-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_utils.py
825 lines (714 loc) · 31.1 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
import re
import librosa
import matplotlib.pyplot as plt
import librosa.display
import os
import tensorflow as tf
from pydub import AudioSegment
import skimage.measure
from skimage.transform import resize
import scipy
from scipy.spatial import distance
import librosa.segment
from sklearn.neighbors import NearestNeighbors
import math
from scipy import signal
import numpy as np
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder
from numpy import argmax
from sklearn.preprocessing import normalize
from matplotlib.pyplot import specgram
import soundfile as sf
import seaborn as sns
MASTER_DIR = 'D:/Google Drive/Resources/Dev Stuff/Python/Machine Learning/Master Thesis/'
WEIGHT_DIR = os.path.join(MASTER_DIR, 'Weights/')
# Output filepath for training images and labels
DEFAULT_FILEPATH = os.path.join(MASTER_DIR, 'Images/Train/')
DEFAULT_LABELPATH = os.path.join(MASTER_DIR, 'Labels/')
# region DEPRECATED
# LOG-SCALED MEL SPECTROGRAM (deprecated)
def create_spectrogram(filename, name, filepath=DEFAULT_FILEPATH):
plt.interactive(False)
clip, sample_rate = librosa.load(filename, sr=None)
fig = plt.figure(figsize=[0.72, 0.72])
ax = fig.add_subplot(111)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
ax.set_frame_on(False)
S = librosa.feature.melspectrogram(y=clip, sr=sample_rate)
S_db = librosa.power_to_db(S, ref=np.max)
librosa.display.specshow(S_db, x_axis='s', y_axis='log')
filename = filepath + os.path.basename(name) + '.png'
# print(filename)
# fp = open(filename, 'x')
# fp.close()
plt.savefig(filename, dpi=400, bbox_inches='tight', pad_inches=0)
plt.close()
fig.clf()
plt.close(fig)
plt.close('all')
del filename, name, clip, sample_rate, fig, ax, S
# CREATE MLS AND SSLM (MFCC) GRAPHS (deprecated)
def create_mls_sslm(filename, name="", foldername="", filepath=DEFAULT_FILEPATH):
"""====================Parameters===================="""
window_size = 2048 # (samples/frame)
hop_length = 1024 # overlap 50% (samples/frame)
sr_desired = 44100
p = 2 # max-pooling factor
L_sec = 14 # lag context in seconds
L = round(L_sec * sr_desired / hop_length) # conversion of lag L seconds to frames
y, sr = librosa.load(filename, sr=None)
if sr != sr_desired:
y = librosa.core.resample(y, sr, sr_desired)
sr = sr_desired
"""=================Mel Spectrogram================"""
S = librosa.feature.melspectrogram(y=y, sr=sr, n_fft=window_size, hop_length=hop_length, n_mels=80, fmin=80,
fmax=16000)
S_to_dB = librosa.power_to_db(S, ref=np.max) # convert the spectrogram in dB
# Plot MLS
plt.figure(figsize=(10, 4))
plt.title("Mel Spectrogram")
fig = plt.imshow(S_to_dB, origin='lower', cmap='plasma', aspect=20)
plt.colorbar(fig, fraction=0.0115, pad=0.05)
plt.show()
print("MLS dimensions are: [mel bands, N]")
print("MLS dimensions are: [", S_to_dB.shape[0], ",", S_to_dB.shape[1], "]")
padding_factor = L # frames
pad = np.full((S_to_dB.shape[0], padding_factor), -70) # matrix of 80x30frames of -70dB corresponding to padding
S_padded = np.concatenate((pad, S_to_dB), axis=1) # padding 30 frames with noise at -70dB at the beginning
# Plot S_padded
plt.figure(figsize=(12, 6))
plt.title("S_padded")
plt.imshow(S_padded, origin='lower', cmap='viridis', aspect=20)
plt.show()
print("S_padded dimensions are: [mel bands, N+L] (with L in frames)")
