-
Notifications
You must be signed in to change notification settings - Fork 62
/
selfextend_flash_attn_triton.py
278 lines (238 loc) · 8.18 KB
/
selfextend_flash_attn_triton.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import math
import torch
import triton
import triton.language as tl
def self_extend_flash_forward_triton(
model_self,
query_position,
group_size_2,
neighbor_query_states,
neighbor_key_states,
group_query_states,
group_key_states,
value_states,
attention_mask,
bsz,
q_len,
kv_seq_len,
attn_dropout,
):
o = _self_extend_flash_forward_triton(q=neighbor_query_states,
k=neighbor_key_states,
q1=group_query_states,
k1=group_key_states,
v=value_states,
causal=(q_len == kv_seq_len),
sm_scale=1. / math.sqrt(neighbor_query_states.shape[-1]),
window=group_size_2)
o = o.transpose(1, 2).contiguous()
# print("o", o.shape)
return o
def _self_extend_flash_forward_triton(q, k, q1, k1, v, causal, sm_scale, window):
# shape constraints
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
assert Lq == Lk and Lk == Lv
assert Lk in {16, 32, 64, 128}
device = torch.cuda.device_of(q)
with torch.cuda.device(device):
o = torch.empty_like(q)
BLOCK_M = 128
BLOCK_N = 32
grid = (triton.cdiv(q.shape[2], BLOCK_M), q.shape[0] * q.shape[1])
L = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32)
_fwd_kernel[grid](
q,
k,
q1,
k1,
v,
sm_scale,
L,
o,
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
k.stride(0), k.stride(1), k.stride(2), k.stride(3),
v.stride(0), v.stride(1), v.stride(2), v.stride(3),
o.stride(0), o.stride(1), o.stride(2), o.stride(3),
q.shape[0],
q.shape[1],
q.shape[2],
k.shape[2],
BLOCK_M=BLOCK_M,
BLOCK_N=BLOCK_N,
BLOCK_DMODEL=Lk,
IS_CAUSAL=causal,
WINDOW=window,
num_warps=8,
num_stages=2)
return o
@triton.heuristics(
{
"EVEN_M": lambda args: args["Q_CTX"] % args["BLOCK_M"] == 0,
"EVEN_N": lambda args: args["KV_CTX"] % args["BLOCK_N"] == 0,
}
)
@triton.jit
def _fwd_kernel(
Q,
K,
Q1,
K1,
V,
sm_scale,
L,
Out,
stride_qz, stride_qh, stride_qm, stride_qk,
stride_kz, stride_kh, stride_kn, stride_kk,
stride_vz, stride_vh, stride_vn, stride_vk,
stride_oz, stride_oh, stride_om, stride_on,
Z,
H,
Q_CTX,
KV_CTX,
BLOCK_M: tl.constexpr,
BLOCK_DMODEL: tl.constexpr,
BLOCK_N: tl.constexpr,
IS_CAUSAL: tl.constexpr,
WINDOW: tl.constexpr,
EVEN_M: tl.constexpr,
EVEN_N: tl.constexpr
):
start_m = tl.program_id(0)
off_hz = tl.program_id(1)
# qvk_offset = off_hz * stride_qh
q_offset = off_hz * stride_qh
vk_offset = off_hz * stride_kh
# vk_offset = q_offset
Q_block_ptr = tl.make_block_ptr(
base=Q + q_offset,
shape=(Q_CTX, BLOCK_DMODEL),
strides=(stride_qm, stride_qk),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0)
)
K_block_ptr = tl.make_block_ptr(
base=K + vk_offset,
shape=(KV_CTX, BLOCK_DMODEL),
strides=(stride_kn, stride_kk),
offsets=(0, 0),
block_shape=(BLOCK_N, BLOCK_DMODEL),
order=(1, 0)
)
Q1_block_ptr = tl.make_block_ptr(
base=Q1 + q_offset,
shape=(Q_CTX, BLOCK_DMODEL),
strides=(stride_qm, stride_qk),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0)
)
K1_block_ptr = tl.make_block_ptr(
base=K1 + vk_offset,
shape=(KV_CTX, BLOCK_DMODEL),
strides=(stride_kn, stride_kk),
offsets=(0, 0),
block_shape=(BLOCK_N, BLOCK_DMODEL),
order=(1, 0)
)
V_block_ptr = tl.make_block_ptr(
