Important: The Windows setup may not be working in all future commits, it was originally written for commit a433698 and updated based on the setup used in TRIPS. It is also not tested as well as the Ubuntu setup, so prefer using that if issues arise.
-
VS2022
-
CUDA 11.8
-
Cudnn (copy into 11.8 folder as per install instructions) (we used version 8.9.7)
-
conda (we used Anaconda3)
[Start VS2022 once for CUDA integration setup]
git clone [email protected]:darglein/ADOP.git
cd ADOP/
git submodule update --init --recursive --jobs 0
conda update -n base -c defaults conda
conda create -y -n adop python=3.9.7
conda activate adop
conda install -y cmake=3.26.4
conda install -y -c intel mkl=2024.0.0
conda install -y -c intel mkl-static=2024.0.0
conda install openmp=8.0.1 -c conda-forge
- Download: https://download.pytorch.org/libtorch/cu116/libtorch-win-shared-with-deps-1.13.1%2Bcu116.zip
- Unzip
- Copy into ADOP/External
Folder structure should look like:
ADOP/
External/
libtorch/
bin/
cmake/
include/
lib/
...
saiga/
...
src/
...
cmake -Bbuild -DCMAKE_CUDA_COMPILER="$ENV:CUDA_PATH\bin\nvcc.exe" -DCMAKE_PREFIX_PATH=".\External\libtorch" -DCONDA_P_PATH="$ENV:CONDA_PREFIX" -DCUDA_P_PATH="$ENV:CUDA_PATH" -DCMAKE_BUILD_TYPE=RelWithDebInfo .
cmake --build build --config RelWithDebInfo -j
Executable Paths on Windows need the build version added in the run path. You can start the viewer with:
./build/bin/RelWithDebInfo/adop_viewer.exe --scene_dir scenes/tt_train
and the training with:
./build/bin/RelWithDebInfo/adop_train.exe --config configs/train_boat.ini