print("S_padded dimensions are: [", S_padded.shape[0], ",", S_padded.shape[1], "]")
x_prime = skimage.measure.block_reduce(S_padded, (1, p), np.max) # Mel Spectrogram downsampled
# Plot x_prime
plt.figure(figsize=(6, 6))
plt.title("x_prime")
fig = plt.imshow(x_prime, origin='lower', cmap='viridis', aspect=5)
plt.show()
print("x_prime dimensions are: [mel bands, (N+L)/p] (with L in frames)")
print("x_prime dimensions are: [", x_prime.shape[0], ",", x_prime.shape[1], "]")
# MFCCs calculation by computing the Discrete Cosine Transform of type II (DCT-II)
MFCCs = scipy.fftpack.dct(x_prime, axis=0, type=2, norm='ortho')
MFCCs = MFCCs[1:, :]
# Plot MFCCs
plt.figure(figsize=(15, 10))
plt.title("MFCCs")
plt.imshow(MFCCs, origin='lower', cmap='viridis', aspect=10)
plt.show()
print("MFCCs dimensions are: [mel bands - 1, (N+L)/p] (with L in frames)")
print("MFCCs dimensions are: [", MFCCs.shape[0], ",", MFCCs.shape[1], "]")
# Bagging frames
m = 2 # bagging parameter in frames
x = [np.roll(MFCCs, n, axis=1) for n in range(m)]
x_hat = np.concatenate(x, axis=0)
# Plot x_hat
plt.figure(figsize=(15, 10))
plt.title("x_hat")
plt.imshow(x_hat, origin='lower', cmap='viridis', aspect=10)
plt.show()
print("x_hat dimensions are: [(mel bands - 1)*m, (N+L)/p] (with L in frames)")
print("x_hat dimensions are: [", x_hat.shape[0], ",", x_hat.shape[1], "]")
""" Cosine Distance SSLM """
# Cosine distance calculation: D[N/p,L/p] matrix
distances = np.zeros((x_hat.shape[1], padding_factor // p)) # D has as dimensions N/p and L/p
for i in range(x_hat.shape[1]): # iteration in columns of x_hat
for l in range(padding_factor // p):
if i - (l + 1) < 0:
cosine_dist = 1
elif i - (l + 1) < padding_factor // p:
cosine_dist = 1
else:
cosine_dist = distance.cosine(x_hat[:, i],
x_hat[:, i - (l + 1)]) # cosine distance between columns i and i-L
distances[i, l] = cosine_dist
# Plot Distances
plt.figure(figsize=(15, 10))
plt.title("Cosine Distances")
fig = plt.imshow(np.transpose(distances), origin='lower', cmap='viridis', aspect=2)
plt.colorbar(fig, fraction=0.009, pad=0.05)
plt.show()
print("Distance matrix dimensions are: [N/p, L/p] (with L in frames)")
print("Distance matrix dimensions are: [", distances.shape[0], ",", distances.shape[1], "]")
# Threshold epsilon[N/p,L/p] calculation
kappa = 0.1 # equalization factor of 10%
epsilon = np.zeros((distances.shape[0], padding_factor // p)) # D has as dimensions N/p and L/p
for i in range(padding_factor // p, distances.shape[0]): # iteration in columns of x_hat
for l in range(padding_factor // p):
epsilon[i, l] = np.quantile(np.concatenate((distances[i - l, :], distances[i, :])), kappa)
# Plot Epsilon
plt.figure(figsize=(15, 10))
plt.title("Epsilon")
fig = plt.imshow(np.transpose(epsilon), origin='lower', cmap='viridis', aspect=2)
plt.colorbar(fig, fraction=0.009, pad=0.05)
plt.show()
print("Epsilon matrix dimensions are: [N/p, L/p] (with L in frames)")
print("Epsilon matrix dimensions are: [", epsilon.shape[0], ",", epsilon.shape[1], "]")
# Removing initial padding now taking into account the max-pooling factor
distances = distances[padding_factor // p:, :]
epsilon = epsilon[padding_factor // p:, :]
x_prime = x_prime[:, padding_factor // p:]
# Self Similarity Lag Matrix
sslm = scipy.special.expit(1 - distances / epsilon) # sigmoid function
sslm = np.transpose(sslm)
# Plot SSLM
plt.figure(figsize=(15, 10))
plt.title("Cosine Distance SSLM")
fig = plt.imshow(sslm, origin='lower', cmap='viridis', aspect=1)
