Skip to content

Latest commit

 

History

History
90 lines (66 loc) · 3.3 KB

README.md

File metadata and controls

90 lines (66 loc) · 3.3 KB

najafi-2018-nwb

This project presents the data accompanying the paper

Farzaneh Najafi, Gamaleldin F Elsayed, Robin Cao, Eftychios Pnevmatikakis, Peter E Latham, John Cunningham, Anne K Churchland. "Excitatory and inhibitory subnetworks are equally selective during decision-making and emerge simultaneously during learning" bioRxiv (2018): 354340.

https://doi.org/10.1101/354340

The original data are available from Cold Spring Harbor Laboratory: http://repository.cshl.edu/36980/

Converting the original data

The data download instructions are for a Unix-family OS such as Linux or Mac OS with Python 3.7+ on the system path as python3.

Clone this repository and download the data

In the terminal window, git clone

$ git clone https://github.com/vathes/najafi-2018-nwb.git
$ cd najafi-2018-nwb

Download the original data

The following command will download the original data from CSHL (~70 GB).

$ mkdir data
$ python3 scripts/download.py

This may take several hours. If the download is interrupted, simply re-run download.py and it will pick up where it left.

Verify that all 18 files have downloaded.

$ ls data
FN_dataSharing.tgz-aa	FN_dataSharing.tgz-af	FN_dataSharing.tgz-ak	FN_dataSharing.tgz-ap
FN_dataSharing.tgz-ab	FN_dataSharing.tgz-ag	FN_dataSharing.tgz-al	FN_dataSharing.tgz-aq
FN_dataSharing.tgz-ac	FN_dataSharing.tgz-ah	FN_dataSharing.tgz-am	FN_dataSharing.tgz-ar
FN_dataSharing.tgz-ad	FN_dataSharing.tgz-ai	FN_dataSharing.tgz-an
FN_dataSharing.tgz-ae	FN_dataSharing.tgz-aj	FN_dataSharing.tgz-ao

Now unpack the tar files:

$ cat data/FN_dataSharing.tgz-a* | tar -C data -xzf -

Verify that the data have unpacked:

$ ls data/FN_dataSharing
bag-info.txt		data			manifest-sha256.txt	tagmanifest-sha256.txt
bagit.txt		manifest-md5.txt	tagmanifest-md5.txt

$ ls data/FN_dataSharing/data
metaData  metaData~  mouse1_fni16  mouse2_fni17  mouse3_fni18  mouse4_fni19

The FN_dataSharing data directory includes a manifest.txt file specifying all available data, and a data folder containing the .mat files.

Conversion to NWB 2.0

The following command will convert the dataset into the NWB 2.0 format (See https://neurodatawithoutborders.github.io/)

$ mkdir data/FN_dataSharing/nwb
$ python3 scripts/convert_to_nwb.py

The convert_to_nwb uses the configuration file conversion_config.json to specify the manifest file, the output file, and general data about the experiments.

An example content of the .json config file is as follow:

{
	"manifest": "data/manifest-md5.txt",
	"general": 
		{
			"experimenter" : "Farzaneh Najafi",
			"institution" : "Cold Spring Harbor Laboratory",
			"related_publications" : "https://doi.org/10.1101/354340"
		},
	"output_dir" : "data/FN_dataSharing/nwb"
}

The converted NWB files will be saved in the output_dir directory.

Showcase work with NWB:N files

This repository will contain Jupyter Notebook demonstrating how to navigate and query the dataset.

See this Jupyter Notebook for a tutorial on using PyNWB API to access NWB 2.0 data, to process and plot some of the figures presented in this study (https://doi.org/10.1101/354340).