base=V + vk_offset,
shape=(KV_CTX, BLOCK_DMODEL),
strides=(stride_vn, stride_vk),
offsets=(0, 0),
block_shape=(BLOCK_N, BLOCK_DMODEL),
order=(1, 0)
)
# initialize offsets
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
offs_n = tl.arange(0, BLOCK_N)
# initialize pointer to m and l
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
# scale sm_scale by log_2(e) and use
# 2^x instead of exp in the loop because CSE and LICM
# don't work as expected with `exp` in the loop
qk_scale = sm_scale * 1.4426950408889634
# load q: it will stay in SRAM throughout
if EVEN_M:
q = tl.load(Q_block_ptr)
q1 = tl.load(Q1_block_ptr)
else:
q = tl.load(Q_block_ptr, boundary_check=(1,0))
q1 = tl.load(Q1_block_ptr, boundary_check=(1,0))
q = (q * qk_scale).to(tl.bfloat16)
q1 = (q1 * qk_scale).to(tl.bfloat16)
# Dot I trick: it converts q1, q2 into mma layout and saves shared memory
# better way to generate a eye matrix. avoid casting from bool
offs_k = tl.arange(0, BLOCK_DMODEL)
I = tl.where(offs_k[:, None] == offs_k,
tl.full((BLOCK_DMODEL, BLOCK_DMODEL), 1.0, dtype=tl.bfloat16),
tl.full((BLOCK_DMODEL, BLOCK_DMODEL), 0.0, dtype=tl.bfloat16))
q = tl.dot(q, I).to(tl.bfloat16)
q1 = tl.dot(q1, I).to(tl.bfloat16)
# loop over k, v and update accumulator
lo = 0
if IS_CAUSAL:
hi = tl.minimum(KV_CTX, (start_m + 1) * BLOCK_M)
else:
hi = KV_CTX
for start_n in range(lo, hi, BLOCK_N):
# -- load k, v --
if EVEN_N:
k = tl.load(K_block_ptr)
k1 = tl.load(K1_block_ptr)
v = tl.load(V_block_ptr)
else:
k = tl.load(K_block_ptr, boundary_check=(1,0))
k1 = tl.load(K1_block_ptr, boundary_check=(1,0))
v = tl.load(V_block_ptr, boundary_check=(1,0))
# -- compute qk ---
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
# Window masking
mask = ( KV_CTX - Q_CTX + offs_m[:, None]) >= (start_n + offs_n[None, :] + WINDOW)
qk += tl.where(mask, tl.dot(q1, tl.trans(k1)), tl.dot(q, tl.trans(k)))
# if not EVEN_N:
# mask = (start_n + offs_n) < KV_CTX
# qk = tl.where(mask, qk, float("-inf"))
if IS_CAUSAL:
mask = offs_m[:, None] >= (start_n + offs_n[None, :])
qk = tl.where(mask, qk, float("-inf"))
# qk += tl.dot(q, k)
# -- compute scaling constant ---
m_i_new = tl.maximum(m_i, tl.max(qk, 1))
alpha = tl.math.exp2(m_i - m_i_new)
p = tl.math.exp2(qk - m_i_new[:, None])
# -- scale and update acc --
acc_scale = l_i * 0 + alpha # workaround some compiler bug
acc *= acc_scale[:, None]
acc += tl.dot(p.to(tl.bfloat16), v)
# -- update m_i and l_i --
l_i = l_i * alpha + tl.sum(p, 1)
m_i = m_i_new
# update pointers
K_block_ptr = tl.advance(K_block_ptr, (BLOCK_N, 0))
K1_block_ptr = tl.advance(K1_block_ptr, (BLOCK_N, 0))
V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
# write back l and m
acc = acc * (1.0 / l_i[:, None])
l_ptrs = L + off_hz * Q_CTX + offs_m
mask_m = offs_m < Q_CTX
l_i = m_i + tl.math.log2(l_i)
if EVEN_M:
tl.store(l_ptrs, l_i)
else:
tl.store(l_ptrs, l_i, mask=mask_m)
# write back O
O_block_ptr = tl.make_block_ptr(
base=Out + q_offset,
shape=(Q_CTX, BLOCK_DMODEL),
strides=(stride_om, stride_on),
offsets=(start_m * BLOCK_M, 0),
block_shape=(BLOCK_M, BLOCK_DMODEL),
order=(1, 0)
)
if EVEN_M:
tl.store(O_block_ptr, acc.to(tl.bfloat16))
else:
tl.store(O_block_ptr, acc.to(tl.bfloat16), boundary_check=(1,0))