plt.colorbar(fig, fraction=0.0125, pad=0.05)
plt.show()
print("SSLM dimensions are: [L/p, N/(p*p_2)] (with L in frames an p_2 = 3)")
print("SSLM dimensions are: [", sslm.shape[0], ",", sslm.shape[1], "]")
sslm = skimage.measure.block_reduce(sslm, (1, 3), np.max)
x_prime = skimage.measure.block_reduce(x_prime, (1, 3), np.max)
# Check if SSLM has nans and if it has them, substitute them by 0
for i in range(sslm.shape[0]):
for j in range(sslm.shape[1]):
if np.isnan(sslm[i, j]):
sslm[i, j] = 0
# Plot Mel Spectrogram
plt.figure(1, figsize=(15, 10))
plt.title("Final MLS")
plt.imshow(x_prime, origin='lower', cmap='plasma', aspect=2)
plt.show()
fig = plt.figure(1, figsize=(15, 10))
plt.imshow(x_prime, origin='lower', cmap='plasma', aspect=2)
ax = fig.add_subplot(111)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
ax.set_frame_on(False)
filename = filepath + "MLS/" + os.path.basename(name) + 'mls.png'
plt.savefig(filename, bbox_inches='tight', pad_inches=0) # dpi=400, transparent=True
fig.clf()
plt.close(fig)
del ax, fig
# Plot Final SSLM
plt.figure(figsize=(15, 10))
plt.title("Final Cosine Distance SSLM")
plt.imshow(sslm, origin='lower', cmap='viridis', aspect=0.8)
plt.show()
fig = plt.figure(1, figsize=(15, 10))
plt.imshow(sslm, origin='lower', cmap='viridis', aspect=0.8)
ax = fig.add_subplot(111)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
ax.set_frame_on(False)
filename = filepath + "SSLMCOS/" + os.path.basename(name) + 'cos.png'
plt.savefig(filename, bbox_inches='tight', pad_inches=0) # dpi=400, transparent=True
fig.clf()
plt.close(fig)
del ax, fig
if sslm.shape[1] == x_prime.shape[1]:
print("Cos SSLM and MLS have the same time dimension (columns).")
else:
print("ERROR. Time dimension of Cos SSLM and MLS mismatch.")
print("MLS has", x_prime.shape[1], "lag bins and the Cos SSLM has", sslm.shape[1])
""" Euclidian Distance SSLM """
# Euclidian distance calculation: D[N/p,L/p] matrix
distances = np.zeros((x_hat.shape[1], padding_factor // p)) # D has as dimensions N/p and L/p
for i in range(x_hat.shape[1]): # iteration in columns of x_hat
for l in range(padding_factor // p):
if i - (l + 1) < 0:
eucl_dist = 1
elif i - (l + 1) < padding_factor // p:
eucl_dist = 1
else:
eucl_dist = distance.euclidean(x_hat[:, i],
x_hat[:, i - (l + 1)]) # euclidian distance between columns i & i-L
distances[i, l] = eucl_dist
# Plot Distances
plt.figure(figsize=(15, 10))
plt.title("Euclidian Distances")
fig = plt.imshow(np.transpose(distances), origin='lower', cmap='viridis', aspect=2)
plt.colorbar(fig, fraction=0.009, pad=0.05)
plt.show()
print("Distance matrix dimensions are: [N/p, L/p] (with L in frames)")
print("Distance matrix dimensions are: [", distances.shape[0], ",", distances.shape[1], "]")
# Threshold epsilon[N/p,L/p] calculation
kappa = 0.1 # equalization factor of 10%
epsilon = np.zeros((distances.shape[0], padding_factor // p)) # D has as dimensions N/p and L/p
for i in range(padding_factor // p, distances.shape[0]): # iteration in columns of x_hat
for l in range(padding_factor // p):
epsilon[i, l] = np.quantile(np.concatenate((distances[i - l, :], distances[i, :])), kappa)
# Plot Epsilon
plt.figure(figsize=(15, 10))
plt.title("Epsilon")
fig = plt.imshow(np.transpose(epsilon), origin='lower', cmap='viridis', aspect=2)
plt.colorbar(fig, fraction=0.009, pad=0.05)
plt.show()
print("Epsilon matrix dimensions are: [N/p, L/p] (with L in frames)")
