-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathnpz.py
52 lines (40 loc) · 1.71 KB
/
npz.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import numpy as np
class NPZWriter(object):
def __init__(self, filepath):
super().__init__()
# Track parameters
self.filepath = filepath
# internal list
self.tr, self.ts, self.vl = [], [], []
def add(self, ctrlpt_batch, start_batch, n_strokes):
for ctrlpt, start, n_stroke in zip(ctrlpt_batch, start_batch, n_strokes):
# ctrlpts = torch.unbind(ctrlpt[:n_stroke.item()], dim=0)
# starts = torch.unbind(start[:n_stroke.item()], dim=0)
# populate this
sketch = np.empty((0, 3), dtype=np.float32)
for c, s in zip(ctrlpt, start):
c = c.detach().cpu().numpy().reshape((-1, 2))
s = s.detach().cpu().numpy()
P0 = np.array([[0., 0.]]) # start P
c = np.cumsum(np.concatenate((P0, c), 0), 0)
c = c + s
q = np.zeros((c.shape[0], 1), dtype=np.float32); q[-1, 0] = 1.
sketch = np.vstack((sketch, np.hstack((c, q))))
sketch[:,:2] *= 255.
sketch = sketch.astype(np.int16)
sketch[:,:2] -= sketch[0,:2]
sketch[1:,:2] -= sketch[:-1,:2]
R = np.random.rand()
if R < 0.9:
self.tr.append( sketch[1:, :] )
elif R >= 0.9 and R < 0.95:
self.ts.append( sketch[1:, :] )
else:
self.vl.append( sketch[1:, :])
def flush(self):
tr = np.array(self.tr, dtype=np.object)
ts = np.array(self.ts, dtype=np.object)
vl = np.array(self.vl, dtype=np.object)
with open(self.filepath, 'wb') as f:
np.savez(f, train=tr, test=ts, valid=vl)