-
Notifications
You must be signed in to change notification settings - Fork 120
/
hybridnets_test.py
242 lines (215 loc) · 10.2 KB
/
hybridnets_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import time
import torch
from torch.backends import cudnn
from backbone import HybridNetsBackbone
import cv2
import numpy as np
from glob import glob
from utils.utils import letterbox, scale_coords, postprocess, BBoxTransform, ClipBoxes, restricted_float, \
boolean_string, Params
from utils.plot import STANDARD_COLORS, standard_to_bgr, get_index_label, plot_one_box
import os
from torchvision import transforms
import argparse
from utils.constants import *
from collections import OrderedDict
from torch.nn import functional as F
parser = argparse.ArgumentParser('HybridNets: End-to-End Perception Network - DatVu')
parser.add_argument('-p', '--project', type=str, default='bdd100k', help='Project file that contains parameters')
parser.add_argument('-bb', '--backbone', type=str, help='Use timm to create another backbone replacing efficientnet. '
'https://github.com/rwightman/pytorch-image-models')
parser.add_argument('-c', '--compound_coef', type=int, default=3, help='Coefficient of efficientnet backbone')
parser.add_argument('--source', type=str, default='demo/image', help='The demo image folder')
parser.add_argument('--output', type=str, default='demo_result', help='Output folder')
parser.add_argument('-w', '--load_weights', type=str, default='weights/hybridnets.pth')
parser.add_argument('--conf_thresh', type=restricted_float, default='0.25')
parser.add_argument('--iou_thresh', type=restricted_float, default='0.3')
parser.add_argument('--imshow', type=boolean_string, default=False, help="Show result onscreen (unusable on colab, jupyter...)")
parser.add_argument('--imwrite', type=boolean_string, default=True, help="Write result to output folder")
parser.add_argument('--show_det', type=boolean_string, default=False, help="Output detection result exclusively")
parser.add_argument('--show_seg', type=boolean_string, default=False, help="Output segmentation result exclusively")
parser.add_argument('--cuda', type=boolean_string, default=True)
parser.add_argument('--float16', type=boolean_string, default=True, help="Use float16 for faster inference")
parser.add_argument('--speed_test', type=boolean_string, default=False,
help='Measure inference latency')
args = parser.parse_args()
params = Params(f'projects/{args.project}.yml')
color_list_seg = {}
for seg_class in params.seg_list:
# edit your color here if you wanna fix to your liking
color_list_seg[seg_class] = list(np.random.choice(range(256), size=3))
compound_coef = args.compound_coef
source = args.source
if source.endswith("/"):
source = source[:-1]
output = args.output
if output.endswith("/"):
output = output[:-1]
weight = args.load_weights
img_path = glob(f'{source}/*.jpg') + glob(f'{source}/*.png')
# img_path = [img_path[0]] # demo with 1 image
input_imgs = []
shapes = []
det_only_imgs = []
anchors_ratios = params.anchors_ratios
anchors_scales = params.anchors_scales
threshold = args.conf_thresh
iou_threshold = args.iou_thresh
imshow = args.imshow
imwrite = args.imwrite
show_det = args.show_det
show_seg = args.show_seg
os.makedirs(output, exist_ok=True)
use_cuda = args.cuda
use_float16 = args.float16
cudnn.fastest = True
cudnn.benchmark = True
obj_list = params.obj_list
seg_list = params.seg_list
color_list = standard_to_bgr(STANDARD_COLORS)
ori_imgs = [cv2.imread(i, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) for i in img_path]
ori_imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in ori_imgs]
print(f"FOUND {len(ori_imgs)} IMAGES")
# cv2.imwrite('ori.jpg', ori_imgs[0])
# cv2.imwrite('normalized.jpg', normalized_imgs[0]*255)
resized_shape = params.model['image_size']
if isinstance(resized_shape, list):
resized_shape = max(resized_shape)
normalize = transforms.Normalize(
mean=params.mean, std=params.std
)
transform = transforms.Compose([
transforms.ToTensor(),
normalize,
])
for ori_img in ori_imgs:
h0, w0 = ori_img.shape[:2] # orig hw
r = resized_shape / max(h0, w0) # resize image to img_size
input_img = cv2.resize(ori_img, (int(w0 * r), int(h0 * r)), interpolation=cv2.INTER_AREA)
h, w = input_img.shape[:2]
(input_img, _), ratio, pad = letterbox((input_img, None), resized_shape, auto=True,
scaleup=False)
input_imgs.append(input_img)
# cv2.imwrite('input.jpg', input_img * 255)
shapes.append(((h0, w0), ((h / h0, w / w0), pad))) # for COCO mAP rescaling
if use_cuda:
x = torch.stack([transform(fi).cuda() for fi in input_imgs], 0)
else:
x = torch.stack([transform(fi) for fi in input_imgs], 0)
x = x.to(torch.float16 if use_cuda and use_float16 else torch.float32)
