You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
CUDA_VISIBLE_DEVICES=0 python cocostuff_trainval.py -F eval/cocostuff_27 with eval_only=1 model.decoder.n_things=12 model.decoder.n_stuff=15 model.decoder.pretrained_weight=weight/trained/cocostuff_27_decoder.pt
To evaluate our method on COCO-Stuff-171:
CUDA_VISIBLE_DEVICES=0 python cocostuff_trainval.py -F eval/cocostuff_171 with eval_only=1 model.decoder.n_things=80 model.decoder.n_stuff=91 model.decoder.pretrained_weight=weight/trained/cocostuff_171_decoder.pt
To evaluate our method on COCO-80:
CUDA_VISIBLE_DEVICES=0 python coco_trainval.py -F eval/coco_80 with eval_only=1 model.decoder.n_things=80 model.decoder.pretrained_weight=weight/trained/coco_80_decoder.pt
To evaluate our method on Cityscapes:
CUDA_VISIBLE_DEVICES=0 python cityscapes_trainval.py -F eval/cityscapes with eval_only=1 model.decoder.n_things=27 model.decoder.pretrained_weight=weight/trained/cityscapes_decoder.pt
To evaluate our method on Pascal-VOC:
CUDA_VISIBLE_DEVICES=0 python pascalvoc_trainval.py -F eval/pascalvoc with eval_only=1 model.decoder.n_things=20 model.decoder.pretrained_weight=weight/trained/pascalvoc_decoder.pt
To evaluate our method on LIP-5:
CUDA_VISIBLE_DEVICES=0 python lip_trainval.py -F eval/lip_5 with eval_only=1 dataset.val_batch_size=16 model.decoder.n_things=5 model.decoder.pretrained_weight=weight/trained/lip_5_decoder.pt
To evaluate our method on LIP-16:
CUDA_VISIBLE_DEVICES=0 python lip_trainval.py -F eval/lip_16 with eval_only=1 dataset.val_batch_size=16 model.decoder.n_things=16 model.decoder.pretrained_weight=weight/trained/lip_16_decoder.pt
To evaluate our method on LIP-19:
CUDA_VISIBLE_DEVICES=0 python lip_trainval.py -F eval/lip_19 with eval_only=1 dataset.val_batch_size=16 model.decoder.n_things=19 model.decoder.pretrained_weight=weight/trained/lip_19_decoder.pt
Training
For COCO-Stuff-27:
# Prepare class token feature bank
CUDA_VISIBLE_DEVICES=0 python cocostuff_crop.py
# To generate pseudo mask labels
CUDA_VISIBLE_DEVICES=0 python cocostuff_generate_pseudo_label.py with dataset.train_batch_size=8 model.decoder.n_things=12 model.decoder.n_stuff=15
# To train the model
CUDA_VISIBLE_DEVICES=0,1,2,3 python cocostuff_trainval.py -F train/cocostuff with dataset.num_workers=32 model.teacher_update_interval=2 model.bootstrapping_start_epoch=2 model.decoder.n_things=12 model.decoder.n_stuff=15
# To train the model (on the curated data)
CUDA_VISIBLE_DEVICES=0,1,2,3 python cocostuff_trainval.py -F train/cocostuff with dataset.num_workers=32 model.teacher_update_interval=1 model.bootstrapping_start_epoch=1 model.decoder.n_things=12 model.decoder.n_stuff=15 dataset.is_curated=1 lr=2.2e-4
For COCO-Stuff-171:
# Prepare class token feature bank
CUDA_VISIBLE_DEVICES=0 python cocostuff_crop.py
# To generate pseudo mask labels
CUDA_VISIBLE_DEVICES=0 python cocostuff_generate_pseudo_label.py with dataset.train_batch_size=8 model.decoder.n_things=80 model.decoder.n_stuff=91
# To train the model
CUDA_VISIBLE_DEVICES=0,1,2,3 python cocostuff_trainval.py -F train/cocostuff with dataset.num_workers=32 model.decoder.n_things=80 model.decoder.n_stuff=91
For COCO-80:
# Prepare class token feature bank
CUDA_VISIBLE_DEVICES=0 python cocostuff_crop.py
# To generate pseudo mask labels
CUDA_VISIBLE_DEVICES=0 python cocostuff_generate_pseudo_label.py with dataset.train_batch_size=8 model.decoder.n_things=80 model.decoder.n_stuff=91
# To train the model
CUDA_VISIBLE_DEVICES=0,1,2,3 python coco_trainval.py -F train/coco with dataset.num_workers=32 model.decoder.n_things=80
For Cityscapes:
# Prepare class token feature bank
CUDA_VISIBLE_DEVICES=0 python cityscapes_crop.py
# To generate pseudo mask labels
CUDA_VISIBLE_DEVICES=0 python cityscapes_generate_pseudo_label.py with dataset.train_batch_size=2
# To train the model
CUDA_VISIBLE_DEVICES=0,1,2,3 python cityscapes_trainval.py -F train/cityscapes with dataset.num_workers=32
For Pascal-VOC:
# Prepare class token feature bank
CUDA_VISIBLE_DEVICES=0 python pascalvoc_crop.py
# To generate pseudo mask labels
CUDA_VISIBLE_DEVICES=0 python pascalvoc_generate_pseudo_label.py with dataset.train_batch_size=8
# To train the model
CUDA_VISIBLE_DEVICES=0,1,2,3 python pascalvoc_trainval.py -F train/pascalvoc with dataset.num_workers=32
For LIP-5:
# Prepare class token feature bank
CUDA_VISIBLE_DEVICES=0 python lip_crop.py
# To generate pseudo mask labels
CUDA_VISIBLE_DEVICES=0 python lip_generate_pseudo_label.py with dataset.train_batch_size=2 model.decoder.n_things=5
# To train the model
CUDA_VISIBLE_DEVICES=0,1,2,3 python lip_trainval.py -F train/lip_5 with lr=1e-4 dataset.num_workers=32 dataset.resize=240 dataset.train_batch_size=512 model.teacher_update_interval=2 model.bootstrapping_start_epoch=2 model.decoder.n_things=5
For LIP-16:
# Prepare class token feature bank
CUDA_VISIBLE_DEVICES=0 python lip_crop.py
# To generate pseudo mask labels
CUDA_VISIBLE_DEVICES=0 python lip_generate_pseudo_label.py with dataset.train_batch_size=2 model.decoder.n_things=16
# To train the model
CUDA_VISIBLE_DEVICES=0,1,2,3 python lip_trainval.py -F train/lip_16 with dataset.num_workers=32 dataset.resize=240 dataset.train_batch_size=512 model.teacher_update_interval=2 model.bootstrapping_start_epoch=2 model.decoder.n_things=16
For LIP-19:
# Prepare class token feature bank
CUDA_VISIBLE_DEVICES=0 python lip_crop.py
# To generate pseudo mask labels
CUDA_VISIBLE_DEVICES=0 python lip_generate_pseudo_label.py with dataset.train_batch_size=2 model.decoder.n_things=19
# To train the model
CUDA_VISIBLE_DEVICES=0,1,2,3 python lip_trainval.py -F train/lip_19 with dataset.num_workers=32 model.decoder.n_things=19