diff --git a/.devcontainer/Dockerfile b/.devcontainer/Dockerfile
index b87fb76..c63a49d 100644
--- a/.devcontainer/Dockerfile
+++ b/.devcontainer/Dockerfile
@@ -25,11 +25,14 @@ RUN \
     # dircolors -b >> /home/vscode/.bashrc && \  # somehow fix colors
     apt-get clean
 COPY ./requirements.txt /tmp/
+COPY ./requirements_dev.txt /tmp/
 RUN \
     # workflow dependencies
     apt-get install gcc ffmpeg libsm6 libxext6 -y && \
     pip install --no-cache-dir -r /tmp/requirements.txt && \
+    pip install --no-cache-dir -r /tmp/requirements_dev.txt && \
     rm /tmp/requirements.txt && \
+    rm /tmp/requirements_dev.txt && \
     apt-get clean
 
 ENV DJ_HOST fakeservices.datajoint.io
diff --git a/.devcontainer/devcontainer.json b/.devcontainer/devcontainer.json
index 183006c..0768b84 100644
--- a/.devcontainer/devcontainer.json
+++ b/.devcontainer/devcontainer.json
@@ -1,6 +1,6 @@
 // For format details, see https://aka.ms/devcontainer.json.
 {
-	"name": "Remote Demo",
+	"name": "Demo with remote data",
 	"dockerComposeFile": "docker-compose.yaml",
 	"service": "app",
 	"workspaceFolder": "/workspaces/${localWorkspaceFolderBasename}",
diff --git a/.devcontainer/local/devcontainer.json b/.devcontainer/local/devcontainer.json
index 8b02b9f..68692fe 100644
--- a/.devcontainer/local/devcontainer.json
+++ b/.devcontainer/local/devcontainer.json
@@ -1,6 +1,6 @@
 // For format details, see https://aka.ms/devcontainer.json.
 {
-	"name": "Local Demo",
+	"name": "Demo with local data",
 	"dockerComposeFile": "docker-compose.yaml",
 	"service": "app",
 	"workspaceFolder": "/workspaces/${localWorkspaceFolderBasename}",
diff --git a/.gitignore b/.gitignore
index 8d5e3eb..954c942 100644
--- a/.gitignore
+++ b/.gitignore
@@ -109,4 +109,5 @@ docker-compose.yml
 # temporary figures
 temp_ephys_figures/
 
-example_data
\ No newline at end of file
+example_data
+*.code-workspace
diff --git a/CHANGELOG.md b/CHANGELOG.md
index 4e8653f..52bdae1 100644
--- a/CHANGELOG.md
+++ b/CHANGELOG.md
@@ -3,6 +3,12 @@
 Observes [Semantic Versioning](https://semver.org/spec/v2.0.0.html) standard and
 [Keep a Changelog](https://keepachangelog.com/en/1.0.0/) convention.
 
+## [0.3.2] - 2023-04-14
+
++ Add - `quality_metrics.ipynb` for visualizing quality metrics.
++ Add - Documentation for attributes in `ephys.QualityMetrics.Waveform`.
++ Update - pytest for `ephys.QualityMetrics.populate`.
+
 ## [0.3.1] - 2023-04-12
 
 + Add - pytest for new `QCmetric` tables.
@@ -87,6 +93,7 @@ Observes [Semantic Versioning](https://semver.org/spec/v2.0.0.html) standard and
 
 + Add - Version
 
+[0.3.2]: https://github.com/datajoint/workflow-array-ephys/releases/tag/0.3.2
 [0.3.1]: https://github.com/datajoint/workflow-array-ephys/releases/tag/0.3.1
 [0.3.0]: https://github.com/datajoint/workflow-array-ephys/releases/tag/0.3.0
 [0.2.6]: https://github.com/datajoint/workflow-array-ephys/releases/tag/0.2.6
diff --git a/notebooks/demo_prepare.ipynb b/notebooks/demo_prepare.ipynb
index 6f63f1b..957af07 100644
--- a/notebooks/demo_prepare.ipynb
+++ b/notebooks/demo_prepare.ipynb
@@ -140,7 +140,7 @@
     "        insertion_number=1,\n",
     "        paramset_idx=1,\n",
     "        task_mode='load', # load or trigger\n",
-    "        clustering_output_dir=\"subject5/session1/probe_1/ks2.1_01\"\n",
+    "        clustering_output_dir=\"subject5/session1/probe_1/kilosort2-5_1\"\n",
     "    )\n",
     ")\n",
     "\n",
@@ -204,13 +204,6 @@
     "\n",
     "# drop_databases(databases=['analysis', 'trial', 'event', 'ephys_report', 'ephys', 'probe', 'session', 'subject', 'project', 'lab'])\n"
    ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "metadata": {},
-   "outputs": [],
-   "source": []
   }
  ],
  "metadata": {
@@ -229,7 +222,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.9.2"
+   "version": "3.9.16"
   },
   "orig_nbformat": 4,
   "vscode": {
diff --git a/notebooks/quality_metrics.ipynb b/notebooks/quality_metrics.ipynb
new file mode 100644
index 0000000..9a1ce44
--- /dev/null
+++ b/notebooks/quality_metrics.ipynb
@@ -0,0 +1,1046 @@
+{
+ "cells": [
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Quality Metrics\n",
+    "\n",
+    "Visualize the spike sorting quality metrics that are generated from the [Kilosort](https://github.com/MouseLand/Kilosort) results with the [ecephys_spike_sorting](https://github.com/datajoint/ecephys_spike_sorting) package (i.e. `metrics.csv`) and stored in the DataJoint pipeline (i.e. `element-array-ephys`).\n",
+    "\n",
+    "If you are new to using this DataJoint pipeline for analyzing electrophysiology recordings from Neuropixels probes, please see the [tutorial](./tutorial.ipynb) notebook for an in-depth explanation to set up and run the workflow.\n",
+    "\n",
+    "This notebook can run in a [GitHub Codespace](https://github.com/datajoint/workflow-array-ephys#interactive-tutorial), and requires the example data to be populated into the database using the [demo_prepare](./demo_prepare.ipynb) notebook."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 1,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "[2023-04-21 00:44:04,859][WARNING]: lab.Project and related tables will be removed in a future version of Element Lab. Please use the project schema.\n",
+      "[2023-04-21 00:44:04,862][INFO]: Connecting root@fakeservices.datajoint.io:3306\n",
+      "[2023-04-21 00:44:04,868][INFO]: Connected root@fakeservices.datajoint.io:3306\n"
+     ]
+    }
+   ],
+   "source": [
+    "import matplotlib.pyplot as plt\n",
+    "import numpy as np\n",
+    "from workflow_array_ephys.pipeline import ephys"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Populate the `QualityMetrics` table"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 2,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "ephys.QualityMetrics.populate()"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Unit quality metrics\n",
+    "\n",
+    "| Metric | Description |\n",
+    "| --- | --- |\n",
+    "| Firing rate (Hz) | Total number of spikes per second. |\n",
+    "| Signal-to-noise ratio | Ratio of the maximum amplitude of the mean spike waveform to the standard deviation of the background noise on a given channel. |\n",
+    "| Presence ratio | Proportion of time during a session that a unit is spiking, ranging from 0 to 0.99. |\n",
+    "| Interspike interval (ISI) violation | Rate of inter-spike-interval (ISI) refractory period violations. |\n",
+    "| Number violation | Total number of ISI violations. |\n",
+    "| Amplitude cut-off | False negative rate of a unit measured by the degree to which its distribution of spike amplitudes is truncated, indicating the fraction of missing spikes. An amplitude cutoff of 0.1 indicates approximately 10% missing spikes. |\n",
+    "| Isolation distance | A metric that uses the principal components (PCs) of a unit's waveforms, which are projected into a lower-dimensional PC space after spike sorting. This quantifies how well-isolated the unit is from other potential clusters. |\n",
+    "| L-ratio | A metric to quantify the distribution of spike distances from a cluster. A low L-ratio indicates that there is a relatively low number of non-member spikes around the target cluster. |\n",
+    "| D-prime | A metric calculated from waveform principal components using linear discriminant analysis. This measures the separability of one unit's PC cluster from all the others, with a higher d-prime value indicating better isolation of the unit. |\n",
+    "| Nearest-neighbors hit rate | The proportion of its nearest neighbors that belong to the same given cluster based on its first principal components. |\n",
+    "| Nearest-neighbors miss rate |  The proportion of its nearest neighbors that do not belong to the same given cluster based on its first principal components. |\n",
+    "| Silhouette score | The ratio between cohesiveness of a cluster (distance between member spikes) and its separation from other clusters (distance to non-member spikes). |\n",
+    "| Max drift | The maximum shift in spike location, calculated as the center of mass of the energy of the first principal component score. |\n",
+    "| Cumulative drift | The cumulative change in spike position throughout a recording. |\n",
+    "\n",
+    "For further details of the quality metrics, please see:\n",
+    "- [Allen Institute Documentation](https://allensdk.readthedocs.io/en/latest/_static/examples/nb/ecephys_quality_metrics.html)\n",
+    "\n",
+    "- [Buccino et al., eLife 2020](https://elifesciences.org/articles/61834)\n",
+    "\n",
+    "We'll grab an example key for demonstration."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 3,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "\n",
+       "    \n",
+       "    <style type=\"text/css\">\n",
+       "        .Table{\n",
+       "            border-collapse:collapse;\n",
+       "        }\n",
+       "        .Table th{\n",
+       "            background: #A0A0A0; color: #ffffff; padding:4px; border:#f0e0e0 1px solid;\n",
+       "            font-weight: normal; font-family: monospace; font-size: 100%;\n",
+       "        }\n",
+       "        .Table td{\n",
+       "            padding:4px; border:#f0e0e0 1px solid; font-size:100%;\n",
+       "        }\n",
+       "        .Table tr:nth-child(odd){\n",
+       "            background: #ffffff;\n",
+       "        }\n",
+       "        .Table tr:nth-child(even){\n",
+       "            background: #f3f1ff;\n",
+       "        }\n",
+       "        /* Tooltip container */\n",
+       "        .djtooltip {\n",
+       "        }\n",
+       "        /* Tooltip text */\n",
+       "        .djtooltip .djtooltiptext {\n",
+       "            visibility: hidden;\n",
+       "            width: 120px;\n",
+       "            background-color: black;\n",
+       "            color: #fff;\n",
+       "            text-align: center;\n",
+       "            padding: 5px 0;\n",
+       "            border-radius: 6px;\n",
+       "            /* Position the tooltip text - see examples below! */\n",
+       "            position: absolute;\n",
+       "            z-index: 1;\n",
+       "        }\n",
+       "        #primary {\n",
+       "            font-weight: bold;\n",
+       "            color: black;\n",
+       "        }\n",
+       "        #nonprimary {\n",
+       "            font-weight: normal;\n",
+       "            color: white;\n",
+       "        }\n",
+       "\n",
+       "        /* Show the tooltip text when you mouse over the tooltip container */\n",
+       "        .djtooltip:hover .djtooltiptext {\n",
+       "            visibility: visible;\n",
+       "        }\n",
+       "    </style>\n",
+       "    \n",
+       "    <b>Cluster metrics for a particular unit</b>\n",
+       "        <div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
+       "        <table border=\"1\" class=\"Table\">\n",
+       "            <thead> <tr style=\"text-align: right;\"> <th> <div class=\"djtooltip\">\n",
+       "                            <p id=\"primary\">subject</p>\n",
+       "                            <span class=\"djtooltiptext\"></span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"primary\">session_datetime</p>\n",
+       "                            <span class=\"djtooltiptext\"></span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"primary\">insertion_number</p>\n",
+       "                            <span class=\"djtooltiptext\"></span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"primary\">paramset_idx</p>\n",
+       "                            <span class=\"djtooltiptext\"></span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"primary\">curation_id</p>\n",
+       "                            <span class=\"djtooltiptext\"></span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"primary\">unit</p>\n",
+       "                            <span class=\"djtooltiptext\"></span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">firing_rate</p>\n",
+       "                            <span class=\"djtooltiptext\">(Hz) firing rate for a unit</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">snr</p>\n",
+       "                            <span class=\"djtooltiptext\">signal-to-noise ratio for a unit</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">presence_ratio</p>\n",
+       "                            <span class=\"djtooltiptext\">fraction of time in which spikes are present</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">isi_violation</p>\n",
+       "                            <span class=\"djtooltiptext\">rate of ISI violation as a fraction of overall rate</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">number_violation</p>\n",
+       "                            <span class=\"djtooltiptext\">total number of ISI violations</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">amplitude_cutoff</p>\n",
+       "                            <span class=\"djtooltiptext\">estimate of miss rate based on amplitude histogram</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">isolation_distance</p>\n",
+       "                            <span class=\"djtooltiptext\">distance to nearest cluster in Mahalanobis space</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">l_ratio</p>\n",
+       "                            <span class=\"djtooltiptext\"></span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">d_prime</p>\n",
+       "                            <span class=\"djtooltiptext\">Classification accuracy based on LDA</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">nn_hit_rate</p>\n",
+       "                            <span class=\"djtooltiptext\">Fraction of neighbors for target cluster that are also in target cluster</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">nn_miss_rate</p>\n",
+       "                            <span class=\"djtooltiptext\">Fraction of neighbors outside target cluster that are in target cluster</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">silhouette_score</p>\n",
+       "                            <span class=\"djtooltiptext\">Standard metric for cluster overlap</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">max_drift</p>\n",
+       "                            <span class=\"djtooltiptext\">Maximum change in spike depth throughout recording</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">cumulative_drift</p>\n",
+       "                            <span class=\"djtooltiptext\">Cumulative change in spike depth throughout recording</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">contamination_rate</p>\n",
+       "                            <span class=\"djtooltiptext\"></span>\n",
+       "                        </div> </th> </tr> </thead>\n",
+       "            <tbody> <tr> <td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>0</td>\n",
+       "<td>6.71766</td>\n",
+       "<td>0.392532</td>\n",
+       "<td>0.98</td>\n",
+       "<td>1.0</td>\n",
+       "<td>105</td>\n",
+       "<td>0.126571</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.0</td>\n",
+       "<td>nan</td>\n",
+       "<td>nan</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.0256577</td>\n",
+       "<td>0.0</td>\n",
+       "<td>0.0</td>\n",
+       "<td>1.13881</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>4.64183</td>\n",
+       "<td>0.391947</td>\n",
+       "<td>0.99</td>\n",
+       "<td>1.0</td>\n",
+       "<td>24</td>\n",
+       "<td>0.5</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.0</td>\n",
+       "<td>nan</td>\n",
+       "<td>nan</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.126882</td>\n",
+       "<td>7.77</td>\n",
+       "<td>20.13</td>\n",
+       "<td>1.08565</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>2</td>\n",
+       "<td>0.171264</td>\n",
+       "<td>1.91799</td>\n",
+       "<td>0.39</td>\n",
+       "<td>0.0</td>\n",
+       "<td>0</td>\n",
+       "<td>0.5</td>\n",
+       "<td>41.5366</td>\n",
+       "<td>0.01055</td>\n",
+       "<td>2.00497</td>\n",
+       "<td>0.109195</td>\n",
+       "<td>0.00941423</td>\n",
+       "<td>0.0382387</td>\n",
+       "<td>17.01</td>\n",
+       "<td>0.0</td>\n",
+       "<td>0.0</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>3</td>\n",
+       "<td>8.46869</td>\n",
+       "<td>0.454273</td>\n",
+       "<td>0.98</td>\n",
+       "<td>1.0</td>\n",
+       "<td>53</td>\n",
+       "<td>0.5</td>\n",
+       "<td>48.976</td>\n",
+       "<td>0.369185</td>\n",
+       "<td>2.74545</td>\n",
+       "<td>0.987333</td>\n",
+       "<td>1.0</td>\n",
+       "<td>0.0382387</td>\n",
+       "<td>3.9</td>\n",
+       "<td>9.13</td>\n",
+       "<td>0.670886</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>4</td>\n",
+       "<td>0.413395</td>\n",
+       "<td>2.56485</td>\n",
+       "<td>0.73</td>\n",
+       "<td>0.0</td>\n",
+       "<td>0</td>\n",
+       "<td>0.5</td>\n",
+       "<td>360.148</td>\n",
+       "<td>0.00934174</td>\n",
+       "<td>4.40108</td>\n",
+       "<td>0.966667</td>\n",
+       "<td>0.135897</td>\n",
+       "<td>0.0571513</td>\n",
+       "<td>6.35</td>\n",
+       "<td>13.91</td>\n",
+       "<td>0.0</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>5</td>\n",
+       "<td>0.218509</td>\n",
+       "<td>2.4666</td>\n",
+       "<td>0.48</td>\n",
+       "<td>0.0</td>\n",
+       "<td>0</td>\n",
+       "<td>0.5</td>\n",
+       "<td>162.35</td>\n",
+       "<td>3.64917e-05</td>\n",
+       "<td>6.75158</td>\n",
+       "<td>0.981982</td>\n",
+       "<td>0.0102881</td>\n",
+       "<td>0.10466</td>\n",
+       "<td>6.24</td>\n",
+       "<td>9.81</td>\n",
+       "<td>0.0</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>6</td>\n",
+       "<td>0.100396</td>\n",
+       "<td>3.87529</td>\n",
+       "<td>0.31</td>\n",
+       "<td>0.0</td>\n",
+       "<td>0</td>\n",
+       "<td>0.5</td>\n",
+       "<td>7.98228e+16</td>\n",
+       "<td>nan</td>\n",
+       "<td>4.6297</td>\n",
+       "<td>0.843137</td>\n",
+       "<td>0.026749</td>\n",
+       "<td>0.0571513</td>\n",
+       "<td>0.0</td>\n",
+       "<td>0.0</td>\n",
+       "<td>0.0</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>7</td>\n",
+       "<td>0.064962</td>\n",
+       "<td>1.85867</td>\n",
+       "<td>0.21</td>\n",
+       "<td>0.0</td>\n",
+       "<td>0</td>\n",
+       "<td>0.279006</td>\n",
+       "<td>4.61058e+16</td>\n",
+       "<td>nan</td>\n",
+       "<td>4.39722</td>\n",
+       "<td>0.727273</td>\n",
+       "<td>0.0147849</td>\n",
+       "<td>nan</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.0</td>\n",
+       "<td>1.0</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>8</td>\n",
+       "<td>15.1657</td>\n",
+       "<td>0.445549</td>\n",
+       "<td>0.99</td>\n",
+       "<td>1.0</td>\n",
+       "<td>412</td>\n",
+       "<td>0.5</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.0</td>\n",
+       "<td>nan</td>\n",
+       "<td>nan</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.131529</td>\n",
+       "<td>0.0</td>\n",
+       "<td>0.0</td>\n",
+       "<td>1.11235</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>9</td>\n",
+       "<td>1.27267</td>\n",
+       "<td>0.255138</td>\n",
+       "<td>0.88</td>\n",
+       "<td>1.0</td>\n",
+       "<td>2</td>\n",
+       "<td>0.158831</td>\n",
+       "<td>185.314</td>\n",
+       "<td>0.0121516</td>\n",
+       "<td>5.55476</td>\n",
+       "<td>0.996906</td>\n",
+       "<td>0.0454545</td>\n",
+       "<td>0.152277</td>\n",
+       "<td>7.8</td>\n",
+       "<td>17.6</td>\n",
+       "<td>0.201681</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>10</td>\n",
+       "<td>0.0856318</td>\n",
+       "<td>1.71077</td>\n",
+       "<td>0.25</td>\n",
+       "<td>0.0</td>\n",
+       "<td>0</td>\n",
+       "<td>0.5</td>\n",
+       "<td>1.32036e+16</td>\n",
+       "<td>nan</td>\n",
+       "<td>5.22485</td>\n",
+       "<td>0.977012</td>\n",
+       "<td>0.000674764</td>\n",
+       "<td>0.0705441</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.0</td>\n",
+       "<td>1.0</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>11</td>\n",
+       "<td>0.0767733</td>\n",
+       "<td>1.25363</td>\n",
+       "<td>0.22</td>\n",
+       "<td>0.0</td>\n",
+       "<td>0</td>\n",
+       "<td>0.5</td>\n",
+       "<td>8456290000000000.0</td>\n",
+       "<td>nan</td>\n",
+       "<td>6.3283</td>\n",
+       "<td>0.858974</td>\n",
+       "<td>0.000118455</td>\n",
+       "<td>nan</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.0</td>\n",
+       "<td>1.0</td> </tr> </tbody>\n",
+       "        </table>\n",
+       "        <p>...</p>\n",
+       "        <p>Total: 227</p></div>\n",
+       "        "
+      ],
+      "text/plain": [
+       "*subject     *session_datet *insertion_num *paramset_idx  *curation_id   *unit    firing_rate    snr          presence_ratio isi_violation  number_violati amplitude_cuto isolation_dist l_ratio        d_prime     nn_hit_rate    nn_miss_rate   silhouette_sco max_drift     cumulative_dri contamination_\n",
+       "+----------+ +------------+ +------------+ +------------+ +------------+ +------+ +------------+ +----------+ +------------+ +------------+ +------------+ +------------+ +------------+ +------------+ +---------+ +------------+ +------------+ +------------+ +-----------+ +------------+ +------------+\n",
+       "subject5     2023-04-21 00: 1              1              1              0        6.71766        0.392532     0.98           1.0            105            0.126571       nan            0.0            nan         nan            nan            0.0256577      0.0           0.0            1.13881       \n",
+       "subject5     2023-04-21 00: 1              1              1              1        4.64183        0.391947     0.99           1.0            24             0.5            nan            0.0            nan         nan            nan            0.126882       7.77          20.13          1.08565       \n",
+       "subject5     2023-04-21 00: 1              1              1              2        0.171264       1.91799      0.39           0.0            0              0.5            41.5366        0.01055        2.00497     0.109195       0.00941423     0.0382387      17.01         0.0            0.0           \n",
+       "subject5     2023-04-21 00: 1              1              1              3        8.46869        0.454273     0.98           1.0            53             0.5            48.976         0.369185       2.74545     0.987333       1.0            0.0382387      3.9           9.13           0.670886      \n",
+       "subject5     2023-04-21 00: 1              1              1              4        0.413395       2.56485      0.73           0.0            0              0.5            360.148        0.00934174     4.40108     0.966667       0.135897       0.0571513      6.35          13.91          0.0           \n",
+       "subject5     2023-04-21 00: 1              1              1              5        0.218509       2.4666       0.48           0.0            0              0.5            162.35         3.64917e-05    6.75158     0.981982       0.0102881      0.10466        6.24          9.81           0.0           \n",
+       "subject5     2023-04-21 00: 1              1              1              6        0.100396       3.87529      0.31           0.0            0              0.5            7.98228e+16    nan            4.6297      0.843137       0.026749       0.0571513      0.0           0.0            0.0           \n",
+       "subject5     2023-04-21 00: 1              1              1              7        0.064962       1.85867      0.21           0.0            0              0.279006       4.61058e+16    nan            4.39722     0.727273       0.0147849      nan            nan           0.0            1.0           \n",
+       "subject5     2023-04-21 00: 1              1              1              8        15.1657        0.445549     0.99           1.0            412            0.5            nan            0.0            nan         nan            nan            0.131529       0.0           0.0            1.11235       \n",
+       "subject5     2023-04-21 00: 1              1              1              9        1.27267        0.255138     0.88           1.0            2              0.158831       185.314        0.0121516      5.55476     0.996906       0.0454545      0.152277       7.8           17.6           0.201681      \n",
+       "subject5     2023-04-21 00: 1              1              1              10       0.0856318      1.71077      0.25           0.0            0              0.5            1.32036e+16    nan            5.22485     0.977012       0.000674764    0.0705441      nan           0.0            1.0           \n",
+       "subject5     2023-04-21 00: 1              1              1              11       0.0767733      1.25363      0.22           0.0            0              0.5            84562900000000 nan            6.3283      0.858974       0.000118455    nan            nan           0.0            1.0           \n",
+       "   ...\n",
+       " (Total: 227)"
+      ]
+     },
+     "execution_count": 3,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "key = {\"subject\": \"subject5\", \"insertion_number\": 1}\n",
+    "\n",
+    "query = ephys.QualityMetrics.Cluster & key\n",
+    "query"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Plot histograms of the cluster metrics."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 4,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "def plot_metric(ax, data, bins, x_axis_label=None, title=None, color='k', smoothing=True, density=False):\n",
+    "    \"\"\"A function modified from https://allensdk.readthedocs.io/en/latest/_static/examples/nb/ecephys_quality_metrics.html\n",
+    "    \"\"\"\n",
+    "    from scipy.ndimage import gaussian_filter1d\n",
+    "    if any(data) and np.nansum(data):\n",
+    "        h, b = np.histogram(data, bins=bins, density=density)\n",
+    "        x = b[:-1]\n",
+    "\n",
+    "        y = gaussian_filter1d(h, 1) if smoothing else h\n",
+    "        ax.plot(x, y, color=color)\n",
+    "        ax.set_xlabel(x_axis_label)\n",
+    "        ax.set_ylim([0, None])\n",
+    "    ax.set_title(title)\n",
+    "    ax.spines[['right', 'top']].set_visible(False)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 5,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABKkAAAOACAYAAADxRyDOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT1fsH8E+60t3S0gGlm1GmQAEpeyMCshEF2aJYQMCvKCpCGVZQAQdblrKngDJkFJApFFGGQNmzZXbTlZzfH/zutWnTNknTpmk/79crL+gd556sm5snz3OOQgghQEREREREREREZEIWpu4AERERERERERERg1RERERERERERGRyDFIREREREREREZHJMUhFREREREREREQmxyAVERERERERERGZHINURERERERERERkcgxSERERERERERGRyTFIRUREREREREREJscgFRERERERERERmRyDVERUagUEBGDw4MGm7kapM2XKFCgUCo1lZf2xHjx4MAICAorteFlZWZgwYQJ8fX1hYWGB7t27F9uxnz17hjfeeAOenp6wtLTEzZs3i+3YK1asgEKhwOnTpwvctlWrVmjVqlXRd8rMBAQEoEuXLgVud/DgQSgUChw8eLDoO1VCSK+v4nxNG1NZPw/n5ebNm1AoFPj6669N3RWjGzJkCOzs7FC7dm1s2LDB1N0hIjIKBqmIyOxcu3YN77zzDoKCgmBrawtnZ2c0bdoU3377LZ4/f14sfUhNTcWUKVNM8gXuyZMn+PDDD1GtWjXY2trCzc0NHTt2xG+//VbsfcnLxYsXMWXKFKN/2Rs8eDAUCgWcnZ21PtcxMTFQKBQGfyEx5fOqj2XLluGrr75C7969sXLlSowbN67Yjj1nzhysW7cOr732Gn788Ud4eHjI66QvgyX98TOG+fPnY8WKFbmWS8EdQ1/7gwcPLhPBtfzOEdL7POctJCREY7vCPtYKhULrc1iSHTt2DFOmTEF8fLypu0J5kIKdhvrzzz/x3nvvITQ0FNbW1vm2NWLECHz11VfIzMzE4MGDkZKSYvBxiYhKCitTd4CISB+//fYb+vTpA6VSiYEDB6JWrVrIyMjAkSNH8OGHH+LChQtYvHhxkfcjNTUVERERAFCsXygvX76Mtm3b4tGjRxgyZAgaNGiA+Ph4rF69Gl26dMFHH32EL7/8stj6k71fFhb//e5x8eJFREREoFWrVkbPMLKyskJqaip27NiBvn37aqxbvXo1bG1tkZaWZlDbhj6vS5YsgVqtNuiYhjhw4AB8fHwwZ86cYjum5MyZMyhfvjyWLFlSqC9iRe33338v0vbnz5+P8uXLl9rMlRYtWuD58+ewsbEpkvYLOkcolUr8+OOPGstcXFyKpC+St956C/369YNSqSzS4xTGsWPHEBERgcGDB8PV1VVjXc7zMJmnnTt34scff0SdOnUQFBSEK1eu5LltWFgYwsLC4Obmhv79++Py5cuoX79+MfaWiMj4GKQiIrNx48YN9OvXD/7+/jhw4AAqVKggrwsPD8fVq1dLVDaRIVJSUuDg4KB1XWZmJnr37o1nz57h8OHDePnll+V148aNQ//+/TFz5kyEhoaiT58+xdVlACjWL3VKpRJNmzbF2rVrcwWp1qxZg86dO2Pz5s3F0hfp+bK2ti6W40kePnyY6wtqYajVamRkZMDW1rbAbVNSUuDp6VmiA1QAiiy4UlZYWFjo9HooKlZWVhgwYECxHtPS0hKWlpbFekxd5ffZICnJwbWyQJfnSBcjR47ERx99BDs7O4waNSrfIJXE29sbAJCUlFTo4xMRmRp/biEiszFr1iwkJydj6dKlGgEqSeXKlfH+++/nub+2sZQA7eOQnD59Gh07dkT58uVhZ2eHwMBADB06FMCLkiapxCkiIkIuRZkyZYq8/6VLl9C7d2+4ubnB1tYWDRo0wPbt27Ue99ChQ3jvvffg6emJSpUq5dn/zZs34/z58/j44481AlTAiy9XixYtgqurKyZPnpzvfQO0jzfzxx9/oE+fPvDz84NSqYSvry/GjRunUwll9rFQVqxYIQfJWrduLT8+Bw8exKBBg1C+fHlkZmbmaqNDhw6oVq1agccCgDfffBO7du3SKHk5deoUYmJi8Oabb2rdJz4+HmPHjoWvry+USiUqV66MmTNnyhlQBT2vgwcPhqOjI65du4ZXX30VTk5O6N+/v7wuZzaIWq3Gt99+i9q1a8PW1hYeHh545ZVXNMZT2rt3L5o1awZXV1c4OjqiWrVq+OSTT/K831I5XVRUFC5cuKDx2AIvviR98MEH8n2sVq0avv76awghNNpRKBQYNWoUVq9ejZo1a0KpVGL37t0FPu4AIITQK0AVGxuLIUOGoFKlSlAqlahQoQK6deum8ZrM+f6R5DXGTmpqKt555x24u7vD2dkZAwcOxLNnzzS20TYmVXp6OiZPnozKlSvLr/EJEyYgPT091zFWrVqFRo0awd7eHuXKlUOLFi3k7KyAgABcuHABhw4dkp+D/DLvUlNTcenSJTx+/DjPbfKzbt06hIaGwsnJCc7Ozqhduza+/fZbeb0+5zbJ77//jrp168LW1hY1atTAli1bNNbnNSbVyZMn8corr8DFxQX29vZo2bIljh49mqv9e/fuYdiwYahYsSKUSiUCAwMxcuRIZGRk5HuOyE6lUiExMVHHR6nwtD1e0hheR44cQaNGjWBra4ugoCD89NNPGvtmZmYiIiICVapUga2tLdzd3dGsWTPs3btXY7vCfDZMmTIFH374IQAgMDBQftyk/mp7v1y/fh19+vSBm5sb7O3t0bhx41w/5kjP9YYNGzBjxgxUqlQJtra2aNu2La5evWrQY3j06FGMHz8eHh4ecHBwQI8ePfDo0SONbXV930ttHjlyBGPGjIGHhwdcXV3xzjvvICMjA/Hx8Rg4cCDKlSuHcuXKYcKECbnOeZI5c+bA398fdnZ2aNmyJc6fP59rm6L4/E5ISMClS5eQkJCQz6P3gpeXF+zs7ArcLjspgy6v+01EZE6YSUVEZmPHjh0ICgpCkyZNivQ4Dx8+RIcOHeDh4YGPP/4Yrq6uuHnzpvwlzsPDAwsWLMDIkSPRo0cP9OzZEwBQp04dAMCFCxfQtGlT+Pj44OOPP4aDgwM2bNiA7t27Y/PmzejRo4fG8d577z14eHjg888/z3c8iR07dgAABg4cqHW9i4sLunXrhpUrV+LatWsIDg7W635v3LgRqampGDlyJNzd3fHnn3/i+++/x927d7Fx40ad22nRogXGjBmD7777Dp988gmqV68OAKhevTreeust/PTTT9izZ4/G4M2xsbE4cOCARoAtPz179sS7776LLVu2yMHDNWvWICQkRGupQ2pqKlq2bIl79+7hnXfegZ+fH44dO4aJEyfiwYMHmDt3boHPK/BiwPKOHTuiWbNm+Prrr2Fvb59nH4cNG4YVK1agU6dOGD58OLKysvDHH3/gxIkTaNCgAS5cuIAuXbqgTp06mDp1KpRKJa5evar1C7/Ew8MDP//8M2bMmIHk5GRERkbKj60QAq+99hqioqIwbNgw1K1bF3v27MGHH36Ie/fu5SoNPHDgADZs2IBRo0ahfPnyOpdlqtVqvUqKevXqhQsXLmD06NEICAjAw4cPsXfvXty+fdvgUtBRo0bB1dUVU6ZMweXLl7FgwQLcunVL/rKdV79fe+01HDlyBCNGjED16tVx7tw5zJkzB1euXMEvv/wibxsREYEpU6agSZMmmDp1KmxsbHDy5EkcOHAAHTp0wNy5czF69Gg4Ojri008/BfDii2Ve/vzzT7Ru3RqTJ0/W+qU8P3v37sUbb7yBtm3bYubMmQCAf//9F0ePHs03KJ+fmJgYvP7663j33XcxaNAgLF++HH369MHu3bvRvn37PPc7cOAAOnXqhNDQUEyePBkWFhZYvnw52rRpgz/++AONGjUCANy/fx+NGjVCfHw8RowYgZCQENy7dw+bNm1CampqvucISWpqKpydnZGamopy5crhjTfewMyZM+Ho6GjQfS6Mq1evonfv3hg2bBgGDRqEZcuWYfDgwQgNDUXNmjUBvAgURkZGYvjw4WjUqBESExNx+vRpnDlzRn5MC/vZ0KlTJ1y5cgVr167FnDlzUL58eQDQGBcuu7i4ODRp0gSpqakYM2YM3N3dsXLlSrz22mvYtGlTruN9+eWXsLCwwP/+9z8kJCRg1qxZ6N+/P06ePKn3YzZ69GiUK1cOkydPxs2bNzF37lyMGjUK69ev17ut7G16e3sjIiICJ06cwOLFi+Hq6opjx47Bz88PX3zxBXbu3ImvvvoKtWrVyvVZ+dNPPyEpKQnh4eFIS0vDt99+izZt2uDcuXPy+7eoPr+3bt2KIUOGYPny5UVSIiyd94qz7JyIqMgIIiIzkJCQIACIbt266byPv7+/GDRokPz35MmThbbT3vLlywUAcePGDSGEEFu3bhUAxKlTp/Js+9GjRwKAmDx5cq51bdu2FbVr1xZpaWnyMrVaLZo0aSKqVKmS67jNmjUTWVlZBd6funXrChcXl3y3mT17tgAgtm/frvW+SaKiogQAERUVJS9LTU3N1V5kZKRQKBTi1q1b8jJtj2POx3rjxo252hdCCJVKJSpVqiRef/31XP1WKBTi+vXr+d6/QYMGCQcHByGEEL179xZt27aV2/X29hYRERHixo0bAoD46quv5P2mTZsmHBwcxJUrVzTa+/jjj4WlpaW4ffu2ECL/53XQoEECgPj444+1rvP395f/PnDggAAgxowZk2tbtVothBBizpw5AoB49OhRvvdZm5YtW4qaNWtqLPvll18EADF9+nSN5b179xYKhUJcvXpVXgZAWFhYiAsXLuh97ODgYNG8eXOdtn327Fmu50KbvB7znK8r6fUcGhoqMjIy5OWzZs0SAMS2bdvkZS1bthQtW7aU//7555+FhYWF+OOPPzSOsXDhQgFAHD16VAghRExMjLCwsBA9evQQKpVKY1vpuRNCiJo1a2q0nx/p/abtPhbk/fffF87OzvmeI3Q9twnx4jEFIDZv3iwvS0hIEBUqVBD16tXL1WfpPaxWq0WVKlVEx44dNR6H1NRUERgYKNq3by8vGzhwoLCwsNB6DpX2zescIcSL9+VHH30k1q9fL9auXSu/95o2bSoyMzPzfBwKK7/H6/Dhw/Kyhw8fCqVSKT744AN52UsvvSQ6d+6cb/vG+Gz46quvtJ7Tpb5mf7+MHTtWANB4zSclJYnAwEAREBAgv76l57p69eoiPT1d3vbbb78VAMS5c+fyvV/ZSX1v166dxutk3LhxwtLSUsTHx8vL9H3f53zthYWFCYVCId599115WVZWlqhUqZLGe1P6TLCzsxN3796Vl588eVIAEOPGjZOXFdXnt7T98uXLC9w2u/DwcK3v7Zz++usvAUCsWrVKr/aJiEoilvsRkVmQSj6cnJyK/FjSWD+//vqr1rK0/Dx9+hQHDhxA3759kZSUhMePH+Px48d48uQJOnbsiJiYGNy7d09jn7fffluncVCSkpIKvP/SekPGpcheXpCSkoLHjx+jSZMmEELgr7/+0rs9bSwsLNC/f39s375do4+rV69GkyZNEBgYqHNbb775Jg4ePChnYcXGxuZZ6rdx40Y0b94c5cqVk5+Tx48fo127dlCpVDh8+LDOxx05cmSB22zevBkKhUJrZpj0i7f0Otu2bZtRfv3euXMnLC0tMWbMGI3lH3zwAYQQ2LVrl8byli1bokaNGjq1nZmZiTt37uC7777DtWvX0K5dO532s7Ozg42NDQ4ePJirHK8wRowYoTEO2MiRI2FlZYWdO3fmuc/GjRtRvXp1hISEaLwG2rRpAwCIiooCAPzyyy9Qq9X4/PPPc2WMGToOV6tWrSCE0DuLCnjxOklJSclVNlYYFStW1MgIkUom//rrL8TGxmrd5+zZs3I57ZMnT+THLyUlBW3btsXhw4ehVquhVqvxyy+/oGvXrmjQoEGudnR5DCMjI/Hll1+ib9++6NevH1asWIEZM2bg6NGj2LRpk+F33EA1atRA8+bN5b89PDxQrVo1XL9+XV7m6uqKCxcuICYmRmsbRfnZkJedO3eiUaNGaNasmbzM0dERI0aMwM2bN3Hx4kWN7YcMGaIxlpt0n7PfT12NGDFC47lu3rw5VCoVbt26pXdbkmHDhmm0+fLLL0MIgWHDhsnLLC0t0aBBA6197t69O3x8fOS/GzVqhJdfflk+bxTlczR48GAIIYpsooUaNWqgfPnymDNnDs6cOcPZH4nIrDFIRURmwdnZGUDxDArasmVL9OrVCxEREShfvjy6deuG5cuXax23JqerV69CCIFJkybBw8ND4yYFLB4+fKixj66BGScnpwLvv7Te09NTpzazu337NgYPHgw3Nzc4OjrCw8MDLVu2BACdxtHQ1cCBA/H8+XNs3boVwIsZqaKjo/HWW2/p1Y40LtT69euxevVqNGzYEJUrV9a6bUxMDHbv3p3rOZGCLTmfk7xYWVnlO+6I5Nq1a6hYsSLc3Nzy3Ob1119H06ZNMXz4cHh5eaFfv37YsGGDwQGrW7duoWLFirkCmVIJVc4vh/oEBI8ePQo/Pz+8//776Natm1ziVhClUomZM2di165d8PLyQosWLTBr1qw8AyG6qlKlisbfjo6OqFChgtaxlyQxMTG4cOFCrtdA1apVAfz3Grh27RosLCx0DuAVtffeew9Vq1ZFp06dUKlSJQwdOlTn8cPyUrly5VzBIulxyOsxlIIvgwYNyvUY/vjjj0hPT0dCQgIePXqExMRE1KpVq1B9zGncuHGwsLDAvn37jNquLvz8/HItK1eunEbgderUqYiPj0fVqlVRu3ZtfPjhh/jnn3/k9UX52ZCXW7duaR3nL69zQs77Wa5cOQAwKMBszLbyalOa7dHX1zfXcm3HyXneAF687qXXvCmeI2OxsbHBli1bcO3aNYSGhqJ79+6m7hIRkcE4JhURmQVnZ2dUrFhR6yCnusrrF3yVSpVru02bNuHEiRPYsWMH9uzZg6FDh+Kbb77BiRMn8h0TRQow/O9//0PHjh21bpMzkKLrAKk1atTA2bNncfv2ba1fmgDIX4qCgoLk+6JNzvusUqnQvn17PH36FB999BFCQkLg4OCAe/fuYfDgwUYd56JGjRoIDQ3FqlWrMHDgQKxatQo2Nja5ZuoriFKpRM+ePbFy5Upcv3493ywVtVqN9u3bY8KECVrXS1/QdTmmsaZ4t7Ozw+HDhxEVFYXffvsNu3fvxvr169GmTRv8/vvvRT7LmD4D87700kvYvn07du/ejfnz5+P777/H2LFjddp37Nix6Nq1K3755Rfs2bMHkyZNQmRkJA4cOIB69erlu2/O12lhqNVq1K5dG7Nnz9a6PucX3ZLC09MTZ8+exZ49e7Br1y7s2rULy5cvx8CBA7Fy5UoAur/PC0M6B3z11VeoW7eu1m0cHR3x9OlTox0zOzs7O7i7uxdZ+/nJ670osg1S3aJFC1y7dg3btm3D77//jh9//BFz5szBwoULMXz48CL9bDAWXe5ncbSV1+s2rza1LTekz+bwHOUlMzMTgwYNgpubG+bMmWP0IDERUXFikIqIzEaXLl2wePFiHD9+HGFhYXrvL/2SGx8fL5daAbl/TZY0btwYjRs3xowZM7BmzRr0798f69atw/Dhw/P8UigFh6ytrXUuidJV165dsWbNGvz000/47LPPcq1PTEzEtm3bUL9+fbkf2e9zdjnv87lz53DlyhWsXLlSY7BZQ0uMCirpGThwIMaPH48HDx5gzZo16Ny5s9xXfbz55ptYtmwZLCws0K9fvzy3Cw4ORnJycoHPiaHlXNqOt2fPHjx9+jTfbCoLCwu0bdsWbdu2xezZs/HFF1/g008/RVRUlN6vH39/f+zbty9XWeilS5fk9YYqV64cunbtiq5du+K3337D5s2bdQ5SAS8ejw8++AAffPABYmJiULduXXzzzTdYtWqV3H7O12hGRgYePHigtb2YmBi0bt1a/js5ORkPHjzAq6++mm8f/v77b7Rt2zbf5zk4OBhqtRoXL17MMxgDGO+1ogsbGxv58Ver1XjvvfewaNEiTJo0CZUrV9b73CZljGS/D9I093kNZi9NxODs7Jzva9PDwwPOzs4F/qCg7+MnlV/lNUh4SeDm5oYhQ4ZgyJAhSE5ORosWLTBlyhQMHz7caJ8N+jxu/v7+uHz5cq7lxjgnGIO+7/vC0laKeeXKFfk1X5Sf30Xt/PnzuHHjBlasWIFBgwaZujtERIXCcj8iMhsTJkyAg4MDhg8fjri4uFzrr127pjEte07Sl6zs4w+lpKTI2QiSZ8+e5foVVvqyKpX8SbO65bzA9vT0RKtWrbBo0SKtF9o5p+DWR69evVCzZk18+eWXOH36tMY6tVqNkSNH4tmzZxqlWNrus0qlwuLFizX2l36Jzn6/hRD5Pp75cXBwAJD78ZG88cYbUCgUeP/993H9+nUMGDDAoOO0bt0a06ZNww8//ABvb+88t+vbty+OHz+OPXv25FoXHx+PrKwsAHk/r/rq1asXhBCIiIjItU56jLVlhOR8nenj1VdfhUqlwg8//KCxfM6cOVAoFOjUqZPebWrj5+en8+OTmpqKtLQ0jWXBwcFwcnLSuI/BwcG5xgVbvHhxnhkVixcv1hgvbsGCBcjKysr3Pvbt2xf37t3DkiVLcq17/vy5PDNX9+7dYWFhgalTp+bKIMz+/nBwcNDrcbh06RIeP36s0/bZPXnyRONvCwsLecZJ6THU9dwmuX//vlxuC7wIcP/000+oW7dunu+j0NBQBAcH4+uvv0ZycnKu9dK5zcLCAt27d8eOHTtynaeA/x7DvM4RaWlpWsuap02bBiEEXnnlFa39M7Wcz5OjoyMqV64sP0fG+mwo6Nya3auvvoo///wTx48fl5elpKRg8eLFCAgIMHlJq77v+8L65ZdfNMaU+vPPP3Hy5En5vFGUn98JCQm4dOmSUUvns5PG7SypGaFERPpgJhURmY3g4GCsWbMGr7/+OqpXr46BAweiVq1ayMjIwLFjx7Bx48Z8ByXt0KED/Pz8MGzYMHz44YewtLTEsmXL4OHhgdu3b8vbrVy5EvPnz0ePHj0QHByMpKQkLFmyBM7OznKmhp2dHWrUqIH169ejatWqcHNzQ61atVCrVi3MmzcPzZo1Q+3atfH2228jKCgIcXFxOH78OO7evYu///7boPtvbW2NzZs3o02bNmjWrBmGDBmCBg0aID4+HmvWrMGZM2fwySefoGfPnvI+NWvWROPGjTFx4kQ5q2fdunVyUEYSEhKC4OBg/O9//8O9e/fg7OyMzZs3Gzx+SN26dWFpaYmZM2ciISEBSqUSbdq0kcfK8vDwwCuvvIKNGzfC1dUVnTt3Nug4FhYWWrPKcvrwww+xfft2dOnSRZ46PiUlBefOncOmTZtw8+ZNlC9fPt/nVR+tW7fGW2+9he+++w4xMTF45ZVXoFar8ccff6B169YYNWoUpk6disOHD6Nz587w9/fHw4cPMX/+fFSqVEljoGNdde3aFa1bt8ann36Kmzdv4qWXXsLvv/+Obdu2YezYsXIgo7AsLCx0LqW5cuUK2rZti759+6JGjRqwsrLC1q1bERcXp5H5Nnz4cLz77rvo1asX2rdvj7///ht79uxB+fLltbabkZEht3v58mXMnz8fzZo1w2uvvZZnX9566y1s2LAB7777LqKiotC0aVOoVCpcunQJGzZswJ49e9CgQQNUrlwZn376KaZNm4bmzZujZ8+eUCqVOHXqFCpWrIjIyEgAL4I2CxYswPTp01G5cmV4enrKg7Dn9Oeff6J169aYPHmy3oOnDx8+HE+fPkWbNm1QqVIl3Lp1C99//z3q1q0rjy2k67lNUrVqVQwbNgynTp2Cl5cXli1bhri4OCxfvjzPflhYWODHH39Ep06dULNmTQwZMgQ+Pj64d+8eoqKi4OzsjB07dgAAvvjiC/z+++9o2bIlRowYgerVq+PBgwfYuHEjjhw5AldX1zzPEampqahXrx7eeOMNhISEAAD27NmDnTt34pVXXkG3bt3yfbwOHjxo8GNdGDVq1ECrVq0QGhoKNzc3nD59Gps2bcKoUaPkbYzx2RAaGgoA+PTTT9GvXz9YW1uja9eucvAqu48//hhr165Fp06dMGbMGLi5uWHlypW4ceMGNm/ebLTSZUPp+74vrMqVK6NZs2YYOXIk0tPTMXfuXLi7u2uUgRfV5/fWrVsxZMgQLF++vMDB02/duoWff/4ZAORA7/Tp0wG8yH7TNn6jdE429XNKRGQUxTiTIBGRUVy5ckW8/fbbIiAgQNjY2AgnJyfRtGlT8f3332tMG51zGmshhIiOjhYvv/yysLGxEX5+fmL27Nm5ph0/c+aMeOONN4Sfn59QKpXC09NTdOnSRZw+fVqjrWPHjonQ0FBhY2OTayrta9euiYEDBwpvb29hbW0tfHx8RJcuXcSmTZvkbaTjapumPT+PHj0SH3zwgahcubJ8bABi6dKlWre/du2aaNeunVAqlcLLy0t88sknYu/evbmmf7948aJo166dcHR0FOXLlxdvv/22+Pvvv3NNm61tunttj/WSJUtEUFCQsLS01DrV/IYNGwQAMWLECJ3v+6BBg4SDg0O+20jTjX/11Vcay5OSksTEiRPlx618+fKiSZMm4uuvvxYZGRnydnk9r/kde9CgQcLf319jWVZWlvjqq69ESEiIsLGxER4eHqJTp04iOjpaCCHE/v37Rbdu3UTFihWFjY2NqFixonjjjTfElStXCnwcWrZsKWrWrJlreVJSkhg3bpyoWLGisLa2FlWqVBFfffWVxrTtQryY+j08PLzA42jTpk0bERwcrNO2jx8/FuHh4SIkJEQ4ODgIFxcX8fLLL4sNGzZobKdSqcRHH30kypcvL+zt7UXHjh3F1atX85yK/tChQ2LEiBGiXLlywtHRUfTv3188efJEo82WLVtqTEMvhBAZGRli5syZombNmkKpVIpy5cqJ0NBQERERIRISEjS2XbZsmahXr568XcuWLcXevXvl9bGxsaJz587CyclJAMh1rOyioqJynSN0tWnTJtGhQwfh6ekpn7feeecd8eDBA43tdDm3CfHivdq5c2exZ88eUadOHaFUKkVISIjYuHGj1j7nfN/+9ddfomfPnsLd3V0olUrh7+8v+vbtK/bv36+x3a1bt8TAgQOFh4eHUCqVIigoSISHh4v09HR5G23niGfPnokBAwaIypUrC3t7e6FUKkXNmjXFF198ofE+zcuOHTsEALFw4UIdH+H/5Pd45ZTz9TV9+nTRqFEj4erqKuzs7ERISIiYMWNGrj4b47Nh2rRpwsfHR1hYWGj0V9t5+Nq1a6J3797C1dVV2NraikaNGolff/1VYxvpuc75GpDOpdnP/wXJq+/aXk/6vu9ztil9Fj169Ehjec5zdfbPhG+++Ub4+voKpVIpmjdvLv7+++9c96EoPr+l7XV5LKXHStstr/PMzp07BQDxxx9/6NQfIqKSTCGEASMLEhFRiXHu3Dk0b94cvr6+OHLkiDzjUUm3bds2dO/eHYcPH9aY3p1KtoEDB2LNmjXYtm0bQkND4enpWSJ/vW/evDmUSqVJZoMrDfbv34927drhjz/+MCizz1QmTJiAtWvX4urVq1AqlabuDlGRSk5OxqNHj/D5559j1apVuH79eomZcZCIyFAl76qSiIj0Urt2bWzbtg0xMTHo3r07MjIyTN0lnSxZsgRBQUFm9QWYgJEjR8LR0RFdunRBhQoVtJaTlQQPHjwosrKhskAak8fcHsOoqChMmjSJASoqE0aNGoWgoCCsWrUKffv2ZYCKiEoFZlIREVGxWrduHf755x9ERkbi22+/xZgxY0zdJdJTWloaLl68iPj4eDRp0gS2tram7pLs2LFj2LJlC7755hssXrwYb7/9tqm7ZFZSUlKwevVqfPvtt0hMTMStW7dKZKYcFa/nz58XOOi3m5sbbGxsiqlHBAAXL17EkydP4O/vDz8/P1N3h4jIKBikIiKiYqVQKODo6IjXX38dCxcuhJUV5/Ag4xkyZAh27dqFN954A1999RVfX3q6efMmqlWrhtq1a2P+/Plo1KiRqbtEJcCKFSswZMiQfLeJiopCq1atiqdDRERUajFIRUREREREeXrw4AEuXLiQ7zahoaEoV65cMfWIiIhKKwapiIiIiIiIiIjI5DjIABERERERERERmRyDVEREREREREREZHIMUhERERERERERkckxSEVERERERERERCbHIBUREREREREREZkcg1RERERERERERGRyDFIREREREREREZHJMUhFREREREREREQmxyAVERERERERERGZHINURERERERERERkcgxSERERERERERGRyTFIRUREREREREREJscgFRERERERERERmRyDVEREREREREREZHIMUhERERERERERkckxSEVERERERERERCbHIBUREREREREREZkcg1RERERERERERGRyDFIREREREREREZHJMUhFREREREREREQmxyAVERERERERERGZHINUJcyKFSugUChw8+bNItm+rJs1axZCQkKgVquL9DgLFy6En58f0tPT9dovZ//M4fk19L6S+QsICMDgwYNN3Q0AwM2bN6FQKLBixQpTd6VIHDx4EAqFAgcPHjR1V4rMlClToFAoTN0NIirhWrVqhVatWpm6G0SkhaHXhkV1HVeSrlVJdwxSFSMp4KDt9vHHH5u6e3rLeX+srKzg4+ODwYMH4969ewa1eezYMUyZMgXx8fHG7SyAxMREzJw5Ex999BEsLP576Uv34/Tp01r3a9WqFWrVqqXXsQYPHoyMjAwsWrSo0P0r6Qy5r1SynTt3Dr1794a/vz9sbW3h4+OD9u3b4/vvvzd114xizZo1mDt3bpG0HRAQAIVCgdGjR+daJwWaNm3aVCTHNraiOMenpqZiypQppTrYRuYl5+vc1tYWVatWxahRoxAXF2fq7pmFwYMHazyGSqUSVatWxeeff460tDSD2rx48SKmTJlSon+kIzK1vL7DHDlyBJ06dYKPjw9sbW3h5+eHrl27Ys2aNRrbKRQKjBo1Ks/2z5w5A4VCgc8++yzPbWJiYqBQKDB+/PjC3ZlCKMrvj2QaVqbuQFk0depUBAYGaiyTgiBvvfUW+vXrB6VSqVNb+m5fFKT7k5aWhhMnTmDFihU4cuQIzp8/D1tbW73aOnbsGCIiIjB48GC4uroatZ/Lli1DVlYW3njjDaO2q42trS0GDRqE2bNnY/To0TplBxRn/4zJkPtKJdexY8fQunVr+Pn54e2334a3tzfu3LmDEydO4Ntvv9UIvly+fNmsAqqSNWvW4Pz58xg7dmyRHWPJkiWYOHEiKlasaJT2WrRogefPn8PGxsYo7enDmOf41NRUREREAECuTIjPPvvMLH+wodIh++v8yJEjWLBgAXbu3Inz58/D3t7e1N0r8ZRKJX788UcAQEJCArZt24Zp06bh2rVrWL16td7tXbx4EREREWjVqhUCAgI01v3+++/G6DJRqbRx40a8/vrrqFu3Lt5//32UK1cON27cwOHDh7FkyRK8+eabOrdVv359hISEYO3atZg+fbrWbaTA14ABAwCY5towv++P5nqtWtYxSGUCnTp1QoMGDbSus7S0hKWlZYFtpKSkwMHBQefti1L2+zN8+HCUL18eM2fOxPbt29G3b1+T9i275cuX47XXXtP7S5Wh+vbti1mzZiEqKgpt2rQpcPvi7p8x6XtfqeSaMWMGXFxccOrUqVwf9A8fPtT425TB8ZKsZs2auHz5Mr788kt89913RmnTwsLCZOeG4jrHW1lZwcqKlyVkGjlf5+7u7pg9eza2bduW549H0rUYvXj/Sl9SAeC9995DkyZNsHbtWsyePRteXl5GO5YpgvVE5mLKlCmoUaMGTpw4keu9kvM6Thf9+/fHpEmTcOLECTRu3DjX+rVr1yIkJAT169cHUPKuDUtaf0g3DCuWMNrGIJLG6bh48SLefPNNlCtXDs2aNdO6vbTt1atX5Wiyi4sLhgwZgtTU1FzHO3jwIBo0aABbW1sEBwdj0aJFhR4XpHnz5gCAa9euyctu3bqF9957D9WqVYOdnR3c3d3Rp0+fXPfzww8/BAAEBgbKaePZt7l37x6GDh0KLy8vKJVK1KxZE8uWLSuwTzdu3MA///yDdu3aGXy/gP/qpfO6ZRcaGgo3Nzds27bN6P3766+/0KlTJzg7O8PR0RFt27bFiRMncm1XFM+vNvrcVyrZrl27hpo1a2rNZPT09NT4W1ud/z///IOWLVvCzs4OlSpVwvTp07F8+fJc7+WAgAB06dIFR44cQaNGjWBra4ugoCD89NNPGu09ffoU//vf/1C7dm04OjrC2dkZnTp1wt9//23Q/WvVqhV+++033Lp1S37fZv+V/uHDhxg2bBi8vLxga2uLl156CStXrtTrGAEBARg4cCCWLFmC+/fvF7i9Lu9nbWNSxcTEoFevXvD29oatrS0qVaqEfv36ISEhQWPfVatWITQ0FHZ2dnBzc0O/fv1w584dve5TdtrO8RkZGfj8888RGhoKFxcXODg4oHnz5oiKipK3uXnzJjw8PAAAERER8uM/ZcoUANrHpMrKysK0adMQHBwMpVKJgIAAfPLJJxwDj4qc9IPLjRs3ALwoaXN0dMS1a9fw6quvwsnJCf379wcAqNVqzJ07FzVr1oStrS28vLzwzjvv4NmzZxptnj59Gh07dkT58uVhZ2eHwMBADB06VGMbXdvS9RwKAPHx8Rg3bhwCAgKgVCpRqVIlDBw4EI8fP5a3SU9Px+TJk1G5cmUolUr4+vpiwoQJBr/XFAoFmjVrBiEErl+/Li/X5XpwxYoV6NOnDwCgdevW8rlCOv9pG5PKGOduotLg2rVraNiwodZgbs7rOF1I57mcpYIAEB0djcuXL8vbANqvDa9fv44+ffrAzc0N9vb2aNy4MX777bcCj/3PP/9g8ODBCAoKgq2tLby9vTF06FA8efJE3qag74+G9ke67tqwYQNmzJiBSpUqwdbWFm3btsXVq1cL7DsVDn+yNIGEhASNCwMAKF++fIH79enTB1WqVMEXX3wBIUS+2/bt2xeBgYGIjIzEmTNn8OOPP8LT0xMzZ86Ut/nrr7/wyiuvoEKFCoiIiIBKpcLUqVPlLxGGkk4K5cqVk5edOnUKx44dQ79+/VCpUiXcvHkTCxYsQKtWrXDx4kXY29ujZ8+euHLlCtauXYs5c+bIj4nUn7i4ODRu3Fiun/bw8MCuXbswbNgwJCYm5lu6c+zYMQCQo/zaaHteACAzM1P+v4eHB37++edc68eNG6f1w6B+/fo4evRonsfUp3+SCxcuoHnz5nB2dsaECRNgbW2NRYsWoVWrVjh06BBefvllAEX3/OZF1/tKJZu/vz+OHz+O8+fP6z0W27179+QvFBMnToSDgwN+/PHHPH/Funr1Knr37o1hw4Zh0KBBWLZsGQYPHozQ0FDUrFkTwIsLiV9++QV9+vRBYGAg4uLisGjRIrRs2RIXL17Uu5zu008/RUJCAu7evYs5c+YAABwdHQEAz58/R6tWrXD16lWMGjUKgYGB2LhxIwYPHoz4+Hi8//77eh3np59+KjCbStf3c04ZGRno2LEj0tPTMXr0aHh7e+PevXv49ddfER8fDxcXFwAvMuMmTZqEvn37Yvjw4Xj06BG+//57tGjRAn/99ZdBZdXazvGJiYn48ccf8cYbb+Dtt99GUlISli5dio4dO+LPP/9E3bp14eHhgQULFmDkyJHo0aMHevbsCQCoU6dOnscaPnw4Vq5cid69e+ODDz7AyZMnERkZiX///Rdbt27Vu+9EupKCsO7u7vKyrKwsdOzYEc2aNcPXX38tlwG+8847WLFiBYYMGYIxY8bgxo0b+OGHH/DXX3/h6NGjsLa2xsOHD9GhQwd4eHjg448/hqurK27evIktW7ZoHFeXtiS6nEOTk5PRvHlz/Pvvvxg6dCjq16+Px48fY/v27bh79y7Kly8PtVqN1157DUeOHMGIESNQvXp1nDt3DnPmzMGVK1fwyy+/GPQYGno92KJFC4wZMwbfffcdPvnkE1SvXh0A5H9zMua5m8jc+fv7Y//+/bh79y4qVapU6PYCAwPRpEkTbNiwAXPmzNGo4JECV/mVEMbFxaFJkyZITU3FmDFj4O7ujpUrV+K1117Dpk2b0KNHjzz33bt3L65fv44hQ4bA29sbFy5cwOLFi3HhwgWcOHECCoWiwO+Phe3Pl19+CQsLC/zvf/9DQkICZs2ahf79++PkyZM6P4ZkAEHFZvny5QKA1lvObW7cuCEvmzx5sgAg3njjjTzblLaXth06dKjGdj169BDu7u4ay7p27Srs7e3FvXv35GUxMTHCyspK6PLSkI69b98+8ejRI3Hnzh2xadMm4eHhIZRKpbhz5468bWpqaq79jx8/LgCIn376SV721Vdf5br/kmHDhokKFSqIx48fayzv16+fcHFx0XoMyWeffSYAiKSkpDzvR363mjVr5tn2e++9JywtLcWBAwdyrRsxYoSws7PLc9+C+qft9dC9e3dhY2Mjrl27Ji+7f/++cHJyEi1atJCXFfb51Zeu95VKtt9//11YWloKS0tLERYWJiZMmCD27NkjMjIycm3r7+8vBg0aJP89evRooVAoxF9//SUve/LkiXBzc8v1Ovb39xcAxOHDh+VlDx8+FEqlUnzwwQfysrS0NKFSqTSOe+PGDaFUKsXUqVM1lgEQy5cvL/A+du7cWfj7++daPnfuXAFArFq1Sl6WkZEhwsLChKOjo0hMTCywbX9/f9G5c2chhBBDhgwRtra24v79+0IIIaKiogQAsXHjRnl7Xd/P0r5RUVFCCCH++uuvXG3ldPPmTWFpaSlmzJihsfzcuXPCysoq1/Kc9DnHZ2VlifT0dI39nz17Jry8vDQ+jx49eiQAiMmTJ+c6nvT5JTl79qwAIIYPH66x3f/+9z8BQOs5l0hf2l7n69atE+7u7sLOzk7cvXtXCCHEoEGDBADx8ccfa+z/xx9/CABi9erVGst3796tsXzr1q0CgDh16lSefdG1LSF0P4d+/vnnAoDYsmVLruOp1WohhBA///yzsLCwEH/88YfG+oULFwoA4ujRo3n2WYgXj42Dg4N49OiRePTokbh69ar4+uuvhUKhELVq1ZKPI4Tu14MbN27UOOdl17JlS9GyZUv5b2Ocu4nMkXT+yn5eWbp0qQAgbGxsROvWrcWkSZPEH3/8ketaSgghAIjw8PACjzNv3jwBQOzZs0deplKphI+PjwgLC9PYNue14dixYwUAjfNLUlKSCAwMFAEBAXK/tF3HaTtfrF27Nte5L7/vj4b2R7ruql69usb1zbfffisAiHPnzuXxaJExsNzPBObNm4e9e/dq3HTx7rvv6nyMnNs2b94cT548QWJiIgBApVJh37596N69u0YmQuXKldGpUyedjwMA7dq1g4eHB3x9fdG7d284ODhg+/btGtF7Ozs7+f+ZmZl48uQJKleuDFdXV5w5c6bAYwghsHnzZnTt2hVCCDx+/Fi+dezYEQkJCfm28+TJE1hZWckZE9poe1727t2b76/8P/30E+bPn49Zs2ahdevWudaXK1cOz58/11pqqW//gBfP2++//47u3bsjKChIXl6hQgW8+eabOHLkCBITE436/OpK1/tKJVv79u1x/PhxvPbaa/j7778xa9YsdOzYET4+Pti+fXu+++7evRthYWGoW7euvMzNzU0jDTy7GjVqyKVjwItfvapVq6ZRGqJUKuUBL1UqFZ48eQJHR0dUq1ZNp3OHPnbu3Alvb2+N8Wesra0xZswYJCcn49ChQ3q199lnnyErKwtffvml1vW6vp+1kTKl9uzZk+d7bsuWLVCr1ejbt6/GOdPb2xtVqlTRKMXLjy7neEtLSzmbVK1W4+nTp8jKykKDBg0Mfp527twJALlmDPrggw8AQKdSASJdZX+d9+vXD46Ojti6dSt8fHw0ths5cqTG3xs3boSLiwvat2+v8T4LDQ2Fo6Oj/D6TshZ//fVXjQxtQ9qS6HIO3bx5M1566SWt2QpSee3GjRtRvXp1hISEaBxXKnnU5VyRkpICDw8PeHh4oHLlyvjf//6Hpk2bYtu2bRplvIW9HtTG2OduInM2dOhQ7N69G61atcKRI0cwbdo0NG/eHFWqVJErN/T1+uuvw9raWqPk79ChQ7h3716e13iSnTt3olGjRvJQNcCLDPYRI0bg5s2buHjxYp77Zj9fpKWl4fHjx/K4WIU5X+jTnyFDhmhUy0jn3OznWTI+lvuZQKNGjfIcOD0/OWcEzI+fn5/G31Kq9bNnz+Ds7IyHDx/i+fPnqFy5cq59tS3Lz7x581C1alUkJCRg2bJlOHz4cK7ynufPnyMyMhLLly/HvXv3NMoVc46fos2jR48QHx+PxYsXY/HixVq3MWQwwOzyel7KlSuntQzw7NmzePfdd/HGG2/kOe2qdD+NNQbUo0ePkJqaimrVquVaV716dajVaty5cwdubm56Pb8LFizAkiVLcO7cOXz66afyGDHSMQcPHoyDBw+iUqVKmD9/Ptq2bZurDWPfVzKdhg0bYsuWLcjIyMDff/+NrVu3Ys6cOejduzfOnj2LGjVqaN3v1q1bCAsLy7U8r3NKzvMU8OL9ln3sFbVajW+//Rbz58/HjRs3oFKp5HXZy3Byev78ea5zi7e3d57bS/2vUqVKrllgpBKTW7duAXhxznr+/Lm83sbGBm5ubrnaCwoKwltvvYXFixdrnbVO1/ezVLaTXWBgIMaPH4/Zs2dj9erVaN68OV577TUMGDBADmDFxMRACIEqVapovb/Zy4byo8s5HgBWrlyJb775BpcuXdL4Eq7PZ1d2t27dgoWFRa7Xj7e3N1xdXeXng8gYpNe5lZUVvLy8UK1atVznAisrq1zlMzExMUhISMhzrBfp2qRly5bo1asXIiIiMGfOHLRq1Qrdu3fHm2++Kb+fdG1Loss59Nq1a+jVq1e+9z0mJgb//vtvnuUxulxf2draYseOHQCAu3fvYtasWXj48KHGl0yg8NeD2uh67iYqKzp27IiOHTsiNTUV0dHRWL9+PRYuXIguXbrg0qVLeo9N5e7ujo4dO2Lr1q1YuHAhbG1tsWbNGlhZWRU4gcqtW7e0Dl2Q/f2Z1/AST58+RUREBNatW5frPFSY84U+/cnvOzUVHQapzEjOD/r85DXjnyhgLCtDZA/udO/eHc2aNcObb76Jy5cvy5lBo0ePxvLlyzF27FiEhYXBxcUFCoUC/fr1g1qtLvAY0jYDBgzAoEGDtG6TX8aTu7s7srKykJSUBCcnJ33vYi7Pnj1Dr169ULVqVXnK5by2s7e3L/C5M3b/9FWhQgVMmTJF66CI4eHh8Pb2xqNHj7Bv3z707dsXMTExub6U63pfyXzY2NigYcOGaNiwIapWrYohQ4Zg48aNmDx5slHa1+U89cUXX2DSpEkYOnQopk2bBjc3N1hYWGDs2LH5njvWr1+PIUOG5NluYbz//vsaA/K2bNlSY0Dz7D799FP8/PPPmDlzJrp3726U40u++eYbDB48GNu2bcPvv/+OMWPGIDIyEidOnEClSpWgVquhUCiwa9curY91QZmbEl3O8atWrcLgwYPRvXt3fPjhh/D09ISlpSUiIyM1Blg3BAPfVBx0+QExe2anRK1Ww9PTE6tXr9a6jxT4USgU2LRpE06cOIEdO3Zgz549GDp0KL755hucOHECjo6OOrclMda1nlqtRu3atTF79myt6319fQtsw9LSUmPyl44dOyIkJATvvPOORhZuYa8HiUh39vb2aN68OZo3b47y5csjIiICu3btyvO7VH4GDBiAX3/9Fb/++itee+01bN68WR5nr6j07dsXx44dw4cffoi6devK58lXXnml2M4Xxfmdmv7DIFUZ5enpCVtbW62zExRmxgLpS0nr1q3xww8/yNkDmzZtwqBBg/DNN9/I26alpSE+Pl5j/7y+jHh4eMDJyQkqlcqgGfpCQkIAvJilJ79gli7UajX69++P+Ph47Nu3Tx44VZsbN27kOdCnIf3z8PCAvb09Ll++nGvdpUuXYGFhAV9fXzg4OOj1/EpfnqXyGklycjJ++eUXXL9+Hfb29njttddQu3ZtbNu2LVcAQNf7SuZJ+vL24MGDPLfx9/c3+jll06ZNaN26NZYuXaqxPD4+Pt8JJzp27JhnKXVe5xl/f3/8888/UKvVGl9EL126JK8HgAkTJmhMtZ59UOCcgoODMWDAACxatCjXL3e6vp/zU7t2bdSuXRufffYZjh07hqZNm2LhwoWYPn06goODIYRAYGAgqlatmm87usrvHB8UFIQtW7ZoPL45A5r6BJz8/f2hVqsRExOjcW6Ji4tDfHy8/HwQmVJwcDD27duHpk2b6vQjTePGjdG4cWPMmDEDa9asQf/+/bFu3ToMHz5c77Z07d/58+cL3Obvv/9G27ZtjRYUrlChAsaNG4eIiAiNqesLez2oja7nbqKyTJfruPy89tprcHJywpo1a2BtbY1nz54VWOoHvHj/5XWdI63X5tmzZ9i/fz8iIiLw+eefy8tjYmJybavv+cKQ/lDx4phUZZT0i9cvv/yiMUX61atXsWvXrkK13apVKzRq1Ahz585FWlqafLycEefvv/9eo3QHABwcHAAg18WKpaUlevXqhc2bN2u92Hr06FG+fZJKkE6fPq3XfdEmIiICe/bswdq1awssYzlz5gyaNGlSYJu69s/S0hIdOnTAtm3bNKZrjouLw5o1a9CsWTM4Ozsb7fmNiYmBo6OjRnlD7dq1ceHChVzb6npfqWSLiorS+uuQFMDUVpom6dixI44fP46zZ8/Ky54+fZpnVoAutJ07Nm7ciHv37uW7X4UKFdCuXTuNm8TBwUFrmvirr76K2NhYrF+/Xl6WlZWF77//Ho6OjmjZsiWAF+PAZG83NDQ037589tlnyMzMxKxZs3LdN13ez9okJiYiKytLY1nt2rVhYWEhTxnfs2dPWFpaIiIiItdjKITQmMJZH3md46V2JSdPnsTx48c19pWC+jnP8dq8+uqrAIC5c+dqLJeyPTp37mxQ/4mMqW/fvlCpVJg2bVqudVlZWfJr/dmzZ7neh9L4fdJ7Vte29NGrVy+5bDsnqT99+/bFvXv3sGTJklzbPH/+HCkpKXofF3iRNWVvb68xLl9hrwe10fXcTVQW7N+/X+tyXa7j8mNnZ4cePXpg586dWLBgARwcHNCtW7cC93v11Vfx559/alwPpKSkYPHixQgICMhzCAlt1xVA7msCQP/zhSH9oeLFTKoybMqUKfj999/RtGlTjBw5EiqVCj/88ANq1aql8SXTEB9++CH69OmDFStW4N1330WXLl3w888/w8XFBTVq1MDx48exb9++XGPKSF/2Pv30U/Tr1w/W1tbo2rUrHBwc8OWXXyIqKgovv/wy3n77bdSoUQNPnz7FmTNnsG/fPjx9+jTP/gQFBaFWrVrYt28fhg4davD9OnfuHKZNm4YWLVrg4cOHWLVqlcb67NkV0dHRePr0qU4ncH36N336dOzduxfNmjXDe++9BysrKyxatAjp6ekaX4KN8fwmJyfn+pLs7Oyc68utPveVSrbRo0cjNTUVPXr0QEhICDIyMnDs2DGsX78eAQEBuTLospswYQJWrVqF9u3bY/To0XBwcMCPP/4IPz8/PH361KBf6Lt06YKpU6diyJAhaNKkCc6dO4fVq1drDDSur9DQUKxfvx7jx49Hw4YN4ejoiK5du2LEiBFYtGgRBg8ejOjoaAQEBGDTpk04evQo5s6da3AprpRNlb1EUKLr+zmnAwcOYNSoUejTpw+qVq2KrKws/Pzzz3JAXzru9OnTMXHiRNy8eRPdu3eHk5MTbty4ga1bt2LEiBH43//+Z9B90naO37JlC3r06IHOnTvjxo0bWLhwIWrUqIHk5GR5Pzs7O9SoUQPr169H1apV4ebmhlq1amkdj+Kll17CoEGDsHjxYsTHx6Nly5b4888/sXLlSnTv3l3rZBVExa1ly5Z45513EBkZibNnz6JDhw6wtrZGTEwMNm7ciG+//Ra9e/fGypUrMX/+fPTo0QPBwcFISkrCkiVL4OzsLAdkdW1LHx9++CE2bdqEPn36YOjQoQgNDcXTp0+xfft2LFy4EC+99BLeeustbNiwAe+++y6ioqLQtGlTqFQqXLp0CRs2bMCePXsMGkvV3d0dQ4YMwfz58/Hvv/+ievXqOl8P1q1bF5aWlpg5cyYSEhKgVCrRpk0brWPpFNW5m8gcdevWDYGBgejatSuCg4ORkpKCffv2YceOHWjYsCG6du1qcNsDBgzATz/9hD179qB///5ycCg/H3/8MdauXYtOnTphzJgxcHNzw8qVK3Hjxg1s3rw5Vwm1xNnZGS1atMCsWbOQmZkJHx8f/P7777hx40aubfP7/mis/lAxK8aZBMs8bdOE5rVN9ik0pWm5Hz16VOD2eW2rrV0hhNi/f7+oV6+esLGxEcHBweLHH38UH3zwgbC1tS3U/VGpVCI4OFgEBweLrKws8ezZMzFkyBBRvnx54ejoKDp27CguXbqUa1pQIYSYNm2a8PHxERYWFrn6HBcXJ8LDw4Wvr6+wtrYW3t7eom3btmLx4sUF9nf27NnC0dEx13SmBT0vLVu2FDVr1hRC/DcdaV637D766CPh5+enMfWyvv3L63k7c+aM6Nixo3B0dBT29vaidevW4tixY7na1Pf5feeddzSmhj9z5owoV66cxjajRo3SmN7akPtKJdeuXbvE0KFDRUhIiHB0dBQ2NjaicuXKYvTo0SIuLk5jW23v37/++ks0b95cKJVKUalSJREZGSm+++47AUDExsZq7Nu5c+dcx885tXhaWpr44IMPRIUKFYSdnZ1o2rSpOH78eK7ttE1dnJfk5GTx5ptvCldXVwFA+Pv7y+vi4uLkc5WNjY2oXbu2Tm0WdL9iYmKEpaWlACA2btyosU6X97N07pGmY79+/boYOnSoCA4OFra2tsLNzU20bt1a7Nu3L9exN2/eLJo1ayYcHByEg4ODCAkJEeHh4eLy5cv53hd9zvFqtVp88cUXwt/fXyiVSlGvXj3x66+/ikGDBmk8vkIIcezYMREaGipsbGwEAPmcI31+ZZeZmSkiIiJEYGCgsLa2Fr6+vmLixIkiLS0t374T6UqXazMhhBg0aJBwcHDIc/3ixYtFaGiosLOzE05OTqJ27dpiwoQJ4v79+0KIF+/zN954Q/j5+QmlUik8PT1Fly5dxOnTp/VuSwjdz6FCCPHkyRMxatQo4ePjI2xsbESlSpXEoEGDxOPHj+VtMjIyxMyZM0XNmjWFUqkU5cqVE6GhoSIiIkIkJCQY/Nhcu3ZNWFpayp8V+lwPLlmyRAQFBcnnTun8p+0+FvbcTWSOtJ2/1q5dK/r16yeCg4OFnZ2dsLW1FTVq1BCffvqpSExM1NgfgAgPD9f5eFlZWaJChQoCgNi5c6fWbbS9l69duyZ69+4tXF1dha2trWjUqJH49ddfNbbRdh139+5d0aNHD+Hq6ipcXFxEnz59xP379zWuHSR5fX80tD/SdVfOazZ9rjfJcAohOOoXaerevTsuXLigtebXnCUkJCAoKAizZs3CsGHDivRY6enpCAgIwMcff4z333+/RPUvv+f33Xffhbe3tzy7X3JyMtzc3HDjxg15Gu7WrVtj4MCBckaNIfeVypaxY8di0aJFSE5OznMASiIiIiIiIuazlXHZp1EHXoxBtHPnTrRq1co0HSpCLi4umDBhAr766qsinxFi+fLlsLa2xrvvvqvzPkXRP12f36ysLKSlpUGlUmn839HREd26dcPkyZPx/Plz/Prrr/jnn380yvoMua9UeuV8zT158gQ///wzmjVrxgAVERERERHli5lUZVyFChUwePBgBAUF4datW1iwYAHS09Px119/oUqVKqbuHhWSrs/vlClTEBERobHv8uXLMXjwYDx69AiDBg3CwYMHUalSJcyfP9+gGRapbKhbty5atWqF6tWrIy4uDkuXLsX9+/exf/9+tGjRwtTdIyIiIiKiEoxBqjJuyJAhiIqKQmxsLJRKJcLCwvDFF1+gfv36pu4aGQGfXypun3zyCTZt2oS7d+9CoVCgfv36mDx5MgObRERERERUIAapiIiIiIiIiIjI5DgmFRERERERERERmRyDVEREREREREREZHIMUhERERERERERkckxSAVACIHExERweC4iMiWei4iopOD5iIhKAp6LiMoeBqkAJCUlwcXFBUlJSabuChGVYTwXEVFJwfMREZUEPBcRlT0MUhERERERERERkckxSEVERERERERERCbHIBUREREREREREZkcg1RERERERERERGRyDFIRlSJPnjzBkydPTN0NKiHu3LmDrKwsU3eDiIiI9HTo0CEcP34c6enppu6KWcjMzMTx48dx8OBBU3eFiAqJQSqiUiIzMxO1atVC7dq1kZmZaerulHpffvklFAoFxo4dKy9LS0tDeHg43N3d4ejoiF69eiEuLs4k/Vu3bh38/f0xfvx4kxyfiIiIDNe2bVs0adIEjx8/NnVXzEJiYiKaNGmC1q1b8wc6IjPHIBVRKfH48WPExsbiwYMHuHnzpqm7U6qdOnUKixYtQp06dTSWjxs3Djt27MDGjRtx6NAh3L9/Hz179iz2/j158gSjR4+GEAIXLlwo9uMTERGR4TIzM6FSqQAA9vb2Ju6NebC1tZX/n5aWZsKeEFFhMUhFVEo8ffpU/v+1a9dM2JPSLTk5Gf3798eSJUtQrlw5eXlCQgKWLl2K2bNno02bNggNDcXy5ctx7NgxnDhxolj7+NFHH8m/vPJCjYiIyLw8f/5c/r+dnZ0Je2I+lEql/H+WSBKZNwapiEqJZ8+eyf9nkKrohIeHo3PnzmjXrp3G8ujoaGRmZmosDwkJgZ+fH44fP661rfT0dCQmJmrcCuvo0aNYunSp/Hf2C10iIiIq+aTPboVCoRF8obxZWVnBwuLFV1sGqYjMG4NURKUEM6mK3rp163DmzBlERkbmWhcbGwsbGxu4urpqLPfy8kJsbKzW9iIjI+Hi4iLffH19C93HLVu2AAACAwMBMJOKiIjI3KSmpgJ4UcKmUChM3BvzIZX88dqHyLwxSEVUSjCTqmjduXMH77//PlavXq0x7kFhTJw4EQkJCfLtzp07hW4zOTkZAFCjRg0AvFAjIiIyN1ImFUv99CNlnTGTisi8MUhFVEowk6poRUdH4+HDh6hfvz6srKxgZWWFQ4cO4bvvvoOVlRW8vLyQkZGB+Ph4jf3i4uLg7e2ttU2lUglnZ2eNW2FJQSkpo4vlfkREROaFQSrDMEhFVDpYmboDRGQc2TOprl+/DiEEU8SNqG3btjh37pzGsiFDhiAkJAQfffQRfH19YW1tjf3796NXr14AgMuXL+P27dsICwsrtn5KF7bSoO7MpCIiIjIvDFIZhuV+RKUDg1REpUT2TKrnz5/jwYMHqFixogl7VLo4OTmhVq1aGsscHBzg7u4uLx82bBjGjx8PNzc3ODs7Y/To0QgLC0Pjxo2LrZ/ShZkUpGImFRERkXmRPrvt7e1N3BPzwkwqotKB5X5EpUT2TCqAJX+mMGfOHHTp0gW9evVCixYt4O3tLQ9kXlxyBqnS09MhhCjWPhAREZHhzCmT6t69exgwYADc3d1hZ2eH2rVr4/Tp0/J6IQQ+//xzVKhQAXZ2dmjXrh1iYmKKpC8MUhGVDgxSEZUS2TOpAAapisPBgwcxd+5c+W9bW1vMmzcPT58+RUpKCrZs2ZLneFRFJWe5H8CLNSIiInNiLkGqZ8+eoWnTprC2tsauXbtw8eJFfPPNNxrXILNmzcJ3332HhQsX4uTJk3BwcEDHjh2LpCSP5X5EpQPL/YhKCSmTytvbG7GxsQxSlVE5B04HXlzsGmtGQiIiIipa5hKkmjlzJnx9fbF8+XJ5WWBgoPx/IQTmzp2Lzz77DN26dQMA/PTTT/Dy8sIvv/yCfv36GbU/zKQiKh3MPpNKpVJh0qRJCAwMhJ2dHYKDgzFt2jSWt1CZI2VSNWzYEAAzqcoq6cLWyckJFhYvTvH8RZGIiMh8pKamAij5Qart27ejQYMG6NOnDzw9PVGvXj0sWbJEXn/jxg3ExsaiXbt28jIXFxe8/PLLOH78uNH7wyAVkfE9e/YM169fz1W1U5TMPkg1c+ZMLFiwAD/88AP+/fdfzJw5E7NmzcL3339v6q4RFSspk6pBgwYAGKQqq6SAlJ2dnXxxy8HTiYiIzIe5ZFJdv34dCxYsQJUqVbBnzx6MHDkSY8aMwcqVKwEAsbGxAAAvLy+N/by8vOR1OaWnpyMxMVHjpiuW+xEZ37JlyxAcHIz333+/2I5p9uV+x44dQ7du3dC5c2cAQEBAANauXYs///zTxD0jKj5CCDlIxUyqsk26MLO1tYWtrS1SUlJ4sUZERGRGzCVIpVar0aBBA3zxxRcAgHr16uH8+fNYuHAhBg0aZFCbkZGRiIiIMGhfZlIRGV/27xbFxewzqZo0aYL9+/fjypUrAIC///4bR44cQadOnUzcM6Lik5SUBJVKBQAIDQ0FADx58gQJCQmm7BaZQPYLW+nilkEqIiIi82EuQaoKFSqgRo0aGsuqV6+O27dvA4A8eUxcXJzGNnFxcXlOLDNx4kQkJCTItzt37ujcHwapiIzPFEEqs8+k+vjjj5GYmIiQkBBYWlpCpVJhxowZ6N+/f577pKena5y89EkjJSqJpBphpVIJT09PeHp64uHDh7h27Rrq169v4t5RccqZSQWw3I+IiMicSJ/b9vb2Ju5J/po2bYrLly9rLLty5Qr8/f0BvBhE3dvbG/v370fdunUBvPjedfLkSYwcOVJrm0qlUg426YvlfkTGx0wqA2zYsAGrV6/GmjVrcObMGaxcuRJff/21XAutTWRkJFxcXOSbr69vMfaYyPikUj83NzcAQHBwMACW/JU1Qgj5wjZ7kIoXa0RERObDXDKpxo0bhxMnTuCLL77A1atXsWbNGixevBjh4eEAAIVCgbFjx2L69OnYvn07zp07h4EDB6JixYro3r270fvDTCoi42OQygAffvghPv74Y/Tr1w+1a9fGW2+9hXHjxiEyMjLPfQqTRkpUEkmZVOXKlQPAIFVZlZmZKc9syoHTicqGL7/8Uv4iKElLS0N4eDjc3d3h6OiIXr165Sq3IaKSy1yCVA0bNsTWrVuxdu1a1KpVC9OmTcPcuXM1KlomTJiA0aNHY8SIEWjYsCGSk5Oxe/fuIvnCyyAVkfGx3M8Aqamp8jTrEktLS6jV6jz3KUwaKVFJxEwqAjQzpphJRVT6nTp1CosWLUKdOnU0lo8bNw6//fYbNm7cCBcXF4waNQo9e/bE0aNHTdRTItJHamoqgJIfpAKALl26oEuXLnmuVygUmDp1KqZOnVrkfeF1D5HxMZPKAF27dsWMGTPw22+/4ebNm9i6dStmz56NHj16mLprRMWGmVQEaGZMKZVKDpxOVIolJyejf//+WLJkiXzuB4CEhAQsXboUs2fPRps2bRAaGorly5fj2LFjOHHihAl7TES6MpdMqpKGmVRExscglQG+//579O7dG++99x6qV6+O//3vf3jnnXcwbdo0U3eNqNjkzKQKCgoCwCBVWZP9Q0ShUHDgdKJSLDw8HJ07d0a7du00lkdHRyMzM1NjeUhICPz8/HD8+PE820tPT0diYqLGjYhMg0Eqw0jXPQxSERkPy/0M4OTkhLlz52Lu3Lmm7gqRyeSVSXXnzh2kp6ezvLWMyD5oevZ/mUlFVLqsW7cOZ86cwalTp3Kti42NhY2NDVxdXTWWe3l5ITY2Ns82IyMjERERYeyuEpEBGKQyjHS9y+seIuNhJhURGSRnJpWXlxccHBwghMDNmzdN2DMqTtKHiHRRy4HTiUqfO3fu4P3338fq1auNesHISWWISg7pc9ve3t7EPTEvLPcjMj4GqYjIIDkzqRQKBUv+yqCcHyLMpCIqfaKjo/Hw4UPUr18fVlZWsLKywqFDh/Ddd9/BysoKXl5eyMjIQHx8vMZ+cXFx8Pb2zrNdpVIJZ2dnjRsRmQYzqQzDcj8i42OQiogMkjOTCuDg6WVRzotaBqmISp+2bdvi3LlzOHv2rHxr0KAB+vfvL//f2toa+/fvl/e5fPkybt++jbCwMBP2nIh0xSCVYVjuR2R8HJOKiAySM5MKYJCqLMr5IcJyP6LSx8nJCbVq1dJY5uDgAHd3d3n5sGHDMH78eLi5ucHZ2RmjR49GWFgYGjdubIouE5GeUlNTATBIpS+W+xEZX87hRIoDg1REpQAzqQjgwOlE9MKcOXNgYWGBXr16IT09HR07dsT8+fNN3S0i0hEzqQzDcj8i42MmFREZhJlUBHDgdKKy6uDBgxp/29raYt68eZg3b55pOkREhcIglWFY7kdkfByTioj0lpmZiaSkJADaM6muX78OtVptkr5R8eLA6UREROYtMzMTKpUKAINU+mK5H5HxMUhFRHrLPoOTq6ur/H8/Pz9YWloiPT0d9+/fL/6OUbHjwOlERETmLXv2M4NU+mG5H5HxMUhFRHqTxqNydnaGldV/FbzW1tbw9/cHwJK/soIDpxMREZm37J/ZxfmlsDRguR+RcWVlZSErKwsAg1REpAdt41FJspf8UenHgdOJiIjMW/asaIVCYeLemBeW+xEZV/b3EoNURKSzW7duAQB8fHxyratYsSIA4OHDh8XaJzINDpxORERk3jhouuFY7kdkXNl/6JaCwMWBQSoiMyeV8klZU9lJ2VVSthWVbhw4nYiIyLylpqYCYJDKENnL/YQQJu4NkfmTvkNYW1vD0tKy2I7LIBWRmZNK+bQFqaTZ/qRxq8hwCxYsQJ06deDs7AxnZ2eEhYVh165d8vq0tDSEh4fD3d0djo6O6NWrF+Li4oq1jxw4nYiIyLwxk8pwUpBKCCGPo0NEhjPFoOkAg1REZo+ZVMWjUqVK+PLLLxEdHY3Tp0+jTZs26NatGy5cuAAAGDduHHbs2IGNGzfi0KFDuH//Pnr27FmsfeTA6UREROaNQSrDZf8izZI/osIzVZDKquBNiKgkyy9IxUwq4+natavG3zNmzMCCBQtw4sQJVKpUCUuXLsWaNWvQpk0bAMDy5ctRvXp1nDhxAo0bNy6WPnLgdCIiIvPGIJXhso+Zk5aWBkdHRxP2hsj8MZOKiPSWnp6Ou3fvAmAmVXFSqVRYt24dUlJSEBYWhujoaGRmZqJdu3byNiEhIfDz88Px48fzbCc9PR2JiYkat8LIa+B0BqmIiIjMgxSksre3N3FPzI+lpaU8bg4zqYgKj0EqItLbjRs3IISAo6MjPDw8cq1nJpVxnTt3Do6OjlAqlXj33XexdetW1KhRA7GxsbCxsYGrq6vG9l5eXoiNjc2zvcjISLi4uMg3X1/fQvUvr4HTWe5HRERkHphJVTic4Y/IeBikIiK9ZS/1UygUudYzk8q4qlWrhrNnz+LkyZMYOXIkBg0ahIsXLxrc3sSJE5GQkCDf7ty5U6j+5TVwukql4gCiREREZoBBqsLJPsMfERUOx6QiIr3lNx4V8F8mVVJSEjIzM2FtbV1sfSuNbGxsULlyZQBAaGgoTp06hW+//Ravv/46MjIyEB8fr5FNFRcXB29v7zzbUyqVGuMnFFZeA6cDLy56nZycjHYsIiIiMr7U1FQADFIZSrquYiYVUeExk4qI9FZQkCp7wCQ+Pr4YelS2qNVqpKenIzQ0FNbW1ti/f7+87vLly7h9+zbCwsKKrT85B07POYAoERERlWzMpCoclvsRGQ8zqYhIbwUFqaysrODs7IzExEQ8e/ZM67hVpJuJEyeiU6dO8PPzQ1JSEtasWYODBw9iz549cHFxwbBhwzB+/Hi4ubnB2dkZo0ePRlhYWLHN7AfkHjjdwsICSqUS6enpDFIRERGZAQapCoflfkTGw0yqQrh37x4GDBgAd3d32NnZoXbt2jh9+rSpu0VU5AoKUgEcl8pYHj58iIEDB6JatWpo27YtTp06hT179qB9+/YAgDlz5qBLly7o1asXWrRoAW9vb2zZsqVY+6jtg4SDpxMREZkPBqkKh+V+RMbDTCoDPXv2DE2bNkXr1q2xa9cueHh4ICYmRv5iTlRaqdVq3LhxA0D+QSo3NzfcunWLM/wV0tKlS/Ndb2tri3nz5mHevHnF1KPctF3Y2traIiEhgb8oEhERmQHps9ze3t7EPTFPLPcjMh4GqQw0c+ZM+Pr6Yvny5fKywMBAE/aIqHjcu3cP6enpsLKygq+vb57bMZOq7ND2QSIFrJhJRUREVPIxk6pwWO5HZDw5x7stLmYfpNq+fTs6duyIPn364NChQ/Dx8cF7772Ht99+29RdI7yYoUQqSfP29uaYSPm4fv06UlJSNJZVq1YNNjY2GsuEELh69SqOHTsGAPD394eVVd5vZWmGP2ZSlX7aPkik//NijYiIqORjkKpwWO5HZDwck8pA169fx4IFC1ClShXs2bMHI0eOxJgxY7By5co890lPT0diYqLGjYxPrVajbt26qFOnDurUqQMfHx9cv37d1N0qkRYtWoTg4GD5sZJuHTp0yLXtrFmzULVqVQwePBhA/qV+ADOpygqVSoXMzEwAmhe20v8ZpCIqPRYsWIA6derA2dkZzs7OCAsLw65du+T1aWlpCA8Ph7u7OxwdHdGrVy/ExcWZsMdEpKvU1FQADFIZiuV+RMbDIJWB1Go16tevjy+++AL16tXDiBEj8Pbbb2PhwoV57hMZGQkXFxf5ll+pFBkuJSUFMTExAAAbGxtkZmbixIkTJu5VyXTq1CkAgKOjI7y8vOSMs6NHjyIrK0tj20OHDgEAXFxc4Ofnh+HDh+fbNjOpyobsF2McOJ2odKtUqRK+/PJLREdH4/Tp02jTpg26deuGCxcuAADGjRuHHTt2YOPGjTh06BDu37+Pnj17mrjXRKQLZlIVDsv9iIyHQSoDVahQATVq1NBYVr16ddy+fTvPfSZOnIiEhAT5dufOnaLuZpkkla4pFAoMGDAAwH+z0ZEmKctp1qxZiI2NRWxsLJRKJbKysnK9lqXHcOvWrbh16xb69OmTb9vMpCobsgehWO5HVLp17doVr776KqpUqYKqVatixowZcHR0xIkTJ5CQkIClS5di9uzZaNOmDUJDQ7F8+XIcO3aMPxQRmQEGqQqH5X5ExlPmglRBQUF48uRJruXx8fEICgrSuZ2mTZvi8uXLGsuuXLkCf3//PPdRKpVyirx0I+NLTk4G8CI7SCpJY5BKOynLSQooWVhYyO+D7I+ZSqXSaUa/7JhJVTZIHyJWVlYaY5Rx4HSi0k2lUmHdunVISUlBWFgYoqOjkZmZiXbt2snbhISEwM/PD8ePHzdhT4lIFwxSFQ7L/YiMp8wFqW7evAmVSpVreXp6Ou7du6dzO+PGjcOJEyfwxRdf4OrVq1izZg0WL16M8PBwY3aXDMAgle6kLCcpoARA62N29+5dZGZmwsbGBj4+Pjq1zUyqsiGv2TeYSUVUOp07dw6Ojo5QKpV49913sXXrVtSoUQOxsbGwsbGBq6urxvZeXl6IjY3Nsz2O10lUMjBIVTgs9yMyHlMFqYp9dr/t27fL/9+zZw9cXFzkv1UqFfbv34+AgACd22vYsCG2bt2KiRMnYurUqQgMDMTcuXPRv39/Y3abDCCV+zk4ODBIVYCcmVSA9iCV9P/AwEBYWlrq1DYzqcoG6UMk50Utg1REpVO1atVw9uxZJCQkYNOmTRg0aJA8ZqEhIiMjERERYcQeEpEhpCCVvb29iXuivy+//BITJ07E+++/j7lz5wJ4cf3xwQcfYN26dUhPT0fHjh0xf/58eHl5FUkfWO5HZDxlJkjVvXt3AC/GKRo0aJDGOmtrawQEBOCbb77Rq80uXbqgS5cuxuoiGYm2TKoHDx4gNTXVLD94i5KumVRXr17VWKcLZlKVDXl9iLDcj6h0srGxQeXKlQEAoaGhOHXqFL799lu8/vrryMjIQHx8vEY2VVxcHLy9vfNsb+LEiRg/frz8d2JiIieWITIBc82kOnXqFBYtWoQ6depoLB83bhx+++03bNy4ES4uLhg1ahR69uyJo0ePFkk/WO5HZDxlptxPrVZDrVbDz88PDx8+lP9Wq9VIT0/H5cuXGXAqJbIHqcqVKycHS65fv27KbpU4GRkZctaZrplU+gSpsmdSCSEK3V8qmfK6qGUmFVHZIF1HhYaGwtraGvv375fXXb58Gbdv30ZYWFie+3O8TqKSITU1FYB5BamSk5PRv39/LFmyRONa1hQTObDcj8h4ykyQSnLjxg2UL1/eVIenYpC93A/QHnSh/8rwFAqFRvlr9sdLCi4ZEqSSLhbS09OZTVOKMZOKqOyYOHEiDh8+jJs3b+LcuXOYOHEiDh48iP79+8PFxQXDhg3D+PHjERUVhejoaAwZMgRhYWFo3LixqbtORAUwx0yq8PBwdO7cWWPCBgAmmciB5X5ExlNmyv2y279/P/bv3y9nVGW3bNkyE/WKjCV7JhXwYkbH06dPM0iVgxSkcnFx0RhnKiAgAAqFAikpKXj48CG8vLwMClI5OTnB0tISKpUKz549Y6llKcWB04nKjocPH2LgwIF48OABXFxcUKdOHezZswft27cHAMyZMwcWFhbo1auXxhgwRFSyZWZmyhNLmUuQat26dThz5gxOnTqVa50hEzmkp6drBJj0ncSB5X5ExlPmglQRERGYOnUqGjRogAoVKkChUJiqK1REcgapmEmlnbbxqIAXvwT5+vri9u3buHbtGjw9PQ0KUikUCpQrVw6PHz/G06dPdZ4VkMwLB04nKjuWLl2a73pbW1vMmzcP8+bNK6YeEZExZM96Nocg1Z07d/D+++9j7969RvsSW9hJHFjuR2Q8ZS5ItXDhQqxYsQJvvfWWqbpARYzlfrrRNrOfJDg4WA5SValSBUlJSVAoFAgMDNTrGG5ubnj8+DFn+CvFWO5HRERk3rJ/Vhf3l0JDREdH4+HDh6hfv768TKVS4fDhw/jhhx+wZ88evSdyKOwkDsykIjKeMhekysjIQJMmTUx1eCoGzKTSTV6ZVMCLxywqKgrXrl2THzcfHx+9TxRS25zhr/TiwOlERETmLftnuTlUmbRt2xbnzp3TWDZkyBCEhITgo48+gq+vrzyRQ69evQAUPJGDUqmUs6EMwTGpiIynzAWphg8fjjVr1mDSpEmm6gIVsbyCVDdv3kRWVhasrEw6JFqJUVAmFQCNIJU+pX4SqW0GqUovZlIRERGZN3MbNN3JyQm1atXSWObg4AB3d3d5uTSRg5ubG5ydnTF69OginciB5X5ExlPmglRpaWlYvHgx9u3bhzp16sDa2lpj/ezZs03UMzKWnOV+Pj4+UCqVSE9Px507d/QuWSutCsqkAgofpJLaZrlf6cWB04mIiMxbamoqAPMJUumiuCdyYLkfkfGUuSDVP//8g7p16wIAzp8/r7HOHNJbqWA5M6ksLCwQGBiIS5cu4dq1awxS/T9dMqliYmLk2n1mUpE2HDidiIjIvOW8djZHBw8e1Pi7uCdyYLkfkXFkZWXJs42WmSBVVFSUqQ5NxUTbB21wcLAcpGrXrp2pulai6JJJ9fjxY2zdulVjmT6kIBUzqUovlvsRERGZt5xVCKQ/lvsRGUf291BxB6ksivVoVKZo+6Dl4Om55ZdJ5eLigkGDBsHNzQ1ubm546aWXDAruubi4AHgxQwqVThw4nYiIyLxJ187mnEllaiz3IzKO7N8dCjOZgSFMlknVunXrfMv6Dhw4UIy9oaKQVyYVwCBVdlImlbYgFQCsWLGi0MeQAoXSxQ+VPsykIiIiMm/StTMzqQzHcj8i45C+W1hbW8PS0rJYj22yIJU0HpUkMzMTZ8+exfnz5zFo0CDTdIqMikEq3UiZVNrK/YxFeg6k54RKn4IGTmeQioiIqGRjJlXhsdyPyDhMNWg6YMIg1Zw5c7QunzJlCr9IlxIFlfsJIThIPgrOpDIGBqlKv7wGTre3twfAIBUREVFJx0yqwmO5H5FxmDJIVeLGpBowYACWLVtm6m6QEWjLpAoMDIRCoUBycjIePXpkqq6VGEKIYsmkYrlf6ZfXB4kUpJKmtSYiIqKSiZlUhZe93E8IYeLeEJkvBqmyOX78uEkeCDIulUolZ25k/6BVKpWoVKkSAJb8AS8uRjIzMwEwk6qki4yMRMOGDeHk5ARPT090794dly9f1tgmLS0N4eHhcHd3h6OjI3r16oW4uLhi6V9eA6dLQaqsrCz5tUZEREQlDzOpCk8KUgkheN1DVAhlstyvZ8+eGn8LIfDgwQOcPn0akyZNMlGvyFiyZ23k/KANDg7GnTt3cO3aNYSFhRV310oUKYvK2tq6SC9IGKQqvEOHDiE8PBwNGzZEVlYWPvnkE3To0AEXL16Un7tx48bht99+w8aNG+Hi4oJRo0ahZ8+eOHr0aJH3L68xqaQgFfDifSnN9EhEREQli7ahMkg/2a+D0tPTYWNjY8LeEJmvMhmkyvlFycLCAtWqVcPUqVPRoUMHE/WKjEUKhlhYWOR6YQcHB+PgwYPMpILmeFRFOT4Xy/0Kb/fu3Rp/r1ixAp6enoiOjkaLFi2QkJCApUuXYs2aNWjTpg0AYPny5ahevTpOnDiBxo0bF2n/8rqwtbGxgYWFBdRqNYNUREREJRjL/QpPyqQCXgSpnJycTNgbIvNVJoNUy5cvN9WhqRhkH48qZ/CFM/z9pzjGowL+u9hJTU2FSqUq9mlES6OEhAQA/z130dHRyMzMRLt27eRtQkJC4Ofnh+PHjxd5kErKXswZpFIoFLC3t0dycjIHTyciIirBWO5XeBYWFrCyskJWVhZn+CMqhDIZpJJER0fj33//BQDUrFkT9erVM3GPyBjyS1dmkOo/xTGzH6D5i1xqaip/VSoktVqNsWPHomnTpqhVqxYAIDY2FjY2NnB1ddXY1svLC7GxsVrbSU9P15h9JjEx0eA+5feek4JUHDydiIio5GImlXHY2toiOTmZM/wRFUKZDFI9fPgQ/fr1w8GDB+UvdfHx8WjdujXWrVsHDw8PU3WNjEDbzH4SBqn+U1yZVHZ2dlAoFBBCICUlhUGqQgoPD8f58+dx5MiRQrUTGRmJiIgIo/RJurDNPgaVhDP8ERERlXzMpDIOpVLJIBVRIUlBqpyTMhUHk83uN3r0aCQlJeHChQt4+vQpnj59ivPnzyMxMRFjxowxuN0vv/wSCoUCY8eONV5nSW+6BKni4uLK/EDexZVJpVAo5Auesv6YF9aoUaPw66+/IioqSp6pEgC8vb2RkZGB+Ph4je3j4uLg7e2tta2JEyciISFBvt25c8fgfuVV7gcwSEVERGQOmEllHNK4VCz3IzKcKTOpTBak2r17N+bPn4/q1avLy2rUqIF58+Zh165dBrV56tQpLFq0CHXq1DFWN8lA+ZUeubq6yplD169fL9Z+lTTFlUkF/HfBw8HTDSOEwKhRo7B161YcOHAAgYGBGutDQ0NhbW2N/fv3y8suX76M27dv5zmLpVKphLOzs8bNEFlZWcjIyADATCoiIiJzxdn9jEPK/GCQishwZTJIpVarYW1tnWu5tbU11Gq13u0lJyejf//+WLJkSZFnpVDB8sukAljyJymuTCoAzKQqpPDwcKxatQpr1qyBk5MTYmNjERsbKw9G7uLigmHDhmH8+PGIiopCdHQ0hgwZgrCwsGKb2Q9gJhUREZG5YrmfcUjXPfxhlshwZTJI1aZNG7z//vu4f/++vOzevXsYN24c2rZtq3d74eHh6Ny5s8bMWmQ6ugapTp06hevXr+sdmExNTUVWVlbhOmmghw8f4urVqwbfsvfbFJlUDFIZZsGCBUhISECrVq1QoUIF+bZ+/Xp5mzlz5qBLly7o1asXWrRoAW9vb2zZsqXI+yYFnywsLDSmXpZIvygySEVk/iIjI9GwYUM4OTnB09MT3bt3x+XLlzW2SUtLQ3h4ONzd3eHo6IhevXohLi7ORD0mIl2x3M84pCAfr3uIDFcmB07/4Ycf8NprryEgIAC+vr4AgDt37qBWrVpYtWqVXm2tW7cOZ86cwalTp3Ta3pgzapF2BaUrS0GqyMhIREZGol+/fli7dq1ObT9//hzBwcHw9fXFn3/+aZwO6+i3335D165dIYQwuI3GjRvj+PHjAIo3k4rlfoWjy3Nua2uLefPmYd68ecXQo/9kHzRdoVDkWs9MKqLS49ChQwgPD0fDhg2RlZWFTz75BB06dMDFixflz9xx48bht99+w8aNG+Hi4oJRo0ahZ8+eOHr0qIl7T0R5UavV+Y4vSbpjJhVR4ZXJIJWvry/OnDmDffv24dKlSwCA6tWr650JdefOHbz//vvYu3evzg+gMWfUIu0KyqTq1asXfv75Zzx9+hTJycnYt2+fzm3fvHlTLrVKSEiAi4uLUfqsi/3790MIARsbG4PesImJiThx4gSSk5Ph6OiI27dvAwAqVqxo7K7mwnK/0qugi1oGqYhKj927d2v8vWLFCnh6eiI6OhotWrRAQkICli5dijVr1qBNmzYAgOXLl6N69eo4ceJEkZcfE5Fhsn9GM5OqcKTrIQapiAxXpsr9Dhw4gBo1aiAxMREKhQLt27fH6NGjMXr0aDRs2BA1a9bEH3/8oXN70dHRePjwIerXrw8rKytYWVnh0KFD+O6772BlZQWVSpVrH2POqEXaFRSkqlevHm7duiWXez5+/FjnjDYp+wgo/jGtpOPNmTNH4zWk6y37gPEqlQo3btwA8F9mWVFiuV/pVVDmIoNURKVXQkICgP/KxqOjo5GZmanxo19ISAj8/PzkLF4iKnmk6zOFQmGSKd9LE5b7ERVemQpSzZ07F2+//bbWWaxcXFzwzjvvYPbs2Tq317ZtW5w7dw5nz56Vbw0aNED//v1x9uxZWFpa5trHWDNqUd50nZ3EyckJHh4eAHQPOEnjOOmzj7FIxzM0qJR9wPi7d+8iMzMT1tbWcslrUWK5X+mVvdxPGwapiEontVqNsWPHomnTpqhVqxYAIDY2FjY2NnB1ddXY1svLC7GxsXm2lZ6ejsTERI0bERWf7NfO2kr3SXcs9yMqPGlyKG3j3Ra1Yg9S/f3333jllVfyXN+hQwdER0fr3J6TkxNq1aqlcXNwcIC7u7t8wUbFr6BMquz0nenPVJlUQghcv34dgHGCVFLfAwICtAZTjY3lfqUXy/2Iyqbw8HCcP38e69atK3RbkZGRcHFxkW/F8eMJEf1H1x94qWAs9yMqPOl7Q14/ghelYg9SxcXFwdraOs/1VlZWePToUTH2iIpCUQapTJVJ9eDBAzx//hyWlpbw9/c3qA1tQariKPUDWO5XmjGTiqjsGTVqFH799VdERUWhUqVK8nJvb29kZGQgPj5eY/u4uDh4e3vn2R6HQiAyLen6jEGqwmO5H1HhmTJwXuwDp/v4+OD8+fOoXLmy1vX//PMPKlSoUKhjHDx4sFD7U+Hp86I2l0wq6Vh+fn75BlrzExQUJLcllWIUd5CKvyqVPhyTiqjsEEJg9OjR2Lp1Kw4ePIjAwECN9aGhobC2tsb+/fvRq1cvAMDly5dx+/ZthIWF5dmuUqk0SUo/Eb0gfZZz0PTCY7kfUeGZ8pxU7EGqV199FZMmTcIrr7ySaxCu58+fY/LkyejSpUtxd4uMrDRmUhkj8yn7fS3uIBXL/UovlvsRlR3h4eFYs2YNtm3bBicnJ3mcKRcXF9jZ2cHFxQXDhg3D+PHj4ebmBmdnZ4wePRphYWGc2Y+oBGMmlfGw3I+o8MpUJtVnn32GLVu2oGrVqhg1ahSqVasGALh06RLmzZsHlUqFTz/9tLi7RUZWXGNS3blzBxkZGbCxsTGgl/oxZpDq1q1b8mPDcj8qLJb7EZUdCxYsAAC0atVKY/ny5csxePBgAC9moLWwsECvXr2Qnp6Ojh07Yv78+cXcUyLSBzOpjIflfkSFZ8rAebEHqby8vHDs2DGMHDkSEydOhBACwIvpVjt27Ih58+bBy8uruLtFRmZIuZ+uAafsmVRCCNy8eRNVq1YtRG91Y4wgVcWKFaFUKpGeno5//vmn0O3pg+V+pRczqYjKDum6KT+2traYN28e5s2bVww9IiJj4MDpxsNyP6LCK1OZVADg7++PnTt34tmzZ7h69SqEEKhSpQrKlStniu5QEdAnk8rLywsODg5ISUnRKeCUPZMKeBE8MpcglYWFBYKCgvDvv//Ky6Rxqooay/1KL45JRUREZN5Y7mc8LPcjKjxTBqmKfXa/7MqVK4eGDRuiUaNGDFCVMvoEqRQKhcaA4gWRMqnc3d113scYjDUbX/b9K1asCDs7u0K1pyuW+5VeLPcjIiIybyz3Mx4GqYgKRwhRdoNUVDqpVCqkpaUB0P1Frc+4VFImVYMGDXTep7ASEhLw5MkTAIXPfMoepCquUj+A5X6lGcv9iIiIzBszqYyHY1IRFU56ejrUajUABqmolMgeBNH11yBdg1RCCDmTqjiDVNIxPD094eTkVKi2TBWkYrlf6cVMKiIiIvPGTCrj4ZhURIWT/b3DIBWVClIQxNLSEkqlUqd9dA1SJScnIysrCwDQsGFDnfYxBmOV+uVswxSZVAxSlT4ck4qIiMi8MZPKeFjuR1Q40ntHqVTCyqr4hzE3ycDpVLpl/8KsUCh02kfXIJWURaVUKlGrVi0AwPXr16FWq2FhYbyYa2ZmJu7fvy///ddff2n0szBMnUn1/PlzqFQqWFpaFtuxqWjpU+4nhND5fUlERETFg5lUxsNyP6LCMXXQnEEqMjpDXtRSsKaggJM0HlW5cuXg5+cHS0tLpKWl4cGDB/Dx8Slkz19QqVSoW7cuLl68mGc/CyMgIAAKhQJCCJNkUgEvPrQLW7ZIJYeu5X5CCKSnp8PW1rbY+kZEREQFM+UgxaWNdN2TmZmJzMxMWFtbm7hHRObF1OcjlvuR0d29excA4OXlpfM+OQNOeZEyqdzc3GBtbQ1/f38Axi35u3v3rhygsrOzk28VK1ZEt27dCt2+UqnEkCFD0LhxY7z00kuFbk9XdnZ2cgYNS/5Kl4IyqbLPIMlfFYmIiEoeU2cuGCIyMhINGzaEk5MTPD090b17d1y+fFljm7S0NISHh8Pd3R2Ojo7o1asX4uLiirRf2R9DlvwR6Y9BKip1DBm/SdeAU/ZMquzHMGaQSmqratWqSE1NlW/37t1DvXr1jHKMpUuX4vjx4zqP2WUMCoWCNfqlVEEfJNbW1vKviAxSERERlTzmWO536NAhhIeH48SJE9i7dy8yMzPRoUMHjevMcePGYceOHdi4cSMOHTqE+/fvo2fPnkXaLxsbG3lYC173EOmPQSoqdQwdZFyXgFP2TCpd99GXMQdJL2k4eHrpVFC5X/Z1vFgjIiIqecwxk2r37t0YPHgwatasiZdeegkrVqzA7du3ER0dDQBISEjA0qVLMXv2bLRp0wahoaFYvnw5jh07hhMnThRZvxQKBWf4IyoEBqmo1CnKIJWUScUglWEYpCqdCir3A/4LUj1//rxY+kRERES6M8dMqpwSEhIA/HedHh0djczMTLRr107eJiQkBH5+fjh+/LjWNtLT05GYmKhxMwSrB4gMZ+rzEYNUZHTFkUlVHOV+pTFIxQ/s0kelUiE9PR0AM6mIiIjMlakzFwpLrVZj7NixaNq0qTwDd2xsLGxsbODq6qqxrZeXF2JjY7W2ExkZCRcXF/nm6+trUH84wx+R4Ux9PmKQioxKpVLhxo0bAJhJVRIxk6r0yR5w1CWTihdrREREJYsQQr42M9dMqvDwcJw/fx7r1q0rVDsTJ05EQkKCfLtz545B7bDcj8hwpi4/tjLJUanUunv3rjzVq76/fBiSSRUUFATgRfAqPj4+1y81+hJCMEhFZkUKOikUCtja2ua5HYNUREREJVNGRgZUKhUA88ykGjVqFH799VccPnwYlSpVkpd7e3sjIyMj1zV6XFwcvL29tbalVCqNMrEQqweIDMdMKipVpABPQECAPKuGrnIGnLTJmUnl6OgILy8vjWMXxpMnT+Ta98DAwEK3V9LwA7v0yT5oukKhyHM7BqmIiIhKpuw/HppTkEoIgVGjRmHr1q04cOBArmvn0NBQWFtbY//+/fKyy5cv4/bt2wgLCyvSvvGal8hwDFJRqVKYLCRdAk45M6myH8sYQSqpDR8fH9jZ2RW6vZKGmVSGO3z4MLp27YqKFStCoVDgl19+0VgvhMDnn3+OChUqwM7ODu3atUNMTEyR90uXQdMBBqmIiIhKKukLoVKphJWV+RS6hIeHY9WqVVizZg2cnJwQGxuL2NhYeZIWFxcXDBs2DOPHj0dUVBSio6MxZMgQhIWFoXHjxkXaN173EBmOQSoqVQpbKldQwClnJhUAVK5cOd999FGaS/0ABqkKIyUlBS+99BLmzZundf2sWbPw3XffYeHChTh58iQcHBzQsWNHpKWlFXm/gII/RKSgKy/WiIiIShZTj/9iqAULFiAhIQGtWrVChQoV5Nv69evlbebMmYMuXbqgV69eaNGiBby9vbFly5Yi7xszqYgMZ+oglfmE6sksGCNIdezYMZNnUpXWIBU/sA3XqVMndOrUSes6IQTmzp2Lzz77DN26dQMA/PTTT/Dy8sIvv/yCfv36FVm/spf75Ye/KBIREZVMpp7u3VBCiAK3sbW1xbx58/L8ka+o8JqXyHCmPieZfSZVZGQkGjZsCCcnJ3h6eqJ79+64fPmyqbtVZhVlJpVKpUJCQgIAzUwqBql0x0yqonHjxg3ExsaiXbt28jIXFxe8/PLLOH78eJEem+V+RERE5s3UWQulEa97iAxn6uxOsw9SHTp0COHh4Thx4gT27t2LzMxMdOjQgVFzEzDGzHj5BZyyD6aefYYQYwaprl69qtFmacMgVdGIjY0FAHlMNYmXl5e8Tpv09HQkJiZq3PTFTCoiIiLzJl2XmVsmVUnGTCoiw5k6cG72Qardu3dj8ODBqFmzJl566SWsWLECt2/fRnR0tKm7VuZknxlPmqlPX/kFnKTxqJydnTUGlZT2uXv3LtLT0w06rqS0Z1LxA7tkiYyMhIuLi3zz9fXVuw1dP0QYpCIqPUrqRA5EZBhTfyEsjXjNS2Q4U5+TzD5IlZO2cjAqHlKAp2LFigbPjJdfwEnbeFQAUL58eTg5OUEIgT///BP379/H/fv38fDhQ72OnZKSIme9lNYgFTOpioa3tzcAIC4uTmN5XFycvE6biRMnIiEhQb7duXNH72Oz3I+o7CmpEzkQkWGka1xnZ2cT96T04HUPkeEYpDIitVqNsWPHomnTpqhVq1ae2xmjxIZyu379OoDCBXg8PDzg6OgIIQRu3LihsU7bzH4AoFAo5GO2aNECPj4+8PHxgZeXFz755BO9++/q6lpqg5xSkCopKcnEPSldAgMD4e3tjf3798vLEhMTcfLkSYSFheW5n1KphLOzs8ZNXyz3Iyp7OnXqhOnTp6NHjx651uWcyKFOnTr46aefcP/+/VwZV0RUMty/fx/Aix96yTiYSUVkOAapjCg8PBznz5/HunXr8t3OGCU2lJsxSuWyB5xylvxJWSYVKlTItd9bb70FW1tbWFlZwcrKChYWL17aO3fu1PnYpb3UD/hvzCTpYoh0l5ycjLNnz+Ls2bMAXgyWfvbsWdy+fRsKhQJjx47F9OnTsX37dpw7dw4DBw5ExYoV0b179yLtFzOpiCg7Qydy4A94RKYjXZf5+PiYuCelB4NURIZjkMpIRo0ahV9//RVRUVGoVKlSvtsao8SGcjNWkCevIFV+7Y8fPx7Pnz9HZmYmMjMzcf78eXkfXabHLaj90kK6b/fu3WPZh55Onz6NevXqoV69egBevObq1auHzz//HAAwYcIEjB49GiNGjEDDhg2RnJyM3bt3w9bWtkj7xTGpiCg7Qydy4A94RKbDTCrj43UPkWGEEPL3C1NN5mBV8CYlmxACo0ePxtatW3Hw4EEEBgYWuI9SqYRSqSyG3pUtpgxS5RQYGAiFQoHk5GQ8evQInp6eBe5TFoJU0vhdSUlJuHHjBqpXr27qLpmNVq1a5RvwVCgUmDp1KqZOnVqMvWK5HxEZx8SJEzF+/Hj578TERAaqiIoJg1TGx0wqIsOkpaVBrVYDYCaVwcLDw7Fq1SqsWbMGTk5OiI2NRWxsLJ4/f27qrpU5JSlIZWtrK6dMa5spUJuyEKTKr5ySzBPL/YgoO0MncjDGGHlEZBgGqYyPQSoiw2R/zzBIZaAFCxYgISEBrVq1QoUKFeTb+vXrTd21MuX58+fyB2xRBKmEEHoHkfQNxpSFIBUABAUFAWCQqrRgJhURZWfoRA5EZBoZGRl49OgRAAapjIlBKiLDSO8ZpVIJS0tLk/ShVJT7kelJM+O5uLgUemY8KUh048YNqNVqWFhY4MmTJ0hMTIRCodCppFNq59ChQzoFY7KysnDr1i2N45dWzKQqXTgmFVHZk5ycjKtXr8p/SxM5uLm5wc/PT57IoUqVKggMDMSkSZOKZSIHItKfNFactbU13N3dTdyb0oPXPUSGMfWg6UApCFJRyZA9C0mhUBSqLV9fX1hZWSE9PR337t2Dr6+v3L6Pj4/OA1FLwRgpgJafO3fuICsrC0qlstTPrMIgVenCcj+isuf06dNo3bq1/Lc0ltSgQYOwYsUKTJgwASkpKRgxYgTi4+PRrFmzYpnIgYj0l73Ur7DX0PQfZlIRGYZBKio1jFkqZ2VlhYCAAFy9ehXXrl3TCFLp074+wRhpm8DAQFhYmH0VbL4YpCpdWO5HVPaU1IkciEh/9+7dA8BSP2OTvmBnZWUhIyMDNjY2Ju4RkXkoCUGq0v1tnIqNscdzyhlIkf6VxlMypI38lJXxqADNckqVSmXi3lBh6ZtJlX3GDiIiIjItDppeNLL/eMcf6Ih0JwWpHB0dTdYHBqnIKIorSGVIJlVsbGyBqb5lKUgllVNmZGTIv96R+dJ3TCoAnP2UiIiohGCQqmjY2NjIgz6z5I9Id8nJyQCYSUWlQEkMUpUrVw7lypUDUPC4VGUpSCWVUwIs+SsNdC33s7Ozy7UPERERmRaDVEVDoVBwXCoiA7Dcj0oFlUqFmzdvAihZQSpt7eSlLAWpAP0GlaeSKy0tDU+fPgUAeHl55buthYUFypcvD+C/mYSIiIjItKQgVWmfuMcUOB4nkf4YpKJS4c6dO8jMzISNjY3RPmCzB5dSU1Px4MEDjeWGtJMXIUSZDVIxk8q83b59G8CLDxE3N7cCt/f39wcAOahMREREpsVMqqLDTCoi/TFIRaVC9pnxpNrvwpIGSI+Pj0d0dDQAwNXVVacv4tnpEox59OgRkpOToVAoEBgYaGCPzQuDVKWDFGwKCAjQadpqqcyTQSoiIqKSgUGqosMgFZH+SkKQyspkRyazpVar8eTJE/nvf/75B4Bxs5Ds7e1RoUIFPHjwANu3bze4fWmfS5cu4dGjR1q3OXPmDACgUqVKUCqVBvbYvEiPy5UrVzQeFwcHhwLHNpI8ffoUKpUKtra2cHJyKpJ+Uv6yB6l0wSAVERFRyZGamor4+HgADFIVBZb7EemvJMzuxyAV6a1t27Y4ePBgruXGLpULDg7GgwcP8PXXXxvcvrRPVFQUPD09ddq2LJDu69mzZzUeF1tbWxw7dgz16tXLd/8PPvgAs2fPBgBYWlpi8+bN6NatW9F1mLRikIqIiMh8SVlU9vb2cHZ2NnFvSh9mUhHpryRkUrHcj/SSlJSkNUDl5OSE7t27G/VYb7zxBqytrQG8mJmsT58+erfRoEED1KhRo8DtrK2t0a9fP73bN1fVqlXDyy+/nGt5Wloa9u/fX+D+UnYb8GLg/N27dxu1f6SbW7duASg7QSqVSiVPi0tERGTuspf66VK2T/qRMkESExNN3BMi8yFdazNIRWZDGsOofPnyEELIt8TERLRp08aox3rvvfeQkZEBIQRSU1PRu3dvvdtwcHDAhQsXNPqq7ZaRkYF33nnHqP0vyaytrXHixAmNx+DTTz8FUPA4VVlZWXKQIyIiQqd9qGgYmkklBbfMiRAC3bt3h5eXF06dOmXq7hARERUax6MqWr6+vgDM87qHyFSYSUVmp6zNgleW6DqY+p07d5CVlQUbGxu0aNFCp32oaOgbpJJm93v69KnZ/ar4888/49dff0VqaipGjBiBrKwsU3eJiMzI9evXcfHiRVN3g0gDg1RFq3LlygCAmJgYE/eEyHwwSEVmh0Gq0kvXIFX22RyrVKkC4MUvVJmZmUXbQdKQnp4uX9zqGqRycnKCu7s7APP6VfHJkyf44IMPAAAKhQJnz57Ft99+a+JeEZG5uHbtGurWrYu6desyE5NKFOmaikGqoiFdpzJIRaQ7BqnI7DBIVXpJz2lBAafsr4EKFSrA1tYWKpUKt2/fLpZ+0gvS421vby8HnnQhZVOVlHGpjhw5grfffhvDhg3DqFGjcPfu3VzbfPTRR3j8+DFq1qyJ+fPnAwA+//xzvuaIqECZmZno378/kpKSkJmZiTfffJNj21GJoFKpsGXLFgBAy5YtTdyb0kkKUl29ehVCCBP3hsg8lIQgFWf3I70wSFV6SQGntLQ03L59O8/nOPtrwMLCAkFBQbh48SKuXbvG10Uxyl7qp89gqwEBAThz5kyJCFI9efIEPXr0wOPHj+Vl//77L/bt2yffpz/++ANLly4FACxatAhhYWFYvXo1jhw5glGjRmHbtm0cbJaI8jRt2jScPHkSLi4ucHJywtWrVzFixAgMHToU9vb2CAsL4zmE9HLu3DnExcVpLKtUqRJCQkL0aufAgQOIjY2Fm5sbXnnlFWN2kf5fQEAALC0t8fz5c9y/fx8+Pj6m7hJRiaZWq3Hjxg0AL74bmgozqUgvDFKVXlLACci/5C/na0DXMkEyLn3Ho5KUpBn+JkyYgMePHyMkJATTp0+HnZ0dDhw4gFWrVgGAxoQGb7/9Npo2bQoLCwssXLgQVlZW2LFjB3755RcT3gMiKsmOHDmCGTNmAHgR5F61ahUUCgXWrl2L9u3bo2nTppg0aZKJe0nmZOvWrahTpw7at2+vcatVq5bW2a/zs3r1agBA3759YWNjUwS9JWtra/m6hyV/RAW7evUqkpKSYGtri+rVq5usHwxSkc4yMjLk8hoGqUonXQJODFKVDCUhSJWSkoIHDx7gwYMHeg9kfvjwYSxbtgwAsHTpUnz66af4/PPPAQDjx49HTEwMZsyYgX///Reenp748ssv5X1r1qyJCRMmAABGjx6NpKSkXO2r1WrExsbiwYMHZjdIPBEVXnx8PPr37w+1Wo2BAwfi9ddfR8uWLfHdd9/hpZdeQq1atQAAX3zxBQ4dOmTi3pI5uHfvHoYPHw4ACAoKQp06dVCnTh34+/tDpVLhrbfewrNnz3RqKzU1VS7169+/f5H1mTRL/ogof6dPnwYA1K1bF1ZWpiu6Y7kf6ezWrVtQq9Wwt7eHt7e3qbtDRaCggJMQgkGqEkIa+NxUQaozZ86gWbNmeP78OQCgRo0aOHXqFOzt7QvcNyMjA++++y4A4J133kGTJk0AAB988AFWr16N8+fPo2rVqvL2s2fPhpubm0Ybn332GdatW4fr169j0qRJmDt3rrxOrVajY8eO2LdvH4AXWYK//PILunbtWqj7TETmQQiB9957D7dv30ZQUBB++OEHed2oUaMwatQoAMDQoUOxfPlyvPXWW9iwYQOsra1zteXp6SlPY0+mc+/ePZQvXx5KpdLgNtLS0nDx4kUIIWBnZ4fq1avnWeqZmpqKS5cuaYxj9NFHH+Hp06cIDQ3FsWPH5Oyn5ORk1K9fHzExMRg+fDg++eQTeR8LCwvUqFEjV7937NiBpKQkBAQEyJ+BVDQ4wx+R7qKjowEAoaGhpu2IIJGQkCAAiISEBFN3pUTbtWuXACBq1apl6q5QEfn+++8FANG9e3et6+Pi4gQAoVAoxPPnz4UQQuzcuVMAELVr1y7OrpZK+pyLmjZtKgCIDRs26HWMf/75RwAQ7u7uhnZTZGZmivr168uvBQACgJg4caJO+0+fPl0AEJ6enuLp06ca606ePCnc3d2FpaWlsLS0FP369RNqtVprO3v27BEAhIWFhYiOjpaXL168WO6ThYWFACB8fHxEYmKiwfeZqKwx52ujn376SQAQlpaW4vjx43lul5SUJCpXriyfL7TdrKysxKFDh4qx95TT9u3bhaWlpWjVqpXIzMw0qI3MzEzRvHlzjec2MjJS67ZpaWkiNDRU6+vB3t5eXLp0Kdc+f/75p7CystK6T5s2bURWVpa8rUqlEs2aNRMAxCeffGLQ/SlLCnsu+vbbbwUA0aNHDyP3jKj0adGihQAgli9fbtJ+sNyPdCalybLUr/QqKCtKWu7j4wNbW1uNfa5fv86ZU4qRoeV+0ux+T5480Vomp4t58+bhzJkzcHV1xYMHD+Rxob766iucP38+332vXr2KadOmAQDmzp2LcuXKaaxv1KgRHj9+jKysLGRlZWHt2rV5/tLdoUMH9OvXD2q1GiNGjIBKpUJcXJxcCjhnzhwkJycjODgY9+7d49gzRGXA9evXER4eDgCYPHkyGjdunOe2jo6OWL9+PWrUqAFfX99ct/LlyyMrKwsDBgzQuYyLjOvBgwcYMmQIVCoVDh48qFH6rY/p06fjjz/+gI2NjTx49meffYaTJ0/m2vaTTz5BdHQ0bG1tNV4PQUFBWLp0KapVq5Zrn4YNG+L7779HQECAxj7W1tY4cOAAZs2aJW/79ddf48iRI7C3t5fLB6no6Fvul5SUhI0bN3KoACpz1Go1/vrrLwCmz6RSiFLyrXLevHn46quvEBsbi5deegnff/89GjVqpNO+iYmJcHFxQUJCApydnYu4p+Zr3LhxmDt3LsaPH49vvvnG1N2hInDlyhVUq1YNDg4OSEpKyhUcWLVqFd566y20bNlSHiA0IyMDdnZ2UKvVePDgAUtBYfj5SNdzUXp6Ouzs7CCEwMOHD+Hh4aFX/9zd3fH06VOcO3dOHpcFeDEd9tdffy2PPaeNEAI///wzkpOTsWjRIowYMQIA0L17d2zbtg01atRAq1at8tz/6NGj+Pvvv9G+fXvs2bOn0LNqxcbGIiQkBAkJCejWrRvi4uJw4sQJ1KtXD3/++SesrKywd+9edOjQARYWFhg+fLheNfaWlpYYOHAgGjRooNP2KpUKc+bMkWdGkfj4+ODDDz/UWk5EVFTM+dpIrVbjzp07UKlUOu8jhMCAAQNw4sQJNGvWDAcPHoSlpaXBfUhOTka9evVw9epV9OnTJ88AScWKFeUfbopTXFwcUlJSoFAo4Ovrq9e5LTk5GQ8fPiySfknBGX1lZmbizp07GstGjhyJ33//HV5eXoiLi4OlpSWOHDkiBx/VajVu374NtVqdZ7v//vsvXnvtNajVaqxZswb9+vXDm2++iXXr1iEoKAi//fabXLp35swZ9OnTBwCwffv2QpeJr1ixAkOGDIGVlRV+/fVXWFpa4tVXX0VmZiaWLFlSpoJURX1tlJeYmBhUrVoVdnZ2SE5OhoVF3jkaT58+Rfv27XHmzBnUr18fe/fuzTXcAFFpdfnyZYSEhMDOzg6JiYkmHZOqVJT7rVu3TtjY2Ihly5aJCxcuiLffflu4urqKuLg4nfY355T24tS1a1cBQMybN8/UXaEikp6eLpdHPXjwINf6KVOmCABi6NChGsv9/f0FAHHkyJHi6mqJVZjzka7nopiYGLnsIK9SuPw0atRIABCTJ0/WWD579ux8y16y35o0aSJUKpW87+3bt4WDg4NO+9ra2oqrV6/q3e+8LFy4UKN9CwsLcerUKY1t3nzzTZ3vW85bxYoVdf58+OGHH/JsJ6/SEqKiYO7XRoMHDzb4Pevs7Cxu3rxplH6cPHlSWFpa5nu84OBg8ezZM6McT1dSSaN0a9Gihc6lcLdu3RIeHh4GP74F3Ro1aiTS09P1uj/p6eni5Zdf1tqenZ2duHjxoujXr58AIIKCgkRCQoJQq9WiT58+OvdrwIAB8vGePXsm/Pz88tx25MiRevU/L3n1sWfPngZ9fpur4rg2yktGRob8Hr5z506u9YmJiSIqKkrs379fHspAutWrV088efLEoOPqIy4uTu/jJCQkiKioKBEVFaW1BJVIX6tWrRIARFhYmKm7IkpFJtXLL7+Mhg0bygNjqtVq+Pr6YvTo0fj4448L3N/Uvxaai5o1a+LixYvYvXs3OnbsaOruUBEJCAjArVu3cOTIETRt2lRj3cCBA/Hzzz9jxowZGgODtm3bFgcOHMDKlSsxcODA4u5yiVKY85Gu56KHDx9i5cqVSE1NxeTJk/Xu4/r169GvXz/Y2Njg3LlzqFq1Ku7cuYPq1asjJSUFgwYNkssCtbGxscHgwYPlkgnJsWPHsGfPngKP36ZNG7Rs2VLvfudFrVZj2bJl8i/wL7/8Ml599VWNbRITE7FgwQKkpqbq1fbPP/+MGzduYPTo0fjuu+/y3fb+/fuoXr06EhMT8dZbbyEwMBDAiwF/ly5dCjs7O5w/fx5BQUF69YHIEOZ8bSRl7QKAg4ODXvva2tpi8eLF6Nmzp9H68/3332PSpElaZzFNT09HVlYWXn/99XzLk40pJiYG9erVQ0pKCuzs7JCeng61Wo3PP/8cERER+e6rUqnQunVr/PHHH7C2tpYziIzl+fPnUKvV+PDDDzVK3AoyYcIEfPXVV7CwsICdnZ283MbGBnPnzsXAgQMRHx+PunXr4tatWxg4cCCaNm2Kd955BwqFosBJO2rVqoU9e/bAxcVFXnbs2DH07t07V1lXgwYNsHPnTp0mAtHFs2fP0KFDB/z7778AgGrVqpW5DJ3iuDbKT5UqVXD16lVERUVpZHv/+++/aNOmDWJjY+VlHh4emD9/Pt577z08evQI9erVw759+4rs+Tpw4AC6du0Ka2tr7NmzBy+//HKB+1y4cAFt2rTRyIacPn06Pv300yLpI5UN48ePx5w5czBq1Ch8//33Ju2L2QepMjIyYG9vj02bNqF79+7y8kGDBiE+Ph7btm0rsA1dT37JycnIzMw0RrfNjhACPj4+SEtLQ0xMjDxTBpU+UsBpwYIFeP311zXWderUCSdPnsS6des01o0YMQJLlizBhAkTdPrykxdXV9diucAvKoU9HxXXl0IhBF599VXs3r0brVu3xqZNmzB06FBs27YNTZs2xeHDh/NNhy9L9u3bh/bt20OhUODgwYOoXbt2ntuOGDECmzZtQqNGjXDs2DG5zEgIgbZt2yIqKgqvvPIK1qxZU1zdJwMplUqjfUE1heK8NkpJSUFGRoYxug3gRbA3LCwMSUlJiIiIwOeff260tovCyZMn0bRpU6hUKixZsgS9evUq0uOpVCq8+uqrOHXqFFq2bIn9+/djw4YNePPNN2FhYYHff/8d9evXz3P/7/+PvfsOi+J63wZ+Lx3pSldE7Ar2gphgiUTE3tHYsGDiT2MsiZHEWJPYEjUxRqNRTCzBXhKNvcUaa+xGCXYBG0WQuuf9w3fny9IXFmZ3uT/XNdfFzszOPmdm9+zw7CmLF2PatGmwtrbGpUuXtD7O6Pbt29GjRw8AwK5du+Dn51fgc06dOoVOnToBALZt26b2ns3u+PHjaN26NZRKJUxNTZGeno758+fj448/1kr8pH26cG8UFBSEPXv24LvvvpMS4Hfv3kVQUBBiYmLg5OQER0dHuLm54fvvv4e3tzeuXbuGtm3b4unTp2jYsCF27NgBGxubIr1+Xs6cOYOePXtKMyXb2tri999/z/de47///kNQUBCePn0KJycnODg44N9//wUAzJw5U5q9lEhTXbp0wYkTJxAeHo6QkBBZY9H7JNXjx49RsWJFnDx5Uu2LcNKkSTh69GiuAyKmpqYiNTVVehwfH4/KlSvjwYMH+VZ+ISEh2LZtm3YLoGeMjIwQGxvLcVUM2NixY/HLL7/ku8/hw4fVboIXLlyI6dOnF/u1Y2NjCz29tI2Njc4ltDStj4paF2nD3bt34evri5SUFGmdsbExTpw4gTp16pToa+ub0NBQbNy4sVD7GhkZ4ejRo6hfv77a+jt37qBFixZl9ocOfTNq1KhCD9BsCHURUPT6aNy4cQgPD9duAfCm5cXu3bvlHROjkObPn48vv/yyVF/T3t4eJ06cQKVKlQC8SZJv2LCh0M9funQp3nvvvRKJrajviZCQEHz33XcF7vfVV19JrbTatGmDbdu28YeV/88Q6qOSuDeaNGkSfvrpp1y3+fj44Pfff8+1pdTNmzfRqVMnPHv2rEivW1jvvvsukpKScPLkyUI/p379+tixYwfKly+PBQsWFNiKkqiwTp48CW9v72Ido9h1kWwdDbXk0aNHAoA4efKk2vpPPvlENG/ePNfnTJs2rcT64XPhwqV0Fl0cQ07T+oh1ERcu+r8YQl0kBOsjLlwMYTGE+oh1ERcu+r8Uty7S/Z+nCuDo6AhjY2PExMSorY+JiclzlrGwsDBMmDBBeqxUKvHixQtUqFBB5359KI6EhAR4eHiUSquMsoTnteRocm613eRaGzStj4pTFxnq+5Dl0j+GWrbClssQ6iKg6PWRoV5/wHDLxnLpF94b8d6I5dI/hlq20ro30vsklZmZGZo0aYKDBw9K/ZyVSiUOHjyYZ59cc3PzHF2K7O3tSzhS+dja2hrUh0NX8LyWHH09t5rWR9qoi/T1XBWE5dI/hlo2fSyXHPdG+nieCstQy8Zy6Rd9LRfvjbSH5dI/hlq2ki6X3iepgDcj0Q8ZMgRNmzZF8+bNsWjRIiQlJWHo0KFyh0ZEZQzrIyLSBayLiEhXsD4iIk0YRJIqODgYT58+xdSpUxEdHY2GDRtiz549cHFxkTs0IipjWB8RkS5gXUREuoL1ERFpwiCSVAAwZswYTrmZjbm5OaZNm1bo2dKocHheS46hnNvSqI8M5Vxlx3LpH0MtmyGUi3VR8Rhq2Vgu/WIo5WJ9VHQsl/4x1LKVVrkUQghRoq9ARERERERERERUACO5AyAiIiIiIiIiImKSioiIiIiIiIiIZMckFRERERERERERyY5JKiIiIiIiIiIikh2TVGXA3bt3MXz4cHh5ecHS0hLVqlXDtGnTkJaWJndoemnJkiWoUqUKLCws4Ovri7///lvukPTe7Nmz0axZM9jY2MDZ2Rndu3fHrVu35A5Ldpq+1zZt2oTatWvDwsIC9erVw+7du0sp0sIpynVevXo1FAqF2mJhYVFKERfO9OnTc8RYu3btfJ+j69dKpUqVKjnKplAoMHr06Fz319XrdezYMXTp0gXu7u5QKBTYvn272nYhBKZOnQo3NzdYWloiICAAt2/fLvC4hvp9oO26p6jnV9s0KdeKFSvg7+8PBwcHODg4ICAgIMf+ISEhOd7vHTp0KOli5KBJuQrzGdWV6wVoVrY2bdrkWl916tRJ2kfua1ZQXZSbI0eOoHHjxjA3N0f16tWxevXqHPsYal0EsD4CWB/p2/XSh7oI0PH6SJDB+/PPP0VISIjYu3eviIyMFDt27BDOzs5i4sSJcoemdyIiIoSZmZlYtWqVuHbtmggNDRX29vYiJiZG7tD0WmBgoAgPDxdXr14Vly5dEh07dhSVK1cWr169kjs02Wj6Xjtx4oQwNjYW8+bNE9evXxdTpkwRpqam4sqVK6Uced6Kcp3Dw8OFra2tePLkibRER0eXYtQFmzZtmvD29laL8enTp3nurw/XSiU2NlatXPv37xcAxOHDh3PdX1ev1+7du8Xnn38utm7dKgCIbdu2qW2fM2eOsLOzE9u3bxf//POP6Nq1q/Dy8hKvX7/O85iG+n1QEnVPUc6vtmlarvfee08sWbJEXLx4Udy4cUOEhIQIOzs78fDhQ2mfIUOGiA4dOqi931+8eFFaRRJCaF6uwnxGdeF6CaF52Z4/f65WrqtXrwpjY2MRHh4u7SP3NSuoLsruv//+E+XKlRMTJkwQ169fF4sXLxbGxsZiz5490j6GWhcJwfpIhfWRfl0vfaiLhNDt+ohJqjJq3rx5wsvLS+4w9E7z5s3F6NGjpceZmZnC3d1dzJ49W8aoDE9sbKwAII4ePSp3KLLR9L3Wt29f0alTJ7V1vr6+4v333y/ROIujMNc5PDxc2NnZlV5QRTBt2jTRoEGDQu+vj9dK5aOPPhLVqlUTSqUy1+36cL2y34gplUrh6uoq5s+fL62Li4sT5ubm4rfffsvzOIb6faDtuqeo51fbinu9MjIyhI2Njfjll1+kdUOGDBHdunXTdqga0bRcBX1GdeV6CVH8a7Zw4UJhY2Oj9kOILlwzlcL8Uzhp0iTh7e2tti44OFgEBgZKjw21LhKC9VFeWB/p1/XS9bpICN2rj9jdr4yKj49H+fLl5Q5Dr6SlpeH8+fMICAiQ1hkZGSEgIACnTp2SMTLDEx8fDwBl9j1alPfaqVOn1PYHgMDAQJ1+bxb2Or969Qqenp7w8PBAt27dcO3atdIITyO3b9+Gu7s7qlatigEDBuD+/ft57quP1wp4875cu3Ythg0bBoVCked++nC9soqKikJ0dLTaNbGzs4Ovr2+e18RQvw9Kou4pyvnVNm1cr+TkZKSnp+eor44cOQJnZ2fUqlULo0aNwvPnz7Uae36KWq78PqO6cL0A7VyzlStXol+/frCyslJbL+c101RBny9DrYsA1kf5YX2kX9fLEOoioHTrIyapyqA7d+5g8eLFeP/99+UORa88e/YMmZmZcHFxUVvv4uKC6OhomaIyPEqlEuPGjcNbb70FHx8fucORRVHea9HR0Xr13izsda5VqxZWrVqFHTt2YO3atVAqlWjZsiUePnxYitHmz9fXF6tXr8aePXuwdOlSREVFwd/fH4mJibnur2/XSmX79u2Ii4tDSEhInvvow/XKTnXeNbkmhvp9UBJ1T1HOr7Zp43p9+umncHd3V7v57tChA3799VccPHgQc+fOxdGjRxEUFITMzEytxp+XopSroM+oLlwvoPjX7O+//8bVq1cxYsQItfVyXzNN5fX5SkhIwOvXrw22LgJYH+WH9ZH+XC9DqYuA0q2PTIodLclm8uTJmDt3br773LhxQ20A30ePHqFDhw7o06cPQkNDSzpEIo2NHj0aV69exfHjx+UOhUpQYa+zn58f/Pz8pMctW7ZEnTp18NNPP2HWrFklHWahBAUFSX/Xr18fvr6+8PT0xMaNGzF8+HAZI9OulStXIigoCO7u7nnuow/Xi0hTc+bMQUREBI4cOaI2qG+/fv2kv+vVq4f69eujWrVqOHLkCNq1aydHqAUqK5/RlStXol69emjevLnaen28ZkRZsT7SL6yLioYtqfTYxIkTcePGjXyXqlWrSvs/fvwYbdu2RcuWLbF8+XIZI9dPjo6OMDY2RkxMjNr6mJgYuLq6yhSVYRkzZgz++OMPHD58GJUqVZI7HNkU5b3m6uqqN+/N4lxnU1NTNGrUCHfu3Cmh6IrP3t4eNWvWzDNGfbpWKvfu3cOBAwdy/BJYEH24Xqrzrsk1MdTvg5Koe4pyfrWtONfrm2++wZw5c7Bv3z7Ur18/332rVq0KR0fHUnu/a+N9mP0zqgvXCyhe2ZKSkhAREVGoHwlK+5ppKq/Pl62tLSwtLQ22LgJYH+WG9ZHmxywu1kX/U5r1EZNUeszJyQm1a9fOdzEzMwPwpgVVmzZt0KRJE4SHh8PIiJdeU2ZmZmjSpAkOHjworVMqlTh48KDarwCkOSEExowZg23btuHQoUPw8vKSOyRZFeW95ufnp7Y/AOzfv1+n3pvauM6ZmZm4cuUK3NzcSiBC7Xj16hUiIyPzjFEfrlV24eHhcHZ2Vps+uTD04Xp5eXnB1dVV7ZokJCTgzJkzeV4TQ/0+KIm6pyjnV9uKer3mzZuHWbNmYc+ePWjatGmBr/Pw4UM8f/681N7v2ngfZv+M6sL1AopXtk2bNiE1NRUDBw4s8HVK+5ppqqDPl6HWRQDro+xYH72hL9cLMKy6CCjl+kijYdZJLz18+FBUr15dtGvXTjx8+FBtqkvSTEREhDA3NxerV68W169fFyNHjhT29vY6McW6Phs1apSws7MTR44cUXt/Jicnyx2abAp6rw0aNEhMnjxZ2v/EiRPCxMREfPPNN+LGjRti2rRpOaZdllthrnP2cs2YMUPs3btXREZGivPnz4t+/foJCwsLce3aNTmKkKuJEyeKI0eOiKioKHHixAkREBAgHB0dRWxsrBBCP69VVpmZmaJy5cri008/zbFNX65XYmKiuHjxorh48aIAIBYsWCAuXrwo7t27J4R4M8W1vb292LFjh7h8+bLo1q1bjimu33nnHbF48WLpsaF+H5RE3VOY86tr5ZozZ44wMzMTmzdvVquvEhMThRBv3lMff/yxOHXqlIiKihIHDhwQjRs3FjVq1BApKSk6W67CfEZ14XoVpWwqb7/9tggODs6xXheuWUF10eTJk8WgQYOk/VVTvn/yySfixo0bYsmSJblO+W6IdZEQrI+yxsz6SH+ul4ou10WqOHS1PmKSqgwIDw8XAHJdSHOLFy8WlStXFmZmZqJ58+bi9OnTcoek9/J6f4aHh8sdmqzye6+1bt1aDBkyRG3/jRs3ipo1awozMzPh7e0tdu3aVcoR568w1zl7ucaNGyedAxcXF9GxY0dx4cKF0g8+H8HBwcLNzU2YmZmJihUriuDgYHHnzh1puz5eq6z27t0rAIhbt27l2KYv1+vw4cO5vvdUsSuVSvHFF18IFxcXYW5uLtq1a5ejvJ6enmLatGlq6wz1+0DbdU9hzm9p0KRcnp6eub5nVO+B5ORk0b59e+Hk5CRMTU2Fp6enCA0NlSUxoEm5CvMZ1ZXrJYTm78WbN28KAGLfvn05jqUL16ygumjIkCGidevWOZ7TsGFDYWZmJqpWrZrrvZGh1kVCsD4SgvWRvl0vIXS/LhJCt+sjhRBCaNb2ioiIiIiIiIiISLs4MBEREREREREREcmOSSoiIiIiIiIiIpIdk1RERERERERERCQ7JqmIiIiIiIiIiEh2TFIREREREREREZHsmKQiIiIiIiIiIiLZMUlFRERERERERESyY5KKiIiIiIiIiIhkxyQVERERERERERHJjkkqIiIiIiIiIiKSHZNUREREREREREQkOyapiIiIiIiIiIhIdkxSERERERERERGR7JikIiIiIiIiIiIi2TFJRUREREREREREsmOSioiIiIiIiIiIZMckFRERERERERERyY5JKipRR44cgUKhwObNm+UOpUCrV6+GQqHA3bt3NX5uSEgIqlSpojPxEFHuVHXSkSNHpHUl8fnNy927d6FQKLB69epSeT25zJ8/H1WrVoWxsTEaNmwIAMjIyMCkSZPg4eEBIyMjdO/eXdYYiYqC3/eAQqHA9OnT5Q6DiMqw0rx3o9LHJJUBUN3cWFhY4NGjRzm2t2nTBj4+PjJERoXx9ddfY/v27XKHQVRifvzxRygUCvj6+sodSqEkJydj+vTpaomssuLkyZOYPn064uLiinyMffv2YdKkSXjrrbcQHh6Or7/+GgCwatUqzJ8/H71798Yvv/yC8ePHaylqov9R3ROdO3dO7lBy0MXv+ypVqkChUEChUMDIyAj29vaoV68eRo4ciTNnzmjtddavX49FixZp7XhEVDKKWodOnz5dqksUCgVMTU1RpUoVjB07tsj3FI8fP8b06dNx6dKlIj2f9JeJ3AGQ9qSmpmLOnDlYvHix3KHopUGDBqFfv34wNzcv1df9+uuv0bt37xytCuSKh0jb1q1bhypVquDvv//GnTt3UL16dblDUrNixQoolUrpcXJyMmbMmAHgTZK/LDl58iRmzJiBkJAQ2NvbF+kYhw4dgpGREVauXAkzMzO19RUrVsTChQu1FC2RftHV7/uGDRti4sSJAIDExETcuHEDmzZtwooVKzB+/HgsWLBAbf/Xr1/DxESzfyHWr1+Pq1evYty4cdoKm4h00NKlS2FtbY2kpCQcPHgQixcvxoULF3D8+HGNj/X48WPMmDEDVapUkVplq2S/dyPDwpZUBqRhw4ZYsWIFHj9+LHcopS4pKanYxzA2NoaFhQUUCoUWIio+XYuHqCiioqJw8uRJLFiwAE5OTli3bp3cIeVgamrKZLAWxcbGwtLSUi1BpVpf1MQXkSGT+/u+YsWKGDhwIAYOHIhRo0bh+++/x3///Yfu3btj4cKFWLp0qdr+FhYWGiepiKhs6N27NwYOHIj3338fGzduRHBwME6cOIG///5bq6/DezfDxiSVAfnss8+QmZmJOXPm5LtffmOiZB9nQNV0899//8XAgQNhZ2cHJycnfPHFFxBC4MGDB+jWrRtsbW3h6uqKb7/9NtfXzMzMxGeffQZXV1dYWVmha9euePDgQY79zpw5gw4dOsDOzg7lypVD69atceLECbV9VDFdv34d7733HhwcHPD222/n+rrnzp2DQqHAL7/8kmPb3r17oVAo8McffwDIe0yIH3/8Ed7e3jA3N4e7uztGjx5dqGar33zzDVq2bIkKFSrA0tISTZo0yTE2l0KhQFJSEn755RepeWxISEix41F18bx+/Tratm2LcuXKoWLFipg3b16BcRNp07p16+Dg4IBOnTqhd+/euSapVHXSN998gyVLlqBq1aooV64c2rdvjwcPHkAIgVmzZqFSpUqwtLREt27d8OLFC7VjVKlSBZ07d8a+ffvQsGFDWFhYoG7duti6dWuBMWYd1+Du3btwcnICAMyYMUP6XKrqxTZt2uTauiq3sRHi4uIQEhICOzs72NvbY8iQIXnWHTdv3kTv3r1Rvnx5WFhYoGnTpti5c2eBsQOAUqnEd999h3r16sHCwgJOTk7o0KGD1FS/sHX+9OnT8cknnwAAvLy8pLKr6qCMjAzMmjUL1apVg7m5OapUqYLPPvsMqampascLDw9HUlKS9HxVXXb48GFcu3ZNWl8Wu1OSPKKjozF06FBUqlQJ5ubmcHNzQ7du3fh9nw9LS0usWbMG5cuXx1dffQUhhFpZst4rJiYmYty4cahSpQrMzc3h7OyMd999FxcuXJBi3LVrF+7duyeVXVVfpqWlYerUqWjSpAns7OxgZWUFf39/HD58WC2erN8Ty5cvl+qhZs2a4ezZszniv3nzJvr27QsnJydYWlqiVq1a+Pzzz9X2efToEYYNGwYXFxeYm5vD29sbq1atKtZ5IyJ1/v7+AIDIyEhp3YsXL/Dxxx+jXr16sLa2hq2tLYKCgvDPP/9I+xw5cgTNmjUDAAwdOlTtngLI/b4rKSkJEydOhIeHB8zNzVGrVi188803avUX6QcmqQyIl5cXBg8eXCKtqYKDg6FUKjFnzhz4+vriyy+/xKJFi/Duu++iYsWKmDt3LqpXr46PP/4Yx44dy/H8r776Crt27cKnn36KsWPHYv/+/QgICMDr16+lfQ4dOoRWrVohISEB06ZNw9dff424uDi88847uWbf+/Tpg+TkZHz99dcIDQ3NNe6mTZuiatWq2LhxY45tGzZsgIODAwIDA/Ms9/Tp0zF69Gi4u7vj22+/Ra9evfDTTz+hffv2SE9Pz/ecfffdd2jUqBFmzpyJr7/+GiYmJujTpw927dol7bNmzRqYm5vD398fa9aswZo1a/D+++9rJZ6XL1+iQ4cOaNCgAb799lvUrl0bn376Kf7888984ybSpnXr1qFnz54wMzND//79cfv27Vz/oVDt++OPP+LDDz/ExIkTcfToUfTt2xdTpkzBnj178Omnn2LkyJH4/fff8fHHH+d4/u3btxEcHIygoCDMnj1b+szt37+/0PE6OTlJrQZ69OghfS579uypUbmFEOjWrRvWrFmDgQMH4ssvv8TDhw8xZMiQHPteu3YNLVq0wI0bNzB58mR8++23sLKyQvfu3bFt27YCX2v48OEYN24cPDw8MHfuXEyePBkWFhY4ffq0RjH37NkT/fv3BwAsXLhQKrsqaTdixAhMnToVjRs3xsKFC9G6dWvMnj0b/fr1k46xZs0a+Pv7w9zcXHp+s2bNsGbNGtSuXRuVKlWS1tepU0ej+IiKqlevXti2bRuGDh2KH3/8EWPHjkViYiLu378v7cPv+5ysra3Ro0cPPHr0CNevX89zvw8++ABLly5Fr1698OOPP+Ljjz+GpaUlbty4AQD4/PPP0bBhQzg6OkplV41PlZCQgJ9//hlt2rTB3LlzMX36dDx9+hSBgYG5jkOzfv16zJ8/H++//z6+/PJL3L17Fz179lQ7J5cvX4avry8OHTqE0NBQfPfdd+jevTt+//13aZ+YmBi0aNECBw4cwJgxY/Ddd9+hevXqGD58OMfOItIiVfLdwcFBWvfff/9h+/bt6Ny5MxYsWIBPPvkEV65cQevWraX/YevUqYOZM2cCAEaOHCnVHa1atcr1dYQQ6Nq1KxYuXIgOHTpgwYIFqFWrFj755BNMmDChZAtJ2idI74WHhwsA4uzZsyIyMlKYmJiIsWPHSttbt24tvL29pcdRUVECgAgPD89xLABi2rRp0uNp06YJAGLkyJHSuoyMDFGpUiWhUCjEnDlzpPUvX74UlpaWYsiQIdK6w4cPCwCiYsWKIiEhQVq/ceNGAUB89913QgghlEqlqFGjhggMDBRKpVLaLzk5WXh5eYl33303R0z9+/cv1PkJCwsTpqam4sWLF9K61NRUYW9vL4YNGyatU53HqKgoIYQQsbGxwszMTLRv315kZmZK+/3www8CgFi1apW0bsiQIcLT01PtdZOTk9Uep6WlCR8fH/HOO++orbeyslI7Z9qIp3Xr1gKA+PXXX9XK7OrqKnr16pXHmSLSrnPnzgkAYv/+/UKIN5/zSpUqiY8++khtP1Wd5OTkJOLi4qT1YWFhAoBo0KCBSE9Pl9b3799fmJmZiZSUFGmdp6enACC2bNkirYuPjxdubm6iUaNG0jpVnXT48GFpXfbP79OnT3PUhSqtW7cWrVu3zrE++zG2b98uAIh58+ZJ6zIyMoS/v3+O+rddu3aiXr16auVRKpWiZcuWokaNGjleK6tDhw4JAGp1ftZjCKFZnT9//ny1ekfl0qVLAoAYMWKE2vqPP/5YABCHDh2S1g0ZMkRYWVnleK3s30VEJSHrPZEQb+5NAIj58+fn+Zyy/H3v6ekpOnXqlOf2hQsXCgBix44d0rrs9YadnZ0YPXp0vq/TqVOnHOdNiDf1Ympqqtq6ly9fChcXF7V7NFU9VqFCBbX7uR07dggA4vfff5fWtWrVStjY2Ih79+6pHTfr/eXw4cOFm5ubePbsmdo+/fr1E3Z2djmuKVFZkb0OLSzV/2e3bt0ST58+FXfv3hWrVq0SlpaWwsnJSSQlJUn7pqSkqNVtQrz5jJubm4uZM2dK686ePZvn/Ute911ffvml2n69e/cWCoVC3LlzR6PykLzYksrAVK1aFYMGDcLy5cvx5MkTrR13xIgR0t/GxsZo2rQphBAYPny4tN7e3h61atXCf//9l+P5gwcPho2NjfS4d+/ecHNzw+7duwEAly5dwu3bt/Hee+/h+fPnePbsGZ49e4akpCS0a9cOx44dyzE43gcffFCo2IODg5Genq7W7Wffvn2Ii4tDcHBwns87cOAA0tLSMG7cOBgZ/e+jEhoaCltbW7VfSHNjaWkp/f3y5UvEx8fD399fav6uKU3jsba2xsCBA6XHZmZmaN68ea7Xh6gkrFu3Di4uLmjbti2AN11EgoODERERgczMzBz79+nTB3Z2dtJj1WyAAwcOVBv/xNfXF2lpaTlmM3V3d0ePHj2kx7a2thg8eDAuXryI6OhorZatILt374aJiQlGjRolrTM2NsaHH36ott+LFy9w6NAh9O3bF4mJiVLd9/z5cwQGBuL27du5ztqqsmXLFigUCkybNi3HNm2Ob6Oqq7P/GqkabLmg+pBILqrx0Y4cOYKXL1/mug+/7/NmbW0N4E2XvrzY29vjzJkzRWrFb2xsLI1fp1Qq8eLFC2RkZKBp06a5nr/g4GC1FhmqrkSqsj59+hTHjh3DsGHDULlyZbXnqupEIQS2bNmCLl26QAgh1bvPnj1DYGAg4uPji3ztiMq6WrVqwcnJCVWqVMGwYcNQvXp1/PnnnyhXrpy0j7m5uVS3ZWZm4vnz57C2tkatWrWK/NnbvXs3jI2NMXbsWLX1EydOhBCCPUn0DJNUBmjKlCnIyMgocGwqTWT/orezs4OFhQUcHR1zrM/tJrBGjRpqjxUKBapXry41Ab19+zYAYMiQIXByclJbfv75Z6SmpiI+Pl7tGF5eXoWKvUGDBqhduzY2bNggrduwYQMcHR3xzjvv5Pm8e/fuAXhT2WZlZmaGqlWrStvz8scff6BFixawsLBA+fLlpW5E2ctRWJrGU6lSpRz/pDo4OOR5k06kTZmZmYiIiEDbtm0RFRWFO3fu4M6dO/D19UVMTAwOHjyY4zm51TMA4OHhkev67O/l6tWr53jP16xZEwByjPVS0u7duwc3NzfpHzyV7J/fO3fuQAiBL774Ikfdp0o8xcbG5vk6kZGRcHd3R/ny5bVfiCzu3bsHIyOjHDMzurq6wt7evsD6kEgu5ubmmDt3Lv7880+4uLigVatWmDdvnlrimt/3eXv16hUAqP3QmN28efNw9epVeHh4oHnz5pg+fbpGCbJffvkF9evXh4WFBSpUqAAnJyfs2rUr1/OX/XtClbBSlVX1uj4+Pnm+3tOnTxEXF4fly5fnqHeHDh0KIP96l6isSktLQ3R0tNqS/UfHLVu2YP/+/Vi/fj1atGghTaaSlVKpxMKFC1GjRg2Ym5vD0dERTk5OuHz5crHqTXd39xx1lWpoAd6n6BdOzWGAqlatioEDB2L58uWYPHlyju15/bqeW8sGFWNj40KtA1CkwelUraTmz5+fY4pRlez/7GWv8PITHByMr776Cs+ePYONjQ127tyJ/v37l9jsNH/99Re6du2KVq1a4ccff4SbmxtMTU0RHh6O9evXl8hrZqfN60OkqUOHDuHJkyeIiIhAREREju3r1q1D+/bt1dbl9Z7VpfeyQqHI9XXzqz/zo6r7Pv744zzHx8ueGNJUUep8TY9FpMvGjRuHLl26YPv27di7dy+++OILzJ49G4cOHUKjRo2KdWxD/76/evUqgPzrob59+8Lf3x/btm3Dvn37MH/+fMydOxdbt25FUFBQvsdfu3YtQkJC0L17d3zyySdwdnaGsbExZs+erTbQsoo2yqqqdwcOHJjrOIEAUL9+/UIfj6isOHnypNQ6XiUqKkptAPNWrVpJjRi6dOmCevXqYcCAATh//rzUeurrr7/GF198gWHDhmHWrFkoX748jIyMMG7cuBw9Z6hsYpLKQE2ZMgVr167F3Llzc2xT/eqUfYaYkswwq1pKqQghcOfOHekmoFq1agDedM8JCAjQ+usHBwdjxowZ2LJlC1xcXJCQkKA22G9uPD09AQC3bt1C1apVpfVpaWmIiorKN84tW7bAwsICe/fuVZseNTw8PMe+hf2nrzjxEJW2devWwdnZGUuWLMmxbevWrdi2bRuWLVumUbK5IKpWSVk/U//++y8A5JgBJj/5fSYdHBxybSGQvf709PTEwYMH8erVK7UE+61bt9T2U32WTU1Ni/QZrlatGvbu3YsXL17k2ZpKkzo/r7J7enpCqVTi9u3bagOex8TEIC4uTqqfiHRVtWrVMHHiREycOBG3b99Gw4YN8e2332Lt2rX8vs/Dq1evsG3bNnh4eBQ40YGbmxv+7//+D//3f/+H2NhYNG7cGF999ZWUpMqr7Js3b0bVqlWxdetWtX1y68JcGKrzpUqu5cbJyQk2NjbIzMzkvRORBho0aJBjMhpXV9c897e2tsa0adMwdOhQbNy4Ufrfa/PmzWjbti1Wrlyptn9cXJxaLx1Nfhjz9PTEgQMHkJiYqNaa6ubNm9J20h/s7megqlWrhoEDB+Knn37KMRaLra0tHB0dc8zC9+OPP5ZYPL/++qvaeAabN2/GkydPpJuXJk2aoFq1avjmm2+kpuVZPX36tFivX6dOHdSrVw8bNmzAhg0b4ObmlufsECoBAQEwMzPD999/r/YL3cqVKxEfH49OnTrl+VxjY2MoFAq1lgp3797F9u3bc+xrZWVVqCmuixMPUWl6/fo1tm7dis6dO6N37945ljFjxiAxMRE7d+7U6us+fvxYbTa8hIQE/Prrr2jYsGG+N1HZqcZNyO1zWa1aNdy8eVOtTvrnn39w4sQJtf06duyIjIwMaaZA4E3LpcWLF6vt5+zsjDZt2uCnn37KdRzBguq+Xr16QQiBGTNm5Nimqic0qfOtrKwA5Cx7x44dASDHrFcLFiwAANY/pLOSk5ORkpKitq5atWqwsbFBamoqAH7f5+b169cYNGgQXrx4gc8//zzfFpnZu+c4OzvD3d1dOr/Am7Ln1o1H1TIqaznPnDmDU6dOFSluJycntGrVCqtWrVKbvTHraxgbG6NXr17YsmVLrsms4t5zEhkqBwcHBAQEqC0WFhb5PmfAgAGoVKmSWsMJY2PjHK0fN23alGMMzrzuSXLTsWNHZGZm4ocfflBbv3DhQigUigJbdZJuYUsqA/b5559jzZo1uHXrFry9vdW2jRgxAnPmzMGIESPQtGlTHDt2TGpxUBLKly+Pt99+G0OHDkVMTAwWLVqE6tWrIzQ0FABgZGSEn3/+GUFBQfD29sbQoUNRsWJFPHr0CIcPH4atra3a1MFFERwcjKlTp8LCwgLDhw9XG4w0N05OTggLC8OMGTPQoUMHdO3aFbdu3cKPP/6IZs2aqQ1Sml2nTp2wYMECdOjQAe+99x5iY2OxZMkSVK9eHZcvX1bbt0mTJjhw4AAWLFgAd3d3eHl5SQNGayseotK0c+dOJCYmomvXrrlub9GiBZycnLBu3bp8Jy/QVM2aNTF8+HCcPXsWLi4uWLVqFWJiYnJt0ZAfS0tL1K1bFxs2bEDNmjVRvnx5+Pj4wMfHB8OGDcOCBQsQGBiI4cOHIzY2FsuWLYO3tzcSEhKkY3Tp0gVvvfUWJk+ejLt376Ju3brYunVrrv+kLVmyBG+//Tbq1auH0NBQVK1aFTExMTh16hQePnyIf/75J89Y27Zti0GDBuH777/H7du30aFDByiVSvz1119o27YtxowZA6DwdX6TJk0AvPn+6NevH0xNTdGlSxc0aNAAQ4YMwfLlyxEXF4fWrVvj77//xi+//ILu3bvnaP5PpCv+/fdftGvXDn379kXdunVhYmKCbdu2ISYmRvpVv6x/3z969Ahr164F8Kb11PXr17Fp0yZER0dj4sSJeP/99/N8bmJiIipVqoTevXujQYMGsLa2xoEDB3D27Fl8++23amXfsGEDJkyYgGbNmsHa2hpdunRB586dsXXrVvTo0QOdOnVCVFQUli1bhrp16+b6o2VhfP/993j77bfRuHFjjBw5El5eXrh79y527dqFS5cuAQDmzJmDw4cPw9fXF6Ghoahbty5evHiBCxcu4MCBA3jx4kWRXpvIUKxatQp79uzJsf6jjz7Kd4y67ExNTfHRRx/hk08+wZ49e9ChQwd07twZM2fOxNChQ9GyZUtcuXIF69atU2s5Crz5QcHe3h7Lli2DjY0NrKys4Ovrm+u4xF26dEHbtm3x+eef4+7du2jQoAH27duHHTt2YNy4cVKvHdITpTmVIJWM/KYKHTJkiACQY9rv5ORkMXz4cGFnZydsbGxE3759RWxsbI5phVXTiT59+jTHcQszxbhquvfffvtNhIWFCWdnZ2FpaSk6deqUY2pgIYS4ePGi6Nmzp6hQoYIwNzcXnp6eom/fvuLgwYMFxlSQ27dvCwACgDh+/HiO7dmngFb54YcfRO3atYWpqalwcXERo0aNEi9fvsxxPrJPrbxy5UpRo0YNYW5uLmrXri3Cw8Ol2LO6efOmaNWqlbC0tBQApOmpixNPXlO95xYnkbZ16dJFWFhYqE03nF1ISIgwNTUVz549k6YWzz5FvKr+2LRpk9r63Oo81TTqe/fuFfXr15c+d9mfqzrm4cOHpXW5fS5OnjwpmjRpIszMzHLUi2vXrhVVq1YVZmZmomHDhmLv3r25HuP58+di0KBBwtbWVtjZ2YlBgwaJixcv5jqdcmRkpBg8eLBwdXUVpqamomLFiqJz585i8+bNeZ5DlYyMDDF//nxRu3ZtYWZmJpycnERQUJA4f/68tE9h63whhJg1a5aoWLGiMDIyUquD0tPTxYwZM4SXl5cwNTUVHh4eIiwsTKSkpKg9v7DfD0QlIXv98OzZMzF69GhRu3ZtYWVlJezs7ISvr6/YuHFjjueWxe97T09P6d5IoVAIW1tb4e3tLUJDQ8WZM2dyfU7WeiM1NVV88sknokGDBsLGxkZYWVmJBg0aiB9//FHtOa9evRLvvfeesLe3FwCk2JRKpfj666+Fp6enMDc3F40aNRJ//PFHjvjz+p7IHo/K1atXRY8ePYS9vb2wsLAQtWrVEl988YXaPjExMWL06NHCw8NDmJqaCldXV9GuXTuxfPnyAs8bkaFS1Ud5LQ8ePMj1efn9fxYfHy/s7OxE69athRBCpKSkiIkTJwo3NzdhaWkp3nrrLXHq1CnRunVraR+VHTt2iLp16woTExO1+6fc6rjExEQxfvx44e7uLkxNTUWNGjXE/PnzhVKpLO5poVKmEIKjKBMRkX6rUqUKfHx88Mcff8gdChERERERFRHHpCIiIiIiIiIiItkxSUVERERERERERLJjkoqIiIiIiIiIiGTHMamIiIiIiIiIiEh2bElFRERERERERESyY5KKiIiIiIiIiIhkxyQVACEEEhISwJ6PRCQn1kVEpCtYHxGRLmBdRFT2MEkFIDExEXZ2dkhMTJQ7FCIqw1gXEZGuYH1ERLqAdRFR2cMkFRERERERERERyY5JKiIiIiIiIiIikh2TVEREREREREREJDsmqYiIiIiIiIiISHZMUhERERERERERkeyYpNLA5MmT0bhxY2zcuFHuUIiIiEjLlixZgsaNG+Pbb7+VOxTSQ9evX0fXrl1x5coVuUMhKnNevnwJX19f1K9fH0IIucMhomJgkkoD9+7dw8WLF/HkyRO5QyEiIiItu3//Pi5evIjHjx/LHQrpoSlTpuD333/HokWL5A6FqMwxNjbG33//jStXriAlJUXucIioGJik0oCFhQUAsOIjIiIyQKrvd3Nzc5kjIX2TkJCA3bt3AwCuXbsmczREZY+lpaX09+vXr2WMhIiKi0kqDTBJRUREZLhSU1MB/O/7nqiwdu7cKb1/rl27BqVSKXNERGWLqakpTExMADBJRaTvmKTSAJNUREREhkuVZGBLKtJURESE9PerV69w//59GaMhKh2ZmZn44osv4OXlBUtLS1SrVg2zZs1SGxNKCIGpU6fCzc0NlpaWCAgIwO3bt0skHlVrKiapiPQbk1QaYMVHRERkuJikoqJ48eIF9u3bBwAoX748AHb5o7Jh7ty5WLp0KX744QfcuHEDc+fOxbx587B48WJpn3nz5uH777/HsmXLcObMGVhZWSEwMLBEfvTn/2pEhoFJKg2wJRUREZHhYpKKimLbtm1IT09HvXr1EBgYCAC4evWqzFERlbyTJ0+iW7du6NSpE6pUqYLevXujffv2+PvvvwG8aUW1aNEiTJkyBd26dUP9+vXx66+/4vHjx9i+fbvW42GSisgwyJqkOnbsGLp06QJ3d3coFIoclVVhmoe+ePECAwYMgK2tLezt7TF8+HC8evWqROJlkoqIiMhwceB0KooNGzYAAPr16wcfHx8ATFJR2dCyZUscPHgQ//77LwDgn3/+wfHjxxEUFAQAiIqKQnR0NAICAqTn2NnZwdfXF6dOncr1mKmpqUhISFBbCkuVpEpOTi5qkYhIB8iapEpKSkKDBg2wZMmSXLcXpnnogAEDcO3aNezfvx9//PEHjh07hpEjR5ZIvExSERERGS4OnE6aio2NxaFDhwAAwcHB8Pb2BsDuflQ2TJ48Gf369UPt2rVhamqKRo0aYdy4cRgwYAAAIDo6GgDg4uKi9jwXFxdpW3azZ8+GnZ2dtHh4eBQ6HrakIjIMJnK+eFBQkJRpzy5781AA+PXXX+Hi4oLt27ejX79+uHHjBvbs2YOzZ8+iadOmAIDFixejY8eO+Oabb+Du7q7VeFUVH5NUREREhofd/UhTW7ZsQWZmJpo0aYJq1apJ669fv47MzEwYGxvLGB1Rydq4cSPWrVuH9evXw9vbG5cuXcK4cePg7u6OIUOGFOmYYWFhmDBhgvQ4ISGh0IkqJqmIDIPOjklVmOahp06dgr29vZSgAoCAgAAYGRnhzJkzWo9J9csqKz4iIiLDI0eSShtDH+RmyZIlqFKlCiwsLODr6yuNEUPalbWrHwBplrPU1FRERkbKGRpRifvkk0+k1lT16tXDoEGDMH78eMyePRsA4OrqCgCIiYlRe15MTIy0LTtzc3PY2tqqLYXFJBWRYdDZJFVhmodGR0fD2dlZbbuJiQnKly+fZxNSoOh9ndndj4iIyHDJkaTSxtAH2W3YsAETJkzAtGnTcOHCBTRo0ACBgYGIjY0tqWKUSY8fP8axY8cAAH379gUAGBkZoW7dugDY5Y8MX3JyMoyM1P+dNDY2hlKpBPAmaevq6oqDBw9K2xMSEnDmzBn4+flpPR4mqYgMg84mqUpSUfs6M0lFRERkuOQYOD0oKAhffvklevTokWNbUWfGWrBgAUJDQzF06FDUrVsXy5YtQ7ly5bBq1aoSLEnZs2nTJggh4Ofnh8qVK0vrOXg6lRVdunTBV199hV27duHu3bvYtm0bFixYINVnCoUC48aNw5dffomdO3fiypUrGDx4MNzd3dG9e3etx8MkFZFh0NkkVWGah7q6uub4VTAjIwMvXrzIswkp8Kavc3x8vLQ8ePCgUDFxTCoiIiLDpWsDpxdlZqy0tDScP39e7TlGRkYICAjI8zlA8WbUKquyd/VTUQ2eXpgklRACc+bMQXh4uPYDJCphixcvRu/evfF///d/qFOnDj7++GO8//77mDVrlrTPpEmT8OGHH2LkyJFo1qwZXr16hT179pRIPcskFZFh0NkkVWGah/r5+SEuLg7nz5+X9jl06BCUSiV8fX3zPHZR+zpzTCoiIiLDpWsDpxdlZqxnz54hMzNTo+cAxZtRqyxKTEyUkn69evVS26ZqSVWY7n4nT55EWFgYRowYkeOHWSJdZ2Njg0WLFuHevXt4/fo1IiMj8eWXX8LMzEzaR6FQYObMmYiOjkZKSgoOHDiAmjVrlkg8TFIRGQZZk1SvXr3CpUuXcOnSJQBvfjG8dOkS7t+/X6jmoXXq1EGHDh0QGhqKv//+GydOnMCYMWPQr18/rc/sB7C7HxERkSHTtSRVaSpqK/Oy6vr16wDetOqvWLGi2jZVkurWrVtIS0vL9zgREREAAKVSic2bN5dApERlB5NURIZB1iTVuXPn0KhRIzRq1AgAMGHCBDRq1AhTp04FULjmoevWrUPt2rXRrl07dOzYEW+//TaWL19eIvEySUVERGS4dC1JVZSZsRwdHWFsbKzRc4DizahVFqlaSakSUllVqlQJtra2yMjIwL///pvnMTIzM7Fp0ybpsar7IBEVTbly5QAwSUWk72RNUrVp0wZCiBzL6tWrARSueWj58uWxfv16JCYmIj4+HqtWrYK1tXWJxMsxqYiIiAyXHAOn56coM2OZmZmhSZMmas9RKpU4ePBgicymVVapxpvKLUmlUCikcany6/J39OhRxMTEwMbGBgDw119/4eHDhyUQLVHZwJZURIZBZ8ek0kUck4qIiMgwZWRkSNOml2aSqrhDHwBAu3bt8MMPP0iPJ0yYgBUrVuCXX37BjRs3MGrUKCQlJWHo0KGlVi5Dp0pSqZJR2RVmhj9Vy6m+ffvi7bffBgC1llVEpBkmqYgMg4ncAegTVZIqIyMDGRkZMDHh6SMiIjIEqq5+QOnO7nfu3Dm0bdtWejxhwgQAwJAhQ7B69WpMmjQJSUlJGDlyJOLi4vD222/nGPogMjISz549kx4HBwfj6dOnmDp1KqKjo9GwYUPs2bMnx2DqVHT5dfcDCp7hLz09HVu2bAHw5nrdunULx48fx4YNGzB+/PgSiJjI8DFJRWQYmGXRQNYbwtTUVCapiIiIDETWJFVptqRSDX2QF9XQBzNnzsxzn7t37+ZYN2bMGIwZM0YbIVI2L168wOPHjwEAdevWzXWfglpSHTx4EM+fP4eTkxPatm2LevXq4aOPPsKZM2cQFRUFLy+vkgmeyIAxSUVkGNjdTwNZk1Qcl4qIiMhwqJJURkZG/BGK8qVqRVW5cuU8B5hXJakiIyNz/YdZ1dWvd+/eMDExgaurK9q0aQMA2LhxYwlETWT4VEmq5ORkmSMhouJgkkoDxsbGMDU1BcAkFRERkSHRtUHTSXcV1NUPAJydnVGhQgUIIXDjxg21bampqdi2bRuAN139VFR/c5Y/oqJhSyoiw8AklYY4eDoREZHhUbWkYpKKCpLfzH4qCoUizy5/e/fuRXx8PNzd3aUB0wGgZ8+eMDExwcWLF/Hvv/+WQOREho1JKiLDwCSVhlRJKrakIip7Hj16hIEDB6JChQqwtLREvXr1cO7cOWm7EAJTp06Fm5sbLC0tERAQgNu3b8sYMREVlipJVZqDppN+KmhmPxVVkkrV8kpF1VKqT58+MDY2ltY7OjoiICBAbR8iKjwmqYgMA5NUGmKSiqhsevnyJd566y2Ymprizz//xPXr1/Htt9/CwcFB2mfevHn4/vvvsWzZMpw5cwZWVlYIDAxkfUGkB9iSigpDCFGollRA7jP8JScnY+fOnQDUu/qpqNZFRERoJV6isoRJKiLDwJFBNaSq/PhPJ1HZMnfuXHh4eCA8PFxal3X2JSEEFi1ahClTpqBbt24AgF9//RUuLi7Yvn07+vXrV+oxE1HhMUlFhREbG4vnz59DoVCgTp06+e6rSmKdOnUKo0aNAgBER0fj1atX8PT0RIsWLXI8p3v37nj//fdx/fp1XL16tcBEGBH9D5NURIaBLak0xDGpiMqmnTt3omnTpujTpw+cnZ3RqFEjrFixQtoeFRWF6OhoqasGANjZ2cHX1xenTp2SI2Qi0gCTVFQYqlZR1apVk/4hzouPjw9MTU3x8uVLLFu2DMuWLcP27dsBAP369YNCocjxHHt7e3To0AEAW1MRaYpJKiLDwJZUGmJ3P6Ky6b///sPSpUsxYcIEfPbZZzh79izGjh0LMzMzDBkyBNHR0QAAFxcXtee5uLhI27JLTU2V/jEGgISEhJIrABHli7P7UWEUZmY/FQcHB/z+++84ffq02npra2uEhobm+bzg4GDs3LkTGzZswKxZs3JNZhFRTlmTVEIIfnaI9BSTVBpikoqobFIqlWjatCm+/vprAECjRo1w9epVLFu2DEOGDCnSMWfPno0ZM2ZoM0wiKiIOnE6FUdjxqFQCAwMRGBio0Wt07doVlpaWuHPnDi5evIjGjRtrHCdRWaRKUgkhkJaWxh8diPQUu/tpiGNSEZVNbm5uqFu3rtq6OnXq4P79+wAAV1dXAEBMTIzaPjExMdK27MLCwhAfHy8tDx48KIHIiagw2N2PCqOwM/sVh7W1NTp16gSAs/wRaaJcuXLS3+zyR6S/mKTSEMekIiqb3nrrLdy6dUtt3b///gtPT08AbwZRd3V1xcGDB6XtCQkJOHPmDPz8/HI9prm5OWxtbdUWIpIHk1RUECGERt39ikM1y9+GDRsghCjR1yIyFKampjAyevPvLf9XI9JfTFJpiN39iMqm8ePH4/Tp0/j6669x584drF+/HsuXL8fo0aMBAAqFAuPGjcOXX36JnTt34sqVKxg8eDDc3d3RvXt3eYMnogIxSUUFefjwIRISEmBiYoKaNWuW6Gt17NgR1tbWuHfvHs6cOVOir0VkKBQKBQdPJzIATFJpiEkqorKpWbNm2LZtG3777Tf4+Phg1qxZWLRoEQYMGCDtM2nSJHz44YcYOXIkmjVrhlevXmHPnj0c44ZID3DgdCqIqqtfzZo1YWZmVqKvVa5cOXTt2hUAu/wRaYJJKiL9xySVhpikIiq7OnfujCtXriAlJQU3btzIMTuTQqHAzJkzER0djZSUFBw4cKDEf20nIu3gwOlUEE0HTS+ufv36AQA2btwIpVJZKq9JpO+YpCLSf0xSaYgVHxERkeFhdz8qSGmNR6XSvn172NnZ4fHjxzh+/HipvCaRvlP9r5acnCxzJERUVExSaYgtqYiIiAwPk1RUkNKY2S8rc3Nz9OjRAwC7/BEVFhsUEOk/Jqk0xCQVERGR4WGSivKjVCpx/fp1AKXXkgr4X5e/zZs3IyMjo9Rel0hfMUlFpP+YpNIQk1RERESGhwOnU36ioqLw+vVrmJubo1q1aqX2uu+88w4qVKiA2NhYHD16tNRel6iwHj16hIEDB6JChQqwtLREvXr1cO7cOWm7EAJTp06Fm5sbLC0tERAQgNu3b5dYPExSEek/Jqk0pKr4mKQiIiIyHBw4nfKj6upXp04dGBsbl9rrmpqaolevXgCAiIiIUntdosJ4+fIl3nrrLZiamuLPP//E9evX8e2338LBwUHaZ968efj++++xbNkynDlzBlZWVggMDCyx/6WYpCLSf0xSaUh188qKj4iIyHCwux/lp7THo8pK1eVv69atSE9PL/XXJ8rL3Llz4eHhgfDwcDRv3hxeXl5o37691NpQCIFFixZhypQp6NatG+rXr49ff/0Vjx8/xvbt20skJiapiPSfziepqlSpAoVCkWMZPXo0AKBNmzY5tn3wwQclFg+7+xERERkeJqkoP6qZ/erVq1fqr92qVSu4urrixYsXOHDgQKm/PlFedu7ciaZNm6JPnz5wdnZGo0aNsGLFCml7VFQUoqOjERAQIK2zs7ODr68vTp06lesxU1NTkZCQoLZogkkqIv2n80mqs2fP4smTJ9Kyf/9+AECfPn2kfUJDQ9X2mTdvXonFwyQVERGR4WGSivIjZ0sqY2Nj9O7dGwC7/JFu+e+//7B06VLUqFEDe/fuxahRozB27Fj88ssvAIDo6GgAgIuLi9rzXFxcpG3ZzZ49G3Z2dtLi4eGhUUxMUhHpP51PUjk5OcHV1VVa/vjjD1SrVg2tW7eW9ilXrpzaPra2tiUWD8ekIiIiMjy6OnB6QS3Ks1u9enWOfTnOVvGkp6fj5s2bAEp3Zr+sVF3+tm/fzntQ0hlKpRKNGzfG119/jUaNGmHkyJEIDQ3FsmXLinzMsLAwxMfHS8uDBw80ej6TVET6T+eTVFmlpaVh7dq1GDZsGBQKhbR+3bp1cHR0hI+PD8LCwpCcnJzvcYrTjJRjUhERERkeXW1JVZgW5dnZ2tqqPefevXulFa5BunPnDtLT02FtbY3KlSvLEoOfnx8qVaqEhIQE7NmzR5YYiLJzc3ND3bp11dbVqVMH9+/fBwC4uroCAGJiYtT2iYmJkbZlZ25uDltbW7VFE+XKlQPA/9WI9JleJam2b9+OuLg4hISESOvee+89rF27FocPH0ZYWBjWrFmDgQMH5nuc4jQjZXc/IiIiw6Ors/sVpkV5dgqFQu052bvakGZUXf3q1q0LIyN5bp2NjIzQt29fAMCGDRtkiYEou7feegu3bt1SW/fvv//C09MTAODl5QVXV1ccPHhQ2p6QkIAzZ87Az8+vRGJiSyoi/adXSaqVK1ciKCgI7u7u0rqRI0ciMDAQ9erVw4ABA/Drr79i27ZtiIyMzPM4xWlGyiQVERGR4dHVllRZ5dWiPLtXr17B09MTHh4e6NatmzTod36KO1ixIVOdP7m6+qkEBwcDeDNYdVJSkqyxEAHA+PHjcfr0aXz99de4c+cO1q9fj+XLl0vdkRUKBcaNG4cvv/wSO3fuxJUrVzB48GC4u7uje/fuJRITk1RE+k9vklT37t3DgQMHMGLEiHz38/X1BfCmaXZeitOMlEkqIiIiw6MPSarcWpRnV6tWLaxatQo7duzA2rVroVQq0bJlSzx8+DDfYxd3sGJDpmpJJXeSqlmzZvDy8kJycjJ27dolayxEwJv35LZt2/Dbb7/Bx8cHs2bNwqJFizBgwABpn0mTJuHDDz/EyJEj0axZM7x69Qp79uwpsVarTFIR6T+9SVKFh4fD2dkZnTp1yne/S5cuAXjTR7oksOIjIiIyPLo6cHpWubUoz87Pzw+DBw9Gw4YN0bp1a2zduhVOTk746aef8j12cQcrNmS6kqRSKBRSayp2+SNd0blzZ1y5cgUpKSm4ceMGQkND1bYrFArMnDkT0dHRSElJwYEDB1CzZs0Si0f1v1pBYxQTke7SiySVUqlEeHg4hgwZAhMTE2l9ZGQkZs2ahfPnz+Pu3bvYuXMnBg8ejFatWqF+/folEgtbUhERERkeXW9JVdgW5dmZmpqiUaNG+bYwB4o/WLGhSklJkc6dt7e3zNH8r8vf7t272SWTKBdsUECk//QiSXXgwAHcv38fw4YNU1tvZmaGAwcOoH379qhduzYmTpyIXr164ffffy+xWFRJqvT0dGRmZpbY6xAREVHp0dWB01UK26I8u8zMTFy5cqXEWpgbulu3biEzMxMODg46cQ4bNGiAmjVrIiUlBTt37pQ7HCKdwyQVkf4rUpKqatWqeP78eY71cXFxqFq1arGDyq59+/YQQuRoGurh4YGjR4/i+fPnSElJwe3btzFv3rwS/fUv682r6oaWiIiI9Jsut6TKq0U5AAwePBhhYWHS45kzZ2Lfvn3477//cOHCBQwcOBD37t3TuAUWvZG1q19+g9WXFoVCgX79+gFglz+i3DBJRaT/ipSkunv3bq6tiFJTU/Ho0aNiB6XLsiap2OWPiIjIMOhykiqvFuUAcP/+fTx58kR6/PLlS4SGhqJOnTro2LEjEhIScPLkSdStW7c0QzYYqpn9dKGrn4qqy9/evXvx8uVLmaMh0i1MUhHpP5OCd/mfrM2K9+7dCzs7O+lxZmYmDh48iCpVqmgtOF1kYmICExMTZGRksPIjIiIyAEIInU5SqVqU5+bIkSNqjxcuXIiFCxeWQlRlg64Mmp5V3bp14ePjg6tXr2Lbtm25Ji+JyiomqYj0n0ZJqu7duwN409R4yJAhattMTU1RpUoVfPvtt1oLTldZWFjg1atXbElFRERkANLS0qS/dTFJRfLRxSQVAPTr1w9TpkzBhg0bmKQiyoJJKiL9p1F3P6VSCaVSicqVKyM2NlZ6rFQqkZqailu3bqFz584lFavO4Ax/REREhiPrGJO6OnA6lb6kpCRERUUB0K3ufsD/uvwdPHgQT58+lTkaIt3BJBWR/ivSmFRRUVFwdHTUdix6Q1X5MUlFRESk/7ImqczMzGSMhHTJ9evXAQAuLi46d99bvXp1NG7cGJmZmdiyZYvc4RDpDCapiPSfRt39sjp48CAOHjwotajKatWqVcUOTJepfmVl5UdERKT/VEkqU1NTGBkV6fc7MkC62tVPpV+/frhw4QI2bNiADz74QO5wiHRCuXLlALwZLzk9PR2mpqYyR0REmirSndiMGTPQvn17HDx4EM+ePcPLly/VFkPH7n5ERESGQ5cHTSf56OLMfln17dsXAHD06FG1GR6JyjJVSyqADQqI9FWRWlItW7YMq1evxqBBg7Qdj15gkoqIiMhwqL7PmaSirHS9JZWnpydatGiB06dPY/Pmzfjwww/lDolIdubm5lAoFBBC4PXr17C1tZU7JCLSUJFaUqWlpaFly5bajkVvMElFRERkOFQtqThoOmWl60kq4E2XPwCIiIiQORIi3aBQKDg0C5GeK1KSasSIEVi/fr22Y9EbHJCPiIjIcLC7H2UXFxeHR48eAQDq1q0rczR569OnDxQKBU6ePIkHDx7IHQ6RTuD/akT6rUjd/VJSUrB8+XIcOHAA9evXzzEg3YIFC7QSnK5iSyoiIiLDwSQVZacaj8rDwwN2dnYyR5M3d3d3+Pv749ixY9i4cSMmTpwod0hEslMlqZKTk2WOhIiKokgtqS5fvoyGDRvCyMgIV69excWLF6Xl0qVLWg5R9zBJRURz5syBQqHAuHHjpHUpKSkYPXo0KlSoAGtra/Tq1QsxMTHyBUlEhcIkFWWnSlLpclc/FXb5I1KnmuGPSSoi/VSkllSHDx/Wdhx6hUkqorLt7Nmz+Omnn1C/fn219ePHj8euXbuwadMm2NnZYcyYMejZsydOnDghU6REVBgcOJ2yU41Hpasz+2XVq1cvjBkzBufOnUNkZCSqVasmd0hEsrKysgIAJCUlyRwJERVFkVpSlXWqJqRMUhGVPa9evcKAAQOwYsUKODg4SOvj4+OxcuVKLFiwAO+88w6aNGmC8PBwnDx5EqdPn5YxYiIqCAdOp+z0YdB0FWdnZ7Rr1w4AsHHjRpmjIZIfk1RE+q1ILanatm0LhUKR5/ZDhw4VOSB9wBkjiMqu0aNHo1OnTggICMCXX34prT9//jzS09MREBAgratduzYqV66MU6dOoUWLFjmOlZqaKv1zDAAJCQklGzwR5Yrd/Sg7VXc/fWhJBQDBwcHYv38/IiIiEBYWJnc4RLKytrYGwCQVkb4qUkuqhg0bokGDBtJSt25dpKWl4cKFC6hXr562Y9Q57O5HVDZFRETgwoULmD17do5t0dHRMDMzg729vdp6FxcXREdH53q82bNnw87OTlo8PDxKImwiKgCTVJRVbGwsYmNjoVAodHpmv6x69OgBExMTXL58GTdv3pQ7HCJZqVpSvXr1SuZIiKgoitSSauHChbmunz59epmoDJikIip7Hjx4gI8++gj79+/XWpegsLAwTJgwQXqckJDARBWRDJikoqxUraiqVq0qDcCs68qXL4/AwEDs2rULGzZswLRp0+QOiUg27O5HpN+0OibVwIEDsWrVKm0eUidxWlOisuf8+fOIjY1F48aNYWJiAhMTExw9ehTff/89TExM4OLigrS0NMTFxak9LyYmBq6urrke09zcHLa2tmoLEZU+DpxOWenTzH5ZBQcHA3jT6lcIIXM0RPJhdz8i/abVJNWpU6fKxKCjzM4TlT3t2rXDlStXcOnSJWlp2rQpBgwYIP1tamqKgwcPSs+5desW7t+/Dz8/PxkjJ6KCsCUVZaVPM/tl1a1bN5ibm+PmzZu4cuWK3OEQyYb/qxHptyJ19+vZs6faYyEEnjx5gnPnzuGLL77QSmC6jBUfUdljY2OT41d1KysrVKhQQVo/fPhwTJgwAeXLl4etrS0+/PBD+Pn55TpoOhHpDs7uR1np08x+Wdna2iIoKAjbt2/Hhg0bUL9+fblDIpIFx6Qi0m9FakmVdaBfOzs7lC9fHm3atMHu3bvLRB94NiElotwsXLgQnTt3Rq9evdCqVSu4urpi69atcodFRAVgSypSEULobXc/AOjXrx8AYMOGDezyR6Vuzpw5UCgUGDdunLQuJSUFo0ePRoUKFWBtbY1evXohJiamRONggwIi/VakllTh4eHajkOvMDtPRABw5MgRtccWFhZYsmQJlixZIk9ARFQkTFKRyuPHjxEXFwdjY2PUrFlT7nA01rlzZ5QrVw6RkZE4f/48mjZtKndIVEacPXsWP/30U44WfOPHj8euXbuwadMm2NnZYcyYMejZsydOnDhRYrGwQQGRfivWmFTnz5/H2rVrsXbtWly8eFFbMUmmT58OhUKhttSuXVvaLkdmHmDFR0REZEg4cDqpqLr61axZUy/fD1ZWVujcuTOAN62piErDq1evMGDAAKxYsQIODg7S+vj4eKxcuRILFizAO++8gyZNmiA8PBwnT57E6dOnSyweNigg0m9FSlLFxsbinXfeQbNmzTB27FiMHTsWTZo0Qbt27fD06VOtBujt7Y0nT55Iy/Hjx6Vt48ePx++//45Nmzbh6NGjePz4cY7xskoCm5ASEREZDl1uSVXQD3a52bRpE2rXrg0LCwvUq1cPu3fvLqVo9Z8+d/VTUXX527hxI5RKpczRUFkwevRodOrUCQEBAWrrz58/j/T0dLX1tWvXRuXKlXHq1KkSi4f/qxHptyIlqT788EMkJibi2rVrePHiBV68eIGrV68iISEBY8eO1WqAJiYmcHV1lRZHR0cA8mXmAWbniYiIDImuD5ye3w922Z08eRL9+/fH8OHDcfHiRXTv3h3du3eXWghR/vR1Zr+sgoKCYGNjg/v375f4PTFRREQELly4gNmzZ+fYFh0dDTMzM9jb26utd3FxQXR0dK7HS01NRUJCgtqiKSapiPRbkZJUe/bswY8//og6depI6+rWrYslS5bgzz//1FpwAHD79m24u7ujatWqGDBgAO7fvw9Avsw8wO5+REREhkSXW1IBef9gl5vvvvsOHTp0wCeffII6depg1qxZaNy4MX744YdSjFh/6evMfllZWFigW7duANjlj0rWgwcP8NFHH2HdunVaS/LPnj1bbYIuDw8PjY/B/9WI9FuRklRKpRKmpqY51puammq1WbGvry9Wr16NPXv2YOnSpYiKioK/vz8SExOLlJlXKW6GXpWdT09PR1pamkbPJSIiIt2i60mqvH6wy82pU6dydLkJDAws8R/wDIFSqcT169cB6HdLKgAIDg4G8Kbr57Vr13D9+vU8F20P1UFlx/nz5xEbG4vGjRvDxMQEJiYmOHr0KL7//nuYmJjAxcUFaWlpiIuLU3teTEwMXF1dcz1mWFgY4uPjpeXBgwcax8VeL0T6rUiz+73zzjv46KOP8Ntvv8Hd3R0A8OjRI4wfPx7t2rXTWnBBQUHS3/Xr14evry88PT2xceNGWFpaFvm4s2fPxowZM4r8fFXFB7zJ0JuZmRX5WERERCQv1cDputjdT/WDXa1atfDkyRPMmDED/v7+uHr1KmxsbHLsHx0dDRcXF7V1hf0BT5WsA1CkLjb67t69e9J9XfXq1eUOp1jat28Pe3t7PHnypMBWYaampvjnn3/UekgQFUa7du1w5coVtXVDhw5F7dq18emnn8LDwwOmpqY4ePAgevXqBQC4desW7t+/Dz8/v1yPaW5uXuwfDNjdj0i/Fakl1Q8//ICEhARUqVIF1apVQ7Vq1eDl5YWEhAQsXrxY2zFK7O3tUbNmTdy5cweurq4aZ+ZVipuhNzMzk1qSsfIjIiLSb6rv8qw/QumKoKAg9OnTB/Xr10dgYCB2796NuLg4bNy4Uauvo40uNvpO1dWvTp06MDEp0u+4OsPMzAxTp06Fs7MzKlSokOdiYWGB9PR0/PLLL3KHTHrIxsYGPj4+aouVlRUqVKgAHx8f2NnZYfjw4ZgwYQIOHz6M8+fPY+jQofDz80OLFi1KLK6sSSohRIm9DhGVjCIlqTw8PHDhwgXs2rUL48aNw7hx47B7925cuHABlSpV0naMklevXiEyMhJubm5o0qSJlJlXKSgzr2Jubg5bW1u1RVNsRkpERGQYkpOTAQDlypWTOZKCZf3BLjeurq6IiYlRW1caP+AZAtXMfvre1U9l/PjxiImJwbNnz/Jc1qxZA+DN2FX8Z55KwsKFC9G5c2f06tULrVq1gqurK7Zu3Vqir6kakyozM5NDsxDpIY2SVIcOHULdunWRkJAAhUKBd999Fx9++CE+/PBDNGvWDN7e3vjrr7+0FtzHH3+Mo0eP4u7duzh58iR69OgBY2Nj9O/fX7bMvAqbkRIRERkGfUpSZf3BLjd+fn5qP+ABwP79+0vlBzx9ZwiDpmuqY8eOsLKywt27d/H333/LHQ4ZgCNHjmDRokXSYwsLCyxZsgQvXrxAUlIStm7dWmDSvLiytoplgwIi/aNRkmrRokUIDQ3N9cbFzs4O77//PhYsWKC14B4+fIj+/fujVq1a6Nu3LypUqIDTp0/DyckJgDyZeRXOGkFERGQYdDlJld8PdgAwePBghIWFSft/9NFH2LNnD7799lvcvHkT06dPx7lz5zBmzBi5iqA3ymKSqly5cujatSsAICIiQuZoiLTDxMREGjOY/6sR6R+NklT//PMPOnTokOf29u3b4/z588UOSiUiIgKPHz9GamoqHj58iIiICFSrVk3aLkdmXoXd/YiIiAyDLo9JVdAPdvfv38eTJ0+k/Vu2bIn169dj+fLlaNCgATZv3ozt27eXqcRLUWRkZODmzZsADKe7X2H169cPwJuZALU5SzeRnNjrhUh/aTQqZExMjDRgeK4HMzEpM9PYsuIjIiIyDLrckqqg1i1HjhzJsa5Pnz7o06dPCUVkmCIjI5Gamopy5cqhSpUqcodTqgIDA2FnZ4dHjx7hxIkT8Pf3lzskomKztrbGy5cv+b8akR7SqCVVxYoVpabQubl8+XKeYyQYGnb3IyIi0n8ZGRnSwLq6mKSi0qG6v/X29oaRUZHmFdJb5ubm6N69OwB2+SPDwV4vRPpLo2/hjh074osvvkBKSkqOba9fv8a0adPQuXNnrQWny1jxERER6b/Xr19LfzNJVXYZ2sx+mlJ1+du8eTMyMjJkjoao+NjrhUh/adTdb8qUKdi6dStq1qyJMWPGoFatWgCAmzdvYsmSJcjMzMTnn39eIoHqGrakIiIi0n+q73GFQgELCwuZoyG5lMVB07Nq164dKlSogNjYWBw9ehTt2rWTOySiYmGSikh/adSSysXFBSdPnoSPjw/CwsLQo0cP9OjRA5999hl8fHxw/PhxuLi4lFSsOoUVHxERkf7LOh6VQqGQORqSS1lPUpmamqJnz54A2OWPDAMbFBDpL4073Xt6emL37t149uwZzpw5g9OnT+PZs2fYvXs3vLy8SiJGncTufkRERPpPlwdNp9KRmpqK27dvAyi73f2A/3X527p1K9LT02WOhqh4+L8akf4q8siQDg4OaNasGZo3bw4HBwdtxqQXmJ0nIiLSf6rvcdU/NFT2/Pvvv8jIyICdnR0qVqwodziyad26NVxcXPDixQscOHBA7nCIioW9Xoj0V9mavkSLWPERERHpP7akosuXLwN409WvLHf5NDY2Rp8+fQCwyx/pPzYoINJfTFIVEZuQEhER6T8mqWjXrl0AgBYtWsgcifyCg4MBANu3b891Nm8ifcH/1Yj0F5NURcTsPBERkf5jkqpsS05Oxs6dOwEAffv2lTka+bVs2RIVK1ZEQkIC9u7dK3c4REXGXi9E+otJqiJixUdERKT/OCZV2bZr1y4kJSXBy8sLzZo1kzsc2RkZGUnJOnb5I33G/9WI9BeTVEXEJqRERET6jy2pyrYNGzYAeNPNrSyPR5WVapa/33//Xfp8EOkb9noh0l9MUhURKz4iIiL9xyRV2ZWYmCiNR6Uai4mAZs2awcvLC0lJSdL5IdI3bFBApL+YpCoiVnxERET6j0mqsmvnzp1ISUlBzZo10aBBA7nD0RkKhYJd/kjvsbsfkf5ikqqIWPERERHpP45JVXaxq1/eVC3Ldu/ejcTERJmjIdIc/1cj0l9MUhWRqrtfcnIylEqlzNEQERFRUbAlVdn08uVL7NmzB8D/xmCi/2nYsCFq1qyJlJQUafZDIn3CoVmI9BeTVEWkys4LIfD69WuZoyEiIqKiYJKqbNq+fTvS09Ph4+ODunXryh2OzlEoFFJrKnb5I33EoVmI9BeTVEWU9WaWGXoiwzd79mw0a9YMNjY2cHZ2Rvfu3XHr1i21fVJSUjB69GhUqFAB1tbW6NWrF2JiYmSKmIgKg0mqsilrVz/Knerc7N27Fy9fvpQ5GiLNsLsfkf5ikqqIjIyMpBtaVn5Ehu/o0aMYPXo0Tp8+jf379yM9PR3t27dX+/yPHz8ev//+OzZt2oSjR4/i8ePH6Nmzp4xRE1FBOCZV2fPs2TMcOHAAAJNU+fH29oa3tzfS09Oxfft2ucMh0oiqTk9OToYQQuZoiEgTTFIVA5uREpUde/bsQUhICLy9vdGgQQOsXr0a9+/fx/nz5wEA8fHxWLlyJRYsWIB33nkHTZo0QXh4OE6ePInTp0/LHD0R5YUtqcqeLVu2IDMzE40bN0aNGjXkDkenqcbrUrU8I9IXqjGpODQLkf5hkqoYOCAfUdkVHx8PAChfvjwA4Pz580hPT0dAQIC0T+3atVG5cmWcOnUq12OkpqYiISFBbSGi0sUklWG7ffs2vLy8YGNjIy1jxowBwFZUhaE6RwcOHMDTp09ljoao8LLW6WxQQKRfmKQqBvZ1JiqblEolxo0bh7feegs+Pj4AgOjoaJiZmcHe3l5tXxcXF0RHR+d6nNmzZ8POzk5aPDw8Sjp0IspGlaRidz/DtHTpUty9exevXr2SloyMDNjY2OC9996TOzydV6NGDTRq1AiZmZnYunWr3OEQFZqRkREsLS0B8H81In3DJFUxsLsfUdk0evRoXL16tdgzHoWFhSE+Pl5aHjx4oKUIiaiwVP+8sCWV4VEqldi4cSMAYOXKlYiMjJSWR48eoVKlSjJHqB/Y5Y/youuTyrBBAZF+0ukkVWEqvjZt2kChUKgtH3zwQanEx+5+RGXPmDFj8Mcff+Dw4cNq/+C4uroiLS0NcXFxavvHxMTA1dU112OZm5vD1tZWbSGi0qXr3f0Kcy+U3erVq3PcG1lYWJRSxLrjxIkTePToEezs7DBgwABUrVpVWmxsbOQOT2/07dsXAHDkyBE8efJE5mhIl+j6pDL8X41IP+l0kqowFR8AhIaG4smTJ9Iyb968UomP2XmiskMIgTFjxmDbtm04dOgQvLy81LY3adIEpqamOHjwoLTu1q1buH//Pvz8/Eo7XCIqJF1PUhX2Xig7W1tbtXuje/fulVLEukPV8qd79+4wNzeXORr9VaVKFfj6+kIIgc2bN8sdDukQXZ9Uhr1eiPSTidwB5GfPnj1qj1evXg1nZ2ecP38erVq1ktaXK1cuz5YKJYkVH1HZMXr0aKxfvx47duyAjY2NNM6UnZ0dLC0tYWdnh+HDh2PChAkoX748bG1t8eGHH8LPzw8tWrSQOXoiyosq2aOrY1IV9l4oO4VCIcu9ka7IyMjApk2bAHCAdG3o168fzpw5gw0bNuDDDz+UOxzSUZpOKpPb/VFqaipSU1Olx8WZVIYNCoj0k063pMoue8Wnsm7dOjg6OsLHxwdhYWHSr6J50daMWmxCSlR2LF26FPHx8WjTpg3c3NykJesYHQsXLkTnzp3Rq1cvtGrVCq6urhxolkiHpaenIz09HYDutqTKLq97oexevXoFT09PeHh4oFu3brh27VpphKczjh49itjYWJQvX17tH2Qqmj59+kChUODEiRMcP5FypYuTyjBJRaSf9CZJlVvFBwDvvfce1q5di8OHDyMsLAxr1qzBwIED8z2Wtio/VnxEZYcQItclJCRE2sfCwgJLlizBixcvkJSUhK1bt5bplgxEuu7169fS3/qQpMrrXii7WrVqYdWqVdixYwfWrl0LpVKJli1b4uHDh3k+R1s/4OkK1Q8IvXr1gqmpqczR6L+KFSvC398fAKTB6Imy0sVJZVQNChITE4sVExGVLp3u7peVquI7fvy42vqRI0dKf9erVw9ubm5o164dIiMjUa1atVyPFRYWhgkTJkiPExISipSoYnc/IiIi/aVqea1QKPRizKK87oWy8/PzUxsLr2XLlqhTpw5++uknzJo1K9fnzJ49GzNmzNBqvHJJT0/Hli1bALCrnzYFBwfj2LFj2LBhAyZOnCh3OKRDVJPKHDt2LM9JZbK2pipoUhlt1ceq13j06JFWjkdEpUMvWlLlNZtWbnx9fQEAd+7cyXMfbc2oxe5+RERE+ivreFQKhULmaPKnyb1QdqampmjUqFG+90babL0gtwMHDuDFixdwdnZG69at5Q7HYPTq1QtGRkY4e/YsIiMj5Q6HdICuTyqjiufu3bsl/lpEpD06naQqqOLLzaVLlwAAbm5uJRwdu/sRERHpM12f2Q8o2r1QdpmZmbhy5Uq+90ba+gFPF6i6+vXp0wcmJnrTaUDnubi44J133gHALn/0xujRo7F27VqsX79emlQmOjpa6kqddVKZw4cP4/z58xg6dGipTSpTpUoVAEBUVFSJvxYRaY9OJ6kKqvgiIyMxa9YsnD9/Hnfv3sXOnTsxePBgtGrVCvXr1y/x+FQtqdjdj4iISP/oQ5KqoHshABg8eDDCwsKkxzNnzsS+ffvw33//4cKFCxg4cCDu3buHESNGyFGEUpWamopt27YBYFe/kqA6p1knDaGyS9cnlVEl9ZmkItIvOv3z0tKlSwEAbdq0UVsfHh6OkJAQmJmZ4cCBA1i0aBGSkpLg4eGBXr16YcqUKaUSH1tSERER6S99SFIVdC8EAPfv34eR0f9+d3z58iVCQ0MRHR0NBwcHNGnSBCdPnkTdunVLK2zZ7NmzBwkJCahYsSLeeustucMxOD179sSoUaPwzz//4ObNm6hdu7bcIZGMhBAF7qOaVGbJkiWlEJE6VZLq0aNHSEtLg5mZWanHQESa0+kkVUEVn4eHB44ePVpK0eSkakml7zPgEBERlUVZx6TSVYX5J/DIkSNqjxcuXIiFCxeWUES6TdWCo2/fvmqJO9KO8uXLo3379ti9ezc2bNiAadOmyR0SUZ6cnZ1haWmJ169f4/79+6hevbrcIRFRIfDbuxhUMwJGRUUV6iaSiIiIdIc+tKSiwktOTsbOnTsBsKtfSVKd24iICN7/kk5TKBQcl4pIDzFJVQyqbHxcXByePXsmczRERESkCSapDMuuXbuQlJSEKlWqoHnz5nKHY7C6desGMzMz3Lx5E1euXJE7HKJ8cYY/Iv3DJFUxWFpaonLlygCAf//9V+ZoiIiISBOqJJUud/ejwlN19QsODoZCoZA5GsNlZ2eHjh07AuAA6qT72JKKSP8wSVVMNWvWBMAkFRGVrsuXL+Ply5dyh0Gk11RjUrEllf5LTEzErl27ALCrX2nIOssfu/yRLmNLKiL9wyRVMTFJRUSl7c6dO2jXrh3efvtt3L9/X+5wiPQWu/sZjp07dyIlJQU1a9ZEw4YN5Q7H4HXu3BmWlpaIjIzE+fPn5Q6HKE+qJBVbUhHpDyapiqlWrVoAmKQiotKTkpICMzMzXL9+HX5+frh8+bLcIRHpJSapDAe7+pUua2trdOnSBQC7/JFuY3c/Iv3DJFUxqVpS3bp1S+ZIiKis8PHxwalTp1C3bl08fvwY/v7+OHz4sNxhEekdjkllGOLi4rBnzx4A7OpXmlTneuPGjezyRzpL1ZIqJiYGr1+/ljkaIioMJqmKSZWkunPnDjIzM2WOhojKisqVK+P48ePw9/dHQkICAgMDERERIXdYRHqFY1IZhu3btyM9PR0+Pj7w9vaWO5wyIygoCNbW1rh//z5Onz4tdzhEuXJwcICtrS0AjktFpC+YpComT09PmJqaIjU1FQ8ePJA7HCIqQxwcHLBv3z707t0b6enp6N+/P06cOCF3WER6g939DIMqQc9WVKXL0tIS3bp1AwD+SEI6S6FQsMsfkZ5hkqqYjI2NUb16dQAcl4qISp+FhQU2bNiAPn36AACWLVsmc0RE+oNJKv337NkzHDhwAACTVHLo168fAGDTpk3sUUA6izP8EekXJqm0gIOnE5GcjIyM8PHHHwMAtmzZgoSEBJkjItIPHJNK/23duhWZmZlo3LgxatSoIXc4ZU779u1hb2+PJ0+e4Pjx43KHQ5QrVZIqMjJS5kiIqDCYpNICDp5ORHJr1qwZ6tSpg9evX2PTpk1yh0OkFzgmlf5jVz95mZmZoUePHgDY5Y90V8OGDQFAanVJRLqNSSotUCWp2JKKiOSiUCgQEhICAFi9erWssRDpC3b302/R0dE4evQoAKBv374yR1N2qbr8bd68GRkZGTJHQ5RT586dYWxsjMuXL7M1FZEeYJJKC5ikIiJdMHDgQBgZGeH48eO4c+eO3OEQ6TwmqfTb5s2boVQq0aJFC2lgZCp977zzDhwdHfHs2TMcPnxY7nCIcqhQoQLatGkDANi2bZu8wRBRgZik0oI6deoAeDMY33///SdzNERUVrm7uyMwMBAAsHjxYpmjIdJ9iYmJADgmlb5iVz/dYGJigl69egFglz/SXapuqVu3bpU5EiIqCJNUWuDo6Ih3330XALB8+XKZoyGismz8+PEAgKVLl+L27dsyR0Oku168eIGYmBgAQNWqVWWOhjT14MEDnDhxAgqFQprdlOSj6vK3detWpKWlyRwNUU7du3cHAJw6dQqPHz+WNxgiyheTVFoyatQoAMDKlSuRmpoqczREVFa9++67CAoKQnp6Oj799FO5wyHSWZcuXQLwJkFla2srbzCkMdUEEf7+/qhYsaLM0ZC/vz9cXV0RFxeH/fv3yx0OUQ4VK1ZEixYtAAA7duyQORoiyg+TVFrSpUsXVKxYEc+ePcOWLVvkDoeIyrD58+fDyMgI27ZtkwYVJiJ1qiSVatYn0i/s6qdbjI2NpRZt7PJHuqpnz54AgPDwcCiVSpmjIaK8MEmlJSYmJggNDQXwppsNEZFcvL29MXLkSABvZrw6d+6czBER6R4mqfTXf//9h7Nnz8LIyEgaC4nkp+ryt2PHDqSkpMgcDVFO7733HqysrHD27FkO0UKkw5ik0qLQ0FAYGxvj+PHj2Llzp9zhEFEZ9tVXX6FRo0aIjY1FmzZt8Oeff8odEpFOYZJKf23cuBHAm1nlXFxcZI6GVFq0aAEPDw8kJibyO4d0UsWKFfH1118DACZNmoRHjx7JHBER5YZJKi1yd3fHmDFjAAADBgzAtWvXZI6IiMqq8uXL48iRI3j33XeRlJSELl26YPXq1XKHRaQTUlJScOPGDQBMUukjdvXTTUZGRtI1YZc/0lWjR4+Gr68vEhMT0bJlS7Ro0QKDBg1i6z8iHaIQQgi5g5BbQkIC7OzsEB8fX+zBU9PT09G+fXscOXIEVatWxb59+1CtWjUtRUpEhkybdZFKWloaRowYgTVr1gAAQkJC4Orqmuf+CoUCnTt3RsuWLdXW37lzB7t378bgwYNhb2+vldiKKioqCr/++qvaDaVCoUDXrl2lQVGJ8nPhwgU0adIE5cuXx7Nnz6BQKOQOSeeURH2kDbdu3ULt2rVhYmKCmJgYlC9fXu6QKItz586hWbNmKFeuHGJjY2FlZSV3SKTnSqIuunLlCpo2bao2E+UXX3yBmTNnauX4RFRMwkD88MMPwtPTU5ibm4vmzZuLM2fOFPq58fHxAoCIj4/XSixPnz4VXl5eAoAwNzcXU6dOFTt37sx1uXr1qlZek4h0R1HrI23XRSpKpVJMnjxZACjUYmxsLH7++Wfp+ceOHRP29vYCgPD29hYPHjzQanyaOHXqlKhQoUKucZuYmIjVq1fLFhvpj5UrVwoA4p133pE7lELTtF7ZuHGjqFWrljA3Nxc+Pj5i165dGr1eSdVHxTVjxgwBQHTs2FHuUCgXSqVSVK1aVQAQERERcodDOkTX7o2uX78uduzYIebMmSMACFNTU3HlyhWtvgYRFY1JqWXDStCGDRswYcIELFu2DL6+vli0aBECAwNx69YtODs7l3o8jo6OOHjwIEaOHIkDBw4UmJUPCQnBvHnz4OTkVEoRElFJ0bX6CHjTymj27Nnw9fXFsWPH8t331q1b2L17N0aMGIEDBw7A1tYWv/zyC1JTU6FQKHDt2jX4+fmhW7duas/z9/cv8a43v//+O4KDg/H69Ws0bNgQbdu2lbbdvHkTf/75J0JCQvDo0SOEhYWxdUwJE0Jg1apVuHjxIgCgevXqGD16NExNTWWOrGD6Nh6VpvXKyZMn0b9/f8yePRudO3fG+vXr0b17d1y4cAE+Pj4ylEA7hBDs6qfjFAoF+vXrh6+//hoRERG8TgRAN++N6tSpgzp16qBLly44deoUduzYgWHDhmH8+PGwsrLCu+++C0tLS1liIyrz5M6SaUPz5s3F6NGjpceZmZnC3d1dzJ49u1DPL8nWCxEREaJNmzbC19c3x9KkSRO1lgsWFha5Lu+++664du2aVmMjopJRnPpIF1ouKJVK8dlnn+VopdS9e3dx48YNUadOnTxbYI0bN05kZmaWSFzLli0TRkZGAoAICgoSiYmJatszMzPFp59+KsXywQcfiPT09BKJhYRITU0VgwYNyvEeCAwMzHFtdJG/v78AIH799Ve5QykUTeuVvn37ik6dOqmt8/X1Fe+//36hX1MX6qPsLl++LAAIMzMzERcXJ3c4lId//vlH6k2gS+8fko+u3xs9fPhQ2NjYqH2fNWjQQERGRpbYaxJR3vS+JVVaWhrOnz+PsLAwaZ2RkRECAgJw6tSpXJ+TmpqK1NRU6XF8fDyAN32etS0oKAhBQUF5bj979izGjx+PK1euIDMzM9d99u/fj/r166Nz586wsLDQeoxEumLJkiWFboVhY2Ojcy1lNK2PSrMu0sSnn36KRo0a4dy5cwCAypUro3///jA2Nsaff/6J9evXS7ECQGxsLMLDw7Fo0SKcOXMGlStX1mo8CQkJ0kxRAwYMwHfffQelUpnjPH322WeoUKECJk2ahGXLluHChQvw8vLSaiz0xu3bt3HhwgUYGRlh5MiRsLCwwE8//YS9e/eiWbNmaNCggdwh5uvs2bMAgGrVqhX781bSdVFR7nNOnTqFCRMmqK0LDAzE9u3b83ydotZHa9euLbCFprbcuXMHABAQEACFQiF7XUm58/T0RM2aNfHvv/+iW7dunIGxmObNm1fosSB5b1Q0NjY2WL58OVasWIHMzExcuXIF//zzDxo3bozAwECdO6dEcvDz88PQoUMLtW+x6yK5s2TF9ejRIwFAnDx5Um39J598Ipo3b57rc6ZNm1bosVm4cOGim4su/jqraX3EuogLF/1fSrouKsp9jqmpqVi/fr3auiVLlghnZ+c8X4f1ERcu+r/w3ogLFy66sBS3LtL7llRFERYWpvYLo1KpxIsXL1ChQoV8M34JCQnw8PDAgwcPdGqmG20w1LKxXPpFk3LZ2NiUUlQlp6h1EWC47wFdwHNbMgz1vBpCXQTw3qg4yvo5KOvlB3TnHBhCfcR7o5xYLv1jqGUrbLmKWxfpfZLK0dERxsbGiImJUVsfExOT5zTr5ubmMDc3V1unyZTqtra2BvVmy8pQy8Zy6Rd9LZem9VFx6yJAf8+VPuC5LRk8r5opyn2Oq6urRvsDvDfShrJ+Dsp6+QGeg9zw3kh7WC79Y6hlK+lyGZXYkUuJmZkZmjRpgoMHD0rrlEolDh48CD8/PxkjI6KyhvUREWlbUeoVPz8/tf2BN+Nbsh4iotLGeyMi0pTet6QCgAkTJmDIkCFo2rQpmjdvjkWLFiEpKanQA3sREWkL6yMi0raC6pXBgwejYsWKmD17NgDgo48+QuvWrfHtt9+iU6dOiIiIwLlz57B8+XI5i0FEZRTvjYhIEwaRpAoODsbTp08xdepUREdHo2HDhtizZ4/WZxMxNzfHtGnTcjRBNQSGWjaWS78YQrlYH+k/ntuSwfNadAXVK/fv34eR0f8ax7dsRA7AQQAAuqVJREFU2RLr16/HlClT8Nlnn6FGjRrYvn07fHx8tB4bryvPQVkvP8BzUBDeGxUPy6V/DLVspVUuhRBClOgrEBERERERERERFUDvx6QiIiIiIiIiIiL9xyQVERERERERERHJjkkqIiIiIiIiIiKSHZNUREREREREREQkOyapNLBkyRJUqVIFFhYW8PX1xd9//y13SHmaPXs2mjVrBhsbGzg7O6N79+64deuW2j5t2rSBQqFQWz744AO1fe7fv49OnTqhXLlycHZ2xieffIKMjIzSLEoO06dPzxF37dq1pe0pKSkYPXo0KlSoAGtra/Tq1QsxMTFqx9DFclWpUiVHuRQKBUaPHg1Af67XsWPH0KVLF7i7u0OhUGD79u1q24UQmDp1Ktzc3GBpaYmAgADcvn1bbZ8XL15gwIABsLW1hb29PYYPH45Xr16p7XP58mX4+/vDwsICHh4emDdvXkkXrdRpWuds2rQJtWvXhoWFBerVq4fdu3eXUqT6R5Nzu2LFCvj7+8PBwQEODg4ICAjQ6fpfTkX9noyIiIBCoUD37t1LNkDSOn26NyoObdx76JvS+j7XVQWVPyQkJMd7okOHDmr76HP5dYW274UK874tDdq+DynM+7E0aFKu1atX54jZwsJCbR99vF65/c+mUCjQqVMnaR9duF4F1XG5OXLkCBo3bgxzc3NUr14dq1evzrGPVu4LBBVKRESEMDMzE6tWrRLXrl0ToaGhwt7eXsTExMgdWq4CAwNFeHi4uHr1qrh06ZLo2LGjqFy5snj16pW0T+vWrUVoaKh48uSJtMTHx0vbMzIyhI+PjwgICBAXL14Uu3fvFo6OjiIsLEyOIkmmTZsmvL291eJ++vSptP2DDz4QHh4e4uDBg+LcuXOiRYsWomXLltJ2XS1XbGysWpn2798vAIjDhw8LIfTneu3evVt8/vnnYuvWrQKA2LZtm9r2OXPmCDs7O7F9+3bxzz//iK5duwovLy/x+vVraZ8OHTqIBg0aiNOnT4u//vpLVK9eXfTv31/aHh8fL1xcXMSAAQPE1atXxW+//SYsLS3FTz/9VFrFLHGa1jknTpwQxsbGYt68eeL69etiypQpwtTUVFy5cqWUI9d9mp7b9957TyxZskRcvHhR3LhxQ4SEhAg7Ozvx8OHDUo5ctxX1ezIqKkpUrFhR+Pv7i27dupVOsKQV+nZvVBzFvffQR6Xxfa7LCir/kCFDRIcOHdTeEy9evFDbR5/LrwtK4l6oMO/bklYS9yGFeT+WNE3LFR4eLmxtbdVijo6OVttHH6/X8+fP1cp09epVYWxsLMLDw6V9dOF6FVTHZffff/+JcuXKiQkTJojr16+LxYsXC2NjY7Fnzx5pH23dFzBJVUjNmzcXo0ePlh5nZmYKd3d3MXv2bBmjKrzY2FgBQBw9elRa17p1a/HRRx/l+Zzdu3cLIyMjtcpi6dKlwtbWVqSmppZkuPmaNm2aaNCgQa7b4uLihKmpqdi0aZO07saNGwKAOHXqlBBCd8uV3UcffSSqVasmlEqlEEI/r1f2Ck+pVApXV1cxf/58aV1cXJwwNzcXv/32mxBCiOvXrwsA4uzZs9I+f/75p1AoFOLRo0dCCCF+/PFH4eDgoFauTz/9VNSqVauES1R6NK1z+vbtKzp16qS2ztfXV7z//vslGqc+Km59npGRIWxsbMQvv/xSUiHqpaKc14yMDNGyZUvx888/iyFDhjBJpWf0/d5IE8W999B3JfV9ri/ySlLlV2cZUvnlou17ocK8b0tDSdyH6MJ3qKblCg8PF3Z2dnkez1Cu18KFC4WNjY1aYxFduF5ZFSZJNWnSJOHt7a22Ljg4WAQGBkqPtXVfwO5+hZCWlobz588jICBAWmdkZISAgACcOnVKxsgKLz4+HgBQvnx5tfXr1q2Do6MjfHx8EBYWhuTkZGnbqVOnUK9ePbi4uEjrAgMDkZCQgGvXrpVO4Hm4ffs23N3dUbVqVQwYMAD3798HAJw/fx7p6elq16p27dqoXLmydK10uVwqaWlpWLt2LYYNGwaFQiGt19frpRIVFYXo6Gi162NnZwdfX1+162Nvb4+mTZtK+wQEBMDIyAhnzpyR9mnVqhXMzMykfQIDA3Hr1i28fPmylEpTcopS55w6dUptf+DNOdGXOqq0aKM+T05ORnp6eo76tCwr6nmdOXMmnJ2dMXz48NIIk7TIEO6NNFWcew9Do63vc3135MgRODs7o1atWhg1ahSeP38ubSsL5S9JJXEvVJj3bUkryfuQ/N6PJa2o5Xr16hU8PT3h4eGBbt26qf3PYijXa+XKlejXrx+srKzU1st5vYqioM+XNu8LTIofruF79uwZMjMz1f75BwAXFxfcvHlTpqgKT6lUYty4cXjrrbfg4+MjrX/vvffg6ekJd3d3XL58GZ9++ilu3bqFrVu3AgCio6NzLbNqm1x8fX2xevVq1KpVC0+ePMGMGTPg7++Pq1evIjo6GmZmZrC3t1d7jouLixSzrpYrq+3btyMuLg4hISHSOn29Xlmp4sgtzqzXx9nZWW27iYkJypcvr7aPl5dXjmOotjk4OJRI/KWlKHVOXtdfV669rtBGff7pp5/C3d09xxd1WVaU83r8+HGsXLkSly5dKoUISdv0/d5IU8W99zA02vo+12cdOnRAz5494eXlhcjISHz22WcICgrCqVOnYGxsbPDlL2klcS9UmPdtSSup+5CC3o8lrSjlqlWrFlatWoX69esjPj4e33zzDVq2bIlr166hUqVKBnG9/v77b1y9ehUrV65UWy/39SqKvD5fCQkJeP36NV6+fKm1+wImqcqA0aNH4+rVqzh+/Lja+pEjR0p/16tXD25ubmjXrh0iIyNRrVq10g6z0IKCgqS/69evD19fX3h6emLjxo2wtLSUMTLtWblyJYKCguDu7i6t09frRWRI5syZg4iICBw5ciTH4J5UeImJiRg0aBBWrFgBR0dHucMhKlBZuPcgzfTr10/6u169eqhfvz6qVauGI0eOoF27djJGRoYsr/sQfXw/+vn5wc/PT3rcsmVL1KlTBz/99BNmzZolY2Tas3LlStSrVw/NmzdXW6+P16s0sbtfITg6OsLY2DjHLC0xMTFwdXWVKarCGTNmDP744w8cPnwYlSpVyndfX19fAMCdO3cAAK6urrmWWbVNV9jb26NmzZq4c+cOXF1dkZaWhri4OLV9sl4rXS/XvXv3cODAAYwYMSLf/fTxeqniyO+z5OrqitjYWLXtGRkZePHihd5cw+IqSp2T1zkxhPOhTcWpz7/55hvMmTMH+/btQ/369UsyTL2j6XmNjIzE3bt30aVLF5iYmMDExAS//vordu7cCRMTE0RGRpZW6FRE+nxvpA2a3nsYGm19nxuSqlWrwtHRUe2+rCyVX9tK4l6oMO/bklZa9yHZ348lTRvfCaampmjUqJHaZ0h1jKIes7iKU66kpCREREQUakiD0r5eRZHX58vW1haWlpZavS9gkqoQzMzM0KRJExw8eFBap1QqcfDgQbXsry4RQmDMmDHYtm0bDh06lKNrVG5UXS7c3NwAvMluX7lyRe0Ldv/+/bC1tUXdunVLJO6iePXqFSIjI+Hm5oYmTZrA1NRU7VrdunUL9+/fl66VrpcrPDwczs7OatOU5kYfr5eXlxdcXV3Vrk9CQgLOnDmjdn3i4uJw/vx5aZ9Dhw5BqVRKiTk/Pz8cO3YM6enp0j779+9HrVq19L6rH1C0OsfPz09tf+DNOdHVOkouRa3P582bh1mzZmHPnj1q44vQG5qe19q1a+PKlSu4dOmStHTt2hVt27bFpUuX4OHhUZrhUxHo472RNml672FotPV9bkgePnyI58+fq92XlaXya1tJ3AsV5n1b0krrPiT7+7GkaeM7ITMzE1euXJFi1ufrBQCbNm1CamoqBg4cWODrlPb1KoqCPl9avS/QaJj1MiwiIkKYm5uL1atXi+vXr4uRI0cKe3v7HNNk6opRo0YJOzs7ceTIEbWpLZOTk4UQQty5c0fMnDlTnDt3TkRFRYkdO3aIqlWrilatWknHyMjIED4+PqJ9+/bi0qVLYs+ePcLJyUmEhYXJVSwhhBATJ04UR44cEVFRUeLEiRMiICBAODo6itjYWCHEm2mgK1euLA4dOiTOnTsn/Pz8hJ+fn/R8XS2XEG9mQKhcubL49NNP1dbr0/VKTEwUFy9eFBcvXhQAxIIFC8TFixfFvXv3hBBvppK1t7cXO3bsEJcvXxbdunXLdcrqRo0aiTNnzojjx4+LGjVqqE3ZHBcXJ1xcXMSgQYPE1atXRUREhChXrpz46aefSrWsJamgOmfQoEFi8uTJ0v4nTpwQJiYm4ptvvhE3btwQ06ZNyzHtMr2h6bmdM2eOMDMzE5s3b1arTxMTE+Uqgk7S9Lxmp2sz3VDB9O3eqDiKe++hj0rj+1yX5Vf+xMRE8fHHH4tTp06JqKgoceDAAdG4cWNRo0YNkZKSIh1Dn8uvC0riXqgw71tdK1dB9yGFfT/qWrlmzJgh9u7dKyIjI8X58+dFv379hIWFhbh27Zpa2fXteqm8/fbbIjg4OMd6XbleBdXxkydPFoMGDZL2/++//0S5cuXEJ598Im7cuCGWLFkijI2NxZ49e6R9tHVfwCSVBhYvXiwqV64szMzMRPPmzcXp06flDilPAHJdwsPDhRBC3L9/X7Rq1UqUL19emJubi+rVq4tPPvlExMfHqx3n7t27IigoSFhaWgpHR0cxceJEkZ6eLkOJ/ic4OFi4ubkJMzMzUbFiRREcHCzu3LkjbX/9+rX4v//7P+Hg4CDKlSsnevToIZ48eaJ2DF0slxBC7N27VwAQt27dUluvT9fr8OHDub73hgwZIoR4M53sF198IVxcXIS5ublo165djvI+f/5c9O/fX1hbWwtbW1sxdOjQHAmBf/75R7z99tvC3NxcVKxYUcyZM6e0ilhq8qtzWrduLZ1TlY0bN4qaNWsKMzMz4e3tLXbt2lXKEesPTc6tp6dnru/padOmlX7gOk7T92xWTFLpJ326NyoObdx76JvS+j7XVfmVPzk5WbRv3144OTkJU1NT4enpKUJDQ3P8I6bP5dcV2r4XKsz7tjRo8z6ksO/H0qBJucaNGyft6+LiIjp27CguXLigdjx9vF5CCHHz5k0BQOzbty/HsXTlehVUxw8ZMkS0bt06x3MaNmwozMzMRNWqVaXcQlbauC9QCCGEZm2viIiIiIiIiIiItItjUhERERERERERkeyYpCIiIiIiIiIiItkxSUVERERERERERLJjkoqIiIiIiIiIiGTHJBUREREREREREcmOSSoiIiIiIiIiIpIdk1RERERERERERCQ7JqmIiIiIiIiIiEh2TFIREREREREREZHsmKQiIiIiIiIiIiLZMUlFRERERERERESyY5KKiIiIiIiIiIhkxyQVERERERERERHJjkkqIiIiIiIiIiKSHZNUREREREREREQkOyapiIiIiIiIiIhIdkxSERERERERERGR7JikItlMnz4dCoWixF/nyJEjUCgUOHLkSIm/FhEZruLUWarnPnv2rMB9FQoFxowZU6TXkUtISAiqVKkidxhEBoV1TsHatGmDNm3ayB0GUYmoUqUKQkJCpMe5/U/Tpk0b+Pj4lH5wRCWISSrSeQqFQlqMjIzg7u6O9u3bM+lEZdrq1auhUChgYWGBR48e5dhuKDctycnJmD59eqE/76obOIVCgfPnz+fYHhISAmtray1HaVju3r0LhUKBb775JtfthfnntzjXTaFQwNjYGM7Ozujduzdu3LhRlGIAAL7++mts3769yM+n/2GdkzvWOcWnqnMUCgW+/PLLXPcZMGAAFAqFrOdS9RlQLSYmJqhYsSJCQkJy/UwUhqbvNzIMV65cQe/eveHp6QkLCwtUrFgR7777LhYvXix3aCXi+vXrmD59Ou7evZtj248//ojVq1dr/TWVSiV+/fVX+Pr6onz58rCxsUHNmjUxePBgnD59WuuvR9rFJBXphXfffRdr1qzBL7/8gg8++ACXL1/GO++8gz///LPA57Zq1QqvX79Gq1atSiFSotKVmpqKOXPmyB1GiUlOTsaMGTOKdAM/ffp0rcYyZcoUvH79WqvHNBQrVqzArVu3pMdFvW5jx47FmjVr8PPPP2PAgAHYtWsX/P39ER0dXaS4mKTSPtY5eWOdUzwWFhb47bffcqxPSkrCjh07YGFhkWPbvn37sG/fvtIITzJz5kysWbMGy5YtQ1BQENauXYvWrVsjJSVF42MV5/1G+unkyZNo2rQp/vnnH4SGhuKHH37AiBEjYGRkhO+++05t31u3bmHFihUyRao9169fx4wZM0o1STV27FgMGTIEbm5umD59OubOnYugoCCcPn0ae/bs0frrkXaZyB0AUWHUrFkTAwcOlB736NED9evXx6JFixAUFJTrc1JSUmBmZgYjI6Ncb2yIDEHDhg2xYsUKhIWFwd3dXe5wkJSUBCsrK7nDQMOGDfHHH3/gwoULaNy4sVaOaWJiAhMTw/ja1PZ1MjU11cpx/P390bt3b+lxrVq1MGrUKPz666+YNGmSVl6Diod1Tu5Y5+SvMNepY8eO2Lp1K/755x80aNBAWr9jxw6kpaWhQ4cOOHTokNpzzMzMSiTe/AQFBaFp06YAgBEjRsDR0RFz587Fzp070bdv31KPh/TLV199BTs7O5w9exb29vZq22JjY9Uem5ubl2JkhiMmJgY//vgjQkNDsXz5crVtixYtwtOnT0stloyMDCiVSlnqKn3GllRUKo4fP45mzZrBwsIC1apVw08//VSs49WrVw+Ojo6IiooC8L/m9hEREZgyZQoqVqyIcuXKISEhId/+25cvX0br1q1Rrlw5VK9eHZs3bwYAHD16FL6+vrC0tEStWrVw4MCBHDE8evQIw4YNg4uLC8zNzeHt7Y1Vq1YVq1xEmvrss8+QmZlZ6JYNa9euRZMmTWBpaYny5cujX79+ePDggdo+f/31F/r06YPKlSvD3NwcHh4eGD9+fI5f9FXdWCIjI9GxY0fY2NhgwIABAN40s160aBG8vb1hYWEBFxcXvP/++3j58qXaMc6dO4fAwEA4OjrC0tISXl5eGDZsGIA3XUCcnJwAADNmzJC6WBSmtcKHH34IBweHQrds+PPPP+Hv7w8rKyvY2NigU6dOuHbtmto+uY0P8/r1a4wdOxaOjo6wsbFB165d8ejRozzjjIuLQ0hICOzt7WFnZ4ehQ4ciOTk515jWrVuHWrVqwcLCAk2aNMGxY8dy7HPx4kUEBQXB1tYW1tbWaNeuXY5m7KouKkePHsX//d//wdnZGZUqVSrUeSmsrGNSFee6Zefv7w8AiIyMVFv/zTffoGXLlqhQoQIsLS3RpEkTqf5WUSgUSEpKwi+//CLFkHVsD9bhRcM6J3esc/6nqHWOn58fvLy8sH79+hxxdejQAeXLl8/xnNzGpFq8eDG8vb1Rrlw5ODg4oGnTpmrHTExMxLhx41ClShWYm5vD2dkZ7777Li5cuFBgjLnJrZ5KS0vD1KlT0aRJE9jZ2cHKygr+/v44fPiwtE9h3m83b95E7969Ub58eVhYWKBp06bYuXNnkeIk3RAZGQlvb+8cCSoAcHZ2VnucfUyq/Fy/fh1t27ZFuXLlULFiRcybNy/HPrGxsRg+fDhcXFxgYWGBBg0a4JdfflHbJ6+xfFXdcrO3eiroPbp69Wr06dMHANC2bVvpfX7kyBFUqVIF165dw9GjR6X1WT/PcXFxGDduHDw8PGBubo7q1atj7ty5UCqV+Z6LqKgoCCHw1ltv5dimUChynOe4uDiMHz9eqhMqVaqEwYMHqw1rUJhzl3W4hEWLFqFatWowNzfH9evXC3Wu6H8M4+cZ0mlXrlxB+/bt4eTkhOnTpyMjIwPTpk2Di4tLkY/58uVLvHz5EtWrV1dbP2vWLJiZmeHjjz9Gampqvlnrly9fonPnzujXrx/69OmDpUuXol+/fli3bh3GjRuHDz74AO+99x7mz5+P3r1748GDB7CxsQHwJkPfokULabBRJycn/Pnnnxg+fDgSEhIwbty4IpeNSBNeXl4YPHgwVqxYgcmTJ+fbsuGrr77CF198gb59+2LEiBF4+vQpFi9ejFatWuHixYvSDdOmTZuQnJyMUaNGoUKFCvj777+xePFiPHz4EJs2bVI7ZkZGBgIDA/H222/jm2++Qbly5QAA77//PlavXo2hQ4di7NixiIqKwg8//ICLFy/ixIkTMDU1RWxsrFQ3TJ48Gfb29rh79y62bt0KAHBycsLSpUsxatQo9OjRAz179gQA1K9fv8DzYmtri/Hjx2Pq1KkFtmxYs2YNhgwZgsDAQMydOxfJyclYunQp3n77bVy8eDHfAcFDQkKwceNGDBo0CC1atMDRo0fRqVOnPPfv27cvvLy8MHv2bFy4cAE///wznJ2dMXfuXLX9jh49ig0bNmDs2LEwNzfHjz/+iA4dOuDvv/+Wxv25du0a/P39YWtri0mTJsHU1BQ//fQT2rRpIyXas/q///s/ODk5YerUqUhKSirwHCYnJ+c67lRe/+CqFOe6ZafqGuDg4KC2/rvvvkPXrl0xYMAApKWlISIiAn369MEff/whnf81a9ZgxIgRaN68OUaOHAkAqFatGgDW4cXBOid3rHOKX+cAQP/+/bF27VrMmTNHGvtu3759WLNmTaG66KxYsQJjx45F79698dFHHyElJQWXL1/GmTNn8N577wEAPvjgA2zevBljxoxB3bp18fz5cxw/fhw3btwoUiu43OqphIQE/Pzzz+jfvz9CQ0ORmJiIlStXIjAwEH///TcaNmxY4Pvt2rVreOutt1CxYkVMnjwZVlZW2LhxI7p3744tW7agR48eGsdK8vP09MSpU6dw9epVrY3j9/LlS3To0AE9e/ZE3759sXnzZnz66aeoV6+e1OPk9evXaNOmDe7cuYMxY8bAy8sLmzZtQkhICOLi4vDRRx9p/LqFeY+2atUKY8eOxffff4/PPvsMderUAQDUqVMHixYtwocffghra2t8/vnnACD9f5icnIzWrVvj0aNHeP/991G5cmWcPHkSYWFhePLkCRYtWpRnXJ6engDefLf06dNH+p7IzatXr+Dv748bN25g2LBhaNy4MZ49e4adO3fi4cOHcHR01PjchYeHIyUlBSNHjoS5uTnKly/Pz7OmBFEJ6969u7CwsBD37t2T1l2/fl0YGxuLwrwFAYjhw4eLp0+fitjYWHHmzBnRrl07AUB8++23QgghDh8+LACIqlWriuTkZLXnq7YdPnxYWte6dWsBQKxfv15ad/PmTQFAGBkZidOnT0vr9+7dKwCI8PBwad3w4cOFm5ubePbsmdpr9evXT9jZ2eWIgUjbwsPDBQBx9uxZERkZKUxMTMTYsWOl7a1btxbe3t7S47t37wpjY2Px1VdfqR3nypUrwsTERG19bu/f2bNnC4VCofY5HjJkiAAgJk+erLbvX3/9JQCIdevWqa3fs2eP2vpt27ZJZcjL06dPBQAxbdq0fM7G/6g+75s2bRJxcXHCwcFBdO3aVS1mKysr6XFiYqKwt7cXoaGhaseJjo4WdnZ2auunTZumVmedP39eABDjxo1Te25ISEiOmFXPHTZsmNq+PXr0EBUqVFBbB0AAEOfOnZPW3bt3T1hYWIgePXpI67p37y7MzMxEZGSktO7x48fCxsZGtGrVSlqneq+8/fbbIiMjI/cTl0VUVJQUQ37L06dPpecMGTJEeHp6So+Let1WrVolnj59Kh4/fiz27NkjqlevLhQKhfj777/V9s/+Hk1LSxM+Pj7inXfeUVtvZWUlhgwZkuP1WIdrjnVO7ljnaK/OmT9/vrh69aoAIP766y8hhBBLliwR1tbWIikpKce5FOLN+65169bS427duqm9D3NjZ2cnRo8eXWBc2anKdeDAAfH06VPx4MEDsXnzZuHk5CTMzc3FgwcPpH0zMjJEamqq2vNfvnwpXFxc1K5Jfu+3du3aiXr16omUlBRpnVKpFC1bthQ1atTQOH7SDfv27RPGxsbC2NhY+Pn5iUmTJom9e/eKtLS0HPt6enqqfYfl9z/Nr7/+Kq1LTU0Vrq6uolevXtK6RYsWCQBi7dq10rq0tDTh5+cnrK2tRUJCQp6vIcT/PqdZ/x8q7Ht006ZNuR5TCCG8vb3VPsMqs2bNElZWVuLff/9VWz958mRhbGws7t+/n+M5WQ0ePFgAEA4ODqJHjx7im2++ETdu3Mix39SpUwUAsXXr1hzblEqlEKLw5051jmxtbUVsbKzasfh51gy7+1GJyszMxN69e9G9e3dUrlxZWl+nTh0EBgYW+jgrV66Ek5MTnJ2d4evrixMnTmDChAk5fu0eMmQILC0tC3VMa2tr9OvXT3pcq1Yt2Nvbo06dOmq/Bqr+/u+//wAAQghs2bIFXbp0gRACz549k5bAwEDEx8cXuck4UVFUrVoVgwYNwvLly/HkyZNc99m6dSuUSiX69u2r9p51dXVFjRo11LogZP0MJSUl4dmzZ2jZsiWEELh48WKOY48aNUrt8aZNm2BnZ4d3331X7bWaNGkCa2tr6bVUrSj++OMPpKenF/c05GBnZ4dx48Zh586ducYNAPv370dcXBz69++vFquxsTF8fX3Vzkt2ql/1/+///k9t/Ycffpjncz744AO1x/7+/nj+/DkSEhLU1vv5+aFJkybS48qVK6Nbt27Yu3cvMjMzkZmZiX379qF79+6oWrWqtJ+bmxvee+89HD9+PMcxQ0NDYWxsnGds2Y0cORL79+/PsQwaNKjQx9DUsGHD4OTkBHd3d3To0AHx8fFYs2YNmjVrprZf1vfoy5cvER8fD39//0LVvazDi491Tu5Y5xSvzgEAb29v1K9fXxpAff369ejWrVu+LSGysre3x8OHD3H27Nl89zlz5gweP36sUWwqAQEBcHJygoeHB3r37g0rKyvs3LlTrUujsbGx1JpfqVTixYsXyMjIQNOm/4+9Ow+Lqm7/B/4etgFZBhDZFBVXFDfEJc1dFHctc8+lTH38oj1mWlHmloVZmS0u2aOQmZmae4opbplgiqHiLqG4gQuyKut8fn/4m5MjoCwzc2aG9+u6znXJOWfOuQ8z83Hm5v7cp1WpxpfU1FTs378fQ4cORWZmpvQ6uX//PoKDg3H58uVy31GQ5NWjRw9ER0djwIABOHXqFBYtWoTg4GBUr1693FO/HBwctHr32tjYoE2bNtJ3FwDYtWsXPD09MWLECGmdtbU13nzzTWRlZeHQoUNlOqe+X6MbN25Ex44d4eLiojVWBgUFobCwsNjpyE8KDw/Ht99+C19fX2zZsgUzZsxAo0aN0L17d624fv31VzRv3rzYSibNdOuy/u4GDx4sTeUF+H4uDyapSK/u3r2LR48eoX79+kW2NWzYUPp3amoqkpOTpSU9PV1r34EDB2Lv3r3Yt28fjh07hnv37uGLL76AhYX2S9jX17fUsdWoUaNIrweVSgUfH58i6wBIfS3u3r2LtLQ0rFy5EtWqVdNaXnvtNQBFGx8S6dusWbNQUFBQYp+Yy5cvQwiB+vXrF3ndnj9/Xus1m5SUhHHjxsHV1RUODg6oVq0aOnfuDABF3ptWVlZFeo1cvnwZ6enpcHd3L3KurKws6VydO3fG4MGDMW/ePLi5uWHgwIEIDw9Hbm6uzn4v//3vf+Hs7Fxin5jLly8DALp161Yk1t9///2Z7+Vr167BwsKiyLjz9DTkJz2ZrAf+nR7ydN+c4sbMBg0a4OHDh7h79y7u3r2Lhw8fao2jGo0aNYJarS7S96cs46MmhqCgoCLLk19QdW327NnYu3cvtmzZgjFjxiA9Pb3IOA88TjK88MILsLW1haurqzRt5unXZ3E4husGx5ziccz5V1nHHI2RI0di48aNuHLlCo4ePSpN0yuNd999Fw4ODmjTpg3q16+PkJAQ/Pnnn1r7LFq0CPHx8fDx8UGbNm0wd+5crS/zz7N06VLs3bsXmzZtQp8+fXDv3r1iG1z/8MMPaNasGWxtbVG1alVUq1YNv/32W6nGqStXrkAIgQ8//LDI62TOnDkAOE6ZstatW2Pz5s148OAB/vrrL4SGhiIzMxOvvPKK1L+oLIr7TuPi4qL1Pr927Rrq169f5P9UzfS7a9eulemc+n6NXr58GZGRkUWOHRQUVKpjW1hYICQkBLGxsbh37x62bduG3r17Y//+/VpFCgkJCc+ddlnW393TYx/fz2XHnlRkFF5++WWtLPTYsWO1GvPVqFFDGpSepbRVVABK/OteSeuFEAAgNet79dVXMXbs2GL3LU/vFaKKqFOnDl599VWsXLkS7733XpHtarUaCoUCu3fvLvY17uDgAOBx9WOPHj2QmpqKd999F35+frC3t8fNmzcxbty4Is0qlUplkf+01Wo13N3d8dNPPxUbq+avSwqFAps2bUJMTAx27NiBPXv24PXXX8cXX3yBmJgYKaaK0FQ2zJ07t9jKBs31/Pjjj/D09CyyXdd31nre+KJPZRkf5dK0aVNprB80aBAePnyICRMmoEOHDtIfEP744w8MGDAAnTp1wrJly+Dl5QVra2uEh4cXabhcHI7husExp3gcc/5V3jFnxIgRCA0NxYQJE1C1alX07Nmz1I9t1KgRLl68iJ07dyIyMhK//vorli1bhtmzZ2PevHkAHvfp6tixI7Zs2YLff/8dn332GT799FNs3ry5xDtGP6lNmzbS3f0GDRqEDh06YOTIkbh48aL0Glq7di3GjRuHQYMGYebMmXB3d4elpSXCwsKK3AiiOJrXyYwZM0qcefCs5CSZBhsbG7Ru3RqtW7dGgwYN8Nprr2Hjxo1S4qK0dPk+fzrZpVFYWKj1s75fo2q1Gj169Cjxzr4NGjQo9bGqVq2KAQMGYMCAAVIPvWvXrkm9q3Tt6bGP7+eyY5KK9KpatWqws7OT/nL4pIsXL0r//uKLL7Sy/cZwW+uSVKtWDY6OjigsLCxV4ozIUGbNmoW1a9cWaYgLPG4YLYSAr6/vM/9jP3PmDC5duoQffvgBY8aMkdbv3bu31HHUrVsX+/btw4svvliqLykvvPACXnjhBXz88cdYt24dRo0ahfXr1+ONN94o8cNSWUybNg1LlizBvHnzitxNR9NI293dvczv51q1akGtViMxMVGrCuHKlSsVjrm4MfPSpUuoUqWK9IW7SpUqWuOoxoULF2BhYVGkKtSQdPG8AcDChQuxZcsWfPzxx1ixYgWAx6X5tra22LNnj1b1Qnh4eKni4BiuOxxziscxp2Jq1qyJF198EQcPHsTkyZPLnLizt7fHsGHDMGzYMOTl5eHll1/Gxx9/jNDQUNja2gJ4PE3x//7v//B///d/uHPnDlq2bImPP/64VEmqJ2kST127dsW3334rJWw3bdqEOnXqYPPmzVqvqaeTDyW93jQVq9bW1hynKglN4rOkKdQVVatWLZw+fRpqtVor0X/hwgVpO/BvtWVaWprW45+uFirLa/RZ42pJ2+rWrYusrCydv/5btWqFQ4cO4fbt26hVqxbq1q2L+Pj4Zz6mtL+7kvD9XHac7kd6ZWlpieDgYGzduhVJSUnS+vPnz2PPnj3Sz4GBgVrTSRo3bixHuKViaWmJwYMH49dffy12ULt7964MURE9/g/91VdfxXfffYfk5GStbS+//DIsLS0xb968In9ZE0Lg/v37AP79a9yT+wgh8NVXX5U6jqFDh6KwsBAfffRRkW0FBQXSB58HDx4UiaVFixYAIE2/0fQhefrDUlloKhu2bduGuLg4rW3BwcFwcnLCJ598UmyPmme9nzV/DVu2bJnW+m+++abcsWpER0dr9S25fv06tm3bhp49e8LS0hKWlpbo2bMntm3bJt1ZCnh817p169ahQ4cOcHJyqnAc5aWL5w14/JoePHgwIiIipNe0paUlFAqF1l91r169iq1btxZ5vL29fZEYOIbrDsec4nHMqbgFCxZgzpw5z+y3VRzN60rDxsYGjRs3hhAC+fn5KCwsLDLdzt3dHd7e3uWe9tmlSxe0adMGS5YsQU5ODoDiX9fHjh1DdHS01mNLer25u7ujS5cu+O6774pNWnCcMl0HDhwotsJp165dAFDslFpd6NOnD5KTk/HLL79I6woKCvDNN9/AwcFBmmJdq1YtWFpaFun59PS4U5bXqL29PYDix9Xi/p8GHo/r0dHRWt8XNdLS0lBQUFDitSYnJxc7bTIvLw9RUVGwsLCQKpcGDx6MU6dOYcuWLUX21zxPpf3dlYTv57JjJRXp3bx58xAZGYmOHTvi//7v/6Q3tb+/P06fPi13eOWycOFCHDhwAG3btsWECRPQuHFjpKam4uTJk9i3bx9SU1PlDpEqqQ8++AA//vgjLl68CH9/f2l93bp1sWDBAoSGhuLq1asYNGgQHB0dkZiYiC1btmDixImYMWMG/Pz8ULduXcyYMQM3b96Ek5MTfv311yL9S56lc+fOmDRpEsLCwhAXF4eePXvC2toaly9fxsaNG/HVV1/hlVdewQ8//IBly5bhpZdeQt26dZGZmYnvv/8eTk5O6NOnD4DHJdONGzfGL7/8ggYNGsDV1RVNmjQp822b//vf/+LLL7/EqVOnpA9LwOPbxi9fvhyjR49Gy5YtMXz4cFSrVg1JSUn47bff8OKLL+Lbb78t9piBgYEYPHgwlixZgvv370u3g7906RKAilUTNWnSBMHBwVq3gwcgTVcBHn+J27t3Lzp06ID/+7//g5WVFb777jvk5uZi0aJF5T63LujqeQOAmTNnYsOGDViyZAkWLlyIvn37YvHixejVqxdGjhyJO3fuYOnSpahXr16R/1MCAwOxb98+LF68GN7e3vD19UXbtm05husQx5ziccypmM6dOz/3i19xevbsCU9PT7z44ovw8PDA+fPn8e2336Jv375wdHREWloaatSogVdeeQXNmzeHg4MD9u3bh+PHj+OLL74od7wzZ87EkCFDEBERgf/85z/o168fNm/ejJdeegl9+/ZFYmIiVqxYgcaNGyMrK0t63LNeb0uXLkWHDh3QtGlTTJgwAXXq1EFKSgqio6Nx48YNnDp1qtzxknymTp2Khw8f4qWXXoKfnx/y8vJw9OhR/PLLL6hdu7bUG1HXJk6ciO+++w7jxo1DbGwsateujU2bNuHPP//EkiVL4OjoCOBxkn3IkCH45ptvoFAoULduXezcubPYnkmlfY22aNEClpaW+PTTT5Geng6lUolu3brB3d0dgYGBWL58ORYsWIB69erB3d0d3bp1w8yZM7F9+3b069cP48aNQ2BgILKzs3HmzBls2rQJV69ehZubW7HXeuPGDbRp0wbdunVD9+7d4enpiTt37uDnn3/GqVOnMG3aNOmxM2fOxKZNmzBkyBC8/vrrCAwMRGpqKrZv344VK1agefPmpf7dPQvfz2VkgDsIEolDhw6JwMBAYWNjI+rUqSNWrFhR5NbKJQHw3FsFP3kL6JK2PX271uJuUVyrVi3Rt2/fUsWQkpIiQkJChI+Pj7C2thaenp6ie/fuYuXKlc+9JqKKevJ28E/T3Ka9uNf4r7/+Kjp06CDs7e2Fvb298PPzEyEhIeLixYvSPufOnRNBQUHCwcFBuLm5iQkTJohTp04VufVwcbcDf9LKlStFYGCgsLOzE46OjqJp06binXfeEbdu3RJCCHHy5EkxYsQIUbNmTaFUKoW7u7vo16+f1m3QhRDi6NGj0viB59wa/lljgWbMKS7mAwcOiODgYKFSqYStra2oW7euGDdunFYsxY1Z2dnZIiQkRLi6ugoHBwcxaNAgcfHiRQFALFy4sMhj7969q/V4zfOYmJgordOMN2vXrhX169cXSqVSBAQEFHvr5pMnT4rg4GDh4OAgqlSpIrp27SqOHj1a7DmKe60U58nbwRenuGsZO3asqFWrltZ+unrehBCiS5cuwsnJSaSlpQkhhFi1apX0u/Hz8xPh4eHFPj8XLlwQnTp1EnZ2dgKA1q28OYaXDcec4nHM0f+Yo1Hc89+5c2et29d/9913olOnTqJq1apCqVSKunXripkzZ4r09HQhhBC5ubli5syZonnz5sLR0VHY29uL5s2bi2XLlj03zmddV2Fhoahbt66oW7euKCgoEGq1WnzyySeiVq1a0u9z586dZR4rExISxJgxY4Snp6ewtrYW1atXF/369RObNm16brxknHbv3i1ef/114efnJxwcHISNjY2oV6+emDp1qkhJSdHat1atWlr/b5XlO01xr7WUlBTx2muvCTc3N2FjYyOaNm2qNcZq3L17VwwePFhUqVJFuLi4iEmTJon4+PgiY7IQpX+Nfv/996JOnTrC0tJS6xqSk5NF3759haOjowCg9X7OzMwUoaGhol69esLGxka4ubmJ9u3bi88//1zk5eWV+DvOyMgQX331lQgODhY1atQQ1tbWwtHRUbRr1058//33Qq1Wa+1///59MWXKFFG9enVhY2MjatSoIcaOHSvu3btXpt/d88Yyvp9LTyGEATonEhERVRJxcXEICAjA2rVrMWrUKLnDISIzxzGHiIjMCXtSERERldOjR4+KrFuyZAksLCzQqVMnGSIiInPGMYeIiMwde1IRERGV06JFixAbG4uuXbvCysoKu3fvxu7duzFx4kRZ765HROaJYw4REZk7TvcjIiIqp71792LevHk4d+4csrKyULNmTYwePRoffPBBmW+bTkT0PBxziIjI3DFJRUREREREREREsmNPKiIiIiIiIiIikh2TVEREREREREREJDsmqQAIIZCRkQHOfCQiOXEsIiJjwfGIiIwBxyKiyodJKgCZmZlQqVTIzMyUOxQiqsQ4FhGRseB4RETGgGMRUeXDJBUREREREREREcmOSSoiIiIiIiIiIpIdk1RERERERERERCQ7JqmIiIiIiIiIiEh2TFIREREREREREZHsrOQOgPTrypUrOHr0qNY6W1tb9OnTBw4ODjJFRUREZHxiY2MRHx+PJk2aIDAwUO5wTEJMTAwuXLiAgIAANG/eXO5wiIiKyMvLw65du5CRkVGq/e3t7dGnTx/Y2dnpOTIiKg6TVGZMCIEuXbrg5s2bRba9+eab+Oqrr2SIioiIyDht2bIFH3/8Md58800mqUpp1apV+N///of58+czSUVERul///sfQkJCyvSY+fPn48MPP9RTRET0LExSmbFr167h5s2bsLKyQlBQEAAgIyMDR48exbZt27BkyRIoFAqZoyQiIjIOmr+yOzk5yRyJ6dBUGjx69EjmSIiIihcfHw8AqF+/PurWrfvMfVNSUvD333/jwIEDTFIRyYRJKjMWFxcHAGjSpAl2794NAMjOzoarqyuuXbuGS5cuoWHDhjJGSEREZDw0SSpHR0eZIzEdmiRVTk6OzJEQERVPM6tk+vTp+M9//vPMfU+fPo3mzZvjxIkTKCwshKWlpSFCJKInsHG6GTt16hQAaJXf29vbo1OnTgCAyMhIWeIiIiIyRqykKjtWUhGRsbtx4wYAoEaNGs/d19/fH/b29sjMzMSFCxf0HRoRFYNJKjOmqaRq0aKF1vrg4GAAwJ49ewwcERERkfEyhiTV4cOH0b9/f3h7e0OhUGDr1q1a24UQmD17Nry8vGBnZ4egoCBcvnxZa5/U1FSMGjUKTk5OcHZ2xvjx45GVlaWXeJmkIiJjp6mkql69+nP3tbS0lHoS/vXXX3qNi4iKxySVGdNUUj2dpOrVqxcA4ODBgyzPJyIi+v+MIUmVnZ2N5s2bY+nSpcVuX7RoEb7++musWLECx44dg729PYKDg7X+Px81ahTOnj2LvXv3YufOnTh8+DAmTpyol3htbW0BMElFRMYpPz8fd+7cAVC6JBUAtGnTBgCTVERyYU8qM5WWlobExEQAKHK3HX9/f1SvXh03b97EH3/8gR49esgRIhERkVExhiRV79690bt372K3CSGwZMkSzJo1CwMHDgQArFmzBh4eHti6dSuGDx+O8+fPIzIyEsePH0erVq0AAN988w369OmDzz//HN7e3jqNlz2piMiY3b59G0IIWFtbw83NrVSPadu2LQDg2LFj+gyNiErASiozdfr0aQBAzZo14eLiorVNoVBwyh8REdFTjCFJ9SyJiYlITk6W7tgLACqVCm3btkV0dDQAIDo6Gs7OzlKCCgCCgoJgYWGhly9cnO5HRMbsyal+Fhal++qrqaQ6ffo0xzYiGTBJZaaKa5r+JE2Sis3TiYiIHsvMzARgvEmq5ORkAICHh4fWeg8PD2lbcnIy3N3dtbZbWVnB1dVV2qc4ubm5yMjI0FpKg0kqIjJmmqbppZ3qBwA+Pj7w9PREYWEhTp48qa/QiKgETFKZqZKapmto/qp69uxZafAmIiKqrAoLC6Xm4saapNKnsLAwqFQqafHx8SnV49iTioiMWVmapmsoFAr2pSKSEZNUZup5SSpXV1dp8OWUPyIiquyevPudo6OjjJGUzNPTEwCQkpKitT4lJUXa5unpKTUJ1igoKEBqaqq0T3FCQ0ORnp4uLdevXy9VTOxJRUTGrDxJKoB9qYjkxCSVGcrPz8fZs2cBlDzdDwD7UhEREf1/multNjY2UCqVMkdTPF9fX3h6eiIqKkpal5GRgWPHjqFdu3YAgHbt2iEtLQ2xsbHSPvv374darZa+dBVHqVTCyclJaykNTvcjImNW3iQVK6mI5MMklRm6ePEicnNz4ejoCF9f3xL369WrFwBg7969KCgoMFR4RERERsdYmqZnZWUhLi5OqohOTExEXFwckpKSoFAoMG3aNCxYsADbt2/HmTNnMGbMGHh7e2PQoEEAgEaNGqFXr16YMGEC/vrrL/z555+YMmUKhg8frvM7+wFMUhGRcdMkqWrUqFGmx7Vu3RrA4zH47t27Oo+LiErGJJUZerJp+rPuYtG6dWu4uLggLS0Nx48fN1R4RERERsdYklQnTpxAQEAAAgICAADTp09HQEAAZs+eDQB45513MHXqVEycOBGtW7dGVlYWIiMjpd5QAPDTTz/Bz88P3bt3R58+fdChQwesXLlSL/GyJxURGbPyNE4HHt851c/PDwCrqYgMjUkqM6T56+uzpvoBgKWlJXr06AGAU/6IiKhyM5YkVZcuXSCEKLJEREQAeNzQd/78+UhOTkZOTg727duHBg0aaB3D1dUV69atQ2ZmJtLT07F69Wo4ODjoJV72pCIiYyWEKPd0P+DfvlRMUhEZlpXcAZDuPa9p+pOCg4OxYcMGbNq0CQ0bNpTW29raok+fPkbbl4OIiEiXjCVJZWqeTFIJIaBQKGSOiIjosdTUVOTm5gJAuaY7t2nTBj/88AObpxMZGJNUZkYIoTXd73k0zdPPnj2LkSNHam37v//7PyxdulT3QRIRERkZJqnKR5OkAh4nqp78mYhITpoqKjc3t3L94f3JSiom4YkMh9P9zMzt27dx9+5dWFhYoEmTJs/dv3r16ggLC0P37t2lpUuXLgCA7777DufOndNzxERERPLLzMwEwCRVWT2ZlGJfKiIyJuVtmq7RtGlTKJVKPHjwAAkJCboMjYiegUkqM6OpovLz8yv1XzPfe+897Nu3T1oOHDiAgQMHorCwEO+8844+wyUiIjIKrKQqHysrK+kmLexLRUTGpLxN0zVsbGzQsmVLAOCUPyIDYpLKzJS2afrzLFq0CFZWVvjtt98QFRWlg8iIiIiMlyZJ5ejoKHMkpkWhUEh/FGMlFREZk4o0Tddo06YNADZPJzIko09SHT58GP3794e3tzcUCgW2bt2qtX3cuHFQKBRaS69eveQJ1giUpWn6szRo0ACTJ08GALz99tsoLCysYGRERETGi5VU5cckFREZI10mqVhJRWQ4Rp+kys7ORvPmzZ/ZwLtXr164ffu2tPz8888GjNC4aKb7VTRJBQCzZ8+GSqXCqVOnsGbNmgofj4iIyFgxSVV+TFIRkTHSRZIqMDAQABAfHw8hhE7iIqJnM/okVe/evbFgwQK89NJLJe6jVCrh6ekpLS4uLgaM0HhkZ2fj0qVLACo+3Q94fCeMWbNmAQA++OADZGdnV/iYRERExohJqvKztbUFwJ5URGRcKto4HQB8fHwAPP6epfl/goj0y+iTVKVx8OBBuLu7o2HDhpg8eTLu378vd0iyOHPmDIQQ8PT0hIeHh06OOXXqVPj6+uL27dv4/PPPdXJMIiIiY8MkVfmxkoqIjFFFG6cDQJUqVeDs7Kx1PCLSL5NPUvXq1Qtr1qxBVFQUPv30Uxw6dAi9e/d+Zg+l3NxcZGRkaC3mQDPVTxdVVBpKpRILFy4EAHz22Wf8AEpERGaJSaryY5KKiIzNo0ePkJqaCqBiSSrg30osTWUWEemXySephg8fjgEDBqBp06YYNGgQdu7ciePHj+PgwYMlPiYsLAwqlUpaNGWcpk5XTdOfNmTIENSoUQPZ2dk4fPiwTo9NZCrCwsLQunVrODo6wt3dHYMGDcLFixe19snJyUFISAiqVq0KBwcHDB48GCkpKTJFTERlwSRV+TFJRUTG5tatWwAej0+aSqjy0iS5mKQiMgyTT1I9rU6dOnBzc8OVK1dK3Cc0NBTp6enScv36dQNGqD+6bJr+JIVCgeDgYADAnj17dHpsIlNx6NAhhISEICYmBnv37kV+fj569uyp1avtrbfewo4dO7Bx40YcOnQIt27dwssvvyxj1ERUWpmZmQCYpCoPJqmIyNg82Y9KoVBU6FhMUhEZlpXcAejajRs3cP/+fXh5eZW4j1KphFKpNGBU+ldYWIjTp08D0O10P41evXph1apViIyMxOLFi3V+fCJjFxkZqfVzREQE3N3dERsbi06dOiE9PR2rVq3CunXr0K1bNwBAeHg4GjVqhJiYGLzwwgtyhE1EpSCEYCVVBbBxOhEZG13c2U+DSSoiwzL6SqqsrCzExcVJU9kSExMRFxeHpKQkZGVlYebMmYiJicHVq1cRFRWFgQMHol69elLlT2WRkJCA7Oxs2NnZoUGDBjo/fvfu3WFhYYHz588jKSlJ58cnMjXp6ekAAFdXVwBAbGws8vPzERQUJO3j5+eHmjVrIjo6WpYYiah0cnJyUFBQAABwdHSUORrTw0oqIjI2umiarsEkFZFhGX2S6sSJEwgICEBAQAAAYPr06QgICMDs2bNhaWmJ06dPY8CAAWjQoAHGjx+PwMBA/PHHH2ZXKfU8mql+TZs2haWlpc6P7+LiIlWCcMofVXZqtRrTpk3Diy++iCZNmgAAkpOTYWNjU6TvgYeHB5KTk4s9jrnexIHI1GjeewqFAvb29jJHY3qYpCIiY6PLSipN43Te3Y/IMIx+ul+XLl0ghChxOxMmj2kqzfQx1U8jODgYR48exZ49ezBhwgS9nYfI2IWEhCA+Ph5Hjhyp0HHCwsIwb948HUVFROWlSVI5OjrCwsLo/35ndJikIiJj82RPqopiJRWRYfGTmJnQ1539nqSZQrlv3z5pWgRRZTNlyhTs3LkTBw4c0Prg4+npiby8PKSlpWntn5KSAk9Pz2KPZa43cSAyNexHVTHsSUVExkYfPanu3LmDvLy8Ch+PiJ6NSSozoa87+z2pVatWcHV1RXp6Oo4dO6a38xAZIyEEpkyZgi1btmD//v3w9fXV2h4YGAhra2tERUVJ6y5evIikpCS0a9eu2GMqlUo4OTlpLURkeExSVQwrqYjI2OgySeXm5gYbGxsAwO3btyt8PCJ6NiapzMDdu3elgbhp06Z6O4+lpSV69OgBoOidzojMXUhICNauXYt169bB0dERycnJSE5Olr6UqVQqjB8/HtOnT8eBAwcQGxuL1157De3ateOd/YiMHJNUFcMkFREZE7VajVu3bgHQTZJKoVDA29sbAKf8ERkCk1RmQFNFVa9ePb3flahXr14A2AuMKp/ly5cjPT0dXbp0gZeXl7T88ssv0j5ffvkl+vXrh8GDB6NTp07w9PTE5s2bZYyaiEqDSaqKYZKKiIzJnTt3UFBQAAsLixJbLpQVm6cTGY7RN06n5zPEVD+Nnj17Anh818V79+7Bzc1N7+ckMgbPuoGDhq2tLZYuXYqlS5caICIi0pXMzEwATFKVF3tSEZEx0VQ7eXp6wspKN1932TydyHBYSWUGDHFnPw1vb280a9YMQgjs3btX7+cjIiLSN1ZSVQwrqYjImOiyH5UGk1REhsMklRkwxJ39nqS5yx+n/BERkTnQJKn0PWXeXDFJRVQ5HT58GP3794e3tzcUCgW2bt2qtV0IgdmzZ8PLywt2dnYICgrC5cuX9R6XZkoek1REpolJKhOXk5ODCxcuADBckurJvlSlmQJFRERkzEytkqp27dpQKBRFlpCQEABAly5dimz7z3/+o7d4mKQiqpyys7PRvHnzEtscLFq0CF9//TVWrFiBY8eOwd7eHsHBwXqfGqyPSipNTyomqYj0jz2pTNy5c+dQUFAAV1dXnQ7Ez/Liiy+iSpUqSE5OxunTpw0yzZCIiEhfTC1Jdfz4cRQWFko/x8fHo0ePHhgyZIi0bsKECZg/f770c5UqVfQWjyZJxZ5URJVL79690bt372K3CSGwZMkSzJo1CwMHDgQArFmzBh4eHti6dSuGDx+ut7g0iSRNYkkXNN+z2DidSP9YSWXinpzqp1AoDHJOpVKJbt26AQD7UhERkckztSRVtWrV4OnpKS07d+5E3bp10blzZ2mfKlWqaO2jz2vTNE5nJRURaSQmJiI5ORlBQUHSOpVKhbZt2yI6Olqv59ZnT6pbt25xJgmRnjFJZeIMeWe/J7Vv3x4AcPLkSYOel4iISNfS09MBmE6S6kl5eXlYu3YtXn/9da0/Vv30009wc3NDkyZNEBoaiocPH+otBk73I6KnJScnAwA8PDy01nt4eEjbipObm4uMjAytpaz00ZPK29tbiu/+/fs6Oy4RFcXpfibOkHf2e5ImKaY5PxERkalKS0sDALi4uMgbSDls3boVaWlpGDdunLRu5MiRqFWrFry9vXH69Gm8++67uHjxIjZv3lzicXJzc5Gbmyv9XJYvhkxSEZGuhIWFYd68eeV+fHZ2Ni5dugQAaNiwoa7Cgo2NDapVq4a7d+/i5s2bcHNz09mxiUgbK6lMmBBCtkoqzfkuXrzID6VERGTSNEkqZ2dnWeMoj1WrVqF3797SX/kBYOLEiQgODkbTpk0xatQorFmzBlu2bEFCQkKJxwkLC4NKpZIWHx+fUsfAnlRE9DRPT08AQEpKitb6lJQUaVtxQkNDkZ6eLi3Xr18v03ljY2OhVqtRvXp1nffrZfN0IsNgksqEXbt2Denp6bCxsYGfn59Bz+3p6Ylq1apBrVYjPj7eoOcmIiLSpQcPHgAwvSTVtWvXsG/fPrzxxhvP3K9t27YAgCtXrpS4T0W+GD7Zk4q9WogIAHx9feHp6YmoqChpXUZGBo4dO4Z27dqV+DilUgknJyetpSz++usvAP+Oe7rE5ulEhsEklQnTTLVr3LgxbGxsDHpuhULBKX9ERGTy1Gq1NLXN1Kb7hYeHw93dHX379n3mfpr/p728vErcpyJfDDWVVEII5OXllfpxRGTasrKyEBcXJ40xiYmJiIuLQ1JSEhQKBaZNm4YFCxZg+/btOHPmDMaMGQNvb28MGjRIbzEdO3YMANCmTRudH1uTpGIlFZF+sSeVCXvyzn5yaN68Ofbu3StNOSQiIjI1GRkZUvWPSqWSOZrSU6vVCA8Px9ixY2Fl9e/HuYSEBKxbtw59+vRB1apVcfr0abz11lvo1KkTmjVrppdYNEkq4HE1lVKp1Mt5iMi4nDhxAl27dpV+nj59OgBg7NixiIiIwDvvvIPs7GxMnDgRaWlp6NChAyIjI6XqS30wRCUVk1RE+sUklQmTqx+VBiupiIjI1Gn6UdnZ2ZlUcmXfvn1ISkrC66+/rrXexsYG+/btw5IlS5CdnQ0fHx8MHjwYs2bN0lssNjY2UCgUEEKwLxVRJdKlS5dnTvFVKBSYP38+5s+fb5B4kpOTpSquwMBAnR+fPamIDINJKhMm1539NDRJqlOnTkGtVsPCgrNHiYjItJhq0/SePXsW++XQx8cHhw4dMmgsCoUCdnZ2ePjwIW+mQkSy0VRR+fv7w9HRUefHZ08qIsNgVsFEpaWl4erVqwDkS1I1bNgQSqUSWVlZSExMlCUGIiKiijDVpunG5snm6UREctBnPyqA0/2IDIVJKhN1+vRpAEDNmjVla/RqZWWFJk2aAOCUPyIiMk2aSipTa5pubDR9qZikIiK56LMfFfBvkurBgwcc64j0SG9Jqjp16uD+/ftF1qelpaFOnTr6Om2lIXfTdA32pSIiIlNmqtP9jI0mScWeVEQkB7VaLSWp9FVJpVKpYG9vD4DVVET6pLck1dWrV1FYWFhkfW5uLt/UOiB303QNzVRD3uGPiIhMEZNUusFKKiKS06VLl5CRkQE7OztppoeuKRQK9qUiMgCdN07fvn279O89e/Zo3c65sLAQUVFRqF27tq5PW+nI3TRdg5VURERkypik0g32pCIiOTVs2BCJiYm4cuUKrKz0d2+w6tWr49KlSyy6INIjnb+DBw0aBOBxpnns2LFa26ytrVG7dm188cUXuj5tpZKfn4+zZ88CkL+SqlmzZgCA69evIzU1Fa6urrLGQ0REVBZsnK4brKQiIjkpFArUrl1b78UQbJ5OpH86n+6nVquhVqtRs2ZN3LlzR/pZrVYjNzcXFy9eRL9+/XR92krl4sWLyM3NhZOTk+xVaSqVCr6+vgA45Y+IiEwPG6frBpNURFQZ1KhRAwCTVET6pLeeVImJiXBzc9PX4Ss1zdS6Zs2awcJC/hs0csofERGZKk730w02TieiyoA9qYj0T38TdgFERUUhKipKqqh60urVq/V5arNmLE3TNVq0aIEtW7awkoqIiEwOk1S6wZ5URFQZcLofkf7pLUk1b948zJ8/H61atYKXlxcUCoW+TlXpGEvTdA1NHKykIiIiU8MklW5wuh8RVQZMUhHpn96SVCtWrEBERARGjx6tr1NUSkIIo6ykAoBz584hLy8PNjY28gZERERUSmycrhtMUhFRZaBJUt2+fRuFhYWwtLSUOSIi86O3hkZ5eXlo3759hY9z+PBh9O/fH97e3lAoFNi6davWdiEEZs+eDS8vL9jZ2SEoKAiXL1+u8HmN1e3bt3H37l1YWlrC399f7nAAADVr1oSzszPy8/Nx/vx5ucMhIiIqNTZO1w32pCKiysDT0xOWlpYoLCzEnTt35A6HyCzpLUn1xhtvYN26dRU+TnZ2Npo3b46lS5cWu33RokX4+uuvsWLFChw7dgz29vYIDg422w9Jmil1DRs2lD4Qyk2hUHDKHxERmZyCggJkZWUBYCVVRbGSiogqA0tLS3h6egJg83QifdHbdL+cnBysXLkS+/btQ7NmzWBtba21ffHixaU6Tu/evdG7d+9itwkhsGTJEsyaNQsDBw4EAKxZswYeHh7YunUrhg8fXrGLMELGNtVPo0WLFjh06BDi4uIwduxYucMhIiJ6rvT0dOnfKpVKxkhMHxunE1FlUb16ddy8eRM3b95E69at5Q6HyOzoLUl1+vRpKZESHx+vtU1XTdQTExORnJyMoKAgaZ1KpULbtm0RHR1tlkkqY2uarqF5rnmHPyIiMhWaqX4ODg6wstLrDY/NHiupiKiyYPN0Iv3S2yeyAwcO6OvQkuTkZACAh4eH1noPDw9pW3Fyc3ORm5sr/ZyRkaGfAPVAk6QytkoqTdLs77//ZhNBIiIyCWyarjtMUhFRZVGjRg0ATFIR6YveelIZs7CwMKhUKmnx8fGRO6RSyc7OlprCG1slVZMmTeDk5IS0tDScPHlS7nCIiIiei03TdadKlSoAgIcPH8ocCRGRfmkqqdiTikg/9FZJ1bVr12dO69u/f3+Fz6FpWpeSkgIvLy9pfUpKyjMrjUJDQzF9+nTp54yMDJNIVJ05cwZCCHh6ehapHpObtbU1unfvji1btiAyMpLzs4mIyOhpklSspKo4e3t7AI//oEZEZM443Y9Iv/RWSdWiRQs0b95cWho3boy8vDycPHkSTZs21ck5fH194enpiaioKGldRkYGjh07hnbt2pX4OKVSCScnJ63FFBhr03SNXr16AQD27NkjcyRERETPxySV7jBJRUSVBZNURPqlt0qqL7/8stj1c+fOlW73XBpZWVm4cuWK9HNiYiLi4uLg6uqKmjVrYtq0aViwYAHq168PX19ffPjhh/D29sagQYMqeglGx1ibpmsEBwcDAGJiYpCWlsYP/UREZNSYpNIdJqmIqLJ4crqfEEJnNwUjoscM3pPq1VdfxerVq0u9/4kTJxAQEICAgAAAwPTp0xEQEIDZs2cDAN555x1MnToVEydOROvWrZGVlYXIyEjpVsjmxFibpmvUqlULfn5+KCws1KpuIyIiMkZsnK47TFIRUWWhSVJlZ2eb1A24iEyFwZNU0dHRZUogdenSBUKIIktERAQAQKFQYP78+UhOTkZOTg727duHBg0a6Cl6+RQWFuLMmTMAjDdJBfxbTcUpf0REZOzYOF13NEkqNk4nInNnb28v/XGDU/6IdE9v0/1efvllrZ+FELh9+zZOnDiBDz/8UF+nNVsJCQnIzs6GnZ0d6tevL3c4JQoODsZXX32FyMhIlr8SEZFR43Q/3dHc3Y+VVERUGVSvXh1paWm4efMmGjduLHc4RGZFb5VUKpVKa3F1dUWXLl2wa9cuzJkzR1+nNVuapulNmjSBpaWlzNGUrHPnzlAqlbh+/TouXLggdzhEREQlMtUk1dy5c6FQKLQWPz8/aXtOTg5CQkJQtWpVODg4YPDgwUhJSdFrTJpKqry8PBQUFOj1XEREcmPzdCL90VslVXh4uL4OXSlp+lFpenMZqypVqqBTp07Yu3cvIiMj0ahRI7lDIiIiKpapJqkAwN/fH/v27ZN+trL69yPdW2+9hd9++w0bN26ESqXClClT8PLLL+PPP//UWzyaJBXwuJpKpVLp7VxERHJ7snk6EemW3pJUGrGxsTh//jyAxx+ojD3JYqyM/c5+T+rVqxf27t2LPXv24K233pI7HCIiomKZcuN0KysreHp6Flmfnp6OVatWYd26dejWrRuAx384bNSoEWJiYvDCCy/oJR6lUgkLCwuo1WomqYjI7LGSikh/9Dbd786dO+jWrRtat26NN998E2+++SYCAwPRvXt33L17V1+nNVua6X7G3DRdQ9M8/dChQ3j06JHM0RARERUvNTUVgGkmqS5fvgxvb2/UqVMHo0aNQlJSEoDHfxzMz89HUFCQtK+fnx9q1qyJ6OhovcWjUCh4hz8iqjRq1KgBgEkqIn3QW5Jq6tSpyMzMxNmzZ5GamorU1FTEx8cjIyMDb775pr5Oa5bu3r0rDYBNmzaVOZrna9y4MapXr46cnBwcPnxY7nCIiIiKyMnJkfo0+fj4yBxN2bRt2xYRERGIjIzE8uXLkZiYiI4dOyIzMxPJycmwsbEpknjz8PBAcnJyicfMzc1FRkaG1lJWvMMfEVUWrKQi0h+9JakiIyOxbNkyrZ5EjRs3xtKlS7F79259ndYsaaqo6tWrB0dHR5mjeT6FQoFevXoBAPbs2SNzNEREREVpKo/s7e1RtWpVmaMpm969e2PIkCFo1qwZgoODsWvXLqSlpWHDhg3lPmZYWJjWDW/Kk7hjJRURVRbsSUWkP3pLUqnValhbWxdZb21tDbVara/TmiVTmuqnoZnyFxkZKXMkRERERSUmJgIAfH19oVAoZI6mYpydndGgQQNcuXIFnp6eyMvLk5rCa6SkpBTbw0ojNDQU6enp0nL9+vUyx1GlShUATFIRkfnTJKnu3LmDvLw8maMhMi96S1J169YN//3vf3Hr1i1p3c2bN/HWW2+he/fu+jqtWTKlpukaQUFBsLCwwPnz56W/VhMRERmLq1evAgBq164taxy6kJWVhYSEBHh5eSEwMBDW1taIioqStl+8eBFJSUlo165dicdQKpVwcnLSWsqKlVREVFm4ublJBRm3b9+WORoi86K3JNW3336LjIwM1K5dG3Xr1kXdunXh6+uLjIwMfPPNN/o6rVnSJKlMqZLKxcUFbdu2BcApf0REZHw0SSpfX195AymHGTNm4NChQ7h69SqOHj2Kl156CZaWlhgxYgRUKhXGjx+P6dOn48CBA4iNjcVrr72Gdu3a6e3OfhpMUhFRZWFhYcG+VER6YqWvA/v4+ODkyZPYt28fLly4AABo1KiR1t1m6PlycnKk358pVVIBj6f8RUdHY8+ePZgwYYLc4RAREUk00/1MsZLqxo0bGDFiBO7fv49q1aqhQ4cOiImJQbVq1QAAX375JSwsLDB48GDk5uYiODgYy5Yt03tcTFIRUWVSvXp1XL16lX2piHRM50mq/fv3Y8qUKYiJiYGTkxN69OiBHj16AADS09Ph7++PFStWoGPHjro+tVk6d+4cCgoK4OrqKt3q1FT06tULc+fOxb59+1BQUAArK73lRImIiMrElKf7rV+//pnbbW1tsXTpUixdutRAET3Gu/sRUWXCSioi/dD5dL8lS5ZgwoQJxfYyUKlUmDRpEhYvXqzr05qtJ5umm1pj11atWsHV1RXp6ek4duyY3OEQVcjhw4fRv39/eHt7Q6FQYOvWrVrbhRCYPXs2vLy8YGdnh6CgIFy+fFmeYInouZ5snE66wUoqIqpMmKQi0g+dJ6lOnTqFXr16lbi9Z8+eiI2N1fVpzZYpNk3XsLS0lKro2JeKTF12djaaN29eYmXCokWL8PXXX2PFihU4duwY7O3tERwcjJycHANHSkTP8/DhQ9y5cweAaVZSGSve3Y+IKhMmqYj0Q+dJqpSUFOlOB8WxsrLC3bt3dX1as2WKTdOfFBwcDACIjIyUORKiiunduzcWLFiAl156qcg2IQSWLFmCWbNmYeDAgWjWrBnWrFmDW7duFam4IiL5aab6qVQquLi4yBuMGWElFRFVJppWLExSEemWzpNU1atXR3x8fInbT58+DS8vL12f1iwJIbSm+5kiTZLqxIkTuHfvnszREOlHYmIikpOTtW4MoVKp0LZtW0RHR5f4uNzcXGRkZGgtRKR/ptyPypgxSUVElYmmkoqN04l0S+dJqj59+uDDDz8sdorLo0ePMGfOHPTr10/XpzVL165dQ3p6OqytreHn5yd3OOXi7e2Npk2bQgiBvXv3yh0OkV4kJycDADw8PLTWe3h4SNuKExYWBpVKJS0+Pj56jZOIHtMkqdiPSreYpCKiykSTpLp16xaEEDJHQ2Q+dJ6kmjVrFlJTU9GgQQMsWrQI27Ztw7Zt2/Dpp5+iYcOGSE1NxQcffKDr05olzVQ/f39/2NjYyBtMBWh6lLEvFZG20NBQpKenS8v169flDomoUtA0TWcllW4xSUVElYm3tzeAx5Xx9+/flzkaIvOh8ySVh4cHjh49iiZNmiA0NBQvvfQSXnrpJbz//vto0qQJjhw5UqTagIqnmepnik3Tn6SZ8rdnzx7+lYHMkqenJ4DHPfmelJKSIm0rjlKphJOTk9ZCRPrH6X76oUlSPXz4UOZIiMhYzJ07FwqFQmsx1RkiT1MqlahWrRoA9qUi0iUrfRy0Vq1a2LVrFx48eIArV65ACIH69euzOWkZmXrTdI0OHTqgSpUqSE5OxunTp00+6Ub0NF9fX3h6eiIqKkp6v2ZkZODYsWOYPHmyvMERURGaSipO99MtVlIRUXH8/f2xb98+6WcrK718BZVF9erVcffuXdy8eZPfcYh0RK8jhIuLC1q3bq3PU5g1c0lSKZVKdO3aFb/99hsiIyM5gJNJysrKwpUrV6SfExMTERcXB1dXV9SsWRPTpk3DggULUL9+ffj6+uLDDz+Et7c3Bg0aJF/QRFQsVlLpR5UqVQAwSUVE2qysrJ5ZWW7Kqlevjri4ODZPJ9IhnU/3I91IS0uTPkSbQ1KHfanI1J04cQIBAQEICAgAAEyfPh0BAQGYPXs2AOCdd97B1KlTMXHiRLRu3RpZWVmIjIyEra2tnGET0VPS0tKk3iFMUukWK6mIqDiXL1+Gt7c36tSpg1GjRiEpKanEfU3tzsea5umc7kekO+ZTa2lmTp8+DQCoWbOmWUyT1PSlOnLkCLKysuDg4CBzRERl06VLl2f2VFMoFJg/fz7mz59vwKiIqKw2b94MAGjYsCH7wOkYk1RE9LS2bdsiIiICDRs2xO3btzFv3jx07NgR8fHxcHR0LLJ/WFgY5s2bJ0Ok5VOjRg0ATFIR6RIrqYyUZqqfOVRRAUC9evVQp04d5Ofn48CBA3KHQ0RElVR4eDgAYOzYsTJHYn6YpCKip/Xu3RtDhgxBs2bNEBwcjF27diEtLQ0bNmwodn9Tu/MxK6mIdI+VVEZKc2c/U+9HpaFQKBAcHIzly5djz5496N+/f6kfm5WVhdjYWKjVammdhYUFAgMDWZFFRESldvnyZRw5cgQWFhYYM2aM3OGYnSfv7ieEgEKhkDkiIjI2zs7OaNCggVafzycplUoolUoDR1V+miQVe1IR6Q4rqYyUJkllLpVUwL99qbZt24bc3NxSPUYIgf79+6NLly7o1q2btHTp0gV9+vR55vQrIiKiJ0VERAB4PAVd88WCdEeTpFKr1aX+f56IKpesrCwkJCTAy8tL7lB0gpVURLrHJJUREkLg0qVLAIDGjRvLHI3u9OjRA15eXrhx4wa+/fbbUj1m8+bNOHjwIGxsbODv7y8tNjY2+OOPP7Bp0yY9R01EROagsLAQP/zwAwDgtddekzka86S5ux/AKX9E9NiMGTNw6NAhXL16FUePHsVLL70ES0tLjBgxQu7QdELTk+rBgwd49OiRzNEQmQcmqYzQ3bt3kZmZCYVCAV9fX7nD0Rk7OzssWLAAALBgwQLp7kolycvLw7vvvgsAePfddxEfHy8toaGh0nr+tZaIiJ7nyJEjuHnzJlxcXDBgwAC5wzFLVlZWsLGxAcAkFRE9duPGDYwYMQINGzbE0KFDUbVqVcTExKBatWpyh6YTKpVKStCzmopIN5ikMkIJCQkAHmfmze329WPHjkWzZs2Qlpb23LugLV26FAkJCfD09MQ777yjtW3mzJnw8vJCYmJiqauyiIio8vrrr78AAN27dzepfiemhs3TiehJ69evx61bt5Cbm4sbN25g/fr1qFu3rtxh6YxCoeCUPyIdM/kk1dy5c6FQKLQWPz8/ucOqEE0jwXr16skcie5ZWlriiy++AAAsW7ZMmtb4tNTUVHz00UcAgI8++qhIg3R7e/syVWUREVHlprlrrrnckMRYMUlFRJUNm6cT6ZbJJ6kAwN/fH7dv35aWI0eOyB1ShZhzkgoAgoKC0KdPHxQUFEjT+Z720Ucf4cGDB2jSpEmJvUOerMrSJLSIiIiK8/fffwMAAgICZI7EvDFJRUSVjaYvFSupiHTDLJJUVlZW8PT0lBY3Nze5Q6oQc09SAcCiRYtgYWGBrVu34tChQ1rbrly5gqVLlwIAPv/8c1haWhZ7jCerspYuXYrLly/rN2giIjJJDx8+xMWLFwEwSaVvmiTVw4cPZY6EiMgwON2PSLfMIkl1+fJleHt7o06dOhg1ahSSkpLkDqlCND2pzGm+9tP8/f0xYcIEAMDbb7+NQ4cOScu0adOQn5+P4OBgBAcHP/M4panKIiKiyu3MmTNQq9Vwd3eHp6en3OGYNVZSEVFlo6mkunbtmsyREJkHK7kDqKi2bdsiIiICDRs2xO3btzFv3jx07NgR8fHxcHR0LPYxubm5WneEy8jIMFS4pVIZKqkAYN68efjpp58QGxuLLl26aG2zsLDA559/XqrjfPbZZ9izZw+2bNmCuLg49hshIiItT071UygUMkdj3jR3uWKSiogqi6ZNmwIAYmNjZY6EyDyYfCVV7969MWTIEDRr1gzBwcHYtWsX0tLSsGHDhhIfExYWBpVKJS0+Pj4GjPjZHjx4IDUBN+dKKgDw8PDAsmXL4O/vDz8/P2lp1KgRwsLC0KRJk1Idp3HjxtLtxHfs2KHPkImIyARpmqZzqp/+sZKKiCqbwMBAWFhY4MaNG7h165bc4RCZPJNPUj3N2dkZDRo0kKqRihMaGor09HRpuX79ugEjfDbNVD9PT88id7QzR6NHj0Z8fDzOnz8vLefOncM777xTpuP06tULABAZGamPMImIyIRpKqnModI2LCwMrVu3hqOjI9zd3TFo0CCp35ZGly5ditz5+D//+Y9B4mOSiogqGwcHBzRu3BgAcPz4cZmjITJ9ZpekysrKQkJCAry8vErcR6lUwsnJSWsxFpWhH5U+aHpXxcTE4MGDBzJHQ0RExqKgoACnT58GYB6VVIcOHUJISAhiYmKwd+9e5Ofno2fPnkWSQhMmTNC68/GiRYsMEh+TVERUGbVt2xYAcOzYMZkjITJ9Jp+kmjFjBg4dOoSrV6/i6NGjeOmll2BpaYkRI0bIHVq5VJZ+VLpWq1Yt+Pn5Qa1WIyoqSu5wiIjISFy6dAk5OTmwt7c3i/9bIyMjMW7cOPj7+6N58+aIiIhAUlJSkV4oVapU0brzsaH+IMe7+xFRZdSmTRsAwF9//SVzJESmz+STVDdu3MCIESPQsGFDDB06FFWrVkVMTAyqVasmd2jlwiRV+Wmm/O3Zs0fmSIiIyFhopvo1b94cFhYm/7GniPT0dACAq6ur1vqffvoJbm5uaNKkCUJDQw2WNGIlFRFVRppKquPHj0OtVsscDZFpM/m7+61fv17uEHSK0/3KLzg4GEuWLMGePXsghOAdnIiICOfPnwcANGvWTOZIdE+tVmPatGl48cUXtW42MnLkSNSqVQve3t44ffo03n33XVy8eBGbN28u8Vi6uvMx7+5HRJWRv78/qlSpgoyMDFy8eBGNGjWSOyQik2XySSpzw0qq8uvcuTNsbW1x/fp1nD9/XmpgSERElVdiYiIAoE6dOjJHonshISGIj4/HkSNHtNZPnDhR+nfTpk3h5eWF7t27IyEhocQ/goWFhWHevHkVjomVVERUGVlZWSEwMBB//PEH/vrrLyapiCrA/OreTVh2djZu374NgEmq8rCzs0OnTp0AcMofERE9dvXqVQBA7dq1ZY1D16ZMmYKdO3fiwIEDqFGjxjP31UxDMcSdj5mkIqLKStOX6vDhw0hJSUFBQYHMERGZJiapjIhmqp+rqytcXFxkjsY0ae7yFxkZKXMkRERkDDSVVL6+vjJHohtCCEyZMgVbtmzB/v37S3VdcXFxAGCQOx8zSUVElZXmDwKrV6+Gp6cnmjRpgvz8fJmjIjI9TFIZEfajqjhN8/TDhw/j0aNHMkdDRERyysnJkSqUzaWSKiQkBGvXrsW6devg6OiI5ORkJCcnS//nJSQk4KOPPkJsbCyuXr2K7du3Y8yYMejUqZNB+nIxSUVElVVQUBDq168v9cW9ePEiTp8+LXNURKaHSSojwn5UFdeoUSPUqFEDOTk5OHTokNzhEBGRjJKSkgA8TpxUrVpV5mh0Y/ny5UhPT0eXLl3g5eUlLb/88gsAwMbGBvv27UPPnj3h5+eHt99+G4MHD8aOHTsMEp8mSWWouwkSERkLFxcXXLp0CWq1WprdcezYMZmjIjI9TFIZESapKk6hUEjVVOxLRURUuT051c9c7vgqhCh2GTduHADAx8cHhw4dwv3795GTk4PLly9j0aJF5Z6+V1YqlQoAkJqaapDzEREZI01/qr/++kvmSIhMD5NURoRJKt1gXyoiIgLMt2m6MatZsyYAICUlhdPuiajS0vSnYiUVUdkxSWVE2JNKN4KCgmBpaYkLFy7g2rVrcodDREQyMbem6abA1dUVDg4OAP6dbklEVNloKqkuXLiA9PR0maMhMi1MUhmJ3Nxc6cMcK6kqxtnZWfrrBaf8ERFVXqykMjyFQiH9vvmHIiKqrKpVqyb9geT48eMyR0NkWpikMhKJiYkQQsDBwQHu7u5yh2PyNH2pOOWPiMh85OXl4Y8//sC+fftw6NAh5ObmPnN/VlLJo1atWgD+TRISEVVG7EtFVD5MUhmJJ6f6mUtzVzlp+lJFRUUhPz9f5miIiEgX3n//fXTq1Ak9evRAly5d8Oabbz5zf1ZSyUPz+2aSiogqM/alIiofJqmMBJum61ZgYCCqVq2KjIwM/sdARGQGcnJysGrVKgD//l+5du1aZGZmFrv/w4cPcefOHQBMUhkak1RERP9WUh07dgxCCJmjITIdTFIZCSapdMvS0hI9evQAwCl/RETmYNu2bUhLS4OPjw8uXLiAhg0b4uHDh9iwYUOx+2sSJCqVCi4uLgaMlNiTiogIaNmyJSwtLZGSkoLr16/LHQ6RyWCSykgwSaV7mil/bJ5ORGT6Vq9eDQAYO3YsLC0t8dprrwEAwsPDi92fU/3kw55URESAnZ0dmjVrBoBT/ojKgkkqI/FkTyrSDU2SKjY2Fnfv3pU5GiIiKq/r169j7969AIBx48YBAEaPHg0LCwv8+eefuHTpUpHHsGm6fDSJwVu3bj23uT0RkTnT9KVi83Si0mOSyggUFBRIH6ZZSaU7Xl5eaNasGYQQ0pcbInq2jRs34syZM3KHQaRlzZo1EEKgc+fO0h9zvL290bt3bwDAf//7X8ybN0+rcpaVVPJxc3NDlSpVAIBTXIioUuMd/ojKjkkqI5CUlISCggIolUpUr15d7nDMSq9evQBwyh9RaezZswdDhw5F7969UVBQIHc4RAAAIYQ0pU8zxU/j9ddfB/C49+DcuXPRt29f3LhxAwDw999/AwDq1KljwGgJABQKBaf8ERHh3yTViRMn+NmKqJSYpDICmmkKderUgYUFnxJderIvlVqtljkaIuP2v//9DwBw8+ZNJnbJaPzxxx9ISEiAg4MDXnnlFa1tgwYNwqefforJkyejfv36KCwsxJo1a5CUlIT9+/cDAPr27StH2JUe7/BHRAT4+fnB0dERDx8+xLlz5+QOh8gkMCNiBA4cOAAAaNWqlcyRmJ8XX3wR9vb2SElJwenTp+UOh8ho3b9/H9u3b5d+LqkZNZGhaV6LQ4cOhb29vdY2CwsLvPPOO1i2bBnef/99af8ffvhBmh7ISip5MElFRPT4juOa73ic8kdUOkxSGYHIyEgA/05NI91RKpXo2rUrgH9/z0RU1Lp165CXlwcvLy8AwPbt23Hv3j2Zo6LKLisrCxs3bgTw79S+krzyyiuwt7fHlStXsGjRIgBFpweS4WiSVNeuXZM3ECIimbF5OlHZMEkls9u3b+P06dNQKBTo0aOH3OGYJfalIno+TbVKaGgoWrZsifz8fKxbt07mqKiy27hxI7Kzs9GgQQO0b9/+mfs6ODhg6NChAB4nt4qbHkiGw55URESPafpSHTt2TOZIiEyDldwBVHa///47ACAwMBDVqlWTORrzpOlLdeTIEWRmZsLR0VHmiIiMy6lTp/D333/DxsYGI0eOhEKhwMmTJxEeHo4333xT7vDIBPzvf//DL7/8orXO1tYWH330EVq0aKG1/ptvvtGaWvosZ8+eBQCMGzcOCoXiufu/9tprz5weSIbD6X5ERI9pklTx8fHIzs7m/01Ez8Eklcw0U9A0iRTSvXr16qFu3bpISEjAgQMHMGDAALlDIjIqmi/1AwcORNWqVTFy5Ei8/fbbiIuLw99//42AgACZIyRjlpqaiilTpiA3N7fItoKCAuzevVv6+datW5g2bVqZbmShVCoxZsyYUu3boUMHNGnSBGfPnsXEiRNLfQ7SPU2S6ubNm3j06BHs7OzkDYiISCbVq1dH9erVcfPmTcTGxqJTp05yh0Rk1JikklFhYSH27t0LgP2o9C04OBjLli1DZGQkk1RET8jLy8PatWsB/Nu/x9XVFYMGDcKGDRsQHh7OJBU9088//4zc3Fw0atQIs2bNAvB4ut2kSZOwZ88e3LhxAzVq1AAArFmzBmq1GgEBAZgxY0apju/v74/q1auXal+FQoHff/8dt27dQmBgYPkuiHTC3d0dNWvWRFJSEjZv3oxRo0bJHRIRkWzatGmDLVu24NixY0xSET0Hk1Qyio2Nxf379+Hk5CQ11CP96NWrl5SkEkKUatoIUWWwY8cO3L9/H97e3ujZs6e0/rXXXsOGDRvw008/4bPPPoNSqZQxSjJmmkq8SZMmYeTIkdL6n376CYcPH8aaNWvw/vvvQwgh7TtlyhStfXXJy8tLugEAyUehUOCNN97A7NmzsWLFCiapiKhS0ySp2Dyd6PnYOF1GmkbeQUFBsLa2ljka89a1a1dYW1sjMTERp06dkjscIqOhSRqMGTMGlpaW0voePXqgevXqSE1NxY4dO+QKj4zc6dOnERsbC2tr6yJJCE1lXnh4OIQQiI6OxqVLl1ClShUMGTJEjnDJwMaPHw9LS0scOXJE6i9GRFQZ8Q5/RKXHJJWM2I/KcBwcHPDSSy8BAN577z2ZoyEyDrdu3ZL6BWkSChqWlpZSH6DVq1cbPDYyDZokZ//+/eHm5qa17ZVXXoG9vT2uXLmCI0eOSK+jIUOG8AYWlYS3tzf69+8PAFi5cqXM0RARyScwMBAKhQJJSUlITk6WOxwio8YklUwePHiAmJgYAExSGconn3wCa2tr7NmzR6piIzJF165dg52dnbQEBgYiOztba59z586hevXqWvs9vdSuXRtqtRrt27dHgwYNipxn3LhxAIDdu3drPc7Z2Rk//fQTgMc9rTp27PjM8zy9PGuaV3x8PLy9vaV9J02aJG17//33YW9vr3UsJycn/O9//wPwuEl39+7di5zP09MTJ0+erOivXedSUlIQEBCA999/v8i2ZcuWwdHREXZ2dnBxccHGjRuL7DNmzBjpGn18fHDp0iWdxvf222+jSpUqz3wuv/rqKwBFk5zA4z8ODB06FADQrVs3rFq1qsR9yXxp3sNr1qzBw4cPZY6GiEgeTk5OaNy4MQBWUxE9lyCRnp4uAIj09HSDnXPjxo0CgPDz8zPYOUmIt956SwAQTZo0EQUFBXKHQ6SltGNRYmKiAKC1rF69WmufCRMmFNmnpGXjxo0lnqt///7FPqZBgwZCrVaLTZs2lfo8Ty6nT58u9nyvvfZakX0TEhLEvXv3hI2NTbHHqlmzpigsLBS//fZbiecbOXJk2Z8QPZs3b54AIKysrERKSoq0Pi8vT3h4eGjF37RpU6FWq6V9zp49W+QaQ0JCdBbb7du3haWlZamey0aNGon8/PxijxMbGyusra2lfQMDA0VhYaHO4iT90dVno8LCQuHr6ysAiLFjx2q9jomInkeO72n6ovmM88EHH8gdCpFRM5tKqqVLl6J27dqwtbVF27ZtjT5Drank4V39DGvWrFlwcXFBfHw8pzCR3uh7PKpRowauXbuGa9eu4YMPPgDw77QrAHj48CHWr18PAPj111+lfYtb7t27h1deeaXEc23duhVJSUnS/hcvXoS9vT0uXbqE6Oho6bz//e9/n3kezaK5u+aT8WpkZWVhw4YNAIBt27ahW7duAIAffvgB69atQ15eHlq0aCEd68qVK1CpVEhKSsL+/fu1Gnhr9tFMZ9y8eTPS0tIq8mvXKbVajYiICACPK8A0lWnA46ngKSkpcHd3x9mzZ6FUKnHmzBmtajDNtfbp00d6rtetW4ecnBydxLd27VoUFhaiTZs2z31OT506BSur4u/D0rJlS9y9e1faNyYmBhYWZvPRw+gZw2cjCwsLrFy5EhYWFvjhhx/w7bffGjwGIpKfMYxHctP0pTp27JjMkRAZObmzZLqwfv16YWNjI1avXi3Onj0rJkyYIJydnbX+Mv0shs7Qq9Vq4ePjIwCI3bt3G+Sc9K8vv/xSABAeHh4iIyND7nDIzFRkPCrPWHTjxg1hYWEhAIhLly4JIYRYs2aNACDq1Kmjl6qVsWPHCgCib9++0rkvXrxYqsfu2LFDABBubm4iNzdXa1t4eLgAIOrXry/UarVYt26dVCnVokULAUB8/fXXWo+ZPHmyACB69eolVVrFxcVJ29VqtfD39xcAxIoVKyp+8Tpy4MCBEiulBg0aJACI6dOnCyGEGD58uFal1JOVVlu3bhUFBQWiRo0aAoBYv359hWNTq9WiUaNGAoBYuXJlhY9H8jC2z0ZffPGFACAsLS3FN998w2pmokrE0J+NjNXJkycFAKFSqVhVTPQMZpGkatOmjdY0h8LCQuHt7S3CwsJK9XhDD36aaRq2trbi4cOHBjkn/Ss3N1fUq1dPABCzZs2SOxwyMxUZj8o7FvXu3VsAEO+//74QQoiuXbsKAGL+/PllC76UDh48qJVgad++fakfm5+fLzw9PQUAsXnzZq1tHTt2FADExx9/LIQQ4uHDh0KlUknnsbGxEffu3dN6zF9//aUVS0BAQJFzfv755wKAaNOmTTmuVj9Gjx4tAIghQ4YIpVIpAIjjx4+LlJQUYWVlJQCIM2fOCCGE2LNnjwAgnJ2dxaNHj8S2bdsEAOHu7i7y8vKEEEJ88MEHAoAIDg6ucGwxMTECgLCzszOLLwWVlbF9NlKr1WLMmDHSe7VVq1Zi2rRpWktERASTV0RmSI7PRsYoLy9P2NnZCQDi/PnzcodDZLSKr883IXl5eYiNjUVoaKi0zsLCAkFBQYiOjtbpuf755x88ePCgwsfRNMDt1KkT7OzsKnw8KhsbGxt8+umnGDx4ML744gt0796dd5oyEgEBASY9FciQ49GTXnvtNezevRs//PADOnfujAMHDkChUGDs2LF6OV+nTp1Qp04d/PPPP9L5S8vKygqjR4/GZ599hmXLlqFmzZoAgLt37+KPP/6AhYWFdFdBOzs7jBgxAitWrAAADBgwAFWrVtU6XqtWreDv7y/d3r64WF599VW8++67+Ouvv7Bjxw54e3uX/aJ1KC8vD5s2bQIAvPXWW7C0tMT69evx1VdfwcfHBwUFBWjVqhWaNGkCAOjevTtq1KiBGzduYPny5fj9998BPL4ua2trAI+b3H/88cf4/fffERUVBWdn53LHp2mGPnjwYDg5OVXgSkkuco1Fz6JQKLB69Wq0bdsWoaGhOHHiBE6cOFFkv2XLluHjjz+Gi4uLDFESGZ9mzZpJY70pMsbxSC7W1tZo2bIl/vzzT/z6669s+0ImpWrVqqhdu7ZBzmXySap79+6hsLAQHh4eWus9PDxw4cKFYh+Tm5uL3Nxc6ef09HQAQEZGxjPPNWPGDGzZsqWCEf+rc+fOzz0n6Uf37t3Rrl07REdHo2vXrnKHQ//fnTt3oFQqS7Wvo6MjFAqFniMqm7KOR+Udi57WpUsXuLi44ObNm9LdQjt37gxnZ2e9jTEjRozAxx9/DFtbW/Tq1atM5xkyZAg+++wz7Nu3D61atdLa1rVrVzg5OUnHGzp0qJSkGjZsWLHnGTlyJD744ANYW1ujf//+Rfaxs7NDcHAwdu3aJfXEMgb16tVD48aNMWzYMKxfvx5r166Vtg0fPlzrOkaMGIHPPvsM06dPl9YNGTJE2sfd3R3t27fH0aNHERQUpJP4hg4dyv+jSsEcxiJAd+PR87z66qsICgrC2rVrkZWVJa1/9OgR1q5di7/++gs9evTQ6TmJTNmlS5eKvJdLYg7jkaHGIrm0aNECf/75J2bNmoVZs2bJHQ5RqT35h+PnqfBYJHcpV0XdvHlTABBHjx7VWj9z5swSp3bMmTOnXHej4sKFi/Esxlj2XdbxiGMRFy6mv5jDWCQExyMuXMxhMYfxiGMRFy6mv1R0LDL5Sio3NzdYWloiJSVFa31KSgo8PT2LfUxoaKjWX6PVajVSU1NRtWrVZ2b8MjIy4OPjg+vXr3MKRAn4O3o+/o6erzS/I2OcolnW8ai8YxFgvq8jXpfpMddrK+11mcNYBPCzUXHM9dp4XaalLNdlDuMRPxsVxesyPeZ6bYb6bGTySSobGxsEBgYiKioKgwYNAvB4MIuKisKUKVOKfYxSqSwypags/TucnJzM6sWmD/wdPR9/R89nar+jso5HFR2LANP7HZUWr8v0mOu1meJ18bORbpnrtfG6TIupXhc/G+kOr8v0mOu16fu6TD5JBQDTp0/H2LFj0apVK7Rp0wZLlixBdnZ2mZr5EhHpAscjIjIGHIuIyFhwPCKisjCLJNWwYcNw9+5dzJ49G8nJyWjRogUiIyNL3WSQiEhXOB4RkTHgWERExoLjERGVhVkkqQBgypQpJZaw64pSqcScOXNKffexyoi/o+fj7+j5TP13xPGo/Hhdpsdcr80crotjUcWY67XxukyLuVwXx6Py43WZHnO9NkNdl0IIIfR6BiIiIiIiIiIiouewkDsAIiIiIiIiIiIiJqmIiIiIiIiIiEh2TFIREREREREREZHsmKQiIiIiIiIiIiLZMUlVBkuXLkXt2rVha2uLtm3b4q+//pI7JKMxd+5cKBQKrcXPz0/usGR1+PBh9O/fH97e3lAoFNi6davWdiEEZs+eDS8vL9jZ2SEoKAiXL1+WJ1iZPO93NG7cuCKvq169eskTrJ6VdXzZuHEj/Pz8YGtri6ZNm2LXrl1a243p9VWWa/v+++/RsWNHuLi4wMXFBUFBQUX2N5bXRVmuKyIiokjMtra2WvsYy3NWluvq0qVLketSKBTo27evtI8xPF/PG2uKc/DgQbRs2RJKpRL16tVDREREkX3M9XOBuY5HHItMaywCzG884lhUdhyPOB6Z2vNlCmMRYOTjkaBSWb9+vbCxsRGrV68WZ8+eFRMmTBDOzs4iJSVF7tCMwpw5c4S/v7+4ffu2tNy9e1fusGS1a9cu8cEHH4jNmzcLAGLLli1a2xcuXChUKpXYunWrOHXqlBgwYIDw9fUVjx49kidgGTzvdzR27FjRq1cvrddVamqqPMHqUVnHlz///FNYWlqKRYsWiXPnzolZs2YJa2trcebMGWkfY3l9lfXaRo4cKZYuXSr+/vtvcf78eTFu3DihUqnEjRs3pH2M4XVR1usKDw8XTk5OWjEnJydr7WMMz1lZr+v+/fta1xQfHy8sLS1FeHi4tI8xPF/PG2ue9s8//4gqVaqI6dOni3PnzolvvvlGWFpaisjISGkfc/1cYK7jEceix0xlLBLCPMcjjkVlw/HoMY5HpvV8mcJYJIRxj0dMUpVSmzZtREhIiPRzYWGh8Pb2FmFhYTJGZTzmzJkjmjdvLncYRuvpN75arRaenp7is88+k9alpaUJpVIpfv75ZxkilF9JSaqBAwfKEo8hlXV8GTp0qOjbt6/WurZt24pJkyYJIYzr9VXRsbOgoEA4OjqKH374QVpnDK+Lsl5XeHi4UKlUJR7PWJ6zij5fX375pXB0dBRZWVnSOmN4vp5Umg9i77zzjvD399daN2zYMBEcHCz9bK6fC8x1POJY9JipjEVCmP94xLHo+TgeFY/jkWk9X8Y+FglhfOMRp/uVQl5eHmJjYxEUFCSts7CwQFBQEKKjo2WMzLhcvnwZ3t7eqFOnDkaNGoWkpCS5QzJaiYmJSE5O1npNqVQqtG3blq+ppxw8eBDu7u5o2LAhJk+ejPv378sdkk6VZ3yJjo7W2h8AgoODpf2N5fWli7Hz4cOHyM/Ph6urq9Z6OV8X5b2urKws1KpVCz4+Phg4cCDOnj0rbTOG50wXz9eqVaswfPhw2Nvba603tffx895j5vq5wFzHI45F2ox9LAI4HmlU1rEI4Hj0LByPTOv5MoexCDDseMQkVSncu3cPhYWF8PDw0Frv4eGB5ORkmaIyLm3btkVERAQiIyOxfPlyJCYmomPHjsjMzJQ7NKOked3wNfVsvXr1wpo1axAVFYVPP/0Uhw4dQu/evVFYWCh3aDpTnvElOTn5mfsby+tLF2Pnu+++C29vb63/8OR+XZTnuho2bIjVq1dj27ZtWLt2LdRqNdq3b48bN24AMI7nrKLP119//YX4+Hi88cYbWuvlfr7Ko6T3WEZGBh49emS2nwvMdTziWPQvUxiLAI5HGpV1LAI4Hj0LxyPTeb7MZSwCDDseWVU4WiIAvXv3lv7drFkztG3bFrVq1cKGDRswfvx4GSMjUzZ8+HDp302bNkWzZs1Qt25dHDx4EN27d5cxMjKEhQsXYv369Th48KBWI01TfF20a9cO7dq1k35u3749GjVqhO+++w4fffSRjJHpzqpVq9C0aVO0adNGa70pPl9ET+JYZHo4HpG54nhkWjgWlQ8rqUrBzc0NlpaWSElJ0VqfkpICT09PmaIybs7OzmjQoAGuXLkidyhGSfO64WuqbOrUqQM3Nzezel