-
Notifications
You must be signed in to change notification settings - Fork 110
/
cluttered_mnist.py
174 lines (145 loc) · 6.38 KB
/
cluttered_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
import tensorflow as tf
from spatial_transformer import transformer
import numpy as np
from tf_utils import weight_variable, bias_variable, dense_to_one_hot
# %% Load data
mnist_cluttered = np.load('./data/mnist_sequence1_sample_5distortions5x5.npz')
X_train = mnist_cluttered['X_train']
y_train = mnist_cluttered['y_train']
X_valid = mnist_cluttered['X_valid']
y_valid = mnist_cluttered['y_valid']
X_test = mnist_cluttered['X_test']
y_test = mnist_cluttered['y_test']
# % turn from dense to one hot representation
Y_train = dense_to_one_hot(y_train, n_classes=10)
Y_valid = dense_to_one_hot(y_valid, n_classes=10)
Y_test = dense_to_one_hot(y_test, n_classes=10)
# %% Graph representation of our network
# %% Placeholders for 40x40 resolution
x = tf.placeholder(tf.float32, [None, 1600])
y = tf.placeholder(tf.float32, [None, 10])
# %% Since x is currently [batch, height*width], we need to reshape to a
# 4-D tensor to use it in a convolutional graph. If one component of
# `shape` is the special value -1, the size of that dimension is
# computed so that the total size remains constant. Since we haven't
# defined the batch dimension's shape yet, we use -1 to denote this
# dimension should not change size.
x_tensor = tf.reshape(x, [-1, 40, 40, 1])
# %% We'll setup the two-layer localisation network to figure out the
# %% parameters for an affine transformation of the input
# %% Create variables for fully connected layer
W_fc_loc1 = weight_variable([1600, 20])
b_fc_loc1 = bias_variable([20])
W_fc_loc2 = weight_variable([20, 6])
# Use identity transformation as starting point
initial = np.array([[1., 0, 0], [0, 1., 0]])
initial = initial.astype('float32')
initial = initial.flatten()
b_fc_loc2 = tf.Variable(initial_value=initial, name='b_fc_loc2')
# %% Define the two layer localisation network
h_fc_loc1 = tf.nn.tanh(tf.matmul(x, W_fc_loc1) + b_fc_loc1)
# %% We can add dropout for regularizing and to reduce overfitting like so:
keep_prob = tf.placeholder(tf.float32)
h_fc_loc1_drop = tf.nn.dropout(h_fc_loc1, keep_prob)
# %% Second layer
h_fc_loc2 = tf.nn.tanh(tf.matmul(h_fc_loc1_drop, W_fc_loc2) + b_fc_loc2)
# %% We'll create a spatial transformer module to identify discriminative
# %% patches
out_size = (40, 40)
h_trans = transformer(x_tensor, h_fc_loc2, out_size)
# %% We'll setup the first convolutional layer
# Weight matrix is [height x width x input_channels x output_channels]
filter_size = 3
n_filters_1 = 16
W_conv1 = weight_variable([filter_size, filter_size, 1, n_filters_1])
# %% Bias is [output_channels]
b_conv1 = bias_variable([n_filters_1])
# %% Now we can build a graph which does the first layer of convolution:
# we define our stride as batch x height x width x channels
# instead of pooling, we use strides of 2 and more layers
# with smaller filters.
h_conv1 = tf.nn.relu(
tf.nn.conv2d(input=h_trans,
filter=W_conv1,
strides=[1, 2, 2, 1],
padding='SAME') +
b_conv1)
# %% And just like the first layer, add additional layers to create
# a deep net
n_filters_2 = 16
W_conv2 = weight_variable([filter_size, filter_size, n_filters_1, n_filters_2])
b_conv2 = bias_variable([n_filters_2])
h_conv2 = tf.nn.relu(
tf.nn.conv2d(input=h_conv1,
filter=W_conv2,
strides=[1, 2, 2, 1],
padding='SAME') +
b_conv2)
# %% We'll now reshape so we can connect to a fully-connected layer:
h_conv2_flat = tf.reshape(h_conv2, [-1, 10 * 10 * n_filters_2])
# %% Create a fully-connected layer:
n_fc = 1024
W_fc1 = weight_variable([10 * 10 * n_filters_2, n_fc])
b_fc1 = bias_variable([n_fc])
h_fc1 = tf.nn.relu(tf.matmul(h_conv2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# %% And finally our softmax layer:
W_fc2 = weight_variable([n_fc, 10])
b_fc2 = bias_variable([10])
y_logits = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
# %% Define loss/eval/training functions
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits_v2(logits=y_logits, labels=y))
opt = tf.train.AdamOptimizer()
optimizer = opt.minimize(cross_entropy)
grads = opt.compute_gradients(cross_entropy, [b_fc_loc2])
# %% Monitor accuracy
correct_prediction = tf.equal(tf.argmax(y_logits, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
# %% We now create a new session to actually perform the initialization the
# variables:
sess = tf.Session()
sess.run(tf.global_variables_initializer())
# %% We'll now train in minibatches and report accuracy, loss:
iter_per_epoch = 100
n_epochs = 500
train_size = 10000
indices = np.linspace(0, 10000 - 1, iter_per_epoch)
indices = indices.astype('int')
for epoch_i in range(n_epochs):
for iter_i in range(iter_per_epoch - 1):
batch_xs = X_train[indices[iter_i]:indices[iter_i+1]]
batch_ys = Y_train[indices[iter_i]:indices[iter_i+1]]
if iter_i % 10 == 0:
loss = sess.run(cross_entropy,
feed_dict={
x: batch_xs,
y: batch_ys,
keep_prob: 1.0
})
print('Iteration: ' + str(iter_i) + ' Loss: ' + str(loss))
sess.run(optimizer, feed_dict={
x: batch_xs, y: batch_ys, keep_prob: 0.8})
print('Accuracy (%d): ' % epoch_i + str(sess.run(accuracy,
feed_dict={
x: X_valid,
y: Y_valid,
keep_prob: 1.0
})))
# theta = sess.run(h_fc_loc2, feed_dict={
# x: batch_xs, keep_prob: 1.0})
# print(theta[0])