#M1!a^znzCZ3R9+Ws zd0>Q8G^8ekQo3s3)%n&x45gd^gsq_zd}zbC5lUI6xk56O5-S$Fhjc!crh74F3ntrkIspvrkdUKYx+9X!Ehx(tZ9yG*Fvqd}GZge4g-FT;^K2npzs6&(c8$Vwsx ztdW)Ozgk=&U4!V>q+eT{j9AedPTq0Ot!FrSs4%RqP7)VkMCD*XqTq;12OBvUaC6j{ z+mUbSSs0xSv6f3`V`z;qqOzDsg?1$d;V_~?jpAsh$|a)m6!I=2DnG$H5m6C$J7h%V zS<#5Wrg~$vJyJ;*PB|uZI7N{yIF^#ikMe6cK3q!(rR;4H42`2$-y);y-xA<#F>JB~ zQU0%4T<7{}38MI|9{BCioRiLMXoWzek)#v)FcL$d4~1DIXc58haRu~1$06AvA#_(D z@20X7!YGR}5VM3)Vu0W+M3Gp-D1QLx@}R6l`(FPLOIz>kgq)WOJQN>X;BTaqt23 zL=$55>JNydFC<)0v&Ew4ll+%3X0jd$3lAU!DrlbcF_Zm4&6dh%%CTLho|F_O?Lm@M zDt1%8bq?bs13=gsC&7m{OdD~MeT_JY5`;Z6vJL6$p3Z#r6B-M-K7kEOgJ*JfwhEb8 zD91u6!P&V3h`BpEsHLN^ke!7Y=u1fX6yY@Tx%d-3`k^;%H2RU)vexKF_g^ingn%cV zHtDAfUn88~?ssl1!yChXpV1pTkIO~qjZx)F)fz)Wp*Kbc*{Fic#T)x9Vo!Ku{}0{? zZ%o|nklxs7QKzFe=4bym+9TC;PT7g6oia+jVBhS7G$tD5s9b9#cxVSD3oGy{gwp8t zGEoUXM5wq~Oj-Q3@0rDQUNkNK8Wq2N;=41e)(GSq_1g4jQKwCRCfWtRAhQ3HDU3X4 zzJCwob932#lYyAUWsAXr_iGf1)n)r8Jk7;rTj}0G)uMsDuC#h?-TIyHz#Z>ic-%4q zO;pk`_%_Ne=*muh+*;F*8v_SUDdb*M$WH!T4)jP*IT)lKR*eqJE+(QLMn)fFhtfT= z6%Qa)O>pnZh5C2L6E-qSJoN95MZ&_r3jyrp-yK(Ll*;G$*t`g!Y0Qg9v76xcb=T78 zpKGoTfIJfXhXc=^{p_xKAU{(Zs1i|pza3lW1~R_vHk=`EnPE{UwDO(nuW5f zUswZT?tUST0a3s3Kw*hmMP@jPy+}iM6m>L29mPa2SRKXgzuFxZAk_SxB(!`VZQLXh z40kAW7*BI=Ps$^e9 zu5@vkV^have7XfkWR6bbbNRfKlR`23*d!AK3B-VGe~kx96|Ol#c5I}q!kMx038g*+2Y0d$DW4>g65XV~RnAn&HI6K2Zy&p^x)c8S4& zw;zhc8g`itPjd;oq}m-NM246uUkim>rpoPo%n!AsTH)Xq7#C#G1S8$^xhSci!#V|7 zR+~YVl3%t{bR`QR(i6@lm7(LQi-)CK93rf;W9SswVrP*`CInO*`~ZDg+}A@w*XR$3 zsQU>QnMEDOQ?5k9!V3to3i`)kz8u0S7pc)*O_%$qw8u@lYuQ%56%NBD<3QLNHo=Es z_oQMr!Y2C}VG~~t_Atqdu>jrIS>XSM4l>&l7_oG%O#aU8LMj%@u3?dTfS9|#gPJ-T z7FjF|!9YYxQH1m5&&S{BVGzA_qhXN5#_(#%j84gDn{}^>{F2g0m zj-SybyNt_4=#o+GN;@1wLZM4W2imBH%f%)8DuPeAWM9KO;gX5F9nvLxPSo*e)<(xi z;FRkDZ?KilEnAh^Ez@Zi?3x{y#x>LVDc2Kb$`44A5_Qp%UnQgWuMi)B)kjfo(YaaN zv|pITb#9p!H%*tj-BlCE?D(T%WR9FXi~4G~^{f9o>8sW0Fgo)E&VqM2UEqH~(7E|) zf6YM5;;Y2~!TTQsht*g62|UfkS4*|NfWkxgYb9tgi@%oK;e4Mh)!e*ZaGc+!2}ybZ zKSikpJ=n=_TNC5A$?|)J?sf9rvJxX|X*r{Jq)K<*ag>d0y(39Qr^|<1L%2va3dCC8 z%9IOzxMv|@;lqWvb@Jg3t(VFd3v=KCv<8$Lr-L-XmFud6FV45#p(}R*5VpE<_%Q6T zRN96scc9_QY2vVZbDOXX-J4sa{fv%8!wKwIO@It*!H0xwER-0hHloskILoEROb!={%m zo?ZGxXiB|c-)>bZ-;UNd$-6UBEF-lcy1d)VL?b+jND1siig$|=&f?)cVHP({xrk8- z`kqB}`6}__a`o|kWXdAX`MB=``P_WG?`9xo@$q7y;C%;0;;~ov17hVYGwq z=C*o&-G8+kcz=8(i$Av_O}NDehM2AU z0TgZV<80l__uo<_bE>``vkj3Z5^3{4gfa?xs*~Rqb9_}vmh3b)$0tKn&d*6jQmLF+ zqt5Wtb_7Kt+v;gj#p&|T{zkaSEa=cb`wJ2l{#l4pC;#lIR;j#E4C7~vR0itu7_5t{ z*S7I=%d~qEd0jQ_ZddDFCbIxSA8j!Zw)$xJFzl$bRKrI*%J9*wahhvGlySA^D z2px)!OkmYI`e*Rm4i$2

${737*?AK+N59LyaEw+zt{}qFrW6(}YgkACZXe#OZ*D zI&q13usU(we`VdqDCwsR-z1#9Tj<<;hWCc5Bcu2BCqcpmM2d^hd!zc9c2S0eLhp?Z z(or3mi}zN?J}bPpal8}Wo4DH{y|-iKafVJu79VMK+6XZRU#-)a5+8%IClthb7$z=( zEWY?NFfXT1I{y)8pc1O(u}Z7msEqWFRK_;9E1Ro5Dw1>R`uZ6BF;r;|SBLt?;Ji%r zO$B_#v58UtuYpEwXfu67d)YruP$vMV45}YD+XJmyYs9BK4(C^HZdAsH`-iKQp=v|D zh2)ymmintYI9wOE3GVD-Qbp>;MxGH%@+H^-0+X0_V~c*s;=JBr7B_vsIuDdd)MxEH z_795=ztPKH#MkaDiPp(~)r)xE32%x~)+9v0^q|?gdAjAV1M<1K<*yOM3{fqTL0!?^ zd?}R;G0l^2`7g+mT>USJNFFOzB#+8k{Fo|1?`b3H`BZAPKEYrMllUsJ7N#-|eut%s z?En;8-+=v(G_Bp4g9?@kO@2j0_H_ntf4B11*`wJWAFnrB{ms!zqjhb&-l{eyw=0%^ zhR3yPEW21P32SOC;93$LT6|fU2wSAR>c1snMxGGC{hA>-hyA(#lZmyzGT3s!nqrHG zwFMRD;m^yCHOX?ZSld}QT6_eVIGe9t^WTsd3%(`zI)ouC2Yej}af&S- z;>H=gWk;N3xmd*Q6gXKvfJ~sx!FT+}5?}Hw0;}x|89Bh}b|$RuW3c4_E5#NMR&QeP zmK|1-iw$#Sun zT1*0qK6FfAE%4v-Uy^>^ThHva2o0a_H}o^+$oVW10A9-<_)@gBx&|n@oo*V zB4sw4l;k##s%Fc=BpuoSGD$~kC2M+8xif2gVzM)DwAvc34^38MrxU%C=7CTSM1Dn* z&Ovx5l61r!D@iAm2d0yp4%3C&#AFDU$=Nez+%Q@8?uE~*CcT7pIi2~{u~wr7bBR~M z`xgMg&Ix`F#!z)rZLF4lFYBYaX6u9$T~cZn5^10{bE%g=cpYKGfWZdx0pEldz*qT{6${W^tYAgoqQZLRD#0t;r*<7qh24yXr=fc|z zwjAty#TL)bzm>sTb~|6P%rniE+4IF9ugL+bex@@xh3=?a+G1zjznqrHGwSySE zWyhLixmc_fkeYZRLs$;F>^LCLnW#L2!IlHQ6k9xeUBuumJH8~##o}v9QWLLXh|d9W zo0*84V6f$YIK>tZad$9y%Z@n7ai7V>a|Q*y_3O~1FRHVJXn30!CQ7% zNtTO+)s&VGI+}lG0AeV z5Gx=*tj-XY1HP_d;_C(mTMqbAZ1M2*5(aPC@g-R<7GL@0hdsoQkpryWz=YK!47MC# zrP$)Z>SGMvvcpQUoGYwPz?F_Z7!nHZk7=7;sc(_Heyj!c)Tp_0UY2+e0n5{pY{ z@H55A=?aNU7t_QbQ=g6{Vf%mNbg^GB`a-I7v13B$NSXbVl;k!&Z={RS29W7uS}Wy| zF7^!aE7HYgY=S$HE++1H>0*IAic1$e&d>MRRBw#7M=I&I<1Kg16;tF~62)3mnkeQo z$jA~KP0|X!9R0JUdrB*C2@2#IRvXQp63xgOsSjS$zopWsRR-XM)8=4(+~1QaO|I6i zk+!2#uEtX`@46r2bLz6R_A-m>Ok;b;rf8j=SCjeeVCG6eWMia)DVhE&#-={z8)DC+ z@N3eF$C_fzGbgGS$h#@sgq*15f|!{TrF9QqDrIB;ja5qkuKLcHGgr{PgwA0|!ohYt zLoy#tr&$nMZ_5rD`v&Qm|H2TcL(hCY6NB$zu;qY3 z#TE~Pk2847jzP(Cu^7xR*78k;j2vL~RVJ*SX0YV|E5#NMR=;ELmK|1-LKBW8)U z#F)@t86{XOqQOo#WS42S+Lme?gwAl+$WF9tkoA?GMs(^vYrvuPIY5IQq`pJp_sr)jp&o z5LHwl=WZOXHA`}dTnX;rq^V)pz;dwNDuHlHXR2^Pd#ttv9NTJteN+EX4LsO3{Bdft zIA+X1--=n4;cuXx!~PMoT_z;72?$$7H1DB%mIqKX@G2MFmuNy2d%$r6;$ z-1z>(pdPLQrb=Iib+wTpkFah7TUUg2n|LR}y5f!()(w<#abew)gV123S`8wM>4Lj` z-GjS2QHKz35Swz?N`GylaiB9&)^^QKx7c-QtdwYXx4c7oPRG6XXW760PP4eqwy6!C z>vH#xv;|H4_Bqt5+AF?Ed-m-gNl4X~HAR*NJTG=e`iJ&n*r~X?E89Bh}Ym$FwSpAg2mIJI5TRd3(p21so zSV@+1g%yvO#i@@`<=*`$DXUZeB6yn7sejd+88c_#KW~3<**nWqkFYA4Vvk{~k8c?* zeNX?W)J4UmRA_>ccI52@Q=o`#JMftP{t4>>e}5AUX1)F-Y~Vxrj%{y!Q*Yqd1}>HK zIk-fK@o)f0vk0GmM=%LwGwn-i2+b6YHJr9q3of+B262W|Mj4=KE>+XxWxqvesG$vU zhQ7XFM-$mF83{gh^TW%je|HqA!vD+On+HfzR0-qEJv1OAFkEt^AWY3L-2#dW%^?HG z;m9z+AP9p!)!o_Cl~h+XRn;@oz;J`pm?A=hAcCTzpCIDJdax*ppNh(Y>wW!DR$b3! zU3EXdb$9)}7m=BfFCrr=BQmpl^t1nn%FZL=#d|MayelFK^ewEwirHWfd_iuYdalLzS&zh`Zff)MIn98vKHgezZJY==Ju0C8qG4l8D7PKx1-I@CWORj~Ap zE9UcIS5`is$mlF-*S8}>PX>4WW^?o`>+0y?wUzAQxj#)Q4EjU-2sDQ-+{Yd^)S|~4 zx?4IfY{WJ^!0QM$Ta)e%)N5n4@Qg$7><-rIwaeV$<4>*D+i(nHmNdKc=WMA~B(x#0;DWKZNQ*|1fqU zJZ}M(ffFGB%g%}LUly?CcOr0*O(v`q-_&Yb@fGt0ZagfVpu{|Vpy~~lv zyGpNz!jAhAl&3@)|F8uT4fyUMOTPPz1y}}r7l38QcVD%DEkECJkjv$}eI-VUnTa7! zsafbt6F&;y=RBx+hj8LgEzoMfi9fdF#NSzfWx$C6SazJagJ-Vm=I2BXa=DziM0QGq z{G{?_c@YP7_e%!}5mP`q&F&Ji|2NEpcuDullTsjJUFYG{ zCx}N3gl+Z|h?j{J2t0#``(};uAFOI1On<8d)2Bo*qXiGM>euF!c{Ax6Q05USjsEa+ z;|nU*v7G(nBnO`2ASIuee2xhXeKe!tJ^~(%&FQ?)SupRt6Dy8qG$@Feos5P@itVt7 z8Gi&TW-((iI#KP>W;C=HlVpV`W?b>MXr3s%vr`ZQOV5Ic4xJ=v5Yb&S5}zp+Jt7a{ zt57juLz@SI&vijClc_`rqd&TlB%SsZxWLJAqBG*Xb~j+Ek}!%r1-oPlKv}e*aCKYlI|`U_330(Tufx- zDNhNx_Ps=pHH$6_a_tEfr;R{-UJAK(XAN7xE|beb4tygT#822VjmU>W5uY=i=3!Qa zLC#*3`9xSKx=UE+%oGY*pkK^wuf~c^<~B*miRLyhM?Ta=wrnH_i2W#pfEJu6@}a0E zM0GBUibXyYwE|><6_O8iEph_Ohq?~0SUwcH+Ai~<4jIXo0=2I;1!}|~>&YLPkt~`K zzS0U;4W37rwnW3M;$29e_yb9X=13*nh^oZx$>spOWXq-zYJuE?d^B^}Pj{)!%`Dyi zS~eZ~n2N|E^OimY)fcwu*aui;WoUGg0G1tF zbu3`Z&sH4dLfOi$GEMj`L233L#0g3pe!C5x77~72nrOHL5x3icTFDVN?;QX@7-icl zv5us`TC7vt^?L`IhCzsC53Jd31V(HnyDErJ=pGA(&J^IeUC^JS>TRSYK$YYK@(&}C zF5Dcf5B5PGY_?!$D{z$ajmL4fFlDo_=GPABSC8`Edk3 z%G=B6=#6d%Vkl#S&HBJtb;|%d!aSRMr&sIVNvhMp;}aRY2A-J1lY~(c9Kl9L(VF&( z_g2ZNvq#cr)Z3E$3Xu>$Fdrm&wk`UO+MGW*BaX9VY=u*pvIs3)Cmu>!fsxQoy@~a$`X|#(3j_`hoC<#fU2-B~_(?Yb1#FJf; z`GoCjy8D<;;qa43TBw4o$UN#3b~ue8gHN^JMC?R9QzNZpHD6zkc|Oi)ZR4ohhD|16 zee4#t(?(~s+Hts$?H#P*7L>S`r0Yxs`+KHsgHmYCWPI!gSQp(bZW`YX37 z>wP!c2<230&rCS`3t~-bx@hV2yS$c=>7r@iN6!vakq@u zYeTip^b~txbG6l&p7MT%aG+50{spggdo2{d!&(_)0$~3DH#qTD;G0Y;&*zML65faj zBHe7&&7xpCmb?-wGeboHpa}3HpJ~;^{Ql zgkeDCzC54`3GluFDas6kZFt2D19oL)7({AJNgG}qQggJ2P&wl*I7q40nOr{Y>jS(s z19g9f0);i30B@q71Zv{auHtQwY=@&RI_}^OBsKLr%R)RYJ7J}B+_2jo8fe!x4z$Os zLvFtlz2z)B;RN8*us){EE)GAXA>DT&=R{J0^1tU%K)f;dpUC7n4z2Bhl-hLiW)oCe zO&e2}VXI8)Ah2d4LkU}56IFJv3hT@=4T~;IcB1#u<75=qD2hL=f*p-q4T|%afC*Ug z9zzhc3jdw(v=D_~H%ypz|21eu<4!~r2D-fWPw-kWZ5)V)9WcEn20!PkyRk#jAV|^C z6+hV>tDN!4&M0htH(XHiq2Z)ta)&ywhkSKYwFYjvIvj$~4rOS~ZA*FQ+bfVn znfnf*0To0VzD^Sw!vFU+teA5vr}j5VOIBKpnC2<#DEy_BR)POdNaZvS;PVJEo9O=y zuh>M-uB;|{FTzN99>Bwyof`N6vw8jw(R%*kbs4AtkyteF_$4|S;_Y|$^z9sfJ)DGj zGCh4n*nh`HTm)re|2$%Sf!dsZ>5O>xD0aeGWEMSoj*5zib992oz@xVxRBt9@6rJU% zNN3qQM`aq1UIHh0dm&0f(kNEY4)C;)3EoL^v{C+GbNz|XVDen=(-9SV@DkSn#w$*W zC&oI>=ZU$9g)CZux>xZ%r@hso3$u&f+(4^%{w zP)vo=b`C3%l4lT-WRjAZl!RH7eVo@$B^^ugDwey4@aqW}x$!HUiWgzUO!*eW48&q~ zr{Xd`P+$afChP9-IxvTq;CcgW-0uSP;v4nou!xn%U!XoeDMV@SzYl z6!)I&M%^#wM!k|LP697_pXwX1iMUU-M|?$rnMwghGb!eBt=_;eqp3M@2&cGKZ-dIr zU8^|D$gb60CDcwUZr1bhD>hXIZq_)B=SX{!r;=E^Hn00vOO#PSq-I(L%Ix0V$H`19 z=8vfxQ%&&#qhQb)Nr{A4yucT*DoPHwd;#ekDFbwLny_sEy^xGgV8wYPV=>{DA0ilW z(V&J~o;627E}8IsXwOV@PLT<}fXa%I3CZCWAqN)n8U5P?TW0+Tm_!V;Zy2LO8ED97 zGd<9vrH_QOqPs*$EoqiCz;?lka}2O(rBR!F?;Rmcg<@t{NWUrke7UOk7u}{fk6{h8B4|w+ZON5SA3U--#KmwM$ zpCSmM9-yR=Ee#ySwXyNKd)A;g)HwxmRs?q+cP!y<@0IXB?QuWt@&7UJvG>d6U9!Da zW2?-&_&cZ`=6B;HwE5#uL!=?lky8M#2VhAadEq5se%xKpm9R|a&lg%in3R@F5{fqh z;)I9G+ZPXt#f0NdwFRprru{v*FI$3(B^2~BO+CGlF0gk*-5_0TV z*Fw;8Dgic|EJ_;bDQF2+wRT0zN6r^Xg_LP9r4ZH}G~0kM%p>FpjX}OJrV~16G@OlY z!);aTDQitnGV3XVRkZ9(o-E8a@zom z#IJve9U#oGu6$-#z(tJA42sz79_15e6O~uoY>Ejrt=?y3HeG_aVP;buubA1yuI$XF zNNSX5HnsAaO|9+EY-$x|HbG6ZVK&{EGRDkR$(vJZD?pV*V70@?)NHy|g>{C^rhsV@ z&8Gb?hS404E6-_BBjQ~u*kzhc30U&(LlCrP({9{sItTW@K%Fb6&Gb?8?wZ(44@31f zHq+x4U>W!a0>-fSmdhARfO~@){IiX1^!6F3?)J5-W}yala)k<@D=Q7U2qNjE}T4tdWAc)1}Y_rl9VOS4=@=S9S_& zgpu+T)Ly})+N^-c?t+E42Qhhv6+3R<^9t;J1Yw8p~zht z@1?l{+m}*X0SYVvs~ujZ3hY5Dtp2PpQIaByngdq=+o55@{Y0_*M3$bU_NGj|HUW9w zDg z$3pblZZiVYZ*PXylJ(oTlnB+_H^bYCnj0IMT+Ka@aKhiz+~!E{aIHPmoM^S(gd~4sj;p!1k(P3*xs*k?nj7OI?L2Ix=01cFGd1^vc*WFQc4epL zMi?ni%{_tyakBYj57nx=q%s3_H=5fG)Xx_ush<>pSy4g1NVt}c4|5gt>6F?EP(cw` zE$f@Apiii<`mGtUV#jK7QYV%)VVJtH#jpVgj4EUTeHo-EY_M0(F52vNu6 zT&lveQ~qGyV-t<^w@|%}Mmo0zSkTya8bWvm8fgGlx<;CwowBP1gt?W{lCo1cIuw1; zPA~1s)Ji*_1|}&)FU>MlFx~W}Ks=3ZDv5_sKRq12Q1sK-SmpZZ<770Y=%;^4Nh^O> z5U0!88M8TOaB{tz^bE))C&?^brKZUAMX9dbwV`>3%qypohN!Nf6K6@nLPnwYDy*2z z7D0kb*Dn1f=7*5b=wD(72s5lJpBaJ#7lj!L*o8M*mr95d-6cI8Ew-nhiuRawv0}Db zRfu5JGqUc!EAmit9N)PKfUq)F#cEaThnZR)NC2_B>!2+ZVznw|6DpmQ$vQV8S?X2XTum8xTI+wBDZLHcxX)t(sa)H-!H_*Xh&I{EHEy*5@0tAZ_=25a@&W$y6t zr&jCW)NP|qLHmrxD2+ddlIUL>Bji{ zx$j$mWpGef0M<8Q)m3}})_feaAy&E4%5M>r{oDe!{0D_`kWFS8B_tv?{`=pYEb_S~ zC7iK2r)?}yJOlpvZ%h8#)dDO7{tCdd69OQEOYjHRMhGVSa$&zaxyb?a; zBaq!81Mnyd1R3zu5m3F2%sSZuECZejz_R11wHC1D=P3?yxjeNCQKdrGQ5kD-_+I!5 z=Pq%ZuvpCkUj{7ZTC&(?3$P4WEC9=n#jdx2EkBEKkjrJUJ(AS(kd0JM+f{l!e3LVr z@|5u1Jr+nb;Jdpl`R+jrunhPv0LzZ=K4Ae{e!k-%m&IWN8$UN z2Q}{yPW+k$S`9eyDN9a#)&eX8P7J`ZJX$zP)hhi?cN08=NK$oA_IMC(tT5*S*vPJiS3k-cLLP9o*~T_S0f}v{aHbUE8Oq|wHgtp>s(L7Q3WTzmefhQh>s)l;P!J^=;@C~lUMR&n6*HQAn6Y{TC^m^=cSPJyR2ag z*zHNWyJU^0lTq;vk@%hRl#pw|gdS@aT^8h;0~M!@Kzv>bx&Egpa#_fMZ$yLmgSJqJ z(V4xC4!5$IX_5q+jYDRb-HhG()SD1!zp)He2fcd}8iXgtg8}c0?^4CATs- zPAf>JVdvBZ*VTzmb0B_WxY{0dhX+vY3||>)H5-#-;eSDnar}+g%i%fq@yFxUR&`^m zIzBou>Q;x{R!~zIhX&|qB37XC2CrpEsq%M>;W3_B6}wM_?Kb59$fBmBSRgYNT!fdntS#xLEi-GT7#9GM=%FQur)6YgY@f3^?n* zIaqd_wVwrS`8kV&TrOwrDrs#Y`>5>IBi;;O3If5g2ZYg%vcQ@_yzU679vm6QBJ5-f zunZV20LzZi)>^=ppV2tT5Uz=khg2@xg}fZT$9YY9MmX+k7U(nJxTh>R?pX`4 z3^*!43(wk-?{W*U3|KD! z%Z~N7S-_T`^*G4ovR*-}74Ne^kO5EKW64twTYzQ2Qvq0ZJoOJ2u;u3|4sy9XRnBU~ zZ(88XfW^LM$zuO(0hR%a1z_2+*uPo8mY>Bq$mOzF35)o5+)}CyumGyJu>tn70Ly^C z0m?Sj<>xOBa=H9f-1?m3EpTKYwvMr6tJM}@8L(9VmK|GNU;$fxw&EZc%2sxj zY1Zc?B)NEZU~pHvKIck!TFCmG#2wyaDM4(V&LmJRd7Vx?eJEV6b6|RIRl>5JSYLVO z`8C-2D9H$9t8UqjvNT}XI!NNeB|DJ(w$d5n{|q(9##k;_v*onhv1;oQX{Ao)uZXpE ztpzh@T10ZSpgqUORiq`eR2OBlHi}%HE*YbMHc>R#I6X_cx^n8r) zbm@tNA5xo}p;d4J6%rE&_l#vx#kRl;F{h;A`9-H)eMLn}k(qg4gz9ZnzYfDewo^NTDc~vCWslD%PjIrx`==GB8voe>M+U0#pE&%+sW7`t#`TI! zGKZaLUrjtYAwcVIBeVu!*|F8W7O>@KD-Lp@Y-LxOMm0_l+urApxwNYB1MsvE)i`nK zItX*75+4iHN>+)zzXt$9T{v;+I;a}z()C!U_!xZ%dznQCR=1dcg;=^i(sJG2P1RPd zI#`FJLi(RqORhr`{a81a}Q^BJ9KYP2;Y!dDKNJzy-EccSkysF|s`a zN{D+lL3uW5YDnB*v-_^ZJ^EE!s$=7Ix1VEmqHj}W*_LI?k*Zr(I_%#`{_kXePrEth z!upRdEN(N6?~-+&{3c3D$6< zx>4arw!*g!M|mTM4>Pu{H8$e#Xu0ineR5^bMB8=3eHc)l41^pFCKHYbSeYc@vGmpm zAC8re=AL9Un@n|z9Zm&2x5HzzKoNHM^@tf}hu?r#%noN)c6N9qbioeK)%9o3i_dMm z>vLWU_q4M*-})eMK`elcS=#Mj!RGCAcbKyS{#`uny&Yse{M^fb*vidYBNW^gp@3bP zpx|+Y7Z(CYwvpU@fA?@sZH`1I^-YI*NT5FIULs%zeBwk}<--Zcn#6kySuapY;V&JZ zgcYrg-WrNToW|Hr3<@;CYmV|-Iy|GP@azOr@6~{**uK=!GU$qT1AXG}d{S+&UTd-? zj+0at(??{$KY)~sR3l0l%^Jis1^zw&ijVL2sTF$y)q6wNbi0?xo0s_W;**P{i+GP= zJ8|d8JZ0|qj0#G`d=`CV8-uW=?4m#W@=iYrEm^q~#kLZkP=OVA17TqTu=nyMfSjYC z2u1?i%ODwaO0R^Gu=8M?zvSU4Kh4AUz#NK9SQ^TN-uU^Q>NwQBmJW}bIu7TWVclQY zhQmdNAfJ-)$C-fstPrlr^X(6th@xu zZC)KpZw!kD7ELV1vA7hAR&=k8R~;-Su-JsfW-PW~F$u*Q?=n_i4kgI0EAaloC?mGA z+gGykDpp?2%4=A8Ei12M<@Hc* zz2(@@oABypEZ)qX+=7=Y@yT1@YW3pLtERkL@!oA%Ohd8FyB#l&!gua~t10iTth^IS zXy`8X&)cB%4#8LMX8*q(%5B~~cs+Uw`quA-%QfCRpoCfUKKR)>?Y*1-+|PgB$A8|> zek$Hiao|6P#RrfZ-;c$6@ZbBecsmw%VevyOz6ZsG_h9VPDfZbE`(%o}KE+<0n(!V9 zUSpNBDTh^l8MeSGXVW69oXyTZ#0Sq|anAWroR7tQ7eMh|EWZ3YD4xdRcNaqOM=ZW| z5ftCYV&272EXLxWvG_R_pL;zNU&P|R0Vv*!#nl_2xDkuKAt+vs#gY*y_Qc}4jZkdE z;*W(68v~iK(Q4}oO7nVFTy3%bN_+SpuYn6Dw^pP>)SoA5gFX$ z&2}5avg@!TWSr(Ew^gq-z^HCHomREcu64i~>FZh7azSqaQv^(Ku;ZGo;aZ~#Tkv(j zVgZYNsET$;t+TA{w3|+QwAqpk>5Zke3D#e{Rid2ico|@-IORm_=(P|kHWca$>h31D zKD~O5Kfg0M4#NHQFhKnIi0$ds`%;-72=^)uA-029s24oRN&OZ0S>t_`|MQRRpQx7; zgZ|RcC>($-DcV5U38W%SC%_g-x}brQ7**X%tBxyBns*3gRz#F}30@I>-b6zQFeTK+ zWopI#T7wARaC4}=p3lGQ6Vce$YKI5@z`SmNx}H~VN^raC}HafhFn?xo< zK?f-?-CXHpt{1OIk9EaayV6;|cC_ZKZ`C%Ac9uKN`c1fs**SYz#4?OuGrZ5m4`=n8 z0M~6JbJ1S}^x!MO808i=CdLNc*7O>GLA^Q%liwPDA&3arLuq{pAqLpDI24{Nu(8$| zt!{EbZGzxK%N?&*hv3^mP^KUdG1P2*kmXdEBOe2=AcNfH)Ba2Fx39}*x|v$k!js-ijSyxMKoCTa;=0ny9j$s<8Uw2A0?OL}RD}=g>AM+UptXjZdN; z+y+L5sSqaOO#B#yt-R|2vY55&FJRw?Bn&BtJWg@G;Br6@GpAKmU4!$AcMGE7El{|L z(~W|*+tbkI%|{Tz_?!1usUuw_8DXieZxi<2-KO*J#?HJad*}a`LFeUd9;192-G~nf ztmbP*Apr7e_`b44xRA{j9NOETR3Z0G2#w}35wG9m|AR(g%52AQqwD$^t*Cd@We zY$~n&2@U}=Y2@e2RFaoRf| zd=%If;uxHmDCcwTb7YzXeNVTZrc#n7c=Q15lw9i!3`DCex+qyeq8_M(y;-KOm8?MZ zcjHtISe0hXt0pTiYu_U3R3Ea6sVBx>om!zb=Wm;FbxMoBP)2%^ON6b8 z3$;^e86kNl9~FUfVfY=R%A6+kgq^G+q(~*`M5w+nCFuAZm1$U=i+|EP`mff)=xOmzMc|!1hHGv~H-am!Mh%t>~D^|>s4g`CGOwym2DrX)nI}LfS z+G(~fI+^JVxVCep6Tcp8HtVs-k(}&vXg|a`SOBVj!<9qLdL33m;tH_7>flgcRQrZ# z{(KUEkA*e7w_+FKXxuUSh)VOj%#j!*{>&Ypoc0%wPxi*w`aqYG;@aPhaCVs5+NVLH%0S{#Q9f&UO?22JAkOxn-q{PGsO z5tmtP-kiI`MHJQaHOj9_w%2}?0U#bFxJOU+M-h@Z*?YuS6qv^d%oG@nD zM)xm5WyR2aSEh-_kfh{+Wu^8?DM&j5)P6QIwSPRr)c#?S)c)098?~3j#x~9a`tdw( zt2CbH zJTihR#9^_ho@l)tL@V7bUaJkh7;Ra)~dO;>BvmpCeldBKBhCfS&#&n%J@oWe6+UG zfwMfLea%)nD^^?r3EdmpDQ>4-NIj9V%+xdK8L=!jAXk`*RC^cGdbK(K${BYtNw^B# z8M0%^KOmhPA(oX)8}FCP0jq&>Dtn#c&$!oVoC@SkDvr7u*#`SnwV`^mNi8Kt(qxq> zp|^R!#36Q+ydv_DVSwEsZ26{gaWGXr4#+{YG7tO&r>D5_A|F!wo^tztU-|v_i_4jM zv|MC-oFT*fEW;-)z%mHG24LBRU%zDmTmJAX2iZg=G8Zk2!^tp|FBO?`{@fKS!iPM| z6>kvn^1KCl3`qAY&Qa2+_ZRY6oWd5~B=G&W1$+im0Ee$oI@wjG2|Ofd30?zH63*00 zYv;q$LIMxHM*3P1ZrJ}yFzvd>$|XH43^H_Enb1enm88%@3^&~9c^%;&qtL3e9;)J%bKWn+RjL;Ip$Qy$Lo`rm(KR^V-Vtcv0hx_%J)5kU4LLrJgBV` zxa&__ib9mv3>ip=0%Z)<+cdK>S}wJ{D6O2_2a{f=gefWpaf+U`)fOCT*Ku2IDzV}Z z2(phQU{E_*<7iDowun+3jTN&fh2V71Vf9f8-OflAd21xGxJV9cykgwx?R8c~LqJ+V zIaZwvS5d|nQAS)|@vd1+;}l)>{?`_ZzFVMu&K~DL#eglQYAj+v z{d0qe0q$=-Oy0wwHfy9|^Z3;AEQk;ws!3YdpU z4$l-Oi8WymB=N79ad&_>_RjD%L2Cip&1Uci4v9)n$d`s zLP9g2wLp&n=^o=8C5?K6(9F{o@EL?=IDCcD$*wX@XeL2N@J>XOXhSma|SUcWNUnDig(2 zzyl4ZDoi@B!;A0B%ufnRK5-<&2TAKY zoM`W+^sW4GC%f$X7Ve)U+ssN~wlFHtH-h*CH4J4oy5h(6LeHxjxS8G8oqg~X+dQR5Yw>B-jZ9lxg8 zfDH(P1hI;@fnw4xXXC!LDn&(ijW_PQAf-0lRImy9nYy8r*tidY)e5IX4p!7zv2ovP zR9OASjCipkHi+#VW4mo%UF}6gKMlt7Y}=QBH184wAyfpFZTq^&Es_t}?+gvRJzV6N^7S9 z9_@W9;Z}}UAT`)lj(c7MSNLzZl_OpU#-iBDF*dz(EBp+sAhIq}JQ`(f<@kzlcf!;d zXryI{jT{f_ZWf4r{YFn;)0wUY=r}i;y7oq-MZIUXv%h&})kXoMMcnhmRGTxZI*WxO zZ-OLt1tVIWxJ?A<5h^0PYp(VRT(8>PEYmG9!a37g<7p~dx>3PIYdi(2FHCDZkyTcr z*7*8zk#Ql1-&kv`TYzOSw+CR^&FzyGu;riIImpTcnUX`CVvK0ms!*-*Rtq#4XpJ{p za@IR7z%t;h04zJsddLE{{G7!>E|jzED${6<3DcPOO2ky?fKggo22bs^My4OKJ;41# zvuO@N5bhtLS-*=zCt)Aa#0^U$RZgfU%foGpgrXWl16Nd65DrRFRF%-%39Q9o*Qr!5 zsXEnqy}5ZgoUbLt*6`GrYC;CM6m!d48PS@)P5M+|ux&Y391pgAgS2Eei7OE&N(vrv ziqT8!)HO)u{8xmR1>2s-D;8{HS0*7Rrront}A{Ede;&FPqc%Xe9XVDI}?L}}EZF~_6fyf4iw3L!q8PYQ{Xck`! z3_)$SsE1l7xxJ||Uu|xNGAebHk7fsDvx^s{P$G1ODLY;G3;9>#1<9L6w!+}~bkcSg z2dX&gMiLXd<3&(Cj9X(>d!+?f1`1ICmYqU$j0J4@6(SC@qE*aFW)QnnkH;E-8yLh81qg%^?hxX3FXIYA$yZgs&0!a+_shZR9^<#mpcPI6=+k zA7Fdm#5}74HbGd7>&tMVvzU&hZ4LbS_)7Sg2TS=aqIdtgSgeRu%s+>U0SVfb?D$-# z@S6XD*Hh;<**4PY*8Aw4DV$Jz;9QMpR4=hH@s0%gl6^R<`7NN!quhS#NqDO)n zyFkTh)WGMZP@{)6YyrDW4GW$SOTVABRfmVsR!fMsWwf8GMN{B}79*<@x*iPpc1lcgjV;twqlWWZD3 z<-i;B)UPbSGT^BIEIXe1qXlgFd5VKvE>GOLV%sS8lECc=uz_R17l@_q&=PwR&x%{;_RFXo@si?cA!zv%Tr6E(*Wb@cF001gDsKY4`1cnramUD zH)(-K1J;|cWW6_7fMvjX0a$jdH*Eo1e%9k4m&Zb3C5G4P_yk#t`yZ;Rt!n%qt zEez}?o?4)FIVFX5W4Pg=U7y&GV7=%z$WaeOK6@3ON5FQ+*%a&p(i`6hM9$Z(Hin&6 za1L*{Qx5DC+Z*9X%G@oXeloWm3bZhEN~Q&aqMdWL7gr-E@WG^)K;YR4(H~2|C@@5S zG*--FSc13F3NJH6zkr=n5GqhM#|{*W4G|1J2P%fnYeVz+T*vb!f?0{;oy8i~Iet^l zBNxHo*KpV~hvpXrhXQEnkST5PvJ{M1bVrb46Yq|e6!^RpQnXpa7O>lsVyD0fm!2pQ zIpt`~J9OX?;rxyi>{xV7kmc?!WWnd9kmb&qC(9!6R;81K`LhT)R1eqZQ!tW?6pwcy z1wJo@6pzh3DfW;(J?V5&JwJp<>SHo^evyK>Ton6h7mDHYQYiM^%u{UV&{2|3Dd9LF z6cV=yWnOTj9znS%(*qT!P5k)06v`}O4O_r&Kid?RllQU|q*(MwOfoO+LJfRg3N=<1 zMGXsOP~_yDVLMtyN*Aj2Ia9ihVpWuM9Lq=w1ua-de{6If2(+wqF!}6qqhdTO}luSXY!7^!E284S~@(-E>k9;*jBQ;gC>!EAKjf#stwj_O_pUi z85-l<1wkJXP3W^oU9*(HH1C_(CHK>6#j&m(3SHAJ(vT0T^yl^U37@1SXT5J=J6nOr zU=Li5#zfN!awL=0&$NkksTSbtzUQ2@dFCuqrPlK`QGJ*@&O+JR;GCIEXc zUjjfK1x4T}V!8pF)s9BaW8V1ybV{#;k+Ab%oWJCODL>7__rM(LI1J?k@oi7bU@XI>vY9C3w~Gc;H_mp69GZahX1^CpjhLb%gS|l z<9sNBbxjwtyVo-rdJ(%`&&rEg`Fd6kKTQGpBj7QvGNiqw|R9ay)i5rSTwO1$Kp~fTG72WUUjgTz+w{?o3Yq}#UvDKyvta5 zIh3&X-W7QNU>qr1+3hP?c@-mH6Z>aJ72z=v7nRt$6P?ET*B@=G~5$ zN8vknz}1xZR#x5#B{Xyw`{!*?dWYaEceDTB4&^rQ9=sks1$WE17cSR$?|>2n(|z!> zb=rG3|GA(4ypR99pZ!$4|H6U)f3bKNx$y&7Jc|E*0*ht1-{4EI_$dDSAuN86#c!dQ z@E(j+GQ}#GVjoYj52x5iQ|yDO3GbocW!4y*f>>k6V2i9Vw!J%RjO{-EBYf~vEN;FW zircU_ce4Z^i<< z;h_wg@E+!P`7rbd{GXlPwAkMU$McS!S!@1ECiw~V_(9XLX9yxDGp@PmWFFw^XWu6|slNh0YrL=WfBupE6ZLXp(BGxeE=WuhVy`Ilz>j}F0 zTJ27-aXZY823l&*Deg$E!3GS~QR5E?a?VxzkVktH$XTma?45=8m|C;|x+TkmT~~xi zU<6(f_25y;JKhjhla>0e3P+v}ei>llOnj>}Oe_v1jTRTr%eWAq5N!Omd~EE>vGJP{u^|at zMdw&F&fkd8#Y9PTmtbV^HW*e+$1OyUOd2VH#F!5)S*aHCNHGy*+?{pw9?-P+PSkRQ zJ4=YPU?_jml4O2dM~O>E6F>u*yN6JP2I`=J4AeTVRtCSt7T{f_R;D@B2}%c_I#=(K zptXU81sam9uZ4H>Xlkh5=rlF&2C6sv)KN`l2>OVy{Yk~Ly-?gTLDo^v^6l9^}{Ofj# zUW_B~LM*o8Y=0RR$Kk)nU~wK6=RhGGp!mTQdwGhzIK^IyIXzir%(!HgF?*I(#snr- z=Haj}*$vsnMTJ8TTvR)axt;1jbI=1fWFZbJR$*^gVO#+xPl$AV1EPe9fot%pIOo*$ zYQ_Gkmd>ddqGr%Fb(h+M$UK#&hVC|+Cnlad)QY{^@t)Q-waW@bK|or)W9t1_NjADa zsKSt^bHXHkA5^SPof+^W^ihF}z%4})mM}HO)jD}zq|eeP#RR66D5Fz$DvGv~%`Nq0 zv2+kj_64=#SXWSQD|pBEKx-GrNF_iJv6#W8>${!H(k{*#^oBa8)P_2hiP-k(8|D+& zT1h9!{zAp2=!x+OvcFBKO($12K|eE|AdA4NLnLhgDqGQ91Fdm8SKXLAG&dT+UX5`_ymGj_og^uTOd%X4OI0-C(}2tv3*QaLkrSEbK! zxve}UbN22wowMKTzkBDTb78$__80Szw2KjWCT%lAo-s$roC)eSU1r{Mlf7kL0@a(% zUCPjTDjGU3&QY0WA#PVn$Tnjz>MP#v3xFbfK;b6lcX@lmBY!>)#%XU~xDHQJT#5*1 zi)v5BEBrS+NfECDnJ*5gi7`DFAkPs20<%u`rLU`2Im00DA^6V1?4#9=12Ow%+ig3W z-Fm(El16iL!)deG0ac@+P8$RBaG>e9+v?QZwiJIapguATS0hHuWK1IR10+WJ&&&x} zPNLIEKW0ENpbavc!>^S+sr0qnI?wK8LK%~I&ZEjh6cMR-7t$yG-jcMARmR1(dY1iB z7aeynriS!8%L0y^Tz0}r=eS|FJv7j+Z5(KiSBKnwCwj|ScESme!V=cU z2*s$;<{9fF6DhS7ppPK1h3O+T71kMN9d@Xtd~OeHbQQ8!d?FXOiRhS8yAdgr8kAQ& z`x!g|Yu+{lAyiKan>W}D!Ov1l88d7`xd#C76-CDv7z;LJ@a}~dm5C+>K9^!61f@n3 z%`yy9qgvX(A*AAl;QyHCVM8>XRCvI5K7K|A=KTZ+X<$Ahxx;srnheLj_f7hu_b}F) zfvY~8(z=$beguvA^V*%^X@3!vy?}=4WF;Y>!O!3Wj`D|~Ju`L5UkHn3u?6o0Y<5TX z-&nQQnD!op%6wc)%QD0KdH9yU6Z{Wze!VtS>r79v$D6CI#`HGtclf>Fl>oLsAZ#oO z?jkNYdvjosG{6;Ht;|EV-8k9eoS~)M*Aa?1<%rLZh=gzAt7h6n#mhmwuQ7aR*dkF+ zNg>{|P?;(52r3Ne*Oz_RX+&FM4+AJ7P0Ulc=v{}DQx9ZYdf8$Q+3*qfLg28YnMSX&rrSE2K5zoZxK50DA)Y+}%A9l=5=p1runXxjIiRE8h8-`K7Hr`zkRf>iLVK zp0g{Ho-;2X2`k9G#spyN@N~Mzb_T-Jha+kPwMkDchK_LH_No=f9JpnNr_=G86rLtA zCfNxuJxuq)vq%(0X{_hgp=lOY_*-bYfY3C<${HhQ-NP zoCt*oP2&es?Byx;;uL!+7Mf<2v0=q3V=*mO8IzD$nTJDuc0TZ6 z+>OjPRvom^8@A9(TZrq->8}z!W&*LuBu5jkG{P8HNP(y2r~Kz% z_|Gr+&#%}|Fq7lLJg&C1)QbJ{4O~`W%|uHr(r`P2;q5o5T}tplSm5epbZERK$9>L&c%tx_>Gvs8NL9>BfR5`y!TdqgFy=gbdju@etM>AEPgz zUs6aOPJu+INQBcW-Zx$dCZ*z+NExgP=Y)gxL549+&0bO!!nFPKTxd4#m-r-9W? z48fMM5r~tgBkzP54nc-PoXB(fDf-d~DRgOqzQj%jP<%`e1s%D-baN#?_{-Ni>o*No z+oR6t8~JVo+V5_qy5^sN0O)6lTsF*J<;sA(y^A|O){1KyKd0lK5qvYY4At3E9g!H zWlnuwZ6VgL7XbS?K!w<%%?r+jh7UroD++nc9^li46Dkp~;7O<{C@QPLBmqZxPT=+) z@PdQ>MOeN&;?$cPYeUYk3)2YXB5ba8Mny%R`v5HXMMn+WtOQ~;r6?JMzx20j?8PQv>mZp-=H2R`?K zr*H2&2v&Uck2ISd@S3{)ZRm*xsN~GL;GDnVy99iP z=;mRB3l0M$KX>)p|Hjtc*!sDv?*Yc9bL0Fsf^gO-{9YdwAO4FkIyiMCTs#nxCI}N8 zK^xmSr7>CC@aNTrkANi?DMkjIFg(#|!fJT$l>n%JXgFefBOrTmxI#n*ZLx5;PJ651 zZ8nbu615lqXI@5zjg#PC3{lFHQ5q;IszI@tN%iFh9F&1x!ahAhtvEK9?q$^3p0!a1 z4IK~h2c%oCQd`es`-pCxq*fg3*1piKu1T!j8P#6|nn4Tlg{Ci_<^y4Lh>xd)=A(WY zWRDzp2F}iCot^`F%PB6zdRok_GE3>Ku8LLBEh&A(pA#LCo*X+JOQ}p2iXlt?CoJ-- zrr9Vp)VY~RLs(VG5LT3A%P9){KvY>(h1DN3@Zx04W=*4Z0jaIms-1|ar$KndTe1`o z`a&q&M6@e7yDkl9-Zcn9m^-4Rw(ggXfVkTr{Z%4kZn5dMgWY~{_HN%{&~1aHS0D0N z!?{Ard5u5fxd~Fr>;2~a_Kt=gr;e{jqJG{7)tk-h3a>mIRd#QV%Dj*4Ekda8kE%=< zvXuQaY7U&q1@(C!heE^hkHVuc<@H+d`at^MWBAFfi11J2)&IsT{1;MQ9}gb|s?zHa zLZ;Tl1_KvaugA|KofPJ%>?yBTu5u&!*{^T7QR6cp_>K$|C?{=3;g#}PWoFZGe@)0oc~VZp?W#xpKBY3vwC)+` zQ3z{cdeqNVSZ9rs60>pVF-D7P8te{{C_DObF-@tbL3qWpS11y2<}F4LB0Wl8%XZk6 zY;n{n%=}*yL}Jf~c{pR1M5ta=yyK1~K2sl}38Cu2^$RJw@FH_G_;bd=vyr5G2b1Hm z00WnBdqM3m)J=_w73M&h42A$IDF_zj|8qm69 zb{|J@ataKb`bdOoNo^36Hb_S^%~y#-G6khUj&4_!UJel{3{S<_ks1~dm;>ViBgF0& z$n6ZnS&6pI${wsr`W_7&aE_0Gn+*3doP^jJdd=KniG61k5<;FU$|uhPE<|MVXyjxX z@f}hG`m02`eo4hgcc-_#v6g^-?~4e+EE{Xz zGe?7WD14LATKg8fYGJMY+yW{C*F^wT@z&aZSiqe$$!(|B8poSv{!Y{mQmnPEBSOS&bj7yh7p?$X()TG#VF_FO4l=l#hGP3VpQ-pn2`P>I8YnLyVl;mQo zCUW@zKub(lLk+E)Tu$UX#VC0m#dQu|F^h{`*;!l>w}P#atLHQ@%6lG*o@#5CSF9$@!C+_(MBUyHb(>w8 zbepC85HVJ+k@;7eVzdb( zSpK}ffCUSv>oT}UB93M*-)GZpdn2=Z zw`VBD=PiRAq-Sp0gegYvMuam1c&*qO zvBALYj3#~-iB}^#W<(Qg5jf!8{Ks(7#U=@xJ&SJULk+KZ%f$B`!OVie4Y39GtdzJpAKwWd^HmJ|7D2|J%0n4UKX(3sD;hny*)8L-fVRS+GDW$bFg`7 zxU5<1PtQS?bv~m#4aJ^ooU80A(I4Pil>ol6WX}ehK!J1SW!XRK3)`Ab z^3u=_Q*mVArCFN^{seniNQ zc|rd2ZRVe-2=3;OF|nC{1l60#PsI}^teYRO%1X4E|EpYN{E@?NYBTq|#dyy13~c5A zDoMTfv)RmhTfmmzX67K9%v4>u%C0hv&72^$yze7#g#-dz+bA$2{LW+r$@> zWz57r2FU1V^kVvAW(f8}@eengt(FHzYk0zZkD-TKA73D2F~xlMror2@b-Lm`v?Sw6 zo+25QHo^mhF-WvN{2(;CkZ&S6t&I?_#^J#Nqp!g$78qq$7$Ka>xZNF7Dd?j4aw1!2 z4mHQdn{9Uhjw`EfgahzK2O#p;9I;iZPBKucG)itB z4qPIzKa>Kc)9~l+pmVUy5+MC$v|XWPb@%78`a!jvYG&1kMJl*Wi3;I0j@<%N^NV zZ8fA5L6`;=I}wCM=UHTPA1%T|Jtqol#s=wp&OEyjgobi=?hY4GywlgHxKp@cKgtad z3lOZN=YbOtk~k0ah_5IxClZ(`Fd7M&iwTZ{_6lQyS3_kcOyC`by+!JKufQuo_g$HB zA45`#NKU8rN-4HH1JoYGzGR~IFurLu)7lOB4bWa;)NVj!e^u085*yn%Dd@-ZjWUJj zdb3Yv zj*fwmW@~JsUbXdMA8p{nCJmP9xn7ga14ZDejI(tcaAs`q8)X`&__22(RYVFj^N~u= zh_&(0$RDP&rhRhzvubnx^|R!&mM|82NM%p8zmJw4A(|^nqS_zv@^cjjxlpdMt4tHKOwb9u-{SNa&d5q@--D-x z#4KNCp`Hbi%KLzpnIn~w1{TIAvn^2WBZ^8=R5FGw?ydU)qA$|wKsLV^PL7PNvxjMY;*!0Uk*R^h(_tm^+3vqQT&Oy7Rh`J zTZ%iH(qm;riT?W(C^ZIXu9XcRf%Xb>Jv|PU#avJGhMPmvT3_=v&t{R#cBSF-5rT{r zda>t7ZcQVmGmIX77g;6FW^%lYFxL0+?PwfR2Sgc+^=*a~P0fiulav7UPoXkX#*(q2 z_`3cHF%pj+#tC_lQ|&5v2!7Kjt;{+m(M1K!_Yq10=jo!06)$^uv1cu$|3PM>+iFt- zApU@Kc+s>mLnV?upo<7D&c}*ba8XP~IKZ^Q#r9&|jI>4bL`k4|`MA^D>r}>o=oplo zT<)w2Cm4}36RrrwnFkJ3kIg*S(006EE{86}hvpo~CO@cH+ZcjZMynlXYyu8-A8Ix_Rao4dIu?GiNFEE4OJRMn1QuiA0*(>JRY_w3 zpQkgxtKwt98aiDsEe3;7w7!59nTqrZyRi=rRCJ1crc*ImFFqPI0g{OtYN{=v}DuYPrCjf%X zky0`>hH=u2VcOUXk`yJ4;febaD}=>B7-x@?Uiw<54zVz4dlDRKu#RP@TJIf#C7s}T z8?4o9ok_lib9|!X#1?SIA{6Ud6K+q9ZCE(zR9h~%=J?mRs^-*cz3no zB_R5Lp|V&&wClPqzN81mr@W*`vk>5Ee3i`v!RZwLf;S>_!mJ~Ky)Rq_KY_}ust{f~ zGz2TK{co!rqMb@|w+%k0Xe%j`e~6mgLOSJH_SDT>M&jiLHP8)9P_0fm zM7I`gb&jxVhe2W$ih(*1Rkl`z)$h!p$0p*1*xriQ19Y+ELVp4C^M$UNAj-w>5tZgr zwJ*^C)!;qP2@?sZ^TrW`(020V&7ls~n>;Z*#8s9|Ul1f*WrGBJk6(8rNE$ zNMP0X7F&;?tb6IQRN;1WbeQaN`4*_&Oovg%qS)o~O{_9y?N4zT_79bdjQ4Z+O}$2s zT0mvsH431z^BO&A0b72r5eL~sjWXvdJU*;B!e(1B@Z{08fV~tx4)>Z=^?cI^#kt5e2HQ0Wr z2fh`q@Za#r5xfpeSFvqdY?|j@oink5NPjeP{Y_!ALoL$g%RO)e+<%bLHxNtd8wgYS zlw(JhCIUut8(xCwiux_-&9dtz*LsRRY$>i98LX!`JOxUvVwhuJww2JHnO2bE<>`mY zVqTsy)>F)?!p{c~G7=0MmbD_UpDd&+$DKhlM5hO=+$zzH>5u3Ls9Y8`m%jRN#>uk7k1ei=Rz*)`)=bxOK!ABA`ki~&0 zJ7L5o_Cyqj+eG3&LO6&jI2yT}XAkZVtIcf}G+YhA1|@fDW<5DyRZ-K;yJzCb`4Uub zCU8@1?$5KzO7!IXq+DeDh{JE{$@zB+s0b zqO|rPJhk`aFrN)S2xp~<1`*_xy%vb*X9~6?9DszNMNcz z%ejh>fm(Mt*3K$v|Cp}lE=Geum^|H$H{{T&X!snY#R z3#bgZDuBw4tNv&KTYj$MAQ#G2c9m(A?gZiO-HVvgD&22@r-dlpDXTfOBAo?X_qi*x z=B?TFE=!UmRU?vg@ED%B7CA*&EJX+3-uJva2r#S*T@<_L-AZgJ9$ztt(e|Z4shL@G z?RmEX+A}i^QbKD-LuIA`mUP_65ti*q3FG4f*$PHQV#L;nJ=~#B$Ncs z(=D7TcgMS{2pE~{u|%>59Tw}RuE2_!4KJo59AMgYQw8jJccOmBJEz%7-~6sWeaEk^ zyWhR7SVW4=knVtrL&21^84^C%i3Bdrj*jp673~3-0V6bLAhjWRhnlQA;XRxJy@}Wf z_)qL6lL~F}ZZc_~*baWSo6K#DgcjWqn|$5ExghgSc!h29^^IZ)B>4In-XlheB)-Py zI=;?Dji*?{1yI8R3bD!8n{1&F%LP%ynys7(Mu|8DXp&W7ur@c^&Wq?Q(OsgfEP9)s zf)?l(bIW|J*ko>bL|S!w3g&_;n|$@tjlIYYS>1Q}+DlU>6{35m;AFen=F3R|)Pi_I zFsEW5Sum%4VlfECn%$+)Ni(Y{7(rqXA}v3L=?vWgc)&g+t5MZr;A(S8+n33A}WeFN)xaB1R3^ zX1nc%2Xev5tHIG+(W&hNqi%KBZ3Va66N8;vr|t&-Mv;z`-NJU|p{l6qFet(`T;(a5 zhsKbzOpRvyHH0;_xfwmgOV2)$<5Y<{ofSr%3Zi64o)ThK*Q@A_hP`fLGKel*4b_9W zWg1<$)dDJm=t2OMU3B4{7O>@yE^v@dCZCj;)fJp7a?EPyIJ*j-lh^$%3SJA};6fw1 zON7NIEs$lvUXSpOn6lRwEub=BuK+4L_WGs;Z28%XgIq3qEe>b0ka5(r<>tXF;Zx35 z><(e6f3-l60ZaYTj-~#~0xAQR3ZSxMsh+!yXY2y9TRF((veeQX&%&O6uwj|QA~AXINLR~}&jl>z4kP}yJ0&t4qlLfOl%GEFK`f=%vSjtY=Am1r2A z7LrP2kk1qIZm?vcF9R(zrtvEtkZ^O@ltVPNj)J6wq8PS#!o&#CA3+V!CH1QbMdRW; zOTPShxH&OccLy5oMs_aKK&{bfHHRl)*VtxbgTvop4j@eVAHbCV4f?a}*o!T9SR8T| ztplj=@vJ>h^Xn;tr`X)0A7V@Kw2$=s88YWSn*ycA1ClGZ==;!~nU_2zx9As8nQ0P8 zI&K1&e6)yv`*ODN!Geqx2Jz+nAdHyKFuQ2(+a)%W^JxfU&BwP*9i=%o7TE#XD~z#T z0F{|CmW&OVmApUUP>W|5#R=JKCW8p7(}->|^92x#L?Z>_XRr$qQGp3(C(-C|bKc69 zXw-`pvtY28qHwI0nP_Buv?gR1#U>%?xV7#_YpyO9c_InpG^jX~OG!x>_*^g#jVtoG zv^O!iNX)(Q14jF$gF91ex6LTpkOH!1c1&Y55x7o;mgkN3Q9B{+3)?}?5{gb?WV7gv zNGMvxDW5r^Xs5u3o_=s(~!tz#EDslwj&>c-ORz|;-P*Z1tS*S5u|u;7gFH!Qb_UcnJ2{_va2?oE~@L6j2ZPY89Yy?ATAfhzS4za z_`DQ~eQD+?wsYv}OsAA^eG&?Z+k`T|PeD*F%KTdw%HZ=-DD#_{r%Yk#tNYxeM@lYg zEQN~GG$(vs3N?0P4O_r2&;1rtok(9j!ImdP<{T>SIWy;0uqsMQUwusq1uf7o(pS&G zicKt*N2K)CH8j;!b$A(Nvc?P(rZOGWy>_bRUYvrc?JB3$O##$`qQW#t#XzEIkoJYe zz!WL17eXJ+d@4#xEAnR{1Jj}-BBho3EvV^fQL#vArH*TPAm&eLy%V{NrL^9KS1hHK zUFAz@&DCeRp)>DuY}aQkwKE<=^WLb-?~A(3u1vbD9z!E{*Id59jUCe(r@m;*H9j>|J*g++!ZT&$6Pqc4nq=3 z^TBJ5@>&WoEo?aQ%W;wjVD$nnmuj8_A=)G8ob*pB z2zmPUk-1^to=&M)*}m#aYw=Wq^J|yX`W&8L?SwHd=cNvhdWk#ns24nD2NO6L?CNvQ zb;mpI*r3~Tjy(LxBm125&UsD0Gur8lxBFlEQug9zY^2%R_)@%hDQ|3GO%PC%{~tIb z7GQfR19IRT+(@gksn)J_++ha}VuF@l)_eHTy+=iOXZiGr6=olq zTz(K=?hO&x8<)g#$Gg6r0$MY5&Yx?hxBCm*&572KJI&|T-CwxF4qK-y-ctBoy@R(W z`9TSJAI$YO;?Dwal>gM&BafArK)KDULpeI;HQ>kF7wa9zs~6!_E4tUl ztNrla1YYfrSDWE#be%T|KWn_pSa~_#I^DYhe!PRRw_DlmD_MCJE3andHLSdrmDjQI zdMG&#Z(#r5i2ome?QDaqZQc}=(A%5f=gcL`yf?z{8qbH)TaFFA39k;s*Wb*Z+=BnF z#3yfotJRA~ubT31#d{9EGYwbUyxZ~rqwt+O;A+ZyD=Y7W5*oUT{qr^`y+iPoyV?J5 zhjN>D4_=R+g4-e93zuuWcR&ewYWKm<)@kqE{O5lDv-iF1+0Hop+ur;5O%yEfL2&c^ z>}JI~9A5Q$vG_Ie=r6G7gEzgyu)vC#MDjj?68aG=Cf^LjCM-UL|2~981>ZXaiV5$* zSjAJU(kWKq6sv3-t7wWY zkL>}AJ4|_OV=7D#^H^RPcGzP&?*VwlgsAs0>jvwr!1jmv&5yzl+(huJ-Xr`UMi1}f z{GU(qpGW!6WBlhc@B@SDas1iA`z-u;Pe1`wM}A*Dw|&F(In&-3;TF{WB>(ve{H*c5 z%K!OC_D`hnPYn8d4>cR!M1$p7k)*3>ZxZT^DHlRR&u*2(Yo{WW_|f&RkqP)>#4Q8< ze7wS0CXYrhtd$GZiv4p94jLG44z<^FQM_J<&%Rb0PWEGFCP;Y$%dY1Xccj*+F{_hc zE&hPusi}6S7(CV0ioHwl9_!Wu=$7oKJaa`1AA|!|IJGuA9e%T0ulHWkXl{lbd>g~g zrfR)5oSg92AL^nN?@`K|{=WKl!jHI~o{`nAQG1#Pg`Wa&xe~M$Dh?IT{Zmmu%>evP z$NNfNqG5{I?O1m_6H!izBHZ=X6i8&fF;IhZgcU9_|Eq_jiN<`EYZr zT5G^036&L|A|{5wB9+K<`m+;KR!g&55lr7!prE4_m~O6g4DCzSu5`|J)^8fFwnt&( z3wNYbfh~~M*Krua{Z?(`XeU~b&4*96PdLADTs#ICZx0%gZxP5-%rybq4e7VAF@b)M z={5d>dUepP!^J`n7vSldo>CT!&cTC#C4B72A(8PRW83c;7Lr!BKIpSw@agnd?1$PO z33G`gBePGR3(uZtcEHz324{Ga49f4B56Z-$6Br9(YW%iZajZKp0IqVt;)|&X7n}ww zCwKq}-AQozUu*_IfmaPge6_W40{yADb$e%W+->8#_2$OfkTdMUB+%ICY_4@ivTR8zwP28ZD*FoegO;Iaa*Y_%R#fE+vy3E;J%YRBdGRivb89*13F|py#M$gRL$KF8^nf+y3^oCvr*CIfJ-uxuJ|C-2 z^1bNUWH!_s8*ffP>ro;e`-NmF7_Czb9h#Qwrd`3xjahvL5V zRETp&_Nj2`S{8>|M+Tdxb|Rvl2H_QN$x=Y*3!!im(XQa^x-^`5H3WgLN`j8aCqnL* zj)1tSpZ+T8_7CwE z+vJFpDX89TURQYK;fPmm%u$(U;dECzXw)3oS7L9V$H$@2u>7O&$e)jcZrZyRB9P!= zehfdk3=z(jKR<+5_-}Z4JzfWDjX1nMHW;|bIu$>QCV3bj*%u~XxyqSn)Hb=Tw%gkr z=^d`Mhakk(cA1$8Q}X0Wu=A>5w4x!~9(RXoV5(jQ=@MXTG841~Z=m_f-g38qX$m%K z%*V-6HKTLOpcZby^4UJhvf%pfYy(4v!AA&Eb9>*T^@_73|2d~TOgdGzHbYxuDD=l? zboT2Tf{X~9H!ys79+jU_fT!YJNT2wr`V*@&RC#3m=_sK;f$fJ%?WDO1wK)8g3g&MR z;!%$DOtq*Vq*SJv)I9?