print("Epsilon matrix dimensions are: [", epsilon.shape[0], ",", epsilon.shape[1], "]")
# Removing initial padding now taking into account the max-poolin factor
distances = distances[padding_factor // p:, :]
epsilon = epsilon[padding_factor // p:, :]
# Self Similarity Lag Matrix
sslm = scipy.special.expit(1 - distances / epsilon) # sigmoid function
sslm = np.transpose(sslm)
# Plot SSLM
plt.figure(figsize=(15, 10))
plt.title("Euclidian Distance SSLM")
fig = plt.imshow(sslm, origin='lower', cmap='viridis', aspect=1)
plt.colorbar(fig, fraction=0.0125, pad=0.05)
plt.show()
print("SSLM dimensions are: [L/p, N/(p*p_2)] (with L in frames an p_2 = 3)")
print("SSLM dimensions are: [", sslm.shape[0], ",", sslm.shape[1], "]")
sslm = skimage.measure.block_reduce(sslm, (1, 3), np.max)
# Check if SSLM has nans and if it has them, substitute them by 0
for i in range(sslm.shape[0]):
for j in range(sslm.shape[1]):
if np.isnan(sslm[i, j]):
sslm[i, j] = 0
# Plot Final SSLM
plt.figure(figsize=(15, 10))
plt.title("Final Euclidian SSLM")
plt.imshow(sslm, origin='lower', cmap='viridis', aspect=0.8)
plt.show()
fig = plt.figure(1, figsize=(15, 10))
plt.imshow(sslm, origin='lower', cmap='viridis', aspect=0.8)
ax = fig.add_subplot(111)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
ax.set_frame_on(False)
filename = filepath + "SSLMEUC/" + os.path.basename(name) + 'euc.png'
plt.savefig(filename, bbox_inches='tight', pad_inches=0) # dpi=400, transparent=True
fig.clf()
plt.close(fig)
del ax, fig
if sslm.shape[1] == x_prime.shape[1]:
print("Euc SSLM and MLS have the same time dimension (columns).")
print("Number of lag bins:", sslm.shape[1])
else:
print("ERROR. Time dimension of Euc SSLM and MLS mismatch.")
print("MLS has", x_prime.shape[1], "lag bins and the Euc SSLM has", sslm.shape[1])
return
# endregion
class SplitAudio:
def __init__(self, folder, filename, setmono=True):
self.folder = folder
self.filename = filename
# self.filepath = folder + '\\' + filename
self.audio = AudioSegment.from_file(self.filename)
if setmono:
self.audio = self.audio.set_channels(1)
def get_duration(self):
return self.audio.duration_seconds
def get_samplerate(self):
return self.audio.frame_rate
def single_split(self, from_sec, to_sec, split_filename="", export=True):
t1 = from_sec * 1000
t2 = to_sec * 1000
split_audio = self.audio[t1:t2]
if export:
split_audio.export(self.folder + '/' + split_filename[split_filename.index("/")+1:], format="wav")
else:
return split_audio
def multiple_split(self, sec_per_split, verbose=True):
total_sec = math.ceil(self.get_duration())
for i in range(0, total_sec, sec_per_split):
split_fn = self.filename[:self.filename.index('.')] + '_' + str(i) + '.wav'
self.single_split(i, i + sec_per_split, split_fn)
if verbose:
print(str(i) + " Done")
if i == total_sec - sec_per_split:
print("All splits completed successfully")
else:
print("Error during audio splitting")
def audiosegment_to_ndarray(audiosegment, getSR=False):
samples = audiosegment.get_array_of_samples()
samples_float = librosa.util.buf_to_float(samples, n_bytes=2,
dtype=np.float32)
if audiosegment.channels == 2:
sample_left = np.copy(samples_float[::2])
sample_right = np.copy(samples_float[1::2])
sample_all = np.array([sample_left, sample_right])
else:
sample_all = samples_float
if getSR:
return [sample_all, audiosegment.frame_rate]
else:
return sample_all
# Novelty Function
def peak_picking(filename, name="", foldername="", filepath=DEFAULT_FILEPATH, returnpeaks=True, verbose=True):