# print(x.shape)
weight = torch.load(weight, map_location='cuda' if use_cuda else 'cpu')
#new_weight = OrderedDict((k[6:], v) for k, v in weight['model'].items())
weight_last_layer_seg = weight['segmentation_head.0.weight']
if weight_last_layer_seg.size(0) == 1:
seg_mode = BINARY_MODE
else:
if params.seg_multilabel:
seg_mode = MULTILABEL_MODE
else:
seg_mode = MULTICLASS_MODE
print("DETECTED SEGMENTATION MODE FROM WEIGHT AND PROJECT FILE:", seg_mode)
model = HybridNetsBackbone(compound_coef=compound_coef, num_classes=len(obj_list), ratios=eval(anchors_ratios),
scales=eval(anchors_scales), seg_classes=len(seg_list), backbone_name=args.backbone,
seg_mode=seg_mode)
model.load_state_dict(weight)
model.requires_grad_(False)
model.eval()
if use_cuda:
model = model.cuda()
if use_float16:
model = model.half()
with torch.no_grad():
features, regression, classification, anchors, seg = model(x)
# in case of MULTILABEL_MODE, each segmentation class gets their own inference image
seg_mask_list = []
# (B, C, W, H) -> (B, W, H)
if seg_mode == BINARY_MODE:
seg_mask = torch.where(seg >= 0, 1, 0)
# print(torch.count_nonzero(seg_mask))
seg_mask.squeeze_(1)
seg_mask_list.append(seg_mask)
elif seg_mode == MULTICLASS_MODE:
_, seg_mask = torch.max(seg, 1)
seg_mask_list.append(seg_mask)
else:
seg_mask_list = [torch.where(torch.sigmoid(seg)[:, i, ...] >= 0.5, 1, 0) for i in range(seg.size(1))]
# but remove background class from the list
seg_mask_list.pop(0)
# (B, W, H) -> (W, H)
for i in range(seg.size(0)):
# print(i)
for seg_class_index, seg_mask in enumerate(seg_mask_list):
seg_mask_ = seg_mask[i].squeeze().cpu().numpy()
pad_h = int(shapes[i][1][1][1])
pad_w = int(shapes[i][1][1][0])
seg_mask_ = seg_mask_[pad_h:seg_mask_.shape[0]-pad_h, pad_w:seg_mask_.shape[1]-pad_w]
seg_mask_ = cv2.resize(seg_mask_, dsize=shapes[i][0][::-1], interpolation=cv2.INTER_NEAREST)
color_seg = np.zeros((seg_mask_.shape[0], seg_mask_.shape[1], 3), dtype=np.uint8)
for index, seg_class in enumerate(params.seg_list):
color_seg[seg_mask_ == index+1] = color_list_seg[seg_class]
color_seg = color_seg[..., ::-1] # RGB -> BGR
# cv2.imwrite('seg_only_{}.jpg'.format(i), color_seg)
color_mask = np.mean(color_seg, 2) # (H, W, C) -> (H, W), check if any pixel is not background
# prepare to show det on 2 different imgs
# (with and without seg) -> (full and det_only)
det_only_imgs.append(ori_imgs[i].copy())
seg_img = ori_imgs[i].copy() if seg_mode == MULTILABEL_MODE else ori_imgs[i] # do not work on original images if MULTILABEL_MODE
seg_img[color_mask != 0] = seg_img[color_mask != 0] * 0.5 + color_seg[color_mask != 0] * 0.5
seg_img = seg_img.astype(np.uint8)
seg_filename = f'{output}/{i}_{params.seg_list[seg_class_index]}_seg.jpg' if seg_mode == MULTILABEL_MODE else \
f'{output}/{i}_seg.jpg'
if show_seg or seg_mode == MULTILABEL_MODE:
cv2.imwrite(seg_filename, cv2.cvtColor(seg_img, cv2.COLOR_RGB2BGR))
regressBoxes = BBoxTransform()
clipBoxes = ClipBoxes()
out = postprocess(x,
anchors, regression, classification,
regressBoxes, clipBoxes,
threshold, iou_threshold)
for i in range(len(ori_imgs)):
out[i]['rois'] = scale_coords(ori_imgs[i][:2], out[i]['rois'], shapes[i][0], shapes[i][1])
for j in range(len(out[i]['rois'])):
x1, y1, x2, y2 = out[i]['rois'][j].astype(int)
obj = obj_list[out[i]['class_ids'][j]]
score = float(out[i]['scores'][j])
plot_one_box(ori_imgs[i], [x1, y1, x2, y2], label=obj, score=score,
color=color_list[get_index_label(obj, obj_list)])
if show_det:
plot_one_box(det_only_imgs[i], [x1, y1, x2, y2], label=obj, score=score,
color=color_list[get_index_label(obj, obj_list)])
if show_det:
cv2.imwrite(f'{output}/{i}_det.jpg', cv2.cvtColor(det_only_imgs[i], cv2.COLOR_RGB2BGR))
if imshow:
cv2.imshow('img', ori_imgs[i])
cv2.waitKey(0)
if imwrite:
cv2.imwrite(f'{output}/{i}.jpg', cv2.cvtColor(ori_imgs[i], cv2.COLOR_RGB2BGR))
if not args.speed_test:
exit(0)
print('running speed test...')
with torch.no_grad():
print('test1: model inferring and postprocessing')
print('inferring 1 image for 10 times...')
x = x[0, ...]
x.unsqueeze_(0)
t1 = time.time()
for _ in range(10):
_, regression, classification, anchors, segmentation = model(x)
out = postprocess(x,
anchors, regression, classification,
regressBoxes, clipBoxes,
threshold, iou_threshold)
t2 = time.time()
tact_time = (t2 - t1) / 10
print(f'{tact_time} seconds, {1 / tact_time} FPS, @batch_size 1')
# uncomment this if you want a extreme fps test
print('test2: model inferring only')
print('inferring images for batch_size 32 for 10 times...')
t1 = time.time()
x = torch.cat([x] * 32, 0)
for _ in range(10):
_, regression, classification, anchors, segmentation = model(x)
t2 = time.time()
tact_time = (t2 - t1) / 10
print(f'{tact_time} seconds, {32 / tact_time} FPS, @batch_size 32')