diff --git a/js/web/lib/wasm/jsep/webgpu/ops/instance-norm.ts b/js/web/lib/wasm/jsep/webgpu/ops/instance-norm.ts index 6ed811c38306b..e60077c1766ed 100644 --- a/js/web/lib/wasm/jsep/webgpu/ops/instance-norm.ts +++ b/js/web/lib/wasm/jsep/webgpu/ops/instance-norm.ts @@ -116,11 +116,9 @@ const computeMean = const WG = 64; // we will store channel scale and channel shift in [2, components] matrix // or in vec2 when components == 1 - const outputType = components === 1 ? `vec2f` : `mat2x${components}f`; - const sumCastType = components === 1 ? `f32` : `vec${components}f`; - const setOutputValue = (var1: string, var2: string) => { - return `${outputType}(${var1}, ${var2})`; - }; + const outputType = components === 1 ? 'vec2f' : `mat2x${components}f`; + const sumCastType = components === 1 ? 'f32' : `vec${components}f`; + const setOutputValue = (var1: string, var2: string) => `${outputType}(${var1}, ${var2})`; const unitsOfWork = n * c / components; const wgSize = Math.ceil(h / WG); @@ -227,7 +225,7 @@ const createInstanceNormNHWCProgramInfo = const outputHelper = outputVariable('output', inputs[0].dataType, outputShape, components); const dataType = tensorTypeToWsglStorageType(inputs[0].dataType); - const scaleType = components === 1 ? `vec2f` : `mat2x${components}f`; + const scaleType = components === 1 ? 'vec2f' : `mat2x${components}f`; const scaleCastType = components === 1 ? dataType : `vec${components}<${dataType}>`; // first compute mean const channelScaleShift = computeMean(context, inputs[0], inputs[1], inputs[2], N, H, C, attributes.epsilon);