2VZ3zx9PR85v7G8vqqyNj5+eefY+HChfj999/RrFmzZ+5r6NeFLv5PsLa2RkBAgBSzMTxnFbmu7OxsrF+/vlR/lDCF93FJ7zEnJyfY2dmZ7ecCcx2POBaVzBjHIoDjkUZlHYsAjkfF4XhU9mNWFMeifxlyPGKSqhRsbGwQGBiIqKgoaZ1arUZUVJRW9pf+lZWVhYSEBHh5eckdilHy9fWFp6en1msqIyMDx44d42vqGW7cuIH79++b1euqPONLu3bttPYHgL1790r7G8vrq7xj56JFi/DRRx8hMjISrVq1eu55DP260MX/CYWFhThz5owUszE8ZxW5ro0bNyI3Nxevvvrqc89jCu/j573HzPVzgbmORxyLSmaMYxHA8Uijso5FAMejp3E8esxUni/AvMYiwMDjUZnarFdi69evF0qlUkRERIhz586JiRMnCmdn5yK3yays3n77bXHw4EGRmJgo/vzzTxEUFCTc3NzEnTt35A5NNpmZmeLvv/8Wf//9twAgFi9eLP7++29x7do1IcTjW6o6OzuLbdu2idOnT4uBAwfKcotnOT3rd5SZmSlmzJghoqOjRWJioti3b59o2bKlqF+/vsjJyZE7dJ163vgyevRo8d5770n7//nnn8LKykp8/vnn4vz582LOnDnF3mLZGF5fZb22hQsXChsbG7Fp0yat2/JmZmYKIYTRvC7Kel3z5s0Te/bsEQkJCSI2NlYMHz5c2NrairNnz2pdu9zPWVmvS6NDhw5i2LBhRdYby/P1vPH4vffeE6NHj5b219xmeebMmeL8+fNi6dKlxd5m2Rw/F5jreMSx6DFTGYvKc20axjwecSwqG45H/8bM8ch0ni8NYx6LNHEY63jEJFUZfPPNN6JmzZrCxsZGtGnTRsTExMgdktEYNmyY8PLyEjY2NqJ69epi2LBh4sqVK3KHJasDBw4IAEWWsWPHCiEe31b1ww8/FB4eHkKpVIru3buLixcvyhu0gT3rd/Tw4UPRs2dPUa1aNWFtbS1q1aolJkyYYBYfuorzrPGlc+fO0utGY8OGDaJBgwbCxsZG+Pv7i99++01ruzG9vspybbVq1Sr2NTFnzhwhhDCq10VZrmvatGnSvh4eHqJPnz7i5MmTWsczluesrK/FCxcuCADi999/L3IsY3m+njcejx07VnTu3LnIY1q0aCFsbGxEnTp1RHh4eJHjmuvnAnMdjzgWmdZYJIT5jUcci8qO4xHHI1N7voQw/rFICOMejxRCCFG22isiIiIiIiIiIiLdYk8qIiIiIiIiIiKSHZNUREREREREREQkOyapiIiIiIiIiIhIdkxSERERERERERGR7JikIiIiIiIiIiIi2TFJRUREREREREREsmOSioiIiIiIiIiIZMckFRERERERERERyY5JKiIiIiIiIiIikh2TVEREREREREREJDsmqYiIiIiIiIiISHZMUhERERERERERkeyYpCIiIiIiIiIiItkxSUVERERERERERLJjkoqIiIiIiIiIiGTHJBUREREREREREcmOSSoiIiIiIiIiIpIdk1RE5aRQKDB37lytdcePH0f79u1hb28PhUKBuLg4WWIjIt0YN24cateurdNjRkREQKFQ4OrVqzo9rqEV97vJysrCG2+8AU9PTygUCkybNk2W2IiIiIjINDFJRTqj+eKlUChw5MiRItuFEPDx8YFCoUC/fv0MHl+XLl2k+CwsLODk5ISGDRti9OjR2Lt3b4WPn5+fjyFDhiA1NRVffvklfvzxR9SqVQvLli1DRERExS+AyEQlJCRg0qRJqFOnDmxtbeHk5IQXX3wRX331FR49eiR3eHrzySefYOvWrXKHIXlyjFYoFLC1tYW3tzeCg4Px9ddfIzMzs8Ln+OSTTxAREYHJkyfjxx9/xOjRo3H06FHMnTsXaWlpFb8IIiIiIjJrVnIHQObH1tYW69atQ4cOHbTWHzp0CDdu3IBSqZQpMqBGjRoICwsDAGRnZ+PKlSvYvHkz1q5di6FDh2Lt2rWwtrYu1bEePXoEK6t/30IJCQm4du0avv/+e7zxxhvS+mXLlsHNzQ3jxo3T6bUQmYLffvsNQ4YMgVKpxJgxY9CkSRPk5eXhyJEjmDlzJs6ePYuVK1fKHaZefPLJJ3jllVcwaNAgrfWjR4/G8OHDZRsL58+fD19fX+Tn5yM5ORkHDx7EtGnTsHjxYmzfvh3NmjUr1XG+//57qNVqrXX79+/HCy+8gDlz5kjrPv/8c8ybNw/jxo2Ds7OzLi+FiIiIiMwMk1Skc3369MHGjRvx9ddfayVx1q1bh8DAQNy7d0+22FQqFV599VWtdQsXLsSbb76JZcuWoXbt2vj0009LfLxarUZeXh5sbW1ha2urte3OnTsAwC9hRP9fYmIihg8fjlq1amH//v3w8vKStoWEhODKlSv47bffZIxQHpaWlrC0tJTt/L1790arVq2kn0NDQ7F//37069cPAwYMwPnz52FnZ1fi47Ozs2Fvb19sQv/OnTto3LixXuImIiIiIvPH6X6kcyNGjMD9+/e1ptDl5eVh06ZNGDlyZLGP+fzzz9G+fXtUrVoVdnZ2CAwMxKZNm7T2CQ8Ph0KhwOrVq7XWf/LJJ1AoFNi1a1e54rW0tMTXX3+Nxo0b49tvv0V6erq0TaFQYMqUKfjpp5/g7+8PpVKJyMhIaZumJ9W4cePQuXNnAMCQIUOgUCjQpUsX1K5dG2fPnsWhQ4ekKTZdunQpV5xEpmbRokXIysrCqlWrtBJUGvXq1cN///tfAMDVq1ehUCiKnRr7dP+3uXPnQqFQ4NKlS3j11VehUqlQrVo1fPjhhxBC4Pr16xg4cCCcnJzg6emJL774Qut4JfWEOnjwIBQKBQ4ePPjM6yrNeKVQKJCdnY0ffvhBeu9rqimfPn+/fv1Qp06dYs/Vrl07rYQSAKxduxaBgYGws7ODq6srhg8fjuvXrz8z5ufp1q0bPvzwQ1y7dg1r166V1o8bNw4ODg5ISEhAnz594OjoiFGjRknbND2pNL+7xMRE/Pbbb1rXPHPmTACAr6+vtN7U+3ERERERkX4wSUU6V7t2bbRr1w4///yztG737t1IT0/H8OHDi33MV199hYCAAMyfPx+ffPIJrKysMGTIEK0qi9deew39+vXD9OnTpS9kZ86cwbx58zB+/Hj06dOn3DFbWlpixIgRePjwYZF+Wvv378dbb72FYcOG4auvviq2ifKkSZPw/vvvAwDefPNN/Pjjj/jggw+wZMkS1KhRA35+fvjxxx+l9USVwY4dO1CnTh20b99eL8cfNmwY1Go1Fi5ciLZt22LBggVYsmQJevTogerVq+PTTz9FvXr1MGPGDBw+fFhn5y3NePXjjz9CqVSiY8eO0nt/0qRJJV5HYmIijh8/rrX+2rVriImJ0Ro3P/74Y4wZMwb169fH4sWLMW3aNERFRaFTp04V7vk0evRoAMDvv/+utb6goADBwcFwd3fH559/jsGDBxd5bKNGjfDjjz/Czc0NLVq0kK75rbfewogRIwBA6tX3448/olq1ahWKlYiIiIjME6f7kV6MHDkSoaGhePToEezs7PDTTz+hc+fO8Pb2Lnb/S5cuaU0vmTJlClq2bInFixejb9++0vrvv/8e/v7+GD9+PHbu3ImxY8fC09MTixcvrnDMTZo0AfC4t9STLl68iDNnzjxzCku7du2Qm5uLTz75BB07dsQrr7wibZs1axbc3NyKTDMkMmcZGRm4efMmBg4cqLdztGnTBt999x0AYOLEiahduzbefvtthIWF4d133wXwuLLT29sbq1evRqdOnXRy3tKMV6+++ir+85//oE6dOs997w8cOBBKpRK//PILWrduLa3fsGEDFAoFhg4dCuBx0mrOnDlYsGCBlBQHgJdffhkBAQFYtmyZ1vqyqlGjBlQqVZExMDc3F0OGDJH6+RXHw8MDr776KmbNmoXq1atrXXPLli3x888/Y9CgQTq/UyIRERERmRdWUpFeDB06FI8ePcLOnTuRmZmJnTt3ljjVD4DWF74HDx4gPT0dHTt2xMmTJ7X28/T0xNKlS7F371507NgRcXFxWL16NZycnCocs4ODAwAUucNV586d2WOFqIwyMjIAAI6Ojno7x5M3KLC0tESrVq0ghMD48eOl9c7OzmjYsCH++ecfnZ23tONVaTk5OaF3797YsGEDhBDS+l9++QUvvPACatasCQDYvHkz1Go1hg4dinv37kmLp6cn6tevjwMHDlTswvB4HCzuLn+TJ0+u8LGJiIiIiJ6HlVSkF9WqVUNQUBDWrVuHhw8forCwUKu66Gk7d+7EggULEBcXh9zcXGm9QqEosu/w4cOxdu1a/Pbbb5g4cSK6d++uk5izsrIAFP1S7evrq5PjE1UmmsRxcQkPXdEkbzRUKhVsbW3h5uZWZP39+/d1dt6yjFelNWzYMGzduhXR0dFo3749EhISEBsbiyVLlkj7XL58GUII1K9fv9hjlPbOpM+SlZUFd3d3rXVWVlaoUaNGhY9NRERERPQ8TFKR3owcORITJkxAcnIyevfuXeJd7/744w8MGDAAnTp1wrJly+Dl5QVra2uEh4dj3bp1Rfa/f/8+Tpw4AQA4d+4c1Go1LCwqXhQYHx8P4HEz5yc96y5XRFQ8JycneHt7S++r5ykpwVNYWFjiY4q7Q15Jd817skKpPOfSKOt4VVr9+/dHlSpVsGHDBrRv3x4bNmyAhYUFhgwZIu2jVquhUCiwe/fuYq9TUw1aXjdu3EB6enqRMVCpVOpkjCUiIiIieh4mqUhvXnrpJUyaNAkxMTH45ZdfStzv119/ha2tLfbs2QOlUimtDw8PL3b/kJAQZGZmIiwsDKGhoViyZAmmT59eoVgLCwuxbt06VKlSBR06dKjQsZ5WkeoKIlPWr18/rFy5EtHR0WjXrt0z93VxcQGAIs2/r127pvO4KnKusoxXZXnv29vbo1+/fti4cSMWL16MX375BR07dtTq41e3bl0IIeDr64sGDRqU+til9eOPPwIAgoODdXpcjoFEREREVFr80yjpjYODA5YvX465c+eif//+Je5naWkJhUKhVcVw9epVbN26tci+mzZtwi+//IKFCxfivffew/DhwzFr1ixcunSp3HEWFhbizTffxPnz5/Hmm2/qpL/Vk+zt7St81y0iU/TOO+/A3t4eb7zxBlJSUopsT0hIwFdffQXgceWVm5tbkbvwLVu2TOdx1a1bFwC0zlVYWIiVK1c+97FlGa/K+t4fNmwYbt26hf/97384deoUhg0bprX95ZdfhqWlJebNm6dVGQY8rhSryJTG/fv346OPPoKvry9GjRpV7uMUx97eHkDRpCARERER0dNYSUV6NXbs2Ofu07dvXyxevBi9evXCyJEjcefOHSxduhT16tXD6dOnpf3u3LmDyZMno2vXrpgyZQoA4Ntvv8WBAwcwbtw4HDly5LlTUtLT07F27VoAwMOHD3HlyhVs3rwZCQkJGD58OD766KMKXG3xAgMDsXz5cixYsAD16tWDu7s7unXrpvPzEBmbunXrYt26dRg2bBgaNWqEMWPGoEmTJsjLy8PRo0exceNGjBs3Ttr/jTfewMKFC/HGG2+gVatWOHz4cIUS0CXx9/fHCy+8gNDQUKSmpsLV1RXr169HQUHBcx9b2vEKePze37dvHxYvXgxvb2/4+vqibdu2JR67T58+cHR0xIwZM2BpaYnBgwdrba9bty4WLFiA0NBQXL16FYMGDYKjoyMSExOxZcsWTJw4ETNmzHjuNezevRsXLlxAQUEBUlJSsH//fuzduxe1atXC9u3bYWtr+9xjlEVgYCAA4IMPPsDw4cNhbW2N/v37S8krIiIiIiINJqlIdt26dcOqVauwcOFCTJs2Db6+vvj0009x9epVrS99kydPRm5uLsLDw6XpI1WrVsXKlSsxcOBAfP7553jnnXeeea4bN25g9OjRAB5Xenl5eaFdu3ZYvnw5evTooZfrmz17Nq5du4ZFixYhMzMTnTt3ZpKKKo0BAwbg9OnT+Oyzz7Bt2zYsX74cSqUSzZo1wxdffIEJEyZI+86ePRt3797Fpk2bsGHDBvTu3Ru7d+8u0shbF3766SdMmjQJCxcuhLOzM8aPH4+uXbs+dxwo7XgFAIsXL8bEiRMxa9YsPHr0CGPHjn1mksrW1hYDBgzATz/9hKCgoGKv+7333kODBg3w5ZdfYt68eQAAHx8f9OzZEwMGDCjVtc+ePRsAYGNjA1dXVzRt2hRLlizBa6+9ppe7MbZu3RofffQRVqxYgcjISKjVaiQmJjJJRURERERFKMTTcwaIiIiIiIiIiIgMjD2piIiIiIiIiIhIdkxSERERERERERGR7JikIiIiIiIiIiIi2TFJRUREREREREREsmOSioiIiIiIiIiIZMckFRERERERERERyY5JKgBCCGRkZEAIIXcoRFSJcSwiIiIiIqLKjEkqAJmZmVCpVMjMzJQ7FCKqxDgWERERERFRZcYkFRERERERERERyY5JKiIiIiIiIiIikh2TVERE5bBw4UIoFApMmzZNWpeTk4OQkBBUrVoVDg4OGDx4MFJSUuQLkoiIiIiIyIQwSUVEVEbHjx/Hd999h2bNmmmtf+utt7Bjxw5s3LgRhw4dwq1bt/Dyyy/LFCUREREREZFpYZKKiKgMsrKyMGrUKHz//fdwcXGR1qenp2PVqlVYvHgxunXrhsDAQISHh+Po0aOIiYmRMWIiIiIiIiLTwCRVOZw4cQK1a9eGi4sLqlatik8//VTukIjIQEJCQtC3b18EBQVprY+NjUV+fr7Wej8/P9SsWRPR0dHFHis3NxcZGRlaS2kkJCTAzc0N3t7e5b8QIiIiIiIiI8MkVTls2LAB165dQ1paGlJTU/Hdd9/JHRIRGcD69etx8uRJhIWFFdmWnJwMGxsbODs7a6338PBAcnJysccLCwuDSqWSFh8fn1LFYWNjg/v37+P+/ftlvgYiIiIiIiJjxSRVOSQkJAAAJk+eDABISkpCfn6+nCERkZ5dv34d//3vf/HTTz/B1tZWJ8cMDQ1Fenq6tFy/fr1Uj6tSpQoAIC8vDwUFBTqJhYiIiIiISG5MUpXDP//8AwDo3bs3bG1tUVhYiGvXrskcFRHpU2xsLO7cuYOWLVvCysoKVlZWOHToEL7++mtYWVnBw8MDeXl5SEtL03pcSkoKPD09iz2mUqmEk5OT1lIamiQVADx8+LDc10RERERERGRMmKQqIyGEVElVr1491KlTB8C/1VVEZJ66d++OM2fOIC4uTlpatWqFUaNGSf+2trZGVFSU9JiLFy8iKSkJ7dq102kstra2UCgUAJikIiIiIiIi82EldwCm5t69e8jMzIRCoYCvry/q1q2Lc+fOMUlFZOYcHR3RpEkTrXX29vaoWrWqtH78+PGYPn06XF1d4eTkhKlTp6Jdu3Z44YUXdBqLQqFAlSpVkJ2dzSQVERERERGZDSapykiTjKpevTpsbW1Rt25drfVEVHl9+eWXsLCwwODBg5Gbm4vg4GAsW7ZML+eyt7dHdnY2srOz9XJ8IiIiIiIiQ2OSqow0yShNcopJKqLK6+DBg1o/29raYunSpVi6dKnez63pS8VKKiIiIiIiMhfsSVVGTFIRkTHQJKlYSUVEREREROaCSaoyKilJ9c8//0AIIVtcRFS52NvbA2AlFRERERERmQ8mqcro6SRV7dq1YWFhgYcPHyI5OVnO0IioEuF0PyIiIiIiMjdMUpXR00kqGxsb+Pj4aG0jItI3TSUVp/sREREREZG5YJKqDLKzs6VqKU2S6sl/M0lFRIbCSioiIiIiIjI3TFKVwT///AMAcHFxgYuLi7SeSSoiMjQmqYiIiIiIyNwwSVUGT0/102CSiogMjdP9iIiIiIjI3DBJVQZMUhGRsWAlFRERERERmRsmqcqASSoiMhZMUhERERERkblhkqoMSkpS1axZEwBw79495OXlGTwuIqp8ON2PiIiIiIjMjZXcAZiSDRs2ICEhATVq1NBa7+zsLP37wYMH8PDwMHBkRFTZsJKKiIiIiIjMDSupykClUqFly5Zwd3fXWm9paSklqh48eCBDZERU2bCSioiIiIiIzA2TVDri4uICAEhNTZU5EiKqDFhJRURERERE5oZJKh1xdXUFwEoqIjIMJqmIiIiIiMjcMEmlI6ykIiJD4nQ/IiIiIiIyN0xS6QgrqYjIkFhJRURERERE5oZJKh1hJRURGRKTVEREREREZG6YpNIRVlIRkSFxuh8REREREZkbJql0hJVURGRIT1ZSCSFkjoaIiIiIiKjimKTSEVZSEZEhaSqpCgsLkZ+fL3M0REREREREFccklY6wkoqIDElTSQVwyh8REREREZkHJql0hJVURGRI1tbWsLKyAsDm6UREREREZB6YpNIRVlIRkaGxeToREREREZkTJql05MlKKjYxJiJDeLJ5OhERERERkaljkkpHNJVU+fn5rGogIoNgkoqIiIiIiMwJk1Q6Ym9vD2trawDsS0VkjpYvX45mzZrByckJTk5OaNeuHXbv3i1tz8nJQUhICKpWrQoHBwcMHjwYKSkpeo2J0/2IiIiIiMicGHWSKiwsDK1bt4ajoyPc3d0xaNAgXLx4UWsfOb4YFkehULAvFZEZq1GjBhYuXIjY2FicOHEC3bp1w8CBA3H27FkAwFtvvYUdO3Zg48aNOHToEG7duoWXX35ZrzGxkoqIiIiIiMyJUSepDh06hJCQEMTExGDv3r3Iz89Hz549taoG5PhiWBLe4Y/IfPXv3x99+vRB/fr10aBBA3z88cdwcHBATEwM0tPTsWrVKixevBjdunVDYGAgwsPDcfToUcTExOgtJk0lFZNURERERERkDqzkDuBZIiMjtX6OiIiAu7s7YmNj0alTJ+mL4bp169CtWzcAQHh4OBo1aoSYmBi88MILBo1XU0nFJBWReSssLMTGjRuRnZ2Ndu3aITY2Fvn5+QgKCpL28fPzQ82aNREdHV3iWJSbm4vc3Fzp54yMjDLFoamk4nQ/IiIiIiIyB0ZdSfW09PR0AP9WLD3vi2FJcnNzkZGRobXogiYuTvcjMk9nzpyBg4MDlEol/vOf/2DLli1o3LgxkpOTYWNjA2dnZ639PTw8kJycXOLxwsLCoFKppMXHx6dM8XC6HxERERERmROTSVKp1WpMmzYNL774Ipo0aQIAsn0xLAkrqYjMW8OGDREXF4djx45h8uTJGDt2LM6dO1fu44WGhiI9PV1arl+/XqbHs3E6ERERERGZE6Oe7vekkJAQxMfH48iRIxU+VmhoKKZPny79nJGRoZNEFSupiMybjY0N6tWrBwAIDAzE8ePH8dVXX2HYsGHIy8tDWlqaVtI8JSUFnp6eJR5PqVRCqVSWOx5WUhERERERkTkxiUqqKVOmYOfOnThw4ABq1Kghrff09JS+GD6pNF8MNbeR1yy6wEoqospFrVYjNzcXgYGBsLa2RlRUlLTt4sWLSEpKQrt27fR2fiapiIiIiIjInBh1JZUQAlOnTsWWLVtw8OBB+Pr6am1/8ovh4MGDARjmi2FJWElFZL5CQ0PRu3dv1KxZE5mZmVi3bh0OHjyIPXv2QKVSYfz48Zg+fTpcXV3h5OSEqVOnol27dnq9gQOn+xERERERkTkx6iRVSEgI1q1bh23btsHR0VHqM6VSqWBnZyfbF8OSsJKKyHzduXMHY8aMwe3bt6FSqdCsWTPs2bMHPXr0AAB8+eWXsLCwwODBg5Gbm4vg4GAsW7ZMrzGxkoqIiIiIiMyJUSepli9fDgDo0qWL1vrw8HCMGzcOgDxfDEvCSioi87Vq1apnbre1tcXSpUuxdOlSA0X0byUVk1RERERERGQOjDpJJYR47j5yfDEsCSupiMiQNJVUnO5HRERERETmwCQap5sKVlIRkSFxuh8REREREZkTJql0SFNJlZ6ejsLCQpmjISJzx+l+RERERERkTpik0iFNkkoIgfT0dJmjISJzx+l+RERERERkTpik0iEbGxupsoF9qYhI3zjdj4iIiIiIzAmTVDrGvlREZCiapDgrqYiIiIiIyBwwSaVjvMMfERkKK6mIiIiIiMic6C1JVadOHdy/f7/I+rS0NNSpU0dfp5UdK6mIyFCebJwuhJA5GiIiIiIioorRW5Lq6tWrxd7hLjc3Fzdv3tTXaWXHSioiMhRNJRUAPHr0SMZIiIiIiIiIKs5K1wfcvn279O89e/ZApVJJPxcWFiIqKgq1a9fW9WmNBiupiMhQ7OzspH8/fPhQK2lFRERERERkanSepBo0aBAAQKFQYOzYsVrbrK2tUbt2bXzxxRe6Pq3RYCUVERmKpaUlbG1tkZOTw75URERERERk8nSepFKr1QAAX19fHD9+HG5ubro+hVFjJRURGZKjoyNycnKQnp4udyhEREREREQVoreeVImJiZUuQQWwkoqIDKtq1aoAUOyNKoiIiIiIiEyJziupnhQVFYWoqCjcuXNHqrDSWL16tT5PLRtWUhGRITFJRURERERE5kJvSap58+Zh/vz5aNWqFby8vKBQKPR1KqOiqaRikoqIDEFTsXrv3j2ZIyEiIiIiIqoYvSWpVqxYgYiICIwePVpfpzBKmkoqTvcjIkNgJRUREREREZkLvfWkysvLQ/v27fV1eKPF6X5EZEispCIiIiIiInOhtyTVG2+8gXXr1unr8EZLM93v0aNHyMnJkTkaIjJ3rKQiIiIiIiJzobfpfjk5OVi5ciX27duHZs2awdraWmv74sWL9XVqWTk5OcHCwgJqtRoPHjyAl5eX3CERkRljJRUREREREZkLvSWpTp8+jRYtWgAA4uPjtbaZcxN1CwsLODs7IzU1lUkqItI7VlIREREREZG50FuS6sCBA/o6tNFzdXVFamoq+1IRkd5pklSspCIiIiIiIlOnt55UlZmmLxXv8EdE+qaZ7sdKKiIiIiIiMnV6q6Tq2rXrM6f17d+/X1+nlh3v8EdEhqKppEpLS0NBQQGsrPQ2rBMREREREemV3r7NaPpRaeTn5yMuLg7x8fEYO3asvk5rFFhJRUSG4uLiAoVCASEEUlNT4e7uLndIRERERERE5aK3JNWXX35Z7Pq5c+ciKytLX6c1CqykIiJDsbKygrOzMx48eID79+8zSUVERERERCbL4D2pXn31VaxevdrQpzUoVlIRmZ+wsDC0bt0ajo6OcHd3x6BBg3Dx4kWtfXJychASEoKqVavCwcEBgwcPRkpKit5j0/SlYvN0IiIiIiIyZQZPUkVHR8PW1tbQpzUoVlIRmZ9Dhw4hJCQEMTEx2Lt3L/Lz89GzZ09kZ2dL+7z11lvYsWMHNm7ciEOHDuHWrVt4+eWX9R6bpi8Vm6cTEREREZEp09t0v6e/mAkhcPv2bZw4cQIffvihvk5rFFhJRWR+IiMjtX6OiIiAu7s7YmNj0alTJ6Snp2PVqlVYt24dunXrBgAIDw9Ho0aNEBMTgxdeeEFvsbGSioiIiIiIzIHeklQqlUrrZwsLCzRs2BDz589Hz5499XVao8BKKiLzl56eDuDf93tsbCzy8/MRFBQk7ePn54eaNWsiOjq62CRVbm4ucnNzpZ8zMjLKFQsrqYiIiIiIyBzoLUkVHh6ur0MbPVZSEZk3tVqNadOm4cUXX0STJk0AAMnJybCxsYGzs7PWvh4eHkhOTi72OGFhYZg3b16F49EkqVhJRUREREREpkxvSSqN2NhYnD9/HgDg7++PgIAAfZ9SdqykIjJvISEhiI+Px5EjRyp0nNDQUEyfPl36OSMjAz4+PmU+jma6HyupiIiIiIjIlOktSXXnzh0MHz4cBw8elCoL0tLS0LVrV6xfvx7VqlXT16ll92QllRACCoVC5oiISFemTJmCnTt34vDhw6hRo4a03tPTE3l5eUhLS9OqpkpJSYGnp2exx1IqlVAqlRWOiZVURERERERkDvR2d7+pU6ciMzMTZ8+eRWpqKlJTUxEfH4+MjAy8+eab+jqtUdBUUhUWFiIzM1PmaIhIF4QQmDJlCrZs2YL9+/fD19dXa3tgYCCsra0RFRUlrbt48SKSkpLQrl07vcbGSioiIiIiIjIHequkioyMxL59+9CoUSNpXePGjbF06VKzb5xuZ2cHpVKJ3NxcPHjwAE5OTnKHREQVFBISgnXr1mHbtm1wdHSU+kypVCrY2dlBpVJh/PjxmD59OlxdXeHk5ISpU6eiXbt2er2zH8BKKiIiIiIiMg96q6RSq9WwtrYust7a2hpqtVpfpzUa7EtFZF6WL1+O9PR0dOnSBV5eXtLyyy+/SPt8+eWX6NevHwYPHoxOnTrB09MTmzdv1ntsrKQiIiIiIiJzoBBCCH0ceODAgUhLS8PPP/8Mb29vAMDNmzcxatQouLi4YMuWLfo4bblkZGRApVIhPT1dZ1VP/v7+OHfuHKKiotCtWzedHJOIzFt5x6Lk5GR4eXnBwsICeXl5sLS01GOURERERERE+qG3Sqpvv/0WGRkZqF27NurWrYu6devC19cXGRkZ+Oabb/R1WqPBSioiMhTNdD+1Wo20tDR5gyEiIiIiIionvfWk8vHxwcmTJ7Fv3z5cuHABANCoUSMEBQXp65RGxcvLCwCQmJgocyREZO6sra3h5OSEjIwM3L9/X0paERERERERmRKdV1Lt378fjRs3RkZGBhQKBXr06IGpU6di6tSpaN26Nfz9/fHHH3/o+rRGp2XLlgCAEydOyBwJEVUGbJ5ORERERESmTudJqiVLlmDChAnF9lNRqVSYNGkSFi9erOvTGp3WrVsDAI4fPy5zJERUGWiap9+8eVPmSIiIiIiIiMpH50mqU6dOoVevXiVu79mzJ2JjY3V9WqMTGBgI4PF0P95xi4j0TZMYDwsLQ2FhoczREBERERERlZ3Ok1QpKSmwtrYucbuVlRXu3r2r69MaHWdnZ9SvXx8Ap/wRkf7NmTMHzs7O+Pvvv7F8+XK5wyEiIiIiIioznSepqlevjvj4+BK3nz59Wmoqbu5atWoFgEkqItI/d3d3fPLJJwCAWbNmITk5WeaIiIiIiIiIykbnSao+ffrgww8/RE5OTpFtjx49wpw5c9CvX79SH+/w4cPo378/vL29oVAosHXrVq3tQgjMnj0bXl5esLOzQ1BQEC5fvlzRy9AJ9qUiIkOaOHEiWrVqhfT0dCxZskTucIiIiIiIiMpE50mqWbNmITU1FQ0aNMCiRYuwbds2bNu2DZ9++ikaNmyI1NRUfPDBB6U+XnZ2Npo3b46lS5cWu33RokX4+uuvsWLFChw7dgz29vYIDg4uNklmaKykIiJDsrS0xMyZMwEA27ZtkzkaIiIiIiKislEIIYSuD3rt2jVMnjwZe/bsgebwCoUCwcHBWLp0KXx9fct1XIVCgS1btmDQoEEAHldReXt74+2338aMGTMAAOnp6fDw8EBERASGDx9equNmZGRApVIhPT292LsSlldWVhZUKhXUajVu3bpVaaY5ElH56GIsSk9PR7Vq1ZCfn4+LFy+iQYMGOo6SiIiIiIhIP3ReSQUAtWrVwq5du3Dv3j0cO3YMMTExuHfvHnbt2lXuBFVxEhMTkZycjKCgIGmdSqVC27ZtER0drbPzlJeDgwMaNWoEgNVURGQYKpUKXbp0AQDs2LFD3mCIiIiIiIjKQC9JKg0XFxe0bt0abdq0gYuLi86Pr2kM7OHhobXew8PjmU2Dc3NzkZGRobXoi2bK39GjR/V2DiKiJ/Xv3x8AsH37dpkjISIiIiIiKj29JqmMVVhYGFQqlbT4+Pjo7VzBwcEAgB9//BEFBQV6Ow8RkYYmSXXkyBHcv39f5miIiIiIiIhKx6STVJ6engCAlJQUrfUpKSnStuKEhoYiPT1dWq5fv663GF9++WW4ubnh5s2b2Llzp97OQ0SkUbt2bTRr1gxqtRq7du2SOxwiIiIiIqJSMekkla+vLzw9PREVFSWty8jIwLFjx9CuXbsSH6dUKuHk5KS16ItSqcT48eMBAMuXL9fbeYiInjRgwAAAwG+//SZzJERERERERKVj9EmqrKwsxMXFIS4uDsDjZulxcXFISkqCQqHAtGnTsGDBAmzfvh1nzpzBmDFj4O3tLd0B0BhMmjQJCoUCv//+O65cuSJ3OERUCXTr1g0AEBMTI3MkREREREREpWP0SaoTJ04gICAAAQEBAIDp06cjICAAs2fPBgC88847mDp1KiZOnIjWrVsjKysLkZGRsLW1lTNsLb6+vujVqxcA4LvvvpM5GiKqDFq2bAkAuHbtGu7duydzNERERERERM+nEEIIuYOQW0ZGBlQqFdLT0/U29W/Dhg0YNmwYWrZsidjYWL2cg4hMm67HooYNG+LSpUuIjIyUbuJARERERERkrIy+kspc+Pv7AwASEhLAvCARGUKrVq0APK5IJSIiIiIiMnZMUhlInTp1AADp6elITU2VORoiqgyYpCIiIiIiIlPCJJWB2NnZwdvbG8DjaioiIn1jkoqIiIiIiEwJk1QGVLduXQBMUhGRYQQEBEChUODGjRtITk6WOxwiIiIiIqJnYpLKgJikIiJDcnBwgJ+fHwDwhg1ERERERGT0mKQyICapiMjQOOWPiIiIiIhMBZNUBsQkFREZGpNURERERERkKpikMiAmqYhM1+HDh9G/f394e3tDoVBg69atWtuFEJg9eza8vLxgZ2eHoKAgXL58WZ5gn6BJUh0+fBh3796VORoiIiIiIqKSMUllQJok1a1bt/Do0SOZoyGissjOzkbz5s2xdOnSYrcvWrQIX3/9NVasWIFjx47B3t4ewcHByMnJMXCk2tq2bYvmzZsjIyMD7733nqyxEBERERERPYtCCCHkDkJuGRkZUKlUSE9Ph5OTk97OI4SAi4sL0tPTER8fD39/f72di4j0R6FQYMuWLRg0aBCAx+9tb29vvP3225gxYwYAID09HR4eHoiIiMDw4cNLdVx9jUVHjx7Fiy++CAD4888/0b59e50dm4iIiIiISFdYSWVACoWCU/6IzFBiYiKSk5MRFBQkrVOpVGjbti2io6NLfFxubi4yMjK0Fn1o3749Xn/9dQDAgAED0LJlS2np3Lkzzp8/r5fzEhERERERlQWTVAbGJBWR+UlOTgYAeHh4aK338PCQthUnLCwMKpVKWnx8fPQW46effgo3Nzfcv38ff//9t7QcPnwYX375pd7OS0REREREVFpWcgdQ2TBJRUQaoaGhmD59uvRzRkaG3hJVbm5uiIuLQ3x8vLTu3LlzmD59Onbs2AG1Wg0LC/7dgoiIiIiI5MMklYExSUVkfjw9PQEAKSkp8PLyktanpKSgRYsWJT5OqVRCqVTqOzxJ9erVUb16dennrl27Ys6cOUhOTkZsbCxat25tsFiIiIiIiIiexj+bGxiTVETmx9fXF56enoiKipLWZWRk4NixY2jXrp2MkT2bjY0NevXqBQDYvn27zNEQEREREVFlxySVgTVo0AAA8M8//+DRo0cyR0NEpZWVlYW4uDjExcUBeNwsPS4uDklJSVAoFJg2bRoWLFiA7du348yZMxgzZgy8vb2lOwAaqwEDBgBgkoqIiIiIiOSnEEIIuYOQm75u+14cIQS8vLyQkpKCo0ePGnWVBRH96+DBg+jatWuR9WPHjkVERASEEJgzZw5WrlyJtLQ0dOjQAcuWLZMS06VhyLFI4/79+3B3d4darUZiYiJq165tkPMSERERERE9jZVUBqZQKKS+LydOnJA5GiIqrS5dukAIUWSJiIgA8Pi9PX/+fCQnJyMnJwf79u0rU4JKLlWrVkWHDh0AADt27JA5GiIiIiIiqsyYpJJBq1atAADHjx+XORIiIqB///4AgL1798ocCRERERERVWZMUsmAlVREZEzat28PgGMSERERERHJi0kqGQQGBgIALly4gMzMTJmjIaLKrkWLFrCwsMDt27dx69YtucMhIiIiIqL/197dx1RZ/nEc/xxFEBVERDmQ4GPJJoqJylhp/iZp9uBTMzNbZo8ipkVLqi1J16YrtVaZrs2pq5ZmS0lbNQMfZiEqmmQqS2fKioP5AJimGOf6/dE46/z0p6DCdZ/D+7XdG1znOpzP5XX8Tr7e932aKZpUFsTGxiohIUHGGO3Zs8d2HADNXJs2bdSnTx9JnE0FAAAAwB6aVJbUXfLHfakAOEHdGZ40qQAAAADYQpPKkrqbp/MLIQAnoCYBAAAAsC3EdoDmqu5MqqKiIh07dsw33rZtW8XExNiKBaCZ+neTyhgjl8tlOREAAACA5oYzqSypu7Tm119/Vbdu3XxHp06dtGbNGsvpADQ3/fr1U0hIiP744w+VlZXZjgMAAACgGaJJZUmHDh302GOPKTw83He0atVKkrR+/Xq74QA0O+Hh4UpOTpYkFRcXW04DAAAAoDmiSWXRqlWrdP78ed/x1VdfSeJm6gDs4L5UAAAAAGyiSeUgdZcAHjlyRGfOnLGcBkBzU1eDdu7caTkJAAAAgOaIJpWDREdHq2fPnpK43AZA07vzzjslSQUFBdqzZ4/lNAAAAACaG5pUDlN3uQ2X/AFoasnJyXr44Yfl9Xo1ffp0eb1e25EAAAAANCM0qRxm0KBBkrgnDAA7Fi1apIiICBUVFWnhwoUqKSmRx+Pxm3PkyBGVlJT4HdXV1ZYSAwAAAAgWNKkchjOpANgUHx+vefPmSZJycnKUkpKirl27+hrny5YtU69evZSSkuJ39O3bl0YVAAAAgBtCk8phBgwYIJfLpbKyMlVUVNiOA6AZmjFjhsaOHSu3263IyEjV1NQoMzNTv/32m3JyciRJMTExcrvdcrvdat26tY4fP67c3FzLyQEAAAAEMppUDhMREaGkpCRJXPIHwI6QkBCtW7dO5eXlKi0tVWRkpHbv3q077rhD1dXVGjRokDwej8rLy1VeXq68vDxJ0rvvvqt9+/ZZTg8AAAAgUNGkciDuSwXAKdxut9544w1J0rFjx+RyubR06VK1bNnSN2fEiBGaMGGCvF6vMjMzueE6AAAAgOtCk8qB6ppUBQUFlpMAgJSZman+/fv7vk5NTb1szuLFi9W2bVsVFhZq5cqVTRsQAAAAQFCgSeVAY8aMUYsWLbRt2zYdPHjQdhwAzVxISIg2bNig999/XwsXLrzinC5dumju3LmSpNmzZ+vUqVNNGREAAABAEKBJ5UAJCQm6//77Jf3zSVoAYFuXLl2UlZWl8PDw/ztn5syZ6tOnj06dOqVXX321CdMBAAAACAY0qRwqMzNTkrRq1SqdO3fOchoAuLZWrVpp6dKlkqQPP/xQYWFhVz369++vyspKu6EBAAAAOAZNKocaMWKEevTooaqqKq1evdp2HAColyFDhujZZ5+VJNXU1Fz12Ldvn+bMmWM5MQAAAACncBljjO0QtlVXV6t9+/aqqqpSZGSk7Tg+b731lmbPnq3U1FQ+6Q9oBpxaixrKGCOPx6Pa2tr/O2f37t0aN26cWrRooV27dmnAgAFNmBAAAACAE9GkknN/MTx58qS6dOmiixcvaufOnb5P/QMQnJxaixrLpEmTtHr1aqWmpmrmzJkKDw/X6NGjFRYW1qivu3XrViUlJSk2NrZRXwcAAABAwwTN5X5LlixRt27d1Lp1a6WlpWnnzp22I92wmJgYTZgwQZJ893kB4HzBWI8aw6JFixQREaHi4mJNmTJFDz30kLKzsxv1NT/66CMNGzZM//nPf1RTU9OorwUAAACgYYKiSbVmzRplZ2crNzdXe/bsUUpKikaOHKkTJ07YjnbD6m6gvnr1ap05c8ZyGgDXEsz16GaLj4/XRx99pHvvvVd33323pH8a8o11efOZM2f04osvSpIOHjyoxYsXN8rrAAAAALg+QXG5X1pamgYNGqT3339fkuT1epWQkKDnnntOL7/88jWf7+RLbIwx6t+/v0pKSvT222/r+eeftx0JwFXcSD1yci1qCo8++qg++eQTDRw4UDt27FDLli1v6s/PysrSBx98oMjISFVXVys8PFwHDx5U165db+rrAAAAALg+Ad+kqqmpUZs2bfT5559r7NixvvEpU6aosrJSeXl5lz3n4sWLunjxou/7qqoqJSYmqqyszJG/GC5fvlzZ2dmKiopS7969bccBGs3GjRsVGhpar7kRERFyuVyNnKhhGlqPAq0WNbaKigqlpqbq7Nmz6tu3r9q0aXPTfrYxxnfZ5ZdffqkFCxbohx9+UEJCguLj42/a6yA4jB8/XtOmTavXXCfWIgAAgEAVYjvAjTp58qRqa2svuwFubGysDh06dMXnzJ8/X3Pnzr1sPCEhoVEy3iyVlZUqKiqyHQNoNJ06dar3XCeebdTQehSotagp/PTTT432s0ePHu37uqysTGVlZY32WghMRUVFysnJqddcJ9YiAACAQBXwTarr8corr/jdnNfr9er06dPq2LHjVf83tLq6WgkJCUF5lkOwro11BZaGrCsiIqKJUjWe661FEu+BQBOs65KCd231XVcw1CIAAACnCPgmVUxMjFq2bKmKigq/8YqKCrnd7is+Jyws7LKPOI+Kiqr3a0ZGRgbVP8T/LVjXxroCS6Cuq6H16EZrkRS4f1bXwroCT7CuLVjXBQAA4EQB/+l+oaGhSk1NVX5+vm/M6/UqPz9f6enpFpMBaG6oRwAAAABw/QL+TCpJys7O1pQpUzRw4EANHjxY77zzjs6dO6epU6fajgagmaEeAQAAAMD1CYom1cSJE/XHH39ozpw58ng86t+/v7755pvLbl58o8LCwpSbm3vZ5TnBIFjXxroCSzCsi3p0Y1hX4AnWtQXrugAAAJzMZYwxtkMAAAAAAACgeQv4e1IBAAAAAAAg8NGkAgAAAAAAgHU0qQAAAAAAAGAdTSoAAAAAAABYR5OqAZYsWaJu3bqpdevWSktL086dO21HapD58+dr0KBBioiIUOfOnTV27FiVlpb6zRk2bJhcLpffMW3aNEuJ6+f111+/LHNSUpLv8QsXLigrK0sdO3ZUu3bt9OCDD6qiosJi4vrp1q3bZetyuVzKysqSFFh7tW3bNj3wwAOKj4+Xy+XS+vXr/R43xmjOnDmKi4tTeHi4MjIy9Msvv/jNOX36tCZPnqzIyEhFRUXpySef1J9//tmEq3AOapFzUY+cvV/UIgAAAGejSVVPa9asUXZ2tnJzc7Vnzx6lpKRo5MiROnHihO1o9bZ161ZlZWVpx44d2rRpky5duqQRI0bo3LlzfvOefvpplZeX+44333zTUuL669Onj1/m7du3+x574YUXtGHDBq1du1Zbt27V77//rvHjx1tMWz+7du3yW9OmTZskSRMmTPDNCZS9OnfunFJSUrRkyZIrPv7mm2/q3Xff1bJly1RUVKS2bdtq5MiRunDhgm/O5MmT9fPPP2vTpk3auHGjtm3bpmeeeaapluAY1CLnox45d7+oRQAAAA5nUC+DBw82WVlZvu9ra2tNfHy8mT9/vsVUN+bEiRNGktm6datv7K677jKzZs2yF+o65ObmmpSUlCs+VllZaVq1amXWrl3rGzt48KCRZAoLC5so4c0xa9Ys07NnT+P1eo0xgblXxhgjyaxbt873vdfrNW6327z11lu+scrKShMWFmY+/fRTY4wxBw4cMJLMrl27fHO+/vpr43K5zG+//dZk2Z2AWuRs1KPAQS0CAABwHs6kqoeamhoVFxcrIyPDN9aiRQtlZGSosLDQYrIbU1VVJUmKjo72G//kk08UExOj5ORkvfLKKzp//ryNeA3yyy+/KD4+Xj169NDkyZN1/PhxSVJxcbEuXbrkt3dJSUlKTEwMqL2rqanRxx9/rCeeeEIul8s3Hoh79b+OHj0qj8fjt0ft27dXWlqab48KCwsVFRWlgQMH+uZkZGSoRYsWKioqavLMtlCLAuP9TT0KrP2qQy0CAACwL8R2gEBw8uRJ1dbWKjY21m88NjZWhw4dspTqxni9Xj3//PO64447lJyc7Bt/5JFH1LVrV8XHx6ukpEQ5OTkqLS3VF198YTHt1aWlpWnlypXq3bu3ysvLNXfuXA0ZMkT79++Xx+NRaGiooqKi/J4TGxsrj8djJ/B1WL9+vSorK/X444/7xgJxr66kbh+u9Per7jGPx6POnTv7PR4SEqLo6OiA2scbRS1y/vubehRY+/Vv1CIAAAD7aFI1U1lZWdq/f7/fvVIk+d1Xo2/fvoqLi9Pw4cN15MgR9ezZs6lj1suoUaN8X/fr109paWnq2rWrPvvsM4WHh1tMdvMsX75co0aNUnx8vG8sEPcK+F/BVIsk6pEUWPsFAAAAZ+Fyv3qIiYlRy5YtL/sEpoqKCrndbkuprt+MGTO0ceNGbd68WV26dLnq3LS0NEnS4cOHmyLaTREVFaXbbrtNhw8fltvtVk1NjSorK/3mBNLeHTt2TN99952eeuqpq84LxL2S5NuHq/39crvdl90Y/O+//9bp06cDZh9vBmpR4L2/qUeBs1/UIgAAAPtoUtVDaGioUlNTlZ+f7xvzer3Kz89Xenq6xWQNY4zRjBkztG7dOhUUFKh79+7XfM6PP/4oSYqLi2vkdDfPn3/+qSNHjiguLk6pqalq1aqV396Vlpbq+PHjAbN3K1asUOfOnXXfffdddV4g7pUkde/eXW6322+PqqurVVRU5Nuj9PR0VVZWqri42DenoKBAXq/X98twc0AtCrz3N/UocPaLWgQAAOAAtu/cHihWr15twsLCzMqVK82BAwfMM888Y6KioozH47Edrd4yMzNN+/btzZYtW0x5ebnvOH/+vDHGmMOHD5t58+aZ3bt3m6NHj5q8vDzTo0cPM3ToUMvJr+7FF180W7ZsMUePHjXff/+9ycjIMDExMebEiRPGGGOmTZtmEhMTTUFBgdm9e7dJT0836enpllPXT21trUlMTDQ5OTl+44G2V2fPnjV79+41e/fuNZLM4sWLzd69e82xY8eMMcYsWLDAREVFmby8PFNSUmLGjBljunfvbv766y/fz7jnnnvM7bffboqKisz27dvNrbfeaiZNmmRrSdZQi5yNeuTs/aIWAQAAOBtNqgZ47733TGJiogkNDTWDBw82O3bssB2pQSRd8VixYoUxxpjjx4+boUOHmujoaBMWFmZ69eplXnrpJVNVVWU3+DVMnDjRxMXFmdDQUHPLLbeYiRMnmsOHD/se/+uvv8z06dNNhw4dTJs2bcy4ceNMeXm5xcT19+233xpJprS01G880PZq8+bNV3zvTZkyxRjzz0e/v/baayY2NtaEhYWZ4cOHX7bmU6dOmUmTJpl27dqZyMhIM3XqVHP27FkLq7GPWuRc1CNn7xe1CAAAwNlcxhjTVGdtAQAAAAAAAFfCPakAAAAAAABgHU0qAAAAAAAAWEeTCgAAAAAAANbRpAIAAAAAAIB1NKkAAAAAAABgHU0qAAAAAAAAWEeTCgAAAAAAANbRpAIAAAAAAIB1NKkAAAAAAABgHU0qAAAAAAAAWEeTCgAAAAAAANbRpAIAAAAAAIB1/wV7k519W1/UugAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 1200x900 with 14 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig, axes = plt.subplots(4, 4, figsize=(12, 9))\n",
+    "axes = axes.flatten()\n",
+    "plt.suptitle(f\"Cluster Quality Metrics for {key}\", y=.99, fontsize=12)\n",
+    "\n",
+    "# Firing Rates\n",
+    "data = np.log10(query.fetch(\"firing_rate\"))\n",
+    "bins = np.linspace(-3,2,100)\n",
+    "plot_metric(axes[0], data, bins, title=\"Firing Rate (Hz) (log$_{10}$)\")\n",
+    "axes[0].set_ylabel(\"Count\")\n",
+    "\n",
+    "# Signal-to-Noise Ratio\n",
+    "data = query.fetch(\"snr\")\n",
+    "bins = np.linspace(0, 10, 100)\n",
+    "plot_metric(axes[1], data, bins, title=\"Signal-to-Noise Ratio\")\n",
+    "\n",
+    "# Presence Ratio\n",
+    "data = query.fetch(\"presence_ratio\")\n",
+    "bins = np.linspace(0, 1, 100)\n",
+    "plot_metric(axes[2], data, bins, title=\"Presence Ratio\")\n",
+    "\n",
+    "# ISI Violation\n",
+    "data = query.fetch(\"isi_violation\")\n",
+    "bins = np.linspace(0, 1, 100)\n",
+    "plot_metric(axes[3], data, bins, title=\"ISI Violation\")\n",
+    "\n",
+    "# Number Violation\n",
+    "data = query.fetch(\"number_violation\")\n",
+    "bins = np.linspace(0, 1000, 100)\n",
+    "plot_metric(axes[4], data, bins, title=\"Number Violation\")\n",
+    "axes[4].set_ylabel(\"Count\")\n",
+    "\n",
+    "# Amplitude Cutoff\n",
+    "data = query.fetch(\"amplitude_cutoff\")\n",
+    "bins = np.linspace(0, 0.5, 100)\n",
+    "plot_metric(axes[5], data, bins, title=\"Amplitude Cutoff\")\n",
+    "\n",
+    "# Isolation Distance\n",
+    "data = query.fetch(\"isolation_distance\")\n",
+    "bins = np.linspace(0, 170, 50)\n",
+    "plot_metric(axes[6], data, bins, title=\"Isolation Distance\")\n",
+    "\n",
+    "# L-Ratio\n",
+    "data = query.fetch(\"l_ratio\")\n",
+    "bins = np.linspace(0, 1, 100)\n",
+    "plot_metric(axes[7], data, bins, title=\"L-Ratio\")\n",
+    "\n",
+    "# d-Prime\n",
+    "data = query.fetch(\"d_prime\")\n",
+    "bins = np.linspace(0, 15, 50)\n",
+    "plot_metric(axes[8], data, bins, title=\"d-Prime\")\n",
+    "axes[8].set_ylabel(\"Count\")\n",
+    "\n",
+    "# Nearest-Neighbors Hit Rate\n",
+    "data = query.fetch(\"nn_hit_rate\")\n",
+    "bins = np.linspace(0, 1, 100)\n",
+    "plot_metric(axes[9], data, bins, title=\"Nearest-Neighbors Hit Rate\")\n",
+    "\n",
+    "# Nearest-Neighbors Miss Rate\n",
+    "data = query.fetch(\"nn_miss_rate\")\n",
+    "bins = np.linspace(0, 1, 100)\n",
+    "plot_metric(axes[10], data, bins, title=\"Nearest-Neighbors Miss Rate\")\n",
+    "\n",
+    "# Silhouette Score\n",
+    "data = query.fetch(\"silhouette_score\")\n",
+    "bins = np.linspace(0, 1, 100)\n",
+    "plot_metric(axes[11], data, bins, title=\"Silhouette Score\")\n",
+    "\n",
+    "# Max Drift\n",
+    "data = query.fetch(\"max_drift\")\n",
+    "bins = np.linspace(0, 100, 100)\n",
+    "plot_metric(axes[12], data, bins, title=\"Max Drift\")\n",
+    "axes[12].set_ylabel(\"Count\")\n",
+    "\n",
+    "# Cumulative Drift\n",
+    "data = query.fetch(\"cumulative_drift\")\n",
+    "bins = np.linspace(0, 100, 100)\n",
+    "plot_metric(axes[13], data, bins, title=\"Cumulative Drift\")\n",
+    "\n",
+    "[ax.remove() for ax in axes[14:]]\n",
+    "plt.tight_layout()"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "### Waveform quality metrics\n",
+    "\n",
+    "| Metric | Description |\n",
+    "| -- | -- |\n",
+    "| Amplitude (μV) | Absolute difference between the waveform peak and trough. |\n",
+    "| Duration (ms) | Time interval between the waveform peak and trough. |\n",
+    "| Peak-to-Trough (PT)  Ratio | Absolute amplitude of the peak divided by the absolute amplitude of the trough relative to 0. |\n",
+    "| Repolarization Slope | Slope of the fitted regression line to the first 30μs from trough to peak. |\n",
+    "| Recovery Slope | Slope of the fitted regression line to the first 30μs from peak to tail. |\n",
+    "| Spread (μm) | Spatial extent of channels where the waveform amplitude exceeds 12% of the peak amplitude. |\n",
+    "| Velocity Above (s/m) | Inverse velocity of waveform propagation from the soma toward the top of the probe. |\n",
+    "| Velocity Below (s/m) | Inverse velocity of waveform propagation from the soma toward the bottom of the probe. |"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 7,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "\n",
+       "    \n",
+       "    <style type=\"text/css\">\n",
+       "        .Table{\n",
+       "            border-collapse:collapse;\n",
+       "        }\n",
+       "        .Table th{\n",
+       "            background: #A0A0A0; color: #ffffff; padding:4px; border:#f0e0e0 1px solid;\n",
+       "            font-weight: normal; font-family: monospace; font-size: 100%;\n",
+       "        }\n",
+       "        .Table td{\n",
+       "            padding:4px; border:#f0e0e0 1px solid; font-size:100%;\n",
+       "        }\n",
+       "        .Table tr:nth-child(odd){\n",
+       "            background: #ffffff;\n",
+       "        }\n",
+       "        .Table tr:nth-child(even){\n",
+       "            background: #f3f1ff;\n",
+       "        }\n",
+       "        /* Tooltip container */\n",
+       "        .djtooltip {\n",
+       "        }\n",
+       "        /* Tooltip text */\n",
+       "        .djtooltip .djtooltiptext {\n",
+       "            visibility: hidden;\n",
+       "            width: 120px;\n",
+       "            background-color: black;\n",
+       "            color: #fff;\n",
+       "            text-align: center;\n",
+       "            padding: 5px 0;\n",
+       "            border-radius: 6px;\n",
+       "            /* Position the tooltip text - see examples below! */\n",
+       "            position: absolute;\n",
+       "            z-index: 1;\n",
+       "        }\n",
+       "        #primary {\n",
+       "            font-weight: bold;\n",
+       "            color: black;\n",
+       "        }\n",
+       "        #nonprimary {\n",
+       "            font-weight: normal;\n",
+       "            color: white;\n",
+       "        }\n",
+       "\n",
+       "        /* Show the tooltip text when you mouse over the tooltip container */\n",
+       "        .djtooltip:hover .djtooltiptext {\n",
+       "            visibility: visible;\n",
+       "        }\n",
+       "    </style>\n",
+       "    \n",
+       "    <b>Waveform metrics for a particular unit</b>\n",
+       "        <div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n",
+       "        <table border=\"1\" class=\"Table\">\n",
+       "            <thead> <tr style=\"text-align: right;\"> <th> <div class=\"djtooltip\">\n",
+       "                            <p id=\"primary\">subject</p>\n",
+       "                            <span class=\"djtooltiptext\"></span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"primary\">session_datetime</p>\n",
+       "                            <span class=\"djtooltiptext\"></span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"primary\">insertion_number</p>\n",
+       "                            <span class=\"djtooltiptext\"></span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"primary\">paramset_idx</p>\n",
+       "                            <span class=\"djtooltiptext\"></span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"primary\">curation_id</p>\n",
+       "                            <span class=\"djtooltiptext\"></span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"primary\">unit</p>\n",
+       "                            <span class=\"djtooltiptext\"></span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">amplitude</p>\n",
+       "                            <span class=\"djtooltiptext\">(uV) absolute difference between waveform peak and trough</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">duration</p>\n",
+       "                            <span class=\"djtooltiptext\">(ms) time between waveform peak and trough</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">halfwidth</p>\n",
+       "                            <span class=\"djtooltiptext\">(ms) spike width at half max amplitude</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">pt_ratio</p>\n",
+       "                            <span class=\"djtooltiptext\">absolute amplitude of peak divided by absolute amplitude of trough relative to 0</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">repolarization_slope</p>\n",
+       "                            <span class=\"djtooltiptext\">the repolarization slope was defined by fitting a regression line to the first 30us from trough to peak</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">recovery_slope</p>\n",
+       "                            <span class=\"djtooltiptext\">the recovery slope was defined by fitting a regression line to the first 30us from peak to tail</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">spread</p>\n",
+       "                            <span class=\"djtooltiptext\">(um) the range with amplitude above 12-percent of the maximum amplitude along the probe</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">velocity_above</p>\n",
+       "                            <span class=\"djtooltiptext\">(s/m) inverse velocity of waveform propagation from the soma toward the top of the probe</span>\n",
+       "                        </div></th><th><div class=\"djtooltip\">\n",
+       "                            <p id=\"nonprimary\">velocity_below</p>\n",
+       "                            <span class=\"djtooltiptext\">(s/m) inverse velocity of waveform propagation from the soma toward the bottom of the probe</span>\n",
+       "                        </div> </th> </tr> </thead>\n",
+       "            <tbody> <tr> <td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>0</td>\n",
+       "<td>120.402</td>\n",
+       "<td>1.08509</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.74622</td>\n",
+       "<td>0.0388668</td>\n",
+       "<td>-0.3638</td>\n",
+       "<td>280.0</td>\n",
+       "<td>0.0735822</td>\n",
+       "<td>-0.0114461</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>151.819</td>\n",
+       "<td>1.05762</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.657574</td>\n",
+       "<td>0.0700459</td>\n",
+       "<td>-0.0806154</td>\n",
+       "<td>300.0</td>\n",
+       "<td>-0.0576308</td>\n",
+       "<td>-0.137353</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>2</td>\n",
+       "<td>142.161</td>\n",
+       "<td>0.59062</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.711684</td>\n",
+       "<td>0.175466</td>\n",
+       "<td>-0.119525</td>\n",
+       "<td>300.0</td>\n",
+       "<td>0.081758</td>\n",
+       "<td>-0.0572306</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>3</td>\n",
+       "<td>144.028</td>\n",
+       "<td>1.03015</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.741737</td>\n",
+       "<td>0.0801046</td>\n",
+       "<td>-0.0811708</td>\n",
+       "<td>300.0</td>\n",
+       "<td>-0.138989</td>\n",
+       "<td>0.0711516</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>4</td>\n",
+       "<td>87.3382</td>\n",
+       "<td>0.563149</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.869518</td>\n",
+       "<td>0.189142</td>\n",
+       "<td>-0.0258353</td>\n",
+       "<td>300.0</td>\n",
+       "<td>0.595198</td>\n",
+       "<td>-0.582626</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>5</td>\n",
+       "<td>80.6693</td>\n",
+       "<td>0.508208</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.864687</td>\n",
+       "<td>0.24975</td>\n",
+       "<td>-0.0206796</td>\n",
+       "<td>300.0</td>\n",
+       "<td>-1.13317</td>\n",
+       "<td>1.08081</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>6</td>\n",
+       "<td>86.7877</td>\n",
+       "<td>0.576884</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.834892</td>\n",
+       "<td>0.256677</td>\n",
+       "<td>-0.0614186</td>\n",
+       "<td>300.0</td>\n",
+       "<td>2.34645</td>\n",
+       "<td>0.0654064</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>7</td>\n",
+       "<td>80.8594</td>\n",
+       "<td>0.453266</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.840421</td>\n",
+       "<td>0.212582</td>\n",
+       "<td>-0.0467612</td>\n",
+       "<td>300.0</td>\n",
+       "<td>2.08319</td>\n",
+       "<td>0.228922</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>8</td>\n",
+       "<td>100.313</td>\n",
+       "<td>1.05762</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.800589</td>\n",
+       "<td>0.0222054</td>\n",
+       "<td>-0.518803</td>\n",
+       "<td>300.0</td>\n",
+       "<td>0.173843</td>\n",
+       "<td>-0.0654064</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>9</td>\n",
+       "<td>63.2377</td>\n",
+       "<td>0.576884</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.909614</td>\n",
+       "<td>0.152643</td>\n",
+       "<td>-0.0177585</td>\n",
+       "<td>280.0</td>\n",
+       "<td>1.0138</td>\n",
+       "<td>0.147164</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>10</td>\n",
+       "<td>124.865</td>\n",
+       "<td>0.480737</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.733803</td>\n",
+       "<td>0.26627</td>\n",
+       "<td>-0.0227592</td>\n",
+       "<td>300.0</td>\n",
+       "<td>0.869905</td>\n",
+       "<td>0.220747</td></tr><tr><td>subject5</td>\n",
+       "<td>2023-04-21 00:40:32</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>1</td>\n",
+       "<td>11</td>\n",
+       "<td>56.4303</td>\n",
+       "<td>0.329648</td>\n",
+       "<td>nan</td>\n",
+       "<td>0.885421</td>\n",
+       "<td>0.202103</td>\n",
+       "<td>-0.0599684</td>\n",
+       "<td>300.0</td>\n",
+       "<td>3.85898</td>\n",
+       "<td>-2.00307</td> </tr> </tbody>\n",
+       "        </table>\n",
+       "        <p>...</p>\n",
+       "        <p>Total: 227</p></div>\n",
+       "        "
+      ],
+      "text/plain": [
+       "*subject     *session_datet *insertion_num *paramset_idx  *curation_id   *unit    amplitude     duration     halfwidth     pt_ratio     repolarization recovery_slope spread     velocity_above velocity_below\n",
+       "+----------+ +------------+ +------------+ +------------+ +------------+ +------+ +-----------+ +----------+ +-----------+ +----------+ +------------+ +------------+ +--------+ +------------+ +------------+\n",
+       "subject5     2023-04-21 00: 1              1              1              0        120.402       1.08509      nan           0.74622      0.0388668      -0.3638        280.0      0.0735822      -0.0114461    \n",
+       "subject5     2023-04-21 00: 1              1              1              1        151.819       1.05762      nan           0.657574     0.0700459      -0.0806154     300.0      -0.0576308     -0.137353     \n",
+       "subject5     2023-04-21 00: 1              1              1              2        142.161       0.59062      nan           0.711684     0.175466       -0.119525      300.0      0.081758       -0.0572306    \n",
+       "subject5     2023-04-21 00: 1              1              1              3        144.028       1.03015      nan           0.741737     0.0801046      -0.0811708     300.0      -0.138989      0.0711516     \n",
+       "subject5     2023-04-21 00: 1              1              1              4        87.3382       0.563149     nan           0.869518     0.189142       -0.0258353     300.0      0.595198       -0.582626     \n",
+       "subject5     2023-04-21 00: 1              1              1              5        80.6693       0.508208     nan           0.864687     0.24975        -0.0206796     300.0      -1.13317       1.08081       \n",
+       "subject5     2023-04-21 00: 1              1              1              6        86.7877       0.576884     nan           0.834892     0.256677       -0.0614186     300.0      2.34645        0.0654064     \n",
+       "subject5     2023-04-21 00: 1              1              1              7        80.8594       0.453266     nan           0.840421     0.212582       -0.0467612     300.0      2.08319        0.228922      \n",
+       "subject5     2023-04-21 00: 1              1              1              8        100.313       1.05762      nan           0.800589     0.0222054      -0.518803      300.0      0.173843       -0.0654064    \n",
+       "subject5     2023-04-21 00: 1              1              1              9        63.2377       0.576884     nan           0.909614     0.152643       -0.0177585     280.0      1.0138         0.147164      \n",
+       "subject5     2023-04-21 00: 1              1              1              10       124.865       0.480737     nan           0.733803     0.26627        -0.0227592     300.0      0.869905       0.220747      \n",
+       "subject5     2023-04-21 00: 1              1              1              11       56.4303       0.329648     nan           0.885421     0.202103       -0.0599684     300.0      3.85898        -2.00307      \n",
+       "   ...\n",
+       " (Total: 227)"
+      ]
+     },
+     "execution_count": 7,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "query = ephys.QualityMetrics.Waveform & key\n",
+    "query"
+   ]
+  },
+  {
+   "attachments": {},
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "Plot histograms of the waveform metrics."