# window_size = 0.209 # sec/frame
samples_frame = 8192 # samples_frame = math.ceil(window_size*sr)
# hop_size = 0.139 # sec/frame
hop_length = 6144 # hop_length = math.ceil(hop_size*sr) #overlap 25% (samples/frame)
sr_desired = 44100
if filepath != DEFAULT_FILEPATH:
pass
y, sr = librosa.load(filename, sr=None)
if sr != sr_desired:
y = librosa.core.resample(y, sr, sr_desired)
sr = sr_desired
stft = np.abs(librosa.stft(y, n_fft=samples_frame, hop_length=hop_length))
# fft_freq = librosa.core.fft_frequencies(sr=sr, n_fft=samples_frame)
# Plot Mel-Spectogram from SFTF
if verbose:
librosa.display.specshow(librosa.amplitude_to_db(stft, ref=np.max), y_axis='log', x_axis='frames')
plt.title('Power spectrogram')
plt.colorbar(format='%+2.0f dB')
plt.tight_layout()
plt.show()
chroma = librosa.feature.chroma_stft(S=stft, sr=sr, n_fft=samples_frame, hop_length=hop_length)
# Plot PCPs or Chroma from spectogram
if verbose:
plt.figure(figsize=(10, 4))
librosa.display.specshow(chroma, sr=sr, y_axis='chroma', x_axis='frames', cmap="coolwarm")
plt.colorbar()
plt.title('Chromagram')
plt.tight_layout()
plt.show()
print("Chroma dimensions are: [chroma vectors, N']")
print("Chroma dimensions are: [", chroma.shape[0], ",", chroma.shape[1], "]")
# vector x_hat construction. x in Serra's paper is chroma here
m = round(5 * sr / hop_length)
tau = 1
w = (m - 1) * tau
chroma = np.concatenate((np.zeros((chroma.shape[0], w)), chroma), axis=1)
x = [np.roll(chroma, tau * n, axis=1) for n in range(m)]
x_ = np.concatenate(x, axis=0)
X_hat = x_[:, w:] # (w, frames)
N_prime = chroma.shape[1]
N = N_prime - w
# Plot x, x_ and resulting x_hat
# x (first chroma)
if verbose:
plt.figure(figsize=(15, 7))
plt.title('First chroma vector: x[0]')
plt.imshow(np.asarray(x[0]), origin='lower', cmap='plasma', aspect=2)
plt.show()
# x_
if verbose:
plt.figure(figsize=(15, 7))
plt.title('x_')
plt.imshow(x_, origin='lower', cmap='plasma', aspect=0.5)
plt.show()
# x_hat
if verbose:
plt.figure(figsize=(15, 7))
plt.title('x_hat')
plt.imshow(X_hat, origin='lower', cmap='plasma', aspect=0.5)
plt.show()
print("X_hat dimensions are: [chroma vectors * m (in samples), N'] = [", chroma.shape[0], "*", m, ", N']")
print("X_hat dimensions are: [", X_hat.shape[0], ",", X_hat.shape[1], "]")
# Recurrence matrix from librosa
recurrence = librosa.segment.recurrence_matrix(chroma, mode='affinity', k=chroma.shape[1])
if verbose:
plt.figure(figsize=(7, 7))
plt.title('Recurrence matrix from chroma vector from LIBROSA')
plt.imshow(recurrence, cmap='gray')
plt.show()
# Plot recurrence matrix of vector x with librosa
recurrence2 = librosa.segment.recurrence_matrix(x, k=14, sym=True)
if verbose:
plt.figure(figsize=(7, 7))
plt.title('Recurrence matrix of x vector with k=13 neighbors from LIBROSA')
plt.imshow(1 - recurrence2, cmap='gray')
plt.show()
# KNN
K = 14 # K = round(N*0.03)
nbrs = NearestNeighbors(n_neighbors=K).fit(X_hat.T)
distances, indices = nbrs.kneighbors(X_hat.T)
R = np.zeros((N, N))
for i in range(N):
for j in range(N):
if (i in indices[j]) and (j in indices[i]) and (i != j):
R[i, j] = 1
# Plot recurrence matrix of vector R (same as above)
if verbose:
plt.figure(figsize=(7, 7))
plt.title('Recurrence matrix R')
plt.imshow(1 - R, cmap='gray')
plt.show()
L = librosa.segment.recurrence_to_lag(R, pad=False) # None
# Lag Matrix calculated from R
if verbose:
plt.figure(figsize=(7, 7))