&3Sliwi+VZq1Ll7brO6J?jl}s5tSwu(U33D+EBJ60zJMLKG2=&49Pmmx-0_MFlK1)&d)p6XR zeiyy{SO9{Hwm&nDGad&ow1CQB90X8310pEqG>$|MpZ5;RfOf)82U-A~WcT)0wKk8b z!TX7(%*r0DO8Oq{8AuKt1FzT+9I`wKF)?(Kxx*6g&MG8?JVWJ^XF)P~G%_+#76-%^ zYmcZrVq8U45l!vEIvk-2CmYqHTfNH=F>LkG<#@$bAF(T3inGnT56UU;U04RdtwZ-g zWG?eQGgE~H4Whx1CPS&t-X!zr#u+w`guW-q9&@AVs54TW&RwOP>WVJYl)5!#Fd3_m zZ%e66r`Q^(kO*sGrqsU$O`Q@?TR>$nk^-m-HpYHv0d$hyv^^SQ9Ala(I#B^oob|#O>pBoL z?c_4XY-c5AqWw3JwwsBj7doNg_CGin_=+sy#E(e;u7SLfu#u7BwmP@rRtYROvF?$3 zCJL>Y2;l|y5hV;&uWmv(k>3<+<0ix-7p)wzb4g1H#@jxt5=^(gTFlSOk&*Hq>Dun3 z!2%5_(Y3&k>e{tgHD8D~a8@B9LiXPm8+Eu1vbk5_gCYE7x}X zD@_!-7%3o3bBa(?ZPHDttN^_Kvg)UP&(QQu8lPHvc zGj9?>hzu(^P?zp)C-YVMt7JmiX47r^;9mD`&rqV!J?8y3Nff#ZsxK^2=#CtfX%dCH z(m^xn{r~KJ378#4wQv%$PC&vE76rKkg*%WLAQF~gGb{=sc}YO|h2Z4Q%$>}w+?hMM z3t^BYAn<3PeJ%{Hh#&$2A_}5UQ9(cv7Zerrp--N;Z|_%sx2I42&#CI}>QmiSx2wAE zOdkKsm#=Tn?Y^f@ovlutbE?XIIujHMU4sPY6O+&29sU^<3gLZhjuBA?;R?SNe-@fo zt2xF@*X9uAoM~i;`aevFnxDHrL-t=t%7dg+ASoSLLmiOb4r0^j-b4$9BHoQG6cQBEI9ayyueOSy zX~*7~<8B)-{7zda^iROVc2VePq0kx>a5df>(P}Zm{~NKDR=!}41wF*A%MmW|(9X$8 z3u3Y6?;#DNvF5W$OF-1;W1&!)bTZW#m8gyea{BS@w&a}As4|h=8O4N1d!zI0@#EVn zdo(uE#C#dwruK+S6?H{4(9_4auR+4_`1ZAU$K%`l&L+^yrz*TqC{+HA7YZd!kG89# z4ZBH`Yf5$|)?B>bpiI^-s{r0%GWM(kRu+>nAFG@vW50Gl`oGI$Oi)ZSL?=1`hGbY<KhC>k)rlNOr#=4MC&1@pGcjCgy9pZ)A5c^r1+iNL@HFotc5}}y(xMg$$_@( zxxaIbcA?2@!)~7wcAMYXbUR)sq%zy<@>h`Ic1Y?*RP>o)Gb;1`Ot_Iz`pu{ooa`S$ zLliaqmMG0Ik|sC8@1lW{J~zT2j3-f94r!+aZY)!LLqTW#=puZrX9HF94J)?OrX*e~j~cvnImYRI0Y z3@m|i>{dh}oHnavU}@Id6H}Mw2gC|~%!LH*k%RUmP)fqQaH*_L^QGdeTT3lXG#bJC zOx@c)5=+w9{hV(>S?>NgHpZGkP~j63uFJFeD!%MNhyv3d&bBYSChb8(=e zh>5QVZhv>c?P@J<-foT7_;{_}>~D<1{>uKYp}_*<`Lij?s)uK_nV{V4Oh}a*Fij0( zTf-4+Z7a|*a7yjtEkPyY$B`R6a1*p2^m_;siJ|L z=)W6es2_mY%8*J8RdU#?ks`v4jWcpDo$bkBH}(;BBiU|gjm8#4Gs@;P{@euqXd1cQ zg7$K=7;gk%w%pbb#g6H-d((3_Hg=~xq>)!Q#6)j@!mo~nTaN9A4IV1Z{{CV&gjI0M znG`<;;O%T?EW#zHFOP6w z9h?;Zu(QN?R^V?tDgLbkRu+?DA1lR=PdO?6hXZceC&dC~o6)JQRJj4uOo|gs7JC>e zB|Nc&kndga)O}LSr@x{i{1A&FV@gb*3%7zRk|sdu$pOLNnZ)a{Xs*~j<-00!6O#y4 zgnxQB5h%m7oK3;Z2oLYY!%yJ|iT19EOmNah_z2d9KLWa+;G8eK1s zm*E{xZ}L0L^G&AQP>%Z$=t+h4xI_7=SMf8r8s&aC=&Q65PKg`ohx}n}*vWr7F|Gfk zX|$8>)bS~VRfATs7D;5O?$e%{ABEE$K5f>%MVzZwqrlisYTV=gr^TD|uAK?zN=w4P zWHQCqV!xgXl=A0{YMgww41lZQ@yH_)&8X4&&_J9bp#o~WTN{Vy^#DFMhv>Wvz%)Zw zf}EyOxlI&MWhaPhXF%L_ure*u8m%9ctE zRifB^NRepVI?Bj71to@Q;$&>RYClns`?$x@*hV-7l6CWZl1rB7GTf$lP-J(}C*I<9 zWjIw=oaswlM)HJ6%+ClOsU#+muRh`L1eAor{1^fA_^lkWP=h{Ak(T|uA7&`gWcop` zERU7ptiW3RJTX3$2CC)dh3Nf2tyYa3`ll?C@DA(?4tVI>0EdcH;Ve-+D5}w08W`*i zp>GID^*BY1{R6uY)xAaGkLZ9i`!;ydN$uv0PfX$R@*Z&xg)!y$#gMjt1H^JO>5BpR zh}!w3r`n|BBwP75=q-9k>`1)(_$_eZiO9XRG!EwLVJ0%7mve=@{3ikoX&9K=IkV2A zq^7S?d5w+j`%nSk5q$J`P?Gd)KLEKIWqX&DIf~3nr-om*B@x}maX_!nn^X?Z#rLTuk4`ghD|zyEOK!Xs zlrcC_Mq@qud`eW4_PTmgy!`Hu*5jYwr3dDNY3Cr&JxK_kxA*C84M9BTip5PK2G{4&}1Jf_(fsFp)T79%tEjfjwSEda| zlcqWugif)jqL(039A94842P&DFRD;u(L0gfhCVV6bt=!ugyM@R51}7NMOrga%#zf9 zG~S$d`Ao!}6>?HcDoK-^+1BRzXOcowV9jyw|K=W%L$pN$hH&+zki0lb|n zYRH^^n*)pYezU&!@{#EMX4?Bdb+-5acRG6C)c0OK61{KI-tT<7wGP^(9u@=mPV+v$ z1qugsmKXpS=3_qSh>|=oa}&G_F4>qvW?f%)}pup(6ko2mT8?9=yGPbecJBMm+s!KLVZS1H)Nn(L0=S2`(u$5>m zN}o(2Uf6^IJFOR%VG%?N+Or!H3`wRp0;L z0c9jATWT_eNYst^wyj^EL89KxsiKk9#1w=M4dMBb)@u)1{t@EPd{&YYo(VK{;Ew-U!`R?wdv*kPd%|ppj~# zn8@~6=IJp6%rj4Nu}RukQYRl$fN zizkBReK^#>0o9SA=5pE&`$e~+nlRfV#QSl+#M=t(3uE*H02~;jd4=b;UZ)r&e6BMC zVpZ328!FIV8G-*{SHdN4Q6C(cJkqyejg0(?$JH#{4Ja)dLhT>Iw8-*jW^}R4F@dh3!zio zRrrppt00r7=wW9}o<1tPjr0?Y1){i3nO%h667Tpi0|ygi&FA6{n4B3+wBZjU&zOsKdlf#~#VQr}pwYhVC=fUKV^eT8Dz-YwV?a zkD~DJ1{54PAg!yhZ^_ox^b-e7;xlWmNl!s1?SfvhG6WQ;Tr|m{BeD#EMg-_o+ySsG zL!gmfRdceJA?$Vs=p*0$b9cPsWeEIkyDURE;ev9#GCa{=s&8yK6(PJVZ4pAGp-z?{ z9F-z35kVy=KrpO;TO4^ka3I7;O`Z^I--E2TjZC_)bnA{c=Up}v6$gY=K@uufZ?M3x zHwdViYmvbzaa!bAWbkqTZ)ac)DZ%47usn+l)_1n||7$vWFDnUR>l@`GKCY^h&}L_Q zKc0W@ZH6)_NSbtTf*D}PB1r;GjJ5U>c$!N(IK@6Ry~H^1WbhO;pDr0pOl^<~PLqR< zG@7(_F+v_O6*&;;6ER}qK zSaWH_Kd|*ossCWNV@uJ<(mp0Q6w5mdSZZAQOzReJh4$=>zaas59{{sW0Ger|rUSPd zA3&%U%2W{5R+GwB@@AP-{t8M-RKnCWDskPOz_&vKKqbEuGW8`+6%FLX?4m)Yz5~E) zWlE)nDn;z`NRen#Im*abblt?s*!W|UG>)P1Zo(;$teHs~|AnBDN?;P%>eF3DcK(Eb zd1Ob9Qm8&b@nop$Z6k1$OB?xSP z3|dF61=J)EcV$bytd-WXA!y+Pcm7{ zacjZNY%MFzLJ@L>P?B=0tVlV_FGz_wna+h8+3HySHDBgSd-@b7xJVqtyia_X+MXT~ z^FFmy)w`j;!WN^3b#E;YI^g_=0acA1%w%DI!Re-foTzsO3;SmPmXC#fG51IHH1oAZ z?k*x7(*+_N5)}y5)EebMYiis7suQJ9##VJUxLqmK9(U;#!bTQiHrR-5vJE!yp&GRa zN9=MDbmQyFzEkNp7TJJ^M9q4_#v%juRLEq(Uk~l&7B#N|uzW1IW@8a)r@MrmK9`Wo zt|Pv_%KDshtZCtckjjR#Hr>h=*0d4X3cn>vb{(Ntj`7g9AmA)YcJSHtR=H5bt#-N# z6>+XrBr8{{m+^#B%-e-&HQ}$>{E*P%1NqWI%F)eS2pmR2DMv`oT;#}M^pSO5G>A{7 z#R0Ia^P-7dRc^A^d3_aG%j>+Jz&l>&#qYA!d1dM|J@-xYIdV9hmfQXoJME5m{%+Xi z?}c6FcQ#$-=l7x(hgCTp+WK8r9dP>CV71kN#Srm>iC@Z{dQAmc_`AgNwVaM6*6kA= zHeQVGm9rcx32MVLa~Sa-PzE%KQf7M?@!t%V{9Sv+5XYjqwVY(<9X|5h6r=-S)4O?iXykfBo!PaCRyDJ0FhbaIe;E zPY2~V0B0J;yh`A2yH(G62dpf%>hZBsO0`lRo5UP&%f3~QK-tE7vX`nZIoe9aQ?+Xz ze<^tGFX9rq-Kv_u{@CZ*JzfcLu~Y zV#{r&*L(b3oG$IyVB+YC}=ShtD03H}_>pkw}fR)7{?_=dQ z$RFr{TlPU-pd1@14duxO?@=RFxq6Q$I*`f2dpy=nu+DVA%0jSwtlR|aJO|ve3zk4R zSHW@vrtuyVMltqtwBSKZCf3@M@YLOVFp`||YETh%iB zSt#McFlF~1B`cK`81bI2a!`+-iqmO-ES;sU)q>&+Cv3yKxBEA=e>BxvpoFHCgs5$eV(`siGgl*XJ$1gkX?5jrZ&bE{ZeB{ zGl?mYg!xVA{8-E}PH$@`2r9*Ko(_R?1^iFk{721@s51>^uVFIXP@WO3`8bhfn!W76 zoa5ejbJMrRPsjRjsEAEG_SUi@2#>|%*7L=0g_!t`PX+_DRkK)JKRlwVHiC+~?rl1LIOf!R1T&{NeeP|j@ z+V3Mm9x)ra2kDh&E*C$meET{0;Sz&-#1=0*AN=sYv6X1OMaqL8CJoqWJTkxDc!x%F zXv$jv*Pfx;;FR$w+WAnLAy|49v}ZT1G^`l84uD1Kjq^VEVcK@-(&$J~MI zFBnpH=&+J8%N;sCgc1^!EOk!`GU@s-z8$J;DyJ-yJl)BuqLI|Z;xU6f{R;rIl_!-N zeiTHmExHvc65XLA%1G;DA55IK8NXtopctAL5l({S&CCuS&k!_H2~;B6{SM1zA>T&8 zJn$pO9aOMR?%*-q$3FZaU*gFHlfMPPfiX(jh5?`J%z!Xq85R~Bfx9kh>$*pev5k50 zlkc4+$cBwq@mLfDpgW4$y!(mzrz4VCNu z3ys!5v(l`VEt2RvtMnito!Cw>?X3a;HlHJP^vZ_VpkKtSquzK2~m7u9XhBWzTX6lx+qe zL+$G>f-5m$%9@B@?LZofl9-T^BMVe+wZ6DH<>TXta*D0fzvc8m^X(txRj zLJR!Yf;YreH2jtfKW}s(mW6m-<|bZmb->C(ynL+O#Or+yxMdeFfpTZXYhmCU1%gv# zs%Y&1uLMtpSn+R&Nd1cgfhVTDn z+lkEM0x^n9+`{0!;1wZh@@pbt%N*!sAz?2D@D8s1VGdYXNSKe6n}nU$MTjKo!Tw6ZWMGo@TQuCSq+qJ6 z#>cA@k<-lv@!+@Q}3&~X1b}O`Jmsl~>wcQ86Z0p+ebn!DdVTIdv6r2^BfszFJ zkXR{cC1sYCl3zg?iOQB*8%X@LC-7|==5FWLW|F8cajIx!H8Eptkf`qfFk6XIsiDdd z`#e%4S}7T2WDhLGwJd;wp|rX_7&DdMxDzSk_{NyFS->ig++@*T9)2xt(b}G;}cI--RuH@1G|(| zG>Ol37C~6Ep5iEIL8%FA&$|n&3d7}Q1VJj)=?Rb-0s_QDJi z@w38ji5;KJmr+uvuj14Z7CA|%@wrZ@GqL50>1WFV$flTCk|y8sVFN`Rq)f8n&Ni&T z=N)0i?bFYS-POc{nJ@7~1ksuJW1>9YG!QNm$G+BvWB9xy9Q(@jb8N>TaBt?64CE6I z$*&1#{%jynCeHl64QKFqM>zA_>E}#tCHni`rzc7#ZtM+!O_K$D-Vtu>!5enKT^;)! zhB{fIztB}CWMMJRRWlYA|DJ=eIQS|&b%$tj_$^W7H3kkkkY7&H&qTmBlXNvcd>kB| z2l3rTtJzzxP_))v;+D;r1PIP%Ceg!`<^+QXvrxRQY^ z(^R@&F`(eU8R_C1`^L#N2M9={#Pkyf4U?t&uZK?BMVS47hSV?=v|KdIp(C<%pT^v1 zu*(6kEZwIW7FDCNm+s$yVkY*l!#lBm9o}Ut-Oto#y79N@b7XgLEw@viQgmn7<-5Wz z^E;a^$4@CzyX-9(td<%L*ibyk9QqNu=!1l<5l8w&24U~_0T*a&o^84jzT?s9?l={^ zrQ;LLk=j^KWpun+9)<19OHDY%DAv6HS|RqD0hx2LVJ$Lyf|Ib7=J&!a*o*8c`o!Du zq{=|GQsZk1CW2|Un90&d#0EW#yrLMiOI4U6qE`Y^g3b@d0Y~V3By_E^D~aBQU1Ot~ z2Sv77^TbaG9Zv1*({U8C^zGg`LEpY<036$U^o?uqtf+G;n<~A9b-2rDZ5WQb3(wan z^oYZxw(u8T)fy`oRvflsMQ`CX>t5Yg7-=@g8-0f!$`7*Ouhi-r55=295mtX~xIdDC zE)*}QG%C&VPytTa0w^!*Iqc}36)U>cfqPMi5+&FVP5nv?Q>FNY602_ii?&pB(R z7$F>8lC)00pU3%O@zb4_5b^eU?RZHw*!IUn$NynqtBudYlZLH&Wy-oQzI(AFkVIGq zl!9Oiw6|VtNjFTAqmB~Hu%DrijC7Y!o#S?&&4rOd9b*m}uGN}@pkh6tM)sh(^8JG& zS`DKEG5hTAVChTV+)}Gqn>u4QTZMAD7>uQl%$(4+e4Qhsvc=n>GPFV+a%dAiq!EP7 zX9#jsJ37fE$9wGUI1n8|)V`}vNe4yi!60iM*TDFz{PLnT2|bm_nPY0Fjc*!II>$KF z&arcsz4?t=t3Fts5<}W-6h6%jkWquvT2Xoj){Fui^ z#7BicV*I)ZuG?4@t|Oyt3_jQk5$-tNy$J8>;dc$Z+XugE;oZJ?w*~G-&Sn$vv6@}P zuW!JwPGc9t2Ri_JdkO#gQhvRRU$^q><@|aDzrK-QuY{|h;Z^+atMTs_V>{d6ZX26~ zEA;jn_&9UPLF`)iT+KYVvTkhXO?bB-zW!$Z-6B426(9S4j6eH5s(pjqF1|#I0zdG-yn}yPWGmrSwgNBTLK%G$FMFVu zx*J{)5I05a(`d#&iI)wxz~y|rd<_5mC|-K-y@TP>Vs}LVPjaA>9N;7ewv7Xto7;AiWqTZzKwU-3&vd_G-|vz0xj-ZbF>b|S2$YSq2G$AUWJ#t zJ^+`G;N|37;c^;Y9=r`MkK*Mea2Pr3#tWX6#P|_QxbHpV+vVdXij42Qh;@UEmm6Y- z8Fw`gz&ma{**${Vlm#CZU)~2Fzyd_S#O@b=aDK2)h(A6lJ{}MspAjDq!UrhTL-;X^ zeGWd@BX9w(qr9Inr*YNPx+(S;djUd= zG12Ner9502tMEx6p=R^}q2ERE?!@WGHo;pUKBMBJCO$Tcj|TtnN0b))A?UOP?MkYGtU<2PEy=z-vJ9 zyo7!{FJVJp;G`DW15{?c7wX#yekA9m(wihQR`ljxh%4&6*nXdS;q&HK#;TPu@O*dy z&HFgrH1Jsxn6UEDU;({FfYwlLv{V_JVjqSk($^#MpEgVNjpgQ)mt2-lHeABlm%>GVkkfC}Gf;xwu%;#aW{(_-WV*EJ*! zc8S_o7)l{2*lg(4?5$^rQ6rwXIqcBAGr{6^bBXk>LcgNzHm~sKv>(yZ{g3fAqWVz_Rkwb|4NGjwdki zl$zpTo(2T3%7tc4JS>z*3&Zu=XrWwzGkO5{Fdwc01RA}|x_SzI!34c;yl=x`t+uIu z#bJjX(?3+iefy|j|EHD@GO&>J|aVd<{dIp^jXL#?KVs5tek5c6$c#Y z?Cvm9r0;AOBp}Ai^(LMROnMl7K)Q8Cy!Fu0R#nfcTc^bVN4kY6xVGnowHMmxDagK# z&Z~?Kl`r(wG69LOcNRx>?RWZ^ukM%}I;9Mm(mGF8o&v*PvDF>Wy2v&t{^N@Cjys@P zzOdO>IEbfL4?1Ca;kco4W3azb+1SsWv%W(3O5varPJo%Jn49<`$UOc#YDcPZ+RAP* ziUJ#jzlkiUJK;AC&~zej0RSzTeD4>~PWt>n#N+nDBvF5L^j4-W8ld^p10Ll&v(lkpTMbk1J2lnavq*qte1ODauC_=>`KZ4 zZytvjFjkC#{&z$fuZede0 z8{q_svPncxEH?uMR!^PV$4s8+l-v9&AYTE77 zp$ve%y+^UYt{)>M{UKoZ6GDyBJ#jDizuY%V;LcZkxNk0^h?|?T~%m}RW2yk8|9wbF!;xfK}g0m z%2-E%PQ}D>F`I;NW~tB^FAr8Af_V`XMMzJ2Igf1eIcNF8@fuVU6(Uj3a8}B*x&WmS zfChghtfdgdeVjS;+h=Hm5|Z*P=~SouF*bzF@BxK3$f@XEJ*`7@ zZxGXfIx{6Vgo7GpAYVg=?l4DGWarW+-b&MGXJ{$#?o?NCrF0bog|qh-AdXn#N6G?HopSc_=4{Y&Iv6Z3}_TisQO{2^|j@sGd|bd7}tw)Qi%; zM$A_sPJ^~?CA$qtcspE@M>=(|XLp%M&h|qTLdQ`R{o}!T7a9bEVy#^-cR1ct<-pn0SNb4 zhAV@Z8G*^2@2GLt3(_MKeZo`YUYKyX*dt*;N)S!s9wvH%G5s)_B&r{pc8cs9sAJ#M z>*TkQLc;Up)Z(3C&)~PNqt$n@$uZ!rXP&YdvW~E))4w5<8Y%?$(b@O$Zyvdf7zW`b z{0$$uIk2bUx|xW-85!+KMqZ{zxFZUCUlg9Z=KX~td~Ew*VXZ9d6|QK0V2R3Hkdw;z zBn_QP_FqUrVQU3R8>A($Nop!)?^Of!%Fsq|q(Dtbw6xJEZK|8%`J5tcY09X-HwH2D221CKbvT!ZZ?OgJ-`IXF|)nAVH=`52oI* z`V{i1Jo7bC7~=84@{ls4nNds#d*0T0_RLFWkH)ekT2R4!PlTqR1h@$+MEno}wGlBx zqIDkq6*tmJPWElQ`9Y1uoj@sX0ZjSD2y_?z$>T|pzZZ9d=$CdTI}n+T@+Ku3r1s8Y z7P!5o2A-zWrQNdjMZa%=rZeOgz9=HA6~RQKU~sFx5yy3g;wv!1x@G`=7w<%<5*mUR z+4ZPBZ-+~=Ig8Qk-S|E?4+%75zeNmx&fX^1iXI}_`y&wZH_Ei8A3;|DsAlq_6Gy2)jg&>lL6CpMS z3C?FVFT*?h^J;&Bg7^L)B_}8mbr3r9HKL-R>;DsBhY~aUa6d5sMK_rXj+9L7WEd-8OgsC4uCug(!q>+e}2*x7ib+ZG@ejh@&m{Rj&l_U_-6v zFxNYvWuZ$xS~)c@pM5njc=DYu*W7bGM?U6 z8#L|M`;fwU%pOmF7-?jl9;JwwjNRpMinqT0X%nS1aOI*k=k&e<4 zST|-Ssf_AEvULbJ8c%oIWtV_+Nsa?}&H2=lss5=kdU}$`r55&)H$kzq;UpK1*7MAQxSj z*CE*LnYG|#e=jkjvEjEwdtQXp$#3c}7gp>Q2OL>}aA5xP@gi(r0@dPJ{<)%k0Y#z6 zD-JN>h;XOzLdycXgbs(Z5Q~(?DeZAD2I*1UC=1f;qEK{sp*%QJ z<0q_7`;v$gIWqwMW(EL z@RlZ8jo|&*sl;tw=Y?vTcL+%@vnQ!discOeKDQLh77i>%x%>{Ld`D-Aah`}#4S;Hk*xzZ1tzO>5VrX@{0z1%W&+I*gclc+J*~9x-s3c;-GRG7Pi!{cVN$W4gZAt!dARA0 z*p4Mqyv%+Bz+|x1+W{7nPVqWq$dpzqu+=5hhhc5=mQsCeY8(3;qOGsz_l1{7P;nwW zqaL2n7L*;(5wT2B*+#-jt}M52TJ%Xpn$+Ehh_zmfZ-+WfCA4yG1i;&w%~%$?zpJyv zxL)9IJ!QV#0j+jZW_B+cWL|FJqow%rDd)%^bHMGh&~&zmu|U~ogla2RZoo7X;{=<< zE<{QN@y1wdC3xySG3HZXvHb54i!o!$pF~63UYhu&Cr1Q-sh`(l(Oj|H-;*-3DlkG7 zA&rAXpbS%UHU+aI+%vxY=25XSs(B}%m}!h(ezEG) zu$5@oNgtCXrukI{>^c!=d;XDAG@>aziuZRAN$7d7~_U5*(-%}}OvF>EV&vy5Sn zqO?S%OpV$S*{b2&8p-d3Y;EFH(Lhd4UCxJ024*Y7OyMAhJUat1>XcGDm3H?k(l=o zJZPlRhOdI~Ue|D?Tpj9<><;-(Y=Bo}%ApH2>C+VXaQn2_D0R>)%VQ!Zf1Vg8N(0sM z@X#^d6dKLVzCQ@SB0A`AN~z68 z(hZWh*A&?xiKp3lx^izV)q@#*n6Hdz>|9}b?hXQ7d~%V2@%eJO=k2xXVolegeR3gn&JXcp&%LH}E3) zzB8Z6M~Gyw&t`5fSMtWw!0o?dUs7><)&uaS)39ry_YrRY7hskfx4QuO=M}e?M06WR z2E9HnL%u~hJQv@mn*5S!=4}Dm%Z<0ax$#y|##Mc1pHGQu(q30Ti`&6Ftu=!>E(5h8 zIJujHLdQiL$W8QZeNgkb59C9+J|jYrO{uBNNXHZhqRD7B4I!w`+H5TmETY*Xs6{-Q zUBNpZ&E|L8WiPRBiAX`YxEL)isQ=*n_)BWsvW6HJi`&|Df!n+W+V?5wqV+`~Tt2 z_W!PF=>Lxv==&diCi>r`{eQHx{r_C&`|stq0OGryCC0ZoF_?8V$Il(mvZ&_p(Q>Qi z_@e`E*{eAO$~G=gTeIQ@Op^*r7;xBIkWzugkF_=dPjg9y9hM^dqzprRUBsTBhDl+n zk`85H57J&KmbEIbMnZ8%gh;|Ce*=*(2nD6zQLVIUe7rirckFe`TH#5|bw9ugsV_Js z6%Uw!BcFUXQO#;~$p)#BEdXtG?oKRF<-C;QU~DBix7DX%h%>g_fSoyVWpRdaWGO`v z+OzWs4C$#O0azrKk@r%H?Z-VT3I#6#7y+N`9^GAZ>>C?iqXQqwR*qSoTuw(fm~ z#W`nks%T_2apG=}sPh1rtwgERh(%3KLyAO`Qc*@O<0m7TEe)ZsiPN!>#U^PLLvvrk zNsv5U(yGYPXRW%{1jl~GPNI|#NQW;WXwX224cmRb+yNmPp-&efV4kazBM&N=HdobH zn4GjLvI{j&V(G0T#tS_?h2kg-FSzb>qPwsv7*To}aByLH6gC78775}|17{FKhMLQ1 zJ7oGNTzqwkmn-qS7x>AjemMWIHn!1^dQCwifnl0gcy8-;O7tF|>r8@JC$`*%B6NH; z0{??@GV!85Jl?!-!x|YS7GzsPfqvM4vAxWBbFtM3vCPDX<*7|wbX9pC^n5F4oI{5e zVW6@f5|g8Tul`wxKzcpcY^w)rO?uFFs{d533}v?>I8MSRMaQ`mCCNTMH?uo~>>GjW zWPhzH`)jG}|H6Q=y{NEH6H=K;5tDpV2Qx|j6P#@h-T7+R9b1tml(R@Ktrh{Mr^s2i7AQcCz+IFA?K$JH#{8Ua9(QcB#$LBgB&%}+B^5TX)7T)3kIHb1R z6bI^xf$v&Z3%UlQI(+Oz2V9$OOq{y;KKwZ$h%Fq1#r$J|sG3tIAK|w|hAuI%(m^XC zGY-#umG%?OC$1HT}e1u^3+i&z0d? zz{M^y<|{))pEw8yEL44R0P*@zC281z&et6P%fba34p#Lim%@d|Q6PBX!k6%l7cTI- z?Xqy;1UQqsGCa{=s&8yKl`Xt1ZP`Mkp$-=<9F-!45y2)XSuiZLTO4_vx((zBvHU+o z?%M`2-D?z{jW_3AHWM`pgj7MkDpsMez^_mUsF`zF!hgo8k!M-L9|63bp*7?Wf5(C4 zTb8i%XRU?LW+~y00KU`xkIq5WvW)06KE}>g$`W4M+5RufzyCJFniM8Y{y4!Hu-~Fe z1o{|j?HPEQOa3^;_BXx6MDXnKDL~M4*<)gGgWPeNq;;gxq-By3@`#zm_mEzp{f3xC z`pj|jwR}+Jsbd%(>#%xctlVe>F?n1!3G4aG^#-1adqHIgmPa;g(L{5t1uIti$I2V| zhJWOgcHO>ykqAH6h+~{_ppNsI22G0Po)7R7 zHd*Ev8m}Up0?C@0Ec2ZNjZ^}Y$X1{3GS+iD0_L$EIZB}dJ)g47pU;rm}+0w}W$d`Lk(ElpB%lVWf==j_$=*yz1v#_Xy^qsn0Mvyx3ZkIgX z{XspR4)P$y+lXzlc$>{)Z=rr26Q5MY;0Ah zB<+&Ns|{UokSeJpMr@On#PpL)O0t6U)1f=6k~m;7iqn5S68(#-s>-YiI&c}Ylpo+A zI+UfnJYQ*&p6jIu*v4~Jvy=y)U2l~OMOE2l80=pf zpy@{M3)-Bp#4f)dP~-zJB5P;$WP-$>$<``1bLcX~)K!P@R; zNUz7Kt#n`6Cf3_ar|bc1<0H8>=eBvG%8Q{P5z z*_r+%1#bbYW~}1@awQSFf&C0Ipausvw)Msdyu~3%NR>8~3Z-hbwxt_3UlGTi;6m%3daGK7 zKMN(yR4L1`l?+u@V8nxB4(gF~P`vN{%X3vfEu~3NZzE~RZZ!9y%Zv|Yg_v+e_@#~d zT5KeHIpWJRK3Cu!&-m~=o7@NY_xW@vqz8K2otfX9K=xO2nB*AOWJ#qV&FFF?2{WB= zM7Nl2oZi-25NwL$JTC%!$@-tTU|UUvSMP@WOpc@L3jE`(thI}l2KN4&Y| ztIyVPKO8V(Q;@y2tO$Z-u|T#rU;IYCphVl+Z#r~uoJj3>Vlxr>Fo1XQkREhE%fdtQ z(Q@;UzT$veb`MFQ9CI_=eD6C2Ta;7vy!pZk=*6k+-aS8dppAvY{R4rwwZr{82ed52 z$w$jgoc`f}TXu00D0fzz^4sutuZQiYyB1=#JAikwQU^MqWg%8RT5e+XG6&qUi9Zo#Ie(WC{N5%P$M z$rLeIhG|{=T+8ietKaht>JeLR>AcnNMrPD%7&+qZ8t8wPzIDEPyt>&q%N_vk}=CAmL5t-RI=1Xg=FUS&-gY? zqqXz$GcDV_hEqi&sflax4D$3&0A?#sDm7FoVpkzWgwc;P(t4v`6Q^y)uUJ$lhUU41 zlOTCBvjp=~1dUWv`9!w+9hQacpFqGo03^p9RIumM63nOaC7xWD^CSQcj8W3cG<>cz z1DTg#8iBhmzxjm$V;l40%b8q$W5hOj`Hkr(u1e19ZlB<6bLfs-e)DC)`R!~8=FX4k z<;|hHQqUIzV3VNZbF-jZFTpf|)QNYyC73TU;ORghDc(kGlf~QglT6~hkTc7nJMQA0 z-`1r0GDu4BshlW&`D4O9?D$+K!I`*mQeNC}z(TI|`=YDKlWVllQ_$wEOwNYfLGfe4 zYNkICA>4bExZdHn#OJ=)z(EIPkS@{$0=99H?