-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfind_models.py
39 lines (27 loc) · 1.31 KB
/
find_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
from datasets import load_dataset
import pandas as pd
def get_language_distribution(dataset_name):
# Load the dataset
dataset = load_dataset(dataset_name, split='train')
# Assuming 'language' field is directly under dataset, adjust if nested
# Collect language data
language_data = dataset['model']
# Calculate language frequency
language_counts = pd.Series(language_data).value_counts()
return language_counts
def main():
# Dataset names, adjust if they are different
wildchat_dataset = 'allenai/WildChat-1M-Full'
lmsys_dataset = 'lmsys/LMSYS-Chat-1M'
# Get language distributions
wildchat_languages = get_language_distribution(wildchat_dataset)
lmsys_languages = get_language_distribution(lmsys_dataset)
# Combine the counts using min function for each language
#combined_min_counts = pd.concat([wildchat_languages, lmsys_languages], axis=1, keys=['WildChat', 'LMSYS']).min(axis=1)
combined_min_counts = pd.concat([wildchat_languages, lmsys_languages], axis=1, keys=['WildChat', 'LMSYS']).sum(axis=1)
# Sort the counts from highest to lowest
sorted_min_counts = combined_min_counts.sort_values(ascending=False)
pd.set_option('display.max_rows', None)
print(sorted_min_counts)
if __name__ == "__main__":
main()