plt.title('Lag Matrix')
plt.imshow(1 - L, cmap='gray')
plt.show()
# Smoothing signal with Gaussian windows of 30 samples length
s1 = round(0.3 * sr / hop_length)
st = round(30 * sr / hop_length)
sigma1 = (s1 - 1) / (2.5 * 2)
sigmat = (st - 1) / (2.5 * 2)
g1 = signal.gaussian(s1, std=sigma1).reshape(s1, 1) # g1 in paper
gt = signal.gaussian(st, std=sigmat).reshape(st, 1) # gt in paper
G = np.matmul(g1, gt.T)
# Plot Gaussian window
if verbose:
plt.plot(gt)
plt.title("Gaussian window ($\sigma$=7)")
plt.ylabel("Amplitude")
plt.xlabel("Sample")
plt.show()
# Gaussian kernel G
if verbose:
plt.figure(figsize=(7, 7))
plt.title('Gaussian kernel G')
plt.imshow(1 - G, origin='lower', cmap='gray', aspect=40)
plt.show()
# Applyin gaussian filter to Lag matrix
P = signal.convolve2d(L, G, mode='same')
# Plot R matrix after Gaussian smoothing
P2 = librosa.segment.lag_to_recurrence(P, axis=-1)
if verbose:
plt.figure(figsize=(7, 7))
plt.title('Recurrence matrix R after gaussian')
plt.imshow(1 - P2, cmap='gray')
plt.show()
# Plot Lag matrix after Gaussian smoothing
if verbose:
plt.figure(figsize=(7, 7))
plt.title('Lag matrix L after gaussian')
plt.imshow(1 - P, cmap='gray')
plt.show()
# Novelty curve
c = np.linalg.norm(P[:, 1:] - P[:, 0:-1], axis=0)
c_norm = (c - c.min()) / (c.max() - c.min()) # normalization of c
# Plot novelty function with boundaries
frames = range(len(c_norm))
if verbose:
plt.figure(figsize=(10, 4))
plt.title('Novelty function vector c')
plt.xlabel('Frames')
plt.plot(frames, c_norm)
plt.show()
# Peaks detection - sliding window
delta = 0.05 # threshold
lamda = round(6 * sr / hop_length) # window length
peaks_position = signal.find_peaks(c_norm, height=delta, distance=lamda, width=round(0.5 * sr / hop_length))[
0] # array of peaks
# peaks_values = signal.find_peaks(c_norm, height=delta, distance=lamda, width=round(0.5 * sr / hop_length))[1][
# 'peak_heights'] # array of peaks
b = peaks_position
# Adding elements 1 and N' to the begining and end of the arrray
if len(b) == 0 or b[0] != 0:
b = np.concatenate([[0], b]) # b: segment boundaries
if b[-1] != N_prime - 1:
b = np.concatenate([b, [N - 1]])
# Plot novelty function with boundaries
frames = range(len(c_norm))
if verbose:
plt.figure(figsize=(10, 4))
plt.title('Novelty function vector c (red lines are peaks)')
plt.xlabel('Frames')
for i in range(len(b)):
plt.axvline(b[i], color='r', linestyle='--')
plt.plot(frames, c_norm)
plt.show()
if returnpeaks:
peaktimes = []
for i in range(len(b)):
timeSecondsDecimal = b[i] / sr * hop_length
peaktimes.append(timeSecondsDecimal)
return peaktimes
# Cumulative matrix: Q
Q = np.zeros_like(R)
for u in range(b.shape[0] - 1):
for v in range(b.shape[0] - 1):
Q_uv = np.copy(R[b[u]:b[u + 1], b[v]:b[v + 1]])
for i in range(1, Q_uv.shape[0]):
for j in range(1, Q_uv.shape[1]):
if i == 1 and j == 1:
Q_uv[i, j] += Q_uv[i - 1, j - 1]
elif i == 1:
Q_uv[i, j] += max(Q_uv[i - 1, j - 1], Q_uv[i - 1, j - 2])
elif j == 1:
Q_uv[i, j] += max(Q_uv[i - 1, j - 1], Q_uv[i - 2, j - 1])
else:
Q_uv[i, j] += max(Q_uv[i - 1, j - 1], Q_uv[i - 2, j - 1], Q_uv[i - 1, j - 2])
Q[b[u]:b[u + 1], b[v]:b[v + 1]] = Q_uv
# Cumulative matrix plot
plt.figure(figsize=(7, 7))
plt.title('Cumulative matrix Q')
plt.imshow(1 - Q, cmap='gray')
plt.show()
# Normalization of Q matrix: Segment similarity matrix S
num_segments = b.shape[0] - 1
S = np.zeros((num_segments, num_segments))
for u in range(b.shape[0] - 1):
for v in range(b.shape[0] - 1):
