forked from tech-srl/code2vec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeras_word_prediction_layer.py
57 lines (48 loc) · 2.56 KB
/
keras_word_prediction_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import tensorflow as tf
from tensorflow.python import keras
from tensorflow.python.keras.layers import Layer
import tensorflow.python.keras.backend as K
from typing import Optional, List, Callable
from functools import reduce
from common import common
class WordPredictionLayer(Layer):
FilterType = Callable[[tf.Tensor, tf.Tensor], tf.Tensor]
def __init__(self,
top_k: int,
index_to_word_table: tf.contrib.lookup.HashTable,
predicted_words_filters: Optional[List[FilterType]] = None,
**kwargs):
kwargs['dtype'] = tf.string
kwargs['trainable'] = False
super(WordPredictionLayer, self).__init__(**kwargs)
self.top_k = top_k
self.index_to_word_table = index_to_word_table
self.predicted_words_filters = predicted_words_filters
def build(self, input_shape):
if len(input_shape) != 2:
raise ValueError("Input shape for WordPredictionLayer should be of 2 dimension.")
super(WordPredictionLayer, self).build(input_shape)
self.trainable = False
def call(self, y_pred, **kwargs):
y_pred.shape.assert_has_rank(2)
top_k_pred_indices = tf.cast(tf.nn.top_k(y_pred, k=self.top_k).indices,
dtype=self.index_to_word_table.key_dtype)
predicted_target_words_strings = self.index_to_word_table.lookup(top_k_pred_indices)
# apply given filter
masks = []
if self.predicted_words_filters is not None:
masks = [fltr(top_k_pred_indices, predicted_target_words_strings) for fltr in self.predicted_words_filters]
if masks:
# assert all(mask.shape.assert_is_compatible_with(top_k_pred_indices) for mask in masks)
legal_predicted_target_words_mask = reduce(tf.logical_and, masks)
else:
legal_predicted_target_words_mask = tf.cast(tf.ones_like(top_k_pred_indices), dtype=tf.bool)
# the first legal predicted word is our prediction
first_legal_predicted_target_word_mask = common.tf_get_first_true(legal_predicted_target_words_mask)
first_legal_predicted_target_word_idx = tf.where(first_legal_predicted_target_word_mask)
first_legal_predicted_word_string = tf.gather_nd(predicted_target_words_strings,
first_legal_predicted_target_word_idx)
prediction = tf.reshape(first_legal_predicted_word_string, [-1])
return prediction
def compute_output_shape(self, input_shape):
return input_shape[0], # (batch,)