forked from traeki/sgrna_design
-
Notifications
You must be signed in to change notification settings - Fork 0
/
build_sgrna_library.py
executable file
·400 lines (366 loc) · 14.3 KB
/
build_sgrna_library.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
#!/usr/bin/env python
# Author: John Hawkins (jsh) [[email protected]]
import argparse
import bisect
import collections
import contextlib
import copy
import itertools
import logging
import os.path
import re
import shutil
import subprocess
import sys
import tempfile
from Bio import SeqIO
import pysam
from sgrna_target import sgrna_target
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(levelname)s %(message)s')
class Error(Exception):
pass
class SampleError(Error):
pass
DNA_PAIRINGS = str.maketrans('atcgATCG', 'tagcTAGC')
def revcomp(x):
return x.translate(DNA_PAIRINGS)[::-1]
def extract_targets(infile_name, pam, target_len):
"""Generate the complete list of pam-adjacent potential targets in a genome.
Args:
infile_name [str]: Name of the file containing the source genome.
pam [str]: Regexp DNA pattern for the PAM sequence.
target_len [int]: How many bases to pull from the adjacent region.
Returns:
Iterable sequence of sgrna targets.
Notes:
Discards targets containing 'N' bases.
"""
# TODO(jsh): Do something with "bases" other than N, ATCG.
logging.info('Extracting target set from {infile_name}.'.format(**vars()))
fasta_sequences = SeqIO.parse(infile_name, 'fasta')
raw_targets = dict()
for seq_record in fasta_sequences:
genome = seq_record.seq.upper()
chrom = seq_record.name
pam = pam.upper()
reversed_pam = revcomp(pam)
block = r'(.{' + str(target_len) + r'})'
pam_pattern = r'(?=(' + block + pam + r'))'
rev_pattern = r'(?=(' + reversed_pam + block + r'))'
for hit in re.finditer(pam_pattern, str(genome)):
if 'N' in hit.group(1):
continue # ...Don't target unknown genetic material.
t = sgrna_target(
hit.group(2),
hit.group(1)[-len(pam):],
chrom,
hit.start() + 1,
hit.start() + 1 + target_len,
False)
name = t.id_str()
raw_targets[name] = t
for hit in re.finditer(rev_pattern, str(genome)):
if 'N' in hit.group(1):
continue
t = sgrna_target(
revcomp(hit.group(2)),
revcomp(hit.group(1))[-len(pam):],
chrom,
hit.start() + 1 + len(pam),
hit.start() + 1 + len(pam) + target_len,
True)
name = t.id_str()
raw_targets[name] = t
logging.info('{0} raw targets.'.format(len(raw_targets)))
return raw_targets
def get_regions_from_genbank(genbank_file):
"""Extract genbank regions into a more usable form.
Args:
genbank_file: Name of input file.
Returns:
target_regions: list of (gene, chrom, start, end, strand) entries.
"""
target_regions = list()
for item in SeqIO.parse(genbank_file, 'genbank'):
chrom = item.id
foundthings = False
for ftype in ('gene', 'CDS'):
if foundthings:
continue
for feature in item.features:
if feature.type != ftype:
continue
if 'locus_tag' in feature.qualifiers:
name = feature.qualifiers['locus_tag'][0]
elif 'gene' in feature.qualifiers:
name = feature.qualifiers['gene'][0]
else:
logging.error('No locus_tag or gene for {feature}.'.format(**vars()))
template = 'BAILING OUT UNTIL MISSING FEATURE-NAME ISSUE IS RESOLVED'
logging.error(template.format(**vars()))
sys.exit(2)
foundthings = True
start = int(feature.location.start)
end = int(feature.location.end)
if feature.location.strand == 1:
target_regions.append((name, chrom, start, end, '+'))
elif feature.location.strand == -1:
target_regions.append((name, chrom, start, end, '-'))
else:
# If we don't know what strand it's on, just claim all targets.
target_regions.append((name, chrom, start, end, '+'))
target_regions.append((name, chrom, start, end, '-'))
logging.info(
'Found {0} target regions in genbank file.'.format(len(target_regions)))
return target_regions
def parse_target_regions(target_regions_file):
"""Extract target regions into a more usable form.
Args:
target_regions_file: Name of input file.
Returns:
target_regions: list of (gene, chrom, start, end, strand) entries.