S[u, v] = np.max(Q[b[u]:b[u + 1], b[v]:b[v + 1]]) / min(b[u + 1] - b[u], b[v + 1] - b[v])
# Plot Segment similarity matrix S
plt.figure(figsize=(7, 7))
plt.title('Segment matrix S')
plt.imshow(1 - S, cmap='gray')
# for i in range(len(b)):
# plt.axvline(b[i], color='r', linestyle='--')
# plt.axhline(b[i], color='r', linestyle='--')
plt.show()
# Transitive Binary Similarity Matrix: S_hat
S_hat = S > S.mean() + S.std()
S_hat_norm = np.matmul(S_hat, S_hat)
while (S_hat_norm < S_hat).all():
S_hat = S_hat_norm
S_hat_norm = np.matmul(S_hat, S_hat)
S_hat_norm = S_hat_norm >= 1
# Plot transitive binary similarity matrix S_hat
plt.figure(figsize=(7, 7))
plt.title('Segment transitive binary similarity matrix S_hat')
plt.imshow(1 - S_hat_norm, cmap='gray')
plt.show()
# Image vs ground truth - Plot S with labels
S_frames = np.zeros_like(Q)
for u in range(b.shape[0] - 1):
for v in range(b.shape[0] - 1):
S_frames[b[u]:b[u + 1], b[v]:b[v + 1]] = S_hat_norm[u, v]
label_path = DEFAULT_LABELPATH + foldername
file = "/" + os.path.basename(name) + ".txt"
nums, lbls, form = ReadDataFromtxt(label_path, file)
labels_array = np.asarray(nums)
array = labels_array.astype(np.float)
plt.figure(figsize=(7, 7))
plt.title('Segment Similarity Matrix S with labels')
plt.imshow(1 - S_frames, cmap='gray')
for i in range(len(array)):
plt.axvline(array[i] * sr / hop_length, color='b', linestyle='--')
plt.axhline(array[i] * sr / hop_length, color='b', linestyle='--')
plt.show()
print()
fig = plt.figure(figsize=(7, 7))
plt.imshow(1 - S_frames, cmap='gray')
for i in range(len(array)):
plt.axvline(array[i] * sr / hop_length, color='b', linestyle='--')
plt.axhline(array[i] * sr / hop_length, color='b', linestyle='--')
ax = fig.add_subplot(111)
ax.axes.get_xaxis().set_visible(False)
ax.axes.get_yaxis().set_visible(False)
ax.set_frame_on(False)
# filename = filepath + "SSLMCRM/" + os.path.basename(name) + 'crm.png'
# plt.savefig(filename, bbox_inches='tight', pad_inches=0) # dpi=400, transparent=True
fig.clf()
plt.close(fig)
del ax, fig
# Plot novelty function with boundaries
frames = range(len(c_norm))
plt.figure(figsize=(10, 4))
plt.title('Novelty function vector c (red lines are peaks and black lines are labels)')
plt.xlabel('Frames')
timeDifs = []
# dbltb = "\t\t"
# nspc = ""
for i in range(len(array)):
plt.axvline(array[i] * sr / hop_length, color='black', linestyle='-')
for i in range(len(b)):
plt.axvline(b[i], color='r', linestyle='--')
# timeSecondsDecimal = b[i] / sr * hop_length
"""
# DEMO EVENT COMPARISON
timeStr = str(datetime.timedelta(seconds=timeSecondsDecimal))
gtTimeStr = 0
timeDifference = 0
if i < len(array): # Demonstration only
gtTimeStr = str(datetime.timedelta(seconds=array[i]))
timeDifference = array[i] - timeSecondsDecimal
print(f"Event: {timeStr}\t\t{dbltb if i == 0 else nspc}Ground Truth: {gtTimeStr}\t\t{dbltb if i == 0 else nspc}"
f"Difference: "
f"{'{:.6f}'.format(timeDifference) if timeDifference < 0 else '{: .6f}'.format(timeDifference)}\t\t"
# f"G.T. Labels: {lbls[0]}")
f"G.T. Labels: {lbls[i]}")
timeDifs = np.append(timeDifs, abs(timeDifference))
"""
plt.plot(frames, c_norm)
plt.show()
print("\nAverage (absolute) time difference: ±" + str(np.average(timeDifs)))
# region ReadFiles
def ReadNumbersFromLine(line):
number = re.split(r'\s\s*', line)[0]
number = float(number)
return number
def ReadLabelsFromLine(line):
labels = re.split(r'\s\s*', line)[1:]
for i in range(len(labels)):
