You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
File ~/miniconda3/lib/python3.10/site-packages/transformers/trainer.py:459, in Trainer.init(self, model, args, data_collator, train_dataset, eval_dataset, tokenizer, model_init, compute_metrics, callbacks, optimizers, preprocess_logits_for_metrics)
454 # Bnb Quantized models doesn't support .to operation.
455 if (
456 self.place_model_on_device
457 and not getattr(model, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES
458 ):
--> 459 self._move_model_to_device(model, args.device)
461 # Force n_gpu to 1 to avoid DataParallel as MP will manage the GPUs
462 if self.is_model_parallel:
File ~/miniconda3/lib/python3.10/site-packages/transformers/trainer.py:693, in Trainer._move_model_to_device(self, model, device)
692 def _move_model_to_device(self, model, device):
--> 693 model = model.to(device)
694 # Moving a model to an XLA device disconnects the tied weights, so we have to retie them.
695 if self.args.parallel_mode == ParallelMode.TPU and hasattr(model, "tie_weights"):
File ~/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py:1160, in Module.to(self, *args, **kwargs)
1156 return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None,
1157 non_blocking, memory_format=convert_to_format)
1158 return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
-> 1160 return self._apply(convert)
File ~/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py:810, in Module._apply(self, fn, recurse)
808 if recurse:
809 for module in self.children():
--> 810 module._apply(fn)
812 def compute_should_use_set_data(tensor, tensor_applied):
813 if torch._has_compatible_shallow_copy_type(tensor, tensor_applied):
814 # If the new tensor has compatible tensor type as the existing tensor,
815 # the current behavior is to change the tensor in-place using .data =,
(...)
820 # global flag to let the user control whether they want the future
821 # behavior of overwriting the existing tensor or not.
File ~/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py:810, in Module._apply(self, fn, recurse)
808 if recurse:
809 for module in self.children():
--> 810 module._apply(fn)
812 def compute_should_use_set_data(tensor, tensor_applied):
813 if torch._has_compatible_shallow_copy_type(tensor, tensor_applied):
814 # If the new tensor has compatible tensor type as the existing tensor,
815 # the current behavior is to change the tensor in-place using .data =,
(...)
820 # global flag to let the user control whether they want the future
821 # behavior of overwriting the existing tensor or not.
[... skipping similar frames: Module._apply at line 810 (9 times)]
File ~/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py:810, in Module._apply(self, fn, recurse)
808 if recurse:
809 for module in self.children():
--> 810 module._apply(fn)
812 def compute_should_use_set_data(tensor, tensor_applied):
813 if torch._has_compatible_shallow_copy_type(tensor, tensor_applied):
814 # If the new tensor has compatible tensor type as the existing tensor,
815 # the current behavior is to change the tensor in-place using .data =,
(...)
820 # global flag to let the user control whether they want the future
821 # behavior of overwriting the existing tensor or not.
File ~/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py:833, in Module._apply(self, fn, recurse)
829 # Tensors stored in modules are graph leaves, and we don't want to
830 # track autograd history of param_applied, so we have to use
831 # with torch.no_grad():
832 with torch.no_grad():
--> 833 param_applied = fn(param)
834 should_use_set_data = compute_should_use_set_data(param, param_applied)
835 if should_use_set_data:
File ~/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py:1158, in Module.to..convert(t)
1155 if convert_to_format is not None and t.dim() in (4, 5):
1156 return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None,
1157 non_blocking, memory_format=convert_to_format)
-> 1158 return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
NotImplementedError: Cannot copy out of meta tensor; no data!
The text was updated successfully, but these errors were encountered:
------------------ 原始邮件 ------------------
发件人: Azusa ***@***.***>
发送时间: 2024年10月9日 18:22
收件人: datawhalechina/self-llm ***@***.***>
抄送: cyk ***@***.***>, Comment ***@***.***>
主题: Re: [datawhalechina/self-llm] Qwen1.5微调报错 (Issue #265)
我试了AutoDL,也是报错了,尝试了一下GLM4可以,应该是网络问题
谢谢,能运行了
—
Reply to this email directly, view it on GitHub, or unsubscribe.