%#o&h2Txcj-+og^nO}4BE8;#fCKrZ zX*KpN*|eH|;-E%yspB=!NxONw?+8gXLTSoHjT|~6mpamE4V_Oo0G5ew8mv;)CYPm- zUqngciSNhpjwinPom1jFoR@bf>FuAO8XjQckoGp7psGd|!-hJX_?}Fe_zv-jrM|~t zv$#gN=_kVLWwB%smJh-95sEO6FUPQbt3uxpK&6G>aQE4EYezk z0PrwNvd)&yf7Dvkm_=I4N6Rg(wVMNO+0$AAWt)M>Q26>=!Iu1!@5>!%V{MUjv#84D|ONO9+2Vz;s*LjZe zHR^ztg?#yFxyjc>4!C8PFM)Drk_E!gbS%}!597Sx= z=R4})`)Ij|*d7kJWfw7la%V*>zjDY!9cW}BR)+w17f1hi2ed3Kmyed4SiQ;tx9nmi zP|j7X+<^B&cxNe78vv8qwthIlIr@53vw%vTJHx?}81(BP8k!cDdW6`vr zByxpypfF*rTZBlWeCWGKwJw0cH9lUQh#pH(X|UGV zU=wy=OLZg#98e7h%r#r}F%CqYHODDfFAvG%s>7vmMKNx5$+qc^!%c&}DqCtzAd#qB@$FE5X#%Pf5_L1DiUx9G_Szs(_W&?kiBhSd z$`QK(DWYR!53I(uFgk?PCZ@;68^ii0A7ixkDOFUVD^D_V(*rlXmNqnxe2*R56ByQs` z2ixd|{(S{Hz8azH%E{VoRzCX+dX#NUjW1}j=D~=quyIgvL)*NJ?)3d&;*C_4y=6nP`I zi6U?MMJAEokF(98H|`?8*iQ?Yk9QB#M8wYuza^vohI|<%g?c@wjF3yvLFnGhDH+Nq9FkuX&V0>4piG?kavRRz^Nw)li__1U+{*QT zZy-u0Zv3VVH}H8!xbf?}xZyC=$#VT?U7c=OXN+^zgm`lM`MoUH|FZDgJ5#QI&|`WI zI*5*(q`w3K+f35c`0%l3kCY+4+h|prm9dRt4>S_g?JKOWmWP|g!Wy`#)eCD2>+6+` zBhBtYWER3*)@AKM(P`Y#2C7U;8UM=-2sp4s`uE13abm>|S~dN|LA_)d|4QhjU3l4_ zp-c5bDa%E@96BP)_-Vk6M!FmT%QAkNUQyL4DN!X1i^cwR4U{xq#^1y{UdGSwvX${? z>h|}@7T}`Wk$u9o3{QVz(dA*UuLyh1?`(PrRF z7Uxf~2LJFS{8#XY$RiwuJEhYIJ-Yy(@)-4jaawpw$0wR2wXvSc=y<)33tu)aW?#fe|N2 zU~l2np~~1mtG;oh@S3s81?769(wr!)fg!xHys+Z1!;a}KoPO3xs|&{*b#%{RJx3jJ z^pQO)R<1mz=V*1f-T~UCWO=}Zx)`+{zRC6{3xnR-{!mTl8L@jnk@*8skdmrGs$UQd z`I>=T4&KANLk+>629ea+O6c221ra$6k^w><@dph*L;6C!?AUT=fiG+pzxyH5i=()w zPC^NNOL@6t)Xyra zC)j^t*xBv~)SFvsHEUC6%x3%GIP(B-T8u#6LWDn7YnFZMaXUv%l^$=0%FqgRXrT@H z@D>f$U?i%HmFrVtK$nBqN+A!_{Km=P?Klt}E>wc3Pf2fM!>V~016!~1(Tmn1^i<%` zklIj-n?$wy#y8Datv3#?bL^aDZ+@fJst*DKk<{Mq&3b99QRU7+Kb$)CK+=fK6U>N%HxdnMSr)$BZe zzn)*u=hxTsYd>7Qd3fXsjQ1t@10-)id<^mzhWNG2ufzCY4%>(y^Vo>^sPIROUpK*Z z8>_W#D z;a^JzN`sq#LXDAndAwRe%5A~#=ak2$*aY0IW*7168{i6K|HbgZ4uJl$OZeB9^6O>% zx|Lrq=hrLv^^N>`C0vD5aTWjjYPf>)w+%kFu}QcBL9T(1GnX91u7%Il%!4cI##Y`0 zcizJB@_5fn4?ALLioKaXe+xcej?do;cV{ddxoncX4d0wwt&IUSrr>@XyB^O9OxtmILU!+NQ5#K`#mjaY-ocncQx<$w ze0d*y01FWP61!jg!I{K9A^!NJ_;^5kd`5gc2p^z-58=lw_Br@qkH7`EjzWLNoW@mC z>!#Ra@D;#*Tzq^PK321@h(Dg-e}t}jYrxxgNK@q3kD(mUG5{PY5|j>h`bkB!31X*v zL=(~4s5bACL4OUBn)l^Zc!!~_1lJse38?X7@$pmf@pJLxMQA6*xOZk8u=l?# zs@cFgH`WVNzurjR-g*N_%;$|TlvvEux=tw%SH>z>nMqyK=mSEmfq0+tAy$7JFnc|I z$GbHTx~0Yu*Bu-oN?afgE>s%4esoK@TJ701R@(xnD?pLg1*K|bsL%(*?c2Z${qX#S zems9+Ltj9IB2&Hl{n|7Z{8D(EHsaTecRUM4KNX7KH~eQOsOB4gWz8WeW^>_B0!<`mOFW=SAq5#wLyK(mV= zpFLC?1#cLJX8>kV#P}0LTcw6?Qoe>f?Um6aO>&t0QXFukJ1+ofD$r1y_w=$= zLqmMjDilG8BEtY=ljQtuc>x~6|LAw!fg$7v?m)mR90FjhC^f~|JdHwatXyc;#KS^~ zv@l$+jTXukIHm`H5AzWwK%mjPtgENc7fj&$#``wl9KIjt@cpJa{07*S<>;=E3F=7q z)bp~xL3jP78#h0<^@i=0t^e{8K}# zss+Rt&fyTmF!-!8Omre(>{-X2*eduLx1qjq?7_czVJoN4N$@8>pppmS=AxLVr=n^- zO&u|eQA-3q-v!D=<1DGiz5TFD%INFEq^2txTN2RW1QKCh6(&T!cee9r7}MMNrE7TZ zNKFb6Urh5383lHG9Ej10$rFiUm-I0DfOP96@zz6SR@Ewn z7|OwI|2W`CxAp`cwml21y`VCScly|HxsDU1budplr3}f> zI*&JE@~GJA4yasY8x+TH#d*ga&@5lr>?<6^Go}Zfu)J{GP`NSK4-vio#yAAy`U>GI zg@aBw0VdgEg5Zw}^Z4(m)i@^H=k$q}w%@ZWplI`={^r+bz0%C*>de`o7SX-#K+Rui34Tuj;lqkw+pM*rLjM zrG3BI(a>X~e%&ATb1Q(i8`op9a!&~Ck_^Duy?a4K-Piv+LXZh6OT|y)=D=PZ0FQkF zE*g=403LaBQR$}G6%c-apz3GvC!3MrpT)Zm;2r*X^%Q$3c;sXFI>eB>H4$YHChK_o zSvbgpf}~&ked($~OVkLIduqdwxNHnUuBuTkKw=7q2t+J^-P!g-!)WQh9TL5RvJ-_GhK zS~{P7VKioj?7xtd+eoK6?ak2EI0?OLr*-t}4W|0)UIu=e1BVpMsJ#Z1D=FPkWarW+ zUY}{KY1drfD5+l8O6he4dS~x=Eew82&H0xJ%c&eQTi@%O24EUjfLZunh-+@X*JE*9 zw?paUvu)L(iRL577976VMm?G~?-HB#vp7lG*|Z{acWDwhzDvLsKs5=BZ0@BdG^$R04nCxM(l!6qDP62 zS~<06;xdzn4;pa-;(2G8QQ#gbY!^{@?wa=(itw@RgN3!-ijSHzY@$aeK4)Uq1hBVBtnX)v8_OEM9LuI-Sr zYi~GRWPu_ALMJJOp&HC#pyaYpzOd40f`IU>QQ|ylc^4#>6cNId6;^YOLdXrOvSDwn zAs&G%4=J)VqnHr(oZET!%u8mE#@Z!XRiF8VdBH$SZ3LGp>R@P~`|DGr$DBN4AGw5W zM#9{<4_xYa_rCD%Cb-+iZiee5dp}-%ysedhBZK6MWj5hfiP+|u=&PWeU8 zBXI#ObaiD;l8!;QFAKZ9HS9LOv*|VuW@EQQAM<~L=MKU1w<8CnL{Wm;`j|HwfaTz0 zBCcB5OO$Mbr}VZst}_%ofdSGrcz$2J6QMe22%aT)o3_Yx7}x&?Yliq!Sko>`)w0E{|121EqMO548SzO^R|4@40`sHn;>}p2ojvnQ2vN_ z_-7D2$9sQNmcjFgGKj(X&G@s>yjsmOE?xCM!E--vudG4)D1ZhcZH<#~I}Bew&x7atemQC!s2p3z_g-oMrf~&qg6D{9Zob#vaa^}U>6_Nzd0(6) z?L9enmnMM&>=;BL^yFqJc>Zd8I@koyPXq8^TWu#c=Q?0zk(u(b>Ok;(!~yZ7S^EqG z&(Y(G2G1i7mkgc@%4z&Q+bLmNrO>ov?_Y9HlGkVC5Io-oJkBY2K8fnVZi1)^lTK~K zE(lj;4KZ2rgCB!O%cYA3T2q z3B!ZukK!ERo^C!b@eb67U7E?A(?42u@bb^KWHo_^87f|LDCwuqvJ-x8(y0g@&RyJWU$vV#BnalnxZ ze%Plg?`eCHeGjV3y(80AP85o~(g2f+Si{h5S<5hT+Un+1N$7I0Xdt1-;l#wEvhB2V z9ViBQ(Ei#mERyr zD~_wTCHMNubYhXiI)nY=-3jGbL;5VKk_76p0-_L3u+>ya+Tti;{?h)4SjR(MNZ}r9 zXio|yed2|IZ=Dqg%0%Ml)-O#oAi?{wQ+(UJ&g=U$?+}unYEM#|%*-kPpIc_;cn*xI zi#qZukEf-|n;fv((r)F+zhglLFXQvEdWsf6dUIF9 z>T!yg_=$oXOQ*7`&fV^V%LQ%{Ec{tRsoW$vAR%H zbn!Kn!L9;giyH8V5)V)0mD?MV_p!l6F=Cq=ztl{Wx%w|Bn#&DgDVe|Qa!(CbRKwnf z)Y5p}vAtqmlBP$Y;wWmx?!cy83)Sy3;Hh;5GVCOCI|_~6mL&7}-Z6vzjwI2YWbOxG zvUu6s0Tygd@fu`U9#yTtR*_JHj3=pVDb>fOwlThwOq(ixU!cQ{WoF#X6Iz7g1iB-P zxw7Aam8e;6OY{VaM^v`djd+OZ{yM&`5&BLD(^oiEG>{X0e8aXx&j2u6VN$7~N)LMs zDH087Mj5%6&KzYhCHn|dl5EPfCggXBW|Ylo{Jh`ekEW5^zk&90GaY{iV7A=W5XFw^ z>L$V_?TwA;h7C)6EMzo2CVDpzeswH7b7DU%q^dOg`-|NWf`Q0OZ@PJHVYCdJxDP>` z<_L>l^#-j?B?W9~muc+FB4D#NT@ONBY$7-6)OTUnA)=7-YhrN^{i=fwx=&vZi8tqM zouN2LNbN{Krw+qeKOrB2y@OCyd78R4zoD(>(4o;q5-&tauEAY3SJXamC zvY0&kSSen9%E|LZ4!C8XJPVXJ?WfTkx02Y=6q7CW$DZ}}~iRD4>#x-+vba-$$^iJ z!a%73OT%koVRV`>u_o}XMzL3AMuw{5{3oJxq4qH6c=r-)DjKY66VfGidshRVTDzSg z-u(h-&(4MzLX`UeFx#M28{(+JtL=7F5$cCxri+7HiJ)a1d?kuaROZykFA=h%@a@n@ zP-W(KO4i;W@NtS7y9m1w)xAaGkLVb5u{{y}Q!(a@PfX$ZiXO2!QS#)`r|lO* z+Fl6lpV(o`Wltj*l@oO6#&QxNa@kD{YJzj%Jwe#D~ilb1ZRqj#wcdu`wh@uZhXHJ zfMwwO^$TXfDJ}3XA^6Qbw@8js5rj7uo-p$PhQ=j2C{b| zzYQH{9wSwrky*ycC>yr(Quk_s6XVT!SItz=S|M2wB2`1x-mY;@1O$#(*v}php2e!^ zBacMvdYl^LbK}IxGj{!20B`4`8d9?BIIvivfA(g5@8u)W`^~iX_0INwY&v=mCyV;i zlUUwDJ`%le(%xUw+1_704ZY8Ag~a+U$44BnvMBQKv2rW&_^bnN*^4{` z$~In5TZ`fbOp^^u7;V^Eq*P$)W3BbU(_FG)N2E+VDPs^{R`Dz#kv<2ejP60^E9H_{ z#pg(<`G^oq#Dk6_vIg;>^e3JSuNohREqQU<-VBK=Jej!e2UG!4z1(P3n|LOZ?>(xC ztuEOrHM&0|J)ypREM%2!MaJ*2sc7h`O%jGUX}>q%X^v*Oo$dP@XwS}5Fl4Cy4!|PO ztd6Y6*uGpyp(ZF?L9kRkM$Jm_Eb~%(eqE6?H4{TbYj1qp*8k6t{9Fp{-Gx=bAk))mmYU_!@>nxigNUOK9AFR`eJ-c%uwQg5stGefLc9(65^pQCFO1Q8 z02~;jd4=b;UZ+Iy@wv_nh$UvrZKyzdWd!~QI59SIB#O7F54P?f>D#bIMvKLSX$=M1 zGGMG36HRjVdpx+7M=p)na#Ui;Y12EQCD8~{C*EsS@m@=T-ebViK^~-d z8?j9mZ_`gQiT8D!Sq|NC7wnMJ0!GTvN#C3q}^O?*ZC znHM~%moGFuTrCn!%aEUsG|d7ZinJ>JbRJf)rJ(8exH7jSx^Y*Aj%!#_5q~3BsoUyq&={Bn&^! zf#q3(@N{Q;|BdPBy{t2^EkXE?&i4Kn`S;#tXp@4ZNfsxV0(L)=B+$fIYd6BvT$05r z?9H#gT=E6qut^mYvl}Fe(`Kq8)+uROWQ0^Aj(QUjCz!0IPZKv^%g0%sCx+3o4y!}P z%8f=4gTr-_A}4_dj9fELR!AK+)jP51|PpDC3hY=3MinquB($N-08d4K^+jl1u!mvGB4?+5MK4FrY^ za}NNsO#_-~qb3EnE1y897s^!-0a4S-Rx)RqUVa5iN>s|!ger08PQ$lt-MMe=0{nE7 zt5Y~tG!mPb|1rqbIsj%XS1L7BNn$4=MWX5DC?jK;B@-uO2fU$#|$@rEL+vNC`=_jsA&f{C#INKb$BZJjf3C?e4>Ep-q<(?Gu&x`JIJ|zh{ zJ~s=xb^6!{QYYT+(#PL7;OQU_QoN1WCX2V}Cz-_iVa_av?zoHhc9TBd;hTCvbfAdT zfPb{n0DNxNfKH^3jjigGq+R-WuY74JmBff`vXYp7l1WMaD=#H+z(OW0uW-deCM?l` z%a~~y;~+YeuskDQX_B7nX$aWHb5#?T2cKPUl?z2&Qr%ss4D&!qB!*I|m+?3(jIxA5 z5aG1h{E$rh*5^wLnX!8v0Je)8#4>hB&RpckK_O(uj!w7eJjVgB%-GSen<_WiGj>-Y zYk9`*YP{naJARifW0$GV^gt2O=g6reT5hL2Q}DX5%Tr;O`JGLd`9X20#bG|BLucWc z;<=}f4OUx?N^LBD5?*(^v}E|(#6)CH=ir$(5eyM1M%P3y#~5&JcxFz&yBp;}6W+2u z{qBAPFr7cfRT74|ac&Xb9$quh4?CmdKT6`tRU?D^l)8#;}O*brk5 zfQR^^?TYN(9k8-kk?mup3ZDDb z=;AwKbdGf()6v?a{rqw2{&1W+%1y9NcfiU*uzalC1nV3J+_DRnKsi^zas#HR-e^0T z#9I3R*i858jo>iEXK<9@tM)HMzTlt1VTgF|3#2?jAu`a5Jnn4>Aao(Y2leyIPu=%V5nE7@zuf>(oAJk zZ%`iXLGtkOYhqxpi<7mzbL;Nay*b|8_QAz7AoLNdrJP=m^3FJI+OfjMiMkEI=jKtq zp9AZlNBMAPiSb#1zpY34bqB0027Vtaw}Jor4!C6>_yx+b(bG_CV(=(6QkAPm`6mZ5 zS$LHH*G;hIJry11X}niAfwB-RA1gP(+RXvC?1Cjw&Q-A7fN4C+gprKhjItGkX=1HS z!c%vTlKYP0gs>hfAHpvMJ_5Mtr3?EcoDOC>lq_`mq}!6PPgI09!n5^=A{so~*tQ!d z@D_(4XI0u%DwL|#+LmtEctxCsf~&E6>aA)S{w$O*nWe1RR+3m*fe~-&cn4Ma>5^Hq zU@!cii;rLO4}V@Dk7m7AN|vBrA8E;MT=${Nq!49=NRUMMr40+G-D~!2M3yIoUW0c$ zDa7w=G9-Kg!1J6TG0^qy%&g}mvhkYZ)TixIE~z=Bxx@@g!u%)n4lU*%XQr|p1fAkI z&z`_`v;HTp?N$>i>MTUrc8*L%lxIYP#)w>}8VIwTlE&iAO>Z%`P6WbXBsMA8Tg#3h zoEDFB&lkUuFR1ajc6-lW6{k}ueLDZd!fU!5z=JN^y5rY5U}fPo`B=GmO*cE>mfdR- zD92n6H+TFJ!4>uRz4^ip7=)?KR=%HdAdQ7EeO#bzD@z{*0He5~Ar>1hYtvI~X3IMB#Ks($GvRey89%0jAqtlXq(@zeH`&g@bpP|j7V+<<8&b_p&4yBN8s zo!FJ(X)Y5x(?UA{QS%9Y(LjlZ7M^b|K1;8d# zjn8!woQWGRju$N&?dM{&W1cj(&HdHv~KWh0|y<*FI}Xy z2-wC&x*t|2MYrNNZ*&SfoZ?2Ou-|ExjZVvk-nZN6RK-BE(W&|x-T7$LfPe$}rD-+x zEZMZ0e&V1;a@phnbkc4D?>jt(S55mqC@=5!nDrSXyek#cFMT=!pSv<8}$X0>dQVc%IK=|dEPe4Lnp#h#Kt z&ZkhwYy&y&RlgsPH#fbu(C*jeHFli zvuT@HebxahixilTm0Jqz*ABR4Pk{-PZ3ZMm(d^@bE4gRs=YPlAM%a|2&jIib!nC^s zRu;nKW924H%N%gaE=&UD&I;3xQQIdCm|8`&z<(`xLkvaXw`2%9)`3_Sw(2N1@jBfB zD+}@Rv2qiya~yEXE?xrV&WhKsqy9B|7nQUc}9iqz6XM>~+9xO^>9-w$3D!WMr_B=1%SI$B8H&2Ex+p95AF zlILUPCV8K8z%9Gv36wi4c{`E0Tp&hqiCY-F7rY`QO@2)z>=_4oSxDH^ZW8u02dpe4 z%*V=2!v5%hTXqQ(D0f!E@~fHL`CmKg<1YsA4nF?A4p>=8m5-I1R2|}gTXv}uDCa6w zZoo7(lL-MH_C=gpYilMy3Qu#XnM}2xS#K;>#;Yb@4a`hiH5m)21$C20I>ieUR>(yN zCW^xDBf$w!B>mnG_ba)X&8x=8s}s>PFDebz8XIiF=5FM?i+((oPIu@9oNEmy*)?1B zF%C%{YRAc0FAvF6uESMzMKO$ZNd#y@?^E^3`EMI z#OxQ{ik8BvM&6jwxOy_X`9N49#ib{O0vk1bP^+XTdUR4;b)kj;^k{o}7!>{l` zUx9YZ2whim)^2z7=L{%22%0R6Fk&k#dvE&wxhgrYsQdzFn?rA8k<%lB^LbZP_7&C| z1bzPxs)D|mQf$F9dUcqQUN##BUL>(w3#oLH& zqIjErkx9H~ab`L6#$CJ@`xzqh>G5I4i1<|Dx5Q?z%9l}6l#l1s5!N@!X5(|6C}(0z z-}JL(0c2OqEJ>4p88%SFLCPd62HLO!pLc{6{nO8i-PJ^dnJ@9g1ksuJW1>9Q8VHw( zWBTkZuoG^m8V+`u(R2 zM9IXBC);oXpLc{CPvpf7hoMf^??2?~V9UZ|oR?-SJpPdI(Qlhi>f2!pUlGwMvb*RL zZ^1eq6m8JVUHC0g82HY;Nr#qMb&rrQT4 z{16>37Ss~?LS*j2UDjpoLD31w-Ug~nOI`o|1_T_~BK><~&p5GSr?{Ga;-Fr#u73~c zq+Lwe5Bo^-uSMjYhQ`0L!|5nqpDaDSKW2*(hdW=R3R;JKy15wz~dI zeWqKAi#|v89oKR@<#9*@VV4KPF7rE^F2|2UQoHOe7_62WjdEiuNF(}@?C67pO%+G_ zL~?D(lf+wr8zK($iiiwq{{2t^-}Vd^5}6~&-!>9}F%$}0gWLFX-T zz!5sX47yg?HF?}+qnZarwpsJU&-@%t2b+J6qmZR<_s$9WcC7($Y}eB2y4u9UH=W&E zIJs8a)LU3pIHkhVv8DP1Mz_|CRI0T`ZG5CMSgICYUE5e0>@A!+R2ds+)i;h5UNcs? zpj>ZMniGXJFlINF7gij0*fG6@)6Y6-b>Wz!j_x_E=cpr&KC)-U%9Y3T9IcMeJ3!l% zChsw!E{3UxZ?gT#!k~AyKU8ydM(iF?1pa^&q@;R~>K8;k?lF+d!Cm-Ns2ptV z=FtgExXL##T1(JV8Ee*SLoIIXdT>Ia_PqV;2IO9496IONxxe20My*vJEKi9cYPVfx z&AMc&$daMzW8uhUlk9EyT>;;jg1c?(di;AOzVmjtn`H0c*LT7d z8hRK1SQGCy>Yin>jN5h!IET zOL&L9VBDoa^TxX<(BiH#M{9q?oTJ4Z^uHpiv%UhC1HTHFL-6uhygY)JzOTXMM7-Si zBwTL63!bXP_+d=A8$RQk=;QW@jPJULMS+ah5@LrLcOCx?@3fOlsPyu*oZB0ei;*d#|&oARDR;Hr5N{yxvUV-g*O0b>y=+u>KZQ z?K-7ATp6oii6nIwqYntRdgGnShgyfk0kebgJKn8%&@DBXchEr-ynP#ZX&s)Q(2wUQZ0HN9P-LphU1--@@KfQTT8ZGx z<9*LUROxCT2Y>@tdtW0tsQZh*)9FO4V%4&6@N9$~)mF7sj>y|<4Vb7trtdpvs!3hP zDW-wkrf~4Tzz6mgL0);NHd?BHMr{CKxfc#frC1=m;wY16_oZi~>cXa-dT`%7h6UAM z5V|?a*~1u8zhJ1;7}15;sRFfsUC4=`!Nox7#()*u7Jvc3(u^s_`8I#7H9AnPPp$Um zRZ9cqD%{KmlL7lyOijj?qR+Lc5FfY- zMc8vGG7>;mM^3($7vLfMkABx37(#wz4#c6tK>$XJQd69+(z*3&Zu= zXrWwzgLVM;Fdt(A1RA}|x_SzI!EC#4yl(?exchO!-EW$3Z-9+bj_wMXpbmCVJumwk zbk|=&ar1LqZ`fYh`rOv{0%NIly(=!Z;keCu6^T9gyaUon!ukCHS(0PB_ZeDMEg*(n z4p)N@H0&Z{Iwu0go^_x|go4n9`fA;S0UREm;`BKQ{^UnZ@(}A>6!Y{{RIR7u7_~&; zb30JZE;{0OX+P|eV()#J)N~~ThURY;=2f-z@_T1HkA^Y5onN|!Cv(&+4Ke$gcgQI4 ztcCog;FlZ)z841^83pW8LS1X>wefPjSy2bJ=mXNN-^5!Fm049Qt8V=|4mi@SJ%NWg zAL!+~3WGxE6PgeEWpRquey5KOm+LrHS_d!E#?Ae5G*E2`510A*e&)Mq?iT9km)u z{tZ-8Gi_%~K>?C2M9kIX%U%XxI^O?fcZ|Cj5`qo@@68^LCpYtaTia zHyhUltlS@9Wo-&#lD*=IdXTs|aDv9pppP#=A%XmZ@Kt>*cDiBr3UI+7wE7i%e&@c?if|=ybyr%g+v2NCI_aHs)*|C_&0gCKSXA=4<5A zQ=n4uNyBI#W8QXo5cEjS1IauEn|L{-}B5}uZjMnyg`3Ir*t04 z#@^S56vQOXfNS7=A+HVdzHSnE-5T*nCfreTLs7zw`QE;2XiDSzIc@Hthj1&Gb%?L~?h$o#BJuYB zF&Bh8zn(CWI0TrWw)SBl50=Grdh?_OR|Xx- zW%_PsYcj-XB41W>7{?jb%*59CY@)hEGZsvk0c3gC~S=T)BwAJEw= zal$;uiySFJriN5@68}$cn!~1siTy%SkGY>o9ZYmJQx0ClN8RREKu0}|N=!2F&L(ol z04>424H*a8k*?=(W#rzj$BiE$Z#3i%#4JLy#RcN5!f6eeXRo;{(+2;xd?Itgf{44? zXyROFnhc_0K0QBZ%f{Kb&g6+Va6jGaP@2^CQt?jUY69^_mos)**;&qa_kz>!`xh%R zwT?XaI=p>V{Elnd&Rm5}Y1$agrd_m_t_X!7!cSN--6fdM6id~NvpHX>0z$|NQtX^* z;bd53ieLzruP_a>AHr{tI1OiBb(3hE(;Wd*OF7}xGr#%j85ge}iN%YxtRAk}RvF$( z5LEGghJ?DeZG`#G@w4~7OWeayFl4jL;rNPdmLacj=g1cKPAG@myRh__+k{j0U|vq! zOy)#n8Xt5-n14uk(`z|D{iiJt#R#O-H8;$x3z~gg&}{O`q}e2}jm-{R&9?*T7J>9m z)Br;iFHloY(^U|Y4KW6uCh{u9UM#YOKp*p#&K7xXQ6L2dNZUaArD7w3?jR9(nm~Gt z%-nY(3&G4QI_Xrqb=+i1{Znp0d9O{g?I)bc%^smZ`d#MjHVLHP0puGNNdI68Vv<05 zq8=oJp7{jF52Rm*0wzu7-hU@;1 za6)aIyWb-FPm%IXu2F!Lrltk(wGk0+je*R!dLaEJPU$?7jpKZOR1lLm115oVa2^-?YegU(J+E*eJ>+I%Ch;gq&PF2w z>6<{yjS8fngk8k_FvM3}mM0Q24%BIRmNVlVGKOCsl=qY@g`wPfAuOFnDOOa_KsRy{ih*=E_OtTyM)~tt< zOQGCg)oenWzbu+9^}zl)FO_s*#_8%Sk(yJr&&6Q5uf`CvJlL* zqe~~+DN~#c)P9Pyk#E=t!#?nkER4v4NWIxzQ~jjk|VnL34$%H|77CNMiNq!vZbSbj`y^8uQJg zM~xnZe|XXrNy9q`o;P(74DMg_*n5i4kgShg51Y(+4(Uf6j*hnAE&ctAl;x-+XtZaI z?Wv*gvLhy03QV*hLT!(LiSvC|^FWQiAowpdlw?7$2law){RKgMEksO0CZ0m=+ejer zMvWpS@5aWBJYXF|f6Bm}Du#Myf&{PJo0gWxV_3f?T;cyv6+uoF-7GVCti!KwI4+38H<~v|20@&Snr#S}F^T3xXTuYN7IA%&eawyFZ*Xem zTPQJ&X%^D|Dpps&yj8K0K-{4q$^ZY;=^dUiHmoM8kJ|!yGdn7T%Gi8oG9lK)>GZzM z6~=tZzvgs0m_;wQ;L2bY?Qs=x_BChG$5`-|eiltxHW{%JQDsL=GK-F}Tka&3lpmB7 zYI_YVo&7AD%$I4p!(!9HW0+36dx5>Wc965q#s_bQV10>c#cd0Qg=u|ANOUgpXKn;g zOzYiYhyr1k!6T~Sq@!f-g{`CVm5@;_L0y!(x0*Pf`Vzy^?MQ>Dda{aoA-*E3sN@wc zCk|?l`}KtD#OmtTx6J>N%F(x~Zp0mPU&U>G-c&Oh zgdbfB6d;_t#J-|IkP<&h{-h|Dq$MsBpXqKO-!Px)t`x*1qgxCr+&fVuz8-|p?Hc&D zA*0(7DLbk+*nJ!LF&ONmebXQNR;FYtZYT^%ln#Y;6mih^6+>a0kk0nbRn(-@gWChU z-cIZ~hP%mDYVOL$N~SYcfsN!Px{X>Za2$X7yKu+j%GBKO-SKfwF#M#n(IN0(U|r$h zl~D-%R|-z0)8`Z+@c)JS%q)o_X8BtnW*Wsxl1?<7we^lJv=1WGWT9~*7#fDgM?V{Z zT{IZXc?o0i*MX(rJ47>J_U}f*Y#K0c3bUv*qOfxR0UUCn@vtI=YgAR56vnpXi3UqV z7T9~7(ONSK6( z*?5LM=)Yy{jAml*bF5Qz;7Ht3`3yR2YTemR!5=}1n7zNy`2)ET^}`JeF?P8jlM^8kQF0)`&B+Fj%%toF(5DV~`E$1~52 z+T7ady$|YZnBLC^VvW)Jc4U?x5|Y9StF^r_vgkYl+P+p>+t-h(!M_9N2*+|_!)G*yr$=G(^(P!~ORrOw5Z;E6W9%d{(uSx7u zdUQ|BGPykxcL$^J0$VQFrS!ZP$PXYE5@LaEK4cK}!_r?$|2njt2Dbl#uSj5XyZ=BQo=&q|s<~eFsq$zJ$f>`_TjbcS5Fp z=qnn&9^eh~d{H`$3}5dF_4sH+)(!VaHcjdqUoZ*Y-{H9sE!kdlDPPJC1%V1@vQY%#PMkmjU zjBeVP%&O%L@8`Lu@E(v5u}Zm5;~}go9J)$chT(j*uPHc{`f4c_ss0=4GxHY|i&WnM zVxe$WbM|R$Wv(RcD+n+@UK+iK%?NykOHvDsoS9W0Tqdaq?AZS{Q{)maYUgKf`GfkSANZYBN~7 zn!Ew7KZJBTryRLBIs66J;OWmB11eVSo?h6>)wW2OtX#2S2|Ji{<*G6<{-TaHceCUh zAy4CgflPaQrmY`F9bEAmT##Am4>awSYOd<^JH@KMJrPGBxc4A50$tA6TPs>+|}*v28YQB82NUmkn1eb zTYuXt&UrPw4Vd2L*k6N-Ou9gR)M&@`0Q_Fv z1C9>&0BiB^cvjXb>m*5Izype=SfGk^5+%3sokaCWs!nnX(Wgao>^sRsJa!8Ei67Q% zb0e-yeJuXO|C)l0e#H4R|JzsvF_8b52t^KZ{9Xp~RN8o=QQENJq8tqByW4WXR$9@W zPPx)Lg^)0qO-!JfaFMA*@F@qKX)nk%XweziJYq5uHkn66GvF4XNfZK4nKKJcPqht3 zg)Xx)DkLB<}TY&`7gLmp5Br-3ZatkZxqr5SFmO&;9verUhY^u)qg=qunNb z!oq0?GqMx!bbLh;7RaluGGSrW`A#|CGnj=tG%NP$3d@bs6+%@uGg;wK-F1r)KYpr$ zVz1ql(9d~qf%}HD{1rrkX-LvOH=!g}SHH4lxe1)SXcQ9SHj#aF^$A{Pf-lmBrXyS< z3Z#+g2v-AnGo!0mJiLMsYh*gYUCnL%9V5|tmUCd5j_~E?w*J2w-+GhbjR8rra2#U` z+{;lUeoqu?bK%>DEF3SjFu>mK$^Qi&43>>K%j+*1Yp+{}3{>1M$&j>YIJJP{3#>WV zGW{jv>d9odC2PhoW|m=}NYSZO{7@Wjo1{wdo9No$*5wz_{)NEuS9YSy%toLyTxQTj4ZJ6 zG-m<;S*=+{KGGa8ddtX%Az>2!VM7&mptsU8@)?a49t*pk0)%~I6Sua2-^;pr>Sbgl z@n}p;cNuv=!Lh_Jsc^>PTuN@^<6NpoY&$uLb8RAOvuF-mLO6kHek)r>zPYj5V?e)w zHkarr4(Ry38tBH$$V!qjcqc6*e@elp1s)i@mE6X|TlGjPcwbADWzigacyBe!$d5Hv z!K?>-mk3q9!iL|gdq6Xmk(IT|I!V$p^7D$OSfGk^5+%3sokaCWs!sAK(WgaoqMgKo z3$}2%-j)lt;(`ub$`zLtghZ1TE@!DcT>6MWZH0>^@2>k zheS$3L6ltC!TYl?%o0RFX#Y2Pkel|kHC7gEM5=AgTL`m3lg|m7 zOkSBZnOrP~y*OA?Y0~X^%82gTVppM7$-`lC!rgiMCN56~563P@Ht6O&<;j8p2W{bf z(hD&TTk6i=}*YAz0wBWC{#$eZ~yLXW&Z z=#if##Dqoh#_iL7yt%^o0p;IxpZ3!hTp8@s_PB~Hw`m^B|9cDG((luzEStDg=BUDJ zk-agOb-ZZW!8r0G|9dZ}KtJP*&V=8}2T_UjHR)wzfINh+O@TGjf-3`Hd0g26Yn}yf z>48OAZYZ$qh)MD|5=RrEwgKp%_IVust%)DQZceuHuSUJ#TmRNXeC_#8r=g`L6Zz0k zPo1eU5(vCVz^Xi3qB)lh9PVE~q?O+o_#5o{rltDR2X=u^+~rNjh{&#A+8V!-F-rWh z^`MuNc>gju7q-nko&To3M$2Ifs?eFyM14Yb`3INy!9M1UY*rL(vWsi)*_|O)x0UE| z9YjHd)XI@{E6*2&lcWoi0j~_?8|GFP39%-+mDe^`7}rq#O-KLREVwcl{XMSiM*mM) z@Rok`rz{IYs3Pq|;Z{me)lj$c8x~?RxT5^4cEI|P1y=^Z^0=}C)~_viOAjo{azlY- zM@-^Y#tda{KT67v)(Ewo1mD`bmBfLh*N7?a(G1+Mz>DxQgGaptnQNNSpO`Dely{ej zmB!@*hr~lY+*3JZDLh=^Fpk4Xjoq+nyYLN6ssHI^lljlg3&~no9rUhhaXxKW8UNGGwcV^*j&=-v?qvy3h*a0ZU)ZN zJAgd&XH%~{Yr&O)^W<@5=REaW@Rr_rqAUv@h@DrymTDz>N8fmA2ozvSIPCXo3(**W z=?coWDVT;WxH15f$CVwJ?y}%5J(wuV%>`5A)}tP@kdXnZzF>!{Z(DF>fGUqGJ5>F| zg17XjqAWKQRd&QA^ScSf%M-S6raUot3f2`);V?Qec$$J!iOZI18|Ngb z&ulKL*v2^vh?(xTOOlQ^^$qSh+qyh`+EWl-&_76KQgkDy5%dfJi&cPI7U}L~Rz$VVitPRP&oBa{04C zeuEH|ADQ!lKi638F`(a1n@jV7V-Ci~@6|vz-sq_$DT8;?M$bnTd|Kdv!CT2~JiJwp zq=NUoL|GQiv4?lVjzWF4u?k`ceu)Uh%c+b(Fn%vXa4K#5rcv6k;DYTaEZB0vb`+wg zAYJTIIUDTK$x{i5ChaK9ye!wCMQ30x(i|jg;vzi&` zA%13Bl`V@mt*S>Xx)Iw@*#V6-o5FjJ5bH*WriOGQi-xcbmHf1ZpP*V0W~=3VBrDo& z(r>6NAk4^Wc|X1)tL5aC)oOXLMAxL1a_{ce;1U$uwesYhmS1bKS{`sD ztd|$zfVzrP^;XZz4&9pw`xN2my54ebpfB6!n=l_HvjeX1^>|+-4GCj+GEo5YXs-M`Q>Lm-V3{d59WrwQ2TJV-0 zRg~q1qRNh#B!4m{!s8C(Y)G0vc?o>mko-x#)6P1CXc@_%-1$|53`!xU=I2lzWEV4B zFziLr*|88InbF*^OSvf}OlaiCLOc*zqA9N&7$^*eZ^g)0+*+}#3WvXOH)3STeRZ;X zG2jMlxbv=BD;EhVcKscZXxZsz_hAP+?b_&2Hkon2-!`!ah+P(cY;;29eppvH%PlEo zkQ;W}6`V>UYN-+`7eIYxt1*hKw}XI~Y1UhkbUetigvzU1bTWs~p~IPY2rxg3DVkDg z1U|!*$_)sYFxa9=gdDgw;;&7^@F`L%*AuBoU>m#KtpL}VK+F_eQE5cMU5d-D#P4MmfsU!|;VZgVW_n8H z{#qf&#$f-BEc{|chHsXVx-9=J=?wMz6f9c+jU`Daxg|*wqdWB5XWPk1cIAykZ5FLz z>1Wqb%{Mx`az*9@1Ai`Lk~dy2PGq`qrDSUKW+s^C-3W>5RQ98nfcV^E$1 zgjF^hzn4Kdm0HG=iY<7zSIY!gWl^g{XB}pVLLwH;VXEjzPz8S96jkgu@~W5-U64@g zMO>iZ`i%HB*LhA+2riYzPE61ke%}<0Z5VltP4xr%YE7{KKc^w~F{hb}6#`17nav5B z!S9=*ncB!}reV4KcPfOEN*lK)Xam1*iZ*U-lr}7eI+n{{xAj0+5;D$9QzjvACM24a z%m1W8gBH+X6Y?J+VUr1YG*EoVralKkyp>v^nlJX!Q`NY*?uyKr1*fOlme~L=O6AN6 znKMbqctIvK_aH9op2?*63CIfysf2my2 zwV6M1oVGc1F1b|OnwKVZ1WjHPG?~0IX|i}}QnbnS30;L;rQ%eE{pCb2k{$jc=CH-S z6?BE|7ry{4@IiQYU;K=Oq34TIsLvc2toD_P?fL$Jg46F5tK^b-p?dFU8R2INW_D3B zGXtifm+`B7!S>uX_bUFI`qZQHorQdf>^2zWb4>WJIDhjP)Dd^)SJMmBDk2k6AJ-a*|XvDr)0h#aV{o6*&^D$Id8PZTA~s zTB9SxqMlNz+Lf<5?Oo6p+p#CLcL%)@x*+R`1?-4m<2mE)eg%ov$L4C)((t;`?n>0f zKfx?`Ol=cbh)sm4C_?IE^4&|K0|#G)N2w1f6DOaIP0Qj8tJw1T)Xwlg5S2mnTdsk$ zc7Lc;k4|91qk5}{vkBVs#cH|KT_eV>olGF2P1pFng1w!TgXcD84sd;ZrBo|-Im2|2 z+Hv}*QI`z2xijJax>4><C?%lI2NvV&mgbQ zB;{G8Je!nRDBWFvuA75b0H#j*uZw)!O-hH9J@~~oZZG~D=l0QmdGeJ@%5$OI;ufIn z>vxOr&)pU24&bZZ@KrhZtb(s*<7YK|H3wf^0I&Ksxr6X;y?Y@kFT#)3xEI4ecOJI( z67umoNqH$LFC*pUq`ZQZ?;_=uP*NFQMc!YH@8@DYTj13ecL+*o?KSZ49oz5Yz6buV zck58P3$UX1;;Y^9=hu;MuE+Na@tYgq)w+p&mkzl%;%6EB%`m*$;@*t!m*H>T2d{?Q z_mlDiP(nqwkTF$j``5<|J85Ps@@5sRA;qt|2cGc10L#YgZ9e9%1-Umb?U z$A1mQN3mFrZ*i0}|0Iz$K#5n@{ip&>$Kh!7Ye4-eJcPkRp%W=MY~ z%Ys$M1c~HpTSo+yrl7mnXmu6NVtBQL7rH5sjG4( zwZCU_t(iM*LgH;Rn92+i8NQ{>U=4v*h9WS7_z5$E_?3%&v9)Fp z`v{o9e>BDn&W8E3zw?cA62@sYtkfYJ*Lp&Wt%h7*V5`_;ZC- zBogFh>Ar+wNM{uZiMOp{Dyv9j_?EVce?XwU0!3gI@e^hh@hcZQWoxY>_7Sj(|7wg? z+^xG*>nu3!MW>f8uY?vG`029pmz+i1`Hvtd(u;S%SBh(KEaMPLi@6J`tXD;K+C zYi%L+5wL}Sx3Yy|_UQH@<43Mn=PjW4HD~rtLYa^bdpy2soY~tb60WbaG<%^IX7K`f z-qsmp+D=~W^yG_Vfu5IA_zO-xy<#&Ov+~|85_Y@rGh!*n0YIX=KdxO_%L4k$6Fh12RV!QiLq4yhE;*>?<}ss2kHSBHCG;u& zIrj!^pZ1A0HuzNcYYxs#ZtaDAE>6l@? zp4rr%!dVm*SfXi}8aQPK+z1WiO-xME=Va2SsX2`Lfc$p~moLW9M+})Pfl3_9_Bk$J zsbX&Z1x}&Rer~aJL7d5}?CV*;nbWC$! zKvq1X7BQ6EcTr;)evTMsJ|9frfLG3|q5y)CNur!o#_@MVXA;T@$9W0H@vlJ4)Ho(d z$3t0gR$K@UQ>n3h(YOg7%{cqy(R|L9CObCcX&@1CUm5S19UR5$eCj93@k)Y=a=^}d zO%B-bcTvEGzaxO(%3FHXzY&Fnz`wz5IY;{Gfl%M19;aknb>f{`2rwjir7T) zC?GqHLUtG9HYgzL(VS^ZGX-SlQOJf?0ywnb(x@D-Yk^^zfen8b#cTLGg4gh}p-?|> zUQfU}M-Z&*jg_MCJ@Bg_VvVRxdMFivp|f1!AUHO%RR(tlLqrUSiw=1z0_rgSIqN zfORefYj>WVwH%5w$t~)qfmaz!!{0?=8vc&Jbe5!Q-k3gs)r}xPKWnTC1wg+F#7qGy z6^jCz+f!)XZ_K*_njX!2Y-y%|rZ?g%R(sBwESpl*_w;a0mdIk4iWs(|Q?BQru|Bq= z_zizY@awG-#a6*%__s)Q1Tp-AvCb42ehrA3Vpu5}1&*gv96w{szXHb|&0pHm)W@+& z^vXSG24G^@_At$GKa6`!$PrVx{J`dK>%4g)AFmLDAN9Qp5H@Nr^|Z6FQDhG@EE2xyw*oZ8ed^hut!FR0?d^`%gpT&?Ww%3D<6V}eq9F`I#BK*~ z1M7>NCH2I-1#tRvL9v!};D{1U=>s7RoI8UtC0Cq;pP2D2lkWaBIfTro^iCrYJ5cK9~ zm(pk(J5Ox0f^c-PtNyK{%C#;hvw;lb3o|Dda@}x3L^*R@zNgaFm#<#9kldScOgUFP zH*<2X`0$6<Fb zM_Q1Rri6pa78y2*Hwjx*@+1E5Hqk@Pk{{VY6q{+S(c{gOl}2+}_R`T2KL+SM!p#A0 zQ;5z2(=6Ww+v;2L=mBR+Ik1Dp_R++jfm#^xi9Tozo~BS*7#ZZ1ts#%>Aa)DWT4%}n z5vNTRE4E`JIb;njlsH(q>)_+)KxO9|M5f2?(MXv&9pt37kmJBkTB{MxqENLtX^myR z%%iItmZc*jc#e~eL9^!tXa2-hECLdi3jju6>?WjgLcA5f1Tj zsdBD~4Buio*WZI~3ny#gEQOt>hUSEQ_(=%s;Te3-!>8^uSUiMz8V_Qz8@}BciyRhb zV}T@zMRI?EuYLvvJ2?%B3=slDqvcVxIgXc=$&12l619;QTTomWG{Q*5=;5I~Q&XP9jl&%VeAGZ9FDzi=tU zZtK$ua7Jf2SIBl2N?qp;-!vRLQLVl{CQUCc)oyaT)*tUdHJUgbovDy^H5QUP7AKP9 zpzy@CGmxOfsJNoTf=c4`aRujmr!c&3oBG)5;D9q+pK!{`jqBI0KX$l27L_}^ZZdDT zy-Gg{-~r8OW2mk|4HuPG{gCr(4#alzgHxKB7dt6`DMj5b@b4{wvDMHJvyQ017z&4l zF+?ZC2yO0Spq30Yif(?bhVekRHNbj^lXNB{x-$UU(YO?3e6Ws~QXI2wfJ1W3_Z)z` zQIrJ0XZu1;17Nn)k`oEnkF(q$6J7}!=^ZlXi|uHPfGQ$kw~U{?Wp>D1DYh^WosgBD zeuqq5QJsYcz#<0N4nJZLze7gZ(nuD9Y=?~BZKH_^AI4^BZ;ZLiTnMQ$Y40GiF%d7z zML-+KWzyaY#7uJ$60dS*eahPy6ISO4Zj4c3#Kc_+JE$a-FEo(1EaLE3=QqE+0Mi+m z+`LHsMZQza%VP|D#D3|g1~hGB%oB?4Aef*=Y>fH2qC%5i;%S)~A#91LN|mSMkzhme z4@KTW8Z+A%vjzmwyB(M+yVtyJ(?%m(o6wXZy&4_D+zmF zt^t;1XbpcCMQivwg4XaoKAb_##%zAM5o;YmxL#+h7zJE!17fCdO_GiRuij3Tx^WW} zc=c#*v89;;ufB1O>=NLHe`)S$U9v%edpZcuN2d4g*PyvR)}we1e@E~+Pa{=}(d zE4LY_V+qaLX7DB`)38UyPToA&u!;5?B4IXDS+^s^65rlt5ZT-C_BI3IaH_ZWhos*h z;*ZjAZ!>@lS8uygleUG#Z8O;ZFLDdpAM?98N#-BUq?W?>?aCfjDfybzBjKQzX8A#6JVzb?T(w_cOLfmeS`V&aJo93@z& zlzbcFZT<*8=GM_y8^FydXunb<9P%Z0fhOsnW;KfjL__BQ&~p@n7CsOO)t`cuOG5SG z@1paZ@ONaM6VCZ0b@FqYtk}q=2I$X(`pl56nA_xmnCaX`l!w=K;==N~(e8MfG1H1J z?$JESmL{9eYy=V!FPZ@~E-b$jMPcMDPx)+Ia-yURm+wV>Jj_OM8UBvoGP-)q_30bM zmNgZX*BL8Afy&!}m?GOC4#VY1BuEtEK5xoz-qbf{{~M!G$ba%3Z2Xll$h(*2BZ7B^>KqCOhH zYhz!q>7C6+_n!c9Z+;0WG{RbMr6Xc} zdn;Y4t#m|&Z?Ua(i(%w}#8QmJv8{AyP}qn5R=PDfNF9yE_c6=sJ6QY;S5aQa;&6Dz zJp>CRNoEm+3}RI73`*aKlT}Zd`dI@ zV!P>v-(v8(yOHoh;n1CI1Py{G(hQ(c_lr+SU_9vWrbCaW)>*4h?02d;I1wf{>>dj- zY-&nSa)QD@#I`*rBoiM!m^n+6QwNw zPek(X11d0_eSrSEmHxYp{=0+x^Sala@CGd0Vel`Z>aqDsdycF0iIkNdo?Ph^6kvO) z({(^(G~PoS{B+8?k4Ub2YJaJ_R)GV%icZnLXM|S%YRbxwOs;%du~enEEcTSj{an-k zk+Sxc$+hnWXCs!%gK+n4uCr98d{mtCYIuAR$IFDj@nfth?v6_4WoE4iw`Y|r4jwfM znVwyx8oc4Sn30l;RT^BJpDX8cc>QIi)>(m0TNC==9x1ulCYg)4_$P&AN2Kyk)7?|t zVkLhrA+Nk;z5z;qG}zN_HkCv%}w2!Lbugx~1Y-laik|@!CMO zY34V#a3|q%U_B`%EB{DlC44giCm2Cbohg|i7jCQN5I3^dG8kzr0$qb&?m0)DT3-t8b(XceWl9GX`$^EA-UxdwL6*&1De1XCC&Oty6 zI0iX5fd*f)^hwU&pDd4wW$;)9$85^q zc_-D-H>%Yq7fQw6=tK>tTy)-q^B|W@W^h*GlBoqw5nSTuqr2`BpBtTJmw3GBu)4(S zM5oauo*#N})D1)D$t4~Tx-Bm8JT`(>P@Xk76sgn|nzzc* zy`p!)1rypf_X1F8eR@}^e*mt&%?3c?&#wx8?@j}kHnd@zeL+^oWHaM^BFaymq0}dW z9dpXXTw!<%$z-XO^TT9vUY`s{;=^fP#azEL+_%Q_pyvQzbO6{31rs{fE4eO8B2EaD z;_if^el8so$~<^7R$2*S4BgcnHYLY4ON{j?^FsHb3L;%?DN^?^c#z6)r7elO;XY1E z;&4Jj0cA^R&)hIr?Sl;HeE&ef>G!V@;H;(#RfnV4$(Yi_Z+)kE1Elu$NbQ0SdTj;B zbkI!&C^Hhm4W|K)+gw}Gt_&h&tDUX_j8ek5a7`0M%i?t1q1pw}zB|2WuT+b+p`iWt zc!^OVCU|DD$Uki?a!+JGgPLhy{FJfCbUVau^SVl9rz5@ntBtYgFD@Ec%LCqnTJ)bYx+VbH19*w($<$Ptq&*Npqpfko@{AE^5>Yxd=q|PY;of zra@$Z3L;#qL}2V^&Xp!G+Kef;92oQBfdOkg`JTaSuH0LRz~b!musFk5OuCk19~CS@ zZ4yCosyR=Zpg75xvIGxky*Q?u8Aq!~SZVM#l%-%{!NFx|h=fy^>p?u9)V7eOHC2D6FWCXQ+#heRG%kpKlHb-!3GB>941b%#E0C_dNVt;2Y zQq76Uo>IjI%@N0r7tPtx)bR7hls)({tNjciA??`>pO%Ciil9?;a2{C%54*mRdMYvt zNHk|EA~+P1Hi@8^Va}5#D5e`zZaFAI(~qbC;bz+^iMB>yacp{6tTq;uuKgFLAJSHd zz*uR{l_oF_H>NBBhJ}O1d^|cTS&(2h>kGDKk8wdgom5;}fED}~b zEbKQ456hF+ZZ__Cy1i!Fyw31uV!>0o(H6hV!M)CwL{#7wI%8_53xyUW7#FkCOt$6z1$j~8f&}T{nOMBjkkLOVD;B_rveLReynFh8IC6r5>gyD zrRQh)od}DXCdje#@TzZN+*p`iYzszEZ0f+s)Qw)&)N0(A63+VAXe?JxQY<2Jys@No zF}?$xICIPkiaO4`dQI1Nt)>1f+$XjAriUfak*`Gh#>MG%IA|`!*x-j~r)G&dq%9B> zdA>Ohnu@F#Q}&o+W5|Fl3Fg32IHhvnj!Dl2HA<iKYu!9vSOxnxKN*Y#fv(-KW&@F_-RxqqQ)GWCr3@Z<& zm*E#}Nig_7K-JKS2-!1D6TJ5BhhNzWkm2~}RDd!IAa{?fgO5AC1JAD5K#s1EZGRa3 zW@CIz!5GwM%_B!=(33Ni`ybv+FWfiO!j*bMHnLR*VswPQm$A@2SBOQ__5c!QzGi$x zP1M_L8jX=)NASt!nlqvqlG%+=9vQ>0*6AMc!U$4xA}Ivx)2nx#xm06=ZK8VjR;f2= zk?4D`G3Q8A&qo_m7D8`F5fai~ZZYRk17fiR5Ry#-5qw+(+?qv+gzmrDSZ2E2{{SUE zBn=edQZr{z6E0d1m%x50bl$C8Z0JeU%{Lnk7QxE_1dtq46PO$}NY+ zUJ_`8HVs6q$5ZKn@wl;^bb-;P1V*S)A}k&=XG#+m-!rBxfrUlT_CquWk^YutiBrzbkFk&!$R;6B5#?QbS#9<>rX4X2~sK>Gz!U zGCa$c1jGO7R1LBTzpdF5Gm5TmnwVu7Menke4g=|Bwj`P^V0lK-Cz~edq;chAw$fq( z|A;M#sK6}-1vaiw+hjq4adC)kL%eZ?oF_YS)QRY{+GGuuAIU%tX zj54D}H^$o&gyD z-qGA;6S*MfXm&r$iE-D%tZJHccb!MCs0rOr6I@UuM1YS>FX6*RP{Qg21WnQR7>nK$ z8;jp}8H+7`3Mv|<-D!|l4kAH?=a}=N8Ll}?t=WdoG}M~iODc~b@*RofU!Pvd?==@} zY$RV)vKO~aZj>0DyT+U;O>Mv1n6eO@yONNQ+Ej}Icej zRT?>17%#~xV!HJ;ecj-~{qOrJiQL`usHIcT7AbH-LH%*W{V@$c_AlWw=BxPryRIWxa zGHaXEmSqNzFmr=-G18%n5!y5nBGb)T(}c*j#*|wQk-b$A32uhsl6O|8N5@KILFuAn zzhrcEh+^M7$`QDq5Fw%~{oiP@gg7mP2TzHiX!%L0PBRU4lDd@dBL)lI}>4qz@Vk zQ5Q)^8zL#b#Uh|SV9v27pl&v%+;Tvz(gqaCT_@J5Tr1$DD&9DKH$9{tH5Q{Tq>eR& zl&sAnsJ>;+vnHq>Hm2NiP#vHRDp_LH-_oP#bz`~dqG-7xih@RpuzAg#Nln=N!I*N( zVKYY#o9@WKwfC6R6RJIdL~|xodnDnbTLi-H=GO&-!e}NZ2CQD&YLDg&Nrsqa)>O_hDf%M@6Yo`I^CNdD4#SI znJ!S4C7TouC|>&nxO~igGilj56m&69)hK{|^QVzlB6ty1ig<#EdLW4~oU+YS7GVXiqXDT+2j& zw3~CL36On_DYx8CbSUfuhTs4oEbtjY$vNp!a+a~gbO)Oyx+r1I6QOdtIeVH=ImMWA z%b{|-5-O!&nGO?T%5VT0y=OZb49{(vCMSMl6Q=uSp!Af z9AeI(CR~;qQ*Jq2j!Bj##0B%+*@1Ftpj63Y9(vN)R!k3~bB!gb3!?wf9ov$dEkdi$ zoNY~LImVP*4y`shv`Pa`FUGOYS0#CSMB0O$3XG{|wHyTrJ zIXo2G7QoOr*}lPn5{y)peAL-_G(AGTWh^dTge0zfM%pHV&L7O#)P&9}#*|wQ9mS?gSmNx= z7xEWI0)=~yPd$s;9Y{217Ui9ZChrfSMtQPl(ZAW|Y-s{x7h}pT2ZmywOEq_{lP#92 z(VcR~r$@$d#)8r{Aq$dBNYEGqnWLyc~=#VAi=o!sqINH-l0ZELC|dk&oG%;E9T)?`ij$D>S@P4^Q9WR;TCY7Y7nllWl6^w zJ#GsFhNQ;`38@GhdX$Co(7Zo4OKu6r8T~Q641aG+g7t%!sTx{woYAZaroL&sArt^x z*FMf@2C!h}+j=89!|`-NLW*PQ(HqtWMeTT!X9|w*SsiN#4r-cQXUy}>P^pI*A;C32 zAiY%gA3>?APc%ss_vyys_5{WbFFM6oV7fhF7wSmIK}Jy9CUY({9p@9&+H9z;S8H=_ zj3i_S7G0TMv6q{RG&ZeIG;w=M6&o~1oEp8;oE=RKUt~<#gC84-HWLz3duic_tD&%8 z92B~6KRjEMrhES*!MD!f@C?7 z5v2SoJyL#dEHhoCcuUV_4HV(>Q*#D2;qsI*<(9*xT}PTdrE-6*kc(ht%EZ)GWg?I; z^JaCivcG(^iCRprbs|v4nRBNJlx>VDw;U)3=m3RJ29Drmd3wAoGnSh!Uc62D=8Y6# zv&5W9P1r0lrrdJabm&O54Cl;ZPD=zZPI|y}8cR$UFy8(Hljey~$(pmL36(RADYqOd zOLSye$@dSy@i8P9GXj?z)5GODW2x!F#oM-T+C&jDb#oRqAv0u5x#f`28k8!7{hg&k zzAF|qUri61|2CGJE@%t}CBBg&Y`$d9q$X_s%b0S@VY5)D8$#MssXQ35F|VYD%S*=c z(uK=neV>;$PK3#C%$d`K$#ce(TMm;ZXq5_WWEqpX(G( zBl~cAc-(F*E?syig7>j)6G3vTId7UEdA~8`mV;z3RX>Y$NWY&R9p5pQlP)^EJ4%up zCBotnbEY(5@l9jOEr-RdI0;5G?EjG-34b*fjV=;)lRKY1qVoT2&WEP*|7c9P<;veT zPWgC}7M=2E`*WLN|3$a6IWig9XL9Pv$X-CAIg=6Z(g@wAi4fVtoHb2|%r&Oma)``~ zlOul&*rxPoIKfyj4X_R|2Y{_N=R;HV>x?P4T=jd#svgaOXCER~;qvr2c&D+Hba60W zK1vV^=QT;R1{ayLqzQ@5#*|wQiP*3ezcR}oq;p?-Ox$BECS6P@CZN$ad6H*4u0CPT zl_o6iHm2NiSi}wzB`zWV=jnm)Q)9vC0zu(ImPCv2lsO-os(;*=^46*PGN<~9Q&M}2 zGqSPGZzkk zn$4zh9)8&lbZG-sX@5HmL;9JP_TsoLsFiQknUA)=ssNKnG4r8OKu5gF1#nb47b>lVEy1Ks)kma zx$v2$310imh5Kv;$Z&iQ6<}rJs8I_pAHHO`&Ak{pP~RH&68Lu(yluE>cR$%nCps}? z3RaWkRkGKHvkE_InvgT|e47+DNi;Wz^5KmhENcIQ^y2=mTHFnlwtCODksAJNtOieb z>|lmJ8VfJpZxHNzeQz3pOM;c4&flAJr0HqDtk$x;Q(3rcYAx@ZAeG>RgUEzx?le;` zPf+-7K*G#j(^a^aqoLb0agMdKIcu7lpJ`0llN%e-b|56AmZ0GfIXFpC_@l+F3m1WU=7a?8Qeo&**+nlIlo2p3`ZMo;#>J3UnH zG8ULFRJ>yy3|c1wNQLpcRI`&)71KY#*~F|r;U)1T7ZU6hhiO+zy^14zFuU~oC8)tl!<;)!pqy$- za{KsYtwy>N2{4o8VchfYK8fkJBrbpzM9Rgs#w6-voy`N~VfSCq5|5)Nf<{d-Cg+hT14n?6u}Xx< z=J2-mW^QL5ZXD|-H(}-q?M@-zpD&X2#P)*IQ{@&n*Fwv}{$jGa;-P^pOoGNSwo+u! zSY=CsLE}hU5}qz6ji@enm+P{e@9pE2S#6Lqv585_JkM5)OqoSn5=@!r+LG{;`Q|oY zF=UAc4Y$y{^2*E?tL0L6jodNHb;=JlNRQaMBt70{D?z5mTWm=%J-*MDgr~=UjHn)G zgL!ppMWQ&hdHqgPp?(&QtyGGvNn^304EM>GtN93q?{1nnr_6)IFTY9w$9JWd;fHKVFdW}T)gUt#);ON9 zs*tNxBBFk@X`-Gu4-WGs^$BwRmaUK&Rv)H9lFhy31DlQb)a&hgu43-|+R&U#mJt53 zvB*6EK04lyPyN$Bk8`i&F2T z&BO+IdSedMW9BSr;_`ch^2p5W)q379Nh~t=`QPbP{!erH#%8aIvnKDTe(ko2HtFx? zylLwGFUFJwoAf6_V&t4>*$@^O17!~D!W~jO%nN`-b0%8qAxzRh5iax18PtT!JY&i& zhl|Wfj!ILO$$DCPz?^I>HQmuf?IcT^C_?5$a~3rrv%#3M1Tq#b3-fyD7-vBu>h)NV zU|i6+qy-7a1&#k&kYHTUNWKLL#zm8stfn57?=0j?WE1uv=hJ=MxEJbnq4;E0=68M6 z7QZY)d8aLjsK70B#?($%do4&XE@l}AalO8bTtKSg8&>%jHbHr^+&rf{UkOra!i)A| zs^YI3gfDDi(#riWY~jEV^)o_ZWL$RT%Ke+ol3T*c{Tu0J_%~Y;tUtU?)gYS)TP!dT zVaKi9@3Et)-x_ZK1%TG&EBAAuPBTZ>>+TGwyV;V^7P7T<&{(-&-87+VuiUS+6(G~W z;e^CU8VkwFeRtEusb0CyrI+E^wj>yi&!B3M84GJ1$FAJJyJ@0UtlVE|D

