This repository has been archived by the owner on Oct 23, 2024. It is now read-only.
forked from kubeflow/katib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist.py
137 lines (111 loc) · 5.62 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright 2022 The Kubeflow Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import tensorflow as tf
from tensorflow.keras.layers import Dense, Flatten, Conv2D
from tensorflow.keras import Model
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = Conv2D(32, 3, activation='relu')
self.flatten = Flatten()
self.d1 = Dense(128, activation='relu')
self.d2 = Dense(10)
def call(self, x):
x = self.conv1(x)
x = self.flatten(x)
x = self.d1(x)
return self.d2(x)
def train_step(args, model, optimizer, train_ds, epoch, loss_object, train_summary_writer, train_loss, train_accuracy):
for step, (images, labels) in enumerate(train_ds):
with tf.GradientTape() as tape:
# training=True is only needed if there are layers with different
# behavior during training versus inference (e.g. Dropout).
predictions = model(images, training=True)
loss = loss_object(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
train_loss(loss)
train_accuracy(labels, predictions)
if step % args.log_interval == 0:
print("Train Epoch: {} [{}/60000 ({:.0f}%)]\tloss={:.4f}, accuracy={:.4f}".format(
epoch + 1, step * args.batch_size, 100. * step * args.batch_size / 60000,
train_loss.result(), train_accuracy.result() * 100)
)
with train_summary_writer.as_default():
tf.summary.scalar('loss', train_loss.result(), step=epoch)
tf.summary.scalar('accuracy', train_accuracy.result(), step=epoch)
def test_step(model, test_ds, epoch, loss_object, test_summary_writer, test_loss, test_accuracy):
for (images, labels) in test_ds:
# training=False is only needed if there are layers with different
# behavior during training versus inference (e.g. Dropout).
predictions = model(images, training=False)
t_loss = loss_object(labels, predictions)
test_loss(t_loss)
test_accuracy(labels, predictions)
with test_summary_writer.as_default():
tf.summary.scalar('loss', test_loss.result(), step=epoch)
tf.summary.scalar('accuracy', test_accuracy.result(), step=epoch)
print("Test Loss: {:.4f}, Test Accuracy: {:.4f}\n".format(
test_loss.result(), test_accuracy.result() * 100)
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--batch-size', type=int, default=64,
help='input batch size for training (default: 64)')
parser.add_argument('--learning-rate', type=float, default=0.001,
help='learning rate (default: 0.001)')
parser.add_argument("--epochs", type=int, default=10, metavar="N",
help="number of epochs to train (default: 10)")
parser.add_argument("--log-interval", type=int, default=100, metavar="N",
help="how many batches to wait before logging training status (default: 100)")
parser.add_argument(
'--log-path',
type=str,
default=os.path.join(os.getenv('TEST_TMPDIR', '/tmp'),
'tensorflow/mnist/logs/mnist_with_summaries'),
help='Summaries log PATH')
args = parser.parse_args()
# Setup dataset
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# Add a channels dimension
x_train = x_train[..., tf.newaxis].astype("float32")
x_test = x_test[..., tf.newaxis].astype("float32")
train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(10000).batch(args.batch_size)
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(args.batch_size)
# Setup tensorflow summaries
train_log_dir = os.path.join(args.log_path, 'train')
test_log_dir = os.path.join(args.log_path, 'test')
train_summary_writer = tf.summary.create_file_writer(train_log_dir)
test_summary_writer = tf.summary.create_file_writer(test_log_dir)
# Create an instance of the model
model = MyModel()
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
optimizer = tf.keras.optimizers.Adam(learning_rate=args.learning_rate)
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
for epoch in range(args.epochs):
# Reset the metrics at the start of the next epoch
train_summary_writer.flush()
test_summary_writer.flush()
train_step(args, model, optimizer, train_ds, epoch, loss_object, train_summary_writer,
train_loss, train_accuracy)
test_step(model, test_ds, epoch, loss_object, test_summary_writer, test_loss, test_accuracy)
if __name__ == "__main__":
main()