"""
logging.info('Parsing target region file.')
target_regions = list()
for x in open(target_regions_file):
if x.startswith('#'):
continue
parts = x.strip().split('\t')
try:
(name,chrom,start,end,strand) = parts
except ValueError:
trf = target_regions_file
logging.error('Could not parse from {trf}: {x}'.format(**vars()))
sys.exit(1)
try:
target_regions.append((name, chrom, int(start), int(end), strand))
except ValueError:
x = x.strip()
logging.warning('Could not fully parse: {x}'.format(**vars()))
continue
logging.info(
'Found {0} target regions in region file.'.format(len(target_regions)))
return target_regions
def chrom_lengths(fasta_file_name):
"""Get lengths of chromosomes (entries) for fasta file.
Args:
fasta_file_name [str]: Name of the file containing the source genome.
Returns:
chrom_lens: dict mapping fasta entry name (chrom) to sequence length.
"""
logging.info('Parsing fasta file to check chromosome sizes.')
chrom_lens = dict()
fasta_sequences = SeqIO.parse(fasta_file_name, 'fasta')
for seq_record in fasta_sequences:
chrom_lens[seq_record.name] = len(seq_record.seq)
return chrom_lens
def ascribe_specificity(targets, genome_fasta_name, sam_copy):
"""Set up bowtie stuff and repeatedly call mark_specificity_tier."""
# Is there a bowtie index yet?
if not os.path.exists(genome_fasta_name + '.1.ebwt'):
command = ['bowtie-build', genome_fasta_name, genome_fasta_name]
build_job = subprocess.Popen(command)
if build_job.wait() != 0:
logging.fatal('Failed to build bowtie index')
sys.exit(build_job.returncode)
# Generate faked FASTQ file
# phredString = '++++++++44444=======!4I' # 33333333222221111111NGG
phredString = 'I4!=======44444++++++++' # 33333333222221111111NGG
_, fastq_name = tempfile.mkstemp()
for threshold in (39,30,20,11,1):
fastq_tempfile, fastq_name = tempfile.mkstemp()
with contextlib.closing(os.fdopen(fastq_tempfile, 'w')) as fastq_file:
wrote_anything = False
for name, t in targets.items():
if t.specificity > 0:
continue
fullseq = revcomp(t.sequence_with_pam())
fastq_file.write(
'@{name}\n{fullseq}\n+\n{phredString}\n'.format(**vars()))
wrote_anything = True
if wrote_anything:
mark_specificity_threshold(
targets, fastq_name, genome_fasta_name, threshold, sam_copy)
def mark_specificity_threshold(
targets, fastq_name, genome_name, threshold, sam_copy):
# prep output files
(specific_tempfile, specific_name) = tempfile.mkstemp()
# Filter based on specificity
command = ['bowtie']
command.extend(['-S']) # output SAM
command.extend(['--nomaqround']) # don't do rounding
command.extend(['-q']) # input is fastq
command.extend(['-a']) # report each non-specific hit
command.extend(['--best']) # judge the *closest* non-specific match
command.extend(['--tryhard']) # judge the *closest* non-specific match
command.extend(['--chunkmbs', 256]) # memory setting for --best flag
command.extend(['-p', 6]) # how many processors to use
command.extend(['-n', 3]) # allowable mismatches in seed
command.extend(['-l', 15]) # size of seed
command.extend(['-e', threshold]) # dissimilarity sum before not non-specific hit
command.extend(['-m', 1]) # discard reads with >1 alignment
command.append(genome_name) # index base, built above
command.append(fastq_name) # faked fastq temp file
command.append(specific_name) # unique hits
command = [str(x) for x in command]
logging.info('Marking specificity threshold {threshold}'.format(**locals()))
logging.info(' '.join(command))
bowtie_job = subprocess.Popen(command)
# Check for problems
if bowtie_job.wait() != 0:
sys.exit(bowtie_job.returncode)
if sam_copy:
shutil.copyfile(specific_name, sam_copy)
aligned_reads = pysam.Samfile(specific_name)
for x in aligned_reads:
# flag 4 means unaligned, so skip those
if not x.flag & 4:
t = targets[x.qname]
if t.specificity < threshold:
t.specificity = threshold
os.close(specific_tempfile)
def label_targets(targets,
target_regions,
chrom_lens,
allow_partial_overlap):
"""Annotate targets according to overlaps with gff entries.
Args:
targets: the targets to annotate.
target_regions: the target regions for which to produce annotations
chrom_lens: mapping from chrom name to sequence length.
allow_partial_overlap: Include targets which only partially overlap region.
Returns:
anno_targets: list of targets with added region annotations
"""
logging.info(
'Labeling targets based on region file.'.format(**vars()))
anno_targets = list()
found = set()
counter = 0
# Organize targets by chromosome and then start location.
per_chrom_sorted_targets = collections.defaultdict(list)
for name, x in targets.items():
per_chrom_sorted_targets[x.chrom].append(x)
for x in per_chrom_sorted_targets:
per_chrom_sorted_targets[x].sort(key=lambda x:(x.start, x.end))
per_chrom_bounds = dict()
for chrom in chrom_lens:
per_chrom_bounds[chrom] = (0,0) # Check out the bound variables
for i, x in enumerate(target_regions):
(gene, chrom, gene_start, gene_end, gene_strand) = x
if i % 100 is 0:
logging.info('Examining gene {i} [{gene}].'.format(**vars()))
front, back = per_chrom_bounds[chrom]
reverse_strand_gene = gene_strand == '-'
if gene_start >= chrom_lens[chrom]:
continue
chrom_targets = per_chrom_sorted_targets[chrom]
# TODO(jsh): If a gene is contained within another gene, we might double
# label outer-gene guides that are later than the end of the inner gene
if allow_partial_overlap:
# Shift back index until target.start >= gene_end
while (back < len(chrom_targets) and
chrom_targets[back].start < gene_end):
back += 1
# Shift front index until target.end > gene_start
while (front < len(chrom_targets) and
chrom_targets[front].end <= gene_start):
front += 1
else:
# Shift back index until target.end > gene_end
while (back < len(chrom_targets) and
chrom_targets[back].end <= gene_end):
back += 1
# Shift front index until target.start >= gene_start
while (front < len(chrom_targets) and
chrom_targets[front].start < gene_start):
front += 1
overlap = chrom_targets[front:back]
per_chrom_bounds[chrom] = (front, back) # Return bound vars to shelf
if len(overlap) == 0:
logging.warn('No overlapping targets for gene {gene}.'.format(**vars()))
for target in overlap:
found.add(target.id_str())
if reverse_strand_gene:
offset = gene_end - target.end
else:
offset = target.start - gene_start
returnable = copy.deepcopy(target)
returnable.gene = gene
returnable.offset = offset
returnable.sense_strand = (reverse_strand_gene == target.reverse)
anno_targets.append(returnable)
for name, target in targets.items():
if name not in found:
anno_targets.append(copy.deepcopy(target))
return anno_targets
def parse_args():
"""Read in the arguments for the sgrna library construction code."""
logging.info('Parsing command line.')
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--input_genbank_genome_name', type=str,
action='append',
help='Location of genome file in GenBank format (can be repeated).',
required=True)
parser.add_argument(
'--sam_copy', type=str,
help='[optional] Copy sam tmpfile from (final) bowtie run to here.',
default=None)
parser.add_argument(
'--tsv_output_file', type=str,
help='[optional] Specified name for tab-separated output file.',
default=None)
parser.add_argument(
'--only_include_fully_overlapping', action='store_false',
dest='allow_partial_overlap', default=True,
help='Only label targets which are fully contained in the region.')
args = parser.parse_args()
# TODO(jsh): add code to handle alternate PAMs and/or guide lengths/shapes
args.pam = '.gg'
# TODO(jsh): add code to handle alternate PAMs and/or guide lengths/shapes
args.target_len = 20
fastafile = None
parts = os.path.splitext(args.input_genbank_genome_name[0])
mergename = parts[0] + '.merged' + parts[1]
with open(mergename, 'w') as outhandle:
files = args.input_genbank_genome_name
chunks = itertools.chain(*[SeqIO.parse(x, 'genbank') for x in files])
SeqIO.write(chunks, outhandle, 'genbank')
fastafile = mergename + '.fasta'
SeqIO.convert(mergename, 'genbank', fastafile, 'fasta')
args.input_genbank_genome_name = mergename
if args.tsv_output_file is None:
base = os.path.splitext(args.input_genbank_genome_name)[0]
args.tsv_output_file = base + '.targets.all.tsv'
args.input_fasta_genome_name = fastafile
return args
def main():
args = parse_args()
# Build initial list
all_targets = extract_targets(args.input_fasta_genome_name,
args.pam,
args.target_len)
# Score list
ascribe_specificity(all_targets, args.input_fasta_genome_name, args.sam_copy)
# Annotate list
chrom_lens = chrom_lengths(args.input_fasta_genome_name)
target_regions = get_regions_from_genbank(args.input_genbank_genome_name)
all_targets = label_targets(all_targets,
target_regions,
chrom_lens,
args.allow_partial_overlap)
# Generate output
total_count = len(all_targets)
logging.info(
'Writing {total_count} annotated targets to {args.tsv_output_file}'.format(
**vars()))
with open(args.tsv_output_file, 'w') as tsv_file:
tsv_file.write(sgrna_target.header() + '\n')
for target in all_targets:
tsv_file.write(str(target) + '\n')
##############################################
if __name__ == "__main__":
sys.exit(main())