1%c+pI zhL!vItC{x@Ub#OGwmHaF?>}WMcF$t6)%%Yd3sKk5d%LJLo8>VUa)iwp)0`sSX{&UL z0ahJ=++R;PvM}V6>DB)ub1BD$A;oci8C{JvY@rw`_<=cxnmG8bF=Y>=%*Z}UNQ_)C z@<>f_>aFIFo?+_b3FhNXV;Sn2kJU!_ku+F@(;MatYr^So#*|wQrvo+Nq*~SQNDrd@ zfP|UjuM46TMj+yvDMF{soJ~#W>}^cB<liD5pY6{6k&6c zIg^^O*=S5z0vn4c9SihPcglhU8%FO?52H476}98Fmjb=PG6okB9!`(e8;sSZi`IP; z(aIX-L4Y~h*P64XiO=^C$|DmAQ0sekyx(YLKn!S*%bxXj_cB)#%4G#9d_!|m-M9hq<}r4X0zFihhG-x-rbf&RNxjmV```C z$QC3R7dP9k@F5qF6!0&rqyP)Af-L&&)?KP~7M%8?(@XCy3f*DE%_+`m5V){;NeKa` z+hT#i=@eTMOp%*xNqCC&?(6w_rerGE{rh^v=iIFrGlH87IyEMib6O1ev3)RI8lcC;}uGj=y5)8*<2?=Qo z#2Ux3xgCp}CTc})N4u?%7*_YCLfRT~JN8~p+`#po7Z^U_L6+HZqOsIHpPyxRY%rE# z{Dej9BYu!st5qIfp&+w4Uz!vB|FBiLg@2zEWY&?5G{~G@`4^fCIX1{FD&G$>8#Pc2 z_grAkpe72c#+1cy4 zN6q=w1k;_ylv@s_WqM%ZvK%51`bl~SJ!vdBT?qLr7FrPES}6kON9J5=0_O+Dlv@s* zrFy^#1kIbqs;z5+<_%-Y63|%0SXr2sx=|J+ z*bL=Z(h%tYYBNJoJ6!YR*bUa8xG>#e>9M+^X;@v5gjLoi4*<-)KFFLaO>`bWD38qS zU#;y94Q)!N=?=}~)rgObSTk%2jMEjI8XHOFWXB$%%?9&;9gw!%L+_hE=YC$Jb zW^W7w!ztbA8;r%)ut81IMiDgEn)9d$n)et}ZaHWaE_76&vdoRIr-#i$#)8v@O`;1e zZKVjD2hF+E1kM+YDNBH3;mR;?h>m&|B%VqU|i6su>}dn1&#k(kYHRi zX`xG=x3S%BruJL67bWFwOof`w<}x0BSrB`YEs3bWEp*1zPS=QyNZfqGwWG+N`{6Ng z9UNolQrlH1WCs#B{ywtn{@aH#HrmUzg2PQBj%^UOuu(~C{i|)Ez|gdkkQf;UUb)ua z(=53qto3)Lm*F|KBv=jebN=9uP+S79&KjnKb_gf85Y$&VI@c3AId>SIK`Po;Lw*^nyAg`@ z?oFh;9zQ^~YMmzLCEh{{y{JBaUI9eXUg~LQB8i;M0$sWyIyF}lmMmJxI@`N!Ni-2C zRK0O`etgMTrMfzhCx!f%t%R76KW9s#=|Yw}B)@2ysFNI$pV>-_3H-;lB%%U0>F%Ce z#2gYjkXevmTpVuO5YG>pik3^3Tp$f^*aSX_ZEwpLyGq3hSTm>CHQ3%c2xiPVua+z1 ztN5~7E_K(ss`*lpGt@I?H^%qH#wPhE)1j`E-tM-9gjA|+Qn6Y@jg|v))u>+&D@ysnFiqqTaq-U+-EB-hMaqB zNidy#f{>67KGtLUf>WFVq_{YlYAG{NE5h&%7n0U0&t7&*CDUE%s`Wd?D%m!&2d981 znx%mHKJ#FjgdDY3OYI?!+AHlGKjM7phqh8?iuyj4vec!zKf}#h`_}kVR{dFMef&VK z3_=}t3HTY+`?IbGI{4?HgV-|3W{?%{QS^=iHfluO0JApCZ6Id?%& z|7%DOKjCWd+}``(OEPJ8`|%Y{oYzft$;|n8wqj>Cjfy>$O-tw>w$9lOV0-diP9>8o zc4w+N*hj@jA!f{JjB_g(qWX^W^0ex9sJh*&+S3MGXrB)Cr*(L3Nkom4h5oz&Wt3__ zX}rzbmLz1s9L5o&sYfxO3$uonsf{@q>W-Hld$t_{Fa%OrNo@Pseb%2wp z8X7%YnRw!0u~Z!F=WWgvO%wH`c@@7x!O~o6Dizrm0|F ze6+X+25{eA#e|CQvXv}T&WCJCG+j9pPjsA2u23m)9_XV@Qvvh>$7v@O3ccW4wo+n( ze%O{o(*-S`x4+ypVJFSoe`_l(Ch!+*Nkj#1>EKW|nU2&JBp4S5**3&;vqq1sn>9Tg z5*9tJd2<`%I%BJnJgp4WmC{X~Lr81|p4L&#l3RkObwqj@9%@U1^?`$_8XD(m>8@Kl zMC`)4^)LSn(_xc!>jI%;v8o%tZjEd;V%=KkMfU5~orEQe7BZ8awI$I+pvV^xZZ=kF z{JOQM1Nj2NjkXeELcY$HMAL;F@9}-HX<}A+d=J=4i3$3%wj`P^Xt~Gt^QH+q$>aN} zt+bfHpRy$p6}W}F#-f_kW3V8>xY*UUA)d$gmyu0WoCBflTyHry(AN$JSU?h38~N8> zsSXyL1>E#)$K4y_{b37}yua0r%UsB$_Vtoi?xpi%fT}n#=T; zx}5@NC0=Wq@Mp~nXH#JH?X-G934gGaAXCCCwj{KbV4d-zaZujOOk;a99A?Fhk(%x#36{c4DE`iehW5deMK&f1fsQ!Ln zE9G$x_ZkaFxA)G8sGe_$2!KzTbD{}=j~P>z0Kj7M$>y)rq*#z(Fg(t-A&d(;Af@7B zA>l&W8LUVBDg6%klBG`9>8f(R>>r^*GnngQbn3itox=F?ds}%k2lizuENLdNY(i!u zMYT=Y?!f2p#1(PxA9eWDis%WV6Y&;WU(DFmlhbI$=!~hI28k_5FfOjNjT9jlwa!|7yK1Q`3wvC${!SJ=4dPG;lCRs&Jq-U%a1Y0S zW8EX@hey(PEAii+?os$Jm&k^?-l4d^3T76q= zOU3D;TXrfClBFN@@fa3A!r}=mp2FfMSo{o&pJVY$EPjo}Ggv%_#S2h4mHPH%t5UXF%9fqZ zTE5Ut&h$Vot^;nc(bp4p*gNElz56=%4moAtApV(+kh>>W0g zy~7r>ci43H4rRdJp)lAxlnQ%?;$iPlPVC(?+&h#U`wm4IysOox;btz7BvEc<_`2cx zbbs#__vz&BQhyG12SErIg0PFDfe^vRC1_3p|Yf>TrK+vO`8 zo$%K~^-0;TJ^%n@st=zvT%VTB!RCck?2}q&eFB{&5WsGSm>*TEPwMK+6?>hEQzfmK z;Jt-6uK$yXU3t0*5r5%*3eR~Tl5R51e+Mw^!B1-SF1SJr0WF#zS%41Sl3y zg5uoCQ2fsnDDIdF#ZRU|S0u&`pZe-v@X^tG<40)tfD<%)_{}%w!#A(&1I4@Apm<;b z6!Z6k;-3qlIHd!MMT?+#YB4^Hb`l;&JBbfZT?XGQJqU^e4u;}kEHLp1Qh!p3B~A@Q2YxE=O`!!kA~v3HBfv5i}tlx{09_wt%Jfj z4vMd0F?u}|&uxI>q!aKnC>&zCk+WZ&1RtGv3KVyp3dMI%gW}JpL-CU{pcs1=6whPv zjkBS+D+|Tt=RmQj3ySGIP+Zvy#lwA244(_dlLaVl>4#!;5sFhvP<$PWO9r5ra~>35 z#p3=l6qnYZxMwr+gJTHt^UQ_t(RCL=G5=yHPQ3(*1(!mx<}xVSE{9^&6;QnAUHB9Z zIUr^na^N2hIq(mM9QcPr4*bI*2maxZgY+-|2t0i6N1<4KHxys{7!-Sd5{g&vf#UId zp}6nUQ2gV5q>m#MKK0Mha|A0{(|M1~kuY+&Cbv+bk z-2lbUZ-io>o1r-FeNf!{ekitl01D?;d>DsIco>IE_=h70{KMfA{^4*5|8Tg3e>hws z{a??3ho9aVivOGq#e3&KF>5Z+s@3Y-xY*;`+}EHN!Z11k*1E_sOP4USGPXYln`%Qp zn%0-AWbs53w0HDz?221R*V;mQ(-7%QTS(^^B7I|s;Bbg&e+$v(5K-n3(d7_P1Pmn}rjTZr6-h}gCeF$@tYY#~AzA~F~vA{ZhP7$O4LQVZj+LF2QkiTP4qxz6pII5`%NI9y&_SfqF)&!|gCkq&Qy{_s5uBr8Kl0%4O&~dJ zx_bhepp{^5hN`ecT&HuuSjsF$>@MGP^eFH7d&j}^2Y~gW&o7a4Cc9Z;I81IGP;%c1 zc94>5Q;_3N-47GF7M^!^pX3vnuOJdWgFQ@Q5j^cK4aBl@gv46h#a+RZaKaC{XtjU2 zonP-BvWMa&`K>AN^n0iJPe-{9s^kw6<`}pgo_7CdnolAsy(o#`SXqw9kKuXuv7i;x zNh|!gHwjRAZARzYeFz7md-wLM+)4O#N4}EH`4x~yR>QB|JAy}cBagfTx^HDespu3d zVKjSH;Q;48JRge37y4E0rFc$|Fd^{rK0u({<`Y<|BH%~GgN(;4Np20Y-dS?brkr}U|K zah{C+#N0*x;{xMBrSXU*jCa7}?l-|5q5WMDVU&gdSwiJWAmFYD8ZwtOWK*A0Di0oA z$aR*egL@)ae%xf~%K#l8cgiv-9^d3MKpP=_R1gHAu>_r_dEhV6MjWB8z9Uzu)XF%y zt2*U@GQ`$#G|G18E8vRf`<*h!-%@nLJ`>OeBMO#Z&Yut49OU10!9k*4{~>IC9Z4Ml z9vx+~U6T}D;o>MA4@BHQ1(fzpq!b(~#*rC=KIJE%pbQ#hHp9Vm-A;G5O1d^j>TICmW?%+FNga^L97if!$oJ=Y4KD^- z?*9b@*Ci0_b*j+5as?;oaH0;Jv(uF;6b8}T%%7ht0DiLZDj9`yrB|S!j3=oi&$arW z`0%Eq{D&7NFqx-^&(N;J5$XmSZr{;9q5U-pv7W+F+YE%HNm1wg=6cq-K8em1CZd18e;Ro|O~6M3j>OFGNLNObmEzZEN!h=MtXXaZ9+ z^6Ehq0w)mA;ixYJ!tQLC3RAr&nW(%+oj~6q=*mK{rK?)OfCx2-Jo^iQwtK@mzXIy* z$VU#Yg25Pu?*vlrrsI5iYc<6I;LmrX^E6PZ5SywNOE*;D-WSxeUqUUAXha5|RCDJ#*j)seeQIh-eRI|9eO>ba(}H5%ykH{KLH*0f6nlU z(Lr2?7;pGE$^RJ0xqmv-r%7$K4$WXq+Ou+m!!c(8wI`sUnxLb)4z&tNTcAdWQHuI)rlIY8R}9UEft-6o)~C5hTPe_=VHUvgcPEf>2hQDopGXh z7f^9O)8~_-vmq5fG2;C?Jnp{hT%QJwRmIWh;i|p~o^ZcW@E@bIleovw)1pYp!ohi9 zXED+qM)VUv#NE>GQ<5_f_)?@Jd;p$s|1WrKZz;q`jlnt$br=YRQ5a1=rsP*F*CyY& zgVBZ%IT@aJ|1%&W=f1=>`fK=DVZg6j{#Y=*B(+@(Pq<%6 z{uDgnUKI>_Gz4|B*ON}Hbync`#Txn|F)=J$J#e4C5Q@2%`SntiClC-uP(tb2i-6M1 zi+xIm61XN&^1}m?s1_l-H_&vCy~HO>Bf3e138J$R>qN+%0+igHFZIdM;WUX{Oq`1l zYXds&_JR1Q*5il;aU)-SUZK*2s}358eSVfUWT`5e*VJ&8iRDt>e?kh=ZTJ}G760%qc& zOIZ6fkaAzT->0V(f0UkpUPAHjK+L^8Xe{laFae1}?{Q8~H3q@B9_qgFT_}d1@HwO5 zAU!&Q=m^32-v@&CK|#CxDq?Om2__(!(0>T&@B5ffpH4D0>Bpj(P+b88-D`j3Q>CuB zCe;{36PkAbIrr*7v~=RCpcyFMM>V1HQ6S)U{oLn_T0I>q@#-0R63CtOlus_Pp#f9z z=q4;WK+e4rR?Df%6IBwWDIlCs{R|LvPYN1NLw1seZ_M}h#X%ew@7+g!4aGSx`s~rp zr%6Z7e zhn@&^$Os}N^uBpL&^zu1pWaavg zVPyJ27<@NSb2r`UlT6Y^l%xP`LbMy`xwizZo<_9cr%3qn!6YX4S2LjKoa0x|r$-1v zAdmcdXL#h++5RK5IpW~`^^;gNzbZ=}ydR!%HwAUgAP+|NrEtvE;kWKnbN!m;#67_F ze|RAlQq@lIko$=LWX;_V5`sdBS7TruER?VmkR6XFc=tHId&2w9PbRC6gM}o>cEtqRv5-^ipq}az zI`f?*-MBuR%C4(~*H(0Pz~@zGGyWrsxAh4}#@z-3u#bkb6;qby+X@xju)i(Oi%}H;+V@WV?yUE_wqM z(3>0i0j@}bocyWD@cP=-kV03fZ#OVVgoXm`%)zoreS44^T)RR}P8;;Z=Ot`^DFbQT zQ@tl3bOh+H?|OW>8~E#91rM(+0*|WS-Pceb!D(TG^bA>GT@%Wy+Q|N{O-QR(P$KgNWB`R_pxmpAob0VJhR>3L;h-3(=4gNq zBqq}4`t92YxrtNu!Y0rf-D&uS*0C+V4C-*V$G4Pr4b#uz+!?t0B#!_3_*@P0Aj^=s zPUSOx1NkjA8Q8ulborj8+8z5`Yu_%ZCothhS>MI||9sD_6%L z#j%L@VRu~U^#pjW((SyJ8Poy<~Y(ZL&{uy@Nj+70628{N*^RH)n{LH zG}zM4TDi9`<3*9-?m)naQ>j3b?$~^#6Eab!AAHdA_QmZ79kBes_9e@f9o)VgY<2-Q z3FN!MW;?}RBnKPO!$N9v55ac$kT{Gqih#;J0$+!?a95HqNnP$LeC-nljJUhP2cif9 z@dG^efM0lW+zVa;6vk{U4G!nredxPwHg&+81>}vpAN_3XDwK83?I3SO6|aZSgE~OP z?h^RGeTiyVYUk3ZbRrIuWLdnv?V4O|U?5lPbrxpUcbtYY?j}p|Aoiu@?hLFc`+}{v z^ZI`WWKcVhMxF1fWH#Zzk!jE1BcNtV+f!-xMQcwyYW*ec`!8LQ@w9v30sFTfu>aD7 z+m~kiFBh-KfZBsEmSm30ca}Y*K}4$;VUmFtkN{H1tS8qRt;nGHK6vT=2QCM!!N5x{ zQ>xECDpxL-iu+XXkgFbe3?W;{^wwa92Ns)m`ec_hUe{7&JgOD)CRU-Aj!mkGo^*S_61i=LOkS^_H2mD==LWU|Z!rwOv ze~rfUWUmh5IoI z=#FJ`<0o?`aubus$HubwjiHaHE`-N z8pKNs#{heoQ4=|@@PZUlye1!$8tor}Xt0G6OI@_9rD|IYomUQ(fuR<8q!$a`y4yCB z^rLoZ+pcuZqi4azY$(rZCrS5{HeBmil@=1#@*UQNVJ(#^{Z>J_*$>1=IFnoy&Cf&)9#rCMRzEqG8gJ+^~IlQr0-BRf-NoUZJlO0Cn@nJV1G3U1K;336@Y z{QP91;pe#V#V@k*L-EB8#$uK7E2D;3;&+*@#SwqXheOY+lVYL2AbsbSisg*wqe?W8 z62>WgQI5h4{It+3nWd8LK>K^`a_L1!s$uo%*454#rOts8pd+SywMJP6gRUiLryw(9 zd*uS=wHwc{ z7w|g9il&BykEIC=xb~6o?I6@W>sP4#I-sZj{WjoO$*j>~BL3jYUiwkbjraDJ4)Np_pR za8;5BVghy zD3I5s)#`KmvHJjM7rV?Ui!0bR_nS_To51L0xD9EgO*ddQE+;5c6t&>qn$69i+j_Yy0`!>h9hfHE|4y4ib zx?G_w(ueo$BO58+BVZ1jw=LNvpDgX*Tn}Vjfh2a2!bS*OpD={S051=7&DU@m@x}~j z_bxD9a8VR7&3asrq$AiR=Q+OZ2P~m``pTvkC#Ep#ABBWz7qC4-oVK4VPm0tt{=3$; zFnLpDF<-SEecLL0BGgQ!$}^D>ReM@6ThkbBK}Z+a?^`$KgblZorh-N#jB8QSG0-OaTlumP4%a6 zCf-u9x8+~B5!Snipc=vrHvAy%mcc;+F@51j6jIILa>>{eqaf>^)%@%8=pEovof0X3 zaH(G*uizj#h7wwcPt@2<=raQmi!8Ix`<_eO_HrMMJn3)7`jomrZ@t2gLctMqKz=<@ zGk5dqz-lJk(U`!}Rrf*KZH;MVdvg;X2Kdy`#uS+yCI(08cQ&T;`#@Y|;$it2C{iiN W{PxC&vEYWlk)5+SNek<*9{(HKLTrKn diff --git a/docs/build/.doctrees/index.doctree b/docs/build/.doctrees/index.doctree index 1f50068f05173065d0ef83b318580517e7899eee..92570d0584b8f36faad6f361f8105a9db6590850 100644 GIT binary patch delta 933 zcmeyR*KNq!z&f=-Vk7HH)-1WC%;fyMl+2RM{Jg}R_|%-t+|0a05HCI_HLYYy+Z4YZ zdE9D>GSf34ilk5#W#*L><)@S;gG>S&A~X3StHk8vtX?AGDVfDtrFmc}n1!1;*uoj> zB?^l2^V8y!D&v7}Dk(}#$%H5}1e<_M)(9*s3fEhdnpRo@@d896Rw;-sj-u2Yuu_m2 zlXKXo3S_LzSe>ypV|~WPjLjKaGqz7=J%B$xL3(Bf-cv`2dgZWG`-M-Y*%lU^9(?@*jcn8mu7JTadjX zuYs%=2z&iXlQP~+zRa!Zrq0N~0Jia~Cd3xjEV$4wOd+7Va`RKr+?Az2`2nvSYZfce ztVw)|AO~jYOy=X22RqOb=s-OMaiAQM-qH;1448Y3fyy<3%C%WREL9*&8M}K+dDUGa zG2IInLbw+$B-X=LoSImaoPh|%tVB%L#=%{i4RWm<*tIa7$ZjGo(1VI@z5+fyJOS2`s(&2){KG<130%)22+GqS-j5 zc8W#@YX(FCXAfIuUQT9SDvH$Per{>T*FYPjCm-Y1V0{U+;o0N`%rcYtdBmAAzD>T! zt2H^4N1FEu)JiR&f`>o_3X|>mI9NfvyC9y(Z6NCg!fAe`Nf~!0-{a9#7iVN(06Xw0 z%sp9fp;ri@$$GqUjPjG;@yRh|e4Q-FugC#(N|p>zGt@N_jGB}4`Sq09fkHhTx%oh! zrleL(Db3K%fVoW@s6!H>1MEBwkbo#u0J{sD`P9`tfhy2k2p2-Q&~x%dJ{iV9bQk(T zj0c661Y&!UR36}3H a%}@lTg5V6EjQtsrVC5M{H(Q7YGXemJ=+2w~ diff --git a/docs/build/.doctrees/proof_by_contradiction_1.doctree b/docs/build/.doctrees/proof_by_contradiction_1.doctree new file mode 100644 index 0000000000000000000000000000000000000000..0074f085925fc0f7b23985f99b910be0888453b3 GIT binary patch literal 35504 zcmd5_3y>T~dDi3Jl1>j>LRda!T?T1o>&}*qv30g({0J|BN*F-^pIOiD&fUytcW2p| zmF@r~4#mR!P z^G!XD=S15AR$E4RA!fLb(J zYgj>mL_CkTtR{b&s(0J!rE1mAcI;)!(~TxWYlS}boSn`AXS;Kyv(=f4UV8W9(#rz7 z6D-|hopb9;r`KwZ)oGsY_#OxpEVa8Ww6x*+-Czm021^{rB}R`*b*+-1N9EW;CqT;% zp4`%{I@>s76lHhGglOg-d)aNdj022<`w~flRKW9kj^`=oAW_5l36Q|K3KYK@|DTEf zhw=Xin&({0nl;a}J4b=SI8d05ra^6MrDL@nou9W{GmN3vl-!^cI(BIh&0T!JZ7tj2 zR?V(-x()k*MaFOHBU5&>?O1^u=+#~^yjtE-_GR}EH2S&u8+{M5KL-un7fngTdy0C` z(JOK`McdnUtM0Z|Dy!%gI^uf=wpMoT3Ae>Mq#SDC=#t>tY?444><4t%NzRp{F@`|2 zH3;kI%J`iJwR?7&rLRWoUS;BYG=YXtQ9;)MJ+cSEKzW*$+v+)Iqe;AlYi$ULt*qcS zyxXhohFf#P-a7ky-s-e^53zEg)mgDa2#{1esl&a(nPVMoGUmbNMU4On;@ifqdqS&; zbz#%RH_ZXc2?(=wbVch%B3axT(cUld;WzIL;<8>X{qIhJiWU7y3-eqmR``R z@!VSGrH;Geghxsx`LJ}ZZUv53PWIJH0Ezci5b$k*VR%QAU=Mw^_A2y;IS6 z!>Za1JWRCw^BCe_-}Gv;u^6;1QUX)$jt$Xv&Sv6aUC?+MzyysIQ=*x=5=fSmE~!*a z*36(1AwpwWV-RdP7Ri7wgWjS6Tt@-@F<2wIB^R6P4hOZn*EZt3%i-i>1S?@rO?wE!`&3s<4r>ScQQ zW4?oo-{h4?uPI>U=mrn#4DB`2jRE>sYo+8bv!0Tpha5b)nf2xEoEI=$$@bD1G0tk2 zL=kT>VZ7G!nO*z_zUNjE@$EuBX5ERB8_MT9rf+F4|)ff}So1j;T5SEN_6 zcVH!)qnkKOXslP#WHpuB7Y+HU2zcB`z-V);Z`61lkFsd-vdTdbmr(PvILIO}iOeiKu?thKBMx zIzu+!E@9(I0j?SWN1OeAf;~V*4tN4?C2sy030et+zbH7bF~h+aUADT7uyW37bnPU} z=(3>OZu_0E5;Uz&_?oUy^SyNvWUzq+9+^VVOEAuyJ$iZ*xVRNE>??8i#w!L2!S$|X zB#<&x6Bk;&Ut^{cCZ*s=FPfo|>sM*wm^9_1iKbu2^r;t(kbTyDAl)|zezTs?EIZfh)!mi z5;2gxHidTuz{mAZDICf9fvIPlpa#QdQV1t?d)YfgygiJcfx3!|cJDXiN}|_ZavdI1 ziToK*=H5|Y6B8k)21!cKA+nvcXi|_GGJ@VizAEDXSxmRWqV_8&T0lp9iDgf=asxWz zyQ3riEslwWKQWVrD1`qoLuul3pC%F-fkSa}YJ@FYj4JQ-X+RljfCJa$Z^{dn(%+mn z=Iq|vfrBRRwISzyk;uflzN*7}l;I4(W$zd8=)Ds^i6QL08!1B2d+((zB-p)Qq|_t1 zB~#CPAC)MM%!#S%sA}=~HNV;RF*7AQg85o2ZSpIOpe1k5rzM8~ z+N&FaNmj)PuSS@rCF_fj$nEJ7B3o>q2BY(`>Z>BlcYc3~;ZE?Ko&7jsOT68z<0 zK@QzZ0ZR4icL@qOLP{qM>9l_gD+y1vaSkrNGv*>z&SsWfyHV#eP34jiiWQ5m?6Wql z=U-^eO_WUgQ?}h}!<*VFF?}dJQi(K0%*Tol(|eS1AMk#K{>;fiOOA*bm8xG~>qAxR zm4}~ax456;zPp)@w5kpGZ1v}=?>D52^_6jVKC}qGBkPlk5Bzk^Z#4LFb+BMnYYTCu z5AZHI9Zfb|c)6^GhKu)QLYq&}rsEQtxcpNiEy|9^t&^!X7QJb$IccAerSm78K7WKi zCgB+`(mCh#wK(suQBGTq6Hb9>*n%7ucR&;2NdR(W21z3In33sRh@L)_R?Nu5lAZSv z!usIJF>v+^^vInC`%vM18g=9+IqV$8n=6yN!GeL}C+CRwRa7i_>HUD9a7N6ioEoej z3N$3Fs%bs;vdY+>m70 z0Lk}m%^>;HD8o=^WC4<2hKfcZ`Bf9E!9<5K`da($6^N0lg z$%{i^-ma{Uy!n2u>1olSX3y!xDysGbk377C+sNr*-cH`@MsHiC7nP z+IoVSfR$yx16Q~;!esTve3R7#n4weD=w~kd^elxL#aNjf%dgI~?GqK2vHo0XSDdxB zkANzKN*#sKT}!-&{p;7sY4nanjnV>7r7HXGJ?KLQv7XQC{BT^!Q-LS_u4lwB7NIL6 zS~=;W-IcC_WlH*>2j{`0yZ?h?z@stk3eUkmiJ~S=n(}UbjAc(Y3sG8n{~FM!K{?Q* zbh2vDmqu^U=QrM<%?PIKTO1IHO95iBSnOX=vRd_0NBArdX^bdET8c+_QJg3CH9Z+sE8%vVv8(F6j9aR6 z-p`Bf0qPtVg-tS>3|FxpB8drWQIfd0wfIuN@NK^f;Y3z47S2oj?X_kyc0I$VS@HBHBW%8BUMqGtm-CKpJS-R-q7 z#;s7caY3vvRS*a7w^lT;1H1uZt;6IdI9`Z+H&gBd-i`PJ;|==|O5b|$VSVL*zUbUQ zo`r%fRjf@{Hhh?JqxgV#Jwq(HYLo5)3%m{2vaH^9_>=6M+M?krl3onSw!}_LjdR%J zRX)=?QabNor()?0<{NwiqsHb0JH1;p;C-GC!Mx!Pkt#K0=*mgD*@AViX3ZYNI{Knl zhdj?E)?I|wDwd{!WV7@>hVVsW=~ZFO#cqd7vlAG`Aks2vT~3nExEtZqsaEGA;$uUJNMCd!W>ex* zMJZvd(mO&39Pke1s8y^akv2-tz|+H5tR(GWS+mvWB#*?1b!Yspy37-VXKwK!A~3#9 zg|ZZ9toei{H0>3qMYsQCjWY9Hkc!|JB9)m}V$p49AyNo8iZpr@IYwA?yK+LhQRe80 zxl!0t4mS#)GMXF6apfB_fanB;2c*nZS_&1bgCg)F8AZ$%2d|0oyf(&@J(=*teoPT6 zrI3tx3|Dn6p;nI7ZA7++jjqgerv9HR?_q@Oh;s*MFR;GlmiDk3_5vRqXlX-ft`HxKzsPrO?gxdJT?) zjB76I3yw#5r$}s`{jRjiF6u^E@BWzLq6z;N!x_9W*0WP3QgZ4?=?w}FcE&O=COIX% zGqgF@du0qD@-L11EarmTP&1_k)?-f??WdC6zi&V6Yh!c=`K-#`<*3Wsi=TuTk?ttI z_f>1Nw?_4Gzg=Q;Q`WdEJUk!DK>QFPp0yE5F-u20u_0;yu&ymkqhwfhfpx_X8XI8T zxA{I4E#NJDH_M*%7H+_0_1mK({u>;VJnM>oXog~PS#cc#22|8##epjonT}18 zLr1u*2JvR5O@Yx&eoFg0F{0V$ctrCzrMLdc+#b_@;3x94=fBNROzh!M^0H@g(xisH zqU_BnxU9vJ%^H4*8iLtP*GXWfh)nAp^69bW@D=O}ZTwp}02Dd@$z z-nRiO%9;la*m6C1cXzB>l|E4$u4P+c0Nf^+HqZdjR!2^-3b8$}Y@M}AR-@scKZ1y= zRNxh@XIa9xK5yfkIG?+D;tA$Pt5Le_Uj*XP>y(Q6_71FR&;+)B1zRwp|AXSiO)(h@+i1s76yh(BsdKj( zibQWBetQ@sKnR!l;gzxGyHxcAN)cufN!WO(sCo9f*=BApgpk&xYv-?pgXe0A`!1DV=E!KN|v23qO-hhw1h- z!NY+Dt9~@aX}LW>oFvhAjC|U5P3;e0Mn=c3&x@Uku?>6iD^|krJEC>Dt=gx8(EzS| zOL3(?0&wUF!lZJ4|y(6vb-c%UgA8b;J+~(^q|N6MF-6lOaFUTHpTjxX_GaX4iTB6 z+;iR!iS7qa;w*G;3@KPr#vvJsCR)TG56>77pP3zBg45pVqz~C7`KnOAx)ACjx}=n7 z0a;*rSZ1`3f}w^mM9oXR8>tq4%EPb{3eTI0;E65bF@2{%-(x6ja^+EH7J)0&wDbfq z%|I68lK?Q61ArJUSLDdLA9><#F-0)`u~W4NR#& zl50vGLn<_>rjvmJI}}qxTN>1vd( zQ*Ry`>y~p`{-(H+OSK!_!1VzW^I+g~dWhHKA~8rz))UjhCwW@`%P|`YPwU^0qB*Da zkD8&FCLkP2-U-O>ngJD^fN!Vr>&BS?)lOlr@nen?4l`}IYQE6P+oIuf>!)w18iit@a zN?s-%G6O2gBo2H-Oq!C~a1evG;-h2^dsd9O!`u?n=(#mNV_s~AVqy%3l9w^}nE@4L z3f1$a-CjPba^Y0C2C?@`KD0%t!4l|&l{Nunk#J?R0 zD{>IureqGuFO{J9^a*prOniDIKc7BhhGOCqhmx01Uo-eBV7`reY+C8lYSIVO zNT-+DY#O_sFJ6U81U>^49X?%7xvj`4_SBdVgAZ2;%)y6#r*k>muc_}b7d}KiNs;Jy z5faI5=g+1>b8_I2t*rYug*)~dY(|rNQg~9?yi0j8J@2P&nB^wcF6dgOwIke*jSCOq z@21-h(}x?SHf#1TspnX0KU0VtVkhir6dJsZoWAHC5POjig)FO?F-vY@eS8pG+KL%$6Vy36d@6LTu+(O|$2(o}cvJXP2}hv!p9qlL zXPaJ8&s=D~kfO7>>4I%*tm%WckkgkG+g_Mv+Xh;!Sepiv&DwJeX>ot=`T^0?R=S=MY}6>sVle2(80p+1eObdHz_AeLc%oeE`$DYf1bJ^M}( z^G7SAv2vy@eXKX5BMTkZV6?re z!&a?Kr>E$r-`|W1HTvymOzR8Nm_LR~8^x7dhI`!msJNAjLWcPk9dlWkBs;Dy#-+Zv zy4pD!T^@FN*u| zmnrNL_fydnmdNP1$)FeQ#?