forked from dusty-nv/jetson-containers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
115 lines (83 loc) · 3.48 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#!/usr/bin/env python3
# TODO: Re-write for NanoOWL
import os
import sys
import time
import datetime
import resource
import argparse
import socket
import numpy as np
import matplotlib.pyplot as plt
import PIL.Image
from nanosam.utils.predictor import Predictor
parser = argparse.ArgumentParser()
parser.add_argument("--image_encoder", type=str, default="/opt/nanosam/data/resnet18_image_encoder.engine")
parser.add_argument("--mask_decoder", type=str, default="/opt/nanosam/data/mobile_sam_mask_decoder.engine")
parser.add_argument('-i', '--images', action='append', nargs='*', help="Paths to images to test")
parser.add_argument('-r', '--runs', type=int, default=2, help="Number of inferencing runs to do (for timing)")
parser.add_argument('-w', '--warmup', type=int, default=1, help='the number of warmup iterations')
parser.add_argument('-s', '--save', type=str, default='', help='CSV file to save benchmarking results to')
args = parser.parse_args()
if not args.images:
args.images = [
"/opt/nanosam/assets/dogs.jpg",
"/data/images/hoover.jpg",
"/data/images/lake.jpg",
]
print(args)
def get_max_rss(): # peak memory usage in MB (max RSS - https://stackoverflow.com/a/7669482)
return (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss + resource.getrusage(resource.RUSAGE_CHILDREN).ru_maxrss) / 1024
# Instantiate TensorRT predictor
predictor = Predictor(
args.image_encoder,
args.mask_decoder
)
avg_encoder=0
avg_latency=0
pil_image=None
mask=None
for run in range(args.runs + args.warmup):
for image in args.images:
time_begin=time.perf_counter()
# Read image and run image encoder
pil_image = PIL.Image.open(image)
predictor.set_image(pil_image)
time_encoder=time.perf_counter() - time_begin
print(f"{image}")
print(f" encode : {time_encoder:.3f} seconds")
# Segment using bounding box
bbox = [100, 100, 850, 759] # x0, y0, x1, y1
points = np.array([
[bbox[0], bbox[1]],
[bbox[2], bbox[3]]
])
point_labels = np.array([2, 3])
mask, _, _ = predictor.predict(points, point_labels)
time_elapsed=time.perf_counter() - time_begin
print(f" full pipeline : {time_elapsed:.3f} seconds\n")
if run >= args.warmup:
avg_encoder += time_encoder
avg_latency += time_elapsed
avg_encoder /= ( args.runs * len(args.images) )
avg_latency /= ( args.runs * len(args.images) )
memory_usage=get_max_rss()
print(f"AVERAGE of {args.runs} runs:")
print(f" encoder --- {avg_encoder:.3f} sec")
print(f" latency --- {avg_latency:.3f} sec")
print(f"Memory consumption : {memory_usage:.2f} MB")
mask = (mask[0, 0] > 0).detach().cpu().numpy()
# Draw resykts
plt.imshow(pil_image)
plt.imshow(mask, alpha=0.5)
x = [bbox[0], bbox[2], bbox[2], bbox[0], bbox[0]]
y = [bbox[1], bbox[1], bbox[3], bbox[3], bbox[1]]
plt.plot(x, y, 'g-')
plt.savefig("data/benchmark_last_image.jpg")
if args.save:
if not os.path.isfile(args.save): # csv header
with open(args.save, 'w') as file:
file.write(f"timestamp, hostname, api, image_encoder, mask_decoder, time_encoder, latency, memory\n")
with open(args.save, 'a') as file:
file.write(f"{datetime.datetime.now().strftime('%Y%m%d %H:%M:%S')}, {socket.gethostname()}, ")
file.write(f"nanosam-python, {args.image_encoder}, {args.mask_decoder}, {avg_encoder}, {avg_latency}, {memory_usage}\n")