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 8,
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAABKYAAAH0CAYAAAAHYCW9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXxT1/sH8E9SSeqlpY4UihanUNylMFyHbFAmMOwLY8oM3dhgAybImAAbsgHDJviQocN16IpDhXqp0Ob8/uB375ImbZM2TdL28369+oLe3Nz7JE1OTp57znMUQggBIiIiIiIiIiIiC1NaOwAiIiIiIiIiIiqbmJgiIiIiIiIiIiKrYGKKiIiIiIiIiIisgokpIiIiIiIiIiKyCiamiIiIiIiIiIjIKpiYIiIiIiIiIiIiq2BiioiIiIiIiIiIrIKJKSIiIiIiIiIisgompoiIiIiIiIiIyCqYmCIiMtGPP/6IWrVqwcHBAZ6entYOp0QIDg5GZGSk/Pu+ffugUCiwb98+q8VkbQqFAtOnT7fY+a5du4auXbvCw8MDCoUCmzdvtti5//zzT4SHh8PFxQUdOnSw2HkBoH379qhbt26B+928eRMKhQIrVqwo/qBKEOm9umHDhgL3jYyMRHBwcPEHZUPat2+P9u3bWzuMQmE7nLfp06dDoVAgLi7O2qGYnVKpRLly5dCjRw/cvn3b2uEQEQFgYoqIrGDdunVQKBTYtGmT3m0NGjSAQqHA3r179W6rVKkSWrZsaYkQ83T58mVERkYiJCQE33zzDZYtW2bVeIx16NAh9OvXD35+flCpVAgODsYrr7yCO3fuWDs02Zo1a7Bw4UKzH1ehUEChUOCll14yePu7774r71OYLyGHDx/G9OnTkZiYWMRIi9fIkSNx/vx5fPjhh/jxxx/RpEkTi507MjIS//77L6ZNm4Z33nlH57bp06eXiWTG/fv3MX36dJw5c0bvtsjIyCIlN8pKQi2/NkJ6D+f++fjjj3X2K8pzvWLFCigUikLd15oWL15cJl4fJVn79u11Lt6YasmSJRg0aBAqVaoEhUKR77FWrFiBcePGYefOnXjvvfcKfU4iInOyt3YARFT2tG7dGgBw8OBB9OvXT96enJyMCxcuwN7eHocOHdIZWXHnzh3cuXMHQ4YMsXi82vbt2weNRoPPP/8c1apVs2osxvryyy8xadIkVK1aFRMnTkRAQAD++ecffPvtt/j555+xbds2NG/e3KIxtW3bFunp6XB0dJS3rVmzBhcuXMDkyZPNfj61Wo1ffvkFixcv1jknAKxduxZqtRoZGRmFOvbhw4cxY8YMREZGmjSCLj09Hfb2lvkYTk9Px5EjR/Duu+9iwoQJFjmnJC4uDnfu3MFrr72GN99806LnNkXlypWRnp4OBweHYjn+/fv3MWPGDAQHB6Nhw4bFcg5r++abb6DRaIrt+AW1EV26dMGIESN0tjVq1KjY4gGAnTt3FuvxzWHx4sUoX768XrLCUDtMJdMnn3yClJQUhIeH48GDB/nuK71Hjh8/bjBRTkRkDUxMEZHFBQYGokqVKjh48KDO9iNHjkAIgUGDBundJv0uJbWsJSYmBgDMOoXv8ePHcHZ2NtvxtB06dAiTJ09G69atsX37dp3zjB07Fq1atcKAAQNw8eJFi05LVCqVUKvVFjtft27dsHXrVmzbtg19+vSRtx8+fBhRUVEYMGAAfvnll2KPQ6PRICsrC2q12qKPPzY2FoB5X7dpaWlwcXExaj8A8PPzM9u5i4NCobDo36Q0Kq6knrFq1KiB5557zqLntOWkTkGfLZZuh0mfuT7/9+/fL4+WcnV1Neo+/v7+uHbtWpHPTURkDpzKR0RW0bp1a5w+fRrp6enytkOHDqFOnTro3r07jh49qnPl/dChQ1AoFGjVqhUAYPny5ejYsSN8fX2hUqkQGhqKJUuW6JyjZ8+eqFq1qsHzt2jRQm8q06pVqxAWFgYnJyd4eXlhyJAhOlPdgoODMW3aNACAj4+PXo2gxYsXo06dOlCpVAgMDMT48eP1pndJ9W5OnjyJtm3bwtnZGe+8845c3+bTTz/FokWLULVqVTg7O6Nr1664c+cOhBCYNWsWKlSoACcnJ/Tp0wfx8fEFPs+zZs2CQqHAypUr9Tq/ISEhmDt3Lu7fv68zJTGvmimG6sd8+umnaNmyJby9veHk5ISwsDCjatHkrm3Svn17/P7777h165Y8BSc4OBipqalwcXHBpEmT9I5x9+5d2NnZYc6cOQWeLygoCG3btsWaNWt0tq9evRr16tXLswbRsWPH0K1bN3h4eMDZ2Rnt2rXDoUOH5NunT5+ON954AwBQpUoVOfabN28CeJrsmDBhAlavXi2/NrZv3y7flrvG1L179/Diiy8iMDAQKpUKVapUwdixY5GVlQUAePLkCWbMmIHq1atDrVbD29sbrVu3xq5du/J87NOnT0flypUBAG+88Yb83EpOnz6N7t27w93dHa6urujUqROOHj2qcwxpCtP+/fsxbtw4+Pr6okKFCnmeU5sQQn68xtq1axdat24NT09PuLq6ombNmjpTAKV4pOdZkl/NnJMnT6Jly5ZwcnJClSpVsHTpUp3b86oxdfnyZQwcOBBeXl5Qq9Vo0qQJtm7dqnf8xMREvPrqqwgODoZKpUKFChUwYsQIxMXFYd++fWjatCkAYNSoUfLrJL/pVQ8ePMDly5fx5MmT/J8sA1JSUjB58mQ5Fl9fX3Tp0gWnTp2S98ld902S1/s/JycH77zzDvz9/eHi4oLevXvrTQU21EZoNBosXLgQderUgVqthp+fH8aMGYOEhAS9c2zbtg3t2rWDm5sb3N3d0bRpU/k9m1cbkVt6enqhRz8WRu7nS3oNrlu3Dh9++CEqVKgAtVqNTp064fr16zr3vXbtGgYMGAB/f3+o1WpUqFABQ4YMQVJSks5+BX02SXEY+mwJDg7GxYsXsX//fvl5k+LN6/2yfv16+Xzly5fHc889h3v37unsExkZCVdXV9y7dw99+/aFq6srfHx88PrrryMnJ8fk57Bu3bq4dOkSOnToAGdnZwQFBWHu3Lk6+5nyvpeOee7cObRr1w7Ozs6oVq2a/Pm0f/9+NGvWDE5OTqhZsyZ2795tMLa4uDgMHjwY7u7u8Pb2xqRJkwy+voryN8rL7du3cfny5fyeOlnlypVNnmaqVCrl9pmIyNo4YoqIrKJ169b48ccfcezYMbmTfOjQIbRs2RItW7ZEUlISLly4gPr168u31apVC97e3gCe1lOoU6cOevfuDXt7e/z6668YN24cNBoNxo8fDwB49tlnMWLECBw/flz+UggAt27dwtGjRzFv3jx524cffoj3338fgwcPxksvvYTY2Fh8+eWXaNu2LU6fPg1PT08sXLgQP/zwAzZt2oQlS5bA1dVVjm/69OmYMWMGOnfujLFjx+LKlStYsmQJjh8/jkOHDumMJHj06BG6d++OIUOG4LnnntMZSbJ69WpkZWVh4sSJiI+Px9y5czF48GB07NgR+/btw1tvvYXr16/jyy+/xOuvv47vv/8+z+f48ePH2LNnD9q0aYMqVaoY3OfZZ5/F6NGj8euvvxZqmtXnn3+O3r17Y/jw4cjKysJPP/2EQYMG4bfffkOPHj2MPs67776LpKQk3L17FwsWLAAAuLq6wtXVFf369cPPP/+M+fPnw87OTr7P2rVrIYTA8OHDjTrHsGHDMGnSJKSmpsLV1RXZ2dlYv349pkyZYvCLxp9//onu3bsjLCwM06ZNg1KplBOif/31F8LDw9G/f39cvXoVa9euxYIFC1C+fHkATxOX2sdZt24dJkyYgPLly+dZT+n+/fsIDw9HYmIiRo8ejVq1auHevXvYsGEDHj9+DEdHR0yfPh1z5szBSy+9hPDwcCQnJ+PEiRM4deoUunTpYvC4/fv3h6enJ1599VUMHToUzzzzjHxF/eLFi2jTpg3c3d3x5ptvwsHBAV9//TXat28vf3HTNm7cOPj4+OCDDz6QR0IVREowK5XGXQu7ePEievbsifr162PmzJlQqVS4fv26TkLQVAkJCXjmmWcwePBgDB06FOvWrcPYsWPh6OiIF154Id9YWrVqhaCgILz99ttwcXHBunXr0LdvX/zyyy/yVOTU1FS0adMG//zzD1544QU0btwYcXFx2Lp1K+7evYvatWtj5syZ+OCDDzB69Gi0adMGAPKtmTd16lSsXLkSUVFRJtfgeuWVV7BhwwZMmDABoaGhePToEQ4ePIh//vkHjRs3NulYkg8//BAKhQJvvfUWYmJisHDhQnTu3BlnzpyBk5NTnvcbM2YMVqxYgVGjRuF///sfoqKi8NVXX+H06dM6beOKFSvwwgsvoE6dOpg6dSo8PT1x+vRpbN++HcOGDcuzjdC2YsUKLF68GEII1K5dG++99x6GDRtWqMdbVB9//DGUSiVef/11JCUlYe7cuRg+fDiOHTsGAMjKykJERAQyMzMxceJE+Pv74969e/jtt9+QmJgIDw8PAMZ9NkkMfba0b98eEydOhKurK959910A+Y9elP5WTZs2xZw5cxAdHY3PP/8chw4d0jtfTk4OIiIi0KxZM3z66afYvXs3PvvsM4SEhGDs2LEmPV8JCQno1q0b+vfvj8GDB2PDhg146623UK9ePXTv3t2kY2kfs2fPnhgyZAgGDRqEJUuWYMiQIVi9ejUmT56MV155BcOGDcO8efMwcOBA3LlzB25ubjrHGDx4MIKDgzFnzhwcPXoUX3zxBRISEvDDDz/I+xT1b5SXESNGYP/+/cWWPFIoFMU69ZaIyCSCiMgKLl68KACIWbNmCSGEePLkiXBxcRErV64UQgjh5+cnFi1aJIQQIjk5WdjZ2YmXX35Zvv/jx4/1jhkRESGqVq0q/56UlCRUKpV47bXXdPabO3euUCgU4tatW0IIIW7evCns7OzEhx9+qLPf+fPnhb29vc72adOmCQAiNjZW3hYTEyMcHR1F165dRU5Ojrz9q6++EgDE999/L29r166dACCWLl2qc66oqCgBQPj4+IjExER5+9SpUwUA0aBBA/HkyRN5+9ChQ4Wjo6PIyMjQex4kZ86cEQDEpEmT8txHCCHq168vvLy8dGJs166d3n4jR44UlStX1tmW+++QlZUl6tatKzp27KizvXLlymLkyJHy73v37hUAxN69e+VtPXr00Du+EELs2LFDABDbtm3Ti9tQnLkBEOPHjxfx8fHC0dFR/Pjjj0IIIX7//XehUCjEzZs39f6uGo1GVK9eXURERAiNRqPzeKtUqSK6dOkib5s3b54AIKKiogyeW6lUiosXLxq8bdq0afLvI0aMEEqlUhw/flxvXymGBg0aiB49ehT4mHOTXl/z5s3T2d63b1/h6Ogobty4IW+7f/++cHNzE23btpW3LV++XAAQrVu3FtnZ2Sad+6+//hIAxHfffWfU/gsWLNB7j+UmxZP7OTf0upLec5999pm8LTMzUzRs2FD4+vqKrKwsIcR/z9Hy5cvl/Tp16iTq1aun8z7TaDSiZcuWonr16vK2Dz74QAAQGzdu1ItV+tsdP35c7/j5GTlyZJ6vq4J4eHiI8ePH57tP7vekJPf7X3pOg4KCRHJysrx93bp1AoD4/PPPdWLWfg9Lf/vVq1frnGP79u062xMTE4Wbm5to1qyZSE9P19lX+/2XVxshhBAtW7YUCxcuFFu2bBFLliwRdevWFQDE4sWL830eiiqv56t27doiMzNT3v75558LAOL8+fNCCCFOnz4tAIj169fneWxTPpvy+mwRQog6deoYbCtzv1+ysrKEr6+vqFu3rs7f4bfffhMAxAcffCBvk16fM2fO1Dlmo0aNRFhYWJ6PyRAp9h9++EHelpmZKfz9/cWAAQPkbYV5369Zs0bedvnyZblNPnr0qLxd+ozRfm9Knwm9e/fWOde4ceMEAHH27FkhhPn+Rvk9L6ZycXEx+N7ObdKkSUKtVuv0LYiIrIVT+YjIKmrXrg1vb2+5dtTZs2eRlpYmjyBo2bKlPELiyJEjyMnJ0akvpX2FPikpCXFxcWjXrh3+/fdfeRqEu7s7unfvjnXr1ulccfz555/RvHlzVKpUCQCwceNGaDQaDB48GHFxcfKPv78/qlevbnCFQG27d+9GVlYWJk+erDMq5OWXX4a7uzt+//13nf1VKhVGjRpl8FiDBg2Sr5QDkEesPPfcczqFsps1a4asrCy96RXaUlJSAEDvCnBubm5u8r6m0v47JCQkICkpCW3atNGZMlRUnTt3RmBgIFavXi1vu3DhAs6dO2dSPZly5cqhW7duWLt2LYCnhZRbtmwpT3PTdubMGVy7dg3Dhg3Do0eP5NdEWloaOnXqhAMHDhh9pbldu3YIDQ3Ndx+NRoPNmzejV69eBlfLk6ZoeHp64uLFi2apC5KTk4OdO3eib9++OlNeAwICMGzYMBw8eBDJyck693n55Zd1Rq3lJzU1FRcvXsSsWbPg4OCAtm3bGnU/aXTBli1bzHY1397eHmPGjJF/d3R0xJgxYxATE4OTJ08avE98fDz+/PNPDB48GCkpKfJr4NGjR4iIiMC1a9fk998vv/yCBg0a6CzmICnsKm4rVqyAEKJQKxZ6enri2LFjuH//fqHObciIESN02pKBAwciICAAf/zxR573Wb9+PTw8PNClSxedtjUsLAyurq5y27pr1y6kpKTg7bff1qt5ZOzzd+jQIUyaNAm9e/fGK6+8gpMnT6Ju3bp45513dKaMW8qoUaN06k9Jo+T+/fdfAJDb+R07duDx48cGj2HqZ1N+ny3GOHHiBGJiYjBu3Didv0OPHj1Qq1Ytvc8y4OnoPG1t2rSRH6MpXF1dddpzR0dHhIeHF+pY2sfUXjClZs2a8PT0RO3atXVGg0r/N3QuaQS2ZOLEiQAgv+6L82+0b9++Yp1q165dO2RkZOCDDz7AzZs3kZmZWWznIiIqCBNTRGQVCoUCLVu2lGtJHTp0CL6+vvJKd9qJKelf7cTUoUOH0LlzZ7i4uMDT0xM+Pj5yrQbt+hzPPvss7ty5gyNHjgAAbty4gZMnT+LZZ5+V97l27RqEEKhevTp8fHx0fv755x+54Hlebt26BeBpp1ebo6MjqlatKt8uCQoKyrNgrpQsk0hfXipWrGhwu6E6LRLpS2RBSaeUlBT4+vrmu09efvvtNzRv3hxqtRpeXl7w8fHBkiVL9GqkFIVSqcTw4cOxefNm+Qvc6tWroVarMWjQIJOONWzYMOzatQu3b9/G5s2b85zmIyV+Ro4cqfea+Pbbb5GZmWn0Y8xrGqW22NhYJCcn51nrSjJz5kwkJiaiRo0aqFevHt544w2cO3fOqDgMnfPx48d6r1vgaeJYo9Ho1Ugx5rFIJkyYgLp162Lfvn1YsWKF0atYPvvss2jVqhVeeukl+Pn5YciQIVi3bl2RklSBgYF6hdpr1KgBAHr1aiTXr1+HEALvv/++3mtAqjUntQ03btwo8G9nSXPnzsWFCxdQsWJFhIeHY/r06UX6gg8A1atX1/ldoVCgWrVqeT5/wNP3UVJSEnx9ffWew9TUVJ3nD4BZn0NHR0dMmDABiYmJeSYfi1PutrxcuXIA/muzq1SpgilTpuDbb79F+fLlERERgUWLFum0K6Z+NuX32WKMvD7LAKBWrVp6n2VqtVpn2rL0OPP7XMpLhQoV9JKQhT1Wfsf08PAw6fM09+s+JCQESqVSft1b+m9kTv369cOUKVMwZ84cVKlSRb5oQ0RkDawxRURW07p1a/z66684f/68XF9K0rJlS7zxxhu4d+8eDh48iMDAQHlUx40bN9CpUyfUqlUL8+fPR8WKFeHo6Ig//vgDCxYs0PkC26tXLzg7O2PdunVo2bIl1q1bB6VSqZPQ0Gg0UCgU2LZtm8HRIMaucGOs/Oqx5DUaJa/t+V1NrV69Ouzt7fNNXGRmZuLKlSsIDw+XtykUCoPHzV3Q9q+//kLv3r3Rtm1bLF68GAEBAXBwcMDy5cv1iowX1YgRIzBv3jxs3rwZQ4cOxZo1a9CzZ0+d0WXG6N27N1QqFUaOHInMzEwMHjzY4H7Sa2jevHlo2LChwX2MfV3k9/c2Vdu2bXHjxg1s2bIFO3fuxLfffosFCxZg6dKleOmll8x2nryY8ljefPNNREREYO7cuRg7dixat26t92U9r3McOHAAe/fuxe+//47t27fj559/RseOHbFz507Y2dnlOYrG1KLL+ZFeA6+//joiIiIM7mNsss3SBg8ejDZt2mDTpk3YuXMn5s2bh08++QQbN26U6/Xk9xwaOyquIBqNBr6+vjqjHbXlTmqYm5SAMGahCHMzps3+7LPPEBkZKb+f//e//8m1jCpUqGDyZ5M52xpjmOt1kt+xtJ8vU9/35vw8zSsGW/8b5WfXrl1YuHAhnn32WQwZMkSvpiARkSUxMUVEViONgDp48CAOHTqEyZMny7eFhYVBpVJh3759OHbsGJ555hn5tl9//RWZmZnYunWrzhddQ1PuXFxc0LNnT6xfvx7z58/Hzz//jDZt2iAwMFDeJyQkBEIIVKlSRR5FYQppKtiVK1d0pkRlZWUhKioKnTt3NvmY5uDs7IxOnTph9+7duHXrlsEpa+vWrUNmZqZOoq5cuXIGR1fkvlr+yy+/QK1WY8eOHVCpVPL25cuXFyre/Kbs1K1bF40aNcLq1atRoUIF3L59G19++aXJ53ByckLfvn2xatUqdO/eXS5WnltISAiAp9NBC/r7FXaqljYfHx+4u7vjwoULBe7r5eWFUaNGYdSoUUhNTUXbtm0xffp0kxNTPj4+cHZ2xpUrV/Ruu3z5MpRKpd7IAlOEhoYiNDQUAQEB6NChA3bt2oUXX3zRqPsqlUp06tQJnTp1wvz58/HRRx/h3Xffxd69e9G5c2d59EnuVS9zv0Yl9+/fR1pams6oqatXrwJAnlPlpPeyg4NDga+BkJCQAv925nidmCIgIADjxo3DuHHjEBMTg8aNG+PDDz+UE1PlypXTe/6Ap8+hodVMc08fFULg+vXr8gIQhoSEhGD37t1o1apVvl/IpffbhQsX8k32mfocSu1YcSfAiqJevXqoV68e3nvvPRw+fBitWrXC0qVLMXv27CJ/NkmMfd60P8s6duyoc9uVK1cMfoZYkqnve3O4du2azkjR69evQ6PRyO2Guf5G1vDbb7/B0dERK1eu1PkMJyKyBk7lIyKradKkCdRqNVavXo179+7pjJhSqVRo3LgxFi1ahLS0NJ1pfNJVSe2rm0lJSXkmRJ599lncv38f3377Lc6ePaszjQ94umqZnZ0dZsyYoXfFVAiBR48e5fs4OnfuDEdHR3zxxRc69//uu++QlJRk0up05vbee+9BCIHIyEi9OitRUVF48803UbFiRTz//PPy9pCQEFy+fBmxsbHytrNnz+qtiiaNXNG+Wn3z5k1s3ry5ULG6uLjkOz3u+eefx86dO7Fw4UJ4e3sXeqWm119/HdOmTcP777+f5z5hYWEICQnBp59+itTUVL3btZ8bKdlh6Eu+sZRKJfr27Ytff/0VJ06c0Ltdel3lfi26urqiWrVqhaoNYmdnh65du2LLli0607Gio6OxZs0atG7dGu7u7iYfNzcpeWzs82NodIs0ak16nFIi48CBA/I+OTk5WLZsmcFjZmdn4+uvv5Z/z8rKwtdffw0fHx+EhYUZvI+vry/at2+Pr7/+Gg8ePNC7Xfs1MGDAAJw9exabNm3S20/625n6Onnw4AEuX76MJ0+eGLW/JCcnR+995Ovri8DAQJ3XSUhICI4ePYqsrCx522+//aY3fVPyww8/6EwL3rBhAx48eJDv+3Dw4MHIycnBrFmz9G7Lzs6Wn4uuXbvCzc0Nc+bM0VshU7tNzauN0P5bSFJSUrBw4UKUL18+z7+xNSUnJyM7O1tnW7169aBUKuW/U1E/myQuLi5Gve6aNGkCX19fLF26VOe1sm3bNvzzzz9W/SwDTH/fm8OiRYt0fpcuiEive3P9jQy5ffs2Ll++XOj7FyQ5ORk+Pj5MShGRTeCIKSKyGkdHRzRt2hR//fUXVCqV3peHli1b4rPPPgOgW1+qa9eucHR0RK9evTBmzBikpqbim2++ga+vr8EvkM888wzc3Nzw+uuvw87ODgMGDNC5PSQkBLNnz8bUqVNx8+ZN9O3bF25uboiKisKmTZswevRovP7663k+Dh8fH0ydOhUzZsxAt27d0Lt3b1y5cgWLFy9G06ZNTSrQbW6tW7fGggULMHnyZNSvXx+RkZEICAjA5cuX8c0330CpVGLz5s06y1m/8MILmD9/PiIiIvDiiy8iJiYGS5cuRZ06dXSKYffo0QPz589Ht27dMGzYMMTExGDRokWoVq1aoeoehYWF4eeff8aUKVPQtGlTuLq6olevXvLtw4YNw5tvvolNmzZh7Nix8jLzpmrQoAEaNGiQ7z5KpRLffvstunfvjjp16mDUqFEICgrCvXv3sHfvXri7u+PXX3+V4waAd999F0OGDIGDgwN69eqlV9OoIB999BF27tyJdu3aYfTo0ahduzYePHiA9evX4+DBg/D09ERoaCjat2+PsLAweHl54cSJE9iwYQMmTJhQqOdi9uzZ2LVrF1q3bo1x48bB3t4eX3/9NTIzMzF37txCHTM3aUEAY4v4zpw5EwcOHECPHj1QuXJlxMTEYPHixahQoYLcDtSpUwfNmzfH1KlTER8fDy8vL/z00096X/QlgYGB+OSTT3Dz5k3UqFEDP//8M86cOYNly5bl+zpatGgRWrdujXr16uHll19G1apVER0djSNHjuDu3bs4e/YsAOCNN97Ahg0bMGjQILzwwgsICwtDfHw8tm7diqVLl6JBgwYICQmBp6cnli5dCjc3N7i4uKBZs2Z51u2aOnUqVq5ciaioKJMKoKekpKBChQoYOHAgGjRoAFdXV+zevRvHjx+X21MAeOmll7BhwwZ069YNgwcPxo0bN7Bq1Sr5y39uXl5eaN26NUaNGoXo6GgsXLgQ1apVw8svv5xnLO3atcOYMWMwZ84cnDlzBl27doWDgwOuXbuG9evX4/PPP8fAgQPh7u6OBQsW4KWXXkLTpk0xbNgwlCtXDmfPnsXjx4+xcuVKAHm3EYsWLZIXD6hUqRIePHiA77//Hrdv38aPP/5YYE2fyMjIQj3XRfHnn39iwoQJGDRoEGrUqIHs7Gz8+OOPOp9RRf1skoSFhWHJkiWYPXs2qlWrBl9fX70RUcDT0YGffPIJRo0ahXbt2mHo0KGIjo7G559/juDgYLz66qtmfx5MYer73hyioqLQu3dvdOvWDUeOHMGqVaswbNgw+TPEXH8jQ0aMGIH9+/cb1Xb++uuvcnv05MkTnDt3DrNnzwbwdAq7oZGNQgidBVuIiKzKAiv/ERHlaerUqQKAaNmypd5tGzduFACEm5ub3hL1W7duFfXr1xdqtVoEBweLTz75RHz//fd5Lq8+fPhwAUB07tw5z1h++eUX0bp1a+Hi4iJcXFxErVq1xPjx48WVK1fkfaQlpA0tZf/VV1+JWrVqCQcHB+Hn5yfGjh0rEhISdPZp166dqFOnjt59paXq582bp7NdWgY795Li0rLZx48fz/PxaPvrr79Enz59RPny5YVCoRAAhK+vr3jw4IHB/VetWiWqVq0qHB0dRcOGDcWOHTv0loIXQojvvvtOVK9eXahUKlGrVi2xfPly+TnSlntpekPLe6empophw4YJT09PAcDgsvDPPPOMACAOHz5s1OMWQggAYvz48fnuk9ff9fTp06J///7C29tbqFQqUblyZTF48GCxZ88enf1mzZolgoKChFKp1HkN5nduAGLatGk6227duiVGjBghfHx8hEqlElWrVhXjx4+Xl52fPXu2CA8PF56ensLJyUnUqlVLfPjhhyIrKyvfx5fX60sIIU6dOiUiIiKEq6urcHZ2Fh06dNB7fk19vWm7ffu2ACBmzZpl1P579uwRffr0EYGBgcLR0VEEBgaKoUOHiqtXr+rsd+PGDdG5c2ehUqmEn5+feOedd8SuXbsMLhtfp04dceLECdGiRQuhVqtF5cqVxVdffaVzPOk50l4yXjrPiBEjhL+/v3BwcBBBQUGiZ8+eYsOGDTr7PXr0SEyYMEEEBQUJR0dHUaFCBTFy5EgRFxcn77NlyxYRGhoq7O3tDZ5L28iRI/Nsz/KTmZkp3njjDdGgQQPh5uYmXFxcRIMGDcTixYv19v3ss89EUFCQUKlUolWrVuLEiROiXbt2ol27dvI+0nt17dq1YurUqcLX11c4OTmJHj16iFu3bunFbOh9u2zZMhEWFiacnJyEm5ubqFevnnjzzTfF/fv3dfbbunWraNmypXBychLu7u4iPDxcrF27Vr49rzZi586dokuXLvLfyNPTU3Tt2lXvfZqXAQMGCCcnJ7322hh5PV+52+zcr69///1XvPDCCyIkJESo1Wrh5eUlOnToIHbv3q13DmM+m/L6bBFCiIcPH4oePXoINzc3AUCO11A7LIQQP//8s2jUqJFQqVTCy8tLDB8+XNy9e1dnn5EjRwoXFxe9cxlq/wuSV+yGXk+mvu9zq1y5sujRo4fe9txttfQ4Ll26JAYOHCjc3NxEuXLlxIQJE0R6erre/Yv6NzKkXbt2Rj+XUnth6Cevdmbw4MEiJCTE6HiIiIqTQohiXIeUiIhs0qxZs/DBBx/g3Xffla+qlgT9+vXD+fPncf36dWuHQkbKzMyEm5sbGjVqhOXLlyMoKMjkovWWcOPGDVSrVg0//vijVUc5lmTPP/88jhw5UuLen35+fvICC0SlXWxsrDy6q1q1ati/f7+1QyIiYo0pIqKy6P3338crr7yCDz/8sFjrc5jTgwcP8Pvvv+vUwyLbp1KpMHnyZPz999+oU6cO+vTpY+2QDJKmAedVEJ8K9uDBgxL3/F28eBHp6el46623rB0KkUX4+voiPDwc8fHxOovOEBFZE0dMERGRTYuKisKhQ4fw7bff4vjx47hx4wb8/f2tHRaZKDo6GtevX4eTkxMaN25s7XB0fP/99/j+++9x+vRp3Lt3T6fmGhXs3Llz2Lx5M2bPno033ngDH374obVDIhsQHx+vU1w/Nzs7O5teMbG02rNnD9zc3BAaGgpXV1drh0NEBIDFz4mIyMbt378fo0aNQqVKlbBy5UompUooPz8/+Pn5WTsMg0aPHo0aNWpg/fr1TEoVwsaNG/Hll19iyJAhmDp1qrXDIRvRv3//fKeJVa5cWWdFULKMTp06WTsEIiI9HDFFRERERERmdfLkSSQkJOR5u5OTE1q1amXBiIiIyFYxMUVERERERERERFbB4udERERERERERGQVTEwREREREREREZFVMDFFRERERERERERWwcQUERERERERERFZBRNTRERERERERERkFUxMERERERERERGRVTAxRUREREREREREVsHEFBERERERERERWQUTU0REREREREREZBVMTBERERERERERkVUwMUVERERERERERFbBxBQREREREREREVkFE1NERERERERERGQVTEwREREREREREZFVMDFFRERERERERERWwcQUERERERERERFZBRNTRERERERERERkFUxMERERERERERGRVTAxRUREREREREREVsHEFBERERERERERWQUTU0REREREREREZBVMTBERERERERERkVUwMUVERERERERERFbBxBQREREREREREVkFE1NERERERERERGQVTEyVYStWrIBCocDNmzcN/l7cpk+fDoVCYfbjzp07F7Vq1YJGozH7sbUtXboUlSpVQmZmpkn3MxSfpZ97UxX2sRKVRsXVdhnrzp07UKvVOHTokEXPO2TIEAwePNii5ySypMjISLi6ulo7jBJP6tOcOHHC2qEYJTIyEsHBwdYOg6jIiuu1rFAoMH36dLMf11bPa4qSEGNJwcSUhS1evBgKhQLNmjWzdihGOXz4MKZPn47ExERrh2KU5ORkfPLJJ3jrrbegVJr28u7duzecnZ2RkpKS5z7Dhw+Ho6MjHj16hMjISGRlZeHrr7+2SHzWVJjHSpQf6YuL9KNWqxEYGIiIiAh88cUX+b4PLeHx48eYPn069u3bZ9U4DJk5cyaaNWuGVq1aWfS8b731Fn755RecPXvWouelssdQ+1CjRg1MmDAB0dHR1g4vTx999BE2b95slmPt27dP5znI76e0kZL/0o+DgwOCg4Pxv//9r9D90fv372P69Ok4c+aMWWOlsiF3m2Rvb4+goCBERkbi3r171g6vRPvjjz9sMrFz8OBBdO/eHUFBQVCr1ahUqRJ69eqFNWvWWDu0Usve2gGUNatXr0ZwcDD+/vtvXL9+HdWqVbN2SLLnn38eQ4YMgUqlkrcdPnwYM2bMQGRkJDw9Pa0XnJG+//57ZGdnY+jQoSbfd/jw4fj111+xadMmjBgxQu/2x48fY8uWLejWrRu8vb0BACNHjsT8+fMxceJEozqHRYnPmtRqtcmPlcgYM2fORJUqVfDkyRM8fPgQ+/btw+TJkzF//nxs3boV9evXt0pcjx8/xowZMwAA7du317ntvffew9tvv22FqIDY2FisXLkSK1eutPi5GzVqhCZNmuCzzz7DDz/8YPHzU9kjtQ8ZGRk4ePAglixZgj/++AMXLlyAs7OztcPT89FHH2HgwIHo27dvkY9Vu3Zt/Pjjjzrbpk6dCldXV7z77rtFPn5JsGTJEri6uiItLQ179uzBl19+iVOnTuHgwYMmH+v+/fuYMWMGgoOD0bBhQ53bvvnmm2IfZU+lg3abdPToUaxYsQIHDx7EhQsXoFarrR1esUlPT4e9ffGkDf744w8sWrTIYHKqOM+bn/Xr1+PZZ59Fw4YNMWnSJJQrVw5RUVE4cOAAvvnmGwwbNsziMZUFTExZUFRUFA4fPoyNGzdizJgxWL16NaZNm2btsGR2dnaws7OzdhhFsnz5cvTu3btQHw69e/eGm5sb1qxZYzAxtWXLFqSlpWH48OHytsGDB2Pu3LnYu3cvOnbsWKzxWZupj5XIGN27d0eTJk3k36dOnYo///wTPXv2RO/evfHPP//AycmpyOfJzs6GRqOBo6NjkY9lb29vlY4SAKxatQr29vbo1auXVc4/ePBgTJs2DYsXL+aUJyp22u3DSy+9BG9vb8yfPx9btmwpcRd4TOXn54fnnntOZ9vHH3+M8uXL623XptFokJWVVSL7GbkNHDgQ5cuXBwCMGTMGQ4YMwc8//4y///4b4eHhZjuPg4OD2Y5FpVvuNql8+fL45JNPsHXr1lI31V27LbFWe2Kt806fPh2hoaE4evSoXr8xJibGKjGVBSVnLlEpsHr1apQrVw49evTAwIEDsXr1ar19pOHLV69exXPPPQcPDw/4+Pjg/fffhxACd+7cQZ8+feDu7g5/f3989tlnBu9/+fJlDB48GO7u7vD29sakSZOQkZGRb3y56xxNnz4db7zxBgCgSpUq8vDVmzdv5jmHOa/aKwcPHkTTpk2hVqsREhKS55Swe/fu4YUXXoCfnx9UKhXq1KmD77//Pt+4JVFRUTh37hw6d+6ss93YWJ2cnNC/f3/s2bPHYKOzZs0auLm5oXfv3vK2sLAweHl5YcuWLYWOLy+nT59G9+7d4e7uDldXV3Tq1AlHjx7V22/fvn1o0qSJznNbHDVwTHmsREXRsWNHvP/++7h16xZWrVolb2/fvr3e6CVA/z1+8+ZNKBQKfPrpp1i4cCFCQkKgUqlw6dIlZGVl4YMPPkBYWBg8PDzg4uKCNm3aYO/evTr39/HxAQDMmDFDbvukq3mG3l/Z2dmYNWuWfK7g4GC88847enXZgoOD0bNnTxw8eBDh4eFQq9WoWrWq0SOQNm/ejGbNmuklhdq3b4+6devi3LlzaNeuHZydnVGtWjVs2LABALB//340a9YMTk5OqFmzJnbv3q1z/5SUFEyePBnBwcFQqVTw9fVFly5dcOrUKZ39unTpgrS0NOzatcuoeInMSbooEhUVJW9btWoVwsLC4OTkBC8vLwwZMgR37tzRud9ff/2FQYMGoVKlSlCpVKhYsSJeffVVpKenF3jOM2fOwMfHB+3bt0dqamqe+ykUCqSlpWHlypVymxEZGSnfbuxnuqkUCgUmTJiA1atXo06dOlCpVNi+fbvR58yrv2Co9qVGo8H06dMRGBgIZ2dndOjQAZcuXUJwcLDOY5VkZmZiypQp8PHxgYuLC/r164fY2NhCP9Y2bdoAAG7cuCFvi4+Px+uvv4569erB1dUV7u7u6N69u86U43379qFp06YAgFGjRsl/nxUrVgAw3E9MS0vDa6+9hooVK0KlUqFmzZr49NNPIYQodPxU+hh6TQLA5cuXMXDgQHh5eUGtVqNJkybYunWrzj7Se+zAgQMYM2YMvL294e7ujhEjRiAhIUHvXIsXL5bf44GBgRg/frxRU1s//fRTtGzZEt7e3nByckJYWJjcN9CWX1ui3QeS+lgFTS02pt2NjIzEokWL5HPkPoah+k3GtGvSc3vo0KFCtUE3btxA06ZNDV7M9PX1LfD+psRo7N9/27ZtaNOmDVxcXODm5oYePXrg4sWLBcZSknDElAWtXr0a/fv3h6OjI4YOHYolS5bg+PHj8oeltmeffRa1a9fGxx9/jN9//x2zZ8+Gl5cXvv76a3Ts2BGffPIJVq9ejddffx1NmzZF27Ztde4/ePBgBAcHY86cOTh69Ci++OILJCQkmDT9on///rh69SrWrl2LBQsWyFetpC9sxjp//jy6du0KHx8fTJ8+HdnZ2Zg2bRr8/Px09ouOjkbz5s3lhtHHxwfbtm3Diy++iOTkZEyePDnf8xw+fBgA0LhxY5Pi0zZ8+HCsXLkS69atw4QJE+Tt8fHx2LFjB4YOHao3eqNx48ZGFSE2Jb6LFy+iTZs2cHd3x5tvvgkHBwd8/fXXaN++vfwFE3ja8HXr1g0BAQGYMWMGcnJyMHPmTJP/RsYy9rESFdXzzz+Pd955Bzt37sTLL79cqGMsX74cGRkZGD16NFQqFby8vJCcnIxvv/0WQ4cOxcsvv4yUlBR89913iIiIwN9//42GDRvCx8cHS5YswdixY9GvXz/0798fAPKdVvjSSy9h5cqVGDhwIF577TUcO3YMc+bMwT///INNmzbp7Hv9+nUMHDgQL774IkaOHInvv/8ekZGRCAsLQ506dfI8x5MnT3D8+HGMHTvW4O0JCQno2bMnhgwZgkGDBmHJkiUYMmQIVq9ejcmTJ+OVV17BsGHDMG/ePAwcOBB37tyBm5sbAOCVV17Bhg0bMGHCBISGhuLRo0c4ePAg/vnnH502KzQ0FE5OTjh06BD69etn9N+CyBykL3/SdPoPP/wQ77//PgYPHoyXXnoJsbGx+PLLL9G2bVucPn1aLkGwfv16PH78GGPHjoW3tzf+/vtvfPnll7h79y7Wr1+f5/mOHz+OiIgINGnSBFu2bMl39OaPP/6Il156CeHh4Rg9ejQAICQkBIDxn+mF9eeff8r9lvLlyyM4OLhYzjl16lTMnTsXvXr1QkREBM6ePYuIiIg8L3xOnDgR5cqVw7Rp03Dz5k0sXLgQEyZMwM8//1yoxyklycqVKydv+/fff7F582YMGjQIVapUQXR0NL7++mu0a9cOly5dQmBgIGrXro2ZM2figw8+wOjRo+VkQsuWLQ2eRwiB3r17Y+/evXjxxRfRsGFD7NixA2+88Qbu3buHBQsWFCp+Kn0MvSYvXryIVq1aISgoCG+//TZcXFywbt069O3bF7/88oveZ+eECRPg6emJ6dOn48qVK1iyZAlu3bol15kDniaQZ8yYgc6dO2Ps2LHyfsePH8ehQ4fyHfX3+eefo3fv3hg+fDiysrLw008/YdCgQfjtt9/Qo0cPnX0NtSW5+fj46E0zfvLkCV599VWdRI4x7e6YMWNw//597Nq1S++YhpjarhW2DapcuTL27NmDu3fvokKFCgXGVZQYjfn7//jjjxg5ciQiIiLwySef4PHjx1iyZAlat26N06dPl57FGwRZxIkTJwQAsWvXLiGEEBqNRlSoUEFMmjRJZ79p06YJAGL06NHytuzsbFGhQgWhUCjExx9/LG9PSEgQTk5OYuTIkXr37927t85xx40bJwCIs2fPytuWL18uAIioqCiDvwshxLx58/S2CSHEyJEjReXKlfUep3R+bX379hVqtVrcunVL3nbp0iVhZ2ens++LL74oAgICRFxcnM79hwwZIjw8PMTjx4/1zqftvffeEwBESkpKoWPNzs4WAQEBokWLFjrbly5dKgCIHTt26B1n9OjRwsnJKd/Y8otPCP3nvm/fvsLR0VHcuHFD3uf+/fvCzc1NtG3bVt7Wq1cv4ezsLO7duydvu3btmrC3t9d7bOZg7GMlKoj0mj9+/Hie+3h4eIhGjRrJv7dr1060a9dOb7/c7/GoqCgBQLi7u4uYmBidfbOzs0VmZqbOtoSEBOHn5ydeeOEFeVtsbKwAIKZNm6Z3vtxtx5kzZwQA8dJLL+ns9/rrrwsA4s8//5S3Va5cWQAQBw4ckLfFxMQIlUolXnvtNcNPxP+7fv26ACC+/PJLvdvatWsnAIg1a9bI2y5fviwACKVSKY4ePSpv37FjhwAgli9fLm/z8PAQ48ePz/f8kho1aoju3bsbtS9RYUjtw+7du0VsbKy4c+eO+Omnn4S3t7dwcnISd+/eFTdv3hR2dnbiww8/1Lnv+fPnhb29vc52Q/2HOXPmCIVCodM3GTlypHBxcRFCCHHw4EHh7u4uevToITIyMoyK28XFRadPJjH2M70gderU0WsDpff4xYsXC3VOQ30hIfT7JQ8fPhT29vaib9++OvtNnz5dANB53NJ9O3fuLDQajbz91VdfFXZ2diIxMTHfxynFdOXKFREbGytu3rwpvv/+e+Hk5CR8fHxEWlqavG9GRobIycnRuX9UVJRQqVRi5syZ8rbjx4/rtXuS3J8hmzdvFgDE7NmzdfYbOHCgUCgU4vr16/nGT6WPoTZpw4YNwsfHR6hUKnHnzh15306dOol69erptBsajUa0bNlSVK9eXe+YYWFhIisrS94+d+5cAUBs2bJFCPG0j+Do6Ci6du2q81r/6quvBADx/fffy9sMfefJ3f5lZWWJunXrio4dO+psz6stkW4z1B+SjBs3TtjZ2en0d4xtd8ePH5/nd5bc5zW2XStqG/Tdd98JAMLR0VF06NBBvP/+++Kvv/7Sa2vMEWNBf/+UlBTh6ekpXn75ZZ3zPnz4UHh4eOhtL8k4lc9CVq9eDT8/P3To0AHA06GJzz77LH766Sfk5OTo7f/SSy/J/7ezs0OTJk0ghMCLL74ob/f09ETNmjXx77//6t1//PjxOr9PnDgRwNMCc5aUk5ODHTt2oG/fvqhUqZK8vXbt2oiIiJB/F0Lgl19+Qa9evSCEQFxcnPwTERGBpKQkvSkluT169Aj29vZFqntiZ2eHIUOG4MiRIzrD19esWQM/Pz906tRJ7z7lypVDeno6Hj9+bJb4cnJysHPnTvTt2xdVq1aVtwcEBGDYsGE4ePAgkpOTkZOTg927d6Nv374IDAyU96tWrRq6d+9u5CM2jbGPlcgcXF1di7Q634ABA/RGD9rZ2clX9DQaDeLj45GdnY0mTZoU2MbkRWpXp0yZorP9tddeAwD8/vvvOttDQ0PlK/bA06uPebXl2h49egRA98qsNldXVwwZMkT+vWbNmvD09ETt2rV1rtBJ/9c+n6enJ44dO4b79+/nG4N0/ri4uAL3Iyqqzp07w8fHBxUrVsSQIUPg6uqKTZs2ISgoCBs3boRGo8HgwYN1+gz+/v6oXr26zvRc7ZFOaWlpiIuLQ8uWLSGEwOnTp/XOu3fvXkRERKBTp07YuHGjzqIwpjL2M70o2rVrh9DQ0GI95549e5CdnY1x48bpbJf6l4aMHj1aZ1pOmzZtkJOTg1u3bhl1zpo1a8LHxwfBwcF44YUXUK1aNWzbtk2n8L1KpZJXOc7JycGjR4/g6uqKmjVrFqlNt7Ozw//+9z+d7a+99hqEENi2bVuhjksln3abNHDgQLi4uGDr1q3yqJr4+Hj8+eefGDx4MFJSUuR26dGjR4iIiMC1a9f0VvEbPXq0zoinsWPHwt7eXu5b7N69G1lZWZg8ebLOit4vv/wy3N3d9foYuWm3fwkJCUhKSkKbNm0Mvj9ytyXG+OGHH7B48WLMnTtX/p6b+7zGtLsFKUy7Vtg26IUXXsD27dvRvn17HDx4ELNmzUKbNm1QvXp1eQaMOWPM7++/a9cuJCYmYujQoTqfdXZ2dmjWrJnOZ11Jx8SUBeTk5OCnn35Chw4dEBUVhevXr+P69eto1qwZoqOjsWfPHr37aCdxAMDDwwNqtVqeTqe93dA81OrVq+v8HhISAqVSqZNssYTY2Fikp6frxQM87XBo75eYmIhly5bBx8dH52fUqFEALFdsTipuLi0HevfuXfz1118YMmSIweLw4v/rDZirplNsbCweP36s8/xIateuDY1Ggzt37iAmJgbp6ekGV3Y0tG3JkiVo3LgxHBwcDK58ERsbix49esDFxQU1a9Y0+Lo092Mlyk9qaqo81awwqlSpYnD7ypUrUb9+fajVanh7e8PHxwe///47kpKSCnWeW7duQalU6r3v/P394enpqdcByt2+A0+TPYbackOk92FuFSpU0Htvenh4oGLFinrbAOicb+7cubhw4QIqVqyI8PBwTJ8+Pc9EmRCCbQBZxKJFi7Br1y7s3bsXly5dwr///itf1Lp27RqEEKhevbpev+Gff/7R6TPcvn0bkZGR8PLygqurK3x8fNCuXTsA0HvfZ2RkoEePHmjUqBHWrVunV2MkKSkJDx8+lH/i4+PzfQzGfqZL+2ofO7+aVtpyt3WmnNNYUjuWu53z8vLKM1meu62T9jO2rfvll1+wa9curFmzBs2bN0dMTIzedEqNRoMFCxagevXqUKlUKF++PHx8fHDu3LkitemBgYF6nz+1a9eWb6eySWqTNmzYgGeeeQZxcXE6ievr169DCIH3339fr12SFrzK/X0m93ckV1dXBAQEyN/ZpNdb7vezo6MjqlatWuDr8bfffkPz5s2hVqvh5eUllysw9P7Iq9+UlzNnzuCVV17B0KFD9S7OmdLuGqMw7VpR2qCIiAjs2LEDiYmJOHDgAMaPH49bt26hZ8+eeX4nLUyMBf39r127BuBpjcXcr6mdO3eWqmLsrDFlAX/++ScePHiAn376CT/99JPe7atXr0bXrl11thlKgOS1Yl5eX1K0mftLRF7HMzT6yxjSMr3PPfccRo4caXCfgpaN9/b2RnZ2NlJSUoz6MpvX8xYWFoZatWph7dq1eOedd7B27VoIIXRW49OWkJAAZ2fnAlcOMzU+cwsICMD06dPlhFtu48ePh7+/P2JjY7F7924MHjwY165dg5eXl7yPsY+VqKju3r2LpKQknS9BCoXC4Ps2r3bH0Ot01apViIyMRN++ffHGG2/A19cXdnZ2mDNnjl7xUlMZ284Wti2X6urk1aHK67jGnG/w4MFo06YNNm3ahJ07d2LevHn45JNPsHHjRr0RmAkJCQYvNhCZW3h4uM6qndo0Gg0UCgW2bdtm8DUujU7OyclBly5dEB8fj7feegu1atWCi4sL7t27h8jISLn/IVGpVHjmmWewZcsWbN++HT179tS5fdKkSVi5cqX8e7t27bBv374iPtKnmjZtqvMlc9q0aQYvJOVWlM9kc/fntBWl3woAbdu2lS/I9urVC/Xq1cPw4cNx8uRJeeTIRx99hPfffx8vvPACZs2aBS8vLyiVSkyePFnvb0tUVNptUt++fdG6dWsMGzYMV65cgaurq/yae/3113VmhmgzdPG4uPz111/o3bs32rZti8WLFyMgIAAODg5Yvny5we8DprQlCQkJGDBgAGrUqIFvv/1W5zZT293iUtQ2CACcnZ3Rpk0btGnTBuXLl8eMGTOwbdu2PL+vmpv0XP3444/w9/fXu91aq0QXh9LzSGzY6tWr4evrK686oG3jxo3YtGkTli5datYv+9euXdPJel+/fh0ajcbk4mh5dVjKlStncCWI3Fl7Hx8fODk5ydlebVeuXNHZz83NDTk5OUavWpdbrVq1ADxdrSd3EsvQdKDo6Og8jzV8+HC8//77OHfuHNasWYPq1asbLFIvnU+6ilbY+LT5+PjA2dlZ5/mRXL58GUqlEhUrVoSLiwvUajWuX7+ut5+hbX379gVgeDpnamoqNm/ejH///RfOzs7o3bs36tWrhy1btsgj1kx5rERFJRXB1O7YlStXzuAoHlOuXm/YsAFVq1bFxo0bddo36UqmxJRkfuXKlaHRaHDt2jWd90d0dDQSExNRuXJlo4+Vn0qVKsHJyUlnRTJzCggIwLhx4zBu3DjExMSgcePG+PDDD3USU9nZ2bhz547O6qRE1hASEgIhBKpUqYIaNWrkud/58+dx9epVrFy5EiNGjJC357WypEKhwOrVq9GnTx8MGjQI27Zt01kN9M0338Rzzz0n/649WshQu2HsZzrwtL+ovWKV9lQQU5hyTin+xMREuVg8oN+uSu3Y9evXdfqXjx49MnoEVFG4urpi2rRpGDVqFNatWydPW96wYQM6dOiA7777Tmf/xMREnVkGprbpu3fv1ruQePnyZfl2IumiVocOHfDVV1/h7bfflt+zDg4ORn+fuXbtms4UuNTUVDx48ADPPPMMgP9eb1euXNFpE7KyshAVFZXveX755Reo1Wrs2LFDZ2TX8uXLjX+gBmg0GgwfPhyJiYnYvXu3zvRawLR219j3pintWnGRkpIPHjwwW4wF/f2lRTR8fX0L/R25pOBUvmKWnp6OjRs3omfPnhg4cKDez4QJE5CSkqK3hGhR5U6CffnllwBgcu0hFxcXANBLQoWEhCApKQnnzp2Ttz148EBv9Sk7OztERERg8+bNuH37trz9n3/+wY4dO3T2GzBgAH755RdcuHBBLw5jlvZs0aIFAODEiRN6t8XHx+ssHZyZmSknaAxlzaXRUR988AHOnDmT52gpADh16lSeK7sYG582Ozs7dO3aFVu2bNGZehkdHY01a9agdevWcHd3h52dHTp37ozNmzfr1IW5fv26yfUPrl27BldXV52VJ+rVq6e3DKmxj5WoKP7880/MmjULVapU0XnvhYSE4PLlyzrtwdmzZ01aKVK6eqb9vj927BiOHDmis5/UyTJmKWap87Bw4UKd7fPnzwcAvVVvCsvBwQFNmjQpsA0xVU5Ojt6wel9fXwQGBiIzM1Nn+6VLl5CRkcF2gKyuf//+sLOzw4wZM/Q+x4UQck02Q+95IQQ+//zzPI/t6OiIjRs3omnTpujVqxf+/vtv+bbQ0FB07txZ/gkLC5Nvc3Fx0WszjP1MB4BWrVrpHLuwiSlTzil96Tlw4IC8X1pams6oMADo1KkT7O3tsWTJEp3tX331VaFiLIzhw4ejQoUK+OSTT+RtdnZ2en//9evX69Xxyas/a8gzzzyDnJwcvce2YMECKBSKYqvjSSVP+/btER4ejoULFyIjIwO+vr5o3749vv76a4PJC0PfZ5YtW4YnT57Ivy9ZsgTZ2dny66xz585wdHTEF198ofNa/+6775CUlJRvH8POzg4KhUJnBOTNmzexefPmwjxc2YwZM7Bjxw6sXbvW4PQ/U9pdY9+bprRrRWWonAnw38V9Q1P1ChtjQX//iIgIuLu746OPPtLZT2LMd+SSgiOmitnWrVuRkpKS59Xl5s2bw8fHB6tXr8azzz5rtvNGRUWhd+/e6NatG44cOYJVq1Zh2LBhaNCggUnHkTpc7777LoYMGQIHBwf06tULQ4YMwVtvvYV+/frhf//7n7xsZY0aNfSK6c2YMQPbt29HmzZtMG7cOGRnZ+PLL79EnTp1dBJbH3/8Mfbu3YtmzZrh5ZdfRmhoKOLj43Hq1Cns3r27wDoOVatWRd26dbF792688MILOrepVCr06tULEyZMgFqtxqpVq+Tic7NmzcLYsWN1iiRXqVIFLVu2xJYtWwAgz8TUyZMnER8fjz59+hT4XOYXX26zZ8/Grl270Lp1a4wbNw729vb4+uuvkZmZiblz58r7TZ8+HTt37kSrVq0wduxYuSNVt25dnDlzpsCYJKmpqXoNpbu7u9yxN/WxEhlr27ZtuHz5MrKzsxEdHY0///wTu3btQuXKlbF161ao1Wp53xdeeAHz589HREQEXnzxRcTExGDp0qWoU6eO0YV8e/bsiY0bN6Jfv37o0aMHoqKisHTpUoSGhurUc3FyckJoaCh+/vln1KhRA15eXqhbty7q1q2rd8wGDRpg5MiRWLZsGRITE9GuXTv8/fffWLlyJfr27atzJayo+vTpg3fffRfJyclm64ClpKSgQoUKGDhwIBo0aABXV1fs3r0bx48fx2effaaz765du+Ds7IwuXbqY5dxEhRUSEoLZs2dj6tSpuHnzJvr27Qs3NzdERUVh06ZNGD16NF5//XXUqlULISEheP3113Hv3j24u7vjl19+KXCUj5OTE3777Td07NgR3bt3x/79+w2+/7WFhYVh9+7dmD9/PgIDA1GlShU0a9bM6M90czL2nF27dkWlSpXw4osv4o033oCdnR2+//57+Pj46FxQ9PPzw6RJk/DZZ5/J/cuzZ89i27ZtKF++vEXqzjk4OGDSpEl44403sH37dnTr1g09e/bEzJkzMWrUKLRs2RLnz5/H6tWr9ZJ6ISEh8PT0xNKlS+Hm5gYXFxc0a9bM4JfqXr16oUOHDnj33Xdx8+ZNNGjQADt37sSWLVswefJkOZlHBABvvPEGBg0ahBUrVuCVV17BokWL0Lp1a9SrVw8vv/wyqlatiujoaBw5cgR3797VuVAOPB351KlTJwwePBhXrlzB4sWL0bp1a/m7o4+PD6ZOnYoZM2agW7du6N27t7xf06ZNdUZw5tajRw/Mnz8f3bp1w7BhwxATE4NFixahWrVqOt/BTHH+/HnMmjULbdu2RUxMDFatWqVz+3PPPWdSuyt91/zf//6HiIgIeSEqQyzVlvbp0wdVqlRBr169EBISgrS0NOzevRu//vqrfMEiL6bGWNDf393dHUuWLMHzzz+Pxo0bY8iQIXL7/Pvvv6NVq1YWvUBQrCyw8l+Z1qtXL6FWq3WWts0tMjJSODg4iLi4OHmJ3NjYWJ19tJcw1tauXTtRp04d+Xfp/pcuXRIDBw4Ubm5uoly5cmLChAkiPT1d5765lwLO/btk1qxZIigoSCiVSp3bd+7cKerWrSscHR1FzZo1xapVq/Jcdnj//v0iLCxMODo6iqpVq4qlS5ca3Dc6OlqMHz9eVKxYUTg4OAh/f3/RqVMnsWzZsjyfP23z588Xrq6uOkuUSkunLlmyRAQEBAgnJycxcOBAce7cOVGxYkVRuXJl8fDhQ71jLVq0SAAQ4eHheZ7vrbfeEpUqVdJZitTU+IQw/NyfOnVKRERECFdXV+Hs7Cw6dOggDh8+rHfMPXv2iEaNGglHR0cREhIivv32W/Haa68JtVptMIYxY8boLfl66tQpUa5cOZ1tEyZM0Fm+3tTHSpQf6TUv/Tg6Ogp/f3/RpUsX8fnnn4vk5GSD91u1apWoWrWqcHR0FA0bNhQ7duzQWx45KipKABDz5s3Tu79GoxEfffSRqFy5slCpVKJRo0bit99+M7jE8uHDh+V2C1rLARtqu548eSJmzJghqlSpIhwcHETFihXF1KlT9ZaZr1y5sujRo4deXO3atdNbBt6Q6OhoYW9vL3788Ue9+2t/FhR0PgBi/PjxQgghMjMzxRtvvCEaNGgg3NzchIuLi2jQoIFYvHix3v2aNWsmnnvuuQLjJCoKqX04fvx4gfv+8ssvonXr1sLFxUW4uLiIWrVqifHjx4srV67I+1y6dEl07txZuLq6ivLly4uXX35ZnD17VgAQy5cvl/cz1NeKi4sToaGhwt/fX1y7di3fWC5fvizatm0rnJycBAAxcuRI+TZjP9PzU6dOHb12Qvu9nJux5zx58qRo1qyZcHR0FJUqVRLz58832C/Jzs4W77//vvD39xdOTk6iY8eO4p9//hHe3t7ilVdekffL6++3d+9eAUDs3bs338eZV19YCCGSkpKEh4eH/DxkZGSI1157Te7ftWrVShw5csRgm7plyxYRGhoq7O3tdf72htr/lJQU8eqrr4rAwEDh4OAgqlevLubNm8c+UBmVX5uUk5MjQkJCREhIiMjOzhZCCHHjxg0xYsQI4e/vLxwcHERQUJDo2bOn2LBhg94x9+/fL0aPHi3KlSsnXF1dxfDhw8WjR4/0zvPVV1+JWrVqCQcHB+Hn5yfGjh0rEhISdPYx9Fr+7rvvRPXq1YVKpRK1atUSy5cvN9iPya8t0e4DSe/jvH4kxra72dnZYuLEicLHx0coFAqdY2ifV2JMu1bUNmjt2rViyJAhIiQkRDg5OQm1Wi1CQ0PFu+++q9c/LWqMxv799+7dKyIiIoSHh4dQq9UiJCREREZGihMnTuT7WEoShRAmVP8imzd9+nTMmDEDsbGxeiv4lQVJSUmoWrUq5s6dixdffBEAEBkZiX379pl9RcLMzEwEBwfj7bffxqRJkwodX3Ho27cvLl68aLC21yuvvAJ/f3+dgqqpqanw8vJCVFQUgoKCAAAdOnTAiBEjMGrUqEI9ViIqHi+++CKuXr2Kv/76y6LnPXPmDBo3boxTp06hYcOGFj03EdmmxMRElCtXDrNnz8a7775r7XCISowVK1Zg1KhROH78eJ6LPFDpxb+/PtaYolLFw8MDb775JubNm1fsKz4sX74cDg4OeOWVV4y+T3HEp10oFXhaL+qPP/7QKdYKPC1anJGRgZycHJ3/A0+Livbp0wfTpk1Deno6fvvtN5w7d06etleYx0pExWPatGk4fvy4SbW1zOHjjz/GwIEDmZQiKqNy9zeA/2rr5e5zEBERmYIjpkqZsj5iypDiGjFlKwICAhAZGYmqVavi1q1bWLJkCTIzM3H69GmdJd2l14a25cuXIzIyEsDT4nkjR47Evn37UKFCBSxevLjUr/5ARERExlmxYgVWrFiBZ555Bq6urjh48CDWrl2Lrl276ixoQ0QF44iZso1/f30sfk5UwnXr1g1r167Fw4cPoVKp0KJFC3z00Uc6SSngaWJKe/pebj4+PvJqE0RERETa6tevD3t7e8ydOxfJyclyQfTZs2dbOzQiIirhOGKKiIiIiIiIiIisgjWmiIiIiIiIiIjIKpiYIiIiIiIiIiIiq2BiioiIiIiIiIiIrKLUJ6aEEEhOTgZLaRGRtbE9IiJbwfaIiGwF2yMiKvWJqZSUFHh4eCAlJcXaoRBRGcf2iIhsBdsjIrIVbI+IqNQnpoiIiIiIiIiIyDYxMUVERERERERERFZh1cTUgQMH0KtXLwQGBkKhUGDz5s06t0dGRkKhUOj8dOvWzTrBElGpxvaIiGwF2yMiIiIqS6yamEpLS0ODBg2waNGiPPfp1q0bHjx4IP+sXbvWghESUVnB9oiIbAXbIyIiIipL7K158u7du6N79+757qNSqeDv72+hiIiorGJ7RES2gu0RERERlSU2X2Nq37598PX1Rc2aNTF27Fg8evQo3/0zMzORnJys80NkazZu3Ii+ffuiT58+eP7553H79m1rh0RGYHuka+nSpejTpw/69OmD0aNHl7rHR2TL2B4RlUxffvml/Nk5ZswYpKWlWTukUu/atWsYM2YMoqKirB0KEeXBqiOmCtKtWzf0798fVapUwY0bN/DOO++ge/fuOHLkCOzs7AzeZ86cOZgxY4aFIyUyzauvvqqTjAoODsasWbOsGBEVhO2RrszMTEyYMAE5OTnytrZt2+K5556zYlREZQPbI6KSKTk5GZMmTYIQQt7Wvn17DB061IpRlX6LFy/GsmXL4OnpiU8++cTa4RCRATadmBoyZIj8/3r16qF+/foICQnBvn370KlTJ4P3mTp1KqZMmSL/npycjIoVKxZ7rETGys7Oxt27dwE8na6xbds2jpgqAdge6bp37x5ycnKgVqtRr149HD9+HPHx8dYOi6hMYHtEVDLdvXsXQgi4urqiQYMGOHToEPuAFvDw4UMAkPvfRGR7bH4qn7aqVauifPnyuH79ep77qFQquLu76/wQ2ZKHDx9Co9HA3t5evkJ2584dK0dFpirr7ZH0mq1YsSIaNGgAAJwaRGQlZb09IioppMRIlSpV0K5dOwDsA1pCbGwsAODBgwdWjoSI8lKiElN3797Fo0ePEBAQYO1QiApN6oAEBQWhUqVKAHgFpyQq6+2R9JqtUKGC/AWXiSki6yjr7RFRSSH1AStUqIAKFSoAYB/QEpiYIrJ9Vp3Kl5qaqnN1LyoqCmfOnIGXlxe8vLwwY8YMDBgwAP7+/rhx4wbefPNNVKtWDREREVaMmqhotL/Qa3dKhBBQKBTWDK1MY3tkGiamiIoP2yOi0imvPiAVr7i4OABMTBHZMquOmDpx4gQaNWqERo0aAQCmTJmCRo0a4YMPPoCdnR3OnTuH3r17o0aNGnjxxRcRFhaGv/76CyqVypphExWJdqckKCgIAJCeno6EhARrhlXmsT0yDRNTRMWH7RFR6cTElOUJIeQRU0lJSUhPT7dyRERkiFVHTLVv315nVYrcduzYYcFoiCxD6oBUrFgRarUaPj4+iI2Nxd27d+Hl5WXl6Moutkem0a4xJX0ZZmKKyDzYHhGVTtp9QGnxgejoaGRmZjKxXEySk5Px5MkT+feHDx+iSpUqVoyIiAwpUTWmiEoD7foC2v+y+CWVJBwxRUREZBrtPqC3t7ecjLp//741wyrVpNFSEk7nI7JNTEwRWZj2F3rtfzmUm0oSQ4mppKQka4ZERERk07Q/OxUKBfuAFiDVl5IwMUVkm5iYIrIwJqaopMvMzER0dDQAjpgiIiIyRkpKinwBR+r7SdP52AcsPhwxRVQyMDFFZEE5OTnycG2pM8JOCZU00mtYpVKhfPnyTEwREREV4N69ewAAd3d3uLm5AbD9cg5LlixB/fr14e7uDnd3d7Ro0QLbtm2Tb8/IyMD48ePh7e0NV1dXDBgwQL5wZSuYmCIqGZiYIrKghw8fIicnB3Z2dvDz8wNg+50SotxyT0XQTkzlV7CZiIiorNIufC6x9VHzFSpUwMcff4yTJ0/ixIkT6NixI/r06YOLFy8CAF599VX8+uuvWL9+Pfbv34/79++jf//+Vo5aF6fyEZUMVl2Vj6iskToegYGBsLOzA2D7nRKi3HJPR5USU9nZ2cjIyICTk5PVYiMiIrJFuRe/0f6/rfYBe/XqpfP7hx9+iCVLluDo0aOoUKECvvvuO6xZswYdO3YEACxfvhy1a9fG0aNH0bx5c2uErEcaMVWuXDkkJCQwMUVkozhiisiCcn+h1/7/3bt3OdqESoTcnWtXV1f5Nk7nIyIi0meoDyiNnioJo+ZzcnLw008/IS0tDS1atMDJkyfx5MkTdO7cWd6nVq1aqFSpEo4cOZLvsTIzM5GcnKzzU1ykxFT9+vUBcMQUka1iYorIgvIbxp2WlsZVzahEyP06ViqVcr0MJqaIiIj0FXRx0ladP38erq6uUKlUeOWVV7Bp0yaEhobi4cOHcHR0hKenp87+fn5+ePjwYb7HnDNnDjw8POQf7X6xuUlT+erVqwcABcZGRNbBxBSRBRnqlDg5OcHb2xtAybhiRmTodezh4QGAiSkiIiJD8rs4GR0djaysLKvEVZCaNWvizJkzOHbsGMaOHYuRI0fi0qVLRTrm1KlTkZSUJP8UZ/9XGjElJaZiYmKQnZ1dbOcjosJhYorIggzVF9D+3ZavmBFJDCWmpDpTHPVHRESkz1Af0MfHB46OjhBC2OwUM0dHR1SrVg1hYWGYM2cOGjRogM8//xz+/v7IyspCYmKizv7R0dHw9/fP95gqlUpe6U/6KS5SYio0NBRKpRJCCMTExBTb+YiocJiYIrIgQ1/otX9nYopKAkOda+2V+YiIiEiXoT6gQqEocaszazQaZGZmIiwsDA4ODtizZ49825UrV3D79m20aNHCihHqkqby+fn5ySti22oSkKgs46p8RBZkaBi39u9MTJGty8rKQnR0NADd1zETU0RERIalpaUhISEBgOGLk//++69N9gGnTp2K7t27o1KlSkhJScGaNWuwb98+7NixAx4eHnjxxRcxZcoUeHl5wd3dHRMnTkSLFi1sZkW+zMxMpKSkAHg6Oi0gIAAPHjxgYorIBjExRVQMpLnrSqUSSuXTgYkajQb37t0DkPeIqZJytYzKrgcPHkAIAUdHR5QvX17ezsQUERGRYVL/z83NTa7JKLHli5MxMTEYMWIEHjx4AA8PD9SvXx87duxAly5dAAALFiyAUqnEgAEDkJmZiYiICCxevNjKUf9HmsZnb28PDw8PBAQEAOCIKSJbxMQUkRkJIdC9e3fs2LEDAODp6YkDBw6gXr16iI6ORnZ2NpRKpd7ceyamqKSQXqNBQUFy0hVgYoqIiCgveZVy0N5mi33A7777Lt/b1Wo1Fi1ahEWLFlkoItNIiany5ctDoVAwMUVkw1hjisiMbt++LSelACAxMREbNmwAAJw7dw4AULVqVdjb6+aEpatl0hU1IlslvY6rV6+us52JKSIiIsMePnwIAAaLgkvbpGnyZD5SfSkfHx8AYGKKyIYxMUVkRkeOHAEANGrUCJ999pnONulfQ/PuWfycSgrpdZy7sCkTU0RERIbFx8cDALy9vfVuk7ZJ+5D5SCOmciempEQhEdkOJqaIzOjo0aMAgFatWqFDhw4AgGPHjkGj0ci3GUpMBQUFAQBSUlKQlJRkoWiJTJfX61iqmcHEFBERka5Hjx4ByD8xJe1D5qM9lQ/4b3QaR0wR2R4mpojMSHs0Sb169eDs7Izk5GRcunRJ/kJvaAldFxcXlCtXDgBHTZHtio2NxfXr1wEAzZo107lNGjHFxCoREZEuJqasI/dUPum5llZIJCLbwcQUkZlkZGTg9OnTAJ6OJrG3t0fTpk0BACtWrEBSUhKcnJxQr149g/fndD6ydceOHQMA1KpVS06kSjiVj4iIyLD8ElNeXl46+5D55J7Kx74Kke1iYorITE6dOoUnT57A19cXVapUAfDf6KhvvvkGANC0aVM4ODgYvL8tLxdMBORfJ42dPSIiIsOkpJOUhNImJatSU1ORlZVl0bhKu9xT+aS+SkpKitViIiLDmJgiMhPt2jsKhUL+P/Dfl3VDX+glHDFFti6/6ahMTBERERmW34gpT09PKJVKnf3IPHJP5ZP6KmlpacjJybFaXESkj4kpIjMxtFpZ7kSUoS/0EikxdefOnWKIjqhocnJy8PfffwPgiCkiIiJT5Lcqn1KplKfHc2U+85ISfdKIKTc3N/k2jpoisi1MTBGZiaHVyvz8/ORpfblvy40jpsiWXbx4EampqXB1dUWdOnX0bmdiioiIyLD8Rkxpb+eIKfNKS0sDALi6ugIAVCoVHB0dAbC/QmRrmJgiMoO7d+/i7t27UCqVcsFziTRKKjg4WF6m1hDWmCJbJo0IDA8Ph52dnd7tUmIqKysLmZmZFo2NiIjIVmVnZ8sr1jIxZVmPHz8GADg5OcnbeCGNyDYxMUVkBtJoqfr168PFxUXnts6dO+v8mxeOmCJbZmhEoDbt4fHs7BERET2lPT0v94q2Eq7MVzykxJSzs7O8jQXQiWyTvbUDICoNDNWXkkRGRsLf3x8tW7bM9xhBQUEAgKSkJKSkpOh80SeytoISU3Z2dnB1dUVqaiqSkpLkQqNERERlmZRs8vT0NDjiGOCIqeIghEB6ejoAjpgiKgk4YorIDPL70q5QKNC9e3d4eHjkeww3Nzd5H46aIlsSHx+Py5cvA8i/Tho7e0RERLoKqi+lfRuLn5vPkydP5JX3DI2YYl+FyLYwMUVURFlZWTh58iSA/FfdMwan85Etklbjq1atWr4jodjZIyIi0pXfinwSjpgyP2m0FKCbmJJmJLCvQmRbmJgiKqIzZ84gMzMT3t7eqFatWpGOxQLoZIukqar5jZYCmJgiIiLKzZQRU0xMmY9UX0qpVMLBwUHezr4KkW1iYoqoiLS/tCsUiiIdSxoxdefOnSLHRWQu0lTVgkYEsrNHRESky5jEFIufm580YsrZ2Vmnf87i50S2iYkpoiIqqCi0KTiVj2yNRqPBsWPHAHDEFBERkak4Yso6pBFT2oXPAfZViGwVE1NERZTfinymYmKKbM3ly5eRlJQEJycn1K9fP9992dkjIiLSJSWbpFFRhjAxZX7aI6a0sa9CZJuYmCIqggcPHuDWrVtQKBRo2rRpkY/HGlNka6QRgU2bNoW9vX2++7KzR0REpMvUVfmEEBaJq7TjiCmikoWJKaIikL60161bV/6gKwqOmCJbY8qIQA8PDwBAUlJSscZERERUUpiyKt+TJ0+QmppqkbhKOykxlXvEFFflI7JNTEwRFcHx48cBAM2aNTPL8aTEVEJCAtLS0sxyTKKiMOU1LiVnmZgiIiJ6ypgRU05OTlCpVDr7U9FIU/nyGjHF4udEtoWJKaIiuHXrFgCgVq1aZjmem5sbHB0dAQBxcXFmOSZRUdy8eROAca/xcuXKAXiaWCUiIiLjElMKhYJ1pswsrxFTnMpHZJuYmCIqgjt37gD4b6RTUbFjQrYkJSVFHv1kzGucr10iIqL/CCGMSkxp387PUPMoaMQUE1NEtoWJKaIikGpBSUXLzUG7ACaRNUmvbw8PD7kmQ37YqSYiIvrP48ePkZmZCSD/VfkA9v/MjSOmiEoWJqaICkmj0eDevXsAzDdiCuCXe7IdUmLK2Ne31Onma5eIiOi/z0MHBwe4urrmuy/7f+YljZjKr/g5V0Aksh1MTBEVUmxsLLKysqBQKBAQEGC247JjQrbC1MSU9NpNTExETk5OscVFRERUEmivyKdQKPLdl/0/85JGTOU1lS87O1sezUZE1sfEFFEhSV/a/f394eDgYLbjsmNCtsLUGmrSiCkhBBITE4srLCIiohLB2PpSAEcdm1teI6a0R65xOh+R7bBqYurAgQPo1asXAgMDoVAosHnzZp3bhRD44IMPEBAQACcnJ3Tu3BnXrl2zTrBEuRRHfSmAHRNrYXukz9TXuKOjozxEnq9fosJje0RUOpiSmOKFSfPKa8SUUqnUmc5HRLbBqomptLQ0NGjQAIsWLTJ4+9y5c/HFF19g6dKlOHbsGFxcXBAREYGMjAwLR0qkz9RpTsZix8Q62B7pK8xrnK9foqJje0RUOjAxZT15FT8HWACdyBbZW/Pk3bt3R/fu3Q3eJoTAwoUL8d5776FPnz4AgB9++AF+fn7YvHkzhgwZYslQifSYOs3JWOyYWAfbI32FeY17e3vj5s2bfP0SFQHbIyLbpl00O7/aUdJnYUEr8gFclc/cpKl8uUdMAeCIKSIbZLM1pqKiovDw4UN07txZ3ubh4YFmzZrhyJEjed4vMzMTycnJOj9ExaG4R0yxY2I7ymp7VJjpqkysEhWvstoeEdkCIQS6d+8OpVIJpVKJ8uXL49KlS3nuzxFT1sMRU0Qli80mph4+fAgA8PPz09nu5+cn32bInDlz4OHhIf+Yu/4PkYRT+cqOstgepaamygXMTXmNS1eFmVglKh5lsT0ishW3bt3C9u3b5d/j4+Oxfv36PPePjo4GAPj6+hZ4bNYYNa/8RkxJiamUlBSLxkREebPZxFRhTZ06FUlJSfKPNBWFyNyKq/g5E1OlR0luj+7duwfg6XB3qQNnDL5+iWxTSW6PiGzF0aNHAQCNGzfGvHnzdLYZIr3PjOkrSp+fiYmJyM7OLmqoZR5HTBGVLDabmPL39wfw35UGSXR0tHybISqVCu7u7jo/ROYmhCi2EVPSFbPExETk5OSY9dhUOGWxPSpsDTUmpoiKV1lsj4hshTRdtlWrVujYsSOAp4kpjUZjcH9T+oradagSEhKKGmqZZ8yIKSamiGyHzSamqlSpAn9/f+zZs0felpycjGPHjqFFixZWjIwIiIuLQ2ZmJgAgMDDQrMeWOiZCCHZMbERZbI8KOyKQiSmi4lUW2yMiWyGNjmrRogXq1asHJycnJCYm4urVq3r7ajQaefSxMYkpe3t7eHh4AOBnqDlwxBRRyVKoxFTVqlUNNpiJiYmoWrWq0cdJTU3FmTNncObMGQBPC3qeOXMGt2/fhkKhwOTJkzF79mxs3boV58+fx4gRIxAYGIi+ffsWJmwis5G+tPv5+cHR0dGsx3ZwcJA/MNkxsRy2R7oKOyKQiSmiomN7RGR7MjIycPr0aQBA8+bN4eDggKZNmwIwPJ0vNjYWT548gVKpREBAgFHn4AI45pNfYoqr8hHZnkIlpm7evGlwilFmZqZ8ZcAYJ06cQKNGjdCoUSMAwJQpU9CoUSN88MEHAIA333wTEydOxOjRo9G0aVOkpqZi+/btUKvVhQmbyGxMqRlQGPxyb3lsj3QVNTHFTjVR4bE9IrI9p06dwpMnT+Dn54fg4GAATxNUAAyuiCn1Ff39/eHg4GDUOWyt/zdnzhw0bdoUbm5u8PX1Rd++fXHlyhWdfTIyMjB+/Hh4e3vD1dUVAwYM0JtqbA0sfk5UstibsvPWrVvl/+/YsUMebgoAOTk52LNnj9xQG6N9+/YQQuR5u0KhwMyZMzFz5kxTwiQqdsVVX0ri7e2NqKgofrm3ILZHulhjish62B4R2R4p+dS8eXMoFAoAkKfPGhoxVZi+oq2tzLd//36MHz8eTZs2RXZ2Nt555x107doVly5dgouLCwDg1Vdfxe+//47169fDw8MDEyZMQP/+/XHo0CGrxs6pfEQli0mJKWmIuEKhwMiRI3Vuc3BwQHBwMD777DOzBUdkqyyRmAJsp2NCZU9ha0zZWqeaiIjIHKTkkzRKSvv/Fy5cQEpKijxFDChcX9HW+n/bt2/X+X3FihXw9fXFyZMn0bZtWyQlJeG7777DmjVr5GLwy5cvR+3atXH06FGd58qShBAsfk5Uwpg0lU+j0UCj0aBSpUqIiYmRf9doNMjMzMSVK1fQs2fP4oqVyGYwMUWlXVGn8j1+/BgZGRlmj4uIiMgapBFT2osM+Pv7Izg4GBqNBsePH9fZvzAXeGy9/5eUlATgv4tQJ0+exJMnT9C5c2d5n1q1aqFSpUoGpzdKMjMzkZycrPNjTpmZmfKoU46YIioZClVjKioqCuXLlzd3LEQlRmGnORmLo07Imh4/fixPIzX1Ne7h4QE7OzsAfP0SEVHJduPGDURGRqJ///64d+8e7Ozs0KRJE5198qozVRpGTGnTaDSYPHkyWrVqhbp16wIAHj58CEdHR3h6eurs6+fnh4cPH+Z5rDlz5sDDw0P+MXfNVmm0FGB4xBSLnxPZHpOm8mnbs2cP9uzZI4+c0vb9998XOTAiW3bt2jUAQOXKlYvl+LbcMaHST+pMOjk56dQSNIZCoYCXlxdiY2Px6NEjBAUFFUeIRERExe6LL77AypUr5d+bNm0q11aStGjRAj/99JNeYqowFzFtuf83fvx4XLhwAQcPHizysaZOnYopU6bIvycnJ5s1OSXVl7K3tzdYeJ7Fz4lsT6ESUzNmzMDMmTPRpEkTBAQEyAUAicqCu3fvylfNpBWTzM2WOyZU+klD9T09PQvVvnt7eyM2NpbF+4mIqES7efMmAGDYsGFo3bo1nnnmGb19pBFTx44dgxBC/twsyogpW/v8nDBhAn777TccOHBA5/H4+/sjKysLiYmJOqOmoqOj4e/vn+fxVCoVVCpVscWbX30pgFP5iGxRoRJTS5cuxYoVK/D888+bOx4imycVv6xfv77eVTNzYWKKrEnqqEkdN1Px9UtERKWBlFwaOnRonnV0GzZsCJVKhbi4ONy4cQPVqlWDEKJUrMonhMDEiROxadMm7Nu3D1WqVNG5PSwsDA4ODtizZw8GDBgAALhy5Qpu376tU4vL0vJbkQ/4r3+TmpqKnJwcuQQBEVlPoWpMZWVloWXLluaOhahEMLQqi7nZ6hUzKhuYmCIiIjJu1JOjoyPCwsIA/FdnKi4uDllZWVAoFAgMDDT6fLb2+Tl+/HisWrUKa9asgZubGx4+fIiHDx/KI5I8PDzw4osvYsqUKdi7dy9OnjyJUaNGoUWLFlZbkQ8wPjEFPE1OEZH1FSox9dJLL2HNmjXmjoWoRDC0Kou52VrHhMqWoiambO2KLxERkakyMzMRExMDoOBRT1ISRrp4KdWX8vPzg6Ojo9HntLX+35IlS5CUlIT27dsjICBA/vn555/lfRYsWICePXtiwIABaNu2Lfz9/bFx40YrRl3wVD6VSgW1Wg0ASEhIsFhcRJS3Qk3ly8jIwLJly7B7927Ur19fr6jc/PnzzRIcka3JysrCyZMnARTviCl+sSdrkhJTphY+l9hax5qIiMhU9+/fBwCo1Wr5cy0v0sVK6eJlYabxAf99fmZkZODx48d5jvixFCFEgfuo1WosWrQIixYtskBExiloxBQAlC9fHnfv3kVsbCyCg4MtFBkR5aVQialz586hYcOGAIALFy7o3MZC6FSanTlzBpmZmfD29ka1atWK7TxSxyQ9PR3p6el5XvEhKg7mmsrHqahERFRSaa+qV9D3G+li5blz55CWllboxJSbmxvs7e2RnZ2NR48eWT0xVVIVNGIKAHx8fHD37l3ExcVZKiwiykehElN79+41dxxEJYJ2faniTMK6u7vrdExM7dgQFQVrTBERUVlnSnKpQoUKCAoKwr1793DixIlCJ6YUCgW8vb0RHR2N+Ph4VKxY0fTAyegRUwAQGxtrkZiIKH+FqjFFVFZZor4U8LRjwul8ZC1JSUkAmJgiIqKyy9TkkvZ0Pmm0VWESS+z/FZ2xI6YAJqaIbEWhRkx16NAh39Eif/75Z6EDIrJllliRT+Lt7Y2YmBhOhyKLK44RUxkZGdi9ezcyMjJgZ2eHDh06wNPTs8ixEhERFQdTE1PNmzfHhg0b8Ouvv8orvRVmxDsv7hSdMSOmpMQUp/IR2YZCJaak+lKSJ0+e4MyZM7hw4QJGjhxpjriIbM7Dhw9x8+ZNKBQKhIeHF/v52DEhazFXYio6OhpCCCgUCsyYMQMff/yxvE+/fv2svmoPERFRXkwd9SSNmDp8+LC8rTAjptj/KzqOmCIqeQqVmFqwYIHB7dOnT5evEBCVNtJoqbp168LNza3Yz8eh3GQtRU1MVatWDfb29khISMCtW7cQHByMXbt2AQCqVKmCqKgonDt3zmzxEhERmVthRkyNGzdOXhiqevXqhSr9wMRU0bHGFFHJU6jEVF6ee+45hIeH49NPPzXnYYlsgiWn8QHsmJD1FDUx5eTkhEaNGuH48eM4evQofH19cfbsWQDA8uXL0b59e9y9e1ceTUVERGRrTE1MKZVKLFq0qMjnZf+v6KTElDEjpjiVj8g2mLX4+ZEjR6BWq815SCKbYanC5xJ2TMhapMSUh4dHoY8hJXCPHDmCkydPIjs7GwEBAfL7JzMzk51BIiKySVlZWYiOjgZQuDpRRcER80UnTeUzpsYUR0wR2YZCjZjq37+/zu9CCDx48AAnTpzA+++/b5bAiGxJdnY2jh8/DoAjpqj0K+qIKeBpAvfLL7/E0aNHERQUBODpe8fR0RF+fn6Ijo7G3bt35Y4hERGRrbh//z6EEHB0dJSnfFmK1P/j4jeFx6l8RCVPoRJTua+iK5VK1KxZEzNnzkTXrl3NEhiRLTl37hzS09Ph6emJmjVrWuSc7JiQtZgjMSUlcE+fPi2/lqXRUhUqVJATU40aNSpitEREROalPY1PqTTrBJMC8cJk0ZlS/DwxMRFPnjyBg4ODRWIjIsMKlZhavny5ueMgsmlSfalmzZpZrIPCjglZw5MnT+QOXVESU8HBwfLIqO3btwP4L1lVoUIFnDx5Ul7xiIiIyJaYWl/KnNj/KzpjRkyVK1cOSqUSGo0Gjx49gr+/v6XCIyIDivQN++TJk1i1ahVWrVqF06dPmysmIptj6fpSAGsMkHVIo6UAFGn1SYVCISeihBCwt7dHkyZNAPy3fLbU8SciIrIlTEyVbMaMmLKzs5P72pzOR2R9hRoxFRMTgyFDhmDfvn3w9PQE8HQYZIcOHfDTTz+xZgiVOpZekQ9gx4SsQ0pMOTk5FXlYe4sWLbBlyxYAQMOGDeUOotTRZ2KKiIhskS0kphISEqDRaCw+lbA0MGbEFPB0Ol9cXBwTU0Q2oFAt3cSJE5GSkoKLFy8iPj4e8fHxuHDhApKTk/G///3P3DESWVVsbCyuX78OAAgPD7fYebVrTGk0Goudl8o2c9SXkmgncrX/z8QUERHZMmmquTUSU9IoHo1Gg8TERIufvzQwZsQU8F+dKa4STGR9hUpMbd++HYsXL0bt2rXlbaGhoVi0aBG2bdtmtuCIbMGxY8cAALVr10a5cuUsdl4pMaXRaHSmVxEVJ3Mmppo0aQI7OzsAutNgpal8rDFFRES2SLpwIn1eWZJKpYKLiwsAjpovLFNGTAGcykdkCwqVmNJoNAaneDg4OHBkB5U6V65cAQA0aNDAoudlx4SsQUpM5V59tTBcXFwwaNAgBAQEoEuXLvJ27RFTQogin4eIiMhcsrOzcfHiRQBAtWrVrBJDcHAwAOCff/6xyvlLOikxVdCIqfLlywNgYorIFhQqMdWxY0dMmjQJ9+/fl7fdu3cPr776Kjp16mS24IhsgTSqo1KlShY/N+tMkaWZc8QUAKxduxb379/XqT0YGBgIAMjIyEB8fLxZzkNERGQOFy9eRFpaGtzd3REaGmqVGKTp71KNUzKNNJXP2BFTnMpHZH2FSkx99dVXSE5ORnBwMEJCQhASEoIqVaogOTkZX375pbljJLIqaxbA5Mp8ZGnmTkwZolar5c4g60wREZEtkVZiDg8Pt1rhcSkxJcVCpjF2xBSn8hHZjkKtylexYkWcOnUKu3fvxuXLlwE8rb/TuXNnswZHZAtsYWUWJqbIUpKSkgAUb2IKePo5Ehsbizt37lh8miwREVFepFFK2rURLU1KTB0/fhzZ2dmwty/UV7YySaPRICMjA0DBI6Y4lY/Idph0GeDPP/9EaGgokpOToVAo0KVLF0ycOBETJ05E06ZNUadOHfz111/FFSuRVTAxRWWJJUZMAVyZj4iIbJM0Skl7NVlLCw0Nhbu7O9LS0nDhwgWrxVESSUkpgFP5iEoSkxJTCxcuxMsvv2zwC4uHhwfGjBmD+fPnmy04ImvLzs7GgwcPAFhnZRYpMcU6PGQpTEwREVFZ9ejRI1y9ehUA0KxZM6vFoVQqER4eDoB1pkwl1ZcCOJWPqCQxKTF19uxZdOvWLc/bu3btipMnTxY5KCJb8eDBA2g0Gtjb28PX19fi5+eIKbI0JqaIiKisOnbsGACgRo0ach/MWqSphExMmUaqL+Xg4AA7O7t895Wm8sXFxXGVYCIrMykxFR0dDQcHhzxvt7e3Z8aZShXpS3NQUJBVCmAyMUWWZqnElDQCUVr1koiIyNqkJJA1p/FJWAC9cFJTUwEAbm5uBe4rjZjKzs6Wa2wSkXWY9E07KCgo33nO586dQ0BAQJGDIrIV1qwvBXBVPrI8KTHl4eFRrOfhiCkiIrI1UhLImoXPJdJUwqtXr7IfaIKUlBQAgKura4H7qlQqOYHFwRVE1mVSYuqZZ57B+++/r1NUTpKeno5p06ahZ8+eZguOyNqk0RzWqC8FcMQUWZ41pvJx+DwREVlbTk6OPJXPFkZMeXt7o0aNGgD+m2JIBZNGTBmTmAJYZ4rIVpiUmHrvvfcQHx+PGjVqYO7cudiyZQu2bNmCTz75BDVr1kR8fDzefffd4oqVyOKsPWKKxc/J0iyZmFIqlXj8+DHu379frOciIiIqyM2bN5GSkgK1Wo26detaOxwArDNVGKZM5QP+qzPFxBSRdZmUmPLz88Phw4dRt25dTJ06Ff369UO/fv3wzjvvoG7dujh48CD8/PyKK1Yii7OVxBRHTJGlSDUWijsxpd3x55VgIiKyNqnPV6lSJdjb21s5mqeee+45LFy4EEOGDLF2KCWGKVP5AKBy5coAgN27dxdbTERUMJOrOVeuXBl//PEH4uLicOzYMRw9ehRxcXH4448/UKVKleKIkchqpE6KtafypaSkICsryyoxUNliqRFTAK8EExGR7ZDKN1jrYqQhnTt3xqRJkxAaGmrtUEoMU0dMvfLKKwCAb7/9Fg8fPiy2uIgof4VeZqxcuXJo2rQpwsPDUa5cOXPGRGQzrD1iytPTEwqFAgCn81Hxy87OlpdZtkRiiisOERGRrbB2n4/Mw9QRUx06dECLFi2QkZGB+fPnF2doRJSPQiemiEq7nJwcufaNtTopSqVSTvxyOh8VN6kzBxh/pbEopBFTJ06cwJMnT4r9fERERHmx9ih5Mg9TR0wpFAq89957AIDFixcjLi6u2GIjorwxMUWUh4cPHyInJwf29vZWrZ3GAuhkKdI0PpVKBZVKVeznq169OsqVK4eMjAycPXu22M9HRESUF46YKh1MHTEFAN27d0fjxo2RlpaGhQsXFlNkRJQfm05MTZ8+HQqFQuenVq1a1g6LygipgxIYGAg7OzurxcEC6LahLLRHUmLKw8PDIudTKpXydD7WmSIyXlloj4gszRZrTJHpTB0xBeiOmvryyy+RmJhYHKERUT5sOjEFAHXq1MGDBw/kn4MHD1o7JCojbOXKGRNTtqO0t0eWLHwuYWKKqHBKe3tEZGm20u+joinMiCkA6NOnD+rUqYPk5GQsWrSoOEIjonzYxlqo+bC3t4e/v7+1w6AyyFaunDExZTtKe3tkjcSUVGeKBdCJTFPa2yMiS8rMzERMTAwA1pgq6aQRU6YmppRKJd59910MGzYMCxYswKRJk0w+BhEVns2PmLp27RoCAwNRtWpVDB8+HLdv37Z2SFRG2MqVMyambEdpb4+SkpIAWDYxFR4eDoVCgX///Vf+UlBY2dnZ2L17NzZt2oTNmzcjNjbWTFES2Z7S3h4RWZK02I1arYaXl5eVo6GiKMxUPsngwYNRvXp1PHr0CEuXLjV3aESUD5tOTDVr1gwrVqzA9u3bsWTJEkRFRaFNmzY6K0fllpmZieTkZJ0fosK4desWANtJTBX1SzsVTVloj6yRmPLw8EBoaCiAok/nW7ZsGbp06YL+/fujX79+6NWrlzlCJLI5ZaE9IrIk7VHyCoXCytFQURR2Kh8A2NnZ4Z133gEALFy4EEIIs8ZGRHmz6cRU9+7dMWjQINSvXx8RERH4448/kJiYiHXr1uV5nzlz5sDDw0P+4XBcKqwTJ04AAOrVq2fVOGrXrg0AOHXqlFXjKOvKQnv04MEDALD49CBz1Zk6c+YMAKBy5coAgGPHjrGAKZVKZaE9IrIkWxklb4sOHDiAXr16ITAwEAqFAps3b9a5XQiBDz74AAEBAXByckLnzp1x7do16wSLoo2YAoChQ4dCpVLh3r17uHr1qjlDI6J82HRiKjdPT0/UqFED169fz3OfqVOnIikpSf6RroAQmeLhw4e4efMmFAoFwsPDrRqL9KX9woUL+V4NJ8sqje2RtTrm5qozJcX//vvvIyQkBADw999/Fy04ohKgNLZHRJbExFTe0tLS0KBBgzwLgs+dOxdffPEFli5dimPHjsHFxQURERHIyMiwcKRPFWXEFACoVCq5733gwAGzxUVE+StRianU1FTcuHEDAQEBee6jUqng7u6u80NkKmnkRp06daz+GgoMDESlSpWg0Whw/Phxq8ZC/ymN7ZG1OuZSB/D48ePIzs4u9HG04+dqf1SWlMb2iMiSpM8PjiTU1717d8yePRv9+vXTu00IgYULF+K9995Dnz59UL9+ffzwww+4f/++3sgqSynqiCkAaNu2LQAmpogsyaYTU6+//jr279+Pmzdv4vDhw+jXrx/s7OwwdOhQa4dGpZw0ckMayWFtXLnM+spCeySNoLB0x7x27dpwd3dHWloaLly4UOjjaMfP9wyVZmWhPSKyJFtZibmkiYqKwsOHD9G5c2d5m4eHB5o1a5bv529x1bwTQhR5xBTAxBSRNdh0Yuru3bsYOnQoatasicGDB8Pb2xtHjx6Fj4+PtUOjUk4aZSGNurA2jv6wvrLQHllrxJRSqUSzZs0AFP41npqaKteT0h4xdezYMWg0GrPESWQrykJ7RGRJnMpXOA8fPgQA+Pn56Wz38/OTbzOkuGreZWRkyJ/5RUlMtWjRAvb29rh9+7a8GBIRFS97aweQn59++snaIVAZ9OTJE3nKnK2NmDp69CiEEFwxxgpKe3ukfcUyKCjI4udv3rw5du3ahSNHjuCVV14x+f737t0D8HTovru7O+rXrw8nJyckJCTg6tWrqFWrlrlDJrKa0t4eEVkaE1OWNXXqVEyZMkX+PTk52SzJKWkaHwC4uLgU+jguLi4ICwvDsWPHcODAATz//PNFjo2I8mfTI6aIrOH8+fNIT0+Hp6cnatasae1wAAANGzaEo6Mj4uLicOPGDWuHQ6WQlNjx8PAoUl2GwtJOvhZG7i8VDg4OaNKkSZGOSUREpV9WVhaio6MBsMaUqaRVfKXnTxIdHZ3vCr/FVfNOmsbn7OwMOzu7Ih2L0/mILIuJKaJcpDnxzZo1g1JpG28RlUqFsLAwAKyZQ8XD2oVfpal8V69exaNHj0y+v6H4WWeKiIgKcv/+fQgh4OjoiPLly1s7nBKlSpUq8Pf3x549e+RtycnJOHbsmFVmHZij8LmEiSkiy7KNb91ENsTW6ktJWGeKipO1C796eXnJIxSPHTtm8v0Nxc/3DBERFUR7xC1LJehLTU3FmTNncObMGQBPC56fOXMGt2/fhkKhwOTJkzF79mxs3boV58+fx4gRIxAYGIi+fftaPFZzFD6XtG7dGgqFAlevXoWPj4/84+/vjwULFhT5+ESki4kpolxsbUU+iRTP4sWL4eDgkO9Pjx49IISwcsRUkthCfQ0pkdSzZ084ODiYVGvKUPzS8S5cuCB3VomIqPSbPn06VCpVgf0lBwcHtGvXDgDrS+XlxIkTaNSoERo1agQAmDJlCho1aoQPPvgAAPDmm29i4sSJGD16NJo2bYrU1FRs374darXa4rGac8SUp6envNpgXFyc/BMdHY1PP/2U/WwiM2NiikhLbGysXMMpPDzcytHo6tixozzEPDs7O9+fP/74o1DToajssoXE1MCBA6FUKiGEQHZ2Nr777jukp6cbdV9D8QcEBKBy5crQaDTyggZERFT6rVq1CllZWQX2l7Kzs+VV3Lp27WrlqG1T+/btIYTQ+1mxYgUAQKFQYObMmXj48CEyMjKwe/du1KhRwyqxmnPEFAD88ccfuHTpEi5evIiLFy/i7NmzcHBwwP3791nzlcjMbHpVPiJLk6b81K5dG+XKlbNyNLq8vb1x584dxMfH57tfw4YNERsbi7t377JWAhnN2jWmgKcjpeLj45GWloawsDA8fPgQJ0+eROvWrQu8b17xt2jRArdu3cKRI0fQsWPHYombiIhshxBC/kw4duyYURdcHBwc4OPjU9yhUTEz54gpALC3t0ft2rV1toWHh+PQoUM4cOAAqlWrZpbzEBFHTBHpsNX6UhK1Wo3AwMB8fypVqgTgv5o7RMawdo0piYeHBwIDA02uD5VX/KwzRURUtsTFxSEzMxPA04t1BfWbAgMDmZQqJcw9YsoQaeoni6ITmRcTU0RabLW+lCmkL+bS1UIiY9jCVD5tpqyo9/jxY3kkYe74peMcPXqU9SCIiMoA6fPMz88Pjo6OVo6GLEkaMVWciSmu1kdUPJiYIvp/OTk5+PvvvwHY7ogpYzAxRaZKTU1FYmIiAOtO5dMmvQePHDlSYELp3r17AAAXFxd4eHjo3NawYUOoVCrExcWxHgQRURlgaxdayHLMPZXPkJYtW0KpVCIqKoqzE4jMiIkpov934cIFpKWlwc3NDaGhodYOp9CkxAITU2QsKbHj7u5erJ05UzRp0gR2dnZ48OBBgR0/7fpSuZf6dnR0ROPGjQEYN/qKiIhKNluomUjWYYmpfG5ubnK/4q+//iq28xCVNUxMEf0/qQZNeHg47OzsrBxN4UlXCHkVh4xli1eXnZ2d0aBBAwAF14cqqD6W9nQ+IiIq3WylZiJZniVGTAGczkdUHJiYIvp/paG+FMCpfGQ6W+3EG1tnqqDEmva0QCIiKt1s8WILWYYlRkwB/xVA379/f7Geh6gsYWKK6P/Z+op8xtJOTLHYMxnDVqc9GLuiXkHxS8c5d+4c0tLSzBghERHZGiamyi5LjZhq3bo1AODy5cuIiYkp1nMRlRVMTFGZdufOHYwZMwbDhg3DlStXAJT8xFRQUBAAID09HQkJCVaOhkoCW+3ESyOmTp06JS/9bUhB8VesWBFBQUHIycnBiRMnzB8oERFZzIYNGzB8+HAMHz4c48ePx6NHj3Rul0YB29rFFip+lhox5eXlhXr16gFgnSkic2Fiisq0+fPnY9myZVi7di0AoG7duvD29rZyVEWjVqvh4+MDgNP5yDjXrl0DAFSqVMnKkeiqWrUqfHx8kJWVhVOnTuW5n/QlRErKGsLpfEREJd+TJ08QGRmJNWvWYM2aNVi8eDGWLl0q3y6EsNmLLVT8pBFTxZ2YAlhnisjcmJiiMu3QoUMAgBdeeAELFizAL7/8YuWIzIMF0MlYOTk5+PvvvwE8XQnPligUCqOm8xkzFZEF0ImISj5pSra7uzueffZZAMDhw4fl2+Pj45GRkQEACAwMtEqMZD3SiClLrDDMxBSReTExRWVWeno6Tp8+DQB47733MHnyZNSoUcPKUZkHC6CTsS5duoTU1FS4urqiTp061g5HT0GJqYyMDMTFxQHIPzGlfRzWXiMiKpmkz4IWLVpgypQp8japXZf6PT4+PlCr1dYJkqzGGiOmzp49i8TExGI/H1Fpx8QUlVmnTp1CdnY2/Pz8EBwcbO1wzEr6gs7EFBVEmtoWHh4OOzs7K0ejr6CV+e7duwcAcHZ2hqenZ57Hady4MRwcHBAdHY2bN2+aO0wiIrIA7RWUGzZsCJVKhfj4eHlKOutLlW2WKn4OAP7+/qhRowaEEPIMDCIqPCamqMzSXoVPoVBYORrz4ogpMpatr0bZtGlTKJVK3LlzR05CaZO+hFSoUCHf97GTkxMaNmwIgNP5iIhKKu3PLEdHR4SFhelsZ32psisnJwePHz8GYJkRUwCn8xGZExNTVGZpX3UrbVhjioxl6+8DV1dXeeUbQwklU76EFDT6ioiIbFdMTAxu3LgBAGjWrBkA/XadiamyKy0tTf6/JUZMAUxMEZkTE1NUZtn6SJGi4IgpMkZCQgIuX74M4L9Ovi3Kr86UMYXPjTkOERHZtmPHjgEAateuLU/dzt2uMzFVdkmFz+3s7KBSqSxyTikxdeLECZ3EGBGZjokpKpOkaUF2dnY2txKZOWjXmGKhZ8qL1MmvVq0afHx8rBxN3vIb6aQ9lc/Y45w+fRrp6elmjJCIiIqboRG+0v/PnTuH1NRU1pgqw7TrS1mqREflypVRqVIlZGdnY//+/RY5J1FpxcQUlUnSlbX69evDxcXFytGYX1BQEICnw5qTkpKsHA3ZqpIyalCK7+TJk8jKytK5zZSr45UrV4afnx+ys7Nx6tQp8wdKRETFxtBnVlBQECpUqACNRoMTJ05wxFQZJo2YslR9KUmfPn0AAPPnz7foeYlKGyamqEyy9bo6ReXk5ARvb28ArDNF+s6cOYOtW7di27ZtAGz/fVCjRg2UK1cOGRkZOHv2rM5tpnwJUSgU8mP94YcfsHXrVk53JSKyYTk5Odi7dy+2bNmCv//+G4D+Z5b0+6pVq0waRUulizRiytKJqddffx329vbYs2cPa1gSFQETU1QmlZSRIkUhdcpu3bpl5UjIlpw/fx6NGjVCnz595E6+rb8PFAqFHGPuTp8pNaaA/x7rsmXL0KdPHzRr1gw5OTlmjJaIiMxl2bJl6NixI/r27Yu0tDS4ubmhdu3aOvtI7fp3330nT9OWRo5T2aE9lc+SKlWqhJEjRwIAZs+ebdFzE5UmTExRmZOZmYmTJ08CsP2RIkVRv359AE8LMhJJdu3aBQDw8fFB8+bNMW7cODRq1MjKURVMeq9qFy7PzMxETEwMAOOvjkdGRqJHjx7yUuP379/HpUuXzB8wEREV2c6dOwEAISEhaNGiBebNmwc7OzudfZ5//nn07NkTzZs3R/PmzTFr1iw4OTlZI1yyImtN5QOAt99+G0qlEn/88Yf8HYOITGNv7QCILO3MmTPIyspC+fLlERISYu1wik3z5s3x448/cgUy0iG9Hl599VVMnTrVytEYz9CKevfu3QMAqNVqeHl5GXUcPz8//PbbbwCAjh07Yu/evTh69Cjq1atn5oiJiKgohBDyKNmVK1eiVatWBvfz8fHBr7/+asnQyAYlJycDsPyIKeDpIjJDhw7F6tWr8eGHH2Ljxo0Wj4GopOOIKSpzpE5O8+bNLbZqhzVojzDRaDRWjoZsRUmtrxYeHg6FQoGoqChER0cD0K0vVZj3cn6r/RERkXXdunUL0dHRcHBwQOPGja0dDtk4qb6YtaZxvvPOO1AoFNi0aRMuXLhglRiISjImpqjMKQv1pQCgXr16cHJyQlJSEq5cuWLtcMgG3L17F3fv3oVSqUSTJk2sHY5JPDw8EBoaCuC/93BRV18yNAqLiIhsg3TRoGHDhpyaRwWSaqpWrlzZKucPDQ1F//79AQAfffSRVWIgKsmYmKIyp6SOGDGVvb09mjZtCoAjQugpKQFTv359q9RgKKrcI5ykq6PGFj7PTUpM/fPPP0hISDBDhEREZC7SZ1Zp76+ReVg7MQUA7733HgDg559/xtWrV60WB1FJxMQUlSn379/H7du3oVQq5aRNaWaoYDSVXSV9tGDuEU5FHTHl4+Mj15mTVigkIiLboF16gaggtpCYatiwIXr27AmNRoM5c+ZYLQ6ikoiJKSpTpC+0devWtUpxREuTOnMcMUVAyR8tKMV9/PhxZGdnFzkxpX1MvkeIiGxHeno6Tp8+DaDkfmaR5WRnZ8sLolgzMQVAXlhm3bp1ePLkiVVjISpJmJiiMqWkjxgxlfQ4L168KK9WQmVTVlaWvIRxSX3916pVCx4eHnj8+DHOnz9vlsQU60wREdme06dPIzs7G35+flZPNJDtu3fvHnJycuDo6Ah/f3+rxtK8eXN4eXnh8ePHOHXqlFVjISpJmJiiMqWkjxgxlb+/P4KDgyGE4FSlMu7MmTPIzMyEl5cXqlevbu1wCkWpVKJZs2YAnr6Xi1pjCuDqlUREtki7v1aaV1Am87h58yaAp/0BpdK6X2+VSiXatGkDADhw4IBVYyEqSZiYojLjyZMnOHHiBICSO2KkMPKbzrdixQq4u7tDrVbD1dUVX331laXDo2L2wQcfwNnZGa1atQLw9PVQkjv50ut54sSJiI6OBlC0EVPaq1devny5UMd47bXX4OTkBLVaLf84Oztj5syZhY4LADQaDSIiIuRjBgcH4/bt2wXe7+rVq6hYsaJOPGq1GiEhIXjw4EGRYiIiKqrx48frtU+5f958800AZau/RoVnC/WltLVt2xYAE1NEpmBiisqMs2fPIiMjA56enqhRo4a1w7GY/Aqgf/3110hJSUFmZibS0tKwZMkSS4dHxUij0eCrr75Ceno6srOzAQADBw60clRF07dvXzg4OMijmxo0aIDy5csX+ngODg7yQgiFmc735MkTLFmyBBkZGcjMzJR/0tPTsWjRIgghCh3bpUuXsHPnTvmYt27dwsaNGwu837p163D37l2deDIzM/Hvv/9i69athY6HiKio0tPTsWzZMr32KfePRqOBSqVCr169rB0ylQC2mpj666+/kJOTY+VoiEoGJqaozNCuL2XtYb6WpF1DR/tLcmZmpjz3/bfffgPw9ItwYmKixWOk4nHt2jUkJCRArVYjKioKsbGxGDVqlLXDKpJGjRohLi4Ot2/fxu3bt3HixIkijwArSp2pc+fOIT09HZ6enrh16xZu376NGzduwMHBATExMfL0gsKQ4mnVqhXefvtto2OU9pk1a5b8PL366qtG35+IqLicPHkS2dnZ8Pf3l9unvH5iY2MRGhpq7ZCpBLC1xFTDhg3h5uaGpKQknD9/3trhEJUIZefbOZV50heyslJfStKwYUOoVCrEx8fj2rVr8vbTp08jKysL5cuXxzPPPIOqVasCAGtRlSLSa75JkyYIDg4u0sgiW+Lu7o6KFSuiYsWKsLe3L/LxirIyn3bCu1KlSqhYsSKqVq2KRo0aFfqYuY/dtm1bdOnSxajjCSHk+0VERMjPU+fOnYscDxFRUWnXjpLap7x+ysLqyWQetpaYsre3l0socDofkXGYmKIyQ+oMlbV6BY6OjggLCwOgO1pC+wu1QqHg6mSlUFl9zZuqKKtX5vUcm+P9pH3spk2bQqlU4vbt27h//36e97l+/ToePXoEtVqNBg0ayNulovFXrlxBfHx8oWMiIiqKsrY6MlmGrSWmANaZIjJV0S81E5UAMTEx+Pfff6FQKOQvaGVJixYtcPjwYRw5cgQjRowAoL9CYYsWLbBmzRqOqChFyuooQVNJq1fevHkTf//9tzy6yBh5PcctWrTAF198Uej3U2JiIi5dugTg6Rc4Nzc31K1bF+fOncPRo0fRv39/g/eTzhcWFgZHR0d5u7e3N2rUqIGrV6/i2LFj6N69e6HiIiIqLCFEmVsdmYqfRqORFwaxxcTU/v37sWHDBqPuo1Kp0LlzZzg5ORVnaEQ2iYkpKhOkL4+1a9eGh4eHlaOxPEMF0HNftZT+PXbsGDQaTZmqw1UapaSkyHUNeGW6YM2bN8fNmzdx9OhRoxNTMTExuHHjBgAgPDxc73gAcObMGaSnp5vcyZSm1FatWhW+vr7yMQtKTOU3GqF58+a4evUqjh49ysQUEVncnTt38ODBA9jb28sjuYmKKiYmBpmZmVAoFEVapdfcmjRpArVajbi4OAwaNMjo+40dOxaLFy8uxsiIbFOJ+Oa5aNEiBAcHQ61Wo1mzZqyBQyYr6yNHpC+p586dQ2pqKu7fv4/bt29DqVTKK5I1aNAAarUaCQkJuHr1qjXDtWklpT06ceIENBoNKlWqhMDAQGuHY/MKU2fq2LFjAIDQ0FB4enrq3Fa5cmX4+/sjOzsbJ0+eNDkeQ22WMTHmNxqhKLW0yDaVlPaICPiv7WnQoAGcnZ2tHA2Zm7XaI2kaX2BgoM5IYWtTqVRYuHAh2rZta9RPy5YtAQDffvst7t69a+XoiSzP5hNTP//8M6ZMmYJp06bh1KlTaNCgASIiIhATE2Pt0KgEKes1DYKCglCxYkVoNBqcOHFCfj7q1q0rFxd1cHBAkyZNALDOVF5KUntU1l/zpspr9cr85PccF7Vum6FjS/8/ceIEnjx5oneftLQ0nDt3Ls+Yco+KpJKtJLVHRAA/l0oza7ZHtlhfSjJmzBjs37/fqJ9Dhw6hXbt2ePLkCebNm2ft0IkszuYTU/Pnz8fLL7+MUaNGITQ0FEuXLoWzszO+//57a4dGJUR2drZ81aasjpgC/usIHjlyJM9RFRxRkb+S1B6xjodp8lq9Mj8FPceFfT9pNBqDI6Zq1KiBcuXKISMjA2fPntW73/Hjx6HRaFCxYkUEBQXp3V63bl24uLggOTkZ//zzj0kxke0pSe0REcDPpdLMmu2RLSemTPXee+8BAJYtW4aHDx9aORoiy7LpGlNZWVk4efIkpk6dKm9TKpXo3Llznh39zMxMZGZmyr8nJSUBgFErLU2YMAFZWVlFjJpszePHj5GWlgY3NzcEBQWZvOpWadGoUSOsX78ey5Ytk1/nDRo00Hk+6tevDwDYuHGj/N6xpPDwcLz00ktG7/9/7d13fFP19z/wVzrSFroodEIpe+8yLAoi1CIgQ0GGqEVRUQsKOOErIKgfQFFQQEBFcAEKCrgA2ShLKSBTBCybtswuOpPz+4PfvTZt2qZp0pumr+fjcR+Qm5ubczNO7z15Dx8fH+h0OjtG9J/yzEeZmZl44YUXyhTv1q1bAQAtW7astJ/50mrdujX++OMPjBw50mxhpyDlfW/RooXZ17hly5YAgE2bNmHo0KEWx5GdnY0bN27Aw8MDderUMdl3ZGQkNm3ahNGjR6NOnTomjzt16pS6TVHvedu2bfH7779j1KhRDjUWhyOKjo7G4MGDLd7eWfNRYmIiJk+ebIOoqbJTujU3b96cf5fszFnz0cmTJwu1Jjp48CCA2xOZVPTPVYcOHRAZGYn4+Hj07dsX9evX1zokokIef/zxUv3AYHE+Egd28eJFASC7du0yWf/yyy9Lx44dzT5mypQpAoALFy6VYElJSSmPVCQizEdcuHApfmE+4sKFi6MszEdcuHBxlMXSfOTQLaasMWHCBIwfP169bTQacf36dVSvXr3ESl1qairCw8Nx/vx5+Pr62jvUCo2vVenw9bJcaV4rZXwsR8V8VD74WpUOXy/LMR/d5uyfGWc/PsD5j9HZjw9gPrKGM34unPGYAB5XRWOPfOTQhakaNWrA1dUVSUlJJuuTkpIQEhJi9jEeHh7w8PAwWVdwtqSS+Pr6OtUHx574WpUOXy/LOdprxXzk+PhalQ5fL8s52mvFfGQfzn58gPMfo7MfH+B4x6hVPioNR3vNbMEZjwngcVU0tjwuhx78XK/XIzIyEps3b1bXGY1GbN68mQMnElG5Yj4iIkfBfEREjoL5iIhswaFbTAHA+PHjERsbi/bt26Njx46YM2cOMjIy8Pjjj2sdGhFVMsxHROQomI+IyFEwHxFRWTl8YWrIkCG4cuUKJk+ejMTERLRp0wbr169HcHCwzZ/Lw8MDU6ZMKdS0lArja1U6fL0s58ivFfORY+JrVTp8vSznyK8V85HtOPvxAc5/jM5+fIBjH2N55qPScOTXzFrOeEwAj6uiscdx6UREbLY3IiIiIiIiIiIiCzn0GFNEREREREREROS8WJgiIiIiIiIiIiJNsDBFRERERERERESaYGGKiIiIiIiIiIg0wcJUPvPnz0edOnXg6emJTp064Y8//tA6JIezY8cO9O3bF2FhYdDpdFizZo3WITms6dOno0OHDvDx8UFQUBAGDBiAEydOaB2Ww1qwYAFatWoFX19f+Pr6IioqCuvWrdM6LE0wF1mG+chyzEeWqwy5qLQ5ZuXKlWjSpAk8PT3RsmVL/PLLLyb3iwgmT56M0NBQeHl5ITo6GidPnrTnIZSoNMf4ySefoEuXLqhWrRqqVauG6OjoQtuPGDECOp3OZLnvvvvsfRhFKs3xLV26tFDsnp6eJttU9PewW7duhY5Rp9OhT58+6jaO9B5a8/dr27ZtaNeuHTw8PNCgQQMsXbq00DaV7fzB1rnMUdj6++0I7PWZ11Jpj2nbtm1m81RiYmL5BGwha88Zy/r9YmHq//vmm28wfvx4TJkyBfv370fr1q3Rs2dPJCcnax2aQ8nIyEDr1q0xf/58rUNxeNu3b0dcXBz27NmDjRs3Ijc3FzExMcjIyNA6NIdUq1YtzJgxA/Hx8di3bx+6d++O/v374+jRo1qHVq6YiyzHfGQ55iPLOXsuKm2O2bVrF4YNG4aRI0fiwIEDGDBgAAYMGIAjR46o27zzzjv48MMPsXDhQuzduxdVq1ZFz549kZWVVV6HZaK0x7ht2zYMGzYMW7duxe7duxEeHo6YmBhcvHjRZLv77rsPly9fVpfly5eXx+EUYs3fCV9fX5PYz549a3J/RX8Pv//+e5PjO3LkCFxdXfHQQw+ZbOco72Fp/34lJCSgT58+uOeee3Dw4EGMHTsWTz75JDZs2KBuU9nOH+yRyxyBPb7fjsAen3mtWXseeuLECZP3KygoyE4RWseac0abfL+ERESkY8eOEhcXp942GAwSFhYm06dP1zAqxwZAVq9erXUYFUZycrIAkO3bt2sdSoVRrVo1+fTTT7UOo1wxF1mH+ah0mI9Kx5lyUWlzzODBg6VPnz4m6zp16iSjRo0SERGj0SghISHy7rvvqvffvHlTPDw8ZPny5XY4gpKVNY/m5eWJj4+PfP755+q62NhY6d+/v61DtUppj2/JkiXi5+dX5P6c8T2cPXu2+Pj4SHp6urrOkd7D/Cz5+/XKK69I8+bNTdYNGTJEevbsqd6ubOcPts5ljsLW329HZKvPvCOx5Ji2bt0qAOTGjRvlEpOtWHLOaIvvF1tMAcjJyUF8fDyio6PVdS4uLoiOjsbu3bs1jIycSUpKCgAgICBA40gcn8FgwIoVK5CRkYGoqCitwyk3zEVUXpiPLONsuciaHLN7926T7QGgZ8+e6vYJCQlITEw02cbPzw+dOnXSJG/ZIo/eunULubm5hb4f27ZtQ1BQEBo3boxnn30W165ds2nslrD2+NLT0xEREYHw8PBCLQCd8T1cvHgxhg4diqpVq5qsd4T30BolfQ8r2/mDPXKZI7DH97uiqgjvl7XatGmD0NBQ3Hvvvdi5c6fW4ZTIknNGW7xfLEwBuHr1KgwGA4KDg03WBwcHO1yfT6qYjEYjxo4dizvvvBMtWrTQOhyHdfjwYXh7e8PDwwPPPPMMVq9ejWbNmmkdVrlhLqLywHxUMmfNRdbkmMTExGK3V/51lLxlizz66quvIiwszOQk+7777sMXX3yBzZs3Y+bMmdi+fTt69eoFg8Fg0/hLYs3xNW7cGJ999hnWrl2Lr776CkajEZ07d8aFCxcAON97+Mcff+DIkSN48sknTdY7yntojaK+h6mpqcjMzKx05w/2yGWOwB7f74qqpM98RRQaGoqFCxfiu+++w3fffYfw8HB069YN+/fv1zq0Ill6zmiL75eb1VESkcXi4uJw5MgR/P7771qH4tAaN26MgwcPIiUlBatWrUJsbCy2b9/uFBeERI6C+ahkzEWV14wZM7BixQps27bNZADhoUOHqv9v2bIlWrVqhfr162Pbtm3o0aOHFqFaLCoqyqTFX+fOndG0aVMsWrQIb775poaR2cfixYvRsmVLdOzY0WR9RX4PiYpS2b7fFVnjxo3RuHFj9Xbnzp1x+vRpzJ49G19++aWGkRWtPM8Z2WIKQI0aNeDq6oqkpCST9UlJSQgJCdEoKnIWo0ePxk8//YStW7eiVq1aWofj0PR6PRo0aIDIyEhMnz4drVu3xgcffKB1WOWGuYjsjfnIMs6ai6zJMSEhIcVur/zrKHmrLHl01qxZmDFjBn799Ve0atWq2G3r1auHGjVq4NSpU2WOuTRs8XfC3d0dbdu2VWN3pvcwIyMDK1aswMiRI0t8Hq3eQ2sU9T309fWFl5dXpTt/sEcucwT2+H5XVCV95p1Fx44dHfa9Ks05oy2+XyxM4fYJaGRkJDZv3qyuMxqN2Lx5s1OMKUHaEBGMHj0aq1evxpYtW1C3bl2tQ6pwjEYjsrOztQ6j3DAXkb0wH5WNs+Qia3JMVFSUyfYAsHHjRnX7unXrIiQkxGSb1NRU7N27V5O8ZW0efeedd/Dmm29i/fr1aN++fYnPc+HCBVy7dg2hoaE2idtStvg7YTAYcPjwYTV2Z3kPgdvTlWdnZ+ORRx4p8Xm0eg+tUdL3sLKdP9gjlzkCe3y/K6qK8H7ZwsGDBx3uvbLmnNEm75d1Y7M7nxUrVoiHh4csXbpUjh07Jk8//bT4+/tLYmKi1qE5lLS0NDlw4IAcOHBAAMj7778vBw4ckLNnz2odmsN59tlnxc/PT7Zt2yaXL19Wl1u3bmkdmkN67bXXZPv27ZKQkCCHDh2S1157TXQ6nfz6669ah1aumIssx3xkOeYjyzl7Liopxzz66KPy2muvqdvv3LlT3NzcZNasWXL8+HGZMmWKuLu7y+HDh9VtZsyYIf7+/rJ27Vo5dOiQ9O/fX+rWrSuZmZnlfnwipT/GGTNmiF6vl1WrVpl8P9LS0kTkdq556aWXZPfu3ZKQkCCbNm2Sdu3aScOGDSUrK8vhj2/q1KmyYcMGOX36tMTHx8vQoUPF09NTjh49qm5T0d9DxV133SVDhgwptN7R3sOS/n699tpr8uijj6rb//vvv1KlShV5+eWX5fjx4zJ//nxxdXWV9evXq9tUtvMHe+QyR2CP77cjsMdnXmulPabZs2fLmjVr5OTJk3L48GF54YUXxMXFRTZt2qTVIZhlyTmjPb5fLEzlM3fuXKldu7bo9Xrp2LGj7NmzR+uQHI4yzWXBJTY2VuvQHI651wmALFmyROvQHNITTzwhERERotfrJTAwUHr06OE0F4KlxVxkGeYjyzEfWa4y5KLicszdd99d6Dv07bffSqNGjUSv10vz5s3l559/NrnfaDTKpEmTJDg4WDw8PKRHjx5y4sSJ8jiUIpXmGCMiIsx+P6ZMmSIiIrdu3ZKYmBgJDAwUd3d3iYiIkKeeekrTC/7SHN/YsWPVbYODg6V3796yf/9+k/1V9PdQROTvv/8WAGa/r472Hpb09ys2NlbuvvvuQo9p06aN6PV6qVevntn8XdnOH2ydyxyFrb/fjsBen3ktlfaYZs6cKfXr1xdPT08JCAiQbt26yZYtW7QJvhiWnDPa4/ul+/9PTkREREREREREVK44xhQREREREREREWmChSkiIiIiIiIiItIEC1NERERERERERKQJFqaIiIiIiIiIiEgTLEwREREREREREZEmWJgiIiIiIiIiIiJNsDBFRERERERERESaYGGKiIiIiIiIiIg0wcIUERERERERERFpgoUpIiIiIiIiIiLSBAtTRERERERERESkCRamiIiIiIiIiIhIEyxMERERERERERGRJliYIiIiIiIiIiIiTbAwRUREREREREREmmBhioiIiIiIiIiINMHCFBERERERERERaYKFKSIiIiIiIiIi0gQLU0REREREREREpAkWpohsYOnSpdDpdDhz5ozWoRBRCd544w3odDqLt3/nnXfQpEkTGI1GO0Zl3sKFC1G7dm1kZ2eX6nEFY64IOcraYyWyhE6nwxtvvGGXfZ85cwY6nQ5Lly61y/6tNWLECHh7e2sdhtWee+453HvvvVqHAQB47bXX0KlTJ63DICdSGXOSpbZt2wadTodt27ZpHQoAoHfv3njqqae0DgMAMHToUAwePFjrMOyChSknpFyAKIubmxtq1qyJESNG4OLFi1qHV6Hk5OTggw8+QNu2beHr6wt/f380b94cTz/9NP7++2+twyOyu8OHD2PQoEGIiIiAp6cnatasiXvvvRdz587VOrRykZqaipkzZ+LVV1+Fi0v5/8kcMWIEcnJysGjRIosfo3XM1rLmWMn59OvXD1WqVEFaWlqR2wwfPhx6vR7Xrl0rx8hK55dffrHbRScAGAwGhIWFQafTYd26dXZ7Hq0kJCTg008/xcSJE616vNFoRGBgIN555x2bxDN27Fj89ddf+OGHH2yyP6o4mJOKV6dOHZPrTk9PTzRs2BAvv/wyrl+/bvPnK287d+7Er7/+ildffdWqx9+4cQNubm749ttvbRLPq6++iu+++w5//fWXTfbnSCrOGSuV2rRp0/Dll19i4cKF6NWrF7766ivcfffdyMrK0jq0CmPgwIF48cUX0aJFC8yYMQNTp05F165dsW7dOuzZs0fr8IjsateuXWjfvj3++usvPPXUU5g3bx6efPJJuLi44IMPPtA6vHLx2WefIS8vD8OGDdPk+T09PREbG4v3338fImLRY7SO2VrWHCs5n+HDhyMzMxOrV682e/+tW7ewdu1a3HfffahevXo5R2deREQEMjMz8eijj6rrfvnlF0ydOtVuz7llyxZcvnwZderUwddff22359HKBx98gLp16+Kee+6x6vF//PEHrl69ij59+tgknpCQEPTv3x+zZs2yyf6o4mBOKlmbNm3w5Zdf4ssvv8S8efMQHR2NOXPm4L777rPL85Wnd999Fz169ECDBg2sevyGDRug0+kQExNjk3jatm2L9u3b47333rPJ/hyJm9YBkP306tUL7du3BwA8+eSTqFGjBmbOnIkffvjBaZsAKoxGI3JycuDp6Wn1Pv7880/89NNPePvttwv9Yjdv3jzcvHmzjFESOba3334bfn5++PPPP+Hv729yX3Jyss2eJyMjA1WrVrXZ/mxpyZIl6NevX5lySVkNHjwY77zzDrZu3Yru3buXuL0jxGyt0h4rOZ9+/frBx8cHy5Ytw2OPPVbo/rVr1yIjIwPDhw/XIDrzlFYC5emrr75Cu3btEBsbi4kTJzp0Hi2t3NxcfP3113jmmWes3scvv/yCiIgING/e3GZxDR48GA899BD+/fdf1KtXz2b7JcfGnFSymjVr4pFHHlFvP/nkk/D29sasWbNw8uRJNGzYsNxisaXk5GT8/PPPWLhwodX7+OWXX3DnnXcWOo8ui8GDB2PKlCn46KOPKnR37YLYYqoS6dKlCwDg9OnTJuv//vtvDBo0CAEBAfD09ET79u3NNlW+efMmxo0bhzp16sDDwwO1atXCY489hqtXr6rbJCcnY+TIkQgODoanpydat26Nzz//XL0/NzcXAQEBePzxxwvtPzU1FZ6ennjppZfUddnZ2ZgyZQoaNGgADw8PhIeH45VXXik0BolOp8Po0aPx9ddfo3nz5vDw8MC6detQp04d9O/fv9BzZWVlwc/PD6NGjSry9VJepzvvvLPQfa6urhb9KvLRRx+p8YSFhSEuLq5QQatbt25o0aIF4uPj0blzZ3h5eaFu3bpmk6ClrweRLZw+fRrNmzc3+8c0KChI/b8yZtPff/+NwYMHw9fXF9WrV8cLL7xQqIWmsu2xY8fw8MMPo1q1arjrrrsAABcvXsQTTzyB4OBgeHh4oHnz5vjss88KPffZs2fx3HPPoXHjxvDy8kL16tXx0EMPmR0/6ffff0eHDh3g6emJ+vXrl6qbWEJCAg4dOoTo6GiT9SNGjECdOnUKbW9u7Cpl3T///INHHnkEfn5+CAwMxKRJkyAiOH/+PPr37w9fX1+EhISY/QUsMjISAQEBWLt2rdUxF+XAgQPo1asXfH194e3tjR49ephtDbpt2za0b9/e5HUs7VhdlijNsZJz8vLywoMPPojNmzebLYAvW7YMPj4+6NevH4Db5yZjx45FeHg4PDw80KBBA8ycOdOiMeEs/fyXdP5TcDyXESNGYP78+QBg0sVFRMp0XqJQWm8oY41kZmYW+535999/0bNnT1StWhVhYWGYNm1aoVaJGRkZePHFF9XXsXHjxpg1a5bJdi1atDDbgsloNKJmzZoYNGiQybo5c+agefPm8PT0RHBwMEaNGoUbN26UeHy///47rl69ajaPzZ07F82bN0eVKlVQrVo1tG/fHsuWLSu03c8//2zSWqpOnTq4//771Vzm5eWFli1bqmPYfP/992jZsiU8PT0RGRmJAwcOFNqnEg/zU+XCnFRyTjInJCQEAODmZtoOxtLrTnNWrlyJyMhIeHl5oUaNGnjkkUdMhqn54YcfoNPpcOjQIXXdd999B51OhwcffNBkX02bNsWQIUOKfb6ff/4ZeXl5hXJRbm4upk6dioYNG8LT0xPVq1fHXXfdhY0bN5psZzQasX79epNcpFyzrly5Es2aNYOXlxeioqJw+PBhAMCiRYvQoEEDeHp6olu3bmbPbe+9915kZGQUer4KT8jpLFmyRADIn3/+abJ+3rx5AkAWLFigrjty5Ij4+flJs2bNZObMmTJv3jzp2rWr6HQ6+f7779Xt0tLSpEWLFuLq6ipPPfWULFiwQN58803p0KGDHDhwQEREbt26JU2bNhV3d3cZN26cfPjhh9KlSxcBIHPmzFH39cQTT4i/v79kZ2ebxPf555+bxG0wGCQmJkaqVKkiY8eOlUWLFsno0aPFzc1N+vfvb/JYANK0aVMJDAyUqVOnyvz58+XAgQPyf//3f+Lu7i7Xrl0z2f7bb78VALJjx44iX8ddu3YJAHnqqackNzfXotc8ISFBXTdlyhQBINHR0TJ37lwZPXq0uLq6SocOHSQnJ0fd7u6775awsDAJCgqS0aNHy4cffih33XWXAJDFixer25Xm9SCyhZiYGPHx8ZHDhw8Xu53yWW/ZsqX07dtX5s2bJ4888ogAkEcffdTsts2aNZP+/fvLRx99JPPnz5fExESpVauWhIeHy7Rp02TBggXSr18/ASCzZ8822cfKlSuldevWMnnyZPn4449l4sSJUq1aNYmIiJCMjAx1u0OHDomXl5fUrl1bpk+fLm+++aYEBwdLq1atxJI/f1999ZUAkEOHDpmsj42NlYiIiCJfB3Pr2rRpI8OGDZOPPvpI+vTpIwDk/fffl8aNG8uzzz4rH330kdx5550CQLZv315o39HR0RIZGWl1zOZy1JEjR6Rq1aoSGhoqb775psyYMUPq1q0rHh4esmfPHnW7/fv3i4eHh9SpU0dmzJghb7/9toSFhUnr1q0teh1Ly9JjJef166+/CgCZO3euyfpr166Ju7u7PPbYYyIikpGRIa1atZLq1avLxIkTZeHChfLYY4+JTqeTF154weSxAGTKlCnqbUs//5ac/yQkJAgAWbJkiYjcPn+49957BYB8+eWX6iIiZTovUaxYsUJ0Op2cO3dORES6d+8uvXv3LrRdbGyseHp6SsOGDeXRRx+VefPmyf333y8AZNKkSep2RqNRunfvLjqdTp588kmZN2+e9O3bVwDI2LFj1e2mTZsmLi4ucvnyZZPn2b59uwCQlStXquuefPJJcXNzk6eeekoWLlwor776qlStWrXQOZA5b731luh0OklJSTFZ//HHHwsAGTRokCxatEg++OADGTlypDz//PMm212+fFl0Op389NNP6rqIiAhp3LixhIaGyhtvvCGzZ8+WmjVrire3t3z11VdSu3ZtmTFjhsyYMUP8/PykQYMGYjAYCsXWoEEDGThwYLHxk/NhTipaRESExMTEyJUrV+TKlSty/vx5+eGHHyQsLEy6du1qsq2l151bt24VALJ161Z1nXIe06FDB5k9e7a89tpr4uXlJXXq1JEbN26o74dOpzN5n1544QVxcXGRwMBAdV1ycrIAkHnz5hV7bE8++aRUr1690PqJEyeKTqeTp556Sj755BN57733ZNiwYTJjxgyT7fbs2SMA5MiRI+o6ANKqVSsJDw83yTm1a9eWefPmSbNmzeS9996T119/XfR6vdxzzz2Fnj83N1e8vLzkxRdfLDb+ioaFKSekfHE3bdqkJohVq1ZJYGCgeHh4yPnz59Vte/ToIS1btpSsrCx1ndFolM6dO0vDhg3VdZMnTxYAJkkj//YiInPmzBEA8tVXX6n35eTkSFRUlHh7e0tqaqqIiGzYsEEAyI8//miyn969e0u9evXU219++aW4uLjIb7/9ZrLdwoULBYDs3LlTXQdAXFxc5OjRoybbnjhxolAxTkSkX79+UqdOHTV2c4xGo9x9990CQIKDg2XYsGEyf/58OXv2bKFtC170JScni16vl5iYGJMTG6U4+Nlnn6nrlOd477331HXZ2dnSpk0bCQoKUk/gSvN6ENnCr7/+Kq6uruLq6ipRUVHyyiuvyIYNGwpdVCjFl379+pmsf+655wSA/PXXX4W2HTZsmMm2I0eOlNDQULl69arJ+qFDh4qfn5/cunVLXZf//4rdu3cLAPniiy/UdQMGDBBPT0+T7+yxY8fE1dXVooLK66+/LgAkLS3NZL01hamnn35aXZeXlye1atUSnU5nchJz48YN8fLyktjY2EL7fvrpp8XLy8vqmM0VpgYMGCB6vV5Onz6trrt06ZL4+PiYnEz27dtXqlSpIhcvXlTXnTx5Utzc3OxSmLL0WMl55eXlSWhoqERFRZmsV/7ebdiwQURE3nzzTalatar8888/Jtu99tpr4urqqhZuRApfBFr6+bfk/KfgRaCISFxcnNnvR1nOSxT333+/3Hnnnertjz/+WNzc3CQ5Odlku9jYWAEgY8aMMYm5T58+otfr5cqVKyIismbNGgEgb731lsnjBw0aJDqdTk6dOmUSe8GL8+eee068vb3V3Pzbb78JAPn6669Ntlu/fr3Z9QU98sgjZi8G+/fvL82bNy/2sSIiixcvFi8vL5O/FREREQJAdu3apa5Tzke9vLxM/k4sWrSo0EWxIiYmRpo2bVpiDORcmJOKpny3Ci533nlnoXM6S687CxamcnJyJCgoSFq0aCGZmZnqdj/99JMAkMmTJ6vrmjdvLoMHD1Zvt2vXTh566CEBIMePHxcRke+//77Q+ak5d911l9kfylq3bi19+vQp9rEiIpMmTSp0vghAPDw8TM7HlJwTEhKiXi+LiEyYMKHQuZuiUaNG0qtXrxJjqEjYlc+JRUdHIzAwEOHh4Rg0aBCqVq2KH374AbVq1QIAXL9+HVu2bMHgwYORlpaGq1ev4urVq7h27Rp69uyJkydPqs0jv/vuO7Ru3RoPPPBAoedRunL88ssvCAkJMRlw193dHc8//zzS09Oxfft2AED37t1Ro0YNfPPNN+p2N27cwMaNG02aVK5cuRJNmzZFkyZN1NiuXr2qjjuydetWkzjuvvtuNGvWzGRdo0aN0KlTJ5OBQa9fv45169Zh+PDhxXZD0el02LBhA9566y1Uq1YNy5cvR1xcHCIiIjBkyJBix5jatGkTcnJyMHbsWJNZsZ566in4+vri559/Ntnezc3NpKmsXq/HqFGjkJycjPj4eKteD6Kyuvfee7F7927069cPf/31F9555x307NkTNWvWNNvsOi4uzuT2mDFjANzODQXlHztERPDdd9+hb9++EBGTz3fPnj2RkpKC/fv3q9t7eXmp/8/NzcW1a9fQoEED+Pv7q9sZDAZs2LABAwYMQO3atdXtmzZtip49e1p0/NeuXYObm5tN+u8/+eST6v9dXV3Rvn17iAhGjhyprvf390fjxo3x77//Fnp8tWrVkJmZiVu3btkkZoPBgF9//RUDBgwwGSslNDQUDz/8MH7//XekpqbCYDBg06ZNGDBgAMLCwtTtGjRogF69epV43Naw9FjJebm6umLo0KHYvXu3STeGZcuWITg4GD169ABw++9ily5dUK1aNZO8ER0dDYPBgB07dpjdv6Wff8Cy85/SKMt5CXD7O75hwwaTc62BAwdCp9MVOevT6NGjTWIePXo0cnJysGnTJgC3c7Srqyuef/55k8e9+OKLEBF11r9GjRqhTZs2JudvBoMBq1atQt++fdXcvHLlSvj5+eHee+81eV8iIyPh7e1d4vnKtWvXUK1atULr/f39ceHCBfz555/FPv6XX37BPffcY/K3AgCaNWuGqKgo9XanTp0A3D4vzf93QllfVC7OP4QFVQ7MScXr1KkTNm7ciI0bN6rj8x49ehT9+vVDZmamuk9LrzsL2rdvH5KTk/Hcc8+ZjJ3Vp08fNGnSxOS6qkuXLvjtt98AAGlpafjrr7/w9NNPo0aNGur63377Df7+/mjRokWxx1VcLjp69ChOnjxZ7ON/+eUXsxMw9OjRw2RICCXnDBw4ED4+PoXWV5ZcxMKUE5s/fz42btyIVatWoXfv3rh69So8PDzU+0+dOgURwaRJkxAYGGiyTJkyBcB/AxyfPn26xC/v2bNn0bBhw0LTkzdt2lS9H7hdhBk4cCDWrl2rjo30/fffIzc316QwdfLkSRw9erRQbI0aNTKJTVG3bl2zcT322GPYuXOn+vwrV65Ebm6uyUwVRfHw8MD//d//4fjx47h06RKWL1+OO+64A99++63JiZ651wIAGjdubLJer9ejXr166v2KsLCwQoOWKsep/AEs7etBZAsdOnTA999/jxs3buCPP/7AhAkTkJaWhkGDBuHYsWMm2xYc3LJ+/fpwcXEx2z8+//f1ypUruHnzJj7++ONCn29lPLr8n+/MzExMnjxZHb+hRo0aCAwMxM2bN5GSkqLuMzMz0+yAmwW/l+Uh/0UPAPj5+cHT0xM1atQotN7cGCzy/8d5sdWYTleuXMGtW7fMvhZNmzaF0WjE+fPnkZycjMzMTLOz0Zhbt2DBArRr1w7u7u6FpqW+cuUK+vTpg6pVq6Jx48bYvHmz2dhsfaxUMSkDCSvjB124cAG//fYbhg4dCldXVwC3/y6uX7++UN5QxgMp6u+ipZ9/wLLzn9Iqy3nJN998g9zcXLRt2xanTp3CqVOncP369UIXlgoXF5dCA3UXPL84e/YswsLCTC6IgMLnbwAwZMgQ7Ny5U72A3LZtG5KTkwudv6WkpCAoKKjQe5Oenm7R+YqSB/J79dVX4e3tjY4dO6Jhw4aIi4vDzp07TbbJzc3Fxo0bzV4MmsvDABAeHm52fVG5mLmpcmJOKlqNGjUQHR2N6Oho9OnTBxMnTsSnn36KXbt24dNPPwVQuuvOgoq6rgKAJk2amOSoLl264PLlyzh16hR27doFnU6HqKgok4LVb7/9hjvvvLPQNas55nLRtGnTcPPmTTRq1AgtW7bEyy+/bDKuFQAkJiZi//79zEWlwFn5nFjHjh3VWfkGDBiAu+66Cw8//DBOnDgBb29vdRC+l156qcgWBNZOjVmSoUOHYtGiRVi3bh0GDBiAb7/9Fk2aNEHr1q3VbYxGI1q2bIn333/f7D4KfnkL/jKW/7nGjRuHr7/+GhMnTsRXX32F9u3bl/riNDQ0FEOHDsXAgQPRvHlzfPvtt1i6dGmhQf3spbSvB5Et6fV6dOjQAR06dECjRo3w+OOPY+XKlerJhDnF/cHM/31VctEjjzyC2NhYs9u3atVK/f+YMWOwZMkSjB07FlFRUfDz84NOp8PQoUMtGlzUUtWrV0deXh7S0tIKXbCZY+7kRaGctJa0rqj93LhxA1WqVCkyzylKG7OthYaG4o033jA7GHFcXBxCQkJw5coVbNq0CYMHD8bJkycREBBgsp2lx0rOLTIyEk2aNMHy5csxceJELF++HCJiMvOV0WjEvffei1deecXsPpQCjKMpy3mJUnwyNzELALvPGDdkyBBMmDABK1euxNixY/Htt9/Cz8/PZFp4o9GIoKAgs4UyAAgMDCz2OapXr272Qqxp06Y4ceIEfvrpJ6xfvx7fffcdPvroI0yePBlTp04FALVlSe/evQs9vqicW9pcXPAHBaocmJNKR2lFtmPHDowZM6bcrjuVCXV27NiBf//9F+3atUPVqlXRpUsXfPjhh0hPT8eBAwfw9ttvl7ivonJR165dcfr0aaxduxa//vorPv30U8yePRsLFy5UW8ivW7cOnp6eZieMsFUuqqizHRaFhalKwtXVFdOnT8c999yDefPm4bXXXlNPXNzd3Uucwal+/fo4cuRIsdtERETg0KFDMBqNJhXov//+W71f0bVrV4SGhuKbb77BXXfdhS1btuD//u//Cj3nX3/9hR49epSpIhwQEIA+ffrg66+/xvDhw7Fz507MmTPH6v25u7ujVatWOHnyJK5evarOOpGfcqwnTpwwOUHMyclBQkJCodf70qVLhaZ6/ueffwBAbeppq9eDqKyUgvfly5dN1p88edKkJdSpU6dgNBrNzmCXX2BgIHx8fGAwGCyaTW7VqlWIjY01mcEuKyvLpHttYGAgvLy8zDazPnHiRInPAdz+FQ64PdNd/sIYcLt5eEFJSUkW7dcaCQkJauuF4hQXc36BgYGoUqWK2dfi77//houLC8LDw1G1alV4enri1KlThbYzt27AgAEACnffTE9Px5o1a/Dvv/+iSpUq6NevH1q2bIm1a9cWmqXV0mMl5zd8+HBMmjQJhw4dwrJly9CwYUN06NBBvb9+/fpIT0+3eBZKhaWff+U5Sjr/Mae4v9PWnpckJCRg165dGD16NO6++26T+4xGIx599FEsW7YMr7/+usn6f//91+SCuOD5RUREBDZt2lSooG3u/K1u3bro2LEjvvnmG4wePRrff/89BgwYYNIiv379+ti0aRPuvPNOqwrMTZo0wddff42UlBS1xYCiatWqGDJkCIYMGYKcnBw8+OCDePvttzFhwgR4enri559/RrNmzUr8u2OthIQEkx9RqXJhTrJcXl4egNt//wGU6rqzoPzXVcoQJooTJ06Y5KjatWujdu3a+O233/Dvv/+qs9J37doV48ePx8qVK2EwGNC1a9cSn7dJkyb47rvvzN6nzDL/+OOPIz09HV27dsUbb7yhFqZ+/vlns12KbSEvLw/nz59XZ4J0FuzKV4l069YNHTt2xJw5c5CVlYWgoCB069YNixYtKnSBCdxuVqoYOHAg/vrrL6xevbrQdkoVt3fv3khMTDQZeyAvLw9z586Ft7e3yUmUi4sLBg0ahB9//BFffvkl8vLyCk3ZOXjwYFy8eBGffPJJoefMzMxERkaGxcf+6KOP4tixY3j55ZfVfuIlOXnyJM6dO1do/c2bN7F7925Uq1atyF/9oqOjodfr8eGHH5pUuRcvXoyUlJRCzTrz8vJMprHPycnBokWLEBgYiMjISAC2fT2ILLF161azv9IoRYeCv6QpUxEr5s6dCwAljkXk6uqKgQMH4rvvvjN7spU/FynbF4xr7ty5MBgMJtv07NkTa9asMfkeHz9+HBs2bCg2HoUyFsm+ffsK3Xf9+nX89ddf6u3s7Gz1dSmu5ZS19u/fj86dO5e4XXEx5+fq6oqYmBisXbvWpKtlUlISli1bhrvuugu+vr5wdXVFdHQ01qxZg0uXLqnbnTp1Sh13xhInT56Et7e3OsYhALRs2RJHjx4ttK2lx0rOT2mJMHnyZBw8eNCkZQJw++/i7t27zX6nb968qV4YFWTp5x+w7PzHHOWHpqLGo7TmvERpgfTKK69g0KBBJsvgwYNx9913m22lNG/ePJOY582bB3d3d7VFQ+/evWEwGEy2A4DZs2dDp9MVyuFDhgzBnj178Nlnn+Hq1atmz98MBgPefPPNQrHk5eUVO0YncDuPiYg6xqbi2rVrJrf1ej2aNWsGEUFubi6Aosd0sYWUlBScPn2a+akSY06y3I8//ggAaiG3NNedBbVv3x5BQUFYuHChOgwMcLtV0vHjxwt957t06YItW7bgjz/+UAtTbdq0gY+PD2bMmAEvLy/1+qo4UVFRuHHjRqExngrmIm9vbzRo0ECNrbguxbZw7NgxZGVlOV8uKp8x1qk8KbMv/fnnn4XuW7lypcnMC0ePHpVq1apJ9erV5bXXXpOPP/5Y3nzzTendu7e0atVKfVxaWpo0a9ZMnZp04cKF8r///U/uuOMOOXjwoIjcnimradOmotfr5cUXX5S5c+eqM87NmTOnUCy///67ABAfHx9p2bJlofsNBoP07t1bdDqdDB06VObOnStz5syRZ555RgICAkyOD4DExcUV+ZpkZ2dL9erVBYDFMxisXLlS3N3dpV+/fvLuu+/K4sWLZdq0aVK/fv1Cx2RuxitlNq6YmBiZN2+ejBkzRlxdXQtNlXz33XdLWFiYBAUFyZgxY2Tu3Lly1113CQD5+OOPrXo9iGyhefPmUrduXRk/frx8/PHHMm/ePHn44YfF1dXVZHpe5bPesmVL6du3r8yfP18eeeQRASAPP/ywyT6VbZXZoBSJiYkSEREhVapUkRdeeEEWLVok06dPl4ceekiqVatmsu1jjz0mrq6u6nYjRoyQWrVqSfXq1U1mtPvrr7/E09NTnQb8rbfekuDgYGnVqpXFs8m1aNGi0AyCsbGx4uHhIeHh4TJz5kz54IMPpEOHDuLn5ycAZOrUqersWEUdb2xsrFStWrXQ8919992FZp3at2+fOtOqtTGby1HK1NQ1a9aUt99+W2bOnCn16tUrNDX1vn37RK/XS506dWTmzJnyv//9T8LCwqRNmzZFvo6jRo0ymW1ox44dhWammThxoowaNapMx0rOr3PnzuosTydPnjS5LyMjQ9q1aydubm7y5JNPyoIFC2TWrFnq9yv/9w5FTM1e0uffkvMfczNgKVOtP/roo/LVV1/J8uXLTWK35rykSZMm0qZNmyLvnzt3rgCQ+Ph4EbmdZzw9PaVhw4by2GOPyfz58+X+++8XADJx4kT1cQaDQe655x7R6XTy9NNPy/z586V///4CQMaOHVvoec6fPy86nU58fHwkICCg0EytIrdzgHJss2fPlnnz5skLL7wgYWFhsnLlymKPU3ltJkyYYLK+Xbt20rt3b3n77bfl008/lRdffFE8PDykb9++IiLy77//CgDZtm1boX1GRESYnUXL3Pmj8n6+++67JutXrVolANRZCqlyYk4yFRERIW3atJEvv/xSvvzyS1m8eLE8//zz4uHhITVq1JALFy6o21p63VlwVj6R/85jOnXqJHPmzJEJEyZIlSpVTM5HFcpsiTqdzmRmwJ49ewoA6datm0XHlpiYKG5ubrJo0SKT9UFBQTJ48GCZOXOmfPLJJzJq1CjR6XTqDKhbtmwRAHLmzJlC+yxNzlFeh4I5c9asWVKlShWTGfycAQtTTqi4wpTBYJD69etL/fr1JS8vT0RETp8+LY899piEhISIu7u71KxZU+6//35ZtWqVyWOvXbsmo0ePlpo1a4per5datWpJbGysyRc+KSlJHn/8calRo4bo9Xpp2bKlSVLMz2g0Snh4uNkpihU5OTkyc+ZMad68uXh4eEi1atUkMjJSpk6dKikpKep2JRWmRP6bun7ZsmXFbpf/WGbMmCF33323hIaGipubm1SrVk26d+9e6LUxd9EnIjJv3jxp0qSJuLu7S3BwsDz77LOFkqdyIbpv3z6JiooST09PiYiIkHnz5ln9ehDZwrp16+SJJ56QJk2aiLe3t+j1emnQoIGMGTNGkpKS1O2U4suxY8dk0KBB4uPjI9WqVZPRo0ebTOubf9uChRqR29+5uLg4CQ8PF3d3dwkJCZEePXqYFGhFRG7cuKHmGW9vb+nZs6f8/fffEhERYVKYEhHZvn27REZGil6vl3r16snChQvVGCzx/vvvm0yDLnL7Yi8iIkIWLFggoaGh4uXlJYMGDZJDhw5JeHi4RERESGJiYrHHW5rC1Kuvviq1a9e2aBr5omIuKkft379fevbsKd7e3lKlShW55557TKZTV2zevFnatm0rer1e6tevr14Uenp6mo2hYGFq//79hQqMo0ePlhdffLFMx0rOb/78+QJAOnbsaPb+tLQ0mTBhgjRo0ED0er3UqFFDOnfuLLNmzTIpmBS8CBSx/PNf0vmPuYvAvLw8GTNmjAQGBopOpzObc0pzXhIfHy8AZNKkSUVuc+bMGQEg48aNE5H/8szp06clJiZGqlSpIsHBwTJlyhQxGAyFXsdx48ZJWFiYuLu7S8OGDeXdd98t8rt45513CgB58skni4zn448/lsjISPHy8lJ/hHzllVfk0qVLJR7v888/Lw0aNDBZt2jRIunatatUr15dPDw8pH79+vLyyy+r5z/z5s0TPz8/yc3NLbQ/WxSmhgwZInfddVeJsZNzY04yFRERoRbqAIiLi4sEBQXJsGHDzBZxLbnuNFeYEhH55ptvpG3btuLh4SEBAQEyfPhwk8KX4ujRowJAmjZtarL+rbfeKjGPFtSvXz/p0aNHof107NhR/P39xcvLS5o0aSJvv/22+v6+9NJL0qxZM7P7s0VhqlOnTvLII49YfAwVBQtTVGmMHTtWfHx8JCMjQ+tQTJi7ECWqSIorNlV0N2/elICAAPn000/VdUphqjxkZWVJSEiI2VanRTEXsz3079+/0IWjomBhKi0tTdzd3U1OILt16yafffaZetuaYyWqyBz1vMQRnD59Wtzd3UvVerJXr17y0EMP2SWey5cvi6enp6xZs8Yu+ydyBMxJhe3YsUNcXFzkn3/+sfgxTZs2lZdfftku8Rw4cEB0Op0cOHDALvvXEseYokohKysLX331FQYOHIgqVapoHQ4RVRB+fn545ZVX8O6779p0xj9LLVmyBO7u7njmmWcsfow9Ys7MzDS5ffLkSfzyyy/o1q2