`jn&}{?@%Q)8uwsYmFXXz^dkMp~zqCLyL zAHtHfwT~w^M>_)CcY%ApE2|U$(L>5C-N4(f)chvhpBOg_YfKdH$Apb~EOc$&VG>N#l1a4s7KH zE;0w((KcL~8SUhh)@m7Nwe+I7)R$Bh-m5S`qFG+A!eOG;K6b-RH}s+_lV4J$qg~Vp zbhf|&jT-Fo^c@YWwbHd#Y>>Q;D?7K?tzL9l$HuO>dZli+(NzG4?%c-p>o`?m88?7} zByJs@711)QSRsyPt#0U7R8q9XMgQ7S?>5_&xDSG|EWt(h>$I!}Rk)L-u-;AlS4r)_ z?$-SZE_p|;UG^%wbxbeGx=9Upth#|qx5J_?x-6TnT|q+xmXmU9V4Q77V*-o@eo;2M zjmTD6b{l9M1oJ+6!o8okN}lF1U=Gz*2hX>4tn=|J`si+UnQFsst)M41+@>4$UcBpY zG~2e@6%Yl-GvQoV))gtGYT?E-8XeJoCk)%c;&s;{IauJrd%^FlT-SprM^1(Sa#nES z7uXYm9aBi3f9Cbi0zGFt%e7SXl%lFXB&)}0wW!aYwL1&09WFB%kO0>?VY2~X)1g(x zFsg@6@8nc8hfdkV>G)!N#tjg6d#^{kf;HS^zgltJ6{ms!=)hwQIvp(9&Tg@-h-+*g z!nKC#R@+L$M*tKj?Oe^l@f$TTo)0)snUN5=&vx6mylxiQu_byT2-eYi{2Kfc=mSzR z>>*hpU92jf+oaCh@GU+Z$Cy|`pJ`U@I>zuCP;hJ;m)%BtYshuBVmB?fQL*ZElC;3@ zp=dYNOe_!V#xj>{>(N%bb*_i~4-r;WNSn6-nP-tvuL~R zG5VRH*RAw(n0}stpKdfw71QlVOo6ak)}4>8vkKN(;dNGUofX1G3s*tUa5&qY4?FV= zi1Tp<0jH~c&G{y~29n(s>AeU?*m-ofnMbEYdvuhvM@JEQbY3Axg={0XnV22G!1gkE zwBgC4m{E@cOFeSndF16|D0`&uyU`B4^D%1dsJZ+~d+P8!g=CD($H}gz@O)qfI%~7) zH{$-xvRAJ)hsA)*Rn%^b)){C}j7ZmlP$-71R z!{`HV>fMXcj71*E1;nug=)VLIfpoLMT7a=HQ~QGHv}w`ebLn=i5}goOf{YGIq!yt( zup6ohk$x6mTK28Dy%xd~{S_CX;TCg}Kgkk}S6jJtC!b1-Zlc9rvhU8e43T}7Wx$4zh^TBMD8OfrW_RaqW;D06 z-kFtjfPzzn!3P6L@B$9uqbQ6iNI_f)`KTgANFXE-NUHcFp@2$&0t}&2gd~unihTTD zf6VmE&i2mi$ue=3PqRJU{a(NK`n}h$yXQST`i^@a*~0#db_OlmX`Wv+8;z#lu!3$h z(eUe?HLDqRAL}0ejqZhRHJWUj=K{aeu3Oz`3u@GD$7{5$X7_<^G)vV(#|suk`|-f4 zhmPNjo7pomwZvsA-hjokl<- z8n1h15TFpxqfK*-KTR|`t>j0|te5gmjpcjR>$cfmyQl5DAW*Q}>NGJ@&+$9KGH?x+IgZPW9!725NYTSMve*tV zvV$kKb!zrBXG}ubU9upWy4zZDnhxUtqu{<&ksuZDyouv^(mqJkuzvw0u&)NiufhM< z;{QYV|1gGU-@t~oz^mKyKw%UpOh%KSwz=9iTeiy2Td(iO(CaHsPzi0TvV`F-opzcl z7PwWnjCRMfPA@TjlZ;GQYc1OhoIvgNs{Y+_LD@H0J}~GP7a#Q9sQ!EmbYC~65v=gfAq`zUJ{n(b99gaXNolLYRS_8b$m@t6l&mlOh|h;L~{_qfs% z6JaL0Q)^~u8#T|bpHX>bE_)b3wX#gF>!$bGmt3eo6+jzSmYaUa%WEsIz30MwodmtGMzy7mYPLYc;FgJsFL9 zX3g^OFxK?XVTyx&ljqmGrJ!Y!5twMTEvUA$7E=!!g2s~oCTN^6C7Nm^3dxk(B~z;C znkjT5RA{VgH0o~eJ?o+EH!IFs%d^O8nX2aN^ER2rAMHPtvNMKs`-gdThS;oL4_Bb* z{goH4-=$i$BX?UcF6|VKgDWQJezF|8f2yFn8|ZF{MxAEEI!`H?#D{2pkyVu+vU?7%vTUo^^E zC@Su0mDB3@ct;8iqOBFFRq&L^%8%3@(pDncdai3`<@<-A_tTwPGIQlzm7ak8Ui*E- znD3zCH+kpLLnWLX)!|{n&{`+k7(l+7s}+BRNlF0;Ie20#ljRxC3plRidnt?b+{vw5w)Ce>HJXMLEkMDsZlfIpg>i@dP8m``5qF$=jEUlo(NBrxB*QX`;^0Xy zynw+KlY#9YFt7<47$4OHVby;?S84{dhYg5)zcnkg+MWZqR3Uz4&}53|5}&ehM`|Z~ zb35T2-NIQybKS_2Ro8A`)aPwNz}vJ0jJ7s=W{rE4QOdmq|LD9aDJeJe>IK*AN9&s9eLiodpBNZr@KV_B;K*vw41S&i0Zd2SSY`( zGGyx=5;mR^z%?!4Xsh2#u+!9JzboJx@$g4T(MllvM*`;|Jsix@6|>`o##z(rSZSEi zWkILa^4p;iteNfbp^i`My$w=i@PP#$1C^eeVw}EubmbawaSU?ojaa<#6BC8tx;HQq zNFA!E3#H$$FjonSQgEajP0`HtYqW4oyYkW4n%}_ksT+-u(!+w48xnggnpo+09-AQU z8~{dBM(EcGpD^gU??MSHej}WC_9CfCr1@uiF2)O*?dv36iqfT}sTv_j7NTE}3@zhW z*#8jSW*D?;HH_+E_zp!}g$mSgiE#!bW^| zc*MWOF){H^%%naB;Xn0I*6_N=5($gIq1Xj2!nSQ%llQtTpaEup16TBKCJL6Z-<&u4 z>h4>CgQD-1Dd+wbk%@_Z(uezThBE+H-QUKe`*!?EO=0()C=rU@eVnS0Vt0RsN)H#- zOkMZg)an`#FdFP#DjMibUH3f%>W0Fgs)t#8fQ*S8F--1L=!Dx7_kDPjA~nEZkl}nU zwM;rty3MXzs?oOAdKcD_*@&#o6d^13c|?P8*i{y_a({__GS67~J>K;Bnt3Cd5s$Pa zUPnY^XVVvkFc3v#I={+1vHjex%!#Gzux9Zkb$_kpV`WNy1dFvAEs84)VI}V5^Y?16WW&uITjUuI5UK) z^@c1=Ei*(REFqo}dU^3sOItk~O-oq4MuF-*nl<5sTPIAjn)Rh9D}n8Iyhf#FReXfZ z+D@ZkH7m9CO3cS1b8zwPF&D9OHnrkdUW2bRlaP!stk`^Iua#vz ze?xn2qGdLoGJT(gXlk>anC`N%k&gn+|Lu*e1SF@w@}pOm$bB~+AjA_CR*6^roHC0e?p$l-*Wo=HU7~l z&v=v0KBw-*x&MfE%66Ox3Pk-jW64YRM+Aj4Vk)Vr!1@n? zhJ=-#;w3ooLv%C@C;l7l%5cK{9vUzfxZkHI^6)|Yoy>VthDe^KmgMuwUO>zZNrp|3 zeDC%FB)^<0^bJOqAo*qJXc&@TjdnlRB;Tb-Iq9f8$-XTi^9a>ZWcv1tMc|`D68J?I zhroPXg9Lf&1Io~|sv}uFXE&>;+vCtfpB^x8N!fl1b%Zg>t|K!}fcp_%^~nOgKEbO> z11+bX7G=4@mA+YG8xbW-x74k0-6gMg|(BUP$jq^(lSuOljiby$e#LQS8Oy&X2{N{5)`_H~4&0S;{i9 zRnuYGJ-wZMAwOOJEj#?Rm!-} zI_LhT5D!r2Hqlt8v&n@OJ0p^q@EawG%lnNl15EBWo}wq_H?pS!extyhyq#gUJdPo* z=&Y<8I364f;W^%1%yU$L^z|FX-i_uwz=H$bHU-YbaoVPp9+};OiAt3vlDDRnyn?$N zPTWa!;nKU&sln##Z2W(4*WM6Qu(Z4OFq-P7e#S1nj#Yog-L>}&KcL4qKcF)1+9!s` z^r_8bx(Rpfi^C)SHw^JY?%G%NP;~AZhf>sC`<@<9S$B;C*ZW^&6~&=FJ}vasd)&1| z@42rf?6dA#1BFAoYx8C7hS*1(94+RorHp}e)du^Ail$W@H92&+A}fN2xsICqA;ghn zSYB)^xgX6b`+cP>nz~1xA`YY}Q;QNyb_K@XKlG6Cq2%V$UTQQaxd%P!{<#7?-W8j! z;hdxu=I@%(-q<9a+%&KYw5IFs-TvY()#sQntQg<*F z?&0=V^;Gk4<(!Q>jFnSZfAFh~3ae8rb#GOG_e4Sj`}zk+YBZ3(dn(ys3)VfzhMmVc zdZTuSIxi;HU4+plEX@KL%+mWA!WWIDSBEhdJ8d@0s(iK`PEWTqZ~6p&-jX4i9!tT2 zH}&NJy~%Lk0OLSEOcT0hn+~Sy8!j$gC+I2yk(TM~YMOl7dkUY(jJgmJpXy6QdZQ9? zFeN@#mJ-@7-NS^ye)qZpy^1|1vPsz$d3O4WJ*GXZ>R=-}&d+GX7Bv2yh|JT3XJPdr z&Srd@8Vxd^vHcVFPGQ>G+wl4r&l_Sq*^>@W z+|(3@s1hV2e!8o+o-!*(8WzsHh%2znfhPGcRQC`L^N24J&@Ey0GA`Y2)!Y(3nCoxD zh6gk;=vRo#f3=R%RXR{LG)m0i>;wC)2j#l;Z*EryeSW!AMaEi!uQXW6R@Htx(a zFgiUYVl;GZ)_qkBAo4FwFfHbSylOL{9J$ABF}i6b#lPpK>}z6l^CDMO_c`dx-HSgd zH6nvj{8p?oW_O+X<59fSwWmSzuJrVLbO7Sl5#occNF~ft5l>xJx}u+G3)d)p;JU;< z55xDx};Sv7>j!BVy#?R`Z=mJ+9O3}d8m-T?k2Cg{p z#6)IKEy<}P0#|vwnQGCIX{JA=|DBrA>~%b&`LD!o{Xjn+-A&=Ai?ipadMG;fa41FD zGd`{}!){sjaNs4`qp#i*SIpHaNgwVh(5_ru(H>)0z}z>ZCEwSrf-LOk8~K$j_Dq2j zx``!~FwD^_1fOz4dexzK@Q%t$tNQJ`*fb?KdFKl_D$3Us`5QM?08aUO3rXNo_p zACJxyf3P@v{zwl+#~u!)D0@Dm2UM0l9C%6g=&Sdb;zXCZ_Y(G*Xo-6p3d@;dZiCr{ z>_Y_=z1ZFRHef}A)8M9(~ zo`3EzPFQ6QV$q(KDPrpj7QP_o^Ds}mz}##%i7oqAfw+u1Wmf8$?^ojLo_jmB0EaQ^ ze~Cw}Z6*&@Ng|;WNxJNMfAC@akqNkD>@fZ)J+bH?d(uVKxKAT--_)V1)bYR4ewpS_ zRU&FB5SegN;+%tVr!%9ad=S}e`6{4W_jkEqwu9NrHK$81Sk6k z0Slh5x+?DEQk}2r%P}6ANd-8L_U>vIB5z*&VuZN=J9EVbrb8plGD$6+zd{dm;L{#tn`oZXU^Si})^D#XX9d9_4 zqP+Q}9#C1{aNs3*qp#lMt0rc`ohR(GzUp2S4(+SvA4ltFCwPqM>i{^|Va?c1{c*HD z0F~ota_Dg4E*Ct^bzPs~<7ht+unT#g@;KV}sL`C{9$A{+<7n>n*q)ZVRPq>|_T170 z9h2{S7=vEQSnvq@k?7m8NuBqSJ(M6$v}{A8{NrHsMsSnNSxsM z8LO&4!8QD`lp8Xr>sJMW5{LRyg5H#)#4obG^k7qz&=OZ3OZjO5`iip_B%9eaO;!TL zv6Sy{Rt!Ab86QIthClwDNZ^ARLg@)0j-}jBjRs7kWaV1$Sc+GG0fJNnzZ9wTyb{M! zz6GkPGNUJjIF=$+U_y=|j-@zP%Gzp;%rab%JVtj(@5js%`=HV~%H$#qs!*Zq943 zZ*wR`Ik#62s4V9=@J(@UMxEPv5vg%eL8{L9ccL;E^`p`;>3TFRIK7VPq3EU;hfj9Nz3p%mrcC-i{I@{a@G6#sUlyvaPi zO~@LOUr9m2r!VOTrsLD+i}UGgdMG+RaVSOk^nE>`vV7veH^rw-gmAY_Yi+xZH~&+d zH@oyubiCnEit^^59#C1{aNs3*qp#i*!c7)K?kCBe%Z6~DK;h6K+yQq2#Fto-1t1UN z-U%uW4&wH#5@i@S{{t|6mtaaDR}uh$+$V)=`)mYqPimzo8vzp$s1wv^PV$i4wr4kx z>y#RV2wz%glpn~YH|oN_zm&^BZjJS&4_S%urNOE`Q-R#KWl-0nBq;G_hEm=&S$b2B z5^rLC>A|Kbp(U;i3E$fv!|S=?NgF(Wj`@N{9~i5~zp z3(rV)Kk>@A1-qYkwYoDG&D2!b$tbhs8TzStT+yLIzy4Xjlg@Q@GJv-8u`+T(Gcl9z3vGlO_O!327Y#kYg?mPBrl-v2^eu! z@flgdvx`R)2;|ep=8#T(H&R^k{OBwAk_WP;AuaRRD=1H0lHWQS^E)BFU)Mcp?>rez zuF5alBmeGX17Ea*+qTxik7*8&GRvL8&nfY<)22+lJ1D&y3WRcE+Ac_Ve zUHZvrrfsoId!BU`$%9X9i>7Q7S^31z(P+1I9x2|)3GD<)>1e~Mbym^eEM6Zp_Q}}Je##aD6Bs2!w zF*YR6i*|BKE4_@eUb@j-=1ryxw}uH4&GLQ|9LDOcn~yy2NH;o=ev@e(?V>?I*a90g z@>mk(9iG`-?U<_;NZvr|zHL^s8(r46a0jMgG%QLe4mgy17ipMrhk6B>06`L`0bxZ- z<@4Cdie}AD=o?8p7O=a&BOr&0sJAW&=-{3$YQ^j1|Yj z;BfhSA3XsGQc6?yW-y0(Yk=p|ZS!3G6EeD+B~|pS<|-u7bJmbp{MU9Jie_6@%K%Y$ zLU|et^0Bud@W7pBM|6c9hOJ=f#v4%_EOO<&=(ksI>_U~JCPM%<4SeMX>_%>%H>(5zt^HA1_4Vj`M@ zP_E%C*aNB z+laPX&9hycc8(D5C4Is&lJ7zmE(en%G;+PY5H>`{h7y~PBcj! zQr9;QG}UkmilSnXx}$FEAkXhZzKXOW`Z_H(5G3 zmNU+MDLz}}QjQ~+z7gxvhh$y){FqDMDC4M*Z^W(+vg_9D=7LMt8(caU=F;IYm%MvWbHho`nCf#)TpV`M!}cD01p!z_lduGM@mmST~dDi3Jl1>j>vax*5ItFRa)}1XIzs^PmY@Wg@p~w*Mnf2`M+|7(;cb1)5 zNr$bJLxJ&yAt88qgcu0Lt02K~5)x8H9ux!;2uW2^m4tFA5(r@OB!nbYNkJvw-;e2@ z+1=imTUl6D+MDU=?*H%q@BaV4|9<=rjlc80^-b(wyfbV$Zu9J-Rj)ULx*c}osd`ZB zH0);7eY89Ov)yyuay;F(&V)gyU9-FKCgi9&u3vB4&F+2Oc$Tt9t{*On@{^%mi`<}@ z6nDm*31{-YZrPcR$0IlLZS7OMx77}Um4)isLfc;HL>3iYINYTI$Uk<{K1+xU%J$|i z$8e%$0iUSr?2e}^Ndug%@r1zpSUl#tO}l%nQ?=q5D~j4~wG*Me)V{55J*2iw)_f}r zk%;HR!;;WBUympP8hj1raVT18Q!a(J;FqFGlQ-O{N# z+c-ZIL3hc7c;+s9#cjHb@Qil*Qb~eNK=L|{UAo_GuGrvH&91aN zzJ31^V>9)ODZ9~ftk4bhIxiVeC+{5lhV%)v^~L$ydKa=kAMM*0Pf3)!ifGT*D{?l) z+go5O`G*+&b?rR8ei*Tc02{yeZuS!G)t+4H`I?;Tov@9N$PuH!`DKV(kl?RTWll}S`i5njbVA5Md zgV=~C(H*!%JQGheJB_N{?jDQBeXDBwc$jDgXCOMzMW)X-{H3sEkxrRvwQb1D(>4=3 z>w=Hd04DgT7$48nm7uev)XJo4GHeEw2)UfdFoPJ~dweZ&f@aBWw0xVCAk#;ZF$2CT zIq`|XV>LS@Nnw19XJ?4bn&tZ(v`4V=!nG5Ll01Bu4RzH{Avh$LLi97m5dB>Z(cM6F zQ#|fA>-Je~L~$KIaDc{>AZFWT8nq0q4B-hoAYL#wt5jwRx#TuWwV-X!cjKR=zl+8~ zU1#E0)U`;qd#K&Od)OzqPxdemvBjFdZ!5X+sWdm8HAt^_NU zx*OJDDuwo;l3jCx=N${0K%Cn@o8p}ehSh8aqGu^p5MO`q?N^b+St=c5%|3YKQ0aDw zQ-uwcrBafmbnwU#sA^_c?Tg1*2~BQ3r88J>9Ir?tK)ksm`!}9c7x}(kLt5{|o6mHu zY={0Hi2YQjs)ni@oYJIl-silZxbkge{06T)ZWb_=bhC+dgVq{p+YsHVxmpTVSRWbI zH?BCknf2f8oDr~k$$ZneFwUx$6cKL;RlMoVn>Gz5OgY|${<8pa#;T2X5ERB5_MXzq zf*jr?)tFGko1j;T6xm1((4{6dAHHo)pitriSlxG>5vWGQ=Y{!Nj z*=^s2S*ww~G;9ndLx>O4q$0hNy?ra;yxhc@LF2oUC8((!%*_6^DgxeWBw)O`*)v$Y zn;E6N8}P?umdQSHm}g&L*}d!WCo%k|6Dh+fYlfjicR+twhwIWkVSSZJi;TpC@7CNdc}J0mqwzUV`0EMfQ6FZY62{7|B-& zguf^_uQ$WN=v=WnepESa`5ikAGrlP7v|2$ss)P-z9lgF2&}4C)ZRVI+{EQxglpuSYpbkUgn&Fuj zW!-6u!uvp`S2=&1M!xL)y-bK-YBU@Y2zf0C?=rwnDxXpalD7m?*CauWflp_!O>6S9 zcYs)W5I=pD6PM`TZzYw)XD+P9PDn&P5U6hN5Ku`dkW*`;YdD z<^Mb(T4C|}WfU!-7rw}{r&~FKUii+&5&tH~#KND1NduI?f105*@VQ6(2ra;&I61Yz zmMum#_h1Yf+pYce*yi+J?j zfuGd)_1=XPA>6(9P!%EtXTm|aILu^S+@Vuq#Jw`yv`GAz?*_5C3 zhHNOb>l3Jfs}Aq|c$7V9h;ASq`93PCD$uIU&P>YjmeyJqijZl9ta=olF7HNa{UlT< zb9Q+*(JM28wfD(pz$e4&@pkb@bKNyKId(P!q4PqKL|XDmW_0c6ieygAOgE|lUsMYk ztpIaRG8vd#w$dV3K~aUcltUp705yVsyv5v21^_GvVn&_ThnEbRKsm*)`Yl-8a~E`0m7#&jKy^l-NAO z#+p!2f|$bUm|e1JwGL*EHYEfr;i4R_7Xp;(%; zx%Yd&N`L0$KqcQof=V^0ul1m+b;*M-v76lWaPOT=7g|*x-dFv(8U(&{mcAzG%LkU= zL1Z0r>HeRo1-{Q0uERyET3bviy`T5T>3Gt2;kdGV4HxfAgf^diO(!KZ5&36ET9h4+ zTOm`ewFN!{Pg!wf(flc=&mZHDNnj=mc+MGpsm}Wwl+#x0#5_M9v|fjG8PG&H2Y?)z zJCaCUWtWjXLs^9CME1&E;v{!0E5} z$vNVE1r0u2c(J-!QY;(MrQBb@jV$`#>+_gxfVEb#u3p2&a) z@pm#iO=}`qltz*t(!BZ!HzXNGAo<>{Lr8uJWf*XY) z`t|Hv6`98aCCdb)jC#v=c5h1WT7R&1AhL!1f*lo4niT z=^Q=Xo;*DdPwUSAy!mg#>qu!P0^gMY-sy1nEXHu0t_ipqVgBZ`} zL4Gu;YGVMNMilV_zhaKO@p~%GWoJ>64>lI)cOg zzc-Hfe=x+oJP!M@F_RqdOb&YvC9lJNj~P%=hdl?L)|t9C?>j8a*?W9VO1ya=A!cNK zO>aZuhJ8)f6wnRA!*l~kIMl49F~{bgBv0Zz zdOE6BGVOL_57j#tw?5~*Ul6?l)VWm@Hi>F7M#Wl&Bql6CN#f!b;7 zQw|GI;7$h2Mi(h=g?rFlS*u_la9Gp^T+CquYSj<40L40sVX^)m^ElIhjB0^x)9PaS z392ZSrn*|g*wu2bNVrKQ@f$9%9h_=upH+xwlI``TgiM8PuZK|7G@vs|=0TSIX}7%| z+jxWCGkSxH*j}I7IHpgGj_C-t*H<=<_@6MubJ<=`nxU9%FAgQI?e$$VprW=H2W~c| zNY{yda(q~rv-j9uO1OCs5cXNytB%AC+g|gzb%LR zcEyTdU0|s$|)|$lGuY%j#W=Kj{vs zt?Av9_CrW^;gp#?BC6PhvsdMl&H2(92WJaQCoyl}M-DaKrg-SxqCxI)TnMfW_GeV7 z6$4i_vTYW8dmU?YKfciyy*lK%llV4jQx!9_5Qa1JUWV;?W9F5S{(+b(x@LwsJe8!#s zpUSj47ZINrNJRRg6LB~tK3S9!#wxveLSVmlAV;lYiHCGgb{d@>yJCrF56e1SSx)jT z5{afv-c^@*itx-WJH*zAZ&9IPYBJGtLhqT*b<=9tf3ZfH`7TIB@C%X3%qy`PwzCi^ zgfB#zIEow_SPi>;Li$4H=!yA4*i#N)2%i_48_03xhaZ6G1g+a=Y*JdI6w7vEM@DMj z2Vb?jI>Gar1W)#4!V~8m#RevYWIWfRomJH}rBe>qZR|G@hew%lOr3vt#)H^JBW?$v zlePK*Ryr4II9a>D*N}$d_B$b66(N+aF^?KWOCU$?QAD>GcsC~{*jd}lMsQ{IvC@-v z^qyB8bS5z=l5tllM2EYp`fNc=sx9k_fQR_by3|qB??}_@ydFFC?n?+Q@c;J&PXA-3 zo}DR?5lKJHo&j)h&Xj>Mi6r4|p`)hWYZ3sle*t`72@B+bl__lpJI-0r870}@drp_W zA;Gnu1FGy@jJmwN_(_Qi>09C_Nwo%hYg8Y1x}{DI83$Ui!T87!ln)Tf!_F5e9_c8j zj{00Ws7DLqC%ucgz^dQ-jSVoKf_yKE7I6B#i)Bwc{YLOS{m#Y_|4oibo>jj;GD9(W zo;Z}eo~OSw11joy;=q*>%x(*kgGP9s`tfFlsZAy}rG=du%j|P9mie2~QvYmjkLh&n zQ~BBRKV~Q<_HZb9*)ut5Qo3GI_Hf_@*<;S$;~4BKRa70`NzksCW6+skN2t7?LrH!- zstmHQ*N6GRC-zKE5jxT&#V@qbs|26=I_Jt8URZmsJn?B*RZBFII{i97U`;K_svW!3 zZ`1IuPI^Jyxsb|K!)Mq|sv`zNGpS~neU#oXrOwp~-KY}Oc)v3tO@G~;OA+3YRPy7a zZ}0x7r%m_1Hfe4@ni+NPt5CFn?mfY>pEupx-ZDWn*kLS z?i{$1v_o`nKi-U{dp~Awk4g7_C_j6C+YH6T9u6fhdp>UlRFpj&ctQ4|Vm9$oOd&_DM(MAA6^Kj!QD!2Z zxf>D(;Jn+Y1Q?4}|5MUxV==j>NfHT_NYZ7e^TT(wk4?e!V!PVM>52LA*ptaW#w{3$ z`$&75G8^Fr-anG`9A$qE+S8O|P4BYHIEj=ICY&sWJx$A|p^|QazCOw(J=v}0A~Cse zsP7@{%%(zNFlACzue$=Q8|=%=xxMMKq>>A=y=fqqxThuMwm4jvs{Q;KyL)QsHz7^0 zGz-e76BXfaOlVfv^g4{95N~-bm^;l-Oe&H?$*Uq?X$DkOMRMR~ou}O~&`JgUx zQ(Nf=x)HJ~&4O>)WW_np+*Ffsv%>Mr!@09&C??KvD0w;euo+NM&T-%)ac%^k+y~5! zG4bY?^YiADW+*1!a430s^BFUsqP*e23-ZRCy~prWy1+X`*k=vTy-3`!;n`<5*dS%V z-9ujkv?11KMl~9CgAD+s*`czNh&vEjQtd3mDQ@v1jek%ocoRLA34q zf;ixp*rn&WRwezuE!vgaO#QK&1YpKD6*GGG;SIbqmlTXxEteI@R%6#2u9B5EzW3i6 zhddW&@?<C4RDEiS3J%d@TvSmN;W+x7`>nLC`na#nVY0(ig6! zD8|i9n=HNT-is;9J?H&^2zSL%Tn_GyAqDHUxE4Y+O51$L_dWF4<~V%g2JSwmyDcR4 z@>QXJRUy>HwvAG%1!OSkyBp(uw99A!nbkDWyMb!q_Zkc;q42!12%b0;ozQm*^gWEi zCWjjJMzJG=nwFifWf{me&!hm%2<c9i{jpdvrzd5Pof*ip%@Vd`DIp~?;4)8vlC(elZb85!+ zG|aMpC82rYS@vTnnsb)@xEYFRKER>moe%t;8Bo#r00%x;c4yY;-@_@A;@Q(S%l<2K zQ%y6uzu970xvtrC0=9ZX7&u#e` zbGI3ai7^~XUdG&O22_+W9Qa6#+1u9=>BpsA*_@JPy&n|+B6EXH{A=as-y6+PO#I_e z^78NPW2WDdzMm7w_aadX2=eELX!K7HB@#l$BLB`=@8UX+Q{B?6i5r^Fd=6#2TI0h3-Z;Yxuvn9%D9 zE)Vxr>c_8zUrpn~2V!awCx8$h~o>Vp;=DkUu+tYc) zas$f<6f0v{Q(SLc~^w`6spoWVkUrC zPWcTgG(nLWi^}6mK?gB=_IY9=_1=J$hmb9qcLhLPsuKGn3rw>nXR_%;HD)f}UO+IggT1?x z66|2_mHL`qyuGT!R;|pYXXvMg3r2-0`VqU*8zc~`Ue!Dxn0*iZwsP^ua7JMF!DBv& zU+)}>FOJ$)GxV96L@|C=asMHYUq2opoUGqHifDZ@k6p)WhxoNQo)wo_RCt_ugkjz; zQ&>3iWAPN$y67Usup942NYxIa(}#;IxZVcg`Vd%r;#CwNQN?DDCxT9dyBWL3oSnzw z=~Wqj0X0v*06fkkB*lAHf*?YC zTwD8ibaT8TM05rOl&+kmEeTzu%u?jnR;3m+C{S~VD);jgn}===D`#AU{uU8O2%;$9 zBcL~012VL27UI#jPa`_@(Jk?eV<8-*cpZ;-+h-A5khDi9RH@^2yV_Yr@mUIS4yw^j zK(^ID$~4Gdv#C*td=A40G^*fE%Yb6VBVuAFT3NVdfrVzgJpHkP@F_vN;=nHU5iuKV zN81p!G2Y23t<^HlYQb6k%$H0R-fJ;5;#pp=!eOG;I(+?&*LUN~(_b>B<6YDUbhgj| zjeHiRdxvi|S3B0K4U*RpGjfaF?8XtHrA`#J!li4kMRK^v#r9&*UcI&pAɶpzUU(krkh0z0OV zzVMvuo(p=;wpVJI>M2E4e?V4`(P~kjJ!Q8ST{~J~FdzZ0b)tq3VAGLR#W1QzPWR|k zJcmx%z+LWQd?pPLF{RhzUEvx+rk|}i2zBpMxO)T`_34tVcsmQDS`l$nA3=;g6;`$4 z2Q^EOcCO~&T8bJN&j%c+%t(mbr#cijeiqoVwRRy0*3o-{8k`U415z^VAz2~arz)S@ zpw87#vY0!mXz^}7Bi1RT90auQE z)%gaCNyq{hdauAOZXQM7^61)QkM2hH=n_7UZtCNxkUhlC-?G~Z*l8e-jtqIUJ=3E- zoE|ynJo4Z%ls(e)op^`d`4}~J)Lb4)ojN>EAsHj{akA?vJRg{W&f2I3e$t;=){8TV zN$%-Xjnfh;E3_w7KlDXAA_cWKTbK9(H4O=fDDfoUy74wGoK82Myi=q?g@-$ zEZ{&cU_(lX{!0L{32ruA3o-U(YR^VEZ7Q_%Vu}S-qD%5hkkMg@)FPAz4i;4*(of+_ z)4mO%R3SXkUlFql0k27xM~MS(lq!^Y_gSzo_q>lyiGH7$ZZeO?6V*M&B2&eauYSRa zV=p`Q5)wRUR`=*+VnVUagtQ&(GlYk}u}f|T~dDi3Jl1>j>vax*5ItFRa(w%J?KXf)SAOi+rl@Nji`^LRY^f5-`|hv znc11%nLAlnRoa{B>F)pU|L^|)zyE&x4~@R_`qd5WU%1`xSa$o|ywPm7y{75+!-=NX z=(Wst(0{By`?LM?{c1SbHO~58uiG&D;RfVrShm~jn(h95{cxJH2e#|ai}K^X*$8Z} z9Tm4mtubr-zJAr33`YYyaLw4KaCfKcc}sKkmAS6D)C&wMI(Mi~1(1K_lzEO2$;|*I&HT zIAb>#PpmX7quV;s^&F7KU+nbSppa{OJ%16n`imULMMjBQeWj)-Q9Cr>_0g=Wj&17I ztu34%il94WLO6A&xn#F(MtDZMJ&7biCm?w}NAkFJ6_LXF3AEq38nnI!