You are receiving this because you commented.Message ID: ***@***.***>
NotImplementedError Traceback (most recent call last)
Cell In[56], line 1
----> 1 trainer = Trainer(
2 model=model,
3 args=args,
4 train_dataset=tokenized_id,
5 data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
6 )
File ~/miniconda3/lib/python3.10/site-packages/transformers/trainer.py:459, in Trainer.init(self, model, args, data_collator, train_dataset, eval_dataset, tokenizer, model_init, compute_metrics, callbacks, optimizers, preprocess_logits_for_metrics)
454 # Bnb Quantized models doesn't support
.to
operation.455 if (
456 self.place_model_on_device
457 and not getattr(model, "quantization_method", None) == QuantizationMethod.BITS_AND_BYTES
458 ):
--> 459 self._move_model_to_device(model, args.device)
461 # Force n_gpu to 1 to avoid DataParallel as MP will manage the GPUs
462 if self.is_model_parallel:
File ~/miniconda3/lib/python3.10/site-packages/transformers/trainer.py:693, in Trainer._move_model_to_device(self, model, device)
692 def _move_model_to_device(self, model, device):
--> 693 model = model.to(device)
694 # Moving a model to an XLA device disconnects the tied weights, so we have to retie them.
695 if self.args.parallel_mode == ParallelMode.TPU and hasattr(model, "tie_weights"):
File ~/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py:1160, in Module.to(self, *args, **kwargs)
1156 return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None,
1157 non_blocking, memory_format=convert_to_format)
1158 return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
-> 1160 return self._apply(convert)
File ~/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py:810, in Module._apply(self, fn, recurse)
808 if recurse:
809 for module in self.children():
--> 810 module._apply(fn)
812 def compute_should_use_set_data(tensor, tensor_applied):
813 if torch._has_compatible_shallow_copy_type(tensor, tensor_applied):
814 # If the new tensor has compatible tensor type as the existing tensor,
815 # the current behavior is to change the tensor in-place using
.data =
,(...)
820 # global flag to let the user control whether they want the future
821 # behavior of overwriting the existing tensor or not.
File ~/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py:810, in Module._apply(self, fn, recurse)
808 if recurse:
809 for module in self.children():
--> 810 module._apply(fn)
812 def compute_should_use_set_data(tensor, tensor_applied):
813 if torch._has_compatible_shallow_copy_type(tensor, tensor_applied):
814 # If the new tensor has compatible tensor type as the existing tensor,
815 # the current behavior is to change the tensor in-place using
.data =
,(...)
820 # global flag to let the user control whether they want the future
821 # behavior of overwriting the existing tensor or not.
File ~/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py:810, in Module._apply(self, fn, recurse)
808 if recurse:
809 for module in self.children():
--> 810 module._apply(fn)
812 def compute_should_use_set_data(tensor, tensor_applied):
813 if torch._has_compatible_shallow_copy_type(tensor, tensor_applied):
814 # If the new tensor has compatible tensor type as the existing tensor,
815 # the current behavior is to change the tensor in-place using
.data =
,(...)
820 # global flag to let the user control whether they want the future
821 # behavior of overwriting the existing tensor or not.
File ~/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py:833, in Module._apply(self, fn, recurse)
829 # Tensors stored in modules are graph leaves, and we don't want to
830 # track autograd history of
param_applied
, so we have to use831 #
with torch.no_grad():
832 with torch.no_grad():
--> 833 param_applied = fn(param)
834 should_use_set_data = compute_should_use_set_data(param, param_applied)
835 if should_use_set_data:
File ~/miniconda3/lib/python3.10/site-packages/torch/nn/modules/module.py:1158, in Module.to..convert(t)
1155 if convert_to_format is not None and t.dim() in (4, 5):
1156 return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None,
1157 non_blocking, memory_format=convert_to_format)
-> 1158 return t.to(device, dtype if t.is_floating_point() or t.is_complex() else None, non_blocking)
NotImplementedError: Cannot copy out of meta tensor; no data!
The text was updated successfully, but these errors were encountered: