forked from mlvlab/PointWOLF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PointWOLF.py
171 lines (135 loc) · 5.87 KB
/
PointWOLF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
"""
@origin : PointWOLF.py by {Sanghyeok Lee, Sihyeon Kim}
@Contact: {cat0626, sh_bs15}@korea.ac.kr
@Time: 2021.09.30
"""
import torch
import torch.nn as nn
import numpy as np
class PointWOLF(object):
def __init__(self, args):
self.num_anchor = args.w_num_anchor
self.sample_type = args.w_sample_type
self.sigma = args.w_sigma
self.R_range = (-abs(args.w_R_range), abs(args.w_R_range))
self.S_range = (1., args.w_S_range)
self.T_range = (-abs(args.w_T_range), abs(args.w_T_range))
def __call__(self, pos):
"""
input :
pos([N,3])
output :
pos([N,3]) : original pointcloud
pos_new([N,3]) : Pointcloud augmneted by PointWOLF
"""
M=self.num_anchor #(Mx3)
N, _=pos.shape #(N)
if self.sample_type == 'random':
idx = np.random.choice(N,M)#(M)
elif self.sample_type == 'fps':
idx = self.fps(pos, M) #(M)
pos_anchor = pos[idx] #(M,3), anchor point
pos_repeat = np.expand_dims(pos,0).repeat(M, axis=0)#(M,N,3)
pos_normalize = np.zeros_like(pos_repeat, dtype=pos.dtype) #(M,N,3)
#Move to canonical space
pos_normalize = pos_repeat - pos_anchor.reshape(M,-1,3)
#Local transformation at anchor point
pos_transformed = self.local_transformaton(pos_normalize) #(M,N,3)
#Move to origin space
pos_transformed = pos_transformed + pos_anchor.reshape(M,-1,3) #(M,N,3)
pos_new = self.kernel_regression(pos, pos_anchor, pos_transformed)
pos_new = self.normalize(pos_new)
return pos.astype('float32'), pos_new.astype('float32')
def kernel_regression(self, pos, pos_anchor, pos_transformed):
"""
input :
pos([N,3])
pos_anchor([M,3])
pos_transformed([M,N,3])
output :
pos_new([N,3]) : Pointcloud after weighted local transformation
"""
M, N, _ = pos_transformed.shape
#Distance between anchor points & entire points
sub = np.expand_dims(pos_anchor,1).repeat(N, axis=1) - np.expand_dims(pos,0).repeat(M, axis=0) #(M,N,3), d
project_axis = self.get_random_axis(1)
projection = np.expand_dims(project_axis, axis=1)*np.eye(3)#(1,3,3)
#Project distance
sub = sub @ projection # (M,N,3)
sub = np.sqrt(((sub) ** 2).sum(2)) #(M,N)
#Kernel regression
weight = np.exp(-0.5 * (sub ** 2) / (self.sigma ** 2)) #(M,N)
pos_new = (np.expand_dims(weight,2).repeat(3, axis=-1) * pos_transformed).sum(0) #(N,3)
pos_new = (pos_new / weight.sum(0, keepdims=True).T) # normalize by weight
return pos_new
def fps(self, pos, npoint):
"""
input :
pos([N,3])
npoint(int)
output :
centroids([npoints]) : index list for fps
"""
N, _ = pos.shape
centroids = np.zeros(npoint, dtype=np.int_) #(M)
distance = np.ones(N, dtype=np.float64) * 1e10 #(N)
farthest = np.random.randint(0, N, (1,), dtype=np.int_)
for i in range(npoint):
centroids[i] = farthest
centroid = pos[farthest, :]
dist = ((pos - centroid)**2).sum(-1)
mask = dist < distance
distance[mask] = dist[mask]
farthest = distance.argmax()
return centroids
def local_transformaton(self, pos_normalize):
"""
input :
pos([N,3])
pos_normalize([M,N,3])
output :
pos_normalize([M,N,3]) : Pointclouds after local transformation centered at M anchor points.
"""
M,N,_ = pos_normalize.shape
transformation_dropout = np.random.binomial(1, 0.5, (M,3)) #(M,3)
transformation_axis =self.get_random_axis(M) #(M,3)
degree = np.pi * np.random.uniform(*self.R_range, size=(M,3)) / 180.0 * transformation_dropout[:,0:1] #(M,3), sampling from (-R_range, R_range)
scale = np.random.uniform(*self.S_range, size=(M,3)) * transformation_dropout[:,1:2] #(M,3), sampling from (1, S_range)
scale = scale*transformation_axis
scale = scale + 1*(scale==0) #Scaling factor must be larger than 1
trl = np.random.uniform(*self.T_range, size=(M,3)) * transformation_dropout[:,2:3] #(M,3), sampling from (1, T_range)
trl = trl*transformation_axis
#Scaling Matrix
S = np.expand_dims(scale, axis=1)*np.eye(3) # scailing factor to diagonal matrix (M,3) -> (M,3,3)
#Rotation Matrix
sin = np.sin(degree)
cos = np.cos(degree)
sx, sy, sz = sin[:,0], sin[:,1], sin[:,2]
cx, cy, cz = cos[:,0], cos[:,1], cos[:,2]
R = np.stack([cz*cy, cz*sy*sx - sz*cx, cz*sy*cx + sz*sx,
sz*cy, sz*sy*sx + cz*cy, sz*sy*cx - cz*sx,
-sy, cy*sx, cy*cx], axis=1).reshape(M,3,3)
pos_normalize = pos_normalize@R@S + trl.reshape(M,1,3)
return pos_normalize
def get_random_axis(self, n_axis):
"""
input :
n_axis(int)
output :
axis([n_axis,3]) : projection axis
"""
axis = np.random.randint(1,8, (n_axis)) # 1(001):z, 2(010):y, 3(011):yz, 4(100):x, 5(101):xz, 6(110):xy, 7(111):xyz
m = 3
axis = (((axis[:,None] & (1 << np.arange(m)))) > 0).astype(int)
return axis
def normalize(self, pos):
"""
input :
pos([N,3])
output :
pos([N,3]) : normalized Pointcloud
"""
pos = pos - pos.mean(axis=-2, keepdims=True)
scale = (1 / np.sqrt((pos ** 2).sum(1)).max()) * 0.999999
pos = scale * pos
return pos