|DT8d`|*Dk zZLUr&E(^?72B@_mRVUqLl^G1+e;?+)G%w^ zo@?H}z}QUvV!~{7EW@|`c%7H!)X6)?o*{h#ZGCC+w%&>CFGTzHgcB0wz9QNS;}uyO z!mS;%-L%`wwR2!q9Od1a?UcQF%x<$zCs32;(7xp0oC_~Gz+kNYFIF7eqr2~1enU>ck^7w zwHtQOUuB=q8r^pPQC2Q6y31w&S&?cab+VtfW?1JMj~K9VA=df?l})#|R-I2~t{vFM@&)yg7$ZW!(x?>b+>*oWY&EVjLXr`MO>c;fuQ%FEjgo;#L# zv1>0|!EB`>9~RFv4d05DlfCpJK;j)01bnNn8Pef6SjDB)*>J4gYt_we|9Cj+8gGOwd>{C7fz1A!JC2l1h!qmnl>t zWM(8^G$L;IiIu?e+7-LiaZOTCOjk%U=X_OT_!If#C_P+An176CXNXPfW$z3mySMb> zm6MSIJ9MWBRnko$I3$-s^fToU{oNR%JAvqiaMW%$&2zEd&h>BZ;0eb;%&yI}T@@M= zf(<%4oYOX|Qf11rVz(;|uWQcs!=I$T^V&jvYwUQ?H)z~{2{aa{b6o_)M__<72Jo)p z%QStd`8Kp|(Ca1)h&!|ptG%{;2CCSsc}umX?Kfb?_~yZi*|5A99QWEloZBWF!tD%( z(Z=xSj8kGdJaq5v*90&{7ApH$v-cl4Sh-!|RAWPBp%P`O>_2h@YLwYLd%{sxA|}(G zjx#vkI9^eV0O7`p?B94&UF7@m8j?C8+<3Ncq&xKYKx#? z@f*DIuwBB8iJLU68+2Ak6Z+^@?d6KM#QMmvzH!yDjjaD}<&1zuN~Tqe3!|)RNfGfD zQN@|uxM4#+VXEO4^q)D1GgfW5ji4~ru=j+{6y$Kmsm6#R&KSK)EGHS3X%vTya-r>q zx>5FuSe|lQTy4%CIpM4Iw^Eql)5{?9Qx& z^Kt`c2957pnxMLJFafh`RRlb&C1AL*Juq0DTNtIB8}UbHGRZ!21J6FkvO9 zBPqivdu|`oF3&8@#FZ$#?em3RwAm`F`jO4+@6_)8D8S| zIvuYY)clsw4Ib!uG?7~+`2|B);4xIzISIz;vxm=V0T;VQ)_X1L-gw18A-K)~Mgl21 zV}c@9?^l^ggxMxI(hsL-vCclIoJ5+xvt}Z^Ak)4^y(=be8(uqzPx{p)^UIQF+s zC~84CR{(ZY`Gi7{JQY=poc|iLJEx@5z1+~DYOeX6(a(X$WNyld8+^93Rk>-wq==Lv>009Tz~#G~^L{3OP&^Dd+a;qJVfvXC%$eu+}|6_ZJQ z=RH*98c;7BVoSyZ&s+M=dkILj7?A2LoAQ(1kPU@)eG)Zr)#1D!kFqBX(G8>{-$x}? z1+i+=Gm~n#sk73DB4ipNtsaFJ%DIVJKMobj98u2A^vaCj*!y_ftSxgXkfA(bW;30am`=#V z#4JK2Lh0d25zCF*Sz5taC|W|nH49`P5Tc3=PJ=K_3(;31k(MrHH*{O(?`9uA~ahXNW+|SkI8SRqGBZg2VbL3#%<$XjXj7>$%NJ-K==^&Veor~lVhSr)X2obUdYCzyl;AD-^K!Ue z3{a{wzf(}a5&}7CC#RiVSO<7kjcu^-9T5w$)-|Fc7tyl(*>MAjh}?*EyF=em4R*`GJ+jrpk3`+0wy z498s?jw{2B;o^LW(B_k`$*4q3ME;qU7FEmPR>(wWWsc9l6IL8qG=IwJ^T+t36PVHB znsqk5jOP3e%EeaF#5_ODTT8>b3}_;p13-?<9Z94m5g2g!GD z9zycVC_}D)u>{F4K}BmJ`PC@*tS0%6ST83TmDRHkD>9Ezo>-s0?LrawmNgRiB^QRk zyj{aO^2YmOO;3vsH91Z%J5jYqAcsCXWZaUl{R89?$|yZwOj!WV$9dL|7O3^ZJgZdD za_DJMmNQvtm?_-|Cs?wiZYJw20JifW*yP+sPv`0B_UP#acv^Liu-`lAmxy&ir>D0u z`>(d-b>ZDM%1%nJFEA-h0LYz+h7VrknOF)f+6kp|6ff$H`9y8iPR)Fv_CU>A>3G=p zgdI%>VP-cH@4?{mb8@o0Em5Vkxl^gisCyh8MD*3UqW6+m;T}i4kl2wyV z*PR1(uv|&Ea!w}9t~0(U4m=SNuk>vD6DX?FpDCB+M_Kk{%do8~-oY}Om6Zc+N++uZ zeR1s#`rP^(v=KWV2R!~FksKXCOxb*W?U+8beoWWl$^Y-QBmN%@ai@qUe`G`_8yuY{ zpF=6?$={_1RMwNvfhUz|T+L?=3w`zhCzKL-&PRwDX(!a%kho?i)PWL8L%5!91PO<_ zo>E#sI-K;IwdNBFCFW+5?S^6XcF`ZPj+f!sS6-%*FY0vM6>RE-uZdMl`+1oI$*<7v zymqG-RD5iqVte%biqURXy23$$jlkGVNK5J16%^%(yh_hR)k>z_uI-`m&c)5r8Rr*7 zuK;xpi^4ilO;)N{lX zn|J-P#^HPc<1kizu4yP1U^J`v_vpu249EpB&9=lUWJ(J9D3PZ6TT9#D3a(e!Q6=FU zF0z%JXlce8#k1Wgdvip((ni@sD5@LjDedzh%l?cTW$#^kgWkRV29+_&KDBmCpIkqt z>oCf`vUbG(gdtwYD0@l|MQ4<8C`FC3@9F`SHOe?}y_H2uQ0%PZ!$O~Zz$jA!&v_$Z zpEk;xNL;f~Hd|O(2$O7bw17#LkpI#k8)E;(glo(klP!k9u_RcRX^uG`fkR08*Twpf z^NEbKUyr4QQzzsOUtg-Oc#_gwm!sAB4uzDZBv*-cQ=u8jG>A{<4`aZi<*hAs>|r#6 z?By?7il{GBqv|@`nqPVg`j}FY{D|2&|Q!p@<=VdOkFkzLlQ)t+SfxRB|=yg}P z*~v~9h}EMS_N#mCQJqV~__N9D;TEevdk}B6nFN-DbhJ*RwWf@r}O3 zt3#fn#JBY}RWUOSVK_7IW!PRYW?mgg{$Zy88(mdC%4U2`YTiZ!BLEbDOHInMW3M2a(dS6$|5!n3gK5PK`W zMTLfG%}DJDHK;qZP0MNj#TupOyC4<8FGVUnuf%fN_EMw}J`-v2C~~Y}Iqk|Z=`)$3 zC+0I@PX&A?e440lAjg%To&cg_wD6xYQE8D=tow;A9f^%2eA(~X2+so%p6p47Ck{-C z9Z(9%aHd0Bv+65KryOdU*svl_pE6sSI{)yD`>_p29Q~)Gx$zUQbg)!&Gv`6h2Jn))#s4*&%a%(9>hr6{h z_Ao}(R^tnZ2l>{##97wwNYm?ro?CV9iwG_7|Mv(^_BmC@OqEE9q#vda5m-2=%E0JE zl5oDzSyktC5rELW2=1|n1@gqpL~IK@4rfrme z4bUE=d=HA2@BzMyWl#D5*WrlzowXzWn;erOtAl@}hoW;taVSL{QGcliRMrv2fh#4L z-d7|Cjc`O|@n(vtO(r&_g`F77>~l1h`J2*G|EzD1?s)Fg#o6;edMG;fa41FDGd`|U zx=va4aNs4`qt8CzC(M*8st)HAXjjfpXpONmSkBL(BtKtO1zFhZBmCqPdnTs{or#j- z7h34Gf=`*gy6T!2;GQp!jA~ZjB8{Yu&(7woy+v7L=QiWlaX8mTy&&veOl2CwXV_M( zBN{_9s%Dsdl-z8k4(1Bos1nq8KN^uHTXz>ygm*-h{P^fQxVP#V)4lgZ&CQ~jR`7nR^JBLzKxc|H!P+8&5fh$QnME7R#W_`N%WBT^! zbnl0Xv*)+QnW^LjvK*~5XCWRE`kfbLa-%y|`IpK^dWhmlxL_j0AnjzB-R zh=>=P&?nrIR2b*#(GdS#unvd6QSsD7re?;^syC=BdkK4pQ{?Djf&yA-q~4f zgi7s~qE#tFc**BXT*KyZpG`D{TyHf>fBmaKT>6hv6Y5* z$-PgKNT@`TEj8Y{9^CDVzDE_oj=)=-Q&pqui+-h{9@0rK+xX75JC$ z&?~qN>WZk6i?R(WmsQ-|lJH&Jyf)Hic{cWBSCutC%~*XFjL7(+m~m4?$I>?04JZn^ zSH!eAs)wS}og7M0-T5j#pt8D?1J^6V*#4F|PLYIj>JmG#7eCj(kY0io%u6RL&N=#~ z>a3n6j%N|hozp|nagIYN%DG4MfXZ@?178>C*5R!CfW9$0-u!ZL-h5IIMaLTsr6_Mc zqX$%$Hyn6L-srOrSfolnI0p&)v_-lbiEFkGy5XuEO@~ zkKIfFGrp;qF}PnZ_cmTqFk%^9Rv=rA-Ep|2R^IcTy@d{WE=}c0Z>9@p(Wk1P`?V9Z z^HU4_XvPBDIw$#B5qzz1#?r355nQhj-;fthMs-Lhc`QXSZfa6z{iQc$Oi=C_=LbZ% ztB&DHaAyQ5SkT3V6RJ_M{ds&tM8O4^h7SrK(?zU z0br&80MXsAD3JAXVF% zrBF_n96t5+fH$A|cIb&sec4lisjrwbuJy=|I1wIgzbv=#kar?Ht-+$|*D>||;P9z$ z1ZMEyk8biyx9j+3AhKXrjd)UbxLKyrG`k|%@6}mM6Y;8_I&bHb@(432d zoV%;6;Pm<7sFI6vxLd>Uj0tp*J?qW!Ou7{#y5{FWh zN&EDG$}))qUl)@mq&m!E&}Mv;%wf-pF?Z-&q8mN86=%%ddMG-^a41C?bFUsyS;lbS z>tf9AOzR|zOFPmzCCdgsDE7nTO$DtJE-`n+o%JPo`Ul;$jCCtby zzD>v+l3yx8@#*9GhUxh9k>Y&%v>u9%PaH~7K7BzCs4Sm2@OANN9Zuq}>l>rv%~QpB z^DlZRI^J+7MS1hTdO&4)!-1FNjXwK;lUU7yoX5%jNjr%jLgJd8#JZycV!>BU`?#BU z@0Ou%;(>{wbQEXY_mVs7in)qqyW!z@lQ02?x{B{ou41};)Sv4htV=t6`Ahnq7wP0u zhj1e=@rA2UNxtWTmig1I=}Wvr;ppzZf;cOj(v{>3EI2ILO_+Bxg!KDt z#8K;4u&jDozuLxfbSAw!ipuN=(HXjuDX@&7(qU(;yFGGL)9$3`xGbL4vH9eIRD>J^ z9LX2)rs!}!MNEDB1aDSY`?8Kz)0Y%)UXkX_I@+i3P6HawzcUPJeftvp(^e_ZzP_wL zt-?!BV>az`PKiHxKkAJv>u@0xopluwCVE$d`V^{)b3{)7u~zaMRA`8JQHvts%`Xxg z=xF6J(xr6#jrCo0+x+f|UbNQYs*ztP(?~X&KgTGnCx+k~5u+5}^c_bmsYv}IR}l4u z#43ig3>0tHa1i(3&>p^u@jZHCs~GI5@G3?jT;^R0?92-nPl;?AXl;wnHQLpo}%AtQg1 z;z9z!$6>2h zrqfgOi$@tog$eo*yOO&f5Pn|OoD-jZfPR~~_+vODR(t-Kk3!O02g6H)uF>{gX7x~L zpk>^S$V1YP28crI_KzXRpUh)6@!BJPZ49Ty6&AH9y!}?0!o%E$6IjEdYZm=}xD%0B zdk8r1&oAM68$|g-tnjhdQd~t9Zap0HdI4^3>>szb9}g#&W!MJ9g`R|&Wx^|BC z8}yMfO#x#&wT9QC_|876+{;r;9`V_)owX6oTLda0h@yat*xhK&@o;O`WRW3V^9+Jo zAKMg8Sq7p=ir3L_r+E$`2}yhOe3d%dH0!-(6rZN3<)9kf1Y{a5q)dYR4U-y$VCLAK z2O8CI#b9UYYz@L(~2L=%0-epbKqHq0_ul3j?d6`aY=Y!X zgqqxBw)^2FT@xqBnzg1$QSJeUB10oQIHF}OA#x>1VmHxQu@B`O7I4F9qZfEJl@xBW z(Z9Aed#z3_>Vu#xOR&-Xx^2Uy3b(Tq*1L)SDyid}y{1<~5OU<&fw1xvLMvX9b(02S zgWA4LQB6@7#dfCHB4~)fa$JrLjI*t1jE~X4<2s|;h-|eb+ePCbkN40MfFRU)fJ+O& z9ICAeo^R9e?4v>yYfvbFn?|b(gQ}Lx>|MLjXBzxcLg~3BZmCq|ZI?`sah5)7_;;s(MOM z)$fzlW3(F7XHT2mdD{$@7z{{&>#U&V0@!3=)G>^jfz>}Y5ze4fwr~Z!7@tuCL@4Uj zaEHHwNbBcn7UJEz6!RW&NnN@mE8NPWuhvBP)khJUPeo&`xn9E%q@8J4xQwC!#`6IO zDl-xy_vs#mo1X@DYzrb$uK@=F`hb)SyGT|@7pTf-x2W^Fp23IX2op=_Gl*^9 z#28)y3YKXiNNc#efn29+X3MbMn$c{Mqy?KE4R=z_#B$$sm$+P84L6(ZGkqK&2(jWp z@&p4IT@j(=Yz&T|7T``)6Y>ciXD5(C*9stDQ3p0Dk^ByKB~sbS6(!U9N%VppM@x2- zWoK(y{27yHjB@87X~7R$A9SYaZ43Q8pU$P;KtE&jx|x3V)6aA9(+el5VhRDo6bP$j z)%x%%t6-HCUS$PWSs_FdxcWRo6f!tltq)pr42bnH1_2k1eAW5}3uVaS9XhYXRc;Oi z?Q-Z+WQT4}cIYNPhpy}6sE|FxPTjIQ3fLJShYkukwD;1X4Vn%)*c|f0F_azB^u2If zyz?Vo`Yd;rLOJ{uuhe!~K&O%~*tiT);*XAN`jAVu#zb zzv5%;%hZ8gZn3G*!b>THRE2KJt3XEk6;g{(9ym@^he$t-FKzQSL|}#RM1Mu7FT}|v zSsp}Axb;+_%)8Hmg@xyRY)bU|#B`l`G#aVy5f;!Y9RH~oojm^X<1Zt@gJ$)QjYlRF z+bKwUy*@*D#CL7UJ%nR`74C|Zj3h4O@s=o=4eu??PH&PpS*DSV9f#0^LS;}Rd-eJM E2k-?#`2YX_ literal 0 HcmV?d00001 diff --git a/docs/build/.doctrees/universe_of_discourse.doctree b/docs/build/.doctrees/universe_of_discourse.doctree index 71e580535628b200a6619ad6a6293188cf2c9433..9e86208a474e30c00aa512a6914ab8d7c7acc822 100644 GIT binary patch delta 7680 zcmaJ`dw5mVm1pfhNJuUruX}T!$xU*T5J(7OB?J_rMdcwR(kY742|?s?cmxDQo=Nl* zn+i0r1KV~Af-?mls3_{SPRAF@h=dPq1r(KlSP;dEQz-}?GwX5ggYo;CKkhke@BQ14 z-~O$&_gQ&yOY)k1$vsOS!HoeR}i=_nz7jcCN`xXrNEc?aFlif7tFn&-PdlY7s$&3L5m=JWt{DaSIBDEhw}Iby-j!C!oeaj-GZXpx^83hJG6UR1Sq`*QkCugn%lpY=3kJ6%2m+ zw5re14L7@Y580avFa<09X4E3c))PZB^{X3FkXy%wH+%I8d#%Yix)tY={LXKXTf1G3 zBb_x8nvzM8_>u1r>P}5dQf?Z894%q;1BWMUZUOx>UsN1)qf`du{Z%pukE9H>Wt3b zYI2ULoeV?txX#hezv5i22b1vU8+uzUZzfm>CAz6*>p4p1HU- zUpQ$)*9txE;4#R@DkgUKiy!8Ka^;%(CaBXTN1xa4IsE#<(N$Qcx3>Kh+F~vL{;{-t zb}meUSEI%1m0Z#qbYejb8MHM=xt6vD3o^as)YRQ)N!lxhi(jK>G8~kdhWZnS}W%W5}|{>HKJlnktCf8KGv&AZYD9I#?|g z09pbt=jOvrYJ(uw31X`t(4rxp5d>QH5Vd^^^`ljN9Z^=pe#@DwVMDg+&N15tLA5rY zmaBtKlB53Q(;FR5qCYSWP+E|?DFCHr#6(!GKE%-)s&rD<3U$bdlKiDQ?bO@esdAih z#-xZ9wiMN6r+)7EkkpG*$s^V_`gH1vHQ>=FzVRDYq|?QU#0M!d+eM1huaE1M;X;tt z>Wh!XjaHUR?;7gWGd^pEk#X#B!Qz9k)&Cs(!pS?}t~j{49l0KKsb9dN~6=%Lf|08aB1$c5BNmuW7BCjHo%r{D)HX7^E-Xd30}?=JoD?i-ae zkL8?|r~AH8t%~zVw~(a=cbDpOuAbP6-As+(3RRuQQF^R^&?2$jmd8=LIsv4|y|hRz z5X@Y`Gz$hT!mJg{+ysoMdb@xg6VM9+LW@9e3h1!}5V9!3K1p(p| zM=9j?xx2%1E9C5C9x6O9$vWfG?cWY?oF|m1{J4u$uFt))Qhk-jlJ1IEev!xF_tpQI zrM~CNY`c;|?-zM8w4S!C)Nwp<9h&quCu67Hthps?=q@+Y9T4D?$8k13Qo4s}Jtee? zlxEpd3VKLNC02%~M~{a(EHBBc5Z@Pv2ZXmEb?NwSlYYjn3!W*7xB+TGm3dfQU(hJB zCm|1!QsFq0IIwv?2sO@;*oiE06ut2hM|ng$U${v-W=#@YR=0adJL&&IV=_r=7U=rW z4AY$q>1I?fn5O1?*tO@F!5Mg#;$;fL^4jm|EJqw?&6FkAdBl6xCqtQPr=_~h2gz`~ zV`h9=w|YoRk+HpDBB^`RXHDBx?;0$=ti9d(}y7Y3r@sW6q?( z0LKoQBMI&`Br6?q6!zD8S0O&k9qCX(CPsbuBXv^_Pnq|#krcZ6Jnq40Uay>9o_4m^ zp0?TMfQF0;GUIMw&Z3A|`UAWy{b7iTO@*az&mezrFzeI8uyU8+H5 zFf}>@BuNL2Ys zuGy6Z{d!CMJz?JPgWLQr7d-CI5EONmPU=9s;R$bovz+m=vpgQJKE*Uvq(6}`q+(c5-#L4W^HdwbT#pDj#e)wt-%ZBye!rgGC~wx9E)tf6FF3 z+sB0es*ngjW)prY&JC3@;YXS9->S>Zb^6ixFqe$3fJ!yiXV!QdmqQIueKQG3y`1Sof=& z{mk~UQe=CKKhE|gnwYSC#K#JqT?PFCCek4NH@ueOI2>;=-Y*gTNWyAt((cASg|wOU z#-z>ki%Jg*X%Ch|3#e8x>)r9V`jEU={vN&;A%*0(W27CDuKY967b=JSB3I@8rPT*@ZO-T4!=1<`3 zJL;SHS{iTht6zY%<4(LSOUU)i4UKmquN9QFa8eXPdm*06F-eBrD3^&!}BMU8%ad zfT*r9VI(X=@;u`0^QB_zI&hdzDk0q#VZa>p!32d(nb0f7WkP)c37Zo(!ARHp{c&4Qm}X6FdDieBdS24W}L9xjeu<~9c8R0FF~MX4-x%l%E^!ILMWf*mys{G zKK^D}WS>9B3grBm0F{mqK}2?$`E>h}w7@AG7cYNjCgS0CvVdhbw+=6z=L`5i`mTUc zq&TdN=BZN6`l;xq{I#4M#1?)Fr%~JJby*Jlis~<)7`?*Dbmc0uGXSQ$9&UhQfpY$! zAjtUxe9(8iKS(-E$RBvH=PUCEV-mol1&j{@U;od+lt7r50Ja2-4+77Of$a=}C&+G) zkU?;96UiVXOD)|wlY;RK!nOobwj_`ucfV&7I@oeW2MH+zIB8Byf`NKheu^VAaf{`v z=`i*xj&_9J*wKyzDWHm@U40vrDEL<9LE%w-9i-Ey$*j5!(jr-R;AI9<%;4D|`GlT@ z$ar~5k3!-({5SL5o!~ON?t}^`h&S?aqhx8Mj~^Tp>6}5{*rU*N{Q|~D8fS{7xBTw* zNcJqds-O|>gd?$DBE4nTe&di!{u!A?@25BWj*))c*TTk!?*j{<$zTMusl1 zs}8N14ad#2IWSaxQbeu@eo_AiP<&}s^A}H!F;Hvdh!(<2?K}9EoQIJEN1^L zD&~v{TI5`Vi`nDR5`f|0GFA{b3gR|Fphbwg1%Z~0pgg8(7Q}KvtQ7=Wg!nf>pk*W2 zk_$%r;$Ok@?>Rqm_FwwDrh`>#n>5`4RZ?DnUFsQ70}%xeo_y1G=%zI`TMd!blvJzpjcAfn3*MMalIZ!Eg3 zkeuRYg8UtO>tZ+sn+@Cxxn{z>&{zM%%%}e-m?igu3kI6j`!QIs9?L=!{f94sY*?+o zF)O40YJeNK*@jsjH8R9oT+ao}43;1>@UK!r++YcDGd#p1g!^LPMFL(O2V)6=JK|t0 z5in^Mo{nLk5bS@(u~B1G>}UIkjwN!dBSGL(`ng^;>5dwLil##$KF9vJ99mUXDQmhoURzO0r&;9JD_{($ z>#nG#<4mee`6^he#$Qp}J6@aG41ZQrxHjAFx)0aN^!f8Dl(-i0nFXa$pSg$L*k|r3 zWuNIu-RNLve{-P)Mmn2gEn8wOTexL@WOggXOjC*n^uU1`IBW+t5!S*3k%Bxt9DjV= z;%RG+-Vgb{C#kia^7yP}dqRe0Cv`a}jXUvRzmJzjPhR`{`+ccd_5jpma{AmKYu8a4 zdHVs#Oj6yYkq=kH=Sj^U(4^m|fu@HWto3BAqn|eVSxrBk^s^6t7OzR2H*M~WMN8+; zSV$R2i?D6s>1_;aV@Mk}Z(AG=QUmTcJ=_qk;7-GLbC2OAVH4hJji98R8U8S=Z0@H2 zO3}YZtWWXsVNpKW3Q}5;vaHrA`k}<2Rfh=`i}GdGcFaInl=-kS@iWh&k9q3@`k@a@ zYYBeJSoFnY`RG1NSA8o3Ph*R2UDjy~kroAFs}Oh6DhuJiUwMJJJ(1cq;8toz8S-1% c(`z-BVR9+oJiQJEr8blyOT@ML%Q~q0KgFr%!~g&Q delta 7060 zcmaJ`dvui5wP&9hlNrc_gh?jz`er6!5)y(WfQ9f-5{pDckoW?ugggL;Px2DNEr<{* z-pC~s@gy9m4^V9FTH-2cuFfj0H3;6-2Sli#C6~OAi&khOt_oDHH+S!IzL`luN$G!7voVnq)7S?J$zb0W^O(6TB4OJC2YgSkC{x!dJ2WHf6m{GZ= zeC^s9Wt%H&o?1CEI{n+KOlxAa*I(6>Xdgn*)>D111d8~iU<&`LBQ-vItz4KNzM9ci zdejc_4rAcz=5*fk=eyd*A1ei(kW|oi_V`1 zg{wJu*$3v^LLPmgoqvAn5G%8bNgVQR%k3jZgnaW&az?;o@B~|D=Wu2UtF!akKUJ~q z)SDo>mq9#x&d%GvbkZmN`}yogc2VMj96tB=0luhz6sxw2o>G{{4lDfIgrC5>|2B^O zR#CFI@#};fq~v{Pau{xiCX`zS_0x=W!u2n24DkrKIx$u z?54f#y-&*k9DLF#jW_(=11Y@Ekpn^5&p)KW82;MHe3-2It~=P66rSuE&k|Gkn$ATq zpT=KY?PkRaw={|?mbfRPI3!RwkyHB!PUw$4R{KR3ayqnp34k zmFQ}F0zYc=lhZq-y-srMb2UDJszoJMVwd!@oL` zAo7>M)9?|p(fHx|6n_2lP3%M}um9qC=%zu@yA)DvU8zz1JCQ2&55AVO?PDO#+E25z z72fxkpF=V)x}XW1NK)!(b4Yc>52@ow2dU%O(GG-o^xN=LU!hwaqHa03`I5^G{7j#3 z5O}fzMe!B9-)4vQ2Qb%+8rr% zCka<6^%ZIkSL!nkQfl#1KBV&H-&$B_8fv!Fr1v_+>BZo8t;)`6t`FsgUd0=VEPyKZ zsl!n9?d(FD@}{2{%j0ZM8sC3&6Z>lD4Eb4{Nq_%#+oywfC9f{t8M!(OwdB=VoT6kV zjANfTL}3CHw$1-;EI>Lh`iF6anv);;zl&&+MgLH@cZU;iZ#>JVPX-UXotUBFV#e|F zs5$)jPA48e#FjY8o?FhqgSH46Zr1IL+Vf)oZ$UXPznL$lGI*AiB8$a$@>$bzVLgsc z;Q196>ssQV>3L33Zh|t;PU^-lYYsV@OslKcH9yz9wV8a0N8d$f;DrSf*$yW^S~;EV zbMn^gi57jH8PC4NDLT@?Z>v!oHY1?X$rGoKXWLL97~o&v1RT z5%C8Lj0ZE{J&1_vNAr4aWlDYA>J+$uhK5D-wGDybdh>x>2XNi*sOaP z?#PAhh>As4LFT22oE?_Ik;tqH2(EXLq`m@mjRmp?soJ|P(Q1eLS%*su z*uf8{BrjAwIH3;KQ|V!yu0iV8=n`EikUREObv#nP=-QAoWNE&2MFv9-52V8F_@!_F zZM5uo_PR@{=zbT^8($*+ZUGs9(kvt0>L{Yj1m)f!^=@e+S#FV>2KTWHx3rLa_s}g$ z3o*7BhgwzOXX#Y-IUi^A2yhi995`UX#gIM0%Ur&(?Zvcx3rx3KFDQ%c1u0l?E{zV9Fj(i^f%{{^v@d7?^2RF87ZN53NN3I`5??y`#6vdcH7Aq&G)?#Ew^pDch(_8CdoC2Z5d?z%Wgvdy$> zCD}UfAjw`<{H0`TV>DmHBwIJ+yi&4Ei%8Z)Eh$-(rX*YIRoZ)GCU}8)F^FTn!GfA} zj^GvL-$QM6YP|jF8qs+tEM(I)={%gck|EXtjl`NCRoZmWFfrHIP?as#qzhq7jirl4 zVIFvt3wc6|xDcD6vOaNnHY|i<$v4QIiri6+xQodE8{ggA~w) zl|)mup&n!xvCkLU-S9MP(!@{hh6mZJn(`{IC>XhpCXHOjPC(6)^$BB&JV%oz^Ud=g zk7eze3}x>TPSXptXejGIiDPyM@6nmmYwL&{QVAk1feB(lD&ds#DcCa;W;(vX0c94~ zs3kA&nkFAj;ibhe8`x+c-3S}yQ`z7>^WdWRWELcG|GsRN?vwAHDL(mD!XCXwihT6$ zp*eb>Yd-lL95>=`Vu-oTD4 zK)V9`Ndd4&fL;Z_o&mr@1H*>{?dcl{fOt{<0L-8s0w9%oKHktYg+>ezRvN-N_rU_7 zQ(=KY{BAzT3WE^$!)CMQQ*X8K4;C0S_y|iFg`O-QO%VFR7RWkUkU)3J= zMwd*pw&0E<(oh-U&kR%xekq0g)-N-{PQNrC%do4o^U||fj+3~GvY`%YNgL`2sH`x% z9I_aEp?J!-#>D_dks7gP6IjFM6`%nO(6oBQ-VDe`?Dc?XTnYC{Br;ju5sXhQ$$u z6}8)7DeQ}aTNL=s7#K$g{7wvvBL-uA>*LT7#r{EI&&RMhLf9{3SR64JzrO|+VWv{| zBurxi3YjdnhR{~AM<_q_l&#{3fhw(ritx5oWQZuu(X~(vRdS8+BO$=LA4=n9V@3GG z)rx}mH9Z-webOM8mCpomv>K*`i>nNB^fBS~YJ(h$KjBAfv17iDmrfO$aQsuo9F<-! zl4>bWdySfC(L-|6?m#3=r%F|@HtQ~W4}URM2ADaUV3sWcL|g6)P?#2No1hY|(!PxM zaIdj8lKgFKH2>)v%v`=)EWwD5TB#*<)EZPlx;G$$w3xdYF7bEkQZ4Ia_4l#j{1$MC za6P6aQhoghqN>3D2Cxq=%d;6l=}@NzWmLEqdssok9$pfAG$^A2_V9wtlW`ZatW~2R zPb$bW3W7a?>`)Nw(Vb4lK@_YXk%nL=QFFLpUBQ@h-Sq-G*F!;at|mP*sES(a2Nks< zE1>wi!HBcvzxZgY$lZu1mW5i6!3AkrgW->N!{fj{2&y1$%#pWk4T@?G2gJ9-f$?f` zK{H%p-9vFB<&=CDcn2R#UfDM|VuWUDsnD#h%uIaw?*1IHa1YFOm@*@jW@<@Fb0#?; zfB1tvsJ-aNuRcqW!)(vdok*hu7@C06bE3=s=P*D~VA5XjdnOXK@kYPU@UuY`fP7=k zdQ5ruf|X6kl)=Do#yOed^j?^eENj7<`lCQ0G`=$jsEvS{{qm@U_{iZZmK(}U`8cGy^DUR z+NBp`NkFG65I)iIho0`b1s@yoDXRaGTJ!?at1(U1DO1<&lvYuOsmEdP&?y

+
  • +
  • +
  • +
  • +
  • +
  • +