Skip to content

Latest commit

 

History

History
25 lines (19 loc) · 1017 Bytes

README.md

File metadata and controls

25 lines (19 loc) · 1017 Bytes

Age-Gender-Predictor

Predict age and gender of person from their face. Using dlib for face alignment. Perform transfer learning and fine-tuning from IMDB-Wiki Dataset with VGG-16, InceptionV3, and Xception architecture using Keras framework on top of Tensorflow

Requirement

  1. Docker CE and nvidia-docker installed

  2. Pull docker image from dandynaufaldi/tf-keras-py3.5

    docker pull dandynaufaldi/tf-keras-py3.5

  3. Script for run docker with X11 forwarding (GUI apps), you may add --rm after run so the container will be self-deleted

xhost +local:docker
#xhost -local:docker
XSOCK=/tmp/.X11-unix
XAUTH=/tmp/.docker.xauth

sudo rm -rf /tmp/.docker.xauth
sudo touch /tmp/.docker.xauth

sudo xauth nlist $DISPLAY | sed -e 's/^..../ffff/' | xauth -f $XAUTH nmerge -
sudo nvidia-docker run -it --env QT_X11_NO_MITSHM=1 --device=/dev/video0 -e DISPLAY=$DISPLAY -v $XSOCK:$XSOCK -v $XAUTH:$XAUTH -e XAUTHORITY=$XAUTH  --name nvidia dandynaufaldi/tf-keras-py3.5
  1. Get the IMDB-Wiki Dataset