Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【help】PEFT板块 Multitask prompt tuning原理讲解部分补齐 #14

Open
moyanxinxu opened this issue Jun 20, 2024 · 0 comments
Open
Labels
help wanted Extra attention is needed

Comments

@moyanxinxu
Copy link
Collaborator

Multitask prompt tuning decomposes the soft prompts of each task into a single learned transferable prompt instead of a separate prompt for each task. The single learned prompt can be adapted for each task by multiplicative low rank updates.

The abstract from the paper is:

Prompt tuning, in which a base pretrained model is adapted to each task via conditioning on learned prompt vectors, has emerged as a promising approach for efficiently adapting large language models to multiple downstream tasks. However, existing methods typically learn soft prompt vectors from scratch, and it has not been clear how to exploit the rich cross-task knowledge with prompt vectors in a multitask learning setting. We propose multitask prompt tuning (MPT), which first learns a single transferable prompt by distilling knowledge from multiple task-specific source prompts. We then learn multiplicative low rank updates to this shared prompt to efficiently adapt it to each downstream target task. Extensive experiments on 23 NLP datasets demonstrate that our proposed approach outperforms the state-of-the-art methods, including the full finetuning baseline in some cases, despite only tuning 0.035% as many task-specific parameters.

@moyanxinxu moyanxinxu added the help wanted Extra attention is needed label Jun 20, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
help wanted Extra attention is needed
Projects
None yet
Development

No branches or pull requests

1 participant