labels[i] = labels[i].replace(',', '')
return np.asarray(labels).astype(object)
def ReadImagesFromFolder(directory):
imgs = []
for (img_dir_path, img_dnames, img_fnames) in os.walk(directory):
for f in img_fnames:
img_path = img_dir_path + f
img = plt.imread(img_path)
img = resize(img, (200, 1150, 4))
imgs.append(img)
return imgs
def ReadDataFromtxt(directory, archive):
numbers = []
labels = []
cnt = 1
# for _ in listdir(directory):
cnt += 1
file = open(directory + archive, "r")
form = next(file).strip()
for line in file:
numbers.append(ReadNumbersFromLine(line))
labels.append(ReadLabelsFromLine(line.rstrip()))
file.close()
return numbers, np.asarray(labels).astype(object), form
def ReadLabelSecondsPhrasesFromFolder(lblpath=DEFAULT_LABELPATH, stop=-1, valid_only=False,
get_names=False, get_forms=False):
nums = []
lbls = []
forms = []
fnames = []
for (lbl_dir_path, lbl_dnames, lbl_fnames) in os.walk(lblpath):
for f in lbl_fnames:
if valid_only:
num_lines = sum(1 for _ in open(lbl_dir_path + f))
if num_lines <= 3:
# print("File has not been labeled with ground truth yet. Skipping...")
continue
if stop != -1:
stop -= 1
if stop == 0:
break
# prepend_line(lbl_dir_path + '/' + f, lbl_dir_path.split('/')[-1]) # Run once for master label set
numsIn, lblsIn, formsIn = ReadDataFromtxt(lbl_dir_path + '/', f)
numsIn = np.array(numsIn, dtype=np.float32)
nums.append(numsIn)
lbls.append(lblsIn)
forms.append([formsIn])
fnames.append(f)
# Convert Forms to One Hot encoding
values = np.array(forms) # print(values)
label_encoder = LabelEncoder()
label_encoder.classes_ = np.load(os.path.join(WEIGHT_DIR, 'form_classes.npy'))
integer_encoded = label_encoder.transform(values) # print(integer_encoded)
onehot_encoder = OneHotEncoder(sparse=False)
integer_encoded = integer_encoded.reshape(len(integer_encoded), 1)
onehot_encoded = onehot_encoder.fit_transform(integer_encoded) # print(onehot_encoded)
# onehot_encoded = to_categorical(integer_encoded, len(label_encoder.classes_))
# inverted = label_encoder.inverse_transform([argmax(onehot_encoded[0, :])]) # Return original label from encoding
# np.save(os.path.join(MASTER_DIR, 'form_classes.npy'), label_encoder.classes_)
# print(label_encoder.classes_)
"""
# Convert Phrases to One Hot encoding
values = np.array([np.array([np.array(y) for y in x]) for x in lbls]) # print(values)
print(values)
label_encoder = LabelEncoder()
integer_encoded = label_encoder.fit_transform(values) # print(integer_encoded)
onehot_encoder = OneHotEncoder(sparse=False)
integer_encoded = integer_encoded.reshape(len(integer_encoded), 1)
onehot_labels = onehot_encoder.fit_transform(integer_encoded) # print(onehot_encoded)
# inverted = label_encoder.inverse_transform([argmax(onehot_encoded[0, :])]) # Return original label from encoding
"""
if get_names:
if get_forms:
return nums, np.asarray(lbls), integer_encoded, np.asarray(fnames)
return nums, np.asarray(lbls), tf.expand_dims(onehot_encoded, axis=-1), np.asarray(fnames)
return nums, np.asarray(lbls), tf.expand_dims(onehot_encoded, axis=-1)
def prepend_line(file_name, line):
"""Insert string as a new line at the beginning of a file"""
dummy_file = file_name + '.bak'
with open(file_name, 'r') as read_obj, open(dummy_file, 'w') as write_obj:
write_obj.write(line + '\n')
for line in read_obj:
write_obj.write(line)
os.remove(file_name)
os.rename(dummy_file, file_name)
print("Finished prepending to " + file_name)
# endregion