Skip to content

Latest commit

 

History

History
223 lines (149 loc) · 8.44 KB

README.md

File metadata and controls

223 lines (149 loc) · 8.44 KB

Markup-to-Image Diffusion Models with Scheduled Sampling

We provide code to reproduce our paper on markup-to-image generation. Our code is built on top of HuggingFace diffusers and transformers.

Example Generations

Scheduled Sampling Baseline Ground Truth

Prerequisites

pip install transformers
pip install datasets
pip install accelerate
pip install -qU git+https://github.com/da03/diffusers

Datasets & Pretrained Models

All datasets have been uploaded to Huggingface datasets.

Usage

Training

Math

To train the diffusion model,

python src/train.py --save_dir models/math

Tables

To train the diffusion model,

python src/train.py --dataset_name yuntian-deng/im2html-100k --save_dir models/tables 

Music

In our paper, we trained on the music dataset with 4 A100 GPUs. You might need to tune --batch_size and --gradient_accumulation_steps if you want to use a single GPU to train or if your GPUs have less memory.

We first run

accelerate config

to use 4 GPUs on a single machine. Note that we did not use fp16 or DeepSpeed.

Next, we launch multi-GPU training using accelerate:

accelerate launch src/train.py --dataset_name yuntian-deng/im2ly-35k-syn --save_dir models/music

Molecules

To train the diffusion model,

python src/train.py --dataset_name yuntian-deng/im2smiles-20k --save_dir models/molecules

Generation

Math

To generate,

python scripts/generate.py --model_path models/math/scheduled_sampling/model_e100_lr0.0001.pt.100 --output_dir outputs/math --save_intermediate_every -1

Tables

To generate,

python scripts/generate.py --dataset_name yuntian-deng/im2html-100k --model_path models/tables/scheduled_sampling/model_e100_lr0.0001.pt.100 --output_dir outputs/tables --save_intermediate_every -1

Music

To generate,

python scripts/generate.py --dataset_name yuntian-deng/im2ly-35k-syn --model_path models/music/scheduled_sampling/model_e100_lr0.0001.pt.100 --output_dir outputs/music --save_intermediate_every -1

Molecules

To generate,

python scripts/generate.py --dataset_name yuntian-deng/im2smiles-20k --model_path models/molecules/scheduled_sampling/model_e100_lr0.0001.pt.100 --output_dir outputs/molecules --save_intermediate_every -1

Visualization

Math

To visualize the generation process, we need to first use the following command to save the intermediate images during generation:

python scripts/generate.py --model_path models/math/scheduled_sampling/model_e100_lr0.0001.pt.100 --output_dir outputs/math/scheduled_sampling_visualization --save_intermediate_every 1 --num_batches 1

Next, we put together a gif image from the generated images:

python scripts/make_gif.py --input_dir outputs/math/scheduled_sampling_visualization/ --output_filename imgs/math_rendering.gif --select_filename 433d71b530.png --show_every 10

We can similarly visualize results from the baseline.

python scripts/generate.py --model_path models/math/baseline/model_e100_lr0.0001.pt.100 --output_dir outputs/math/baseline_visualization --save_intermediate_every 1 --num_batches 1
python scripts/make_gif.py --input_dir outputs/math/baseline_visualization/ --output_filename imgs/math_rendering_baseline.gif --select_filename 433d71b530.png --show_every 10

Tables

To visualize the generation process, we need to first use the following command to save the intermediate images during generation:

python scripts/generate.py --dataset_name yuntian-deng/im2html-100k --model_path models/tables/scheduled_sampling/model_e100_lr0.0001.pt.100 --output_dir outputs/tables/scheduled_sampling_visualization --save_intermediate_every 1 --num_batches 1

Next, we put together a gif image from the generated images:

python scripts/make_gif.py --input_dir outputs/tables/scheduled_sampling_visualization/ --output_filename imgs/tables_rendering.gif --select_filename 42725-full.png --show_every 10

We can similarly visualize results from the baseline.

python scripts/generate.py --dataset_name yuntian-deng/im2html-100k --model_path models/tables/baseline/model_e100_lr0.0001.pt.100 --output_dir outputs/tables/baseline_visualization --save_intermediate_every 1 --num_batches 1
python scripts/make_gif.py --input_dir outputs/tables/baseline_visualization/ --output_filename imgs/tables_rendering_baseline.gif --select_filename 42725-full.png --show_every 10

Music

To visualize the generation process, we need to first use the following command to save the intermediate images during generation:

python scripts/generate.py --dataset_name yuntian-deng/im2ly-35k-syn --model_path models/music/scheduled_sampling/model_e100_lr0.0001.pt.100 --output_dir outputs/music/scheduled_sampling_visualization --save_intermediate_every 1 --num_batches 1

Next, we put together a gif image from the generated images:

python scripts/make_gif.py --input_dir outputs/music/scheduled_sampling_visualization/ --output_filename imgs/music_rendering.gif --select_filename comp.17342.png --show_every 10

We can similarly visualize results from the baseline.

python scripts/generate.py --dataset_name yuntian-deng/im2ly-35k-syn --model_path models/music/baseline/model_e100_lr0.0001.pt.100 --output_dir outputs/music/baseline_visualization --save_intermediate_every 1 --num_batches 1
python scripts/make_gif.py --input_dir outputs/music/baseline_visualization/ --output_filename imgs/music_rendering_baseline.gif --select_filename comp.17342.png --show_every 10

Molecules

To visualize the generation process, we need to first use the following command to save the intermediate images during generation:

python scripts/generate.py --dataset_name yuntian-deng/im2smiles-20k --model_path models/molecules/scheduled_sampling/model_e100_lr0.0001.pt.100 --output_dir outputs/molecules/scheduled_sampling_visualization --save_intermediate_every 1 --num_batches 1

Next, we put together a gif image from the generated images:

python scripts/make_gif.py --input_dir outputs/molecules/scheduled_sampling_visualization/ --output_filename imgs/molecules_rendering.gif --select_filename B-1173.png --show_every 10

We can similarly visualize results from the baseline.

python scripts/generate.py --dataset_name yuntian-deng/im2smiles-20k --model_path models/molecules/baseline/model_e100_lr0.0001.pt.100 --output_dir outputs/molecules/baseline_visualization --save_intermediate_every 1 --num_batches 1
python scripts/make_gif.py --input_dir outputs/molecules/baseline_visualization/ --output_filename imgs/molecules_rendering_baseline.gif --select_filename B-1173.png --show_every 10

Citation

@inproceedings{
deng2023markuptoimage,
title={Markup-to-Image Diffusion Models with Scheduled Sampling},
author={Yuntian Deng and Noriyuki Kojima and Alexander M Rush},
booktitle={The Eleventh International Conference on Learning Representations },
year={2023},
url={https://openreview.net/forum?id=81VJDmOE2ol}
}