byfq8vDxkZWXBYDCY/N/b2xv9+/fHlClTkJmZiZ9++gmHDh1C//791cdac6xEFRXPS4pXr149jBw5EjNmzLD4Md26dcO4cePsEs+cOXPQsmVLk5xF5EyYk8zr0qULYmJi8M4771i0fU5ODoYMGVJoYhdbmTFjBgYNGoQ2bdrYZf9a0onYYZRWIgeRnJyMTZs2YdWqVVizZg3279/vcF/kbt264erVq1bNsEHkCN544w1MnToVV65cqRTTaI8YMQLbtm0zGaDU2YWGhmLEiBGoV68ezp49iwULFiA7OxsHDhwwma5Y+Szkt2TJEowYMQJXrlxBbGwstm3bhlq1auGjjz4q9cw8RBVdRTgvIaLKgzmJHIWb1gEQ2dOxY8cwfPhwBAUF4cMPP2SiJSKywn333Yfly5cjMTERHh4eiIqKwv/+9z+TohRwuzD1xhtvmN1HYGCgOnMhUWXF8xIiciTMSeQo2GKKiIiIiIiIiIg0wTGmiIiIiIiIiIhIEyxMERERERERERGRJpy+MCUiSE1NBXssEpHWmI+IyFEwHxGRo2A+IiKnL0ylpaXBz88PaWlpWodCRJUc8xEROQrmIyJyFMxHROT0hSkiIiIiIiIiInJMLEwREREREREREZEmWJgiIiIiIiIiIiJNsDBFRERERERERESaYGGKiIiIiIiIiIg0wcIUERERERERERFpgoUpqtCOHTuG6Oho/P7771qHQkREFkpJScH999+PZcuWaR0KVWLnz59Hz549sW7dOq1DISJyen///TdiYmLw22+/aR0KOSA3rQMgKou5c+di8+bNqF27Nu666y6twyEiIgts2bIFP//8M65evYqHH35Y63Cokvr+++/x66+/Qq/Xo1evXlqHQ0Tk1FasWIGNGzeiZs2a6NKli9bhkINhiymq0LZs2QIASE1N1TgSIiKyVEpKCgAgIyND40ioMktMTAQAXL16VeNIiIic35UrVwD8dw5AlB8LU1RhXbhwAf/88w8AIC0tTeNoiIjIUunp6QCArKwsjSOhyiw5ORkAC1NEROWBhSkqDgtTVGFt3bpV/T8LU0REFYeSszMzMzWOhCqzpKQkACxMERGVByXXsqcLmcPCFFVYSjc+gIUpIqKKhIUpcgRKi6mbN28iNzdX42iIiJwbW0xRcViYogpJRFiYIiKqoJSufCxMkZaUFlMAcP36dQ0jISJyfmwxRcVhYYoqpH///Rfnzp1Tb7MwRURUceRvMSUiGkdDlZGImBSmlF/yiYjI9kRELUyxxRSZw8IUVUhKa6k6deoAuF1558UNEVHFkP/HhOzsbA0jocoqLS3N5LPHcaaIiOwnJSUFeXl5AG5PfJKTk6NxRORoWJiiCkkZ+Lx///4AgLy8PF7cEBFVEEpXPoDd+Ugb+VtLASxMERHZU8Ecy+58VBALU1QhnThxAgBwzz33qOvYnY+IqGLIn6+zsrI0jIQqK2XgcwULU0RE9sPCFJWEhSmqkK5duwYACA4ORpUqVQCwMEVEVFGwxRRpjS2miIjKT8Fx/DjOFBXEwhRVSEphKiAgAD4+PgBYmCIiqijy52sWpkgLLEwREZUftpiikrAwRRVOTk6O+mt79erV4evrC4CFKSKiioKFKdIau/IREZWfgjmWLaaoIBamqMK5fv06AECn08Hf319tMcXKOxFRxcCufKQ1pcVU7dq1AbAwRURkT+zKRyVhYYoqHKUbX7Vq1eDq6squfEREFUheXp7JgOcsTJEWlBZTzZs3B8DCFBGRPbErH5WEhSmqcJTCVPXq1QGAhSkiogqkYK7mrHykBaXFFAtTRET2p+RYF5fb5Qe2mKKCWJiiCoeFKSKiiit/Nz6ALaZIGwVbTBXsZkJERLaj5Fil+zRbTFFBLExRhcPCFBFRxVUwV7MwRVpQWkw1a9YMAHDr1i3cunVLy5CIiJyW0mKqXr16ANhiigrTtDC1YMECtGrVCr6+vvD19UVUVBTWrVun3p+VlYW4uDhUr14d3t7eGDhwYKHpfanyUQY/DwgIAAB1Vj5W3omIHB8LU6S1rKws9aKoQYMGcHd3B/DfD19ERGRbSoup+vXrA+B1GxWmaWGqVq1amDFjBuLj47Fv3z50794d/fv3x9GjRwEA48aNw48//oiVK1di+/btuHTpEh588EEtQyYHwBZTZG8zZsyATqfD2LFj1XUslBPZBrvykdaUCyR3d3dUq1YNNWrUAMBxpoiI7CE3N1f9MUApTLHFFBWkaWGqb9++6N27Nxo2bIhGjRrh7bffhre3N/bs2YOUlBQsXrwY77//Prp3747IyEgsWbIEu3btwp49e7QMmzTGwhTZ059//olFixahVatWJutZKCeyDbaYIq0pPyoEBQVBp9OxMEVEZEfKtZuLiwvq1KkDgC2mqDCHGWPKYDBgxYoVyMjIQFRUFOLj45Gbm4vo6Gh1myZNmqB27drYvXt3kfvJzs5GamqqyULOhYUpspf09HQMHz4cn3zyCapVq6auZ6GcyHbYYoq0pgx8HhwcDAAsTBER2ZHSSjUgIEA9v2aLKSpI88LU4cOH4e3tDQ8PDzzzzDNYvXo1mjVrhsTEROj1evj7+5tsHxwcjMTExCL3N336dPj5+alLeHi4nY+AyhsLU2QvcXFx6NOnj0lBHAAL5UQ2VDBXZ2VlaRRJxcCuxbaXv8UUwMIUEZE9Kbm1Ro0aHBuYiqR5Yapx48Y4ePAg9u7di2effRaxsbE4duyY1fubMGECUlJS1OX8+fM2jJYcgTL4OQtTZEsrVqzA/v37MX369EL3sVBOZDvsymc5di22D7aYIiIqP0puDQwMhJ+fHwC2mKLCNC9M6fV6NGjQAJGRkZg+fTpat26NDz74ACEhIcjJycHNmzdNtk9KSkJISEiR+/Pw8FBn+VMWci4FW0yx8k5ldf78ebzwwgv4+uuv4enpabP9slBOVBi78lmGXYvthy2miIjKj9KVr2CLKRHRMixyMJoXpgoyGo3Izs5GZGQk3N3dsXnzZvW+EydO4Ny5c4iKitIwQtKSiKiFqYCAAABsMUVlFx8fj+TkZLRr1w5ubm5wc3PD9u3b8eGHH8LNzQ3BwcEslBPZiJKrlSIwC1PmsWux/SiFqYItppSLJyIisp38XfmUFlMGgwG3bt3SMixyMG5aPvmECRPQq1cv1K5dG2lpaVi2bBm2bduGDRs2wM/PDyNHjsT48eMREBAAX19fjBkzBlFRUbjjjju0DJs0lJ6ejtzcXADsyke206NHDxw+fNhk3eOPP44mTZrg1VdfRXh4uFooHzhwIAAWyomspeTqoKAgnDt3joUpM5SuxX/++Weh+8rStXjq1Km2DrVCUn5kUH7gYospIiL7yd+Vr2rVqnBxcYHRaERqaiqqVq2qcXTkKDQtTCUnJ+Oxxx7D5cuX4efnh1atWmHDhg249957AQCzZ8+Gi4sLBg4ciOzsbPTs2RMfffSRliGTxpTWUh4eHqhSpQqA/wpTt27dgsFggKurq2bxUcXk4+ODFi1amKyrWrUqqlevrq5noZzINpSufCxMmad0Ld64caPNuxaPHz9evZ2amlppx73LyMgAAPWCiIUpIiL7yd+VT6fTwdfXFzdv3kRKSgpCQ0M1jo4chaaFqcWLFxd7v6enJ+bPn4/58+eXU0Tk6PKPL6XT6QD8V5gCbl/wKE1EiWyJhXIi21BaTAUGBgJgV76C8nctVhgMBuzYsQPz5s3Dhg0b1K7F+VtNWdK12MPDw56hVxhK9xHlBy4WpoiI7Cd/Vz4AamGqMncpp8I0LUwRlVbBGfmA2yfb7u7uyM3NRWpqKgtTZBPbtm0zuc1COZFtFCxMZWVlaRmOw2HXYvsr2GJK6dKnnGMQEZHtKDPwKT+mcGY+MoeFKapQCs7IBwA6nQ4+Pj64fv06x5kiInJwSlc+tpgyj12L7a9gYUr5Nzs7m0MCEBHZWMGcyxnVyRwWpqhCMVeYAsDCFBFRBZF/8HOAhSlrsGtx2RTsypd/8N1bt26ZDBFARERlo/wgpeRatpgic1iYogpFKUwpze4VnJmPiKhiYGGq9Ni12LYK/nrv5eVlch8LU0REtqPkXG9vbwBsMUXmuWgdAFFpFNdiCmBhiojI0bErH2nJaDSqLaaUwpROp1NbTyn3ERGRbRT8MYAtpsgcFqaoQjE3+DnAwhQRUUVgNBrVE1S2mCIt5B9sXylGAf9dMCmfTyIiKjuDwaDm3YJjTLEwRfmxMEUVSlEtptgklIjI8eW/6M8/K5+IaBUSVTL5P4PmClNsMUVEZDv5c67SlU9pMcXrNsqPhSmqUNiVj4io4lJytKurK6pVq6auz87O1iokqmSUiyQvLy+4uPx3GqwUqdhiiug/06dPR4cOHeDj44OgoCAMGDAAJ06cMNkmKysLcXFxqF69Ory9vTFw4EAkJSVpFDE5GiWn6nQ6eHp6AmBXPjKPhSmqUFiYIiKquJQc7e3tbTLgNLvzUXkpOCOfgl35iArbvn074uLisGfPHmzcuBG5ubmIiYkx+Z6MGzcOP/74I1auXInt27fj0qVLePDBBzWMmhxJ/vGldDodAPZ0IfM4Kx9VKJyVj4io4lIGPvfx8YG7uztcXFxgNBqRmZlp0oKKyF4KDsKr4ODnRIWtX7/e5PbSpUsRFBSE+Ph4dO3aFSkpKVi8eDGWLVuG7t27AwCWLFmCpk2bYs+ePbjjjju0CJsciPJ3X+nGB7DFFJnHFlNUYRgMBty8eRMAW0wREVVE+VtM6XQ6tdUUW0xReVEKU2wxRVR6SiFB+YE4Pj4eubm5iI6OVrdp0qQJateujd27dxe5n+zsbKSmppos5JzM/RjAFlNkDgtTVGEoM/LpdLpCLaaY4IiIHJ9SmFJ+TGBhisqb0iKqYIspFqaIimc0GjF27FjceeedaNGiBQAgMTERer0e/v7+JtsGBwcjMTGxyH1Nnz4dfn5+6hIeHm7P0ElDxRWm2GKK8mNhiiqM5ORkALdbS7m5mfZCZYspIiLHl78rH8DCFJU/duUjsk5cXByOHDmCFStWlHlfEyZMQEpKirqcP3/eBhGSI1L+7ufPuUq3Pv4QQPlxjCmqMJTCVFBQUKH7WJgiInJ8+bvyAf8VprKysjSLiSoXduUjKr3Ro0fjp59+wo4dO1CrVi11fUhICHJycnDz5k2TVlNJSUkICQkpcn8eHh7w8PCwZ8jkIJScmn+MKeZbMoctpqjCYGGKiKhiY1c+0hq78hFZTkQwevRorF69Glu2bEHdunVN7o+MjIS7uzs2b96srjtx4gTOnTuHqKio8g6XHJC5VqrK//Py8pCTk6NJXOR42GKKKgylMBUYGFjoPhamiIgcX8GufJ6engBYmKLyw658RJaLi4vDsmXLsHbtWvj4+KjjRvn5+cHLywt+fn4YOXIkxo8fj4CAAPj6+mLMmDGIiorijHwEoPjCFHD7vKDg2MFUObEwRRVGcS2m+Ks7EZHjK6orH3M3lRd25SOy3IIFCwAA3bp1M1m/ZMkSjBgxAgAwe/ZsuLi4YODAgcjOzkbPnj3x0UcflXOk5KiUH6Tyd+XT6/Vwd3dHbm4uMjIyWJgiACxMUQXCwhQRUcVW8ASVuZvKW0ld+dhiiug/IlLiNp6enpg/fz7mz59fDhFRRVNUK9WqVavi5s2b/DGAVBxjiioMSwpTHECXiMhxKTlaydksTFF5K6krHy+SiIhsp7jCVP77iViYogrDksKUwWBAbm5uucZFRESWUQpQLEyRVpQWUezKR0Rkf+a68uW/rdxPxMIUVRjFFaaUAXQBXuAQETkqpcWUkrPZ2pXKGwc/JyIqP2wxRZZiYYoqDBamiIgqNiU/FyxMMW9TeeHg50RE5YeFKbIUC1NUIWRlZSE1NRWA+cKUTqfjtONERA6u4BhTzNtU3koa/JwXSUREtqN01SuYc9mVjwpiYYoqhCtXrgAA3N3d4efnZ3YbdgmhsliwYAFatWoFX19f+Pr6IioqCuvWrVPvz8rKQlxcHKpXrw5vb28MHDgQSUlJGkZMVPEU1ZWPhSkqL+zKR0RUfpScW3CMKf4YQAWxMEUVQv5ufDqdzuw2vMChsqhVqxZmzJiB+Ph47Nu3D927d0f//v1x9OhRAMC4cePw448/YuXKldi+fTsuXbqEBx98UOOoiSoWDn5OWmNXPiKi8sOufGQpN60DILJEceNLKdglhMqib9++JrfffvttLFiwAHv27EGtWrWwePFiLFu2DN27dwcALFmyBE2bNsWePXtwxx13aBEyUYXDFlOktZK68mVlZcFgMMDV1bXcYyMicjZFFaaUFlQsTJHCqhZT9erVw7Vr1wqtv3nzJurVq1fmoIgKsqQwxQscshWDwYAVK1YgIyMDUVFRiI+PR25uLqKjo9VtmjRpgtq1a2P37t1F7ic7OxupqakmC1FlxhZTpLWSuvIB/DwSEdmKMoZUUV35OMYUKawqTJ05cwYGg6HQ+uzsbFy8eLHMQREVVJrCFMeYImsdPnwY3t7e8PDwwDPPPIPVq1ejWbNmSExMhF6vh7+/v8n2wcHBSExMLHJ/06dPh5+fn7qEh4fb+QiIHFtRLaaYt6m8FNWVT/ks5t+GiIjKhl35yFKl6sr3ww8/qP/fsGGDySDUBoMBmzdvRp06dWwWHJGCLaaoPDRu3BgHDx5ESkoKVq1ahdjYWGzfvt3q/U2YMAHjx49Xb6emprI4RZWakp/ZlY+0ICJFduVzcXFBlSpVcOvWLQ6ATkRkAzk5OcjLywPAwhSVrFSFqQEDBgAAdDodYmNjTe5zd3dHnTp18N5779ksOCIFC1NUHvR6PRo0aAAAiIyMxJ9//okPPvgAQ4YMQU5ODm7evGnSaiopKQkhISFF7s/DwwMeHh72DpuoQhARtWUUu/KRFvJ/zgpeJAFQC1O8UCIiKrv83fSKGmOKXflIUaqufEajEUajEbVr10ZycrJ622g0Ijs7GydOnMD9999vr1ipEuPg56QFJbdFRkbC3d0dmzdvVu87ceIEzp07h6ioKA0jJKo48vLyYDQaAfyXr5m3qTzlLzjl77qn4C/4RES2o+RSd3d36PV6k/uYb6kgq2blS0hIsHUcRMXiGFNkbxMmTECvXr1Qu3ZtpKWlYdmyZdi2bZvabXnkyJEYP348AgIC4OvrizFjxiAqKooz8hFZKH/xiS2mSAtKFz1PT0+zs+4p406xKx8RUdkVNb5U/nUsTJHCqsIUAGzevBmbN29WW07l99lnn5U5MKL82JWP7C05ORmPPfYYLl++DD8/P7Rq1QobNmzAvffeCwCYPXs2XFxcMHDgQGRnZ6Nnz5746KOPNI6aqOLI/6OB0sWVeZvKU1EDnyt4oUREZDtKNz1zhSmlKx/zLSmsmpVv6tSpiImJwebNm3H16lXcuHHDZLHU9OnT0aFDB/j4+CAoKAgDBgzAiRMnTLbJyspCXFwcqlevDm9vbwwcOBBJSUnWhE0VlIiwMEV2t3jxYpw5cwbZ2dlITk7Gpk2b1KIUcPsX9vnz5+P69evIyMjA999/X+z4UkRkKv/A5zqdDgBbulL5Ku7X+/zreaFERFR2Si5VilD5KfmWY0yRwqoWUwsXLsTSpUvx6KOPlunJt2/fjri4OHTo0AF5eXmYOHEiYmJicOzYMfXDOm7cOPz8889YuXIl/Pz8MHr0aDz44IPYuXNnmZ6bKo7U1FTk5OQAAAIDA4vcjmOVEBE5LqX4pORqgD8oUPkqakY+BbvyERHZDrvyUWlYVZjKyclB586dy/zk69evN7m9dOlSBAUFIT4+Hl27dkVKSgoWL16MZcuWoXv37gCAJUuWoGnTptizZw/HdqkklNZSPj4+ZgcrVfACh4jIceVvMaXI32JKRNSWVET2wK58RETlh4UpKg2ruvI9+eSTWLZsma1jQUpKCgAgICAAABAfH4/c3FxER0er2zRp0gS1a9fG7t27bf785Jgs6cYHsEsIEZEjU3Jz/h8Y8v+fuZvszdKufGwxRURUdko3PXNd+fKPMSUi5RoXOSarWkxlZWXh448/xqZNm9CqVSu4u7ub3P/++++Xep9GoxFjx47FnXfeiRYtWgAAEhMTodfr4e/vb7JtcHAwEhMTze4nOzsb2dnZ6u3U1NRSx0KORXmvLS1MscUUEZHjMddiKv//MzMzi20VS1RWlnbl4y/4RERlZ0mLKRFBZmZmkS1ZqfKwqjB16NAhtGnTBgBw5MgRk/usbYYfFxeHI0eO4Pfff7fq8Yrp06dj6tSpZdoHOZbjx48DABo2bFjsdixMERE5LnMtptzd3eHq6gqDwWDyoxKRPbArHxFR+SmuMJU/D2dkZLAwRdYVprZu3WrTIEaPHo2ffvoJO3bsQK1atdT1ISEhyMnJwc2bN01aTSUlJRU5G9aECRMwfvx49XZqairCw8NtGi+VL6X4qbSkKwoHPyciclzmBj9XbmdkZLArH9ldSS2m2JWPiMh2lK585nKuq6srvLy8kJmZiYyMjGInuKLKwaoxpmxFRDB69GisXr0aW7ZsQd26dU3uj4yMhLu7OzZv3qyuO3HiBM6dO4eoqCiz+/Tw8ICvr6/JQhWbpYUpjjFFROS4lB8NCnbXUwpVzN1kbyWNMcWufEREtqPkUnNjTAH/5WKlgEWVm1Utpu65555iu+xt2bLFov3ExcVh2bJlWLt2LXx8fNSxhPz8/ODl5QU/Pz+MHDkS48ePR0BAAHx9fTFmzBhERUVxRr5KIicnBydOnABgeWGKLaaIiBxPcS2m8t9PZC/sykdEVH4smXDi6tWrzLkEwMrClDK+lCI3NxcHDx7EkSNHEBsba/F+FixYAADo1q2byfolS5ZgxIgRAIDZs2fDxcUFAwcORHZ2Nnr27ImPPvrImrCpAjp58iTy8vLg6+tr0s3THBamiIgcl7nBz/PfZmGK7M3Swc/ZlY+IqOyK68qXfz0LUwRYWZiaPXu22fVvvPFGqZriWTI1pKenJ+bPn4/58+dbvF9yHvm78ZU0sD4LU0REjsvc4OcAC1NUfthiioio/JTUlU9Zz658BNh4jKlHHnkEn332mS13SZWcpeNLARz8nIjIkbHFFGnNkm4l+bcjIiLrMedSadi0MLV79+5CJ5xEZVGawhQHPyciclxsMUVaY1c+IqLyw8IUlYZVXfkefPBBk9sigsuXL2Pfvn2YNGmSTQIjAqwrTLHFFBGR4ylp8HPmbrI3duUjIio/She9krryMecSYGVhys/Pz+S2i4sLGjdujGnTpiEmJsYmgRHdunULp0+fBgA0b968xO1ZmCIiclzsykdas/TXe7aYIiIqO0tzLseYIsDKwtSSJUtsHQdRIcePH4eIIDAwEEFBQSVurxSm8vLykJeXBzc3qz7eRERkB+zKR1qztCsff70nIio7duWj0ijTlXt8fDyOHz8O4HaLlrZt29okKCKgdN34ANNf4bOysopsNkpEROWPLaZIa5Z25cvMzITRaISLi02HYiUiqlSUllBFFabYlY/ys6owlZycjKFDh2Lbtm3w9/cHANy8eRP33HMPVqxYgcDAQFvGSJVUWQpTmZmZLEwRETkQtpgirZX0633+glVmZmaR2xERUfFERG2lWtQ1GbvyUX5W/RQ0ZswYpKWl4ejRo7h+/TquX7+OI0eOIDU1Fc8//7ytY6RKSilMWTK+FHB7rDMPDw8AHGeKiMjRsMUUac3SrnwAf8EnIiqLW7duQUQAsCsfWcaqFlPr16/Hpk2b0LRpU3Vds2bNMH/+fA5+TjajFKZatmxp8WO8vLyQnZ3NwhQRkYNhiynSktFoLLHFlIuLC7y8vJCZmckLJSKiMrh27RoAwN3dvcQWU8y3BFjZYspoNMLd3b3Qend3dxiNxjIHRXTz5k1cuHABgOUtpgBe4BAROSolL7PFFGkh/4WPj49PkdspraY4Mx8RkfWuXr0KAKhRowZ0Op3ZbTjGFOVnVWGqe/fueOGFF3Dp0iV13cWLFzFu3Dj06NHDZsFR5XX06FEAQHh4OPz8/Cx+nPJLPFtMERE5FnblIy2lpaUB+K9VVFH4Cz4RUdlduXIFAIode5pjTFF+VhWm5s2bh9TUVNSpUwf169dH/fr1UbduXaSmpmLu3Lm2jpEqodIOfK5gYYqIyDGxKx9pSSlM+fj4FPnrvXJ//u2JiKj08reYKgp/CKD8rCpMhYeHY//+/fj5558xduxYjB07Fr/88gv279+PWrVq2TpGqoSUFlOl6cYHsDBF1ps+fTo6dOgAHx8fBAUFYcCAAThx4oTJNllZWYiLi0P16tXh7e2NgQMHIikpSaOIiSoWtpgiLeUvTBUn/2zTRERkHUsKU+zKR/mVqjC1ZcsWNGvWDKmpqdDpdLj33nsxZswYjBkzBh06dEDz5s3x22+/2StWqkTYYorK2/bt2xEXF4c9e/Zg48aNyM3NRUxMjMkfy3HjxuHHH3/EypUrsX37dly6dAkPPvighlETVRxsMWUZFsntg4UpIqLyw658VFqlKkzNmTMHTz31FHx9fQvd5+fnh1GjRuH999+3WXBUeVlbmOIFDllr/fr1GDFiBJo3b47WrVtj6dKlOHfuHOLj4wEAKSkpWLx4Md5//310794dkZGRWLJkCXbt2oU9e/ZoHD2R42OLKcuwSG4fpS1M3bhxw94hERE5LXblo9JyK83Gf/31F2bOnFnk/TExMZg1a1aZg6LKLTk5GVeuXIFOp0PTpk1L9Vi2mCJbSUlJAQAEBAQAAOLj45Gbm4vo6Gh1myZNmqB27drYvXs37rjjjkL7yM7ORnZ2tno7NTXVzlETOS62mLLM+vXrTW4vXboUQUFBiI+PR9euXdUi+bJly9C9e3cAwJIlS9C0aVPs2bPHbC6i/wpTRU1brqhWrRoAtpgiIiqL0hSmsrKyYDAY4OrqWi6xkWMqVYuppKQkuLu7F3m/m5ub2myPyFpKa6n69eur0zZbioUpsgWj0YixY8fizjvvVFvtJSYmQq/Xq7+mK4KDg5GYmGh2P9OnT4efn5+6hIeH2zt0IodkMBiQm5sLgC2mSqu0RXIyjy2miIjKjyVd+fL/UHDr1i27x0SOrVSFqZo1a6pFA3MOHTqE0NDQMgdFlZu13fgAFqbINuLi4nDkyBGsWLGiTPuZMGECUlJS1OX8+fM2ipCoYslfdGJhynK2KpIDt1twpqammiyViTKGSUmFKbaYIiIqO0taTHl6eqqzpHKcKSpVYap3796YNGmS2ZPHzMxMTJkyBffff7/NgqPKyRaFKV7gkLVGjx6Nn376CVu3bjWZZTQkJAQ5OTmFLlaSkpIQEhJidl8eHh7w9fU1WYgqIxamrGOrIjnAFpwc/JyIqPxYUpjS6XQcZ4pUpSpMvf7667h+/ToaNWqEd955B2vXrsXatWsxc+ZMNG7cGNevX8f//d//2StWqiTKUphSLnDYYopKS0QwevRorF69Glu2bEHdunVN7o+MjIS7uzs2b96srjtx4gTOnTuHqKio8g6XqEJRcrKbmxvc3EyHt2RhyjxbFskBtuC0tDCltJhiVz4iIusYjUZcu3YNQPFd+QCgevXqAMCZZal0hang4GDs2rULLVq0wIQJE/DAAw/ggQcewMSJE9GiRQv8/vvvCA4OtlesVEn8/fffAFDqgc8BduUj68XFxeGrr77CsmXL4OPjg8TERCQmJqqfJT8/P4wcORLjx4/H1q1bER8fj8cffxxRUVEcbJioBEUNfA6wMFWQvYrklb0FJ1tMEVlnx44d6Nu3L8LCwqDT6bBmzRqT+0UEkydPRmhoKLy8vBAdHY2TJ09qEyw5hJs3b8JgMAD4r/BUlHr16gEAEhIS7B4XObZSzcoHABEREfjll19w48YNnDp1CiKChg0bqr8wEZVFSkqK+iulkqhKg4UpstaCBQsAAN26dTNZv2TJEowYMQIAMHv2bLi4uGDgwIHIzs5Gz5498dFHH5VzpEQVj5KTC3bjA9gFu6C4uDgsW7YMa9euVYvkwO3iuJeXl0mRPCAgAL6+vhgzZgyL5CVgiyki62RkZKB169Z44okn8OCDDxa6/5133sGHH36Izz//HHXr1sWkSZPQs2dPHDt2zGzOJ+endOPz8fGBh4dHsdvWq1cPW7duxb///lseoZEDK3VhSlGtWjV06NDBlrEQqdXyGjVqlDilszksTJG1RKTEbTw9PTF//nzMnz+/HCIich5sMWU5Fsntgy2miKzTq1cv9OrVy+x9IoI5c+bg9ddfR//+/QEAX3zxBYKDg7FmzRoMHTq0PEMlB2HJjHwKpSECC1NkdWGKyB6UwlTBrguW4gUOEZHjUXKyuV/PlXW5ubkwGAxwdXUt19gcDYvk9lHawlRWVhaysrLY4oOoGAkJCUhMTER0dLS6zs/PD506dcLu3btZmKqkLBn4XKFc87EwRaUaY4rI3spamGKLKSIix1NcV77867Kzs8stJqpcLC1M+fr6qtOXs9UUUfGUrsYFxxgODg5W7zMnOzsbqampJgs5j9IUpjjGFClYmCKHwsIUEZHzKa4rX/7xJ9jalezF0sKUi4sL/Pz8ALAwRWQv06dPh5+fn7qEh4drHRLZkDVd+S5evMhzgEqOhSlyKCxMERE5n+JaTLm5ucHN7fbIAjwpJXtJT08HAIvGr+QA6ESWCQkJAQAkJSWZrE9KSlLvM2fChAlISUlRl/Pnz9s1TipfpWkxpYwrLCI4e/asvUMjB8bCFDkUWxWmeHFDROQ4imsxBXB8QLI/S1tMARwAnchSdevWRUhICDZv3qyuS01Nxd69exEVFVXk4zw8PODr62uykPMoTWFKp9NxAHQCwMHPyYGICM6cOQOg7IOfs8UUEZHjKK7FlLI+PT2duZvswmAw4NatWwAsK0yxxRTRf9LT03Hq1Cn1dkJCAg4ePIiAgADUrl0bY8eOxVtvvYWGDRuibt26mDRpEsLCwjBgwADtgiZNlaYrH3C7O9+hQ4dYmKrkWJgih5GcnIxbt25Bp9Ohdu3aVu2DXfmIiBwPW0yRlpRufABbTBGV1r59+3DPPfeot8ePHw8AiI2NxdKlS/HKK68gIyMDTz/9NG7evIm77roL69ev54yWlVhpWkwBYIspAsDCFDkQpRtfzZo1TQbDLQ0WpoiIHI8lLaYAFqbIPpRufG5ubhadXygtpliYIgK6desGESnyfp1Oh2nTpmHatGnlGBU5MhamyBocY4ocRlnHlwJYmCIickRKwYmFKdJC/vGldDpdidsrLabYlY+IqPSs6coHsDBV2bEwRQ7DloUpXtwQETkOduUjLZVm4HOALaaIiKyVnZ2t5lxrWkwV1zqPnJumhakdO3agb9++CAsLg06nw5o1a0zuFxFMnjwZoaGh8PLyQnR0NE6ePKlNsGR3tihMKRc3OTk5MBgMNomLiIjKhl35SEulLUyxxRQRkXWuXbsGAHB1dVVzaUkiIiKg0+mQnp6uPp4qH00LUxkZGWjdujXmz59v9v533nkHH374IRYuXIi9e/eiatWq6NmzJ09cnZQtW0wBvMAhInIUbDFFWrK2MMUWU0REpaN046tevTpcXCwrNXh6eqJmzZoA2J2vMtO0MNWrVy+89dZbeOCBBwrdJyKYM2cOXn/9dfTv3x+tWrXCF198gUuXLhVqWUXOwdaFKY4zRUTkGNhiirRkbVc+tpgiIiqd0g58rlCu/1iYqrwcdoyphIQEJCYmIjo6Wl3n5+eHTp06Yffu3RpGRvZgMBhw7tw5AGUrTLm4uECv1wPgBQ4RkaNgiynSUnp6OgDA29vbou3ZYoqIyDqJiYkAgKCgoFI9rkmTJgCAbdu22TokqiActjClfKiDg4NN1gcHB6v3mZOdnY3U1FSThRzfhQsXkJeXB3d3d4SFhZVpX5yZj4jIsbDFFGmJg58TEZUPpcVTaRsaDBs2DACwbNky9ccEqlwctjBlrenTp8PPz09dwsPDtQ6JLKB044uIiICrq2uZ9lW1alUAYFIjInIQSsGJhSnSQlnGmDIajfYKi4jI6SiFKWWmPUt169YNDRo0QFpaGr755ht7hEYOzmELUyEhIQCApKQkk/VJSUnqfeZMmDABKSkp6nL+/Hm7xkm2YYvxpRR+fn4AgJSUlDLvi4iIyo5d+UhL1raYMhqN/JGLiKgUlGu60hamdDodnnrqKQDAJ598YvO4yPE5bGGqbt26CAkJwebNm9V1qamp2Lt3L6Kioop8nIeHB3x9fU0WcnxnzpwBYJvClPKeszBFROQY2JWPtFTawpSnpyc8PDwAcAB0IqLSsLbFFACMGDEC7u7u2Lt3L/766y9bh0YOTtPCVHp6Og4ePIiDBw8CuF1hPXjwIM6dOwedToexY8firbfewg8//IDDhw/jscceQ1hYGAYMGKBl2GQH9mgxxfHFiIgcA1tMkZZKW5gCOM4UEVFpZWdn48KFCwCsK0wFBQWp1/nt27eHl5eXutSrV0+dKIuck6aFqX379qFt27Zo27YtAGD8+PFo27YtJk+eDAB45ZVXMGbMGDz99NPo0KED0tPTsX79+iJ/caWKi135iIic161btwCwxRRpw5rClDLOFFtMERFZ5uzZsxARVK1aFYGBgVbtY9y4cXB1dUVeXh6ysrLUJSEhAfPmzbNxxORI3LR88m7dukFEirxfp9Nh2rRpmDZtWjlGRVpQClN16tQp877YlY+IyHGICJKTkwGgyBNVFqbInspSmGKLKSIiy+TvxqfT6azaR1RUFK5evWrS82Xr1q0YMWIEli5dirfeegt6vd4m8ZJjcdgxpqjyyM7OxqVLlwCwKx8RkSOw5UxkaWlpaoup0NBQs9uwMEX2xK58RET2pxSmyno95+/vj9q1a6vL8OHDERoaiitXrmDt2rW2CJUcEAtTpDml2WeVKlWsbvaZH7vykTV27NiBvn37IiwsDDqdDmvWrDG5X0QwefJkhIaGwsvLC9HR0Th58qQ2wRLZ0YEDB+Dn54fXX3/dJvtTfnjw9fVF1apVzW7DwhTZE7vyERHZn7Uz8pXEzc0NTzzxBADg448/tum+yXGwMEWayz++lLXNPvNTuvKxxRSVRkZGBlq3bo358+ebvf+dd97Bhx9+iIULF2Lv3r2oWrUqevbsyQtpcjpr165Feno63n77bfz6669l3t/ly5cBFN1aCmBhiuwrPT0dgHUtpq5fv26XmIiInE1ZZuQryciRI6HT6bBp0yb1eci5sDBFmrPlwOcAW0yRdXr16oW33noLDzzwQKH7RARz5szB66+/jv79+6NVq1b44osvcOnSpUItq4gqusOHD6v/f/zxx8vcYoSFKdKa0mLK29vb4scon1elxR8RERXPnoWpunXrIiYmBgDw5Zdf2nz/pD0WpkhzLEyRo0tISEBiYiKio6PVdX5+fujUqRN2795d5OOys7ORmppqshA5uiNHjgAAqlSpgkuXLmHMmDFl2h8LU6QlZWYnoHQtpiIiIgCA05MTEVlAROxamAJu/4gM/HeeQs6FhSnSnK0LU+zKR7aWmJgIAAgODjZZHxwcrN5nzvTp0+Hn56cu4eHhdo2TqKwyMzNx6tQpAMDy5csBAMuWLcOFCxes3qfS4iQsLKzIbViYIntRWksBpStM1a5dG8DtcTCJiKh4169fV6+9bDHLujlKwYtd+ZwTC1OkObaYImc1YcIEpKSkqMv58+e1DomoWH///TeMRiOqV6+Ovn37okuXLhARfPvtt1bvky2mSEtKYUqv15dqinGlMHXu3DmIiF1iIyJyFkqxKCwsDF5eXnZ5DhamnBsLU6Q5FqbI0YWEhAAAkpKSTNYnJSWp95nj4eEBX19fk4XIkSnjS7Vo0QI6nQ5Dhw4F8F/rKWuwMEVasmZGPgCoWbMmdDodsrOzceXKFXuERkTkNOw1I19+yrXizZs3OWOqE2JhijSVlpaGa9euAbBPVz7+ykm2ULduXYSEhGDz5s3qutTUVOzduxdRUVEaRkZkW8q4DS1btgQADBo0CK6urti3b5/axa+0LOnKp/y6ysIU2Zq1hSm9Xq8WUznOFBFR8ew9vhRwe+xL5QdhtppyPixMkaaU6npAQIDNWpMoLaZERJ0imqgk6enpOHjwIA4ePAjg9mfz4MGDOHfuHHQ6HcaOHYu33noLP/zwAw4fPozHHnsMYWFhGDBggKZxE9mSUphq0aIFACAoKAg9evQAAKxYscKqfbLFFGlJ+VXd39+/1I/N352PiIiKdvLkSQD2LUzl3z8LU86HhSnSlK278QG3L3Dc3NwAsDsfWW7fvn1o27Yt2rZtCwAYP3482rZti8mTJwMAXnnlFYwZMwZPP/00OnTogPT0dKxfv169oCZyBgULUwDU7nzWFKYyMjLUFiuWFKYyMzNL/RxExbGkxV5RWJgiIrLM/v37AQCtWrWy6/OwMOW8WJgiTSlJxZazN+h0OrXVFGfmI0t169YNIlJoWbp0KYDbn6tp06YhMTERWVlZ2LRpExo1aqRt0EQ2dPPmTXWA/ubNm6vrH3jgAej1ehw9ehS//fZbqfaptJaqUqVKsV2plMKUwWBAXl5eaUMnKhILU0RE9pWVlaX+sBUZGWnX51IaM7Aw5XxYmCJNHTt2DADQtGlTm+6XA6ATEZXO0aNHAQDh4eEm3Z78/f3x6KOPAgCeeOIJZGRkWLzP/EUBnU5X5Hb5Wx6yOx/Zki0KU2fPnrVpTEREzuTw4cPIy8tDjRo1EB4ebtfnUlpMKb1uyHmwMEWaMtdtxBaU8apYmCIiskxx+XjWrFmoVasWTp06hZdeesnifVoyvhRwewZLBQtTZEtKYaqkz6A5bDFFRFSy+Ph4AEC7du2K/RHKFtiVz3mxMEWaERH1F3pbF6bYlY+IqHQOHz4MwHw+9vf3V7u1Lly4EPXr10eDBg3UZejQoTAYDIUeZ2lhytXVFe7u7gBYmCLbUj6D7MpHRGQfSmHK3t34gP8KU2fPnmXXfyfDwhRp5vz580hLS4O7uzsaNmxo032zKx8RUens27cPQNEDl/bo0QPjx48HcPuXytOnT6vLN998g23bthV6TGmKApyZj+zBFl35kpOTOTA/EVERyrMwFRYWBr1ej7y8PFy4cMHuz0flh4Up0ozSbaRx48bQ6/U23Te78hERWS4zM1OdUefOO+8scrt3330X+/btw86dO9Vl8ODBAMzP2leablQsTJGtGQwGJCYmArCuMBUQEICqVasCAC+AiIjMyM7OLreBzwHAxcWFA6A7KRamSDP2Gl8KYFc+IqLS+PPPP5Gbm4vQ0NBiZ0l1cXFBZGQkOnfurC7PPPMMAOC7775DTk6OyfaWduUDWJgi27ty5QoMBgNcXFwQFBRU6sfrdDp25yMiKsaRI0eQm5uLgIAARERElMtzcpwp58TCFGmmPApTbDFFRFSynTt3ArjdWqq0A5d27doVoaGhuHHjBn799VeT+9iVj7SktNgLDg6Gm5ubVftgYYqIqGjlOfC5gi2mnBMLU6QZexam2JWPiMhy+QtTpeXq6qp251u+fLnJfWwxRVoqzeevKEph6uzZszaJiYjImZTn+FIKtphyTtb9fERURgaDAceOHQPArnxERFoyGo3YtWsXAOsKUwAwbNgwfPDBB1i7di02btwIV1dX5OXl4caNGwBYmCJtlGXgcwVbTBERFU2ZOEWLwtTp06fL7TnJ/liYIk2cPn0a2dnZ8PLyUptj2hK78hERWebvv//GjRs3UKVKFbRp08aqfXTs2BF169ZFQkICYmJiTO7z9PSEv79/iftQClO3bt2yKgaigmxZmGKLKSIiU//88w/2798PFxcXq3/Yskbjxo0BAMePH4fBYICrq2u5PTfZDwtTpAmlG1+zZs3g4mL7HqXsykdEZBmlG1/Hjh3h7u5u1T50Oh1mzpyJ//3vf8jLyzO5b9iwYRaNO6EUDzj7GdmKLQpTzZs3BwDs2bMHGRkZ6ix9RESV3aeffgoA6NWrV5nybGk1btwYVapUQUZGBv755x80bdq03J6b7IeFKdKEPceXAtiVj4jIUmUZXyq/hx56CA899JDVj69fvz4A4NSpU2WKg0hhi8JUu3btUL9+fZw+fRo//PADhg0bZqvwiIgqrOzsbCxZsgQA8PTTT5frc7u6uqJNmzbYtWsX4uPjWZhyEhz8nDRx4MABAPYrTLHFFBFRYRs3bkRgYCCqVKmiLl988QWAshemykopTHHMCLIVWxSmdDodHn74YQDAsmXLbBIXEVFFt3btWly9ehVhYWHo3bt3uT+/MqaVMvg6VXwsTFG5O3nyJH788UcAQLdu3ezyHBxjioiosHfffRdXr15FZmamuogIQkJCcNddd2kaW4MGDQCwMEW2Y4tZ+QCoraTWr1+Pq1evljkuIiJHdubMGWRkZBS7zSeffAIAeOKJJ+DmVv6dsFiYcj4sTFG5mzp1KgwGA/r06YP27dvb5TmUwlR2djays7Pt8hxERBVJcnIyNm/eDOB2970zZ86oS0JCAnx8fDSNT2kxdebMGeTm5moaC1V8eXl5SEpKAlC2FlMA0LRpU7Rt2xZ5eXlYtWqVLcIjInJIu3fvRoMGDTBo0KAitzl9+jQ2bdoEnU6HkSNHlmN0/1EKUwcOHIDRaNQkBrItFqaoXB09elRtCj9t2jS7PU/+CyyOM0VEBKxcuRJGoxEdOnRA586dERERoS7KjHhaCg0NhZeXFwwGA86dO6d1OFTBJScnw2g0wtXVFYGBgWXe3/DhwwGwOx8RObe5c+fCYDBg/fr1OH78uNltlEHPY2JiUKdOnXKM7j9NmjSBl5cX0tPTcfLkSU1iINtiYYrK1RtvvAERwcCBA9GuXTu7PY+rqyu8vb0BsDsfEREArFixAgAcdvBmFxcX1KtXDwAHQKeyU8aXCgkJsclU4kOHDoVOp8Nvv/2mtjwkInImV69exXfffafeVrrr5Zebm6vZoOf5ubm5oXXr1gDYnc9ZsDBF5ebAgQNYtWoVdDodpk6davfn48x8RES3nTt3Dr///jt0Oh0GDx6sdThF4gDoZCu2GPg8v5o1a6oXYbGxsbh+/bpN9ktE5Ci+/PJL5OTkqJNIffHFF8jKyjLZ5scff0RSUhKCg4PRt29fLcJUcZwp58LCFJWbyZMnA7j9a33z5s3t/nycmY+I6LZvv/0WANC1a1fUrFlT42iKxgHQyVaUgc9tVZgCgPfeew+NGjXCxYsXMWrUKIiIzfZNRKQlEcHHH38MAJg+fTpq1aqFa9euYfXq1SbbKds8/vjjcHd3L/c482NhyrmU/xD6VCnt2bMHP/30E1xdXTFlypRyeU7OzEdEdNvy5csB3O6O5MiUFlPsykdldebMGQBln5Evv6pVq+Lrr79GVFQUVq1ahS+++AKxsbE22z8RkT3l5ubis88+w/3331/oR6rff/8df//9N6pWrYpHHnkEV65cwRtvvIH//e9/6lhTeXl5+PXXXwEATz75ZLnHX1DBAdBdXMy3uTl48CBWr14NEYGXlxeefvppVK9e3WSb06dP4+uvv0ZeXp7J+ujoaHTt2tU+B0AmWJjSiNFoxPHjx5GdnQ0XFxc0a9YMer1e67CscvHiRbNjOOQ/xokTJwK43fy9UaNG5RIXu/IREQH//PMP9u/fD1dXVwwcOFDrcIrFFlNkCyKC4ik+wwAAF99JREFUNWvWAADuuOMOm+67ffv2mDp1Kv7v//4Po0ePRpcuXdSx0YiIHNmsWbMwceJE9OjRA5s2bTK5TxlPaujQofD19cUTTzyBadOm4ciRIzhy5IjJttHR0eoPSVpq1qwZvLy8kJqaiv3795ud7d1gMKBfv344f/68ui4hIUFt+aWIjY3Fzp07Cz1+9uzZuHjxotoTh+yHXfk0MmnSJLRo0QKRkZFo27ZtsVNyOrKVK1eiVq1aeOGFFwrd9+abb6rHuHXrVri7u2PSpEnlFpuSQJRxJoiInJ25KZOVQc/vvfdem8xOZk/5x5ji9M9krYMHD+Lvv/+Gh4cHHnjgAZvv/9VXX8Vdd92F9PR0PPLII4V+YScicjRGo1EtxmzevNlkJrvr16+rXf6VsfTCw8PxzTffIC4uzmQZN24cPvroo/I/ADPc3NwwYMAAAP/NFFjQ+vXrcf78efj7++PRRx8FcHt21bS0NHWbI0eOYOfOnXB1dcVzzz2nHmutWrWQnp6utjonO5MKYN68eRIRESEeHh7SsWNH2bt3r8WPTUlJEQCSkpJixwhL5+LFi+Lp6SkAJDQ0VFxcXASA7NixQ+vQSiUnJ0fq1q0rAMTFxUVOnDih3peUlCRVqlQRABISEiLh4eEyc+bMco1v7ty5AkDCw8MlKyurXJ+bnJez5SNyHlOnThV3d3f5/vvv1XVGo1GaNGkiAOTzzz/XMDrL5OTkiKurqwCQCxcuaB2Ow2M+Mu+ll14SADJo0CC7PUdCQoL4+voKAHW5//77JS8vz2S7AwcOSK1atWT8+PF2i4XIETAfObYNGzaY5KtXXnlFve+DDz4QANK6dWsxGo0aRll6W7duFQDi7e0taWlphe7v16+fAJBx48aJ0WiURo0aCQBZtGiRus3zzz8vAOSBBx4weex7770nAKRdu3Z2Pw4ScfjC1IoVK0Sv18tnn30mR48elaeeekr8/f0lKSnJosc7YqKLi4sTANK5c2cxGo0yatQoASBdu3atUMlg0aJFJglu2LBh6n3jxo0TANKhQwfNjikzM1Nq1qwpAGTu3LmaxEDOxRnzETmH7du3i06nEwBSrVo1uXjxooiIHDx4UACIh4dHhfnc1a9fXwDI9u3btQ7FoTEfmZeXl6f+7V+9erVdn2vFihXq905Z3n77bfX+jIwMtTAMQL777ju7xkOkFeYjxzdo0CABIE2bNhUAEhQUJNnZ2WI0GqVFixYCQObNm6d1mKVmNBqlYcOGAkA+/fRTk/suXLig/th17NgxERGZNWuWAJD27duLiMitW7ekWrVqAkDWrVtn8vgrV66IXq8XALJv377yOaBKzOELUx07dpS4uDj1tsFgkLCwMJk+fbpFj3e0RHfmzBlxd3cXALJlyxYRETl//rx4eHgIANm4caPGEVomMzNTatWqJQDkiSeeEACi0+nk0KFDcuHCBfV4NmzYoGmcCxYsUFttZWRkaBoLVXzOlo/IOaSkpEhERIQAUP++9OzZU4xGo7z66qsCQB588EGtw7RYTEyMAJDFixdrHYpDYz4yT/n13M/Pr1xaS6ekpEhiYqL6Y52bm5v8+eefIiLy3HPPqa3KAUhAQABbApJTYj5ybImJieLm5iYAJD4+XkJDQwWArFy5Unbt2iUAxMvLS27cuKF1qFZ55513BIB07NjRZP2bb74pAKRLly7quvzFpvj4ePnyyy8FgERERBRq8SoiMmzYMAEgo0aNsvtxVHYOPfh5Tk4O4uPjMWHCBHWdi4sLoqOjsXv3brOPyc7ORnZ2tnpbmZHNkgGw+/bta/JYe0hKSkJubi66dOmCyMhIpKamwtfXF48//jgWLlyIhx9+uEIMopmWloYLFy4gNDQU06dPx/Xr17FmzRr07t0b7u7uyM7Oxh133IFOnTppOvj4oEGDMH36dJw7dw6RkZHqgOjkmO655x6T73tJfHx8oNPp7BjRf8ozH2VkZNhlXBRyTlevXsXZs2dRu3ZtLFmyBL1798aGDRvQtm1b/PvvvwCAfv36VZiJIGrXrg0AmDJlSqHBScvTwIEDMWrUKIu3d9Z8dP78eYwcOdIGUZePixcvArj9mS94zPbi5eWFIUOGYN26dVizZg3uu+8+1KtXD3/++SeA2+O8vf322/jrr78QFRWFsLAwu8dEzmXkyJEYMmSIxds7az46fPgwXnzxRRtEXblcv34deXl5iIyMRIMGDTB8+HDMmjULcXFx6uRbAwYMgIuLS4U5V8jvwQcfxMSJE/HHH3+gY8eO6ux8ymyCjzzyiHpcer0effv2xXfffYcHHngAt27dAgAMHz4cGRkZhfY9fPhwLF++HEuXLsXBgwfL54Ac3Msvv4x7773X4u0tzkdaV8aKc/HiRQEgu3btMln/8ssvF6qIKqZMmWLSpJoLFy7Ou5TnL2vMR1y4cCluYT7iwoWLoyzMR1y4cHGUxdJ85NAtpqwxYcIEjB8/Xr1tNBpx/fp1VK9evcRKXWpqKsLDw3H+/HmnnRLS2Y+Rx1fxleYYfXx8yikq6zAflQ++VqXD18tyzEe3OftnxtmPD3D+Y3T24wOYjxTO/l47+/EBzn+Mzn58gH3ykUMXpmrUqAFXV1ckJSWZrE9KSkJISIjZx3h4eMDDw8Nknb+/f6me19fX12k/RApnP0YeX8XnaMfIfOT4+FqVDl8vyznaa8V8ZB/OfnyA8x+jsx8f4HjHyHxkH85+fIDzH6OzHx9g22N0scle7ESv1yMyMhKbN29W1xmNRmzevBlRUVEaRkZElQ3zERE5CuYjInIUzEdEZAsO3WIKAMaPH4/Y2Fi0b98eHTt2xJw5c5CRkYHHH39c69CIqJJhPiIiR8F8RESOgvmIiMrK4QtTQ4YMwZUrVzB58mQkJiaiTZs2WL9+PYKDg23+XB4eHpgyZUqhpqXOxNmPkcdX8TnyMTIfOSa+VqXD18tyjvxaMR/ZjrMfH+D8x+jsxwc49jEyH9mOsx8f4PzH6OzHB9jnGHUiIjbbGxERERERERERkYUceowpIiIiIiIiIiJyXixMERERERERERGRJliYIiIiIiIiIiIiTbAwRUREREREREREmqhUhanr169j+PDh8PX1hb+/P0aOHIn09PRiH9OtWzfodDqT5ZlnnjHZ5ty5c+jTpw+qVKmCoKAgvPzyy8jLy7PnoRSptMd4/fp1jBkzBo0bN4aXlxdq166N559/HikpKSbbFXwNdDodVqxYYe/DAQDMnz8fderUgaenJzp16oQ//vij2O1XrlyJJk2awNPTEy1btsQvv/xicr+IYPLkyQgNDYWXlxeio6Nx8uRJex5CsUpzfJ988gm6dOmCatWqoVq1aoiOji60/YgRIwq9V/fdd5+9D6NIpTm+pUuXFord09PTZBtHe//sobSf+cpqx44d6Nu3L8LCwqDT6bBmzRqtQ3JY06dPR4cOHeDj44OgoCAMGDAAJ06c0Dosh7RgwQK0atUKvr6+8PX1RVRUFNatW6d1WA6jTp06hfL0jBkztA6rTJw1577xxhuF3qsmTZpoHVaZlJT3K/o5QknH52jneOXt7bffRufOnVGlShX4+/ub3caRrstswdlyrrPmW8D5cm5559tKVZgaPnw4jh49io0bN+Knn37Cjh078PTTT5f4uKeeegqXL19Wl3feeUe9z2AwoE+fPsjJycGuXbvw+eefY+nSpZg8ebI9D6VIpT3GS5cu4dKlS5g1axaOHDmCpUuXYv369Rg5cmShbZcsWWLyOgwYMMCOR3LbN998g/Hjx2PKlCnYv38/WrdujZ49eyI5Odns9rt27cKwYcMwcuRIHDhwAAMGDMCAAQNw5MgRdZt33nkHH374IRYuXIi9e/eiatWq6NmzJ7Kysux+PAWV9vi2bduGYcOGYevWrdi9ezfCw8MRExODixcvmmx33333mbxXy5cvL4/DKaS0xwcAvr6+JrGfPXvW5H5Hev/swZrXrLLKyMhA69atMX/+fK1DcXjbt29HXFwc9uzZg40bNyI3NxcxMTHIyMjQOjSHU6tWLcyYMQPx8fHYt28funfvjv79++Po0aNah+Ywpk2bZpKnx4wZo3VIVnP2nNu8eXOT9+r333/XOqQyKSnvV/RzBEv+rjnKOZ4WcnJy8NBDD+HZZ581e7+jXZfZirPkXGfPt4Bz5dxyz7dSSRw7dkwAyJ9//qmuW7duneh0Orl48WKRj7v77rvlhRdeKPL+X375RVxcXCQxMVFdt2DBAvH19ZXs7GybxG4pa4+xoG+//Vb0er3k5uaq6wDI6tWrbRmuRTp27ChxcXHqbYPBIGFhYTJ9+nSz2w8ePFj69Oljsq5Tp04yatQoERExGo0SEhIi7777rnr/zZs3xcPDQ5YvX26HIyheaY+voLy8PPHx8ZHPP/9cXRcbGyv9+/e3dahWKe3xLVmyRPz8/Ircn6O9f/ZQ1s9EZaVVjqqokpOTBYBs375d61AqhGrVqsmnn36qdRgOISIiQmbPnq11GDbjzDl3ypQp0rp1a63DsJuCed/ZzhHM/V1zpHM8LRV1vuhI12W24kw515nzrYhz59zyyLeVpsXU7t274e/vj/bt26vroqOj4eLigr179xb72K+//ho1atRAixYtMGHCBNy6dctkvy1btkRwcLC6rmfPnkhNTS33X1fLcoz5paSkwNfXF25ubibr4+LiUKNGDXTs2BGfffYZbn9G7ScnJwfx8fGIjo5W17m4uCA6Ohq7d+82+5jdu3ebbA/cfj+U7RMSEpCYmGiyjZ+fHzp16lTkPu3FmuMr6NatW8jNzUVAQIDJ+m3btiEoKAiNGzfGs88+i2vXrtk0dktYe3zp6emIiIhAeHh4oVYKjvT+2YMtPhNEllC6axfMHWTKYDBgxYoVyMjIQFRUlNbhOIwZM2agevXqaNu2Ld59990K202mMuTckydPIiwsDPXq1cPw4cNx7tw5rUOyG2c/R1A4wjmeo3Kk6zJbcoacWxnyLVB5cq498q1byZs4h8TERAQFBZmsc3NzQ0BAABITE4t83MMPP4yIiAiEhYXh0KFDePXVV3HixAl8//336n7zJz8A6u3i9msP1h5jflevXsWbb75ZqPvftGnT0L17d1SpUgW//vornnvuOaSnp+P555+3WfzmYjEYDGZf37///tvsY4p6P5TjV/4tbpvyYs3xFfTqq68iLCzMJCncd999ePDBB1G3bl2cPn0aEydORK9evbB79264urra9BiKY83xNW7cGJ999hlatWqFlJQUzJo1C507d8bRo0dRq1Yth3r/7MEWnwmikhiNRowdOxZ33nknWrRooXU4Dunw4cOIiopCVlYWvL29sXr1ajRr1kzrsBzC888/j3bt2iEgIAC7du3ChAkTcPnyZbz//vtah1Zqzp5zO3XqhKVLl6Jx48a4fPkypk6dii5duuDIkSPw8fHROjybc/ZzBMBxzvEclSNdl9mKs+RcZ8+3QOXKufbItxW+MPXaa69h5syZxW5z/Phxq/efv0DTsmVLhIaGokePHjh9+jTq169v9X5Lw97HqEhNTUWfPn3QrFkzvPHGGyb3TZo0Sf1/27ZtkZGRgXfffdeuhSkq3owZM7BixQps27bNZIDwoUOHqv9v2bIlWrVqhfr162Pbtm3o0aOHFqFaLCoqyqRVQufOndG0aVMsWrQIb775poaRETmPuLg4HDlypEKPe2BvjRs3xsGDB5GSkoJVq1YhNjYW27dvd9rilKXnGU2aNMH48ePVda1atYJer8eoUaMwffp0eHh42DtUKoVevXqp/2/VqhU6deqEiIgIfPvtt2bHEiXHV5HP8YpSmvzjLJhznRNzbtlU+MLUiy++iBEjRhS7Tb169RASElJoYLW8vDxcv34dISEhFj9fp06dAACnTp1C/fr1ERISUmg2gaSkJAAo1X6LUx7HmJaWhvvuuw8+Pj5YvXo13N3di92+U6dOePPNN5GdnW23pFijRg24urqqr6ciKSmpyOMJCQkpdnvl36SkJISGhpps06ZNGxtGXzJrjk8xa9YszJgxA5s2bUKrVq2K3bZevXqoUaMGTp06Va4nLWU5PoW7uzvatm2LU6dOAXCs988ebPGaERVn9OjR6sQYtWrV0joch6XX69GgQQMAQGRkJP7880988MEHWLRokcaR2Yel5xnmdOrUCXl5eThz5gwaN25sh+jsp7LlXH9/fzRq1Ej9m+psnP0cwRytzvFsqSz5p6DyuC6zhcqYcytbvgWcO+faI99W+DGmAgMD0aRJk2IXvV6PqKgo3Lx5E/Hx8epjt2zZAqPRqBabLHHw4EEAUN+AqKgoHD582KQgtHHjRvj6+trsl1V7H2NqaipiYmKg1+vxww8/mLS+KcrBgwdRrVo1u1bq9Xo9IiMjsXnzZnWd0WjE5s2bixzrIyoqymR74Pb7oWxft25dhISEmGyTmpqKvXv3lvv4IdYcH3B7BoQ333wT69evNxlPrCgXLlzAtWvXTJJGebD2+PIzGAw4fPiwGrsjvX/2YIvXjMgcEcHo0aOxevVqbNmyBXXr1tU6pArFaDQiOztb6zDsxtLzDHMOHjwIFxeXQkMJVASVLeemp6fj9OnT5X4+UF6c/RzBHK3O8WypLPmnoPK4LrOFyphzK1u+BZw759ol35ZtfPaK5b777pO2bdvK3r175ffff5eGDRvKsGHD1PsvXLggjRs3lr1794qIyKlTp2TatGmyb98+SUhIkLVr10q9evWka9eu6mPy8vKkRYsWEhMTIwcPHpT169dLYGCgTJgwodyPT6T0x5iSkiKdOnWSli1byqlTp+Ty5cvqkpeXJyIiP/zwg3zyySdy+PBhOXnypHz00UdSpUoVmTx5st2PZ8WKFeLh4SFLly6VY8eOydNPPy3+/v7qbBuPPvqovPbaa+r2O3fuFDc3N5k1a5YcP35cpkyZIu7u7nL48GF1mxkzZoi/v7+sXbtWDh06JP3795e6detKZmam3Y+nrMc3Y8YM0ev1smrVKpP3Ki0tTURE0tLS5KWXXpLdu3dLQkKCbNq0Sdq1aycNGzaUrKwshz++qVOnyoYNG+T06dMSHx8vQ4cOFU9PTzl69Ki6jSO9f/ZQ0mtG/0lLS5MDBw7IgQMHBIC8//77cuDAATl79qzWoTmcZ599Vvz8/GTbtm0muePWrVtah+ZwXnvtNdm+fbskJCTIoUOH5LXXXhOdTie//vqr1qFpbteuXTJ79mw5ePCgnD59Wr766isJDAyUxx57TOvQrObMOffFF1+Ubdu2SUJCguzcuVOio6OlRo0akpycrHVoVisp71f0c4Tijs/RzvG0cPbsWTlw4IBMnTpVvL291ddKOQ92tOuysnK2nOvM+VbE+XJueefbSlWYunbtmgwbNky8vb3F19dXHn/8cTWRiYgkJCQIANm6dauIiJw7d066du0qAQEB4uHhIQ0aNJCXX35ZUlJSTPZ75swZ6dWrl3h5eUmNGjXkxRdflNzc3PI8NFVpj3Hr1q0CwOySkJAgIiLr1q2TNm3aiLe3t1StWlVat24tCxcuFIPBUC7HNHfuXKldu7bo9Xrp2LGj7NmzR73v7rvvltjYWJPtv/32W2nUqJHo9Xpp3ry5/Pzzzyb3G41GmTRpkgQHB4uHh4f06NFDTpw4UR6HYlZpji8iIsLsezVlyhQREbl165bExMRIYGCguLu7S0REhDz11FOaJvzSHN/YsWPVbYODg6V3796yf/9+k/052vtnD8W9ZvSfovJXwZxAUmSeX7JkidahOZwnnnhCIiIiRK/XS2BgoPTo0YNFqf8vPj5eOnXqJH5+fuLp6SlNmzaV//3vfxX+othZc+6QIUMkNDRU9Hq91KxZU4YMGSKnTp3SOqwyKSnvV/RzhOKOzxHP8cpbbGys2ddHua4RcazrsrJyxpzrrPlWxPlybnnnW52IiHVtrYiIiIiIiIiIiKxX4ceYIiIiIiIiIiKiiomFKSIiIiIiIiIi0gQLU0REREREREREpAkWpoiIiIiIiIiISBMsTBERERERERERkSZYmCIiIiIiIiIiIk2wMEVERERERERERJpgYYqIiIiIiIiIiDTBwhQREREREREREWmChSkiIiIiIiIiItIEC1NERERERERERKQJFqaIiIiIiIiIiEgT/w8IGfIY5kbKnAAAAABJRU5ErkJggg==",
+      "text/plain": [
+       "<Figure size 1200x500 with 8 Axes>"
+      ]
+     },
+     "metadata": {},
+     "output_type": "display_data"
+    }
+   ],
+   "source": [
+    "fig, axes = plt.subplots(2, 4, figsize=(12, 5))\n",
+    "axes = axes.flatten()\n",
+    "plt.suptitle(f\"Waveform Quality Metrics for {key}\", y=.99, fontsize=12)\n",
+    "\n",
+    "# Amplitude\n",
+    "data = np.log10(query.fetch(\"amplitude\"))\n",
+    "bins = np.linspace(0, 3, 100)\n",
+    "plot_metric(axes[0], data, bins, title=\"Amplitude (μV) (log$_{10}$)\")\n",
+    "axes[0].set_ylabel(\"Count\")\n",
+    "\n",
+    "# Duration\n",
+    "data = query.fetch(\"duration\")\n",
+    "bins = np.linspace(0, 3, 100)\n",
+    "plot_metric(axes[1], data, bins, title=\"Duration (ms)\")\n",
+    "\n",
+    "# Peak-to-Trough Ratio\n",
+    "data = query.fetch(\"pt_ratio\")\n",
+    "bins = np.linspace(0, 1, 100)\n",
+    "plot_metric(axes[2], data, bins, title=\"Peak-to-Trough Ratio\")\n",
+    "\n",
+    "# Repolarization Slope\n",
+    "data = query.fetch(\"repolarization_slope\")\n",
+    "bins = np.linspace(-0.1, 2, 100)\n",
+    "plot_metric(axes[3], data, bins, title=\"Repolarization Slope\")\n",
+    "\n",
+    "# Recovery Slope\n",
+    "data = query.fetch(\"recovery_slope\")\n",
+    "bins = np.linspace(-0.5, 0.5, 100)\n",
+    "plot_metric(axes[4], data, bins, title=\"Recovery Slope\")\n",
+    "axes[4].set_ylabel(\"Count\")\n",
+    "\n",
+    "# Spread\n",
+    "data = np.log10(query.fetch(\"spread\"))\n",
+    "bins = np.linspace(0, 3, 100)\n",
+    "plot_metric(axes[5], data, bins, title=\"Spread (μm) (log$_{10}$)\")\n",
+    "\n",
+    "# Velocity Above\n",
+    "data = query.fetch(\"velocity_above\")\n",
+    "bins = np.linspace(-5, 15, 100)\n",
+    "plot_metric(axes[6], data, bins, title=\"Velocity Above (s/m)\")\n",
+    "\n",
+    "# Velocity Below\n",
+    "data = query.fetch(\"velocity_below\")\n",
+    "bins = np.linspace(-10, 10, 100)\n",
+    "plot_metric(axes[7], data, bins, title=\"Velocity Below (s/m)\")\n",
+    "plt.tight_layout()"
+   ]
+  }
+ ],
+ "metadata": {
+  "kernelspec": {
+   "display_name": "python3p10",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.9.16"
+  },
+  "orig_nbformat": 4,
+  "vscode": {
+   "interpreter": {
+    "hash": "ff52d424e56dd643d8b2ec122f40a2e279e94970100b4e6430cb9025a65ba4cf"
+   }
+  }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/requirements.txt b/requirements.txt
index b80b763..d1a7ae3 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,6 +1,6 @@
 datajoint>=0.13.0
 element-animal>=0.1.5
-element-array-ephys>=0.2.4
+element-array-ephys>=0.2.7
 element-electrode-localization>=0.1.2
 element-event>=0.1.2
 element-interface>=0.5.0
diff --git a/tests/conftest.py b/tests/conftest.py
index 0d95ea5..a1bea99 100644
--- a/tests/conftest.py
+++ b/tests/conftest.py
@@ -336,8 +336,8 @@ def ingest_data(setup, pipeline, test_data):
 def testdata_paths():
     """Paths for test data 'subjectX/sessionY/probeZ/etc'"""
     return {
-        "npx3A-p1-ks": "subject5/session1/probe_1/ks2.1_01",
-        "npx3A-p2-ks": "subject5/session1/probe_2/ks2.1_01",
+        "npx3A-p1-ks": "subject5/session1/probe_1/kilosort2-5_1",
+        "npx3A-p2-ks": "subject5/session1/probe_2/kilosort2-5_1",
         "oe_npx3B-ks": "subject4/experiment1/recording1/continuous/"
         + "Neuropix-PXI-100.0/ks",
         "sglx_npx3A-p1": "subject5/session1/probe_1",
diff --git a/tests/test_populate.py b/tests/test_populate.py
index 40dea92..931dae7 100644
--- a/tests/test_populate.py
+++ b/tests/test_populate.py
@@ -314,7 +314,6 @@ def test_build_electrode_layouts(pipeline):
     probe = pipeline["probe"]
 
     for probe_type, config in probe_configs.items():
-
         test_df = pd.DataFrame(probe.build_electrode_layouts(probe_type, **config))
 
         test_arr = np.array(test_df.drop(columns=["probe_type"]), dtype=np.int16)
@@ -329,6 +328,55 @@ def test_build_electrode_layouts(pipeline):
         ), f"probe type '{probe_type}' electrode layout does not match"
 
 
+def test_quality_metrics_populate(pipeline):
+    """
+    Populate the ephys.QualityMetrics table and compare values with the `metrics.csv` file.
+    Run the `demo_prepare.ipynb` notebook, prior to running this test.
+    """
+    ephys = pipeline["ephys"]
+    key = {"subject": "subject5", "insertion_number": 1}
+    ephys.QualityMetrics.populate(key)
+
+    rename_dict = {
+        "isi_viol": "isi_violation",
+        "num_viol": "number_violation",
+        "contam_rate": "contamination_rate",
+    }
+
+    cluster_df = (ephys.QualityMetrics.Cluster & key).fetch(
+        format="frame", order_by="unit"
+    )
+    waveform_df = (ephys.QualityMetrics.Waveform & key).fetch(
+        format="frame", order_by="unit"
+    )
+    test_df = pd.concat([cluster_df, waveform_df], axis=1).reset_index()
+
+    metrics_df = pd.read_csv(
+        "/workspaces/workflow-array-ephys/example_data/processed/subject5/session1/probe_1/kilosort2-5_1/metrics.csv"
+    )
+    metrics_df.rename(columns=rename_dict, inplace=True)
+    metrics_df.columns = metrics_df.columns.str.lower()
+
+    for col_name in metrics_df:
+        if (
+            "cluster_id" in col_name
+            or "epoch_name" in col_name
+            or "peak_channel" in col_name
+        ):
+            continue
+
+        try:
+            assert np.allclose(
+                metrics_df[col_name].values.astype(float),
+                test_df[col_name].values.astype(float),
+                rtol=1e-03,
+                atol=1e-03,
+                equal_nan=True,
+            ), f"values in '{col_name}' do not match!"
+        except KeyError as e:
+            raise KeyError(f"Attribute {e} does not exist in ephys.QualityMetrics")
+
+
 # ---- HELPER FUNCTIONS ----
 
 
diff --git a/workflow_array_ephys/version.py b/workflow_array_ephys/version.py
index 6a2f607..5b67f9e 100644
--- a/workflow_array_ephys/version.py
+++ b/workflow_array_ephys/version.py
@@ -2,4 +2,4 @@
 Package metadata
 Update the Docker image tag in `docker-compose.yaml` to match
 """
-__version__ = "0.3.1"
+__version__ = "0.3.2"