-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathvis_st.py
56 lines (40 loc) · 1.29 KB
/
vis_st.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import numpy as np
import matplotlib.pyplot as plt
import caffe
from math import ceil, sqrt
import vis_utils as vu
def data_unit(net, file_name):
n, c, h, w = net.blobs['data'].data.shape
f = open(file_name+'.txt', 'w')
plt.subplot(131)
vu.visualize_one_channel_images(net.blobs['data'].data.reshape(n, h, w))
plt.subplot(132)
vu.visualize_one_channel_images(net.blobs['st_output'].data.reshape(n, h, w))
plt.subplot(133)
acc = np.zeros((n, h, w, 3))
gt_label = net.blobs['label'].data
est_label = np.argmax(net.blobs['class'].data, axis=1)
err = (est_label <> gt_label)
ind = np.array(range(n))[err]
for i in ind:
x = i/ceil(sqrt(n))
y = i%ceil(sqrt(n))
f.write('Digit at (%d, %d) should be %d, but is classified as %d\n'%(x, y, gt_label[i], est_label[i]))
acc[i] = np.ones((h, w, 3))
plt.imshow(vu.vis_grid(acc))
plt.gca().axis('off')
plt.savefig(file_name+'.jpg', dpi = 100)
plt.close()
def main():
caffe_root = './'
res_root = 'res_st/'
tot = 10
caffe.set_mode_cpu()
net = caffe.Net(caffe_root + 'examples/mnist_tests/ST_CNN_RST/ST_CNN.prototxt',
caffe_root + 'examples/mnist_tests/ST_CNN_RST/ST_CNN_iter_10000.caffemodel',
caffe.TEST)
for i in xrange(tot):
print '%d/%d' % (i, tot)
net.forward()
data_unit(net, res_root+'res'+'{:08}'.format(i))
main()