From a1ba6a6c3e8d9ab74187412e2367bd4cfa8c8cb3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Philippe=20Rivi=C3=A8re?= Date: Mon, 7 Oct 2024 21:48:29 +0200 Subject: [PATCH] a[href] picture --- README.md | 96 +++++++++++++++++++++++++++---------------------------- 1 file changed, 48 insertions(+), 48 deletions(-) diff --git a/README.md b/README.md index a5a0f7d..5edc42b 100644 --- a/README.md +++ b/README.md @@ -68,109 +68,109 @@ Polyhedral projections’ default **clipPoint** depends on whether the clipping # d3.geoPolyhedralButterfly() · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/polyhedral/butterfly.js) - + world map - + The gnomonic butterfly projection. # d3.geoPolyhedralCollignon() · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/polyhedral/collignon.js) - + world map - + The Collignon butterfly projection. # d3.geoPolyhedralWaterman() · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/polyhedral/waterman.js) - + world map - + A butterfly projection inspired by Steve Waterman’s design. # d3.geoBerghaus · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/reclip.js) - + world map - + The Berghaus projection. # d3.geoGingery · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/reclip.js) - + world map - + The Gingery projection. # d3.geoHealpix · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/reclip.js) - + world map - + The HEALPix projection. # d3.geoInterruptedBoggs · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/reclip.js) - + world map - + Bogg’s interrupted eumorphic projection. # d3.geoInterruptedHomolosine · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/reclip.js) - + world map - + Goode’s interrupted homolosine projection. # d3.geoInterruptedMollweide · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/reclip.js) - + world map - + Goode’s interrupted Mollweide projection. # d3.geoInterruptedMollweideHemispheres · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/reclip.js) - + world map - + The Mollweide projection interrupted into two (equal-area) hemispheres. # d3.geoInterruptedSinuMollweide · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/reclip.js) - + world map - + Alan K. Philbrick’s interrupted sinu-Mollweide projection. # d3.geoInterruptedSinusoidal · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/reclip.js) - + world map - + An interrupted sinusoidal projection with asymmetrical lobe boundaries. @@ -180,10 +180,10 @@ The two-point equidistant projection, displaying 99.9996% of the sphere thanks t # d3.geoTwoPointEquidistantUsa() · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/reclip.js) - + world map - + The two-point equidistant projection with points [-158°, 21.5°] and [-77°, 39°], approximately representing Honolulu, HI and Washington, D.C. @@ -203,74 +203,74 @@ The .parents([parents]), .polygons([polygons]), . # d3.geoCubic() · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/cubic.js), [Examples](https://observablehq.com/@fil/cubic-projections) - + world map - + The cubic projection. # d3.geoDodecahedral() · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/polyhedral/dodecahedral.js), [Examples](https://observablehq.com/@fil/dodecahedral-projection) - + world map - + The pentagonal dodecahedral projection. # d3.geoRhombic() · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/polyhedral/rhombic.js), [Examples](https://observablehq.com/d/881a8431e638b408) - + world map - + The rhombic dodecahedral projection. # d3.geoDeltoidal() · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/polyhedral/deltoidal.js), [Examples](https://observablehq.com/d/881a8431e638b408) - + world map - + The deltoidal hexecontahedral projection. # d3.geoIcosahedral() · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/icosahedral.js), [Examples](https://observablehq.com/@fil/icosahedral-projections) - + world map - + The icosahedral projection. # d3.geoAirocean() · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/airocean.js), [Examples](https://observablehq.com/@fil/airocean-projection) - + world map - + Buckminster Fuller’s Airocean projection (also known as “Dymaxion”), based on a very specific arrangement of the icosahedron which allows continuous continent shapes. Fuller’s triangle transformation, as formulated by Robert W. Gray (and implemented by Philippe Rivière), makes the projection almost equal-area. # d3.geoCahillKeyes() · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/cahillKeyes.js), [Examples](https://observablehq.com/@d3/cahill-keyes)
# d3.geoCahillKeyes - + world map - + The Cahill-Keyes projection, designed by Gene Keyes (1975), is built on Bernard J. S. Cahill’s 1909 octant design. Implementation by Mary Jo Graça (2011), ported to D3 by Enrico Spinielli (2013). # d3.geoImago() · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/imago.js), [Examples](https://observablehq.com/@fil/the-imago-projection) - + world map - + The Imago projection, engineered by Justin Kunimune (2017), is inspired by Hajime Narukawa’s AuthaGraph design (1999). @@ -285,10 +285,10 @@ Horizontal shift. Defaults to 1.16. # d3.geoTetrahedralLee() · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/tetrahedralLee.js), [Examples](https://observablehq.com/@fil/lee-projection)
# d3.geoLeeRaw - + world map - + Lee’s tetrahedral conformal projection. @@ -299,20 +299,20 @@ Default aspect uses _projection_.rotate([30, 180]) and has the North Pole at the # d3.geoCox() · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/cox.js), [Examples](https://observablehq.com/@fil/cox-conformal-projection-in-a-triangle)
# d3.geoCoxRaw - + world map - + The Cox conformal projection. # d3.geoComplexLog([planarProjectionRaw[, cutoffLatitude]]) · [Source](https://github.com/d3/d3-geo-polygon/blob/main/src/complexLog.js), [Example](https://cgmi.github.io/complex-log-projection/)
# d3.geoComplexLogRaw([planarProjectionRaw]) - + world map - + Complex logarithmic view. This projection is based on the papers by Joachim Böttger et al.: