-
Notifications
You must be signed in to change notification settings - Fork 141
/
Copy pathchat.py
172 lines (146 loc) · 6.2 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import openai
import json
import numpy as np
from numpy.linalg import norm
import re
from time import time,sleep
from uuid import uuid4
import datetime
def open_file(filepath):
with open(filepath, 'r', encoding='utf-8') as infile:
return infile.read()
def save_file(filepath, content):
with open(filepath, 'w', encoding='utf-8') as outfile:
outfile.write(content)
def load_json(filepath):
with open(filepath, 'r', encoding='utf-8') as infile:
return json.load(infile)
def save_json(filepath, payload):
with open(filepath, 'w', encoding='utf-8') as outfile:
json.dump(payload, outfile, ensure_ascii=False, sort_keys=True, indent=2)
def timestamp_to_datetime(unix_time):
return datetime.datetime.fromtimestamp(unix_time).strftime("%A, %B %d, %Y at %I:%M%p %Z")
def gpt3_embedding(content, engine='text-embedding-ada-002'):
content = content.encode(encoding='ASCII',errors='ignore').decode()
response = openai.Embedding.create(input=content,engine=engine)
vector = response['data'][0]['embedding'] # this is a normal list
return vector
def similarity(v1, v2):
# based upon https://stackoverflow.com/questions/18424228/cosine-similarity-between-2-number-lists
return np.dot(v1, v2)/(norm(v1)*norm(v2)) # return cosine similarity
def fetch_memories(vector, logs, count):
scores = list()
for i in logs:
if vector == i['vector']:
# skip this one because it is the same message
continue
score = similarity(i['vector'], vector)
i['score'] = score
scores.append(i)
ordered = sorted(scores, key=lambda d: d['score'], reverse=True)
# TODO - pick more memories temporally nearby the top most relevant memories
try:
ordered = ordered[0:count]
return ordered
except:
return ordered
def load_convo():
files = os.listdir('nexus')
files = [i for i in files if '.json' in i] # filter out any non-JSON files
result = list()
for file in files:
data = load_json('nexus/%s' % file)
result.append(data)
ordered = sorted(result, key=lambda d: d['time'], reverse=False) # sort them all chronologically
return ordered
def summarize_memories(memories): # summarize a block of memories into one payload
memories = sorted(memories, key=lambda d: d['time'], reverse=False) # sort them chronologically
block = ''
identifiers = list()
timestamps = list()
for mem in memories:
block += mem['message'] + '\n\n'
identifiers.append(mem['uuid'])
timestamps.append(mem['time'])
block = block.strip()
prompt = open_file('prompt_notes.txt').replace('<<INPUT>>', block)
# TODO - do this in the background over time to handle huge amounts of memories
notes = gpt3_completion(prompt)
#### SAVE NOTES
vector = gpt3_embedding(block)
info = {'notes': notes, 'uuids': identifiers, 'times': timestamps, 'uuid': str(uuid4()), 'vector': vector, 'time': time()}
filename = 'notes_%s.json' % time()
save_json('internal_notes/%s' % filename, info)
return notes
def get_last_messages(conversation, limit):
try:
short = conversation[-limit:]
except:
short = conversation
output = ''
for i in short:
output += '%s\n\n' % i['message']
output = output.strip()
return output
def gpt3_completion(prompt, engine='text-davinci-003', temp=0.0, top_p=1.0, tokens=400, freq_pen=0.0, pres_pen=0.0, stop=['USER:', 'RAVEN:']):
max_retry = 5
retry = 0
prompt = prompt.encode(encoding='ASCII',errors='ignore').decode()
while True:
try:
response = openai.Completion.create(
engine=engine,
prompt=prompt,
temperature=temp,
max_tokens=tokens,
top_p=top_p,
frequency_penalty=freq_pen,
presence_penalty=pres_pen,
stop=stop)
text = response['choices'][0]['text'].strip()
text = re.sub('[\r\n]+', '\n', text)
text = re.sub('[\t ]+', ' ', text)
filename = '%s_gpt3.txt' % time()
if not os.path.exists('gpt3_logs'):
os.makedirs('gpt3_logs')
save_file('gpt3_logs/%s' % filename, prompt + '\n\n==========\n\n' + text)
return text
except Exception as oops:
retry += 1
if retry >= max_retry:
return "GPT3 error: %s" % oops
print('Error communicating with OpenAI:', oops)
sleep(1)
if __name__ == '__main__':
openai.api_key = open_file('openaiapikey.txt')
while True:
#### get user input, save it, vectorize it, etc
a = input('\n\nUSER: ')
timestamp = time()
vector = gpt3_embedding(a)
timestring = timestamp_to_datetime(timestamp)
message = '%s: %s - %s' % ('USER', timestring, a)
info = {'speaker': 'USER', 'time': timestamp, 'vector': vector, 'message': message, 'uuid': str(uuid4()), 'timestring': timestring}
filename = 'log_%s_USER.json' % timestamp
save_json('nexus/%s' % filename, info)
#### load conversation
conversation = load_convo()
#### compose corpus (fetch memories, etc)
memories = fetch_memories(vector, conversation, 10) # pull episodic memories
# TODO - fetch declarative memories (facts, wikis, KB, company data, internet, etc)
notes = summarize_memories(memories)
# TODO - search existing notes first
recent = get_last_messages(conversation, 4)
prompt = open_file('prompt_response.txt').replace('<<NOTES>>', notes).replace('<<CONVERSATION>>', recent)
#### generate response, vectorize, save, etc
output = gpt3_completion(prompt)
timestamp = time()
vector = gpt3_embedding(output)
timestring = timestamp_to_datetime(timestamp)
message = '%s: %s - %s' % ('RAVEN', timestring, output)
info = {'speaker': 'RAVEN', 'time': timestamp, 'vector': vector, 'message': message, 'uuid': str(uuid4()), 'timestring': timestring}
filename = 'log_%s_RAVEN.json' % time()
save_json('nexus/%s' % filename, info)
#### print output
print('\n\nRAVEN: %s' % output)